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Prefacio 

 
 

 

 

 

 

 

 

Durante los últimos años el procesamiento de imágenes ha tomado 
importancia en el campo científico, su principal objetivo es maximizar el uso 
de la información de una imagen para un contexto en particular. De 
acuerdo con lo anterior, uno de los principales temas en este campo es la 
fusión de imágenes, la cual hace referencia a la combinación de información 
relevante obtenida a partir de dos imágenes, esto con el fin de producir una 
imagen que contenga una calidad superior a las originales. Dentro de este 
campo, se pueden realizar fusiones de imágenes satelitales, donde se debe 
proporcionar una imagen pancromática para realizar una inyección de 
riqueza espacial en la información espectral asociada a la imagen 
multiespectral.  

La fusión de imágenes al igual que la gran mayoría de operaciones con 
imágenes presentan una exigencia computacional dependiente del tamaño 
de la imagen, debido a la granularidad pixel a pixel presente en estas 
operaciones. Esta granularidad que aparentemente es un inconveniente 
termina convirtiéndose en una ventaja porque habilita la posibilidad de 
paralelización masiva sobre arquitecturas computacionales que ofrecen un 
alto número de núcleos de procesamiento, tales como las GPU (Graphics 
Processing Unit). 
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Este libro presenta una forma eficiente de acelerar la implementación 
de los principales métodos de fusión de imágenes mediante procesamiento 
heterogéneo, segmentando y distribuyendo tareas convenientemente 
entre cómputo secuencial sobre CPU y cómputo paralelo masivo sobre 
GPU. 
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Capítulo 1 
 

 

 

 

 

 

 

Introducción, problema de 
investigación y objetivos 

 

La fusión de imágenes de teledetección de muy alta resolución o pan-
sharpening, consiste en añadir o inyectar la información espacial que 
contiene la imagen pancromática a las bandas espectrales de la imagen 
Multiespectral, preservando las características espectrales de esta. Sin 
embargo, en este proceso se introducen distorsiones, además de las 
inherentes al registro de los datos Multiespectral (MS) y Pancromática 
(PAN). En este contexto, para intentar evitar este inconveniente a lo largo 
de la última década se han desarrollado multitud de algoritmos de 
pansharpening (Vivone et al., 2015). Sin embargo, no existe en la actualidad 
ninguno que se postule como la solución óptima para la fusión de 
imágenes. 

1.1 Introducción a la fusión de imágenes 
El concepto de fusión de datos se remonta a los años 1950 y 1960 

(Wang et al., 2005) cuando se inició la búsqueda de métodos prácticos que 
permitieran mezclar imágenes procedentes de diversos sensores, con el fin 
de proporcionar una imagen que facilitara una mejor identificación de 
objetos naturales y artificiales, de aquí, que actualmente se disponga de un 
gran número de metodologías y algoritmos para la fusión de imágenes 
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ópticas, siendo las técnicas basadas en análisis multirresolución (MRA) las 
más utilizadas. 

Algunas técnicas son muy sencillas desde un punto de vista conceptual, 
como la transformada de Brovey, Multiplicación, el Análisis de 
Componentes Principales o la transformada HSI, sin embargo, como se 
demuestra en numerosos trabajos, estas metodologías proporcionan 
imágenes fusionadas con considerables distorsiones respecto al color de 
las imágenes multiespectrales originales. Para minimizar estas distorsiones 
se han presentado un gran número de métodos basados principalmente en 
técnicas de análisis multirresolución, que proporcionan una mínima 
distorsión espectral de las imágenes fusionadas con resultados superiores 
a los métodos citadas previamente. 

“La fusión de imágenes es una respuesta a la frecuente necesidad de tener 
en una sola imagen datos de alta resolución espectral y espacial a partir de 
imágenes multiespectrales y pancromáticas de diferente resolución espacial 
y diferentes sensores remotos. La fusión permite obtener información 
detallada sobre el medio ambiente urbano y rural, útil para una aplicación 
específica en estudio” (Wald, 1999; Alparone et al., 2007).  

Corresponde a técnicas que permiten mezclar, a nivel de píxel, las 
virtudes de diversas imágenes mejorando la capacidad de discriminación 
digital de los fenómenos espaciales, permitiendo al usuario cambiar la 
escala del análisis espacial con la misma imagen. En pocas palabras, lo que 
se pretende es mejorar la calidad de los datos, lo que además sirve para 
mejorar la fiabilidad de las estimaciones de una determinada variable 
(Chuvieco, 2002).  

La fusión de imágenes genera imágenes sintéticas, producto de la 
combinación de uno o más sensores, por ejemplo, imágenes de radar con 
ópticas, térmicas con ópticas, etc. Una de las aplicaciones más recurrentes 
es la de mejorar la resolución espacial de una imagen multiespectral, 
usando una imagen de resolución espectral pobre, pero de mayor 
resolución espacial. Hace unos años lo más natural era fusionar bandas de 
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Landsat 5 TM, de 30 m. de resolución espacial, con la banda pancromática 
de Spot, con píxel de 10 m (Chuvieco, 2008). El resultado poseía lo mejor de 
los dos mundos, la riqueza espectralidad Landsat junto a la riqueza espacial 
de la Spot. Este procedimiento también puede hacerse entre fotografías 
aéreas e imágenes de cualquier satélite.  

Hoy lo más común es utilizar la banda pancromática, propia del mismo 
satélite y fusionarla con sus bandas espectrales. La ventaja de esto, es que 
ambas imágenes son de la misma fecha y tienen el mismo ángulo de 
inclinación de la toma, por lo tanto, tendrán las mismas características de 
sombras e igualdad de condiciones atmosféricas. 

Generalmente la relación entre el tamaño del píxel de las bandas 
espectrales y la banda pancromática es de 1 a 2, es decir, si una banda 
espectral posee resolución espacial de 30 m. por píxel, la banda 
pancromática poseería una resolución de 15 m. (ver Figura 1). 

Para realizar la fusión de imágenes se debe cumplir: 

1.  La georreferenciación o corregistración de las imágenes involucradas, 
debe ser la misma. Es decir, la ubicación de los objetos en el espacio 
debe coincidir. 

2.  La extensión de las imágenes debe ser la misma, en otras palabras, la 
cantidad de líneas y columnas debe ser igual. 

3.  El tamaño del píxel también debe ser igual en todas las bandas 
involucradas. Es decir, el tamaño del píxel de la imagen multiespectral 
debe coincidir con el tamaño de la imagen pancromática. 

 

     
Figura 1. Comparación de la banda 3 y la imagen pancromática Landsat 8 OLI TIRS. 
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Para cumplir estos requisitos, las bandas espectrales deben ser 
procesadas. Lo primero es igualar las matrices en cuanto a tamaño del píxel 
y cantidad de las bandas espectrales a la imagen pancromática. El 
procedimiento se llama remuestreo e implica recalcular la matriz raster de 
las bandas para que esta sea igual a la matriz de la imagen pancromática.  

La Figura 2, muestra lo que ocurre con los valores de los píxeles durante 
el proceso. En esta, la relación es 1 a 2, donde 1 píxel espectral se multiplica 
por 4, pero los valores asignados no cambian, se repiten, ya que no se está 
mejorando la imagen o no hay nueva información espectral que 
representar. Se debe mencionar que el peso de la nueva banda en el disco 
duro será de 4 veces mayor que la original. Para el caso de imágenes con 
relación 1 a 4 el peso aumenta 16 veces. 

 

 
Figura 2. Valores de píxel durante el proceso de remuestreo. 

 

La calidad de las imágenes a fusionar es muy relevante cuando éstas 
provienen de distintos sensores. Wald et al. (1997) recomiendan que se 
cumplan ciertas condiciones medibles matemáticamente, a través de 
índices estadísticos, pueden ser los ERGAS espectral (Erreur Relative Globale 
Adimensionelle de Synthèse), de Wald (2000) o ERGAS Espacial, para evaluar 
la calidad espacial de la fusión, de Lillo-Saavedra y Gonzalo (2005). También 
se puede utilizar la diferencia de los valores medios, la diferencia de 
varianzas, la desviación estándar o el error medio cuadrático (RMS), 
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correlaciones espaciales, entre otros, y que van más allá de mera inspección 
visual. Estas condiciones se pueden resumir en: 

1.  Cualquier imagen fusionada una vez degradada de su resolución original, 
debe ser lo más similar posible a la imagen original (antes de la fusión). 

2.  Cualquier imagen fusionada debe ser lo más similar posible a la imagen 
original del sensor que aporta la imagen de mayor resolución espacial. 

 
Como ejemplo de fusión, con una imagen Ikonos de Bogotá, RGB 

verdadero color, 4 metros de resolución espacial, y una imagen 
pancromática 1 m de resolución, (ver Figura 3).  

         

Figura 3. Imagen original y la imagen fusionada Ikonos. 

1.2 Introducción a la computación heterogénea 
A través de la historia de la computación, el paradigma de desarrollo y 

evolución de los procesadores se había enfocado en el aumento de su 
capacidad de cómputo mediante el incremento de la frecuencia de reloj, 
con el objeto de ejecutar una mayor cantidad de instrucciones en el menor 
tiempo posible. Sin embargo, desde 2003 debido al consumo de energía y 
los problemas de disipación de calor que limitan la construcción de 
procesadores que aumenten la frecuencia de reloj y el nivel de actividades 
productivas que puede ejecutarse en cada periodo de reloj en un único 
procesador, se cambió el enfoque integrando múltiples unidades de 
procesamiento en un mismo chip para aumentar el poder de 
procesamiento (De Antonio y Marina, 2005). Gracias al desarrollo de estos 
procesadores se abrió la posibilidad de resolver problemas 
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computacionales que antes hubieran sido imposibles (Alba, 2005). Estos 
problemas deben ser solucionados de una manera distinta a como se 
resuelven linealmente, tomando un problema cualquiera se divide en un 
conjunto de subproblemas para resolver éstos simultáneamente sobre 
diferentes unidades de procesamiento. 

 De acuerdo a lo expuesto en el párrafo anterior, en la actualidad el 
desarrollo de sistemas de procesamiento se ha enfocado en producir 
dispositivos con la capacidad de ejecución simultánea de dos manera 
diferentes: La primera opción es el diseño de CPUs multi-core, optimizadas 
para reducir el tiempo de ejecución de procesos secuenciales (lactency 
cores); la segunda opción, es el diseño de sistemas de procesamiento many-
thread, como por ejemplo las GPUs (Graphics Processing Unit / Unidades de 
Procesamiento Gráfico) optimizadas para mejorar el desempeño (menos 
tiempo y menos consumo de energía eléctrica)  en la ejecución de procesos 
paralelizables (throughput cores). Debido a que la mayoría de problemas 
computacionalmente intensivos poseen procesos tanto secuenciales como 
paralelizables, en los últimos años se ha iniciado el proceso de integración 
de los sistemas multi-core y los sistemas many-thread en plataformas 
computacionales denominadas heterogéneas (Kirk & Wen-mei, 2012). 

Una plataforma de computación heterogénea se define como un 
sistema conformada por lo menos de dos tipos diferentes de procesadores, 
normalmente, con el objeto de incorporar capacidades de procesado 
especializadas para realizar tareas particulares (Shan, 2006). Un sistema 
heterogéneo se conforma habitualmente por una o más CPU que cumplen 
la función de unidad de procesamiento principal (llamado generalmente 
Host) y uno o más dispositivos de procesamiento diferentes, como por 
ejemplo GPUs (Graphics Processing Units), DSPs (Digital Signal Processors), 
FPGAs (Field Programmable Gate Arrays), que cumplen la función de 
aceleradores (ver Figura 4). También se puede encontrar la integración de 
dos o más tipos de procesadores en un solo chip, por ejemplo, un APU 
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(accelerated processing unit) es un microprocesador que integra una CPU 
multinúcleo y una GPU mediante un bus de alta velocidad. 

 
Figura 4.  Plataforma heterogénea típica. 

Así como la heterogeneidad entre dispositivos de procesamiento 
representa una ventaja al ofrecer capacidades de procesado especializadas 
para realizar tareas particulares, también representa una gran desventaja 
desde el punto de vista del desarrollo. La heterogeneidad entre dispositivos 
de procesamiento se centra principalmente en la diferencia entre 
arquitecturas de conjuntos de instrucciones ISA (Instruction Set 
Architecture), por tal motivo cada uno de los tipos de dispositivos podrá 
contar con modelos, paradigmas y herramientas de programación 
totalmente diferentes, lo que conlleva a procesos de desarrollo separados 
con tortuosas integraciones. Los limitantes en la integración de procesos 
de desarrollo para los diferentes tipos de dispositivos que pueden estar 
involucrados en un sistema heterogéneo, se han comenzado a mitigar con 
la creación de estándares de plataformas y modelos de programación tales 
como CUDA y OpenCL. 

1.2.1 CUDA 

CUDA es una plataforma de computación paralela de propósito general 
y un modelo de programación. Su principal objetivo es habilitar el uso de 
GPUs NVIDIA para soluciona problemas computacionales complejos de una 
forma más eficiente que como se hace sobre una CPU (CUDA C 
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Programming Guide, 2017). CUDA incluye un entorno de software que 
permite a los desarrolladores usar C como un lenguaje de alto nivel. 
También soporta otros lenguajes de programación y APIs. 

1.2.1.1 Modelo de programación de CUDA 
El modelo de programación de CUDA se soporta sobre 3 abstracciones 

claves: jerarquía de grupos de hilos, memorias compartidas y barreras de 
sincronización, que se presentan al programador como un conjunto mínimo 
de extensiones de lenguaje. Estas abstracciones guían al programador a 
dividir el problema en subproblemas gruesos que pueden resolverse de 
forma independiente en paralelo mediante bloques de hilos, y cada 
subproblema en piezas más finas que se pueden resolver 
cooperativamente en paralelo por todos los hilos dentro del bloque. 

El modelo es escalable de forma automática, en el sentido que los 
bloques de hilos no van sujetos al número de multiprocesadores de la GPU. 
La ejecución de los bloques se adapta al número de multiprocesadores 
disponibles (ver Figura 5). 

 
Figura 5.  Escalabilidad automática de CUDA: los bloques de hilos se distribuyen de forma 

homogénea entre los SMs (Streaming Multiprocessors).  
Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide. 

http://docs.nvidia.com/cuda/cuda-c-programming-guide
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Figura 6.  Ejemplo de definición y llamado de un kernel.  

Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide. 

 

Kernels: CUDA extiende C de tal forma que el programador pueda 
definir funciones denominadas kernels, que cuando sean llamadas, se 
ejecuten N veces en paralelo por N diferentes Hilos CUDA. El número de 
hilos a ejecutar la función se define en el momento de llamar el kernel. En 
la Figura 6 se puede observar un ejemplo de definición y llamado de un 
kernel. 

Jerarquía de hilos: en CUDA los hilos se pueden agrupar en bloques de 
1, 2 o 3 dimensiones y a su vez esos bloques se pueden agrupar en mallas 
de 1, 2 o 3 dimensiones. En la Figura 7 se puede observar una grilla de 2 
dimensiones conformada por bloques de hilos también de 2 dimensiones. 
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Figura 7.  Malla de bloques de hilos.  

Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide. 

 

 
Figura 8.  Ejemplo de definición y llamado de un kernel con una malla bidimensional conformada 

por bloques bidimensionales de hilos. 
 Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide. 

 

El número de hilos por bloque y el número de bloques por malla se 
determinan en el momento de llamar el kernel. Dentro del kernel tanto los 
bloques como los hilos tienen un identificador que se puede acceder a 
través de una variable (built-in). Para el caso de los bloques la variable es 
blockIdx y para el caso de los hilos es threadIdx. Adicionalmente se puede 
acceder a la dimensión de los bloques mediante la variable blockDim. 

http://docs.nvidia.com/cuda/cuda-c-programming-guide
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En el ejemplo de la figura 8 se definen bloques de tamaño 16x16 (256 
hilos), que se agrupan en una malla bidimensional definida de tal forma que 
hallan suficientes bloques como para disponer de un hilo por cada 
elemento de la matriz a procesar.  

Jerarquía de memoria: Las memorias con las cuales se cuenta en CUDA 
se organizan de forma jerárquica de acuerdo a su visibilidad. Cada hilo tiene 
una memoria privada de uso exclusivo, cada bloque de hilos tiene una 
memoria compartida a la cual pueden acceder todos los hilos de un bloque, 
pero no los de otros bloques, por último, todos los hilos sin importar de que 
bloque sean pueden acceder a una memoria denominada global. Adicional 
a esta memoria global existen otras dos memorias de acceso general para 
todos los hilos pero únicamente para su lectura, estas memorias son la de 
textura y la constante.  

En la Figura 9 se pueden observar los diferentes tipos de memoria en 
CUDA con su visibilidad por parte de los hilos, los bloques y las mallas. 

 
Figura 9.  Jerarquía de memoria en CUDA.  

Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide. 
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Programación heterogénea: el modelo de programación de CUDA 
asume que sus hilos se ejecutan en un dispositivo separado físicamente que 
actúa como coprocesador del host donde se ejecuta el programa C desde 
el cual se llaman los kernels. Para el caso de tener una CPU y una GPU, esta 
última actuará como coprocesador del host CPU. 

El modelo también asume que tanto la GPU como la CPU poseen su 
propio espacio de memoria independiente en la DRAM y se refiere a estos 
espacios como memoria de dispositivo y memoria de host 
respectivamente. En la Figura 10 se puede observar el concepto de 
programación heterogénea: un programa en C que ejecuta de forma 
secuencial código serial que es ejecutado en el host y código paralelo que 
es ejecutado en el dispositivo (GPU). 

 
Figura 10.  Programación heterogénea.  

Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide. 
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1.3 Reto computacional para implementar la fusión de 
imágenes en arquitecturas computacionales 
heterogéneas 

Como se mencionó en los párrafos anteriores, la fusión de imágenes 
utiliza una serie de algoritmos que tienen algo en común: involucran en 
gran medida operaciones pixel a pixel, lo que genera una dependencia 
directa entre el tamaño de la imagen y la exigencia computacional. Sin 
embargo, esas operaciones pixel a pixel presentan una baja o nula 
interdependencia, lo que habilita su parelización masiva para acelerar su 
cómputo mediante arquitecturas many-core, como por ejemplo las 
unidades de procesamiento gráfico o GPU como se puede evidenciar en las 
implementaciones de Yoo et al. (2009) y de Lu et al. (2011). 

Evidentemente la paralelización masiva mediante arquitecturas many-
core es el camino a seguir para enfrentar la alta exigencia computacional 
de la fusión de imágenes, y mucho más si se tiene en cuenta que 
actualmente se dispone de un gran número de librerías eficientes para el 
cómputo matricial sobre GPU, como por ejemplo CUBLAS (Toolkit, 2011) o 
clBLAS (Nugteren, 2018). 

Sin embargo los algoritmos de fusión de imágenes no están 
conformados exclusivamente de procesos paralelizables eficientemente, 
sino que involucran: a) procesos secuenciales con cierto grado de 
interdependencia que conlleva a que su ejecución en una plataforma many-
core no represente ninguna aceleración sino que por el contrario implique 
tiempos y recursos de memoria adicionales; b) procesos paralelizables que 
por su alta transferencia de datos entre las plataformas multi-core y many-
core es más eficiente su ejecución secuencial. Esto exige un modelo de 
procesamiento heterogéneo que segmente y distribuya convenientemente 
tareas entre los dos tipos de arquitecturas, teniendo en cuenta no solo la 
capacidad de paralelización de los procesos sino también el costo de la 
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transferencia de los datos y el uso eficiente de las estructuras de memoria 
disponibles. 

1.4 Objetivo de este libro 
Este libro busca diseñar e implementar modelos de procesamiento 

heterogéneos que permitan la aceleración eficiente de los principales 
métodos de fusión de imágenes sobre plataformas computacionales que 
integren arquitecturas multi-core (CPU) y arquitecturas many-core (GPU). 

En los capítulos 2, 3 y 4, el lector encontrará los conceptos de los 
métodos de fusión por transformada de Brovey, por multiplicación, por 
análisis de componentes principales y por el algoritmo de À trous; así como 
también encontrará el modelo de procesamiento y el código que permite 
su implementación eficiente en arquitecturas heterogéneas (CPU/GPU). 
Adicionalmente el libro cuenta con un repositorio (https://github.com/ 
Parall-UD/libro_fusion_imagenes_satelitales_GPU) donde se encuentran 
los scripts y las imágenes de prueba. En el capítulo 5 se exponen las 
diferentes métricas que permiten evaluar la calidad de la imagen fusionada 
tanto espacial como espectralmente. En el capítulo 6 se presentan y 
analizan los resultados de la evaluación de los modelos y su 
implementación tanto a nivel de aceleración como a nivel de calidad de la 
imagen fusionada. Finalmente se presentan las conclusiones. 

 

 

https://github.com/%20Parall-UD/libro_fusion_imagenes_satelitales_GPU
https://github.com/%20Parall-UD/libro_fusion_imagenes_satelitales_GPU
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Capítulo 2 
 

 

 

 

 

 

 

 

Fusión de imágenes basado en 
operaciones algebraicas 

 

En función del algoritmo de fusión aplicado se obtendrán imágenes con 
mayor o menor calidad espacial, pero estableciéndose siempre un 
compromiso entre esta y la calidad espectral de la imagen fusionada, ya que 
cuanto mayor será la cantidad de información proveniente de la imagen 
pancromática que se le inyecta a la multiespectral mejor será su calidad 
espacial, pero también mayor será la distorsión de las características 
espectrales de la multiespectral original y viceversa. En la mayoría de los 
casos, el objetivo es obtener una imagen con una resolución espacial 
próxima a la de la imagen pancromática, introduciendo la mínima distorsión 
espectral posible. 

2.1 Algoritmos de fusión de imágenes 
La fusión puede definirse como la combinación simultanea de 

información procedente de fuentes distintas que se complementan y cuyo 
resultado permite mejorar la calidad y la interpretabilidad de los datos 
originales. En el contexto de la teledetección, la fusión consiste en la 
combinación de dos o más imágenes con el fin de obtener una nueva 
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imagen que contenga la información deseada de cada una de ellas. Este 
proceso de fusión puede llevarse a cabo a distintos niveles: de píxel, de 
objeto y de decisión (Stathaki 2008, Zhang 2010). 

