ACELERANDO LA

r

FUSION DE

IMAGENES MEDIANTE

V 4

V &

COMPUTACION

ry

HETEROGENEA

Daza

Ina

Med
Restrepo Rodriguez

5n Javier

en

2{015]

[o]

id

Andrés Ov

nieria

S

| &

| .

S

a. QO

S @)

- -

()

S -

S Q:

2 :

c

(]

n -)

) £5

] z =

) O

= 22
aa
<o
Bo
22
=
=
=g

Rubén Javier Medina Daza

Doctor en Informatica
con énfasis en
Sistemas de
Informacidén
Geografica, Magister
en Teleinformatica,
Licenciado en
Matematicas de la
Universidad Distrital Francisco José de
Caldas. Profesor Titular de Ingenieria
Catastral y Geodesia, de la Maestria
en Ciencias de la Informacién y las
Comunicaciones y del

Doctorado de Ingenieria.

Andrés Ovidio Restrepo Rodriguez
Ingeniero de Sistemas
y actual estudiante de
la Maestria en Ciencias
de la Informaciényy las
Comunicaciones en la
Universidad Distrital
Francisco José de
Caldas. Campos de investigacion:
Inteligencia Artificial, Learning
Analytics, Entornos Inmersivos y
Computacién Heterogénea.

Nelson Enrique Vera Parra
Ingeniero Electrénico
de la Universidad
Surcolombiana,
Magister en Ciencias
de la Informacidn y las
Comunicaciones y
Doctor en Ingenierfa
de la Universidad Distrital Francisco
José de Caldas. Profesor Titular de la
misma Universidad. Investigador en
HPC, Ciencia deDatos y
Bioinformatica.

cn ingenleria
UNIVERSIDAD D\STI?ITﬂLg “FRANCISCO JOSE DE CALDAS”

ACELERANDO

LA FUSION DE
IMAGENES MEDIANTE
COMPUTACION
HETEROGENEA

Rubén Javier Medina Daza
Andrés Ovidio Restrepo Rodriguez
Nelson Enrique Vera Parra

Medina Daza, Rubén Javier

Acelerando la fusién de imagenes mediante computacién heterogénea / Rubén

Javier Medina Daza, Andrés Ovidio Restrepo Rodriguez, Nelson Enrique Vera Parra. -
1a ed. - Bogotd : Universidad Distrital Francisco José de Caldas, 2021.
119 p. ; 24 cm -- (Doctorado en Ingenierfa)
Incluye resefia de los autores en la pasta - Contiene referencias bibliograficas.
ISBN 978-958-49-4957-8 (Impreso) - 978-958-49-4958-5 (Digital)
1. Procesamiento de imagenes - Técnicas digitales
2. Computacién heterogénea I. Restrepo Rodriguez, Andrés Ovidio Il. Vera Parra,

Nelson Enrique Il1. Titulo IV. Serie

CDD: 006.6 ed. 23 CO-BoBN- a1088110

© Universidad Distrital Francisco José de Caldas

© Doctorado en Ingenieria

© Rubén Javier Medina Daza - Andrés Ovidio Restrepo Rodriguez —
Nelson Enrique Vera Parra

ISBN Impreso: 978-958-49-4957-8
ISBN Digital: 978-958-49-4958-5

Primera edicién: Bogotd, diciembre de 2021

Correccidn de estilo, disefio grafico y produccién editorial:
IngeEdit Editores — Sandra Patricia Rodriguez Lamus - ingeeditorial@gmail.com

Impresion:
IngeEdit Editores — Sandra Patricia Rodriguez Lamus

Doctorado en Ingenieria
Carrera 7 No. 40B — 53 Bogotd
Correo electrénico: investigacion.doctoradoing@udistrital.edu.co

Todos los derechos reservados. Esta publicacién no puede ser reproducida total ni parcialmente o trasmitida
por un sistema de recuperacién de informacién, en ninguna forma ni por ningtin medio, sin el permiso previo

del Doctorado en Ingenieria de la Universidad Distrital Francisco José de Caldas.
Hecho el depdsito legal.

Impreso y hecho en Colombia
Printed and made in Colombia

mailto:investigacion.doctoradoing@udistrital.edu.co

Tabla de contenido

SRS o ol o TSROSO 11

Capitulo T
Introducciéon, problema de investigaciéon y objetivos.... 13

1.1 Introduccion a la fusion de IMAagenes.......cocccvvveeeeeeecciieee e, 13
1.2 Introducion a la computacidn heterogéneaccccceeeevvveeeeeeicnneennn. 17
1,21 CUDA et a e aaes 19
1.2.1.1 Modelo de programacion de CUDAccccccvveeeeeecciiieeee e, 20
1.3 Reto computacional para implementar la fusién de imagenes en
arquitecturas computacionales heterogéneascccccceeeeeeeennnee 25
1.4 Objetivo de este libroc.uveeeeiieciiiiee e 26

Capitulo 2

Fusién de imdgenes basado

en operaciones algebraicas....... oo, 27
2.1 Algoritmos de fusion de IMAgeNEescccccvveieeeecciiiiee e, 27
2.2 Revision de métodos de fusidon de imagenes satelitales................. 28

2.3 Transformada de BroVeyc..eeeevevcciiieieieccitieee e 32

2.3.1 Modelo de procesamiento heterogéneo para

la transformada de Broveyccccceeveciiieiei e 33
2.3.2 Implementacidn de la transformada de Brovey en Python 33
2.4 Método de multiplicacioncccooecciiieee e 40
2.4.1 Modelo de procesamiento heterogéneo para el método de

MUILIPHCACION .. e e 41
2.4.2 Implementacion del método de multiplicacién en Python............. 41

Capitulo 3
Métodos basados en transformadas: métodos de

sustitucion de compPOoNENtES. ..., 49
3.1 Fusidn de imagenes usando analisis de componente principales... 49
3.1.1 Modelo de procesamiento heterogéneo para PCAcccuuueeee. 51
3.1.2 Implementacion de PCA en Pythoncccccovciiieieiiviciieeee e, 52

Capitulo 4
Métodos basados en Transformadas

Wavelet Discretas (TWD)....eeeveeereeeeseseeerieeseiesenssseseeenns 71
41 Principios basicos de la transformada Wavelet............ccccceeuunnneeeen. 71
4.2 Transformada Wavelet Discreta (DWT)ccoeeeviiiiiiiiccnnnnernnnnnennes 76
4.2.1 Funcidn de escala y Funcion Wavelet........cccccceeeevcivieeeeicccciiieeeen, 77

4.2.2 Coeficientes de escala (c_(j,k)) y Coeficientes Wavelet (d_(j,k))..... 78

4.2.3 Espacios vectoriales V_ iy W .o, 78
4.2.4 Aplicacion de Transformada discreta de

Wavelet para la fusion de imagenes........ccoveeeeeieciieeeeececcciieeee e 79
4.3 Fusién de imagenes usando la Transformada Wavelet 80
4.4 Andlisis multirresolucidn y las transformaciones Wavelet 81
4.4.1 Maétodo A trous para la fusion de imagenes.........cocceveevveeerveeeennnn. 81
4.4.2 AlOrItMOS de A trOUS......cueeeeieeieieieeeeeeeeeeeee ettt 82

4.5 Método de fusién usando el algoritmo de A trous................cu....... 84

4.5.1 Implementacidn de la Transformada Wavelet

algoritmo de A trous para la fusion de imagenes WorldView-2 84
4.5.2 Modelo de procesamiento heterogéneo

para la transformada Wavelet A trouscccceeeeveeereeeeeeenieeeeas 86

4.5.3 Implementacion de la transformada Wavelet A trous en Python .. 87

Capitulo 5
indices de evaluacién de la calidad espacial y especiral

de las imagenes fusionadas ..., 93
5.1 T 1SRRI 93
5.2 DIV (Difference In VarianCe)coccvveeecieeeeccieeeeciieeecieeeesieeeesineens 94
5.3 0] o] o 1= U 94
5.4 Coeficiente de correlacion (COIr) ...uumiimiiiiiiiiieee e 94
5.5 INAICE ERGAS ...ootuirieirieeieceieieie sttt ettt 95
5.6 INAICE RASE .oueieiiiieeicireseicisee sttt 96
5.7 indice de calidad universal QU...........cccceveuereereeeieeeeiereeeees e 96
5.8 INGICE RMSE ..eiieieiiecireieireeieere ettt sseesennees 96

Capitulo 6

Resultados y andlisis.......icnreissisnsssisssssesssssessens 97
6.1 Metodologia de la evaluacionccccceeeeeeeiiiieee e, 97
6.1.1 Entorno computacionalcccceeeiiiiiiiiiie i 97
6.1.2 IMAgenes de Prueba......ccccooicieeii e 98
6.1.3 Proceso de evaluacion y Me&tricas.......ccccvveeeeercrvieeeeeeriiiiieeee e 98
6.2 Tiempos de ejecucion y factores de aceleracionccoccceeeeeneene 99
6.3 Calidad de la imagen fusionada........cccceeeviieieiiieeniiieniceseeeeee 101
CONCIUSIONES ..o 107
AANIEXO ..ottt sttt s 109

Figura 1.