La fusión a nivel de píxel es el nivel de procesado más bajo y consiste 
en generar una imagen fusionada donde la información asociada a cada 
píxel se obtiene a partir de los pixeles de las imágenes de origen. La fusión 
a nivel de objeto se basa en la extracción previa de los objetos en las 
imágenes origen en base a criterios como tamaño, forma o vecindad, 
empleando técnicas de segmentación. Finalmente, la fusión a nivel de 
decisión consiste en fusionar la información al nivel más alto de 
abstracción. Así, las imágenes fuente son procesadas independientemente 
para extraer la información que a continuación se combina aplicando reglas 
de decisión para reforzar la interpretación común.  

En este escenario, una de las herramientas de procesado novedosas, y 
que presentan gran interés por parte de la comunidad científica, son las 
técnicas de fusión a nivel de píxel o pansharpening, que permiten obtener 
imágenes de varias bandas del espectro con el máximo nivel de detalle 
espacial. Así, el principal objetivo de la fusión a nivel de píxel consiste en la 
aplicación de algoritmos de procesado para mejorar la resolución espacial 
de las diferentes bandas multiespectrales sin alterar sus características 
espectrales (Li, Lixin y Mingyi, 2012). 

2.2 Revisión de métodos de fusión de imágenes satelitales 
De forma genérica, el proceso básico para la fusión de imágenes 

multiespectrales y pancromáticas de un mismo sensor es el que se muestra 
en la Figura 11. Lógicamente, y como paso previo a la fusión, es importante 
garantizar el perfecto registro de las diferentes imágenes. Se aprecia que la 
primera transformación consiste en la interpolación para ajustar el tamaño 
de la imagen multiespectral (MS) al de la pancromática (PAN), para 
seguidamente aplicar el algoritmo de fusión correspondiente. 
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La fusión de imágenes a nivel de píxel es un campo de investigación 
muy activo. Si bien, es verdad que desde hace bastantes años se habían 
comenzado a estudiar, es a partir del año 2000 cuando ha despertado un 
interés creciente asociado a la disponibilidad de datos procedentes de 
sensores ópticos de diferentes resoluciones espaciales. 

 
Figura 11. Diagrama genérico del proceso de fusión a nivel de píxel entre las bandas MS y PAN. 

Fuente: elaboración propia. 

 

Existen diferentes formas de clasificar los distintos algoritmos de 
fusión (Kpalma et al., 2013; Amro et al., 2011; Zhang, 2010; González- 
Audícana, 2007).  

A continuación, se muestra una de ellas atendiendo a los detalles de su 
implementación: 

• Métodos basados en operaciones algebraicas: las imágenes 
fusionadas se obtienen como resultado de operaciones aritméticas 
entre bandas de la imagen MS y la PAN. 



Acelerando la fusión de imágenes mediante computación heterogénea 

 

 
 

30 
 

• Métodos basados en sustitución de componentes: el principio teórico 
de estos métodos es la realización de una transformación de la 
imagen MS original en una serie de componentes transformadas, de 
tal forma que al sustituir una de dichas componentes por la imagen 
PAN y realizar la operación de transformación inversa se consiga una 
imagen fusionada de alta resolución espectral y espacial. 

• Métodos basados en la inyección de altas frecuencias: estos métodos 
se basan en extraer las componentes de alta frecuencia de la imagen 
PAN, por ejemplo, usando un filtrado paso alto, que posteriormente 
se inyectan a la MS. 

• Métodos basados en el análisis multirresolución: estas técnicas 
descomponen las bandas MS y PAN a diferentes escalas para extraer 
los detalles espaciales que se importan a las bandas MS a la escala 
más fina. Los métodos basados en la transformada wavelet discreta 
son los algoritmos más empleados en este ámbito de la fusión de 
imágenes. 

Con independencia de la clasificación utilizada por diversos autores, en 
la actualidad se dispone de un gran número de algoritmos de fusión (Vivone 
et al., 2015; Amro et al., 2011; Marcello-Ruiz et al., 2011; Ehlers et al. 2010; 
Stathaki, 2008) principalmente aplicados para la fusión de imágenes 
ópticas e IR cercanas. 

En sus inicios, las técnicas más populares fueron las basadas en 
operaciones aritméticas, destacando los algoritmos de Brovey, Synthetic 
Variable Ratio o Ratio Enhancement, y las basadas en la sustitución de 
bandas tras la aplicación de una transformada, destacando el Análisis de 
Componentes Principales (PCA, Principal Component Analysis), la 
transformada Intensidad-Brillo-Saturación (IHS, Intensity-Hue-Saturation) o 
el algoritmo Gram-Schmidt (GS).  

La utilización de estos algoritmos está muy extendida dada la baja 
complejidad computacional que presentan. Sin embargo, proporcionan 
imágenes fusionadas de menor calidad espectral, es decir cuyo color 
presenta distorsiones respecto al color de las imágenes multiespectrales 
originales. Esto impide su uso en diferentes aplicaciones en el área de la 
teledetección, como son la clasificación de imágenes o la detección de 
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cambios. Más recientemente, para el tratamiento de datos de satélite de 
nuevos sensores con mayor número de bandas, como es el caso de 
Worldview-2 o de los sensores hiperespectrales, se ha desarrollado nuevos 
algoritmos como, por ejemplo, el Hyperspecral Colour Sharpening (HCS) (Li, 
He et al., 2013, Padwick, Deskevich et al., 2010). 

Para solventar las limitaciones espectrales de los algoritmos 
mencionados, surgieron técnicas que inyectan la información de alta 
frecuencia, destacando los métodos HPF (High- Pass-Filtering), HPM (High-
Pass-Modulation) o el basado en la aplicación de filtros paso alto en el 
dominio de Fourier (Lillo‐Saavedra, Gonzalo et al., 2005). Sin embargo, los 
métodos que utilizan el análisis multirresolución, y fundamentalmente la 
Transformada Wavelet Discreta (TWD) son los más populares para 
disminuir la distorsión espectral. En particular, para lograr resultados 
óptimos de fusión, diversos esquemas basados en wavelets han sido 
propuestos por varios investigadores (Hong, Zhang 2008; Amolins, Zhang 
y Dare, 2007; Lillo - Saavedra, Gonzalo, 2006; Otazu et al., 2005), destacando 
los algoritmos de Mallat y À trous, cuya principal diferencia se refiere al 
sentido en el que se realiza la estrategia multirresolución, pues en el primer 
caso se diezma la imagen mientras que para À trous no se aplica ningún 
diezmado.  

En el ámbito de esta investigación se han seleccionados los algoritmos 
de pan-sharpening que a continuación se detallan para llevar a cabo el 
proceso de evaluación de la calidad espacial y espectral empleando las 
métricas existentes. Se han seleccionado algoritmos pertenecientes a 
diferentes categorías y, en especial, aquellos cuyo comportamiento 
espectral y espacial es conocido al estar ampliamente documentado en la 
literatura científica. Hay que destacar que el objetivo es fusionar imágenes 
para analizar las prestaciones de los índices de calidad. 
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2.3 Transformada de Brovey  
Es un algoritmo de bajo coste computacional basado en operaciones 

aritméticas y que da como resultado imágenes de buena calidad espacial, 
pero baja calidad espectral. Utiliza un método que multiplica cada píxel de 
la imagen multiespectral por la relación entre la intensidad de cada píxel de 
la pancromática y la suma de las intensidades de todas las bandas de la 
multiespectral. 

Fue originariamente diseñado para imágenes de satélites de tres bandas 
(composiciones RGB). Así, la transformada de Brovey (Hallada and Cox, 
1983) inicial puede ser implementada según la expresión matemática 
siguiente: 

𝑁𝑁𝑁𝑁1 = (3𝐵𝐵1/(𝐵𝐵1 + 𝐵𝐵2 + 𝐵𝐵3)) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃                                      (1) 
𝑁𝑁𝑁𝑁2 = (3𝐵𝐵2/(𝐵𝐵1 + 𝐵𝐵2 + 𝐵𝐵3)) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃                                    (2) 
𝑁𝑁𝑁𝑁3 = (3𝐵𝐵3/(𝐵𝐵1 + 𝐵𝐵2 + 𝐵𝐵3)) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃                                  (3) 

donde NB1, NB2 y NB3 son las bandas fusionadas y PAN es la pancromática. 
Al realizar la implementación del algoritmo ha de tenerse en cuenta que los 
valores a utilizar deben estar normalizados para evitar desbordamientos de 
rango. A continuación, se muestra la ecuación extendida del algoritmo para 
imágenes con N bandas: 

𝑁𝑁𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹,𝑏𝑏𝑏𝑏 = � 𝑁𝑁𝑁𝑁×𝑁𝑁𝐷𝐷𝑏𝑏𝑏𝑏
𝑁𝑁𝐷𝐷𝑏𝑏𝑏𝑏+𝑁𝑁𝐷𝐷𝑏𝑏𝑏𝑏+⋅⋅⋅+𝐵𝐵𝐵𝐵𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏

� ∗ 𝑁𝑁𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃                     (4) 

Donde:  

NB es el número de bandas espectrales. 

NDFUS,bi es el valor digital de la banda fusionada i. 

NDbi es el valor digital de la banda multiespectral i. 

NDPAN es el valor digital de la banda PAN. 
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2.3.1 Modelo de procesamiento heterogéneo para la transformada de 
Brovey 

El modelo de procesamiento heterogéneo para implementar la 
transformada de Brovey sobre una arquitectura CPU/GPU se presenta en la 
Figura 12. El primer paso es la separación de bandas para la imagen 
multiespectral. Posteriormente, se realiza la transferencia de los niveles 
digitales a memoria global de la GPU, con el fin de realizar una 
normalización de las bandas. Este proceso consiste en tomar cada una de 
las bandas, multiplicarlas por un factor, el cual corresponde al número total 
de bandas y finalmente dividir este valor entre la suma de cada una de las 
bandas. Acto seguido, se multiplica elemento a elemento cada una de las 
bandas normalizadas con la imagen pancromática, esto con el propósito de 
inyectar la riqueza espacial en cada una de las bandas. Después, se calcula 
el valor máximo y mínimo de las bandas con inyección espacial, para 
posteriormente en el último paso, realizar un ajuste de riqueza espectral, el 
cual consiste en restar el valor mínimo a cada elemento de una banda, 
multiplicarlos por un factor de 255 y este resultado, debe ser dividido por la 
resta entre el valor máximo y mínimo. Este ajuste se realiza por cada una de 
las bandas. 

 
Figura 12. Modelo de procesamiento heterogéneo para la transformada de Brovey 

2.3.2 Implementación de la transformada de Brovey en Python 

A continuación, se presentan fragmentos secuenciales de código en 
Python, utilizados para poder llevar a cabo la fusión de imágenes satelitales 
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mediante la transformada de Brovey. En el repositorio del libro se 
encuentra el script completo con las imágenes de prueba: 
https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU. 

Definición de dependencias - Líneas 1 – 7: 

1.  import skimage.io 
2.  import pycuda.autoinit 
3.  import pycuda.driver as drv 
4.  import pycuda.gpuarray as gpuarray 
5.  import numpy as np 
6.  import skcuda.linalg as linalg 
7.  from pycuda.elementwise import ElementwiseKernel 
 

En estas líneas de código se importan las librerías necesarias para llevar 
a cabo la fusión de imágenes satelitales mediante la transformada de 
Brovey haciendo uso de una arquitectura CPU/GPU. Por un lado, la librería 
skimage mediante el módulo io, nos permite leer imágenes con extensión 
TIFF. Asimismo, la librería pycuda, permite acceder a la interfaz de 
programación de aplicaciones (API) de computación paralela CUDA del 
Nvidia desde Python. En este orden de ideas, pycuda admite el manejo de 
arreglos en memoria de GPU, mediante su módulo gpuarray, y el módulo 
elementwise contiene herramientas para la generación de núcleos para la 
evaluación de expresiones de etapas múltiples en uno o varios operandos 
en un solo recorrido. También, se importa la librería Numpy, la cual es un 
paquete fundamental para la computación científica en Python, 
proporcionando herramientas para el manejo de objetos matriciales 
multidimensionales y poder realizar rutinas de operaciones rápidas entre 
matrices. Por último, se encuentra la librería Scikit-Cuda, proporcionando 
interfaces de Python para muchas de las funciones de dispositivo/tiempo 
de CUDA, CUBLAS, CUFFT y CUSOLVER, propias del Kit de programación de 
CUDA de NVIDIA. En este caso, mediante su módulo linalg se proporciona 
la posibilidad de realizar operaciones de álgebra lineal en GPU. 

 

https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU
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Función para normalización de bandas - Líneas 8 – 10: 

8.     def step_1(matrix_color, matrix_suma): 
9.     matrix_1=gpuarray.if_positive(matrix_suma, (3*matrix_color) 

/matrix_suma,matrix_suma) 
10.   return matrix_1 

En estas líneas de código se realiza la declaración de una función 
nombrada step_1, la cual tiene como propósito realizar la división de una 
banda entre la suma de todas las bandas. Mediante la función if_positive  
del módulo gpuarray se realiza la evaluación de cada posición de la matriz, 
tomando como criterio si el valor es positivo. De acuerdo a este valor, se 
realiza la primera operación o la segunda constatando una sentencia de 
condicional. 

Función para la inyección de riqueza espacial - Líneas 11 – 13: 

11.     def step_2(matrix_1, matrix_image_pan): 
12.     matrix_2 = linalg.multiply(matrix_1, matrix_image_pan) 
13.     return matrix_2 

 

Asimismo, se define la función step_2, la cual permite realizar una 
multiplicación posición a posición entre dos matrices. Lo anterior, mediante 
la función multiply propia del módulo linalg. Esta función recibe como 
parámetros las dos matrices que se desean multiplicar posición a posición. 

Función para obtener máximos y mínimos - Líneas 14– 17: 

14.    def step_3(matrix_1): 
15.     mat_max = np.amax(matrix_1.get()) 
16.     mat_min = np.amin(matrix_1.get()) 
17.     return mat_max, mat_min 

 

Adicionalmente, se debe establecer una función que permita calcular 
el valor máximo y mínimo a partir de una matriz de entrada. Debido a esto 
se define la función step_3. 
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Núcleo para ajuste espectral - Líneas 18 – 21: 

18     lin_comb = ElementwiseKernel( 
19.      "float a, float *x, float b, float *z", 
20.      "z[i] = ((x[i]-a)*255)/(b-a)", 
21.         "linear_combination") 

 

En estas líneas de código se establece la variable lin_comb la cual 
almacena una función ElementwiseKernel, recibiendo como parámetros 
dos valores tipo float y tres matrices flotantes. Donde la matriz Z se 
convertirá en la matriz de salida de esta función. Cada vez que se haga un 
llamado a esta función se generará un núcleo y se realizará una operación 
de ajuste de riqueza espectral. 

Función para ajuste espectral - Líneas 22 – 24: 

22.    def step_4(matrix_1, matrix_color, mat_max, mat_min): 
23.    lin_comb(mat_min, matrix_1, mat_max, matrix_color) 
24.    return matrix_color 

 

Sin embargo, para mantener uniformidad en el código, se define una 
función propia en el lenguaje de Python, llamada step_4. Esta función, 
estará encargada de realizar el llamado a la función de Elementwise, 
establecida previamente. 

Lectura y carga de imágenes - Líneas 25 – 26: 

25.   multispectral = skimage.io.imread('multispectral.tiff', plugin = 'tifffile') 
26.   panchromatic = skimage.io.imread('panchromatic.tiff', plugin = 'tifffile') 

 

A partir de estas líneas de código, se realiza la lectura de la imagen 
multiespectral y pancromática. Lo anterior, mediante la función imread, 
perteneciente al módulo io  de la librería scikit-image. Esta función 
convierte las imágenes que se desean leer a un arreglo multidimensional de 
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numpy, con el propósito de poder ser utilizadas y manejadas mediante su 
representación matricial. 

Conversión de tipo de dato de las bandas - Líneas 27 – 32: 

27.   multispectral = multispectral.astype(np.float32) 
28.    r = multispectral[:,:,0].astype(np.float32) 
29.    g = multispectral[:,:,1].astype(np.float32) 
30.    b = multispectral[:,:,2].astype(np.float32) 
31.     panchromatic = panchromatic.astype(np.float32) 
32.    msuma = r+g+b 

 

Una vez se han leído y cargado las imágenes, se procede a especificar 
el tipo de dato de cada uno de los píxeles de la imagen, en este caso para 
manejar uniformidad se especifica un tipo flotante de 32 bits haciendo uso 
del tipo de float32 de numpy. Adicionalmente, en las líneas 28 a 30, se 
realiza una indexación sobre la matriz que contiene la información de la 
imagen multiespectral, con el fin de obtener cada una de las bandas de su 
espacio de color, que en este caso es rojo, verde, azul (RGB). Para finalizar, 
la transformada de Brovey, requiere conformar un arreglo bidimensional 
que reúna la suma pixel a pixel de cada una de las bandas extraídas 
anteriormente. Esto se almacena en la variable msuma. 

Transferencia de variables a memoria global de GPU - Líneas 33 – 38: 

33.   r_gpu = gpuarray.to_gpu(r) 
34.   g_gpu = gpuarray.to_gpu(g) 
35.   b_gpu = gpuarray.to_gpu(b) 
36.   panchromatic_gpu = gpuarray.to_gpu(panchromatic) 
37.   msuma_gpu = gpuarray.to_gpu(msuma) 
38.   linalg.init() 

 

Durante todo este momento, se ha venido trabajando sobre la CPU del 
equipo. Sin embargo, en estas líneas de código se realiza la transferencia 
de los arreglos de numpy que contienen las diferentes bandas a arreglos de 
pycuda, es decir, esta transferencia se realiza de memoria CPU a memoria 
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global de la GPU. Esto se logra mediante la función to_gpu propia del 
módulo gpuarray. Dicha función recibe por parámetro el arreglo que 
deseamos transferir. En esta oportunidad se realiza la transferencia a GPU 
de la banda roja, verde, azul, la imagen pancromática y la matriz que tiene 
la suma de las bandas. Por último, se inicializa el módulo de operaciones de 
álgebra lineal de scikit-cuda. 

Normalización e inyección espacial de bandas - Líneas 39 – 44: 

39.   m11_gpu = step_1(r_gpu, msuma_gpu) 
40.   m22_gpu = step_2(m11_gpu, panchromatic_gpu) 
41.   m33_gpu = step_1(b_gpu, msuma_gpu) 
42.   m44_gpu = step_2(m33_gpu, panchromatic_gpu) 
43.   m55_gpu = step_1(g_gpu, msuma_gpu) 
44.   m66_gpu = step_2(m55_gpu, panchromatic_gpu) 

 

En esta línea de código se realiza la división de las bandas (R, G, B) entre 
la matriz que contiene la suma de estas bandas, esto mediante la función 
step_1() declarada al inicio de este proceso. Acto seguido, a través de la 
función step_2, se toma el resultado de la división de matrices para cada 
una de las bandas y se realiza una multiplicación posición a posición con la 
imagen pancromática. Es importante resaltar que todo este proceso se 
realizó en la GPU. 

Ajuste espectral de bandas - Líneas 45 – 53: 

45.   Amax_host, Amin_host = step_3(m22_gpu) 
46.   rr_gpu = gpuarray.empty_like(r_gpu) 
47.   step_4(m22_gpu, rr_gpu, Amax_host, Amin_host) 
48.   Amax_host, Amin_host = step_3(m66_gpu) 
49.   gg_gpu = gpuarray.empty_like(g_gpu) 
50.   step_4(m66_gpu, gg_gpu, Amax_host, Amin_host) 
51.   Amax_host, Amin_host = step_3(m44_gpu) 
52.   bb_gpu = gpuarray.empty_like(b_gpu) 
53.   step_4(m44_gpu, bb_gpu, Amax_host, Amin_host) 
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Acto seguido, se obtienen los valores máximos y mínimos de la matriz 
resultado de la multiplicación de la banda y la imagen pancromática. 
Asimismo, se separa espacio en memoria para las matrices que se 
obtendrán en esta línea de código, eso mediante la función empty_like() la 
cual recibe como parámetro el tamaño de la matriz que se desea separar, 
en este caso se toma una matriz como guía. Esto quiere decir que se 
separará en memoria y se creará un arreglo en GPU exactamente del 
tamaño de la matriz que se pasa por parámetro. Para finalizar, se aplica el 
proceso de ajuste espectral mediante la función step_4() la cual hace el 
llamado a la función Elementwise. Ese proceso de ajuste espectral consiste 
en que el valor mínimo se resta de cada banda generada mediante la 
función step_2() y los datos resultantes se multiplican por un coeficiente de 
255 para la posterior normalización (división) por la diferencia entre los 
valores máximo y mínimo. Ese proceso se realiza para cada una de las 
bandas (R, G, B) procesadas anteriormente. 

Transferencia de bandas resultantes a memoria CPU - Líneas 54 – 56: 

54.   ggg_host = gg_gpu.get().astype(np.uint8) 
55.   rrr_host = rr_gpu.get().astype(np.uint8) 
56.   bbb_host = bb_gpu.get().astype(np.uint8) 

 

El proceso anterior se realizó sobre la GPU, sin embargo, es necesario 
realizar una conversión de tipo de datos, donde se pasa de un flotante de 
32 bits a un entero de 8 bits, para que la imagen resultado puede ser 
visualizada fácilmente. Este proceso de conversión se realiza para cada una 
de las bandas resultantes y adicionalmente, se realiza sobre CPU. Mediante 
la función get(), se realiza la transferencia de datos desde memoria GPU a 
memoria CPU.  