Figura 2.
Figura 3.
Figura 4.
Figura 5.
Figura 6.
Figura 7.
Figura 8.

Figura 9.
Figura 10.
Figura 11.

Figura 12.

Figura 13.

Indice de figuras

Comparacion de la banda 3 y laimagen
pancromatica Landsat 8 OLI TIRScccovvuveiiviiueeiiniinneceninnnnee

Valores de pixel durante el proceso de re-muestreo............
Imagen original y la imagen fusionada Ikonos......................
Plataforma heterogénea tipica......cccoueevevteevineenrieeenniennne.
Escalabilidad automatica de CUDAcoovuvvvvmevvnnecrnnnennnee.
Ejemplo de definicién y lamado de un kernel
Malla de bloques de hilos.......ccocevuiiniiniiiniiniiiiiiiiinenne
Ejemplo de definicién y lamado de un kernel

con una malla bidimensional conformada

por bloques bidimensionales de hilos........ccceeeeuveiricueeennnnnee
Jerarquia de memoria en CUDA.......cccevvvviiritieinniiecnirecinnen.
Programacion heterogénea........cceeeveeeveecieenieeneecneecnnenne.
Diagrama genérico del proceso de fusidn a

nivel de pixel entre las bandas MS 'y PANccccoevvvenuiiinnennns

Modelo de procesamiento heterogéneo
para la transformada de Broveyccccevvveeevneecrinecnineennne

Imagen fusionada de 1024x1024 pixeles, mediante la
transformada de Broveycceeeveeeerinecniiecnnieccnnneecnnnenn.

Figura 14.
Figura 15.

Figura 16.
Figura 17.
Figura 18.

Figura 19.

Figura 20.
Figura 21.
Figura 22.

Figura 23.

Figura 24.

Figura 25.
Figura 26.
Figura 27.
Figura 28.
Figura 29.

Modelo de procesamiento heterogéneo para el método de

MUItIPHICACION..ceieiiiiiiiiiiiiciic e 41
Imagen fusionada de 1024x1024 pixeles,

mediante el método multiplicacionccoueveueevieriniinneinnnnns 48
Algoritmo de fusidn PCA. Fuente Autor.........cceeueeuvenneennennee. 50
Modelo de procesamiento heterogéneo para PCA 52
Imagen fusionada de 1024x1024 pixeles

mediante analisis de componentes principales..................... 70
Comparacién entre la STFT (tiempo-frecuencia)

y el andlisis Wavelet (tiempo-escala......cccceveevereecueceenuenncnnene 73
a) Sefal seno. b) Wavelet Daubechies.c.cccceevverercuernenne. 74
Algoritmo tipo decimado (TDWM)ccceverervrevrvcrucrucruennen. 82
Diagrama del proceso de fusién

de imdagenes usando TWA.......cccoiviieieniieiecienircieciceseenen 85
Modelo de procesamiento heterogéneo

para la transformada Wavelet A trous..........ccceeeveverererennnne. 86
Imagen fusionada de 1024x1024 pixeles mediante
Transformada Wavelet algoritmo de A trousc.cceueeucees 92
Imagen de prueba con tamafio 20148x2048 pixeles............. 98
Imagen IKonos 1024X1024ucvvueivieeiiinneinnnenneiniecneennneennes 110
Imagen Ikonos tamafo 2048X2048ccueevveeeirenreenneennen. 111
Imagen Landsat 8 OLI TIRS 4096X4096.....cccccceevuueerrnueennnnenn. 12

Imagen Landsat 8 OLI TIRS 8192X8192......cccvvuveevrrernnneennnen. 13

indice de tablas

Tabla1. Entorno computacional.........iiiiniiniineiniineiiecieceennn, 98
Tabla2. Tiempo de €JeCUCiONcciviereueernuiiriiiniieiiicnicnee e sene 100
Tabla3. Tasade crecimiento del tiempo de ejecucidn por pixel........... 100
Tabla 4. SPEEA-UP ...cevveiruiiiiiiiiiiiiiiniecrieesicsecntcsee sttt ae e 100
Tabla5. Andlisis Espectral imagen Ikonos 1024

[ineas por 1024 COIUMNAS.....coverviirniirniiniinieniiic e 101
Tabla 6. Andlisis Espacial Ikonos 1024 lineas por 1024 columnas............ 102
Tabla7. Analisis Espectral Ikonos 2048 lineas por 2048 columnas........ 102
Tabla 8. Andlisis Espacial Ikonos 2048 lineas por 2048 columnas.......... 103
Tablag9. Analisis Espectral Landsat 8 OLI TIRS

4096 lineas por 4096 COlUMNAScccceereeereierceereeeceeeeeeenees 103
Tabla10. Analisis Espacial Landsat 8 OLI TIRS

4096 lineas por 4096 COlUMNASccceereeereierceereerceeeeeeeaees 104
Tabla11. Analisis Espectral Landsat 8 OLI TIRS

8192 lineas por 8192 COIUMNAScoeveeeeeriiriieeeeeeeeeeeeeee 105

Tabla12. Analisis Espacial Landsat 8 OLI TIRS
8192 lineas por 8192 COIUMNAScocvereeerireieieceeeeeeeeeeceeae 105

Prefacio

Durante los ultimos afios el procesamiento de imagenes ha tomado
importancia en el campo cientifico, su principal objetivo es maximizar el uso
de la informacidon de una imagen para un contexto en particular. De
acuerdo con lo anterior, uno de los principales temas en este campo es la
fusién de imdgenes, la cual hace referencia a la combinacién de informacidn
relevante obtenida a partir de dos imdagenes, esto con el fin de producir una
imagen que contenga una calidad superior a las originales. Dentro de este
campo, se pueden realizar fusiones de imagenes satelitales, donde se debe
proporcionar una imagen pancromdtica para realizar una inyeccion de
riqueza espacial en la informacidn espectral asociada a la imagen
multiespectral.

La fusién de imagenes al igual que la gran mayoria de operaciones con
imagenes presentan una exigencia computacional dependiente del tamafio
de la imagen, debido a la granularidad pixel a pixel presente en estas
operaciones. Esta granularidad que aparentemente es un inconveniente
termina convirtiéndose en una ventaja porque habilita la posibilidad de
paralelizaciéon masiva sobre arquitecturas computacionales que ofrecen un
alto nimero de ntcleos de procesamiento, tales como las GPU (Graphics
Processing Unit).

1

Acelerando la fusién de imdgenes mediante computacién heterogénea

Este libro presenta una forma eficiente de acelerar la implementacion
de los principales métodos de fusion de imdgenes mediante procesamiento
heterogéneo, segmentando y distribuyendo tareas convenientemente
entre cdmputo secuencial sobre CPU y cédmputo paralelo masivo sobre
GPU.

12

Introduccidn, problema de investigacién y objetivos

Capitulo 1

Introduccién, problema de
investigacidén y objetivos

La fusidn de imagenes de teledeteccion de muy alta resolucién o pan-
sharpening, consiste en afiadir o inyectar la informacién espacial que
contiene la imagen pancromatica a las bandas espectrales de la imagen
Multiespectral, preservando las caracteristicas espectrales de esta. Sin
embargo, en este proceso se introducen distorsiones, ademas de las
inherentes al registro de los datos Multiespectral (MS) y Pancromatica
(PAN). En este contexto, para intentar evitar este inconveniente a lo largo
de la dltima década se han desarrollado multitud de algoritmos de
pansharpening (Vivone et al., 2015). Sin embargo, no existe en la actualidad
ninguno que se postule como la solucidon déptima para la fusion de
imagenes.

1.1 Introduccién a la fusién de imagenes

El concepto de fusidn de datos se remonta a los afios 1950 y 1960
(Wang et al., 2005) cuando se inicid la busqueda de métodos practicos que
permitieran mezclar imagenes procedentes de diversos sensores, con el fin
de proporcionar una imagen que facilitara una mejor identificacion de
objetos naturales y artificiales, de aqui, que actualmente se disponga de un
gran numero de metodologias y algoritmos para la fusion de imagenes

13

Acelerando la fusién de imdgenes mediante computacién heterogénea

dpticas, siendo las técnicas basadas en analisis multirresolucion (MRA) las
mas utilizadas.

Algunas técnicas son muy sencillas desde un punto de vista conceptual,
como la transformada de Brovey, Multiplicacion, el Andlisis de
Componentes Principales o la transformada HSI, sin embargo, como se
demuestra en numerosos trabajos, estas metodologias proporcionan
imagenes fusionadas con considerables distorsiones respecto al color de
las imagenes multiespectrales originales. Para minimizar estas distorsiones
se han presentado un gran nimero de métodos basados principalmente en
técnicas de anadlisis multirresolucién, que proporcionan una minima
distorsidn espectral de las imagenes fusionadas con resultados superiores
a los métodos citadas previamente.

“La fusién de imdgenes es una respuesta a la frecuente necesidad de tener
en una sola imagen datos de alta resolucién espectral y espacial a partir de
imagenes multiespectrales y pancromaticas de diferente resolucidén espacial
y diferentes sensores remotos. La fusidn permite obtener informacién
detallada sobre el medio ambiente urbano y rural, 4til para una aplicacién
especifica en estudio” (Wald, 1999; Alparone et al., 2007).

Corresponde a técnicas que permiten mezclar, a nivel de pixel, las
virtudes de diversas imagenes mejorando la capacidad de discriminacion
digital de los fendmenos espaciales, permitiendo al usuario cambiar la
escala del andlisis espacial con la misma imagen. En pocas palabras, lo que
se pretende es mejorar la calidad de los datos, lo que ademas sirve para
mejorar la fiabilidad de las estimaciones de una determinada variable
(Chuvieco, 2002).

La fusidn de imagenes genera imdgenes sintéticas, producto de la
combinacién de uno o mas sensores, por ejemplo, imagenes de radar con
Opticas, térmicas con dpticas, etc. Una de las aplicaciones mas recurrentes
es la de mejorar la resolucidon espacial de una imagen multiespectral,
usando una imagen de resolucidon espectral pobre, pero de mayor
resolucion espacial. Hace unos afios lo mds natural era fusionar bandas de

14

Introduccién, problema de investigacién y objetivos

Landsat 5 TM, de 30 m. de resolucién espacial, con la banda pancromatica
de Spot, con pixel de 10 m (Chuvieco, 2008). El resultado poseia lo mejor de
los dos mundos, lariqueza espectralidad Landsat junto a la riqueza espacial
de la Spot. Este procedimiento también puede hacerse entre fotografias
aéreas e imagenes de cualquier satélite.

Hoy lo mas comun es utilizar la banda pancromatica, propia del mismo
satélite y fusionarla con sus bandas espectrales. La ventaja de esto, es que
ambas imagenes son de la misma fecha y tienen el mismo angulo de
inclinacién de la toma, por lo tanto, tendran las mismas caracteristicas de
sombras e igualdad de condiciones atmosféricas.

Generalmente la relacidon entre el tamafio del pixel de las bandas
espectrales y la banda pancromatica es de 1 a 2, es decir, si una banda
espectral posee resolucidon espacial de 30 m. por pixel, la banda
pancromatica poseeria una resolucién de 15 m. (ver Figura 1).

Para realizar la fusion de imagenes se debe cumplir:

1. La georreferenciacion o corregistracion de las imagenes involucradas,
debe ser la misma. Es decir, la ubicacidn de los objetos en el espacio
debe coincidir.

2. Laextensidén de las imagenes debe ser la misma, en otras palabras, la
cantidad de lineas y columnas debe ser igual.

3. Eltamafio del pixel también debe ser igual en todas las bandas
involucradas. Es decir, el tamafio del pixel de la imagen multiespectral
debe coincidir con el tamafio de la imagen pancromatica.

Figura 1. Comparacién de la banda 3 y la imagen pancromdtica Landsat 8 OLI TIRS.

15

Acelerando la fusién de imdgenes mediante computacién heterogénea

Para cumplir estos requisitos, las bandas espectrales deben ser
procesadas. Lo primero es igualar las matrices en cuanto a tamafo del pixel
y cantidad de las bandas espectrales a la imagen pancromdtica. El
procedimiento se llama remuestreo e implica recalcular la matriz raster de
las bandas para que esta sea igual a la matriz de la imagen pancromatica.

La Figura 2, muestra lo que ocurre con los valores de los pixeles durante
el proceso. En esta, la relacidn es 1 a 2, donde 1 pixel espectral se multiplica
por 4, pero los valores asignados no cambian, se repiten, ya que no se esta
mejorando la imagen o no hay nueva informacidon espectral que
representar. Se debe mencionar que el peso de la nueva banda en el disco
duro sera de 4 veces mayor que la original. Para el caso de imagenes con
relacion 1 a 4 el peso aumenta 16 veces.

7183 7099 7183 783 7099 7059 7054 7054
7183 7133 7033 7035 7054 7054
7253 g 7253 7253 7016 706 7134 7134
7253 7253 7016 706 7194 7194
7209 7208 7042 7042 7333 7333
7209 7209 7042 7042 7333 7333
7236 723 777 bakid 7373 7373
7236 723 7177 77T 7373 7373
7392 7282 7369 729 7601 7601
7392 7a82 7368 7358 7e01 7601
7853 7053 8743 &749 8953 89653
7453 7853 8743 g749 8353 8953
5421 5421 5701 5701 5456 458
9421 9421 701 5701 9458 3488
5707 8707 5740 5740 8515 515
707 g707 5740 5740 g515 515
5374 5374 9432 5432 5350 5350
5374 5374 5432 9432 5350 5350

Figura 2. Valores de pixel durante el proceso de remuestreo.

La calidad de las imagenes a fusionar es muy relevante cuando éstas
provienen de distintos sensores. Wald et al. (1997) recomiendan que se
cumplan ciertas condiciones medibles matematicamente, a través de
indices estadisticos, pueden ser los ERGAS espectral (Erreur Relative Globale
Adimensionelle de Synthése), de Wald (2000) o ERGAS Espacial, para evaluar
la calidad espacial de la fusidn, de Lillo-Saavedra y Gonzalo (2005). También
se puede utilizar la diferencia de los valores medios, la diferencia de
varianzas, la desviacién estéandar o el error medio cuadratico (RMS),

16

Introduccién, problema de investigacién y objetivos

correlaciones espaciales, entre otros, y que van mds alld de merainspeccion
visual. Estas condiciones se pueden resumir en:

1. Cualquier imagen fusionada una vez degradada de su resolucidn original,
debe ser lo mas similar posible a la imagen original (antes de la fusién).

2. Cualquier imagen fusionada debe ser lo mas similar posible a la imagen
original del sensor que aporta laimagen de mayor resolucién espacial.

Como ejemplo de fusién, con una imagen Ikonos de Bogotd, RGB
verdadero color, 4 metros de resoluciéon espacial, y una imagen
pancromatica 1 m de resolucién, (ver Figura 3).

Figura 3. Imagen original y la imagen fusionada lkonos.

1.2 Introduccién a la computacién heterogénea

A través de la historia de la computacion, el paradigma de desarrollo y
evolucidn de los procesadores se habia enfocado en el aumento de su
capacidad de cdmputo mediante el incremento de la frecuencia de reloj,
con el objeto de ejecutar una mayor cantidad de instrucciones en el menor
tiempo posible. Sin embargo, desde 2003 debido al consumo de energia'y
los problemas de disipacion de calor que limitan la construccién de
procesadores que aumenten la frecuencia de reloj y el nivel de actividades
productivas que puede ejecutarse en cada periodo de reloj en un unico
procesador, se cambid el enfoque integrando multiples unidades de
procesamiento en un mismo chip para aumentar el poder de
procesamiento (De Antonio y Marina, 2005). Gracias al desarrollo de estos
procesadores se abrid Ila posibilidad de resolver problemas

17

Acelerando la fusién de imdgenes mediante computacién heterogénea

computacionales que antes hubieran sido imposibles (Alba, 2005). Estos
problemas deben ser solucionados de una manera distinta a como se
resuelven linealmente, tomando un problema cualquiera se divide en un
conjunto de subproblemas para resolver éstos simultaneamente sobre
diferentes unidades de procesamiento.

De acuerdo a lo expuesto en el parrafo anterior, en la actualidad el
desarrollo de sistemas de procesamiento se ha enfocado en producir
dispositivos con la capacidad de ejecucion simultanea de dos manera
diferentes: La primera opcidn es el disefio de CPUs multi-core, optimizadas
para reducir el tiempo de ejecucién de procesos secuenciales (lactency
cores); la segunda opcidn, es el disefio de sistemas de procesamiento many-
thread, como por ejemplo las GPUs (Graphics Processing Unit [Unidades de
Procesamiento Grafico) optimizadas para mejorar el desempefio (menos
tiempo y menos consumo de energia eléctrica) en la ejecucién de procesos
paralelizables (throughput cores). Debido a que la mayoria de problemas
computacionalmente intensivos poseen procesos tanto secuenciales como
paralelizables, en los ultimos afios se ha iniciado el proceso de integracion
de los sistemas multi-core y los sistemas many-thread en plataformas
computacionales denominadas heterogéneas (Kirk & Wen-mei, 2012).