Generación de nueva imagen - Líneas 57 – 58: 

57.   fusioned_image = np.stack((rrr_host, ggg_host, bbb_host),axis=2) 
58.   skimage.io.imsave('broveygpu_image.tif',fusioned_image,plugin = 'tifffile') 
 



Acelerando la fusión de imágenes mediante computación heterogénea 

 

 
 

40 
 

Para finalizar, se realiza el proceso de concatenación de las bandas 
procesadas mediante la función stack de numpy. Eso produce una nueva 
imagen que mantiene la riqueza espectral ajustada de la imagen 
multiespectral junto con la resolución especial de la imagen pancromática. 
Por último, mediante la función imsave de skimage se guarda localmente la 
imagen generada a partir de la fusión de estas imágenes. La Figura 13C, 
presenta la imagen resultado, al realizar la fusión de la imagen 
multiespectral (Figura 13A) y pancromática (Figura 13B), ambas con 
dimensión de 1024 píxeles por 1024 píxeles. Lo anterior mediante la 
transformada de Brovey. 

     

                     A)                                          B)                                         C) 

Figura 13. Imagen fusionada de 1024x1024 píxeles, mediante la transformada de Brovey 

2.4 Método de multiplicación 
Este método aplica un algoritmo simple de multiplicación, para 

incorporar el contenido de la imagen pancromática en la imagen 
multiespectral (Pohl and Van Genderen, 1998). 

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃                                                       (5) 

En donde  

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 es la imagen fusionada 

𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 imagen multiespectral banda k 
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2.4.1 Modelo de procesamiento heterogéneo  
para el método de multiplicación 

La Figura 14 presenta la interacción entre la CPU y la GPU implementada 
para el método de multiplicación. Como primer paso, se realiza la 
separación de las bandas de la imagen multiespectral en CPU. Acto seguido, 
se realiza la transferencia de las bandas a la memoria global de la GPU, para 
inyectar la riqueza espacial en cada banda. Este proceso se realiza mediante 
la multiplicación elemento a elemento de la imagen pancromática con cada 
una de las bandas. Posteriormente, se calcula el valor máximo y mínimo de 
las bandas con inyección espacial, para finalmente realizar un ajuste de 
riqueza espectral, el cual consiste en restar el valor mínimo a cada elemento 
de una banda multiplicarlos por un factor de 255, este resultado debe ser 
dividido por la resta entre el valor máximo y mínimo. Este ajuste se realiza 
por cada una de las bandas. 

 
Figura 14. Modelo de procesamiento heterogéneo para el método de multiplicación. 

2.4.2 Implementación del método de  
multiplicación en Python 

A continuación, se presentan fragmentos secuenciales de código en 
Python, utilizados para poder llevar a cabo la fusión de imágenes satelitales 
mediante el método de multiplicación. En el repositorio del libro 
(https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU) se 
encuentra el script completo con las imágenes de prueba. 

 

https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU
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Definición de dependencias - Líneas 1 – 7: 

1.  import skimage.io 
2.  import numpy as np 
3.  import pycuda.autoinit 
4.  import pycuda.driver as drv 
5.  import pycuda.gpuarray as gpuarray 
6.  import skcuda.linalg as linalg 
7.  from pycuda.elementwise import ElementwiseKernel 

 

De igual manera en el que se presentó al inicio de la implementación de 
la transformada de Brovey, para el método de multiplicación también es 
necesario importar un conjunto de librerías como scikit-image, numpy, 
pycuda y scikit-cuda. Estas librerías se explican de mejor manera en las 
primeras líneas de la transformada de Brovey, sin embargo, estas librerías 
nos permiten la lectura y almacenamiento de imágenes con extensión .TIFF, 
la interacción con herramientas para realizar operaciones matriciales, una 
interfaz para la interacción con computación paralela mediante el 
framework CUDA, entre otras funcionalidades. 

Función para la inyección de riqueza espacial - Líneas 8 – 10: 

8.   def step_1(color_matrix, image_matrix): 
9.    matrix_sal = linalg.multiply(color_matrix, image_matrix) 
10.   return matrix_sal 

 

Como primera instancia, es necesario realizar la inyección de riqueza 
espacial de la imagen pancromática a la imagen multiespectral. Debido a 
esto, se requiere establecer una función que permita realizar esta tarea, 
mediante la multiplicación posición a posición entre dos matrices. Es por 
esto que, se crea la función step_1(), la cual recibe por parámetros las dos 
matrices que se desean multiplicar. Por último, esta función retorna la 
matriz resultante de la multiplicación posición a posición. 
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Función para obtener máximos y mínimos - Líneas 11 – 14: 

11.    def step_2(matrix_1): 
12.    mat_max = np.amax(matrix_1) 
13.    mat_min = np.amin(matrix_1) 
14.    return mat_max, mat_min 

 

En estas líneas de código se define una función nombrada como 
step_2(), cuyo propósito es obtener el máximo y mínimo valor entre un 
arreglo bidimensional. A su vez, esta función retorna estos dos valores. Lo 
anterior se realiza mediante las funciones amax() y amin() de numpy.  

Núcleo para ajuste espectral - Líneas 15 – 18: 

15.     lin_comb = ElementwiseKernel( 
16.     "float a, float *x, float b, float *z", 
17.     "z[i] = ((x[i]-a)*255)/(b-a)", 
18.      "linear_combination") 

 

Posteriormente, mediante este fragmento de código, donde se hace 
uso de la función ElementwiseKernel(), se establece el procedimiento de 
ajuste espectral. Este proceso consiste en tomar el valor mínimo y restarlo 
de su respectiva matriz para poder ser multiplicada por un valor constante 
de 255. Después, se toman los valores obtenidos y se realiza una 
normalización respecto a la diferencia entre los valores máximos y mínimos 
de dicha matriz inicial. Es importante resaltar que, lo que se encuentra 
dentro de la función es un pequeño fragmento de código de C-CUDA, 
embebido dentro de Python. 

Función para ajuste espectral - Líneas 19 – 21: 

19.     def step_3(matrix_1, matrix_color, mat_max, mat_min): 
20.     lin_comb(mat_min, matrix_1, mat_max, matrix_color) 
21.     return matrix_color.get() 
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Estas líneas tienen como objetivo definir una función propia de Python, 
donde se realice el llamado al núcleo Elementwise que se encarga de 
realizar el ajuste espectral. Esta función recibe los siguientes parámetros: 

• matrix_1: es la matriz que se desea ajustar espectralmente, es decir en 
este caso serán las distintas bandas que han sido procesadas durante 
la aplicación de este método. 

• matrix_color: es una matriz vacía donde se almacenará la matriz 
resultado de aplicar esta función de Elementwise. 

• mat_max: es el valor máximo de la matrix_1. 
• mat_min: es el valor mínimo de la matrix_1. 

Finalmente, esta función retorna la matrix_color. Sin embargo, se debe 
tener en cuenta que este proceso se realiza en GPU, en este caso se desea 
realizar la transferencia de esta variable a memoria de CPU, por lo tanto, 
utilizamos la función get(). 

Lectura y carga de imágenes - Líneas 22 – 23: 

22.   multispectral = skimage.io.imread('multispectral.tiff', plugin='tifffile') 
23.   panchromatic = skimage.io.imread('panchromatic.tiff', plugin='tifffile') 

 

En estas líneas de código, se realiza la lectura y carga de las imágenes 
de punto de partida para fusión de imágenes satelitales. Estas son, la 
imagen multiespectral y pancromática. Además de esto, la librería scikit-
image, lee estas imágenes y las presenta al público mediante su 
representación matricial de tipo numpy. 

Conversión de tipo de dato de las bandas - Líneas 24 – 28: 

24.   multispectral = multispectral.astype(np.float32) 
25.   r = multispectral[:,:,0].astype(np.float32) 
26.   g = multispectral[:,:,1].astype(np.float32) 
27.   b = multispectral[:,:,2].astype(np.float32) 
28.   panchromatic = panchromatic.astype(np.float32) 
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Posteriormente, al leer la imagen multiespectral y pancromática, y 
tenerlas en su representación matricial, se realiza la conversión de tipos de 
datos a un flotante de 32 bits, lo anterior con el propósito de mantener 
homogeneidad en las operaciones matriciales. Esta conversión, se realiza 
mediante la función propia de todo elemento de numpy como lo es 
astype(), donde por parámetro que recibe es el tipo de dato. Así mismo, la 
imagen multiespectral está compuesta por un conjunto de bandas 
dependiendo de su espacio de color. Para esta ocasión el espacio de color 
es RGB, lo cual indica que tiene tres bandas, una roja, una verde y una azul 
(red, green, blue). De acuerdo a esto, mediante la indexación de matrices 
en numpy se extraen cada una de estas bandas. 

Transferencia de variables a memoria global de GPU - Líneas 29 – 33: 

29.   r_gpu = gpuarray.to_gpu(r) 
30.   g_gpu = gpuarray.to_gpu(g) 
31.   b_gpu = gpuarray.to_gpu(b) 
32.   panchromatic_gpu = gpuarray.to_gpu(panchromatic) 
33.   linalg.init() 

 

Como se ha mencionado anteriormente, se desea realizar la 
implementación de esta técnica de fusión sobre una arquitectura GPU, por 
lo tanto, es necesario realizar la transferencia de las variables necesarias 
para este proceso de memoria de CPU y a memoria global de GPU. En este 
orden de ideas, mediante la función to_gpu() se envía a GPU cada una de 
las bandas extraídas anteriormente y la imagen pancromática. Para 
finalizar, se inicializa el módulo de álgebra lineal de la librería scikit-cuda, lo 
anterior al ejecutar linalg.init(). Después de realizar esto, ya se pueden 
ejecutar funcionalidades de este módulo.  

Inyección de riqueza espacial a bandas - Líneas 34 – 36: 

34.   m33_gpu = step_1(r_gpu, panchromatic_gpu) 
35.   m44_gpu = step_1(g_gpu, panchromatic_gpu) 
36.   m55_gpu = step_1(b_gpu, panchromatic_gpu) 
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Mediante estas líneas de código, se busca tomar la riqueza espacial de 
la imagen pancromática e inyectarla en cada una de las bandas, todo esto 
en GPU. Este proceso, se realiza mediante la función step_1() definida 
previamente. Dicha función, realiza la multiplicación píxel a píxel entre las 
bandas (R, G, B) y la representación matricial de la imagen pancromática. 

Ajuste espectral de bandas - Líneas 37 – 45: 

37.   Amax, Amin = step_2(m33_gpu.get()) 
38.   br_gpu = gpuarray.empty_like(r_gpu) 
39.   br_host = step_3(m33_gpu, br_gpu, Amax, Amin) 
40.   Amax, Amin = step_2(m44_gpu.get()) 
41.   bg_gpu = gpuarray.empty_like(g_gpu) 
42.   bg_host = step_3(m44_gpu, bg_gpu, Amax, Amin) 
43.   Amax, Amin = step_2(m55_gpu.get()) 
44.   bb_gpu = gpuarray.empty_like(b_gpu) 
45.   bb_host = step_3(m55_gpu, bb_gpu, Amax, Amin) 

 

Posteriormente, mediante estas líneas de código, se obtienen los 
valores máximos y mínimos de la matriz resultado de la multiplicación de 
cada banda y la imagen pancromática. Asimismo, mediante la función 
empty_like(), se separa espacio en memoria de la GPU para las matrices que 
se obtendrán en estas líneas de código. La función empty_like recibe como 
parámetro el tamaño de la matriz que se desea separar, en este caso se 
toma una matriz como guía. Esto quiere decir que se separará en memoria 
y se creará un arreglo en GPU exactamente del tamaño de la matriz que se 
pasa por parámetro. Para finalizar, utilizando la función step_3()  se aplica 
el proceso de ajuste espectral, dicha función hace el llamado al núcleo 
simple de Elementwise creado con anterioridad, para realizar el ajuste 
espectral de cada una de las bandas enriquecidas espacialmente. Ese 
proceso de ajuste espectral consiste en que el valor mínimo se resta de cada 
banda generada mediante la función step_2()  y los datos resultantes se 
multiplican por 255 para la posterior normalización (división) por la 
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diferencia entre los valores máximo y mínimo. Ese proceso se realiza para 
cada una de las bandas (R,G,B) procesadas anteriormente. 

Transferencia de bandas resultantes a memoria CPU - Líneas 46 – 48: 

46.   brr = br_host.astype(np.uint8) 
47.   bgg = bg_host.astype(np.uint8) 
48.   bbb = bb_host.astype(np.uint8) 

 

Estas líneas de código realizan una conversión de tipo de datos, donde 
se pasa de un float32 a un uint8, es decir se convierte de un flotante de 32 
bits a entero de 8 bits. Esta conversión se realiza para cada una de las 
bandas que ha sido ajustada espectralmente. 

Generación de nueva imagen - Líneas 49 – 50: 

49.  fusioned_image = np.stack((brr, bgg, bbb),axis=2) 
50.  skimage.io.imsave('multiplicativegpu_image.tif',fusioned_image, plugin='tifffile') 

 

Finalmente, se realiza el proceso de concatenación de las bandas 
procesadas, mediante la función stack de numpy. Eso produce una nueva 
imagen que mantiene la riqueza espectral ajustada de la imagen 
multiespectral junto con la resolución espacial de la imagen pancromática. 
Adicionalmente, la función imsave de skimage permite guardar localmente 
la imagen generada a partir de la fusión de estas imágenes. La Figura 15C, 
presenta la imagen resultado, al realizar la fusión de la imagen 
multiespectral (Figura 15A) y pancromática (Figura 15B), ambas con 
dimensión de 1024 píxeles por 1024 píxeles. Lo anterior, mediante el 
método de multiplicación. 
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                      A)                                          B)                                       C) 

Figura 15. Imagen fusionada de 1024x1024 píxeles, mediante el método Multiplicación 
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Capítulo 3 
 

 

 

 

 

 

 

 

Métodos basados en transformadas: 
métodos de sustitución de componentes 
 
 

La mayoría de los sensores MS recogen información en bandas 
adyacentes del espectro electromagnético, lo que habitualmente implica 
detectar información redundante, ya que muchas de las cubiertas 
existentes sobre la superficie terrestre tienden a presentar 
comportamientos similares en regiones próximas del espectro. 

3.1 Fusión de imágenes usando análisis  
de componente principales 

El análisis en componente principales, también denominado 
transformación PCA (de sus siglas en inglés Principal Component Analysis) o 
transformada de Karhunen-Loève o Hotelling (Shettigara, 1992), crea 
nuevas imágenes a partir de las originales llamadas componentes 
principales (CP), no correlacionadas entre sí, que reorganizan la 
información original. Con las componentes principales se elimina esa 
información redundante entre componentes, de forma que la primera CP 
se define como la dirección a lo largo de la cual la varianza de los datos tiene 
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su máximo. Es decir, la esencia del análisis en componentes principales es 
la transformación de un conjunto de variables correlacionadas en un nuevo 
conjunto de variables no correlacionadas. 

El método de fusión PCA (Shettigara, 1992) es similar al IHS en cuanto a que 
se basa en la transformación de las bandas de la imagen multiespectral en 
una serie de componentes, para luego sustituir una de ellas por la imagen 
pancromática adaptada, buscando de esta manera añadir la información 
espacial a la espectral. Tal y como se puede observar en la Figura 16, el 
proceso a seguir para desarrollar este método de fusión es el que se 
presenta a continuación. En primer lugar, se obtienen tantas componentes 
principales como bandas tenga la imagen multiespectral. De este modo, la 
CP1 contiene información espacial y las CP restantes la información 
espectral. A continuación, se iguala el histograma de la imagen 
pancromática al de la primera componente principal CP1, es decir, a aquella 
que contiene información relativa al conjunto de las bandas.  

La imagen pancromática modificada (una vez ajustado su histograma) 
sustituye a la primera componente principal CP1. Aplicando a estas bandas 
la transformación inversa se obtienen las bandas de la imagen fusionada. 

 
Figura 16. Algoritmo de fusión PCA. Fuente Autor 
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Una de las ventajas de este método es que no está limitado a imágenes 
de 3 bandas, sino que puede utilizarse para un número ilimitado de bandas. 
Sin embargo, introduce distorsión espectral en la imagen fusionada, esto 
es así pues se parte de la base de que tras la transformación PCA, la 
disociación entre información espacial y espectral de la imagen 
multiespectral es total, pero esto no es así. Computacionalmente este 
algoritmo de fusión es pesado ya que implica la realización del cálculo de la 
matriz de covarianza, el cálculo de los autovalores y autovectores, generar 
la matriz ortogonal y diversas operaciones algebraicas (producto de 
matrices, matrices inversas, transposiciones, etc.) para generar las 
componentes principales CP1, CP2 hasta CPN, donde N corresponderá al 
número de bandas de la imagen multiespectral. 

3.1.1 Modelo de procesamiento heterogéneo para PCA 

La Figura 17 presenta la implementación de PCA sobre una arquitectura 
de computación heterogénea CPU/GPU. Como primera instancia en el paso 
número uno, se le realiza a la imagen multiespectral la descomposición en 
sus bandas, en este caso (R, G, B). Después en el paso número dos se lleva 
a cabo la transferencia de los niveles digitales a memoria global de la tarjeta 
gráfica, con el propósito calcular el promedio de cada uno y restar dicho 
valor de cada uno de los pixeles de las bandas. Lo anterior, con el propósito 
de calcular la matriz de covarianza para cada una de las bandas en GPU. 
Posterior a esto en el paso número tres, se carga la matriz de covarianza a 
la memoria de la CPU, con el fin de calcular el coeficiente de diagonalización 
ortogonal, determinar el polinomio característico y calcular vectores y 
valores propios, para obtener la matriz ortogonalizada. En el paso 
siguiente, se transfiere la matriz ortogonalizada a memoria global de la 
GPU, para calcular los componentes principales mediante las bandas R, G, 
B originales. A partir de los componentes calculados, la imagen 
pancromática y la inversa de la matriz ortogonalizada se calculan los 
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componentes finales. Finalmente, se transfieren a CPU para realizar el stack 
de los componentes y generar la imagen resultante. 

 
Figura 17. Modelo de procesamiento heterogéneo para PCA 

3.1.2 Implementación de PCA en Python 

A continuación, se presentan fragmentos secuenciales de código en 
Python, utilizados para poder llevar a cabo la fusión de imágenes satelitales 
mediante la técnica de análisis de componentes principales.  En el 
repositorio del libro (https://github.com/Parall-UD/libro_fusion_ 
imagenes_satelitales_ GPU) se encuentra el script completo con las 
imágenes de prueba. 

Definición de dependencias - Líneas 1 – 10: 

1.  import skimage.io 
2.  import numpy as np 
3.  from numpy import linalg as la 
4.  import pycuda.autoinit 
5.  import pycuda.driver as drv 
6.  import pycuda.gpuarray as gpuarray 
7.  from pycuda import compiler 
8.  import skcuda.misc as misc 
9.  from pycuda.elementwise import ElementwiseKernel 
 

Como se realizó en las dos técnicas de fusión anteriores, estas primeras 
líneas de código tienen como objetivo importar las librerías necesarias para 
la correcta ejecución de los siguientes fragmentos de código. De igual 

https://github.com/Parall-UD/libro_fusion_%20imagenes_satelitales_%20GPU
https://github.com/Parall-UD/libro_fusion_%20imagenes_satelitales_%20GPU
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manera, se hace uso de librerías mencionadas anteriormente como lo son 
Pycuda, Numpy, Scikit-image y Scikit-cuda. Sin embargo, para esta técnica 
se hace necesario importar un nuevo módulo de esta última librería. El 
módulo es misc, el cual nos proporciona rutinas misceláneas, es decir, 
utilidades que no se han contemplado en otros módulos. Finalmente, para 
la librería Pycuda se importa un nuevo módulo llamado compiler, el cual nos 
permite compilar bloques de código escritos en lenguaje C-CUDA y así 
poder ser ejecutados en Python. 