Una plataforma de computacidon heterogénea se define como un
sistema conformada por lo menos de dos tipos diferentes de procesadores,
normalmente, con el objeto de incorporar capacidades de procesado
especializadas para realizar tareas particulares (Shan, 2006). Un sistema
heterogéneo se conforma habitualmente por una o mas CPU que cumplen
la funcién de unidad de procesamiento principal (llamado generalmente
Host) y uno o mas dispositivos de procesamiento diferentes, como por
ejemplo GPUs (Graphics Processing Units), DSPs (Digital Signal Processors),
FPGAs (Field Programmable Gate Arrays), que cumplen la funcién de
aceleradores (ver Figura 4). También se puede encontrar la integracién de
dos 0 mas tipos de procesadores en un solo chip, por ejemplo, un APU

18

Introduccidn, problema de investigacién y objetivos

(accelerated processing unit) es un microprocesador que integra una CPU
multindcleo y una GPU mediante un bus de alta velocidad.

GPU

DSP

FPGA

U
-[1

Dispositivos aceleradores
Figura 4. Plataforma heterogénea tipica.

Asi como la heterogeneidad entre dispositivos de procesamiento
representa una ventaja al ofrecer capacidades de procesado especializadas
para realizar tareas particulares, también representa una gran desventaja
desde el punto de vista del desarrollo. La heterogeneidad entre dispositivos
de procesamiento se centra principalmente en la diferencia entre
arquitecturas de conjuntos de instrucciones ISA (Instruction Set
Architecture), por tal motivo cada uno de los tipos de dispositivos podra
contar con modelos, paradigmas y herramientas de programacion
totalmente diferentes, lo que conlleva a procesos de desarrollo separados
con tortuosas integraciones. Los limitantes en la integracion de procesos
de desarrollo para los diferentes tipos de dispositivos que pueden estar
involucrados en un sistema heterogéneo, se han comenzado a mitigar con
la creacion de estandares de plataformas y modelos de programacion tales
como CUDA y OpenCL.

1.2.1 CUDA

CUDA es una plataforma de computacidn paralela de propdsito general
y un modelo de programacion. Su principal objetivo es habilitar el uso de
GPUs NVIDIA para soluciona problemas computacionales complejos de una
forma mas eficiente que como se hace sobre una CPU (CUDA C

19

Acelerando la fusion de imdgenes mediante computacion heterogénea

Programming Guide, 2017). CUDA incluye un entorno de software que
permite a los desarrolladores usar C como un lenguaje de alto nivel.
También soporta otros lenguajes de programacion y APlIs.

1.2.1.1 Modelo de programacién de CUDA

El modelo de programacion de CUDA se soporta sobre 3 abstracciones
claves: jerarquia de grupos de hilos, memorias compartidas y barreras de
sincronizacion, que se presentan al programador como un conjunto minimo
de extensiones de lenguaje. Estas abstracciones guian al programador a
dividir el problema en subproblemas gruesos que pueden resolverse de
forma independiente en paralelo mediante bloques de hilos, y cada
subproblema en piezas mas finas que se pueden resolver
cooperativamente en paralelo por todos los hilos dentro del bloque.

El modelo es escalable de forma automatica, en el sentido que los
bloques de hilos no van sujetos al nimero de multiprocesadores de la GPU.
La ejecucidn de los bloques se adapta al nimero de multiprocesadores
disponibles (ver Figura 5).

Multithreaded QDA Progeam
F -
GPU with 2SMs GPU with 45Ms
‘ SMO ” SM1 ‘ | SMD ” SM1 || sSM2 ” SM3 |
| [Beke (k7

Figura 5. Escalabilidad automdtica de CUDA: los bloques de hilos se distribuyen de forma
homogénea entre los SMs (Streaming Multiprocessors).
Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide.

20

http://docs.nvidia.com/cuda/cuda-c-programming-guide

Introduccidn, problema de investigacién y objetivos

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x;
C[i] = A[i] + B[i];

int main()

{

// Kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);

}
Figura 6. Ejemplo de definicién y llamado de un kernel.
Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide.

Kernels: CUDA extiende C de tal forma que el programador pueda
definir funciones denominadas kernels, que cuando sean llamadas, se
ejecuten N veces en paralelo por N diferentes Hilos CUDA. El nimero de
hilos a ejecutar la funcidn se define en el momento de llamar el kernel. En
la Figura 6 se puede observar un ejemplo de definicidn y llamado de un
kernel.

Jerarquia de hilos: en CUDA los hilos se pueden agrupar en bloques de
1, 2 0 3 dimensiones y a su vez esos bloques se pueden agrupar en mallas
de 1, 2 0 3 dimensiones. En la Figura 7 se puede observar una grilla de 2
dimensiones conformada por bloques de hilos también de 2 dimensiones.

21

Acelerando la fusion de imdgenes mediante computacion heterogénea

Block (0 0) || Blodk (1, 0) || Black (2, 0)

Block (G 1) Blodk (1, 1) %kmﬂ

Block (1, 1)

Figura 7. Malla de bloques de hilos.
Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide.

// Kernel definition
_ global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N& j < N)
C[i][31 = A[i][3] + B[i1[]];

int main()

// Kernel invocation

dim3 threadsPerBlock(16, 16);

dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

}
Figura 8. Ejemplo de definicidn y llamado de un kernel con una malla bidimensional conformada
por bloques bidimensionales de hilos.
Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide.

El nimero de hilos por bloque y el nimero de bloques por malla se
determinan en el momento de llamar el kernel. Dentro del kernel tanto los
bloques como los hilos tienen un identificador que se puede acceder a
través de una variable (built-in). Para el caso de los bloques la variable es
blockldx y para el caso de los hilos es threadldx. Adicionalmente se puede
acceder a la dimensién de los bloques mediante la variable blockDim.

22

http://docs.nvidia.com/cuda/cuda-c-programming-guide

Introduccidn, problema de investigacién y objetivos

En el ejemplo de la figura 8 se definen bloques de tamafio 16x16 (256
hilos), que se agrupan en una malla bidimensional definida de tal forma que
hallan suficientes bloques como para disponer de un hilo por cada
elemento de la matriz a procesar.

Jerarquia de memoria: Las memorias con las cuales se cuenta en CUDA
se organizan de forma jerarquica de acuerdo a su visibilidad. Cada hilo tiene
una memoria privada de uso exclusivo, cada bloque de hilos tiene una
memoria compartida a la cual pueden acceder todos los hilos de un bloque,
pero no los de otros bloques, por ultimo, todos los hilos sinimportar de que
bloque sean pueden acceder a una memoria denominada global. Adicional
a esta memoria global existen otras dos memorias de acceso general para
todos los hilos pero Unicamente para su lectura, estas memorias son la de
texturay la constante.

En la Figura 9 se pueden observar los diferentes tipos de memoria en
CUDA con su visibilidad por parte de los hilos, los bloques y las mallas.

Thread

Per-thread local
-
memory

Thread Block
- » Perblock shared
memary

M—-

Grid 0

Block (0, 0) || Block (1, 0) || Block (2, 0)

Blod (0, 1) || Block (L 1) || Block (2, 1) y
Grd1 Global memory
Block [0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
—-
Block (0, 2) Block (1 2)

Figura 9. Jerarquia de memoria en CUDA.
Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide.

23

Acelerando la fusién de imdgenes mediante computacién heterogénea

Programacion heterogénea: el modelo de programaciéon de CUDA
asume que sus hilos se ejecutan en un dispositivo separado fisicamente que
actua como coprocesador del host donde se ejecuta el programa C desde
el cual se llaman los kernels. Para el caso de tener una CPU y una GPU, esta
ultima actuara como coprocesador del host CPU.

El modelo también asume que tanto la GPU como la CPU poseen su
propio espacio de memoria independiente en la DRAM y se refiere a estos
espacios como memoria de dispositivo y memoria de host
respectivamente. En la Figura 10 se puede observar el concepto de
programacion heterogénea: un programa en C que ejecuta de forma
secuencial cédigo serial que es ejecutado en el host y cddigo paralelo que
es ejecutado en el dispositivo (GPU).

€ Program
Sequential
Execution

Serial code p g

Parallel kernel Device
Kernel0<<<o>() Grid 0

Block (0,0) Block (1,0) | Block (2,0)

Block (0,1) Block (1,1) | Block (2,1)

Serial code Host

Device
Parallel kernel
Rernell<<<ra>() Grid
Block %0. o) Block (1, 0)
Block (0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)

9

Figura 10. Programacién heterogénea.
Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide.

24

Introduccidn, problema de investigacién y objetivos

1.3 Reto computacional para implementar la fusién de
imagenes en arquitecturas computacionales
heterogéneas

Como se menciond en los pdrrafos anteriores, la fusion de imagenes
utiliza una serie de algoritmos que tienen algo en comun: involucran en
gran medida operaciones pixel a pixel, lo que genera una dependencia
directa entre el tamafio de la imagen y la exigencia computacional. Sin
embargo, esas operaciones pixel a pixel presentan una baja o nula
interdependencia, lo que habilita su parelizacion masiva para acelerar su
cOmputo mediante arquitecturas many-core, como por ejemplo las
unidades de procesamiento grafico o GPU como se puede evidenciar en las
implementaciones de Yoo et al. (2009) y de Lu et al. (2011).

Evidentemente la paralelizacién masiva mediante arquitecturas many-
core es el camino a seguir para enfrentar la alta exigencia computacional
de la fusion de imagenes, y mucho mas si se tiene en cuenta que
actualmente se dispone de un gran nimero de librerias eficientes para el
cémputo matricial sobre GPU, como por ejemplo CUBLAS (Toolkit, 2011) o
cIBLAS (Nugteren, 2018).

Sin embargo los algoritmos de fusién de imagenes no estadn
conformados exclusivamente de procesos paralelizables eficientemente,
sino que involucran: a) procesos secuenciales con cierto grado de
interdependencia que conlleva a que su ejecucién en una plataforma many-
core no represente ninguna aceleracion sino que por el contrario implique
tiempos y recursos de memoria adicionales; b) procesos paralelizables que
por su alta transferencia de datos entre las plataformas multi-core y many-
core es mas eficiente su ejecucién secuencial. Esto exige un modelo de
procesamiento heterogéneo que segmente y distribuya convenientemente
tareas entre los dos tipos de arquitecturas, teniendo en cuenta no solo la
capacidad de paralelizacion de los procesos sino también el costo de la

25

Acelerando la fusién de imdgenes mediante computacién heterogénea

transferencia de los datos y el uso eficiente de las estructuras de memoria
disponibles.

1.4 Objetivo de este libro

Este libro busca disefiar e implementar modelos de procesamiento
heterogéneos que permitan la aceleracidn eficiente de los principales
métodos de fusidon de imagenes sobre plataformas computacionales que
integren arquitecturas multi-core (CPU) y arquitecturas many-core (GPU).

En los capitulos 2, 3 y 4, el lector encontrara los conceptos de los
métodos de fusidn por transformada de Brovey, por multiplicacién, por
andlisis de componentes principales y por el algoritmo de A trous; asi como
también encontrarad el modelo de procesamiento y el cédigo que permite
su implementacion eficiente en arquitecturas heterogéneas (CPU/GPU).
Adicionalmente el libro cuenta con un repositorio (https://github.com/
Parall-UD/libro_fusion_imagenes_satelitales GPU) donde se encuentran
los scripts y las imagenes de prueba. En el capitulo 5 se exponen las
diferentes métricas que permiten evaluar la calidad de la imagen fusionada
tanto espacial como espectralmente. En el capitulo 6 se presentan y
analizan los resultados de la evaluacion de los modelos y su
implementacién tanto a nivel de aceleracion como a nivel de calidad de Ia
imagen fusionada. Finalmente se presentan las conclusiones.

26

https://github.com/%20Parall-UD/libro_fusion_imagenes_satelitales_GPU
https://github.com/%20Parall-UD/libro_fusion_imagenes_satelitales_GPU

Fusién de imdgenes basado en operaciones algebraicas

Capitulo 2

Fusién de imdgenes basado en
operaciones algebraicas

En funcién del algoritmo de fusién aplicado se obtendrdnimdagenes con
mayor o menor calidad espacial, pero estableciéndose siempre un
compromiso entre esta y la calidad espectral de laimagen fusionada, ya que
cuanto mayor serd la cantidad de informacidn proveniente de la imagen
pancromatica que se le inyecta a la multiespectral mejor serd su calidad
espacial, pero también mayor serd la distorsion de las caracteristicas
espectrales de la multiespectral original y viceversa. En la mayoria de los
casos, el objetivo es obtener una imagen con una resolucién espacial
proxima ala de laimagen pancromatica, introduciendo la minima distorsién
espectral posible.

2.1 Algoritmos de fusién de imagenes

La fusidon puede definirse como la combinacidn simultanea de
informacién procedente de fuentes distintas que se complementan y cuyo
resultado permite mejorar la calidad y la interpretabilidad de los datos
originales. En el contexto de la teledeteccidn, la fusidn consiste en la
combinacidn de dos o mds imagenes con el fin de obtener una nueva

27

Acelerando la fusién de imdgenes mediante computacién heterogénea

imagen que contenga la informacion deseada de cada una de ellas. Este
proceso de fusidén puede llevarse a cabo a distintos niveles: de pixel, de
objeto y de decisidn (Stathaki 2008, Zhang 2010).

La fusidn a nivel de pixel es el nivel de procesado mas bajo y consiste
en generar una imagen fusionada donde la informacidn asociada a cada
pixel se obtiene a partir de los pixeles de las imagenes de origen. La fusion
a nivel de objeto se basa en la extraccion previa de los objetos en las
imagenes origen en base a criterios como tamafio, forma o vecindad,
empleando técnicas de segmentacidon. Finalmente, la fusién a nivel de
decision consiste en fusionar la informaciéon al nivel mas alto de
abstraccion. Asi, las imagenes fuente son procesadas independientemente
para extraer lainformacién que a continuacion se combina aplicando reglas
de decisidn para reforzar la interpretacién comun.

En este escenario, una de las herramientas de procesado novedosas, y
que presentan gran interés por parte de la comunidad cientifica, son las
técnicas de fusidn a nivel de pixel o pansharpening, que permiten obtener
imagenes de varias bandas del espectro con el maximo nivel de detalle
espacial. Asi, el principal objetivo de la fusién a nivel de pixel consiste en la
aplicacion de algoritmos de procesado para mejorar la resolucion espacial
de las diferentes bandas multiespectrales sin alterar sus caracteristicas
espectrales (Li, Lixin y Mingyi, 2012).

2.2 Revision de métodos de fusiéon de imagenes satelitales

De forma genérica, el proceso basico para la fusion de imagenes
multiespectrales y pancromaticas de un mismo sensor es el que se muestra
en la Figura 11. Légicamente, y como paso previo a la fusidn, es importante
garantizar el perfecto registro de las diferentes imagenes. Se aprecia que la
primera transformacion consiste en la interpolacién para ajustar el tamafio
de la imagen multiespectral (MS) al de la pancromatica (PAN), para
seguidamente aplicar el algoritmo de fusién correspondiente.

28

Fusién de imdgenes basado en operaciones algebraicas

La fusidn de imagenes a nivel de pixel es un campo de investigacion
muy activo. Si bien, es verdad que desde hace bastantes afios se habian
comenzado a estudiar, es a partir del afio 2000 cuando ha despertado un
interés creciente asociado a la disponibilidad de datos procedentes de
sensores Opticos de diferentes resoluciones espaciales.

Multiespectral2 m Pancromatica 0,5 m
RGB
| B
G
R 0,5m

0,5m _I_

s

Método de Fusién

Pan

Figura 11. Diagrama genérico del proceso de fusién a nivel de pixel entre las bandas MS y PAN.
Fuente: elaboracién propia.

Existen diferentes formas de clasificar los distintos algoritmos de
fusion (Kpalma et al., 2013; Amro et al.,, 2011; Zhang, 2010; Gonzalez-
Audicana, 2007).

A continuacién, se muestra una de ellas atendiendo a los detalles de su
implementacion:

* Métodos basados en operaciones algebraicas: las imagenes
fusionadas se obtienen como resultado de operaciones aritméticas
entre bandas de laimagen MS y la PAN.

29

Acelerando la fusién de imdgenes mediante computacién heterogénea

e Métodos basados en sustitucidn de componentes: el principio tedrico
de estos métodos es la realizacidn de una transformacidn de la
imagen MS original en una serie de componentes transformadas, de
tal forma que al sustituir una de dichas componentes por laimagen
PAN y realizar |la operacidn de transformacién inversa se consiga una
imagen fusionada de alta resolucién espectral y espacial.

e Métodos basados en la inyeccidn de altas frecuencias: estos métodos
se basan en extraer las componentes de alta frecuencia de la imagen
PAN, por ejemplo, usando un filtrado paso alto, que posteriormente
seinyectan ala MS.

e Métodos basados en el andlisis multirresolucidon: estas técnicas
descomponen las bandas MS y PAN a diferentes escalas para extraer
los detalles espaciales que se importan a las bandas MS a la escala
mas fina. Los métodos basados en la transformada wavelet discreta
son los algoritmos mas empleados en este ambito de la fusién de
imagenes.

Con independencia de la clasificacidn utilizada por diversos autores, en
la actualidad se dispone de un gran nimero de algoritmos de fusién (Vivone
et al., 2015; Amro et al., 2011; Marcello-Ruiz et al., 2011; Ehlers et al. 2010;
Stathaki, 2008) principalmente aplicados para la fusién de imagenes

Opticas e IR cercanas.

En sus inicios, las técnicas mas populares fueron las basadas en
operaciones aritméticas, destacando los algoritmos de Brovey, Synthetic
Variable Ratio o Ratio Enhancement, y las basadas en la sustitucion de
bandas tras la aplicacion de una transformada, destacando el Analisis de
Componentes Principales (PCA, Principal Component Analysis), la
transformada Intensidad-Brillo-Saturacion (IHS, Intensity-Hue-Saturation) o
el algoritmo Gram-Schmidt (GS).