Núcleo para calcular la matriz de varianza-covarianza - Líneas 11 – 44: 

10. kernel_var_cov = """ 
11. #include <stdio.h> 
12. __global__ void CovarianceKernel(float *R, float *G, float *B, float *D) 
13. { 
14. const uint tx = threadIdx.x; 
15. const uint ty = threadIdx.y; 
16. __shared__ float prueba_salida; 
17. if (threadIdx.x == 0) prueba_salida = 0; 
18. float valor_temp = 0; 
19. float salida_temp[9]; 
20. __syncthreads(); 
21. const int size = 3; 
22. float arreglo[size]; 
23. arreglo[0] = R[ty * %(BLOCK_SIZE)s + tx]; 
24. arreglo[1] = G[ty * %(BLOCK_SIZE)s + tx]; 
25. arreglo[2] = B[ty * %(BLOCK_SIZE)s + tx]; 
26. __syncthreads(); 
27. for(int k = 0; k < 3; k++){ 
28. for(int h = 0; h < 3; h++){ 
29. valor_temp = arreglo[k]*arreglo[h]; 
30. salida_temp[k*3+h] = valor_temp; 
31. valor_temp = 0; 
32. } 
33. } 

4. __syncthreads(); 
5. for (int i = 0; i < 9; ++i){ 
36. atomicAdd(&prueba_salida,salida_temp[i]); 
37. __syncthreads(); 
38. D[i] += prueba_salida; 
39. __syncthreads(); 
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40. prueba_salida = 0.0; 
41. __syncthreads(); 
42. } 
43. } 
44. """ 
 

En este fragmento de código se establece un núcleo escrito en lenguaje de 
C-CUDA. El objetivo de este núcleo es calcular la matriz de varianza-
covarianza a partir de las bandas RGB de la imagen multiespectral. Para 
realizar este proceso se utiliza la palabra reservarda de C-CUDA threadIdx 
mediante sus atributos x, y, para obtener la posición del hilo que se está 
ejecutando en los bloques de hilos de la GPU. Adicionalmente, mediante la 
función syncthreads() se realiza la sincronización de todos los hilos que se 
estén ejecutando paralelamente. Lo anterior, con el objetivo de coordinar 
los accesos a memoria, es decir, que ninguno de los hilos puede seguir 
realizando su tarea hasta que el resto de hilos hayan terminado. Asimismo, 
realiza una operación atómica de lectura-modificación-escritura con datos 
que residan en memoria global o compartida. Por ejemplo, la función 
atomicAdd() nos permite tomar un valor en memoria global o compartida 
y añadirle un número y escribir el resultado exactamente en la misma 
dirección, lo que se conoce como sobreescritura. La operación es atómica, 
dado que garantiza que se realizará sin interferencia de otros hilos. En otras 
palabras, ningún otro hilo puede acceder a esta dirección hasta que se 
complete la operación. La función CovarianceKernel escrita en C-CUDA se 
almacenada en la variable global kernel_var_cov de Python y recibe como 
parámetros la matriz que almacena la banda Roja, la matriz de la banda 
verde y la matriz de la banda azul (R, G, B) y por último, recibe una matriz 
D, la cual será la matriz de salida de esta operación. 
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Núcleo para calcular componentes principales iniciales - Líneas 45 – 74: 

45. kernel_componentes_principales_original = """ 
46. #include <stdio.h> 
47. __global__ void componentesPrincipalesOriginal(float *R, float *G, float *B, 

float *Q, float *S1, float *S2, float *S3) 
48. { 
49. const uint tx = threadIdx.x; 
50. const uint ty = threadIdx.y; 
51. const int size = 3; 
52. float salida_temp [size]; 
53. float valor_temp = 0.0; 
54. float arreglo[size]; 
55. arreglo[0] = R[ty * %(BLOCK_SIZE)s + tx]; 
56. arreglo[1] = G[ty * %(BLOCK_SIZE)s + tx]; 
57. arreglo[2] = B[ty * %(BLOCK_SIZE)s + tx]; 
58. __syncthreads(); 
59. for(int i = 0; i < 3; ++i){ 
60. for(int j = 0; j < 3; ++j){ 
61. valor_temp += (Q[i*3+j] * arreglo[j]); 
62. } 
63. salida_temp[i] = valor_temp; 
64. valor_temp = 0.0; 
65. } 
66. __syncthreads(); 
67. S1[ty * %(BLOCK_SIZE)s + tx] = salida_temp[0]; 
68. __syncthreads(); 
69. S2[ty * %(BLOCK_SIZE)s + tx] = (-1.0)*salida_temp[1]; 
70. __syncthreads(); 
71. S3[ty * %(BLOCK_SIZE)s + tx] = salida_temp[2]; 
72. __syncthreads(); 
73. } 
74. """ 
 

En estas líneas de código, se define un núcleo para el cálculo de los 
componentes principales a partir de las bandas originales de la imagen 
multiespectral. De igual manera, este núcleo que se ejecutará en la GPU 
mediante el lenguaje C-CUDA. En este núcleo, se reitera el uso de los 
identificadores para cada uno de los hilos del bloque mediante threadIdx.x  
y threadIdx.y. Asimismo, se interpretan los arreglos bidimensionales como 
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arreglos unidimensionales, tal como sucede en el contexto natural del 
lenguaje de programación C. De nuevo, se hace uso de la función reservada 
syncthreads(), para sincronizar todos los hilos que se estén ejecutando en 
cierto momento de la rutina. Por último, se va llenando posición a posición 
por cada hilo, las matrices resultantes, que en este caso hacen referencia a 
los tres componentes principales obtenidos. La función 
componentesPrincipalesOriginal() escrita en C-CUDA y almacenada en la 
variable global kernel_componentes_principales_original de Python, recibe 
como parámetros la matriz que almacena las bandas originales (R, G, B) de 
la imagen multiespectral, un arreglo Q que contiene valores propios y por 
último, recibe las matrices S1, S2   y S3 las cuales serán la matrices de salida 
de esta operación. 

Núcleo para calcular los componentes principales finales - Líneas 75 – 104: 

75. kernel_componentes_principales_pancromatica = """ 
76. #include <stdio.h> 
77. __global__ void componentesPrincipalesPancromatica(float *R, float *G, float 

*B, float *E, float *S1, float *S2, float *S3) 
78. { 
79. const uint tx = threadIdx.x; 
80. const uint ty = threadIdx.y; 
81. const int size = 3; 
82. float salida_temp [size]; 
83. float valor_temp = 0.0; 
84. float arreglo[size]; 
85. arreglo[0] = R[ty * %(BLOCK_SIZE)s + tx]; 
86. arreglo[1] = G[ty * %(BLOCK_SIZE)s + tx]; 
87. arreglo[2] = B[ty * %(BLOCK_SIZE)s + tx]; 
88. __syncthreads(); 
89. for(int i = 0; i < 3; ++i){ 
90. for(int j = 0; j < 3; ++j){ 
91. valor_temp += (E[i*3+j] * arreglo[j]); 
92. } 
93. salida_temp[i] = valor_temp; 
94. valor_temp = 0.0; 
95. } 
96. __syncthreads(); 
97. S1[ty * %(BLOCK_SIZE)s + tx] = salida_temp[0]; 
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98. __syncthreads(); 
99. S2[ty * %(BLOCK_SIZE)s + tx] = salida_temp[1]; 
100. __syncthreads(); 
101. S3[ty * %(BLOCK_SIZE)s + tx] = salida_temp[2]; 
102. __syncthreads(); 
103. } 
104. """ 
 

En este mismo orden de ideas, este fragmento de código tiene como 
propósito establecer un núcleo para el cálculo de nuevos componentes 
principales a partir de la matriz inversa de los vectores propios, el segundo 
y tercer componente principal calculados inicialmente y de la 
representación matricial de la imagen pancromática. Este núcleo también 
hace uso de los identificadores para cada uno de los hilos del bloque 
mediante threadIdx.x  y threadIdx.y. Adicionalmente, se hace uso de la 
función reservada syncthreads() para sincronizar todos los hilos que se 
estén ejecutando en cierto momento de la rutina, tal como se ha 
presentado en núcleos anteriores. Por último, se van llenando posición a 
posición por cada hilo las matrices resultantes, que en este caso hacen 
referencia a los tres nuevos componentes principales obtenidos. La función 
componentesPrincipalesPancromatica() es escrita en lenguaje C-CUDA y es 
almacenada en la variable global kernel_componentes_ 
principales_pancromatica de Python. Dicha función, recibe como 
parámetros la matriz de la inversa de los vectores propios, el componente 
principal 2 y 3 y la imagen pancromática. Finalmente, recibe las matrices S1, 
S2 y S3 las cuáles serán las matrices de salida de esta operación. 

Función para la división de una matriz en submatrices - Líneas 105 – 107: 

105.    def split(array, nrows, ncols): 
106. r, h = array.shape 
107. return (array.reshape(h//nrows,nrows,-1,ncols).swapaxes(1,2) .reshape(-

1, nrows, ncols)) 
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En estas líneas de código, se define la función split(), la cual permite dividir 
una matriz cuadrada en submatrices de igual tamaño que cumplan su 
estructura N x N. Esta función recibe los siguientes parámetros: 

- array: hace referencia a la matriz o arreglo bidimensional que se 

desea segmentar en submatrices. 

- nrows: número de filas que deben tener las submatrices. 

- ncols: número de columnas que deben tener las submatrices. 

Función para calcular la matriz de varianza-covarianza - Líneas 108 – 118: 

108.    def varianza_cov( R_s, G_s, B_s): 
109. kernel_code = kernel_var_cov % {'BLOCK_SIZE': BLOCK_SIZE} 
110. mod = compiler.SourceModule(kernel_code) 
111. covariance_kernel = mod.get_function("CovarianceKernel") 
112. salida_gpu = gpuarray.zeros((3, 3), np.float32) 
113. Rs_gpu = gpuarray.to_gpu(R_s) 
114. Gs_gpu = gpuarray.to_gpu(G_s) 
115. Bs_gpu = gpuarray.to_gpu(B_s) 
116. for i in range(len(R_s)): 
117. covariance_kernel(Rs_gpu[i], Gs_gpu[i], 

Bs_gpu[i],salida_gpu,block = (32, 32, 1) 
118. return salida_gpu.get() 
 

Anteriormente, se ha creado un núcleo para calcular en GPU la matriz de 
varianza-covarianza de las bandas originales de la imagen multiespectral. 
Sin embargo, ese núcleo debe ser llamado mediante funciones de Python. 
Debido a esto, se define la función varianza_cov(), la cual establece un 
tamaño del bloque de hilo que se va a ejecutar paralelamente en la GPU y 
compila el núcleo mediante compiler.SourceModule. Asimismo, se obtiene 
el núcleo a través de la función get_function() propia del módulo 
compilado. Además de esto, se separa espacio en memoria para la matriz 
de salida, se hace transferencia de las submatrices de las bandas R,G,B a 
memoria global de la GPU y se calcula iterativamente la matriz de varianza-
covarianza para cada submatriz de las bandas. 
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Función para el apilamiento de submatrices - Líneas 119 – 131: 

119.    def stack_values(list_cp, array_split, size, block_size): 
120. block_size = block_size 
121. valor_inicial = 0 
122. valor_final = 0 
123. list_cp_nueva = [] 
124. factor_div = (size//block_size) 
125. factor_ite = len(array_split)//factor_div 
126. for i in range(factor_ite): 
127. valor_final = valor_final + factor_div 
128. list_cp_nueva.append(np.hstack(list_cp[valor_inicial: 

valor_final])) 
129. valor_inicial = valor_inicial + factor_div 
130. cp_final = np.vstack(list_cp_nueva) 
131. return cp_final 
 

En este caso, este fragmento de código establece la función stack_values() 
para poder apilar las submatrices resultantes de los procesos asociados al 
cálculo de la matriz de varianza-covarianza, los componentes principales 
haciendo uso de los vectores propios y con la imagen pancromática. Para 
llevar a cabo esto, se hace uso de funciones como hstack() y vstack() 
propias de la librería de numpy. 

Función para calcular componentes principales iniciales - Líneas 132 – 154: 

132. def componentes_principales_original(r_s,g_s,b_s,q,size, block_size): 
133. cp1_temp, cp2_temp,cp3_temp  = [] 
134. size = size 
135. block_size = block_size 
136. kernel_code = kernel_componentes_principales_original % { 'BLOCK_SIZE': 

BLOCK_SIZE } 
137. mod = compiler.SourceModule(kernel_code) 
138. kernel = mod.get_function("componentesPrincipalesOriginal") 
139. s1_gpu = gpuarray.zeros((block_size,block_size),np.float32) 
140. s2_gpu = gpuarray.zeros((block_size,block_size),np.float32) 
141. s3_gpu = gpuarray.zeros((block_size,block_size),np.float32) 
142. q_gpu = gpuarray.to_gpu(q) 
143. Rs_gpu_t = gpuarray.to_gpu(r_s) 
144. Gs_gpu_t = gpuarray.to_gpu(g_s) 
145. Bs_gpu_t = gpuarray.to_gpu(b_s) 
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146. for i in range(len(r_s)): 
147. kernel(Rs_gpu_t[i],Gs_gpu_t[i],Bs_gpu_t[i],q_gpu, 

s1_gpu,s2_gpu,s3_gpu,block=(block_size, block_size,1)) 
148. cp1_temp.append(s1_gpu.get()) 
149. cp2_temp.append(s2_gpu.get()) 
150. cp3_temp.append(s3_gpu.get()) 
151. cp1 = stack_values(cp1_temp, r_s, size, block_size) 
152. cp2 = stack_values(cp2_temp, r_s, size, block_size) 
153. cp3 = stack_values(cp3_temp, r_s, size, block_size) 
154. return cp1, cp2, cp3 
 

Anteriormente, se ha creado un núcleo para realizar el cálculo de los 
componentes principales en GPU. Sin embargo, ese núcleo debe ser 
llamado mediante funciones de Python. Debido a esto, se define la función 
componentes_principales_original () la cual establece un tamaño del 
bloque de 32x32 de hilos que se van a ejecutar paralelamente en la GPU y 
se compila el núcleo mediante compiler.SourceModule. Este número de 
hilos será definido posteriormente mediante un variable global. Asimismo, 
se obtiene el núcleo a través de la función get_function() propia del módulo 
compilado, pasando como parámetro el nombre de la función de C-CUDA 
(“componentesPrincipalesOriginal”). Además de esto, se separa espacio en 
memoria para las submatrices de salida de cada componente principal. 
Además, se hace transferencia de las submatrices de las bandas R, G, B a 
memoria global de la GPU y se calcula iterativamente la submatrices que 
contienen los componentes principales. Estas submatrices se almacenan en 
diferentes listas de Python. Finalmente, mediante la función stack_values() 
definida anteriormente, se realiza el apilamiento de cada submatriz y así 
poder tener los tres componentes principales en su totalidad. Dichos 
componentes se consolidan en las variables cp1, cp2 y cp3. 
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Función para calcular componentes principales finales - Líneas 155 – 177: 

155. def componentes_principales_panchromartic(r_s , g_s, b_s, q, size, 
block_size): 

156. block_size = block_size 
157. nb1_temp, nb2_temp, nb3_temp = [] 
158. size = size 
159. kernel_code = kernel_componentes_principales_pancromatica % { 

'BLOCK_SIZE': BLOCK_SIZE } 
160. mod = compiler.SourceModule(kernel_code) 
161. kernel = 

mod.get_function("componentesPrincipalesPancromatica") 
162. s1_gpu = gpuarray.zeros((block_size,block_size),np.float32) 
163. s2_gpu = gpuarray.zeros((block_size,block_size),np.float32) 
164. s3_gpu = gpuarray.zeros((block_size,block_size),np.float32) 
165. Rs_gpu_t = gpuarray.to_gpu(r_s) 
166. Gs_gpu_t = gpuarray.to_gpu(g_s) 
167. Bs_gpu_t = gpuarray.to_gpu(b_s) 
168. q_gpu = gpuarray.to_gpu(q) 
169. for i in range(len(r_s)): 
170. kernel(Rs_gpu_t[i], Gs_gpu_t[i], Bs_gpu_t[i], q_gpu, 

s1_gpu, s2_gpu, s3_gpu, block = (block_size, block_size, 1)) 
171. nb1_temp.append(s1_gpu.get()) 
172. nb2_temp.append(s2_gpu.get()) 
173. nb3_temp.append(s3_gpu.get()) 
174. nb1 = stack_values(nb1_temp, g_s, size, block_size) 
175. nb2 = stack_values(nb2_temp, g_s, size, block_size) 
176. nb3 = stack_values(nb3_temp, g_s, size, block_size) 
177. return nb1, nb2, nb3 
 

De igual manera, en fragmentos anteriores se ha definido un núcleo para 
realizar el cálculo de los componentes principales a partir de la imagen 
pancromática en GPU. Sin embargo, ese núcleo también debe ser llamado 
mediante funciones de Python. Debido a esto, se define la función 
componentes_principales_panchromatic() la cual establece un tamaño del 
bloque de 32x32 de hilos que se van a ejecutar paralelamente en la GPU y 
se compila el núcleo mediante compiler.SourceModule. Adicionalmente, se 
obtiene el núcleo a través de la función get_function() propia del módulo 
compilado, pasando como parámetro el nombre de la función de C-CUDA 
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(“componentesPrincipalesPancromatica”). Además de esto, se separa 
espacio en memoria para las submatrices de salida de cada componente 
principal, se hace transferencia de la matriz inversa de los vectores propios 
y de las submatrices de los componentes principales iniciales 2 y 3 a 
memoria global de la GPU. Una vez se realiza esto, se calcula iterativamente 
la submatrices que contienen los nuevos componentes principales. Estas 
submatrices se almacenan en diferentes listas de Python. Finalmente, 
mediante la función stack_values() definida anteriormente, se realiza el 
apilamiento de cada submatriz, para consolidar los tres componentes 
principales en su totalidad. Dichos componentes se consolidan en las 
variables nb1, nb2 y nb3. 

Núcleo para restar de una matriz un valor constante - Líneas 178 – 181: 

178.    substract = ElementwiseKernel( 
179. "float *x, float y, float *z", 
180. "z[i] = x[i]-y", 
181. "substract_value") 
 

En estas líneas de código se utiliza la función ElementwiseKernel, para 
poder establecer un núcleo simple, el cual va a tomar una matriz de entrada 
x junto con un valor flotante y. Esto con el propósito de realizar en GPU, la 
resta posición a posición de la matriz x y el valor de y. Adicionalmente, el 
parámetro z tan solo es la matriz de salida de esta operación. 

Núcleo para ajuste espectral - Líneas 182 – 185: 

182.    negative_adjustment = ElementwiseKernel( 
183. "float *x, float *z", 
184. "if(x[i] < 0){z[i] = 0.0;}else{z[i] = x[i];}", 
185. "adjust_value") 
 

De igual manera, en estas líneas de código, se establece un nuevo núcleo 
de tipo ElementwiseKernel. Esta función tiene como propósito realizar un 
ajuste de valores negativos. Por lo tanto, tomará una matriz y evaluará cada 
una de sus posiciones, si el valor de una posición específica resulta ser 
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negativa se convertirá a un valor de cero. Este núcleo escrito en C-CUDA, se 
almacena en la variable negative_adjustment  para poder ser invocada 
posteriormente. 

Función para obtener traza de potencias sucesivas - Líneas 186 – 193: 

186. def successive_powers(ortogonal_matrix): 
187. size_mat_ort = len(ortogonal_matrix) 
188. s = np.zeros((size_mat_ort,1)) 
189. B = np.zeros((size_mat_ort,size_mat_ort)) 
190. for i in range(1, (size_mat_ort+1)): 
191. B=la.matrix_power(ortogonal_matrix,i) 
192. s[i-1]=np.trace(B) 
193. return s 
 

De acuerdo con este fragmento de código, lo que se busca es establecer 
una función de Python nombrada successive_powers(), la cual encontrará 
la traza de potencias sucesivas a partir de una matriz proporcionada por 
parámetro. 

Función para calcular coeficientes de un polinomio - Líneas 194 – 202: 

194. def polynomial_coefficients(polynomial_trace, ortogonal_ matrix): 
195. n_interations = len(ortogonal_matrix) 
196. polynomial = np.zeros((n_interations)) 
197. polynomial[0] = -polynomial_trace[0] 
198. for i in range(1,n_interations): 
199. polynomial[i]=-polynomial_trace[i]/(i+1) 
200. for j in range(i): 
201. polynomial[i]=polynomial[i]-(polynomial[j]* 

(polynomial_trace[(i-j)-1])/(i+1)) 
202. return polynomial 
 

En este conjunto de líneas se pretende establecer una función que se 
ejecute en CPU, cuyo objetivo sea calcular los coeficientes del polinomio 
característico a partir de una matriz ortogonal y su respectiva traza 
polinómica. Para esto, se define la función polynomial_coefficients().  
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Función para normalizar vectores propios - Líneas 203 – 212: 

203. def eigenvectors_norm(mat_eigenvalues, ortogonal_matrix, 
mat_eigenvectors): 

204. n = len(mat_eigenvalues) 
205. V = np.zeros((n,n)) 
206. S = np.zeros((n,1)) 
207. for i in range(n): 
208. B= ortogonal_matrix[1:n,1:n]-mat_eigenvalues[i,i]* np.eye(n-1) 
209. temp_s=la.lstsq(B,mat_eigenvectors,rcond=-1)[0].transpose() 
210. S=np.insert(temp_s,0,1); 
211. V[0:n,i]=S/la.norm(S) 
212. return V, V.transpose() 
 

En estas líneas de código se define la función eigenvectors_norm(). Esta 
función busca calcular los vectores propios normalizados. Lo anterior, 
recibiendo como parámetros la matriz ortogonal, la matriz de vectores 
propios y la matriz de valores propios. Donde, cada vector propio es una 
columna de la matriz ortogonal base. El retorno de esta función es un 
arreglo con los vectores propios normalizados y su respectiva transpuesta. 

Lectura y carga de imágenes - Líneas 213 – 217: 

213. multispectral = skimage.io.imread('multispectral.tiff', plugin='tifffile') 
214. panchromatic = skimage.io.imread('panchromatic.tiff', plugin='tifffile') 
215. size_rgb = multispectral.shape 
216. BLOCK_SIZE = 32 
217. n_bands = size_rgb[2] 
 

Una vez se han definido las funciones presentadas a lo largo de esta 
implementación, se procede a invocarlas secuencialmente haciendo saltos 
entre memoria de CPU y GPU. Sin embargo, en estas líneas de código, se 
realiza la lectura de la imagen multiespectral y pancromática. Esto, 
mediante la función imread perteneciente al módulo io  de la librería scikit-
image. Esta función consolida las imágenes a un arreglo multidimensional 
de numpy, por lo tanto, quedan listas para ser utilizadas y manipuladas. 
Adicionalmente, se crea la variable size_rgb la cual almacena la dimensión 
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con sus respectivas bandas de la imagen multiespectral. Además de esto, 
se define la variable BLOCK_SIZE con un valor por defecto de 32. Este valor, 
nos ayudará a lo largo de la implementación a establecer el tamaño del 
bloque de hilos que se ejecutará en GPU. Por último, se extrae el número 
de bandas de las que se compone la imagen multiespectral. En este caso, al 
manejar un espacio de color RGB se debe obtener un total de 3 bandas. 

Conversión de tipo de dato de las bandas - Líneas 218 – 222: 

218.      m_host = multispectral.astype(np.float32) 
219.      r_host = m_host[:,:,0].astype(np.float32) 
220.      g_host = m_host[:,:,1].astype(np.float32) 
221.      b_host = m_host[:,:,2].astype(np.float32) 
222.      panchromatic_host = panchromatic.astype(np.float32) 
 

Posteriormente, en este fragmento de código, mediante la función 
astype(), se define que el tipo de datos de las matrices multiespectral y 
pancromática será flotante de 32 bits. Adicionalmente, se extraen las 
bandas R, G, B (Red, Blue, Green) de la imagen multiespectral a partir de la 
indexación de arreglo de numpy. 

Transferencia de variables a memoria global de GPU - Líneas 223 – 229: 

223.      r_gpu = gpuarray.to_gpu(r_host) 
224.      g_gpu = gpuarray.to_gpu(g_host) 
225.      b_gpu = gpuarray.to_gpu(b_host) 
226.      p_gpu = gpuarray.to_gpu(panchromatic_host) 
227.      mean_r_gpu = misc.mean(r_gpu) 
228.      mean_g_gpu = misc.mean(g_gpu) 
229.      mean_b_gpu = misc.mean(b_gpu) 
 

En las cuatro primeras líneas de este fragmento de código, se realiza la 
transferencia de cada una de las bandas extraídas anteriormente y de la 
imagen pancromática, a memoria global de GPU. Posteriormente, 
mediante la función mean() del módulo misc propio de la librería scikit-
cuda, se calcula el promedio de cada una de los arreglos que almacenan las 
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bandas en GPU. Estos promedios son esenciales para poder obtener la 
matriz de varianza-covarianza de la imagen multiespectral. 

Resta de bandas y promedio en GPU - Líneas 230 – 235: 

230.      r_gpu_subs = gpuarray.zeros_like(r_gpu,np.float32) 
231.      g_gpu_subs = gpuarray.zeros_like(g_gpu,np.float32) 
232.      b_gpu_subs = gpuarray.zeros_like(b_gpu,np.float32) 
233.      substract( r_gpu, mean_r_gpu.get(), r_gpu_subs) 
234.      substract( g_gpu, mean_g_gpu.get(), g_gpu_subs) 
235.      substract( b_gpu, mean_b_gpu.get(), b_gpu_subs) 
 

En estas líneas se realizan arreglos llenos de ceros mediante la función 
zeros_like del módulo gpuarray de Pycuda. Estos arreglos son de la misma 
dimensión que los que consolidan las bandas R, G, B en GPU. Después, se 
invoca la función substract() la cual realiza la resta entre cada una de las 
bandas y su respectivo promedio. Todo lo anterior se lleva a cabo en GPU. 

División de bandas en submatrices - Líneas 236 – 238: 

236.       r_subs_split = split(r_gpu_subs.get(),BLOCK_SIZE,BLOCK_SIZE) 
237.       g_subs_split = split(g_gpu_subs.get(),BLOCK_SIZE,BLOCK_SIZE) 
238.       b_subs_split = split(b_gpu_subs.get(),BLOCK_SIZE,BLOCK_SIZE) 
 

Posteriormente ya en CPU, se realiza la división de las matrices resultado 
del fragmento de código anterior. El resultado de esta operación es un 
arreglo de arreglos con las submatrices de un tamaño de 32 x 32. Esto para 
cada una de las bandas (R, G, B). 

Cálculo de la matriz de covarianza y derivados - Líneas 239 – 244: 

239. mat_var_cov = varianza_cov(r_subs_split,g_subs_split, b_subs_split) 
240.  coefficient = 1.0/((size_rgb[0]*size_rgb[1])-1) 
241.  ortogonal_matrix = mat_var_cov*coefficient 
242.  polynomial_trace = successive_powers(ortogonal_matrix) 
243. characteristic_polynomial = polynomial_coefficients(polynomial_ 

trace,ortogonal_matrix) 
244. characteristic_polynomial_roots = np.roots(np.insert( 

characteristic_polynomial,0,1)) 
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Acto seguido, se hace uso de estas bandas divididas para poder calcular en 
GPU la matriz de varianza-covarianza mediante la función varianza_cov(). 
En este orden de ideas, se toma cada submatriz de cada banda y se calcula 
su matriz de varianza-covarianza, así hasta recorrerlas completamente y al 
final poder realizar una concatenación de estas matrices. Después, se 
calcula el coeficiente requerido para poder diagonalizar ortogonalmente la 
matriz de varianza-covarianza. Además de esto, al multiplicar la matriz de 
varianza-covarianza con este coeficiente se obtiene lo que se llamará matriz 
ortogonal. Posterior a ello, pasando como parámetro esta matriz a la 
función successive_powers() se genera la traza de las potencias sucesivas 
de la matriz ortogonal. Es necesario calcular los coeficientes del polinomio 
característico a partir de la matriz ortogonal y de la traza polinómica. Lo 
anterior, invocando la función polynomial_coefficients() descrita con 
anterioridad. Por último, mediante la función roots de numpy se hallan las 
raíces reales del polinomio característico.    

Procesamiento de valores y vectores propio - Líneas 245 – 253: 

245.   eigenvalues_mat = np.diag(characteristic_polynomial_roots) 
246.   eigenvectors_mat = -1*ortogonal_matrix[1:n_bands,0] 
247.   mat_ortogonal_base, q_matrix = eigenvectors_norm  
               (eigenvalues_mat,ortogonal_matrix, eigenvectors_mat) 
248.   q_matrix_list = q_matrix.tolist() 
249.   q_matrix_cpu = np.array(q_matrix_list).astype(np.float32) 
250.   w1 = q_matrix_cpu[0,:] 
251.   w2 = (-1)*q_matrix_cpu[1,:] 
252.   w3 = q_matrix_cpu[2,:] 
253.   eigenvectors = np.array((w1,w2,w3)) 
 

En estas líneas, se obtiene la matriz diagonal de las raíces del polinomio 
característico esto mediante la función diag() de numpy. Lo anterior se 
realiza dado que en la diagonal de esta matriz se encuentran los valores 
propios. Una vez se han obtenido estos valores, se procede a calcular los 
vectores propios a partir de la matriz ortogonal. En este orden de ideas, se 
cuenta un vector propio para cada valor propio. Posteriormente, en el resto 
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de líneas se generan los vectores propios normalizados, donde cada 
columna de la matriz mat_ortogonal_base es un vector propio. Finalmente, 
estos vectores propios normalizados se almacenan en la variable 
eigenvectors. 

Cálculo de matriz inversa de vectores propios - Líneas 254 – 256: 

254.     inv_eigenvectors = la.inv(eigenvectors) 
255.     Inv_list = inv_eigenvectors.tolist() 
256.     inv_eigenvector_cpu = np.array(inv_list).astype(np.float32) 
 

En este fragmento de código se obtiene la matriz inversa de los vectores 
propios normalizados. Esto, a través de la función inv propia del módulo 
linalg de Numpy. Posterior a esto, se convierte a una lista y se pasa a un 
arreglo de numpy en CPU especificando float32 como el tipo de dato de 
este arreglo. Es decir, finalmente la variable inv_eigenvector_cpu  almacena 
la matriz inversa de los vectores propios. 

División de bandas para cálculo de componentes principales - Líneas 257 – 259: 

257.     r_subs_split_cp = split(r_host,BLOCK_SIZE,BLOCK_SIZE) 
258.     g_subs_split_cp = split(g_host,BLOCK_SIZE,BLOCK_SIZE) 
259.     b_subs_split_cp = split(b_host,BLOCK_SIZE,BLOCK_SIZE) 
 

Se vuelve a realizar el proceso de división las bandas de la imagen 
multiespectral en submatrices de 32x32,  que se consolidan en arreglos de 
arreglos de Numpy. Este proceso, se lleva a cabo mediante la función 
split(), expuesta durante esta implementación. 

Cálculo de componentes principales iniciales y finales - Líneas 260 – 264: 

260. pc_1,pc_2,pc_3 = componentes_principales_original 
(r_subs_split_cp,g_subs_split_cp,b_subs_split_cp,q_matrix_cpu,r_host.shape
[0], BLOCK_SIZE) 

261. p_subs_split_nb = split(panchromatic_host,BLOCK_SIZE, BLOCK_SIZE) 
262.  pc_2_subs_split_nb = split(pc_2,BLOCK_SIZE,BLOCK_SIZE) 
263.  pc_3_subs_split_nb = split(pc_3,BLOCK_SIZE,BLOCK_SIZE) 
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264. nb1,nb2,nb3 = componentes_principales_panchromartic 
(p_subs_split_nb,pc_2_subs_split_nb,pc_3_subs_split_nb,inv_eigenvector_cp
u,r_host.shape[0], BLOCK_SIZE) 

 

En estas líneas las variables pc_1, pc_2   y pc_3 almacenan los componentes 
principales iniciales. Esto es posible al hacer uso de la función 
componentes_principales_original(), la cual invoca iterativamente el núcleo 
(‘componentesPrincipalesOriginal’) en GPU. En cada una de estas 
iteraciones utiliza las submatrices de las bandas R, G, B conjuntamente con 
la matriz de vectores propios. Posteriormente, se realiza la división de 
submatrices de la imagen pancromática y del segundo y tercer componente 
principal obtenido anteriormente (pc2 y pc3). Lo anterior se lleva a cabo 
con el propósito de poder calcular los nuevos componentes principales a 
partir de la imagen pancromática, los componentes principales 2 y 3 y la 
matriz inversa de los vectores propios. Estos nuevos componentes se 
almacenan en las variables nb1, nb2 y nb3.   

Ajuste espectral de componentes principales finales - Líneas 265 – 276: 

265.   nb11 = nb1.astype(np.float32) 
266.  nb22 = nb2.astype(np.float32) 
267.   nb33 = nb3.astype(np.float32) 
268.  nb11_gpu = gpuarray.to_gpu(nb11) 
269.  nb22_gpu = gpuarray.to_gpu(nb22) 
270.   nb33_gpu = gpuarray.to_gpu(nb33) 
271.   nb111_gpu = gpuarray.empty_like(nb11_gpu) 
272.   nb222_gpu = gpuarray.empty_like(nb22_gpu) 
273.   nb333_gpu = gpuarray.empty_like(nb33_gpu) 
274.   negative_adjustment(nb11_gpu,nb111_gpu) 
275.   negative_adjustment(nb22_gpu,nb222_gpu) 
276.   negative_adjustment(nb33_gpu,nb333_gpu) 
 

Una vez se han calculado los componentes principales finales (nb1, nb2 y 
nb3), es necesario convertirlos a un tipo de dato flotante de 32 bits para 
mantener uniformidad en los cálculos realizados. Así mismo, se hace 
transferencia de estos componentes a variables en memoria global de GPU. 
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Por último, se realiza el ajuste de valores negativos, donde en algunos casos 
por computo se generan valores negativos que deberían ser valores en 
cero. De acuerdo a esto, se invoca el núcleo negative_adjustment y se 
realiza dicho ajuste. De otra manera, sin realizar este ajuste se tendrían 
píxeles erróneos dado que deberían estar en una escala entre 0 y 255. 

Generación de la nueva imagen - Líneas 277 – 281: 

277.      nb111_cpu = nb111_gpu.get().astype(np.uint8) 
278.      nb222_cpu = nb222_gpu.get().astype(np.uint8) 
279.      nb333_cpu = nb333_gpu.get().astype(np.uint8) 
280. fusioned_image=np.stack((nb111_cpu,nb222_cpu,nb333_cpu), axis=2) 
281. skimage.io.imsave('pcagpu_image.tif',fusioned_image, plugin='tifffile') 
 

Para finalizar esta implementación, se realiza el proceso de concatenación 
de los componentes principales ajustados mediante la función stack de 
numpy. Por último, mediante la función imsave de skimage se guarda 
localmente la imagen generada a partir de la fusión de estas imágenes. La 
Figura 18C, presenta la imagen resultado al realizar la fusión de la imagen 
multiespectral (Figura 18A) y pancromática (Figura 18B), ambas con 
dimensión de 1024 píxeles por 1024 píxeles. Lo anterior, mediante el análisis 
de componentes principales. 

     
                      A)                                        B)                                       C) 

Figura 18. Imagen Fusionada de 1024x1024 píxeles mediante análisis de componentes principales. 
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Capítulo 4 
 

 

 

 

 

 

 

 

Métodos basados en Transformadas 
Wavelet Discretas (TWD) 

 

Los métodos que utilizan el análisis multirresolución, y 
fundamentalmente la Transformada Wavelet Discreta (TWD), son los más 
populares para disminuir la distorsión espectral. En particular, para lograr 
fusiones de alta calidad, diversos esquemas basados en wavelets han sido 
propuestos por varios investigadores (Hong y Zhang, 2008; Amolins, Zhang 
y Dare, 2007; Lillo‐ Saavedra y Gonzalo, 2006) destacando los algoritmos de 
Mallat y À trous, cuya principal diferencia se refiere al sentido en el que se 
realiza la estrategia multirresolución, pues en el primer caso se diezma la 
imagen mientras que para À trous no se aplica ningún diezmado, se ha 
demostrado que en los resultados con el algoritmo À trous las imágenes 
son de mejor calidad espacial y degradan en menor valor la riqueza 
espectral. 

4.1 Principios básicos de la transformada Wavelet 
Cualquier transformada que se aplica a una señal se hace con la 

finalidad de obtener información de ella, información que no está 
disponible en el dominio del tiempo. Cuando se gráfica una señal en el 
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dominio del tiempo, se obtiene una representación de la amplitud de la 
señal, ésta no es una buena representación para el procesamiento de una 
señal. La información que interesa se encuentra oculta en la frecuencia. El 
espectro en frecuencia muestra cuáles son las frecuencias que existen en la 
señal. La forma en la que se puede encontrar la frecuencia contenida en una 
señal es mediante la Transformada de Fourier (TF). Es decir, al obtener la 
TF de una señal en el dominio del tiempo, se consigue la representación de 
la señal en la frecuencia (Nieto y Orozco, 2008).  

Este capítulo se presenta una corta explicación de la teoría básica del 
análisis Wavelet y una de sus aplicaciones en la reconstrucción de señales. 
Inicialmente se hace una comparación con el análisis de Fourier y se justifica 
la importancia y necesidad de utilizar la transformada Wavelet. Luego se 
presenta matemáticamente la transformada Wavelet Continua, se 
discretizan los parámetros de tiempo y frecuencia obteniendo la 
Transformada Wavelet Discreta, por último, se explica la forma como se 
puede descomponer y representar los planos Wavelet en una señal 
bidimensional mediante el algoritmo À trous para fusionar imágenes 
satelitales. 

En el procesamiento de señales se pueden encontrar diferentes tipos de 
señales estacionarias y no estacionarias. Las primeras son localizadas en el 
tiempo ya que su frecuencia no varía, este tipo de ondas son estudiadas por 
medio del análisis de Fourier, que permite su descomposición en términos 
de sus componentes sinusoidales, es decir, transforma la señal de la base 
de tiempo a la base de frecuencia y de igual manera permite el paso del 
dominio de la frecuencia al dominio del tiempo, sin embargo, en este último 
se pierde información necesaria, que, por ser de carácter estacionario no 
resulta relevante. En el caso de las señales con comportamiento no-
estacionario, es decir, aquellas cuya frecuencia varía en el tiempo, al tener 
la señal producto de la transformada de Fourier resulta imposible realizar 
el paso al dominio del tiempo porque no permite determinar en qué 
momento se presenta un cambio en la frecuencia. 
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Surge entonces la necesidad de contar con una representación localizada 
en el tiempo y la frecuencia, como consecuencia de la desventaja 
presentada por el análisis de Fourier. De esta manera Gabor implementa el 
uso de la STFT (Short Time Fourier Transform) (Upegui y Medina, 2019), que 
consiste en analizar una pequeña sección de la señal a través de una 
ventana de longitud fija, llevando la información contenida en este 
pequeño intervalo del dominio del tiempo a la escala bidimensional de 
tiempo y frecuencia, donde se puede conocer cuándo y a qué frecuencia 
ocurre un suceso. 

Al utilizar la STFT se presenta una nueva deficiencia, el tamaño fijo de la 
ventana temporal que impide analizar pequeños detalles en señales de 
frecuencia variable. Es así como se introduce el análisis Wavelet como 
herramienta que permite obtener una representación, descomposición y 
reconstrucción de señales, que presenten cambios abruptos en sus 
componentes de tiempo-frecuencia en forma instantánea, a través del 
análisis de multirresolución con ventanas de longitud variable adaptadas al 
cambio de frecuencia de la señal. Es decir, esta técnica permite el uso de 
intervalos grandes de tiempo en aquellos segmentos en los que se requiere 
mayor precisión en baja frecuencia, e intervalos más pequeños donde se 
requiere información en alta frecuencia (ver Figura 19). 

 
Figura 19. Comparación entre la STFT (tiempo-frecuencia) y el análisis Wavelet (tiempo-escala). 

Fuente: (Nieto & Orozco, 2008) 
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A diferencia de Fourier, en donde las funciones base son senos y cosenos 
de duración infinita, en el análisis Wavelet la base son funciones localizadas 
en frecuencia (dilatación) y en tiempo (traslación). Una Wavelet es una 
"pequeña onda" de duración limitada, es decir, su energía está concentrada 
en el tiempo alrededor de un punto, lo que proporciona una adecuada 
herramienta para el análisis de fenómenos transitorios, no estacionarios, 
variables en el tiempo y aquellos que presenten discontinuidades (ver 
Figura 20). 

 
Figura 20.  a) Señal seno. b) Wavelet Daubechies. 

 

Transformada wavelet continua (CWT), permite el análisis de una señal en 
un segmento localizado de esta y consiste en expresar una señal continua 
como una expansión de términos o coeficientes del producto interno entre 
la señal y una Función Wavelet Madre 𝜓𝜓(𝑡𝑡). Una Wavelet Madre es una 
función localizada, perteneciente al espacio 𝐿𝐿2(𝑅𝑅), que contiene todas las 
funciones con energía finita y funciones de cuadrado integrable definida. 

𝑓𝑓 ∈ 𝐿𝐿2 ⇒ ∫|𝑓𝑓(𝑡𝑡)|2𝑑𝑑𝑑𝑑 = 𝐸𝐸 < ∞                                         (6) 
 

De esta manera se cuenta con una única ventana modulada y a partir de 
esta se genera una completa familia de funciones elementales mediante 
dilataciones o contracciones y traslaciones en el tiempo 𝜓𝜓𝑢𝑢,𝑠𝑠(𝑡𝑡), 
denominados átomos wavelet o wavelet hijas que cumplen con todas las 
condiciones de la forma: 
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𝜓𝜓𝑢𝑢,𝑠𝑠(𝑡𝑡) = 1

√𝑠𝑠
𝜓𝜓 �𝑡𝑡−𝑢𝑢

𝑠𝑠
�                                                     (7) 

 
La Wavelet Madre debe cumplir con la condición de admisibilidad 

𝐶𝐶𝜓𝜓 = ∫ �𝜓𝜓(𝜔𝜔)�
𝜔𝜔

2
𝑑𝑑𝑑𝑑 < ∞∞

0                                               (8) 
 

Lo que quiere decir que la función 𝜓𝜓(𝑡𝑡) esta bien localizada en el tiempo, 
es decir, que la función oscile alrededor de un eje y su promedio sea cero, 

matemáticamente ∫ 𝜓𝜓(𝑡𝑡)∞
−∞ 𝑑𝑑𝑑𝑑 = 0, y que la transformada de Fourier 𝜓𝜓(𝑡𝑡) 

sea un filtro continuo pasa-banda, con rápido decrecimiento hacia el infinito 
y hacia 𝜔𝜔 = 0 (Medina et al., 2004). 

La transformada Wavelet de una función 𝑓𝑓(𝑡𝑡) a una escala 𝑠𝑠 y una posición 
𝑢𝑢, es calculada por la correlación de 𝑓𝑓(𝑡𝑡) con una 𝜓𝜓𝑢𝑢,𝑠𝑠(𝑡𝑡) de la forma 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢, 𝑠𝑠) = �𝑓𝑓,𝜓𝜓𝑢𝑢,𝑠𝑠� = ∫ 𝑓𝑓(𝑡𝑡)𝜓𝜓𝑢𝑢,𝑠𝑠
∞
−∞ (𝑡𝑡)𝑑𝑑𝑑𝑑                              (9) 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢, 𝑠𝑠) = ∫ 𝑓𝑓(𝑡𝑡) 1

√𝑠𝑠
𝜓𝜓 �𝑡𝑡−𝑢𝑢

𝑠𝑠
�∞

−∞ 𝑑𝑑𝑑𝑑                             (10) 
 

Para escalas pequeñas (𝑠𝑠 < 1), con la CWT se obtiene información 
localizada en el dominio del tiempo de 𝑓𝑓(𝑡𝑡) y para escalas (𝑠𝑠 > 1) la 
información de 𝑓𝑓(𝜔𝜔) se presenta localizada en el dominio de la frecuencia.  

La transformada wavelet maneja un plano de tiempo-escala, pero también 
puede ser de tiempo-frecuencia, para esto se recurre al Teorema de 
Parseval y de esta manera es posible definir la transformada Wavelet en el 
dominio de la frecuencia 𝜔𝜔. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢, 𝑠𝑠) = ∫ 𝑓𝑓(𝑡𝑡)√𝑠𝑠𝜓𝜓
∗
(𝑠𝑠𝑠𝑠)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗∞

−∞ 𝑑𝑑𝑑𝑑                             (11) 
 

Para poder introducir el término de escala y frecuencia, es necesario ante 
todo definir una constante (𝑐𝑐), que permite realizar un cambio de variable 
de una escala 𝑠𝑠a una frecuencia 𝜔𝜔: 
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𝑠𝑠 → 𝜔𝜔 = 𝑐𝑐
𝑠𝑠
                                                 (12) 

 
Con este cambio de variable es posible observar que la CWT localiza de 
forma simultánea la señal 𝑓𝑓(𝑡𝑡) en el dominio del tiempo como su espectro 
𝑓𝑓(𝜔𝜔) en el dominio de la frecuencia (Bracewell, 1978). 

De igual manera es posible realizar una transformada Wavelet inversa, que 
permita reconstruir la señal a partir de la CWT (que preserva la energía de 
la señal) y las 𝜓𝜓𝑢𝑢,𝑠𝑠(𝑡𝑡). 

𝑓𝑓(𝑡𝑡) = 𝐶𝐶𝜓𝜓 ∫ ∫ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢, 𝑠𝑠)𝜓𝜓𝑢𝑢,𝑠𝑠(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑠𝑠2

∞
−∞

∞
−∞                     (13) 

4.2 Transformada Wavelet discreta (DWT) 
Por la complejidad en el tratamiento numérico de la DWT, debido a la 

variabilidad en forma continua de los parámetros de escala como de 
traslación, es indispensable contar con una herramienta que permita la 
discretización de esta. Es así que se pasará de un mapeo continuo a un 
espectro o conjunto finito de valores, a través del cambio de la integral por 
una aproximación con sumatorias. La discretización permite representar 
una señal en términos de funciones elementales acompañadas de 
coeficientes. 