La utilizaciéon de estos algoritmos esta muy extendida dada la baja
complejidad computacional que presentan. Sin embargo, proporcionan
imagenes fusionadas de menor calidad espectral, es decir cuyo color
presenta distorsiones respecto al color de las imagenes multiespectrales
originales. Esto impide su uso en diferentes aplicaciones en el drea de la
teledeteccién, como son la clasificacion de imagenes o la deteccion de

30

Fusién de imdgenes basado en operaciones algebraicas

cambios. M3s recientemente, para el tratamiento de datos de satélite de
nuevos sensores con mayor nimero de bandas, como es el caso de
Worldview-2 o de los sensores hiperespectrales, se ha desarrollado nuevos
algoritmos como, por ejemplo, el Hyperspecral Colour Sharpening (HCS) (Li,
He et al., 2013, Padwick, Deskevich et al., 2010).

Para solventar las limitaciones espectrales de los algoritmos
mencionados, surgieron técnicas que inyectan la informacion de alta
frecuencia, destacando los métodos HPF (High- Pass-Filtering), HPM (High-
Pass-Modulation) o el basado en la aplicacién de filtros paso alto en el
dominio de Fourier (Lillo-Saavedra, Gonzalo et al., 2005). Sin embargo, los
métodos que utilizan el andlisis multirresolucién, y fundamentalmente la
Transformada Wavelet Discreta (TWD) son los mas populares para
disminuir la distorsién espectral. En particular, para lograr resultados
Optimos de fusidn, diversos esquemas basados en wavelets han sido
propuestos por varios investigadores (Hong, Zhang 2008; Amolins, Zhang
y Dare, 2007; Lillo - Saavedra, Gonzalo, 2006; Otazu et al., 2005), destacando
los algoritmos de Mallat y A trous, cuya principal diferencia se refiere al
sentido en el que se realiza la estrategia multirresolucion, pues en el primer
caso se diezma la imagen mientras que para A trous no se aplica ningin
diezmado.

En el ambito de esta investigacion se han seleccionados los algoritmos
de pan-sharpening que a continuacion se detallan para llevar a cabo el
proceso de evaluacidn de la calidad espacial y espectral empleando las
métricas existentes. Se han seleccionado algoritmos pertenecientes a
diferentes categorias y, en especial, aquellos cuyo comportamiento
espectral y espacial es conocido al estar ampliamente documentado en la
literatura cientifica. Hay que destacar que el objetivo es fusionar imagenes
para analizar las prestaciones de los indices de calidad.

31

Acelerando la fusién de imdgenes mediante computacién heterogénea

2.3 Transformada de Brovey

Es un algoritmo de bajo coste computacional basado en operaciones
aritméticas y que da como resultado imagenes de buena calidad espacial,
pero baja calidad espectral. Utiliza un método que multiplica cada pixel de
laimagen multiespectral por la relacién entre la intensidad de cada pixel de
la pancromatica y la suma de las intensidades de todas las bandas de la
multiespectral.

Fue originariamente disefiado para imagenes de satélites de tres bandas
(composiciones RGB). Asi, la transformada de Brovey (Hallada and Cox,
1983) inicial puede ser implementada segin la expresién matematica

siguiente:
NB1 = (3B1/(B1+ B2 + B3)) * PAN (1)
NB2 = (3B2/(B1+ B2 + B3)) * PAN (2)
NB3 = (3B3/(B1 + B2 + B3)) * PAN (3)

donde NB1, NB2 y NB3 son las bandas fusionadas y PAN es la pancromatica.
Al realizar laimplementacion del algoritmo ha de tenerse en cuenta que los
valores a utilizar deben estar normalizados para evitar desbordamientos de
rango. A continuacion, se muestra la ecuacion extendida del algoritmo para
imagenes con N bandas:

NBXNDp;
NDpi+NDpi+--+BNDpNB

NDgyspi = () * NDp oy (4)

Donde:

NB es el nUmero de bandas espectrales.

NDrus,pi €s el valor digital de la banda fusionadai.
NDp;i es el valor digital de la banda multiespectral i.

NDran es el valor digital de la banda PAN.

32

Fusién de imdgenes basado en operaciones algebraicas

2.3.1 Modelo de procesamiento heterogéneo para la transformada de
Brovey

El modelo de procesamiento heterogéneo para implementar Ila
transformada de Brovey sobre una arquitectura CPU/GPU se presenta en la
Figura 12. El primer paso es la separacion de bandas para la imagen
multiespectral. Posteriormente, se realiza la transferencia de los niveles
digitales a memoria global de la GPU, con el fin de realizar una
normalizacion de las bandas. Este proceso consiste en tomar cada una de
las bandas, multiplicarlas por un factor, el cual corresponde al nimero total
de bandas y finalmente dividir este valor entre la suma de cada una de las
bandas. Acto seguido, se multiplica elemento a elemento cada una de las
bandas normalizadas con laimagen pancromatica, esto con el propdsito de
inyectar la riqueza espacial en cada una de las bandas. Después, se calcula
el valor maximo y minimo de las bandas con inyeccidn espacial, para
posteriormente en el Ultimo paso, realizar un ajuste de riqueza espectral, el
cual consiste en restar el valor minimo a cada elemento de una banda,
multiplicarlos por un factor de 255 y este resultado, debe ser dividido por la
resta entre el valor maximo y minimo. Este ajuste se realiza por cada una de

las bandas.
1 4 6
2
a:
O:
2 Normalizacién Inyeccién de Ajuste riqueza
O: de bandas riqueza espacial espectral
: 2 3 5

Figura 12. Modelo de procesamiento heterogéneo para la transformada de Brovey

2.3.2 Implementacion de la transformada de Brovey en Python

A continuacién, se presentan fragmentos secuenciales de cddigo en
Python, utilizados para poder llevar a cabo la fusién de imagenes satelitales

33

Acelerando la fusién de imdgenes mediante computacién heterogénea

mediante la transformada de Brovey. En el repositorio del libro se
encuentra el script completo con las imdagenes de prueba:
https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU.

Definicion de dependencias - Lineas 1 - 7:

import skimage.io
. import pycuda.autoinit
. import pycuda.driver as drv
. import pycuda.gpuarray as gpuarray
. import numpy as np
. import skcuda.linalg as linalg
. from pycuda.elementwise import ElementwiseKernel

N oV W2

En estas lineas de cddigo se importan las librerias necesarias para llevar
a cabo la fusién de imdagenes satelitales mediante la transformada de
Brovey haciendo uso de una arquitectura CPU/GPU. Por un lado, la libreria
skimage mediante el mddulo io, nos permite leer imagenes con extensién
TIFF. Asimismo, la libreria pycuda, permite acceder a la interfaz de
programacion de aplicaciones (API) de computacién paralela CUDA del
Nvidia desde Python. En este orden de ideas, pycuda admite el manejo de
arreglos en memoria de GPU, mediante su médulo gpuarray, y el médulo
elementwise contiene herramientas para la generacion de nicleos para la
evaluacién de expresiones de etapas multiples en uno o varios operandos
en un solo recorrido. También, se importa la libreria Numpy, la cual es un
paquete fundamental para la computacion cientifica en Python,
proporcionando herramientas para el manejo de objetos matriciales
multidimensionales y poder realizar rutinas de operaciones rdpidas entre
matrices. Por ultimo, se encuentra la libreria Scikit-Cuda, proporcionando
interfaces de Python para muchas de las funciones de dispositivo/tiempo
de CUDA, CUBLAS, CUFFT y CUSOLVER, propias del Kit de programacion de
CUDA de NVIDIA. En este caso, mediante su mddulo linalg se proporciona
la posibilidad de realizar operaciones de dlgebra lineal en GPU.

34

https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU

Fusién de imdgenes basado en operaciones algebraicas

Funcién para normalizacién de bandas - Lineas 8 - 10:

8. defstep 1(matrix_color, matrix_suma):

9. matrix_1=gpuarray.if positive(matrix_suma, (3*matrix_color)
/matrix_suma,matrix_suma)

10. return matrix_1
En estas lineas de cddigo se realiza la declaracidon de una funcion

nombrada step_1, la cual tiene como propdsito realizar la division de una
banda entre la suma de todas las bandas. Mediante la funcién if_positive
del mddulo gpuarray se realiza la evaluacion de cada posicidn de la matriz,
tomando como criterio si el valor es positivo. De acuerdo a este valor, se
realiza la primera operacion o la segunda constatando una sentencia de
condicional.

Funcidn para la inyeccién de riqueza espacial - Lineas 11 — 13:

1. def step 2(matrix_1, matrix_image pan):
12. matrix_2 = linalg.multiply(matrix_1, matrix_image pan)
13. return matrix_2

Asimismo, se define la funcion step_2, la cual permite realizar una
multiplicacién posicidn a posicion entre dos matrices. Lo anterior, mediante
la funcion multiply propia del mdédulo linalg. Esta funcién recibe como
parametros las dos matrices que se desean multiplicar posicién a posicion.