𝑓𝑓(𝑡𝑡) = �𝑐𝑐𝜆𝜆𝜙𝜙𝜆𝜆
𝜆𝜆

 

 
En los sistemas Wavelet, las Wavelet madre 𝜓𝜓(𝑡𝑡) traen consigo unas 
funciones de escala 𝜑𝜑(𝑡𝑡), las primeras son las encargadas de representar 
los detalles finos de la función mientras las funciones de escala realizan una 
aproximación. Es posible entonces representar una señal 𝑓𝑓(𝑡𝑡) como una 
sumatoria de funciones Wavelet y funciones de escala: 

 
𝑓𝑓(𝑡𝑡) = ∑ ∑ 𝑐𝑐𝑗𝑗,𝑘𝑘𝜑𝜑(𝑡𝑡)𝑗𝑗𝑘𝑘 + ∑ ∑ 𝑑𝑑𝑗𝑗,𝑘𝑘𝜓𝜓(𝑡𝑡)𝑗𝑗𝑘𝑘                              (14) 
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4.2.1 Función de escala y Función Wavelet 

Una forma de discretizar los parámetros de escala y frecuencia es 
mediante un muestreo exponencial, para garantizar una mejor 
aproximación, con el cual se pueden redefinir los parámetros a valores 
discretos de la siguiente manera: 

𝑠𝑠 = 𝑎𝑎−𝑗𝑗𝑢𝑢 = 𝑘𝑘𝑘𝑘𝑎𝑎−𝑗𝑗 
 

De esta manera y reemplazando en la ecuación (7), obtenemos la familia de 
funciones discretizadas que constituyen bases ortonormales de Wavelets 
en 𝐿𝐿2(𝑅𝑅). 

𝜓𝜓𝑢𝑢,𝑠𝑠(𝑡𝑡) =
1

√𝑎𝑎−𝑗𝑗
𝜓𝜓 �

𝑡𝑡 − 𝑘𝑘𝑘𝑘𝑎𝑎−𝑗𝑗

𝑎𝑎−𝑗𝑗
� 

= 𝑎𝑎
𝑗𝑗
2𝜓𝜓(𝑎𝑎𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑘𝑘)                                       (15) 

 
Para obtener una mejor aproximación de la señal en niveles de resolución 
muy finos, es necesario que las Wavelet sean dilatas por un factor de 2−𝑗𝑗, 
permitiendo tener una resolución de 2𝑗𝑗, estas funciones son denominadas 
Wavelets Diádicas. 

𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) = 2
𝑗𝑗
2𝜓𝜓(2𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑘𝑘)𝑗𝑗, 𝑘𝑘 ∈ 𝑍𝑍                              (16) 

 
Teniendo en cuenta la ecuación (9) la transformada Discreta Wavelet tiene 
la forma: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑗𝑗, 𝑠𝑠𝑠𝑠) = �𝑓𝑓,𝜓𝜓𝑗𝑗,𝑘𝑘� = ∫ 𝑓𝑓(𝑡𝑡)𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡)∞
−∞ 𝑑𝑑𝑑𝑑                (17) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑗𝑗,𝑘𝑘) = ∫ 𝑓𝑓(𝑡𝑡)2
𝑗𝑗
2𝜓𝜓(2𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑘𝑘)∞

−∞ 𝑑𝑑𝑑𝑑                     (18) 
 

Teniendo en cuenta el anterior procedimiento es posible generar una 
familia de funciones de escala definidas: 

𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡) = 2
𝑗𝑗
2𝜑𝜑(2𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑘𝑘)𝑗𝑗,𝑘𝑘 ∈ 𝑍𝑍                                   (19) 

 
La representación general de la señal 𝑓𝑓(𝑡𝑡) será de la forma: 
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𝑓𝑓(𝑡𝑡) = ∑ ∑ 𝑐𝑐𝑗𝑗,𝑘𝑘2
𝑗𝑗
2𝜑𝜑(2𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑘𝑘)𝑗𝑗𝑘𝑘 + ∑ ∑ 𝑑𝑑𝑗𝑗,𝑘𝑘2

𝑗𝑗
2𝜓𝜓(2𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑘𝑘)𝑗𝑗𝑘𝑘            (20) 

 

4.2.2 Coeficientes de escala (𝒄𝒄𝒋𝒋,𝒌𝒌) y  
Coeficientes Wavelet (𝒅𝒅𝒋𝒋,𝒌𝒌) 

Para representar una señal 𝑓𝑓(𝑡𝑡) y teniendo en cuenta la ecuación (20), 
es necesario encontrar los valores de los coeficientes (𝑐𝑐𝑗𝑗,𝑘𝑘) y (𝑑𝑑𝑗𝑗,𝑘𝑘) los 
cuales permiten finalmente hacer la aproximación de la señal. Estos son 
producto de una multiplicación vectorial entre la función 𝑓𝑓(𝑡𝑡) y la función 
de escala (𝜑𝜑) o wavelet (𝜓𝜓). Para los coeficientes de escala tenemos: 

𝑐𝑐𝑗𝑗,𝑘𝑘 = �𝑓𝑓(𝑡𝑡),𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡)� = ∫ �𝑓𝑓(𝑡𝑡)𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡)�∞
−∞ 𝑑𝑑𝑑𝑑                             (21) 

 
�𝑓𝑓(𝑡𝑡),𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡)� = 𝑐𝑐𝑗𝑗,−∞�𝜑𝜑𝑗𝑗,−∞(𝑡𝑡),𝜑𝜑(𝑗𝑗,𝑘𝑘)(𝑡𝑡)� +⋯+

             𝑐𝑐𝑗𝑗,𝑘𝑘�𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡),𝜑𝜑(𝑗𝑗,𝑘𝑘)(𝑡𝑡)�+. . . 𝑐𝑐𝑗𝑗,∞�𝜑𝜑𝑗𝑗,∞(𝑡𝑡),𝜑𝜑(𝑗𝑗,𝑘𝑘)(𝑡𝑡)�                       (22) 
 

Ya que las funciones wavelet y de escala cumplen la propiedad de 
ortonormalidad, es posible asegurar que uno de los productos vectoriales 
sea diferente de cero, ��𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡),𝜑𝜑𝑗𝑗,𝑚𝑚(𝑡𝑡)� = 𝛿𝛿(𝑘𝑘 −𝑚𝑚)� o 

��𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡),𝜑𝜑𝑗𝑗,𝑚𝑚(𝑡𝑡)� = 𝛿𝛿(𝑘𝑘 −𝑚𝑚)� por lo tanto: 

𝑐𝑐𝑗𝑗,𝑘𝑘 = �𝑓𝑓(𝑡𝑡),𝜑𝜑𝑗𝑗,𝑚𝑚(𝑡𝑡)� = ∫ 𝑓𝑓(𝑡𝑡)𝜑𝜑𝑗𝑗,𝑘𝑘(2𝑗𝑗𝑡𝑡 − 𝑘𝑘)𝑡𝑡2
𝑡𝑡1

𝑑𝑑𝑑𝑑                   (23) 
 

De igual manera para los coeficientes Wavelet: 

𝑑𝑑𝑗𝑗,𝑘𝑘 = �𝑓𝑓(𝑡𝑡),𝜓𝜓𝑗𝑗,𝑚𝑚(𝑡𝑡)� = ∫ 𝑓𝑓(𝑡𝑡)𝜓𝜓𝑗𝑗,𝑘𝑘(2𝑗𝑗𝑡𝑡 − 𝑘𝑘)𝑡𝑡2
𝑡𝑡1

𝑑𝑑𝑑𝑑                    (24) 

4.2.3 Espacios vectoriales 𝑽𝑽𝒊𝒊 y 𝑾𝑾𝒊𝒊 

Las funciones de escala (𝜑𝜑) corresponden a la proyección ortogonal de 
𝑓𝑓(𝑡𝑡) sobre un espacio 𝑉𝑉𝑖𝑖 ⊂ 𝐿𝐿2(𝑅𝑅). Dicho espacio agrupa todas las 
aproximaciones con resolución 2−𝑗𝑗 y en él está contenida toda la 
información necesaria para realizar aproximaciones con menor resolución, 
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con lo que se puede afirmar que todos los espacios son versiones escaladas 
del espacio central 𝑉𝑉0 (Espacios anidados). 

. . .⊂ 𝑉𝑉−1 ⊂ 𝑉𝑉0 ⊂ 𝑉𝑉1 ⊂. . .⊂ 𝐿𝐿2 
∀𝑗𝑗 ∈ 𝑍𝑍, 𝑓𝑓(𝑡𝑡) ∈ 𝑉𝑉𝑗𝑗 ⇔ 𝑓𝑓(2𝑗𝑗𝑡𝑡) ∈ 𝑉𝑉0                                              (25) 

 
Las funciones Wavelet 𝜓𝜓 generan el espacio vectorial 𝑊𝑊𝑗𝑗  (espacio de 
detalle) definido como el complemento ortogonal de 𝑉𝑉𝑗𝑗  en 𝑉𝑉𝑗𝑗−1, donde 

𝑉𝑉𝑗𝑗−1 = 𝑉𝑉𝑗𝑗 ⊕𝑊𝑊𝑗𝑗                                                              (26) 
 

Estos espacios presentan al igual que los espacios 𝑉𝑉𝑗𝑗  , la propiedad de 
escalado, por lo cual: 

∀𝑗𝑗 ∈ 𝑍𝑍, 𝑓𝑓(𝑡𝑡) ∈ 𝑊𝑊𝑗𝑗 ⇔ 𝑓𝑓(2𝑗𝑗𝑡𝑡) ∈ 𝑊𝑊0                                                     (27) 

4.2.4 Aplicación de Transformada discreta  
de Wavelet para la fusión de imágenes 

El mayor inconveniente de los métodos anteriores trabajados en esta 
investigación, es que modifican la información espectral de las bandas MS 
originales, lo que puede suponer un problema, por ejemplo, si las imágenes 
fusionadas resultantes se van a emplear para la obtención de información 
temática vía clasificación espectral. 

El análisis multirresolución (MRA por sus siglas en inglés) se basa en la 
teoría según la cual el análisis de una imagen y la búsqueda de patrones son 
más eficientes si la imagen es analizada a diferentes niveles de resolución. 
El MRA permite descomponer datos bidimensionales en componentes de 
distinta frecuencia, para estudiar cada una de estas componentes a una 
resolución espacial acorde con su tamaño. De esta forma, en cada 
resolución la información de detalle (componentes de alta frecuencia) 
caracteriza distintas estructuras. 

Este método se ha convertido en una herramienta de gran aplicación en el 
desarrollo de nuevos métodos de fusión. A lo largo de los años, se han 
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propuesto nuevos métodos de fusión empleando el MRA basado en las 
transformaciones Wavelet discretas (TWD), que permiten minimizar el 
problema anteriormente citado. La aproximación discreta de la 
transformada Wavelet puede realizarse a partir de distintos algoritmos. 
Dos de los más empleados en la fusión de imágenes de teledetección son 
los algoritmos de Mallat y À trous. Cada uno, con diferentes propiedades 
matemáticas conduce a distintas descomposiciones y, por lo tanto, a 
distintas imágenes fusionadas, dado las investigaciones realizadas los 
mejores resultados se obtienen usando el algoritmo À trous. (González‐
Audícana, et al., 2005). 

4.3 Fusión de imágenes usando la Transformada Wavelet 
En las últimas décadas, las estrategias de fusión de imágenes más 

utilizadas se han basado en técnicas de análisis multirresolución. El objetivo 
es encontrar una transformada discreta que mejore la respuesta espacial y 
que no degrade la resolución espectral, desde este punto de vista la 
transformada discreta de ondículas (Wavelet) (TDW) se puede considerar 
según los resultados de la evaluación de la fusión de imágenes, han 
demostrado que la fusión de imágenes satelitales usando la transformada 
de wavelet mejora la resolución espacial y degrada en menor valor la 
resolución espectral que los métodos tradicionales (Núñez et al., 1999). 

La transformada discreta Wavelet, es una transformación lineal que tiene 
una gran utilidad en el área de procesamiento de señales. Una de sus 
principales aplicaciones consiste en separar un conjunto de datos en 
componentes de distinta frecuencia espacial representados en escalas 
comunes. 

Los algoritmos de Mallat y el ‘À trous’ son los algoritmos de transformación 
wavelet discreta más empleados en el ámbito de la fusión de imágenes. 
Cada uno, con distintas propiedades matemáticas, conduce a distintas 
descomposiciones y, por lo tanto, a distintas imágenes fusionadas. A pesar 
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de que desde el punto de vista teórico el algoritmo ‘Á trous’ es menos 
adecuado que el de Mallat para extraer detalle espacial en el ámbito del 
análisis multirresolución, este ha permitido obtener imágenes con una 
calidad global sensiblemente mayor que el de Mallat (González-Audícana, 
2003). 

4.4 Análisis multirresolución y las Transformaciones 
Wavelet 

El análisis multirresolución, basado en la teoría Wavelet permite 
descomponer datos bidimensionales en componentes de distinta 
frecuencia y estudiar cada componente a una resolución acorde con su 
tamaño. A diferente resolución, el detalle de una imagen (componentes de 
alta frecuencia) caracteriza distintas estructuras físicas de la escena 
(Mallat, 1989). A resoluciones groseras, este detalle corresponde a las 
estructuras o elementos de mayor tamaño mientras que a resoluciones 
finas este detalle corresponde a las estructuras de menor tamaño. Las 
transformaciones Wavelet permiten en el ámbito del análisis 
multirresolución, extraer el detalle espacial que se pierde al pasar de una 
resolución espacial a otra menor. La aproximación discreta de la 
transformada Wavelet puede realizarse a partir de distintos algoritmos. 
Uno de los más empleados en la fusión de imágenes es el algoritmo de ‘À 
trous’. 

4.4.1 Método À trous para la fusión de imágenes 

Dutilleux en (1987), propuso el algoritmo de À trous basado en la 
transformada de ondículas (Wavelet) calculadas mediante el algoritmo de 
cavidades (À trous). En 1987 Dutilleux propuso el algoritmo de Wavelet À 
trous (“con hoyos”). Presenta una independencia en la direccionalidad del 
proceso de filtrado y por otro lado es redundante, en el sentido de que, 
entre dos niveles de degradación consecutivos, no existe una compresión 
espacial diádica de la imagen original, si no que se mantiene el tamaño de 
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dicha imagen. Si bien esto se traduce en un mayor coste computacional 
(Chibani y Houacine, 2003), ha mostrado que tanto la calidad espacial como 
espectral de las imágenes fusionadas mediante el algoritmo À trous es 
superior a la proporcionada por otros algoritmos. En este método de fusión 
existe una amplia gama de estrategias para integrar la información espacial 
contenida en la imagen pancromática (PAN), dentro de cada una de las 
bandas de la imagen multiespectral (MULTI), ninguna de estas estrategias 
permite controlar de una forma objetiva el compromiso entre la calidad 
espectral y espacial de las imágenes fusionadas. Con objeto de paliar la 
limitación descrita en el párrafo anterior, en esta investigación se presenta 
la fusión de imágenes mediante el algoritmo Wavelet À trous, que 
establece objetivamente el grado de compromiso entre la calidad espectral 
y espacial de la imagen resultante mediante curvas características. Estas 
curvas representan conjuntamente índices de calidad espacial y espectral. 

4.4.2 Algoritmos de À trous 

Dutilleux propuso el algoritmo basado en la transformada de ondículas 
calculada mediante el algoritmo de (con agujeros) À trous. En la Figura 21 
es posible observar una representación del proceso de degradación de una 
imagen, utilizando un del algoritmo de tipo no decimado (TDWM). El detalle 
espacial que se pierde al pasar de un nivel al nivel consecutivo se obtiene 
directamente restando las imágenes aproximadas de dichos niveles.  

 

 
Figura 21. Algoritmo tipo decimado (TDWM). Fuente: (González-Audícana, 2004). 
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Diversos trabajos han demostrado que las transformadas de ondículas 
redundantes o no decimadas, proporcionan mejores resultados en 
determinadas aplicaciones de procesado de imágenes, como son 
eliminación de ruido (Mallat, 1996) o clasificación de texturas y más 
recientemente en el caso de la fusión de imágenes (Chibani, 2003) (Núñez, 
1999). 

Las aproximaciones discretas de la transformación Wavelet algoritmo ‘À 
trous’ (con agujeros) (Starck y Murtagh 1994), el esquema de 
descomposición de imágenes se representa con un paralelepípedo (Figura 
7). La base de éste es también la imagen original 𝐴𝐴2𝑗𝑗  de resolución 2𝑗𝑗  de 𝐶𝐶 
columnas y 𝐹𝐹 filas. Cada nivel del paralelepípedo es una imagen 
aproximación de la imagen original. Conforme se asciende de nivel, las 
sucesivas aproximaciones presentan menor resolución, siendo ésta de 2𝑁𝑁 
en el nivel 𝑁𝑁 del paralelepípedo ya que también en este caso el factor de 
degradación es diádico. Cada una de las imágenes aproximación se obtiene 
aplicando una función de escala. El detalle espacial que se pierde al pasar 
de la imagen 𝐴𝐴2𝑗𝑗  a 𝐴𝐴2𝑗𝑗−1 se recoge en una única imagen de coeficientes 
wavelet, 𝑤𝑤2𝑗𝑗−1, frecuentemente denominada plano wavelet y que se 
obtiene restando las imágenes original y aproximación. Cuando se aplica la 
transformación inversa, la imagen aproximación 𝐴𝐴2𝑗𝑗  puede reconstruirse 
sumando a la imagen aproximación 𝐴𝐴2𝑗𝑗−1 el plano wavelet 𝑤𝑤2𝑗𝑗−1., el 
algoritmo ‘À trous’ es invariante a la translación por lo que todas las 
imágenes aproximación y todos los planos wavelet resultantes de la 
descomposición tienen el mismo tamaño que la imagen original. La 
implementación práctica del algoritmo ‘À trous’ se realiza empleando un 
filtro bidimensional de paso bajo asociado a la función de escala, en este 
caso, una spline bi-cúbica. El algoritmo ‘À trous’, es no-ortogonal, lo implica 
que un determinado plano wavelet 𝑤𝑤2𝑗𝑗−1 para una escala 2𝑗𝑗−1, puede 
retener información de la escala vecina 2𝑗𝑗. 
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El análisis multirresolución basado en la teoría de Wavelet, permite la 
presentación de los conceptos de detalle entre niveles sucesivos de escala 
o resolución. La descomposición de Wavelet es usada para la 
descomposición de imágenes. El método está basado en la descomposición 
de la imagen en múltiples canales basados en su frecuencia local. La 
transformación de la Wavelet provee un esquema para descomponer una 
imagen en un nuevo número de imágenes, cada una de ellas con un grado 
de resolución diferente.  

4.5 Método de fusión usando el algoritmo de À trous 
La transformada Wavelet Á trous para la fusión de imágenes satelitales 

permite generar mejores imágenes fusionadas gracias a la forma en que se 
obtienen los coeficientes resultantes de la transformación, obteniendo así 
los planos wavelet que tienen mayor información espacial y espectral de las 
imágenes originales. 

4.5.1 Implementación de la Transformada Wavelet algoritmo de Á 
trous para la fusión de imágenes WorldView-2 

Sintéticamente y como resultado de esta investigación se proponen los 
siguientes pasos para la implementación de la transformada Wavelet 
algoritmo de Á trous, generando dos planos Wavelet, para la fusión de 
imágenes satelitales (Upegui y Medina, 2019).  

Paso 1. Registrar una composición a color RGB (verdadero color) de la 
imagen MS con la imagen PAN, usando el mismo tamaño de píxel de esta 
última. Transformar la imagen RGB en componentes HSV (Value, Tono y 
Saturación). 

Paso 2. Ajustar la PAN a la componente Value (Pan-V), ajuste de 
histogramas. Aplicar el concepto de Transformada Wavelet algoritmo de Á 
trous al componente Pan-V, se resta Pan-V con la imagen resultante, de esta 
manera obteniendo el plano Wavelet w1, donde se almacena la información 
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espacial de Pan-V. se aplica Transformada Wavelet algoritmo de Á trous a 
la imagen resultante y al restarla con la anterior se obtiene el segundo plano 
Wavelet w2. 

Paso 3. Generar una nueva componente Tono a partir de la suma de los 
planos Wavelet y la componente V, la matriz obtenida inmediatamente 
anterior para obtener la nueva componente Value (N-VAL), el cual 
corresponde N-Val=V+w1+w2. 

Paso 4. Generar una nueva composición HSV (N-HSV), concatenando la N-
VAL junto con las componentes originales H y S (obtenidas en el paso 1). 

Paso 5.  Realizar la transformación HSV a RGB, usando la nueva composición 
N-HSV. De esta manera se obtiene la nueva imagen multiespectral 
fusionada, que mantiene la resolución espectral ganando así la resolución 
espacial, (ver Figura 22). 

 
Figura 22. Diagrama del proceso de fusión de imágenes usando TWA.  

Fuente: Adaptado de González-Audícana et al, 2005 
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De esta manera la transformada Wavelet Á trous implementada para la 
fusión de imágenes satelitales permite generar mejores imágenes 
fusionadas gracias a la forma en que se obtienen los planos Wavelet, estos 
planos Wavelet tienen mayor información espacial y espectral de las 
imágenes originales. 

4.5.2 Modelo de procesamiento heterogéneo para la 
transformada Wavelet À trous 

La Figura 23 presenta el modelo de procesamiento CPU/GPU usado 
para esta técnica, donde se inicia con la conversión de un espacio de color 
RGB a HSV. Después, se realiza el ajuste de la imagen pancromática a partir 
del histograma de Value, todo esto haciendo uso de la CPU. Acto seguido, 
se transfiere la pancromática ajustada a la memoria global de la GPU para 
realizar un proceso de filtrado. Este proceso de filtrado se obtiene al aplicar 
la operación de convolución entre la pancromática ajustada y el filtro 
Bicubic Spline. Así mismo, se repite este proceso, pero se utilizan la matriz 
resultante filtrada anteriormente y el filtro Bicubic Spline agregando 
columnas y filas en cero, todo esto en GPU. Posteriormente se obtienen los 
planos Wavelet a partir de la aplicación de estos filtros, para finalmente, 
generar la nueva componente Value a partir de la pancromática original y 
los dos planos wavelet obtenidos. Una vez se ha realizado esto, se hace un 
stack de las bandas originales de Hue y Saturation con la nueva Value. Por 
último, se realiza la conversión de HSV a RGB. 

 
Figura 23. Modelo de procesamiento heterogéneo para la transformada Wavelet Á trous. 
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4.5.3 Implementación de la transformada Wavelet Á trous en 
Python 

A continuación, se presentan fragmentos secuenciales de código en 
Python utilizados para poder llevar a cabo la fusión de imágenes satelitales 
mediante el método À Trous. En el repositorio del libro se encuentra el 
script completo con las imágenes de prueba: https://github.com/Parall-
UD/libro_fusion_imagenes_satelitales_GPU. 

Definición de dependencias - Líneas 1 – 9: 

1.     import skimage.io 
2.     from skimage.color import rgb2hsv, hsv2rgb 
3.     import numpy as np 
4.     import pycuda.autoinit 
5.     import pycuda.driver as drv 
6.     import pycuda.gpuarray as gpuarray 
7.     from pycuda.elementwise import ElementwiseKernel 
8.     import cupy as cp 
9.     from cupyx.scipy.ndimage import filters 
 

De igual manera como en las implementaciones descritas a lo largo de este 
libro, lo primero que se debe realizar es la importación de librerías 
necesarias para la correcta ejecución del código. De acuerdo a esto, de 
nuevo se importan librerías como scikit-image, numpy y pycuda. Sin 
embargo, en esta ocasión se hace uso de un módulo extra de la librería 
scikit-image, este módulo es color el cual nos proporciona funcionalidades 
para trabajar en distintos espacios de color. Adicionalmente, se importa 
cupy la cual es una librería matricial de código abierto acelerada mediante 
CUDA proporcionando computación acelerada por GPU con Python.  

Núcleo para ajuste espectral - Líneas 10 – 13: 

10.  adjustment_values = ElementwiseKernel( 
11.         "float *x, float *z", 
12.         "if(x[i] < 0){z[i] = 0.0;}else{z[i] = x[i];}", 
13.         "adjust_value") 
 

https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU
https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU
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En estas líneas de código, se establece un núcleo simple mediante la 
función ElementwiseKernel. Este núcleo tiene como propósito tomar una 
matriz y evaluar cada uno de sus posiciones, si el valor de una posición dada 
resulta ser negativo se convertirá a un cero. Como se puede observar en 
estas líneas lo que se realiza es embeber código de C-CUDA en una variable 
netamente del lenguaje de Python. 

Función para el ajuste de histogramas - Líneas 14 – 25: 

14. def hist_match(source, template): 
15.     oldshape = source.shape 
16.     source = source.ravel() 
17.     template = template.ravel() 
18.     s_values,bin_idx,s_counts=np.unique(source, return_inverse= 

True,return_counts=True) 
19.     t_values, t_counts = np.unique(template, return_counts=True) 
20.     s_quantiles = np.cumsum(s_counts).astype(np.float64) 
21.     s_quantiles /= s_quantiles[-1] 
22.     t_quantiles = np.cumsum(t_counts).astype(np.float64) 
23.     t_quantiles /= t_quantiles[-1] 
24.     interp_t_values = np.interp(s_quantiles, t_quantiles, t_values) 
25.     return interp_t_values[bin_idx].reshape(oldshape) 
 

En este fragmento de código, se define la función nombrada hist_match() 
la cual tiene como objetivo realizar un ajuste de histogramas entre dos 
imágenes mediante su representación matricial. En este proceso, como 
primera instancia se obtienen el conjunto de valores de píxeles únicos y sus 
índices, con su respectivo recuento. Acto seguido, se aplica la función de 
numpy cumsum a los recuentos y así poder realizar un proceso de 
normalización, haciendo uso del número de píxeles para obtener las 
funciones empíricas de distribución acumulativa para las imágenes 
denominada source y template. Finalmente, se realiza una interpolación 
lineal para encontrar los valores de píxeles en la imagen template que se 
correspondan más con los cuartiles en la imagen source.  
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Lectura y carga de imágenes - Líneas 26 – 27: 

26. multispectral=skimage.io.imread('multispectral.tiff',plugin = 'tifffile') 
27. panchromatic = skimage.io.imread('panchromatic.tiff',plugin = 'tifffile') 
 

En estas líneas de código, se realiza la lectura de la imagen multiespectral y 
pancromática, esto, mediante la función imread perteneciente al módulo io 
de la librería scikit-image. Esta función convierte las imágenes que se 
desean leer, a un arreglo multidimensional de numpy; esto, con el 
propósito de poder ser utilizadas y manejadas mediante su representación 
matricial. 

Conversión de espacio de color RGB a HSV - Líneas 28 – 32: 

28. hsv = rgb2hsv(multispectral) 
29. val = hsv[:,:,2] 
30. sat = hsv[:,:,1] 
31. mat = hsv[:,:,0] 
32. pani = hist_match(panchromatic,val) 
 

A partir de estas líneas, se realiza la conversión de la imagen multiespectral 
de un espacio de color RGB a Hue Saturation Value (HSV), esto mediante la 
función rgb2hsv() de la librería scikit-image. Acto seguido, se realiza la 
separación de bandas como valor, saturación y matiz. Lo anterior, haciendo 
uso de indexación de matrices de numpy. Por último, utilizando la función 
hist_match() se realiza el ajuste de histogramas entre la imagen 
pancromática y la banda de valor, extraída previamente almacenando su 
resultado en la variable pani. Tanto la separación de bandas, como el ajuste 
de histogramas se realiza sobre la CPU. 

Filtrado con Bicubi Spline - Líneas 33 – 36: 

33. s = np.array([[1/256,1/64,3/128,1/64,1/256],[1/64,1/16, 
3/32,1/16,1/64],[3/128,3/32,9/64,3/32,3/128],[1/64,1/16,3/32,1/16,1/64],[1/256,1/64,
3/128,1/64,1/256]]) 

34. s_gpu = cp.array(s) 
35. p_gpu = cp.array(pani) 
36. I1_gpu = filters.correlate(p_gpu, s_gpu, mode='constant') 
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Posteriormente, en estas líneas se crea la variable s, la cual almacena un 
arreglo de numpy, dicho arreglo representa el filtro Bicubic Spline. Después 
se transfiere a memoria global de la GPU este filtro junto con la 
pancromática ajustada. Lo anterior, mediante la función array() de la 
librería cupy. Una vez se tiene estas variables en la GPU, se procede a aplicar 
un proceso de filtrado, al aplicar la operación de convolución entre la 
pancromática ajustada y el filtro Bicubic Spline. Este filtrado se realiza 
mediante la función Correlate() propia del módulo filters de cupyx, y se 
almacena en la variable I1_gpu. 

Filtrado con Bicubic Spline modificado - Líneas 37 – 39: 

37. s1 = np.array([[1/256, 0, 1/64, 0, 3/128, 0, 1/64, 0, 1/256],[0, 0, 0, 0, 0, 0, 0, 0, 0],[1/64, 
0, 1/16, 0, 3/32, 0, 1/16, 0, 1/64],[0, 0, 0, 0, 0, 0, 0, 0, 0], [3/128, 0, 3/32, 0, 9/64, 0, 
3/32, 0, 3/128],[0, 0, 0, 0, 0, 0, 0, 0, 0],[1/64, 0, 1/16, 0, 3/32, 0, 1/16, 0, 1/64], [0, 
0, 0, 0, 0, 0, 0, 0, 0],[1/256, 0, 1/64, 0, 3/128, 0, 1/64, 0, 1/256]]) 

38. s1_gpu = cp.array(s1) 
39. I2_gpu = filters.correlate(I1_gpu, s1_gpu, mode='constant') 
 

Asimismo, se repite de nuevo el proceso anterior, pero se establece un 
nuevo filtro el cual es Bicubic Spline agregando columnas y filas en cero. 
Este filtro es almacenado en la variable s1 en CPU. Acto seguido, se hace la 
transferencia de este nuevo filtro a memoria global de GPU mediante la 
librería cupy. Una vez se ha realizado esto, se procede a utilizar la matriz 
guardada en la variable I1_gpu y s1_gpu para llevar a cabo el proceso de 
filtrado mediante convolución. Lo anterior, siendo ejecutado sobre la GPU. 

Generación del primer plano Wavelet - Líneas 40 – 44: 

40. W1=(pani-I1_gpu.get()) 
41. W1_gpu = gpuarray.to_gpu(W1) 
42. W1_gpu_new = gpuarray.empty_like(W1_gpu) 
43. adjustment_values(W1_gpu,W1_gpu_new) 
44. W1 = W1_gpu_new.get().astype(np.uint8) 
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En estas líneas de código, se realiza el proceso para obtener el primer plano 
Wavelet. Este proceso consiste en tomar la pancromática ajustada y 
restarle en CPU la matriz consolidada en la variable I1_gpu. Posteriormente, 
se realiza un salto a GPU del resultado de la resta anterior, para poder 
realizar de forma más rápida el ajuste de valores negativos, mediante el 
núcleo generado al inicio de esta implementación usando 
ElementwiseKernel.  Por último, se realiza la transferencia a memoria de 
CPU del plano Wavelet siendo almacenado en la variable W1. 

Generación del segundo plano Wavelet - Líneas 45 – 49: 

45. W2=(I1_gpu.get()-I2_gpu.get()) 
46. W2_gpu = gpuarray.to_gpu(W2) 
47. W2_gpu_new = gpuarray.empty_like(W2_gpu) 
48. adjustment_values(W2_gpu,W2_gpu_new) 
49. W2 = W2_gpu_new.get().astype(np.uint8) 
 

En este mismo orden de ideas, se debe obtener un segundo plano Wavelet. 
Sin embargo, aunque en este caso el proceso es el mismo, las variables 
utilizadas en este no lo son. Como primera instancia, se debe realiza la resta 
entre la variable I1_gpu y I2_gpu utilizando la función get() para ejecutar 
esta operación en CPU. Acto seguido, se transfiere a memoria global de 
GPU la matriz resultado de esta resta para realizar su ajuste de valores 
negativos. Para finalizar se trae a memoria de CPU dicha variable y se realiza 
su conversión a enteros de 8 bits. Finalmente, la variable que contiene el 
segundo plano Wavelet es nombrada W2. 

Generación del nuevo componente de intensidad - Líneas 50 – 51: 

50. nint=(panchromatic+W1+W2).astype(np.uint8) 
51. n_hsv = np.stack((mat, sat, nint),axis=2) 
 

A partir de estas líneas, se genera un nuevo componente de intensidad al 
realizar la suma de la representación matricial de la imagen pancromática y 
los planos Wavelt W1 y W2 generados previamente. Después, se realiza el 
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proceso de concatenación de las bandas de matiz, saturación y el nuevo 
componente de intensidad mediante la función stack de numpy . 

Generación de la nueva imagen - Líneas 52 – 53: 

52. fusioned_image = hsv2rgb(n_hsv).astype(np.uint8) 
53. skimage.io.imsave('atrousgpu_image.tif',fusioned_image, plugin = 'tifffile') 
 

Sin embargo, al realizar la concatenación de estas bandas se sigue 
manteniendo el espacio de color HSV, pero se requiere realizar la 
conversión al espacio de color RGB. Debido a esto, mediante la función 
hsv2rgb() se realiza este proceso y se almacena en la variable 
fusioned_image. Por último, mediante la función imsave de skimage se 
guarda localmente la imagen generada a partir de la fusión de estas 
imágenes. La Figura 24C presenta la imagen resultado al realizar la fusión 
de la imagen multiespectral (Figura 24A) y pancromática (Figura 24B), 
ambas con dimensión de 1024 píxeles por 1024 píxeles. Lo anterior, 
mediante la transformada Wavelet À trous. 

     
                     A)                                         B)                                      C) 

Figura 24. Imagen fusionada de 1024x1024 píxeles mediante  
Transformada Wavelet algoritmo de Á trous. 

 

 

 

 



Índices de evaluación de la calidad espacial y espectral de las imágenes fusionadas 

 

 

93 

Capítulo 5 
 

 

 

 

 

 

 

 

Índices de evaluación de la  
calidad espacial y espectral  
de las imágenes fusionadas 

 

El procesamiento de imágenes es una herramienta muy útil en muchos 
campos de las ciencias modernas, una de los procesos corresponde a la 
fusión de imágenes satelitales, el resultado de estos algoritmos 
matemáticos son imágenes, las cuales deben ser evaluadas para su 
interpretación. Las imágenes fusionadas a menudo deben correlacionarse 
con la imagen original para garantizar que la imagen resultante cumple 
algún propósito en específico, para la evaluación de la calidad de estas 
imágenes fusionadas se utilizan los siguientes índices: coeficiente de 
correlación, entropía, DIV, Bias, ERGAS, RASE, RMES, Qu,  los cuales son 
muy útiles para decidir qué imagen fusionada degrada en menor valor la 
riqueza espectral con una ganancia significativa espacialmente.  

5.1 Bias 
Se basa en la división de los valores medios de la imagen procesada y 

original. El ideal teórico del valor de sesgo es 0. Un pequeño valor positivo 
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o negativo de sesgo significa una fuerte similitud entre x e y. (Vaiopoulos, 
2011). 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1− 𝑥̄𝑥
𝑦̄𝑦
                                           (28) 

5.2 DIV (Difference In Variance) 
DIV (diferencia en varianza): representa la varianza de la imagen 

procesada dividida por la varianza de la imagen original sustraído por uno. 
Los valores de interpretación son similares al sesgo (Vaiopoulos, 2011). 

𝐷𝐷𝐷𝐷𝐷𝐷 = 1 − 𝜎𝜎𝑦𝑦2

𝜎𝜎𝑥𝑥2
                                          (29) 

5.3 Entropía 
Imagen Entropía (E): este índice refleja la cantidad de información 

incluida en una determinada imagen. La entropía requiere análisis de 
histograma: p es el porcentaje de píxeles cuyo valor cae en una 
determinada clase bin, mientras que bc es el número total de clases bin 
(Vaiopoulos, 2011). 

𝐸𝐸 = −∑ 𝑝𝑝 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙2
(𝑝𝑝)𝑏𝑏𝑏𝑏

𝐾𝐾=1                               (30) 

5.4 Coeficiente de correlación (corr) 
La correlación entre las diferentes bandas de las imágenes fusionadas 

y las bandas de la imagen original se pueden calcular con la siguiente 
ecuación: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴/𝐵𝐵) =
∑ �𝐴𝐴𝑗𝑗−𝐴𝐴

−
�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1 �𝐵𝐵𝐽𝐽−𝐵𝐵
−
�

�∑ �𝐴𝐴𝑗𝑗−𝐴𝐴
−
�∑ �𝐵𝐵𝑗𝑗−𝐵𝐵

−
�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑗𝑗=1

                         (31) 

Donde 𝐴𝐴 y 𝐵𝐵 son los valores de la media de las imágenes correspondientes, 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴/𝐵𝐵) se llama coeficiente de correlación y varía entre –1 y +1. Se usan 
los signos + y – para las correlaciones positivas y negativas, 
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respectivamente. Nótese que 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴/𝐵𝐵) es una cantidad adimensional, es 
decir no depende de las unidades empleadas. El valor ideal de la 
correlación, tanto espectral como espacial es 1.  

5.5 Índice ERGAS 
La evaluación de la calidad de las imágenes fusionadas se puede llevar 

a cabo mediante los índices ERGAS espectral y espacial. La definición de 
ERGAS espectral (del francés Erreur Relative Globale Adimensionallede 
Synthèse) (Wald, 2002; Ranchin et al., 2003) viene dada por la ecuación 32: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 100 ℎ
𝑙𝑙
� 1
𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

∑ �
(𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖))2

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑖𝑖)2
�𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑖𝑖=1      (32) 

Donde ℎ y 𝑙𝑙 representan la resolución espacial de las imágenes 𝑃𝑃𝑃𝑃𝑃𝑃 y 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀; NBandas es el número de bandas de la imagen fusionada; 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑖𝑖 
es el valor de la radiancia de la banda 𝑖𝑖 − é𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠de imagen MULTI (Wald, 
2000) y RMSE será definida como sigue (33): 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖) = 1
𝑁𝑁𝑁𝑁
�∑ (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑖𝑖(𝑗𝑗) − 𝐹𝐹𝐹𝐹𝑆𝑆𝑖𝑖(𝑗𝑗))2𝑁𝑁𝑁𝑁

𝑖𝑖=1                  (33) 

Siendo 𝑁𝑁𝑁𝑁 el número de píxeles de la imagen 𝐹𝐹𝐹𝐹𝑆𝑆𝑖𝑖(𝑥𝑥,𝑦𝑦). Adicionalmente, 
Lillo y su equipo (2005) proponen otro índice, denominado 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  
que está inspirado en el índice ERGAS espectral (Lillo-Saavedra et al., 2005). 
El objetivo del índice 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  es evaluar la calidad espacial de las 
imágenes fusionadas por lo que se define como (34): 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 100 ℎ
𝑙𝑙
� 1
𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

∑ �
(𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖))2

(𝑃𝑃𝑃𝑃𝑁𝑁𝑖𝑖)2
�𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑖𝑖=1                 (34) 

 

Donde 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 es definido como sigue en la ecuación 35: 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖) = 1
𝑁𝑁𝑃𝑃
�∑ (𝑃𝑃𝑃𝑃𝑁𝑁𝑖𝑖(𝑗𝑗) − 𝐹𝐹𝐹𝐹𝑆𝑆𝑖𝑖(𝑗𝑗))2𝑁𝑁𝑁𝑁

𝑖𝑖=1                       (35) 
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Los mejores resultados de estos índices (ERGAS espacial y espectral) se 
obtienen cuando es más cercano a cero. 

5.6 Índice RASE  
El índice RASE se expresa como un porcentaje (ecuación 36): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 100 ℎ
𝑙𝑙
�1
𝑁𝑁
∑ �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐵𝐵𝑖𝑖))2

𝑀𝑀𝑖𝑖
2 �𝑛𝑛

𝑖𝑖=1                                     (36) 

Donde ℎ es la resolución de la imagen de alta resolución especial (PAN) y 𝑙𝑙 
es la resolución de la imagen de baja resolución espacial (MULTI) (Wald, 
2000). Los mejores resultados se obtienen cuanto el porcentaje está más 
cerca a cero. 

5.7 Índice de calidad universal 𝑸𝑸𝑸𝑸 
Este modelo de índice de calidad identifica cualquier distorsión como 

una combinación de tres factores: pérdida de correlación, distorsión de 
luminancia y contraste de distorsión (Wang & Bovink, 2002). El índice se 
obtiene con la ecuación 37. 

𝑄𝑄𝑄𝑄 = 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

⋅ 2𝑥̄𝑥𝑦̄𝑦
(𝑥𝑥)2+(𝑦𝑦)2

⋅ 2𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
𝜎𝜎𝑥𝑥2+𝜎𝜎𝑥𝑥2

                                              (37) 

Los mejores valores de este índice se obtienen cuando el valor es más 
cercano a uno. 

5.8 Índice RMSE 
RMSE (Root Mean Squared Error): quizás uno de los índices más 

populares y comúnmente utilizados. Es la raíz de la diferencia al cuadrado 
de dos conjuntos de datos (x, y) divididos por el número de elementos (o 
píxeles) n: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑥𝑥𝑖𝑖−𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖1

𝑛𝑛
                                              (38) 
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Capítulo 6 
 

 

 

 

 

 

 

 

Resultados y análisis 
 

En este capítulo se describe la metodología utilizada para llevar a cabo 
la evaluación tanto a nivel de tiempo de procesamiento (homogéneo vs 
heterogéneo) como a nivel de calidad de la imagen fusionada. Posterior a 
esto se presentan y analizan los resultados de dicha evaluación. 

6.1 Metodología de la evaluación 
Esta sección tiene como finalidad presentar la metodología que se tuvo 

en cuenta para realizar la evaluación de los modelos propuestos y sus 
implementaciones. Los aspectos de evaluación a tratar en esta sección son: 
el entorno de computación, las imágenes utilizadas y los criterios a analizar. 

6.1.1 Entorno computacional 

La Tabla 1, presenta las características del entorno de computación 
utilizado para llevar a cabo la evaluación de la librería Sallfus. Este entorno 
de computación fue acondicionado con la instalación de paquetes como 
Scipy, Numpy, Pycuda y Cupy. 
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Tabla 1. Entorno computacional. 

Sigla Procesador GPU Memoria 

EC Intel (R) Xeon (R) CPU E-52697 v3 @ 
2.60GHZ 

NVIDIA Tesla 
k80 

128GB 

 

6.1.2 Imágenes de prueba  

Para realizar la evaluación se tomaron un total de cuatro pares de 
imágenes, es decir cada par es compuesto por su respectiva imagen 
multiespectral y pancromática. Estos pares de imágenes tienen distintos 
tamaños los cuales son: 1024x1024, 2048x2048, 4096x4096 y 8192x8192 
píxeles. Además, las imágenes de 1024 y 2048 píxeles son subescenas de 
una imagen IKONOS y las otras dos imágenes fueron tomadas mediante el 
satélite Landsat. La Figura 25(A) presenta la imagen multiespectral de 
2048x2048 píxeles y la Figura 25(B) la imagen pancromática.  

    

A)                                           B) 

Figura 25. Imagen de prueba con tamaño 20148x2048 pixeles. 
 A) Multiespectral, B) Pancromática. 