Funcién para obtener maximos y minimos - Lineas 14- 17:

14. def step 3(matrix_1):

15. mat_max = np.amax(matrix_1.get())
16. mat_min = np.amin(matrix_1.get())
17. return mat max, mat min

Adicionalmente, se debe establecer una funciéon que permita calcular
el valor maximo y minimo a partir de una matriz de entrada. Debido a esto
se define la funcién step_3.

35

Acelerando la fusién de imdgenes mediante computacién heterogénea

Nucleo para ajuste espectral - Lineas 18 - 21:

18 lin_comb = ElementwiseKernel(

19. "float a, float *x, float b, float *z",
20. "Z[i] = ((x[i]-a)*255)/(b-a)",

21. "linear_combination")

En estas lineas de cddigo se establece la variable lin_comb la cual
almacena una funcién ElementwiseKernel, recibiendo como parametros
dos valores tipo float y tres matrices flotantes. Donde la matriz Z se
convertira en la matriz de salida de esta funcién. Cada vez que se haga un
[lamado a esta funcion se generara un nucleo y se realizara una operacion
de ajuste de riqueza espectral.

Funcion para ajuste espectral - Lineas 22 - 24:

22. def step_4(matrix_1, matrix_color, mat_max, mat_min):
23. lin_comb(mat_min, matrix_1, mat_max, matrix_color)
24. return matrix_color

Sin embargo, para mantener uniformidad en el cddigo, se define una
funcién propia en el lenguaje de Python, llamada step_4. Esta funcidn,
estard encargada de realizar el llamado a la funcién de Elementwise,
establecida previamente.

Lectura y carga de imdgenes - Lineas 25 - 26:

25. multispectral = skimage.io.imread('multispectral.tiff', plugin = 'tifffile")
26. panchromatic = skimage.io.imread('panchromatic.tiff', plugin = 'tifffile')

A partir de estas lineas de cddigo, se realiza la lectura de la imagen
multiespectral y pancromatica. Lo anterior, mediante la funcién imread,
perteneciente al mddulo io de la libreria scikit-image. Esta funcion
convierte las imagenes que se desean leer a un arreglo multidimensional de

36

Fusién de imdgenes basado en operaciones algebraicas

numpy, con el propdsito de poder ser utilizadas y manejadas mediante su
representacion matricial.

Conversion de tipo de dato de las bandas - Lineas 27 - 32:

27. multispectral = multispectral.astype(np.float32)
28. r=multispectrall:,:,0].astype(np.float32)

29. g =multispectrall:,:,1].astype(np.float32)

30. b =multispectral[:,:,2].astype(np.float32)

31. panchromatic = panchromatic.astype(np.float32)
32. msuma = r+g+b

Una vez se han leido y cargado las imagenes, se procede a especificar
el tipo de dato de cada uno de los pixeles de la imagen, en este caso para
manejar uniformidad se especifica un tipo flotante de 32 bits haciendo uso
del tipo de float32 de numpy. Adicionalmente, en las lineas 28 a 30, se
realiza una indexacién sobre la matriz que contiene la informacién de la
imagen multiespectral, con el fin de obtener cada una de las bandas de su
espacio de color, que en este caso es rojo, verde, azul (RGB). Para finalizar,
la transformada de Brovey, requiere conformar un arreglo bidimensional
que reuna la suma pixel a pixel de cada una de las bandas extraidas
anteriormente. Esto se almacena en la variable msuma.

Transferencia de variables a memoria global de GPU - Lineas 33 - 38:

33. r_gpu =gpuarray.to_gpu(r)

34. g gpu=gpuarray.to_gpu(g)

35. b gpu=gpuarray.to gpu(b)

36. panchromatic_gpu = gpuarray.to_gpu(panchromatic)
37. msuma_gpu = gpuarray.to_gpu(msuma)

38. linalg.init()

Durante todo este momento, se ha venido trabajando sobre la CPU del
equipo. Sin embargo, en estas lineas de cédigo se realiza la transferencia
de los arreglos de numpy que contienen las diferentes bandas a arreglos de
pycuda, es decir, esta transferencia se realiza de memoria CPU a memoria

37

Acelerando la fusién de imdgenes mediante computacién heterogénea

global de la GPU. Esto se logra mediante la funcidn to_gpu propia del
mddulo gpuarray. Dicha funcidn recibe por pardmetro el arreglo que
deseamos transferir. En esta oportunidad se realiza la transferencia a GPU
de la banda roja, verde, azul, la imagen pancromatica y la matriz que tiene
la suma de las bandas. Por ultimo, se inicializa el mddulo de operaciones de
algebra lineal de scikit-cuda.

Normalizacion e inyeccion espacial de bandas - Lineas 39 - 44:

39. m11_gpu =step 1(r_gpu, msuma_gpu)
40. m22 gpu =step 2(m11_gpu, panchromatic_gpu)
41. m33_gpu=step 1(b_gpu, msuma_gpu)
42. m44 gpu =step 2(m33_gpu, panchromatic_gpu)
43. m55_gpu = step_1(g_gpu, msuma_gpu)
44. m66 gpu =step 2(m55_gpu, panchromatic_gpu)

En esta linea de cédigo se realiza la division de las bandas (R, G, B) entre
la matriz que contiene la suma de estas bandas, esto mediante la funcién
step_1() declarada al inicio de este proceso. Acto seguido, a través de la
funcién step_2, se toma el resultado de la division de matrices para cada
una de las bandas y se realiza una multiplicacion posicion a posicién con la
imagen pancromatica. Es importante resaltar que todo este proceso se
realizé en la GPU.

Ajuste espectral de bandas - Lineas 45 - 53:

45. Amax_host, Amin_host = step 3(m22_gpu)

46. rr_gpu = gpuarray.empty like(r_gpu)

47. step 4(m22_gpu, rr_gpu, Amax_host, Amin_host)

48. Amax_host, Amin_host = step_3(m66_gpu)

49. gg_gpu = gpuarray.empty_like(g_gpu)

50. step 4(m66 gpu, gg gpu, Amax_host, Amin_host)
51. Amax_host, Amin_host = step 3(m44 gpu)

52. bb gpu =gpuarray.empty_like(b_gpu)

53. step _4(m44_gpu, bb_gpu, Amax_host, Amin_host)

38

Fusién de imdgenes basado en operaciones algebraicas

Acto seguido, se obtienen los valores maximos y minimos de la matriz
resultado de la multiplicacion de la banda y la imagen pancromética.
Asimismo, se separa espacio en memoria para las matrices que se
obtendran en esta linea de cddigo, eso mediante la funcién empty _like() la
cual recibe como parametro el tamafio de la matriz que se desea separar,
en este caso se toma una matriz como guia. Esto quiere decir que se
separard en memoria y se creard un arreglo en GPU exactamente del
tamano de la matriz que se pasa por parametro. Para finalizar, se aplica el
proceso de ajuste espectral mediante la funcidn step _4() la cual hace el
llamado a la funcién Elementwise. Ese proceso de ajuste espectral consiste
en que el valor minimo se resta de cada banda generada mediante la
funciéon step_2() y los datos resultantes se multiplican por un coeficiente de
255 para la posterior normalizacién (division) por la diferencia entre los
valores maximo y minimo. Ese proceso se realiza para cada una de las
bandas (R, G, B) procesadas anteriormente.

Transferencia de bandas resultantes a memoria CPU - Lineas 54 - 56:

54. ggg host =gg gpu.get().astype(np.uint8)
55. rrr_host =rr_gpu.get().astype(np.uint8)
56. bbb host =bb_gpu.get().astype(np.uint8)

El proceso anterior se realizé sobre la GPU, sin embargo, es necesario
realizar una conversidon de tipo de datos, donde se pasa de un flotante de
32 bits a un entero de 8 bits, para que la imagen resultado puede ser
visualizada facilmente. Este proceso de conversidn se realiza para cada una
de las bandas resultantes y adicionalmente, se realiza sobre CPU. Mediante
la funcidn get(), se realiza la transferencia de datos desde memoria GPU a
memoria CPU.

Generacion de nueva imagen - Lineas 57 - 58:

57. fusioned image = np.stack((rrr_host, ggg host, bbb_host),axis=2)
58. skimage.io.imsave('broveygpu_image.tif',fusioned_image,plugin = "tifffile")

39

Acelerando la fusion de imdgenes mediante computacion heterogénea

Para finalizar, se realiza el proceso de concatenacién de las bandas
procesadas mediante la funcién stack de numpy. Eso produce una nueva
imagen que mantiene la riqueza espectral ajustada de la imagen
multiespectral junto con la resolucidn especial de la imagen pancromatica.
Por ultimo, mediante la funcion imsave de skimage se guarda localmente la
imagen generada a partir de la fusién de estas imagenes. La Figura 13C,
presenta la imagen resultado, al realizar la fusiéon de la imagen
multiespectral (Figura 13A) y pancromatica (Figura 13B), ambas con
dimension de 1024 pixeles por 1024 pixeles. Lo anterior mediante Ila
transformada de Brovey.