6.1.3 Proceso de evaluación y métricas 

Este proceso de evaluación está orientado a probar cada uno de los 
métodos de fusión de imágenes satelitales con los distintos pares de 
imágenes presentados anteriormente. Esto con el propósito de calcular los 
tiempos de ejecución de cada método sobre la arquitectura homogénea y 
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heterogénea, para obtener el factor de aceleración o speed-up. 
Adicionalmente, al aplicar el proceso de fusión se determinará la calidad de 
la imagen, a partir de los índices matemático-estadísticos expuestos en el 
capítulo 5. Este proceso se realizará tanto a nivel espectral como a nivel 
espacial. Esto quiere decir que, se tomará la imagen fusionada y se 
obtendrán sus índices teniendo como referencia las imágenes de entrada: 
multiespectral y pancromática. Para esta evaluación se usa un script en 
lenguaje Matlab, que calcula automáticamente ocho índices (Vaiopoulos, 
2011). 

6.2 Tiempos de ejecución y factores de aceleración 
La Tabla 2, presenta el tiempo de ejecución para cada una de las 

técnicas de fusión implementadas. Se realiza una discriminación por 
tamaño y tipo de arquitectura implementada. 

Con base en la Tabla 2, se puede observar que para cada una de las técnicas 
implementadas tanto secuencial como paralelamente, a medida que 
incrementa el tamaño de la imagen aumenta su tiempo de ejecución. Sin 
embargo, para las técnicas de fusión que utilizan exclusivamente la CPU, se 
presentan incrementos de tiempo mucho más significativos que los 
presentados en las implementaciones en CPU/GPU. La Tabla 3 presenta la 
tasa de crecimiento en segundos por píxel de cada una de las técnicas. Esto 
se realizó, mediante una linealización para obtener la pendiente que 
representa la tasa de crecimiento del tiempo de ejecución en función de los 
píxeles. Lo anterior, dado que algunas de las técnicas presentan un 
comportamiento exponencial y otras aproximadamente lineal. Analizando 
esta tabla se evidencia que las tasas de crecimiento disminuyen 
sustancialmente al utilizar CPU/GPU (mucho más significativo para Brovey 
y Multiplicative), lo que indica que a mayor tamaño de las imágenes se 
sacará mayor beneficio de la plataforma heterogénea y se obtendrá mayor 
aceleración. 
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Tabla 2. Tiempo de ejecución. 

Método Arq. 
Tiempo por tamaño 

1024x 
1024px 

2048x 
2048px 

4096x 
4096px 

8192x 
8192px 

Brovey 
CPU 25.39s 76.76s 311.85s 1437.85s 

CPU/GPU 1.43s 1.49s 1.72s 2.70s 

Multiplicative 
CPU 9.27s 36.66s 136.37s 534.57s 

CPU/GPU 0.98s 1.02s 1.22s 1.90s 

PCA 
CPU 23.29s 86.32s 342.03s 1360.40s 

CPU/GPU 3.05s 7.53s 24.36s 74.35s 

À trous 
CPU 1.94s 7.40s 30.86s 142.62s 

CPU/GPU 1.08s 2.11s 5.84s 22.93s 
 

Tabla 3. Tasa de crecimiento del tiempo de ejecución por píxel. 

Método 
Tasa por arquitectura 

CPU CPU/GPU 

Brovey 2.13x10-5 s/píxel 1.93x10-8 s/píxel 

Multiplicative 7.95x10-6 s/píxel 1.39x10-8 s/píxel 

PCA 2.02x10-5 s/píxel 1.08x10-6 s/píxel 

À trous 2.12x10-6 s/píxel 3.30x10-7 s/píxel 

 

A partir de la Tabla 4 y teniendo en cuenta el tamaño más alto de imagen, 
que en este caso corresponde a 8192x8192 píxeles, se puede observar que, 
la técnica que presenta la mayor aceleración en CPU/GPU respecto a CPU 
es Brovey con un total de 531.85x. Después se ubica Multiplicative con un 
total de 281.06x, posteriormente, se encuentra PCA con 18.30x y por último 
está À trous, evidenciando solo 6.22x. 

Tabla 4. Speed-up. 

Método 
Speed- up por tamaño 

1024x 
1024px 

2048x 
2048px 

4096x 
4096px 

8192x 
8192px 

Brovey 17,80x 51,47x 180,83x 531,85x 
Multiplicative 9,44x 35,95x 112,02x 281,06x 

PCA 7,63x 11,47x 14,04x 18,30x 
À trous 1,79x 3,51x 5,29x 6,22x 
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6.3 Calidad de la imagen fusionada 
En la tabla 5 se realiza el análisis espectral de las imágenes fusionadas 

con la Transformada Brovey, Multiplicación (Multi), PCA y la Transformada 
Wavelet con el algoritmo À trous, con una subescena Ikonos de tamaño 
1024x1024, con los índices de Correlación, BIAS, DIV, Entropía, ERGAS, 
índice de calidad Universal Qu, RASE y RMSE, donde se puede observar que 
los mejores resultados con el índice de correlación se obtienen con el 
método de multiplicación (promedio de 82.6% de dependencia lineal), sin 
embargo con los 7 índices BIAS, DIV, Entropía, ERGAS, Qu,RASE y RMSE los 
mejores resultados espectralmente se obtienen con la transformada 
Wavelet usando el algoritmo À trous. 

Tabla 5. Análisis Espectral imagen Ikonos 1024 líneas por 1024 columnas. 

Imagen 
fusionada R G B BIAS DIV 

Entropía 
5.99 ERGAS Qu RASE RMSE 

RGB/Brovey 0.67 0.53 0.46 0.37 0.59 5.59 11.8 0.67 46.8 26.9 
RGB/Multi 0.84 0.83 0.81 0.76 0.69 4.47 19.9 0.56 79.6 45.1 
RGB/PCA 0.58 0.56 0.58 0.41 0.64 5.45 12.5 0.50 49.7 27.9 

RGB/À trous 0.69 0.56 0.51 0.11 0.21 5.86 7.61 0.58 30.52 17.2 
 

En la Tabla 6 se realiza el análisis espacial de las imágenes fusionadas con la 
Transformada Brovey, Multiplicación (Multi), PCA y la Transformada 
Wavelet con el algoritmo À trous,  con una subescena Ikonos de tamaño 
1024x1024 con los índices de Correlación, BIAS, DIV, Entropía, ERGAS, índice 
de calidad Universal Qu, RASE y RMSE, donde se puede observar que los 
mejores resultados con el índice de correlación se obtienen con el método 
de multiplicación (promedio de 97% de dependencia lineal) y con la 
transformada Wavelet con el algoritmo À trous (promedio de 96.3% de 
dependencia lineal). Cuando se analizan los 7 índices: BIAS, DIV, Entropía, 
ERGAS, Qu,RASE y RMSE, se observa que los mejores resultados 
espectralmente se obtienen con la transformada Wavelet usando el 
algoritmo À trous. 
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Tabla 6. Análisis Espacial Ikonos 1024 líneas por 1024 columna.s 

Imagen 
fusionada 

R G B BIAS DIV Entropía 
5.92 

ERGAS Qu RASE RMSE 

RGB/Brovey 0.96 0.98 0.97 0.38 0.56 5.59 10.12 0.76 40.4 23.4 
RGB/Multi 0.83 0.85 0.84 0.77 0.68 4.47 19.93 0.31 79.7 46.2 
RGB/ PCA 0.94 0.97 0.91 0.42 0.63 5.54 11.32 0.70 45.2 26.2 

RGB/À trous 0.95 0.98 0.96 0.13 0.18 5.86 4.11 0.94 16.3 9.53 
 

En la tabla 7 se realiza el análisis espectral, de las imágenes fusionadas con 
la Transformada Brovey, Multiplicación (Multi), PCA y la Transformada 
Wavelet con el algoritmo À trous, con una subescena Ikonos de tamaño 
2048x2048, con los índices de Correlación, BIAS, DIV, Entropía, ERGAS, 
índice de calidad Universal Qu, RASE y RMSE, donde se puede observar que 
los mejores resultados con el índice de correlación se obtienen con el 
método de multiplicación (promedio de 82.3% de dependencia lineal) y la 
transformada Wavelet con el algoritmo À trous (promedio de 53.3% de 
dependencia lineal). Cuando se analizan los 7 índices: BIAS, DIV, Entropía, 
ERGAS, Qu,RASE y RMSE, se observa que los mejores resultados 
espectralmente se obtienen con la transformada Wavelet usando el 
algoritmo À trous. 

Tabla 7. Análisis Espectral Ikonos 2048 líneas por 2048 columnas. 

Imagen 
fusionada R G B BIAS DIV 

Entropía 
6.33 ERGAS Qu RASE RMSE 

RGB/Brovey 0.66 0.51 0.41 0.43 0.61 5.84 12.8 0.39 51.0 19.3 
RGB/Multi 0.84 0.83 0.80 0.74 0.70 5.01 19.3 0.33 77.6 22.4 
RGB/ PCA 0.55 0.54 0.57 0.42 0.61 5.73 12.5 0.43 50.6 18.5 

RGB/À trous 0.68 0.53 0.45 0.12 0.11 6.23 7.9 0.55 31.9 20.1 
 

En la Tabla 8 se realiza el análisis espacial de las imágenes fusionadas con la 
Transformada Brovey, Multiplicación (Multi), PCA y la Transformada 
Wavelet con el algoritmo À trous, con una subescena Ikonos de tamaño 
2048x2048, con los índices de Correlación, BIAS, DIV, Entropía, ERGAS, 
índice de calidad Universal Qu, RASE y RMSE, donde se puede observar que 
los mejores resultados con el índice de correlación se obtienen con la 
transformada Brovey (promedio de 96.3% de dependencia lineal) y la 
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transformada Wavelet con el algoritmo À trous (promedio de 96% de 
dependencia lineal). Cuando se analizan los 7 índices: BIAS, DIV, Entropía, 
ERGAS, Qu,RASE y RMSE, se observa que los mejores resultados 
espectralmente se obtienen con la transformada Wavelet usando el 
algoritmo À trous. 

Tabla 8. Análisis Espacial Ikonos 2048 líneas por 2048 columnas. 

Imagen 
fusionada 

R G B BIAS DIV Entropía 
6.31 

ERGAS Qu RASE RMSE 

RGB/Brovey 0.95 0.98 0.96 0.42 0.62 5.84 11.20 0.70 47.1 28.3 
RGB/Multi 0.98 0.85 0.85 0.74 0.72 5.01 19.34 0.33 77.4 48.9 
RGB/ PCA 0.94 0.97 0.89 0.42 0.62 5.73 11.27 0.70 45.7 28.5 

RGB/À trous 0.94 0.99 0.95 0.12 0.15 6.23 3.97 0.94 17.8 10.0 
 

En la Tabla 9 se realiza el análisis espectral de las imágenes fusionadas con 
la Transformada Brovey, Multiplicación (Multi), PCA y la Transformada 
Wavelet con el algoritmo À trous, con una subescena Landsat 8 OLI TIRS de 
tamaño 4096x4096, con los índices de Correlación, BIAS, DIV, Entropía, 
ERGAS, índice de calidad Universal Qu, RASE y RMSE, donde se puede 
observar que los mejores resultados con el índice de correlación se 
obtienen con la transformada Brovey, con PCA y con la transformada 
Wavelet con el algoritmo À trous (97% de dependencia lineal). Cuando se 
analiza el índice DIV el mejor es el método de multiplicación, cuando se 
analizan los 6 índices: BIAS, Entropía, ERGAS, Qu,RASE y RMSE, se observa 
que los mejores resultados espectralmente se obtienen con la 
transformada Wavelet usando el algoritmo À trous. 

Tabla 9. Análisis Espectral Landsat 8 OLI TIRS 4096 líneas por 4096 columnas. 

Imagen 
fusionada 

R G B BIAS DIV 
Entropía 

4.96 ERGAS Qu RASE RMSE 

RGB/Brovey 0.97 0.97 0.97 0.25 -2.70 5.67 23.1 0.76 46.2 17.3 
RGB/Multi 0.95 0.96 0.97 0.80 -0.33 3.65 40.8 0.35 81.7 30.7 
RGB/ PCA 0.97 0.97 0.97 0.45 -1.07 5.45 24.7 0.76 49.5 18.4 

RGB/À trous 0.97 0.97 0.97 0.10 -4.51 5.94 27.5 0.69 55.1 20.6 
En la Tabla 10 se realiza el análisis espacial de las imágenes fusionadas con 
la Transformada Brovey, Multiplicación (Multi), PCA y la Transformada 
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Wavelet con el algoritmo À trous, con una subescena Landsat 8 OLI TIRS de 
tamaño 4096x4096, con los índices de Correlación, BIAS, DIV, Entropía, 
ERGAS, índice de calidad Universal Qu, RASE y RMSE, donde se puede 
observar que los mejores resultados con el índice de correlación se 
obtienen con la transformada Brovey, con PCA y con la transformada 
Wavelet con el algoritmo À trous (99% de dependencia lineal). Cuando se 
analizan los 7 índices: BIAS, DIV, Entropía, ERGAS, Qu,RASE y RMSE, se 
observa que los mejores resultados espectralmente se obtienen con la 
transformada Wavelet usando el algoritmo À trous. 

Tabla 10. Análisis Espacial Landsat 8 OLI TIRS 4096 líneas por 4096 columnas 

Imagen 
fusionada 

R G B BIAS DIV Entropía 
5.98 

ERGAS Qu RASE RMSE 

RGB/Brovey 0.99 0.99 0.99 0.24 0.40 5.67 16.9 0.92 33.9 12.2 
RGB/Multi 0.94 0.94 0.94 0.80 0.78 3.65 49.4 0.27 98.8 36.2 
RGB/ PCA 0.99 0.99 0.99 0.43 0.66 5.45 30.4 0.73 61.2 22.3 

RGB/À trous 0.99 0.99 0.99 0.08 0.10 5.92 5.79 0.98 14.3 4.2 
 

En la Tabla 11 se realiza el análisis espectral de las imágenes fusionadas con 
la Transformada Brovey, Multiplicación (Multi), PCA y la Transformada 
Wavelet con el algoritmo À trous, con una subescena Landsat 8 OLI TIRS de 
tamaño 8192x8192, con los índices de Correlación, BIAS, DIV, Entropía, 
ERGAS, índice de calidad Universal Qu, RASE y RMSE, donde se puede 
observar que los mejores resultados con el índice de correlación se 
obtienen con la transformada Brovey, con PCA y con la transformada 
Wavelet con el algoritmo À trous (promedio de 97.3% de dependencia 
lineal). Cuando se analiza el índice DIV, se observa que el mejor es el método 
de multiplicación,  cuando se analizan los 6 índices: BIAS, Entropía, ERGAS, 
Qu,RASE y RMSE, se observa que los mejores resultados espectralmente se 
obtienen con la transformada Wavelet usando el algoritmo À trous. 
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Tabla 11. Análisis Espectral Landsat 8 OLI TIRS 8192 líneas por 8192 columnas. 

Imagen 
fusionada 

R G B BIAS DIV Entropía 
4.69 

ERGAS Qu RASE RMSE 

RGB/Brovey 0.98 0.97 0.97 0.33 -2.42 5.21 24.3 0.75 48.7 17.5 
RGB/Multi 0.96 0.97 0.97 0.83 -0.28 3.15 42.3 0.30 85.0 30.4 
RGB/ PCA 0.98 0.97 0.97 0.50 -0.98 5.13 26.9.0 0.73 53.3 19.2 

RGB/À trous 0.98 0.97 0.97 0.18 -4.30 5.54 27.3 0.70 54.5 19.6 
 

En la Tabla 12 se realiza el análisis espacial de las imágenes fusionadas con 
la Transformada Brovey, Multiplicación (Multi), PCA y la Transformada 
Wavelet con el algoritmo À trous, con una subescena Landsat 8 OLI TIRS de 
tamaño 8192x8192, con los índices de Correlación, BIAS, DIV, Entropía, 
ERGAS, índice de calidad Universal Qu, RASE y RMSE, donde se puede 
observar que los mejores resultados con el índice de correlación se 
obtienen con la transformada Brovey, con PCA y con la transformada 
Wavelet con el algoritmo À trous (99% de dependencia lineal). Cuando se 
analizan los 7 índices: BIAS, DIV, Entropía, ERGAS, Qu,RASE y RMSE, se 
observa que los mejores resultados espectralmente se obtienen con la 
transformada Wavelet usando el algoritmo À trous. 

Tabla 12. Análisis Espacial Landsat 8 OLI TIRS 8192 líneas por 8192 columnas. 

Imagen 
fusionada 

R G B BAI DIV Entropía 
5.55 

ERGAS Qu RASE RMSE 

RGB/Brovey 0.99 0.99 0.99 0.25 0.42 5.21 18.2 0.96 36.5 7.74 
RGB/Multi 0.94 0.95 0.95 0.81 0.78 3.15 50.8 0.99 101.7 0.58 
RGB/ PCA 0.99 0.99 0.99 0.43 0.66 5.13 31.6 0.99 63.3 3.00 

RGB/À trous 0.99 0.99 0.99 0.08 0.10 5.54 7.51 0.98 15.0 3.77 
 

La comparación visual de las imágenes fusionadas usando la 
Transformada de Brovey, Multiplicación, Análisis de Componentes 
principales y la transformada Wavelet À trous con los diferentes tamaños, 
se pueden ver en el anexo. 
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A partir de la comparación de tiempos de ejecución realizado, se 

demuestra que todos los métodos implementados presentan una 
disminución significativa en su tiempo de ejecución. Sin embargo, Brovey 
es el método que expone el mejor esquema de paralelización, dado que 
llega a ser aproximadamente 532 veces más rápido que en CPU. 
Adicionalmente, analizando la tasa de crecimiento del tiempo de ejecución 
por pixel, se evidencia que el método PCA presenta un comportamiento 
atípico frente a los otros métodos sobre una arquitectura heterogénea, 
esto podría significar que el costo de transferencia entre unidades de 
procesamiento es más alto que en las otras técnicas y que si de igual 
manera se presenta una mejora significativa en el tiempo de ejecución, las 
operaciones realizadas en PCA siguen representando un alto costo 
computacional en dispositivos many-core. 

En cuanto a calidad espectral y espacial de la imagen fusionada, las 
evaluaciones realizadas anteriormente han demostrado que los métodos 
de fusión de imágenes basados en la transformada de Wavelet usando el 
algoritmo de “Á trous” son más adecuados para la fusión de imágenes que 
los métodos convencionales.  

Los resultados obtenidos del análisis cuantitativo demuestran que los 
mejores resultados de la imagen satelitales Ikonos de 2048 por 2048 
fusionada de imágenes usando la TWA implementada en Python ofrece 
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mejores resultados con valores de los índices BIAS, DIV, ERGAS, RASE, Qu, 
RMSE son mejores que los obtenidos con las imágenes Ikonos de tamaño 
1024x1024. Con el índice de correlación los mejores resultados se obtienen 
con los métodos convencionales. Lo que significa que la mejor dependencia 
lineal tanto espectral como espacial se obtiene con los métodos 
tradicionales. 

Los resultados obtenidos del análisis cuantitativo demuestran que los 
mejores resultados de la imagen satelitales Landsat 8 OLI TIRS de 
8192x8192 fusionada de imágenes usando la TWA implementada en Python 
ofrece mejores resultados con valores de los índices BIAS, DIV, ERGAS, 
RASE, Qu, RMSE son mejores que los obtenidos con las imágenes Landsat 
8 OLI TIRS de tamaño 4096x4096. Lo que significa que la mejor 
dependencia lineal tanto espectral como espacial se obtienen con los 
métodos tradicionales.  

La metodología propuesta permite implementar de forma eficiente las 
principales metodologías de fusión de imágenes sobre plataformas 
computacionales heterogéneas (CPU/GPU), permitiendo obtener de forma 
rápida, imágenes fusionadas que ofrecen a los usuarios información 
detallada sobre los entornos urbanos y rurales, lo cual es útil para 
aplicaciones como la planificación y la gestión urbana. Su utilidad se 
extiende al desarrollo de proyectos en diversos campos como agricultura, 
hidrología, medioambiente y gestión de emergencias producidas por 
catástrofes naturales (inundaciones, incendios forestales), entre otros.  
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A continuación, se presenta el conjunto de datos y las imágenes 
resultantes de la evaluación bajo cada una de las metodologías de fusión: 
Transformada de Brovey, multiplicación, PCA y transformada Wavelet À 
trous. El conjunto de datos corresponde a 4 pares (Multiespectral y 
Pancromática) de imágenes satelitales: 

- Ikonos 1024x1024 

- Ikonos tamaño 2048x2048 

- Landsat 8 OLI TIRS 4096x4096 

- Landsat 8 OLI TIRS 8192x8192 

Las imágenes se presentan en arreglos de 2 filas por dos columnas que 
comprenden las 2 imágenes originales de entrada y las 4 imágenes 
resultantes de la fusión por cada uno de los métodos. Esto facilita la 
inspección visual de la calidad de la imagen resultante y la comparación de 
los métodos. 
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                           A)                                                 B) 

   
                            C)                                                  D) 

   

                             E)                                                 F) 

Figura 26. Imagen Ikonos 1024x1024.. Entrada: A)Multiespectral; B)Pancromática. 
 Salida: C)Transformada Brovey; D)Multiplicación; E)PCA; F)Transformada Wavelet À trous 
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                                       A)                                                B) 

   

                                       C)                                                D) 

   

                                       E)                                                    F) 

Figura 27. Imagen Ikonos tamaño 2048x2048. Entrada: A)Multiespec.; B)Pancromática. Salida: 
C)Transformada Brovey; D)Multiplicación; E)PCA; F)Transformada Wavelet À trous 
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                                        A)                                                B) 

   
                                          C)                                              D) 

   
                                       E)                                                 F) 

Figura 28. Imagen Landsat 8 OLI TIRS 4096x4096. Entrada: A)Multiespec..; B)Pancromática. Salida: 
C)Transformada Brovey; D)Multiplicación; E)PCA; F)Transformada Wavelet À trous 
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                                          A)                                             B) 

   
                                       C)                                                 D) 

   
                                         E)                                               F) 

Figura 29. Imagen Landsat 8 OLI TIRS 8192x8192. Entrada: A)Multiespec..; B)Pancromática. Salida: 
C)Transformada Brovey; D)Multiplicación; E)PCA; F)Transformada Wavelet À trou 
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