Figura 13. Imagen fusionada de 1024x1024 pixeles, mediante la transformada de Brovey

2.4 Método de multiplicacion

Este método aplica un algoritmo simple de multiplicacién, para
incorporar el contenido de la imagen pancromdtica en la imagen
multiespectral (Pohl and Van Genderen, 1998).

Riji = My X PAN (5)
En donde
R;ji es laimagen fusionada

M; ;. imagen multiespectral banda k

40

Fusién de imdgenes basado en operaciones algebraicas

2.4.1 Modelo de procesamiento heterogéneo
para el método de multiplicacién

La Figura 14 presenta lainteraccion entre la CPU y la GPU implementada
para el método de multiplicacion. Como primer paso, se realiza la
separacion de las bandas de laimagen multiespectral en CPU. Acto seguido,
se realiza la transferencia de las bandas a la memoria global de la GPU, para
inyectar lariqueza espacial en cada banda. Este proceso se realiza mediante
la multiplicacién elemento a elemento de laimagen pancromatica con cada
una de las bandas. Posteriormente, se calcula el valor maximo y minimo de
las bandas con inyeccién espacial, para finalmente realizar un ajuste de
riqueza espectral, el cual consiste en restar el valor minimo a cada elemento
de una banda multiplicarlos por un factor de 255, este resultado debe ser
dividido por la resta entre el valor maximo y minimo. Este ajuste se realiza
por cada una de las bandas.

1 3 5
o
o
O:
- - : .
a: Inyeccién de Ajuste riqueza
O : riqueza espacial espectral
: 2 4

Figura 14. Modelo de procesamiento heterogéneo para el método de multiplicacién.

2.4.2 Implementacion del método de
multiplicacion en Python

A continuacién, se presentan fragmentos secuenciales de cddigo en
Python, utilizados para poder llevar a cabo la fusién de imagenes satelitales
mediante el método de multiplicacion. En el repositorio del libro
(https://github.com/Parall-UD/libro_fusion_imagenes_satelitales GPU) se

encuentra el script completo con las imagenes de prueba.

41

https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU

Acelerando la fusién de imdgenes mediante computacién heterogénea

Definicion de dependencias - Lineas 1 - 7:

import skimage.io
. import numpy as np
. import pycuda.autoinit
. import pycuda.driver as drv
. import pycuda.gpuarray as gpuarray
. import skcuda.linalg as linalg
. from pycuda.elementwise import ElementwiseKernel

N oMV (W2

De igual manera en el que se presentd al inicio de laimplementacion de
la transformada de Brovey, para el método de multiplicacion también es
necesario importar un conjunto de librerias como scikit-image, numpy,
pycuda vy scikit-cuda. Estas librerias se explican de mejor manera en las
primeras lineas de la transformada de Brovey, sin embargo, estas librerias
nos permiten la lecturay almacenamiento de imagenes con extension .TIFF,
la interaccidon con herramientas para realizar operaciones matriciales, una
interfaz para la interaccidn con computacion paralela mediante el
framework CUDA, entre otras funcionalidades.

Funcidn para la inyeccién de riqueza espacial - Lineas 8 - 10:

8. defstep 1(color matrix, image matrix):
9. matrix_sal = linalg.multiply(color _matrix, image matrix)
10. return matrix_sal

Como primera instancia, es necesario realizar la inyeccién de riqueza
espacial de la imagen pancromatica a la imagen multiespectral. Debido a
esto, se requiere establecer una funcién que permita realizar esta tarea,
mediante la multiplicacidn posicion a posicidon entre dos matrices. Es por
esto que, se crea la funcién step_1(), la cual recibe por parametros las dos
matrices que se desean multiplicar. Por ultimo, esta funcidn retorna la
matriz resultante de la multiplicacidn posicidn a posicidn.

42

Fusién de imdgenes basado en operaciones algebraicas

Funcidn para obtener maximos y minimos - Lineas 11 - 14:

1. def step_2(matrix_1):

12. mat_max = np.amax(matrix 1)
13. mat_min = np.amin(matrix_1)
14. return mat_max, mat_min

En estas lineas de cddigo se define una funcion nombrada como
step_2(), cuyo propdsito es obtener el maximo y minimo valor entre un
arreglo bidimensional. A su vez, esta funcién retorna estos dos valores. Lo
anterior se realiza mediante las funciones amax() y amin() de numpy.

Nucleo para ajuste espectral - Lineas 15 - 18:

15. lin_comb = ElementwiseKernel(
16. "float a, float *x, float b, float *z",
17 "2[i] = ((x[i]-a)*255)/(b-a)",

18. "linear_combination")

Posteriormente, mediante este fragmento de cddigo, donde se hace
uso de la funcién ElementwiseKernel(), se establece el procedimiento de
djuste espectral. Este proceso consiste en tomar el valor minimo y restarlo
de su respectiva matriz para poder ser multiplicada por un valor constante
de 255. Después, se toman los valores obtenidos y se realiza una
normalizacién respecto a la diferencia entre los valores maximos y minimos
de dicha matriz inicial. Es importante resaltar que, lo que se encuentra
dentro de la funcién es un pequefio fragmento de cddigo de C-CUDA,
embebido dentro de Python.

Funcion para ajuste espectral - Lineas 19 - 21:

19. def step 3(matrix_1, matrix_color, mat_max, mat_min):
20. lin_comb(mat_min, matrix_1, mat_max, matrix_color)
21. return matrix_color.get()

43

Acelerando la fusién de imdgenes mediante computacién heterogénea

Estas lineas tienen como objetivo definir una funcién propia de Python,
donde se realice el llamado al nucleo Elementwise que se encarga de
realizar el ajuste espectral. Esta funcidn recibe los siguientes parametros:

e matrix_1: es la matriz que se desea ajustar espectralmente, es decir en
este caso serdn las distintas bandas que han sido procesadas durante
la aplicacion de este método.

e matrix_color: es una matriz vacia donde se almacenard la matriz
resultado de aplicar esta funcidn de Elementwise.

e mat_max: es el valor maximo de la matrix_1.

e mat_min: es el valor minimo de la matrix_1.

Finalmente, esta funcion retorna la matrix_color. Sin embargo, se debe
tener en cuenta que este proceso se realiza en GPU, en este caso se desea
realizar la transferencia de esta variable a memoria de CPU, por lo tanto,
utilizamos la funcién get().

Lectura y carga de imdgenes - Lineas 22 - 23:

22. multispectral = skimage.io.imread('multispectral.tiff', plugin="tifffile')
23. panchromatic = skimage.io.imread('panchromatic.tiff', plugin="tifffile")

En estas lineas de codigo, se realiza la lectura y carga de las imagenes
de punto de partida para fusion de imagenes satelitales. Estas son, la
imagen multiespectral y pancromatica. Ademas de esto, la libreria scikit-
image, lee estas imdgenes y las presenta al publico mediante su
representacion matricial de tipo numpy.

Conversion de tipo de dato de las bandas - Lineas 24 - 28:

24. multispectral = multispectral.astype(np.float32)
25. r=multispectral[:,:,0].astype(np.float32)

26. g =multispectrall:,:,1].astype(np.float32)

27. b =multispectral[:,:,2].astype(np.float32)

28. panchromatic = panchromatic.astype(np.float32)

44

Fusién de imdgenes basado en operaciones algebraicas

Posteriormente, al leer la imagen multiespectral y pancromética, y
tenerlas en su representacion matricial, se realiza la conversion de tipos de
datos a un flotante de 32 bits, lo anterior con el propdsito de mantener
homogeneidad en las operaciones matriciales. Esta conversion, se realiza
mediante la funcién propia de todo elemento de numpy como lo es
astype(), donde por parametro que recibe es el tipo de dato. Asi mismo, la
imagen multiespectral estd compuesta por un conjunto de bandas
dependiendo de su espacio de color. Para esta ocasion el espacio de color
es RGB, lo cual indica que tiene tres bandas, una roja, una verde y una azul
(red, green, blue). De acuerdo a esto, mediante la indexacién de matrices
en numpy se extraen cada una de estas bandas.

Transferencia de variables a memoria global de GPU - Lineas 29 - 33:

29. r_gpu = gpuarray.to_gpu(r)

30. g gpu = gpuarray.to_gpu(g)

31. b _gpu=gpuarray.to_gpu(b)

32. panchromatic_gpu = gpuarray.to_gpu(panchromatic)
33. linalg.init()

Como se ha mencionado anteriormente, se desea realizar la
implementacién de esta técnica de fusidn sobre una arquitectura GPU, por
lo tanto, es necesario realizar la transferencia de las variables necesarias
para este proceso de memoria de CPU y a memoria global de GPU. En este
orden de ideas, mediante la funcién to_gpu() se envia a GPU cada una de
las bandas extraidas anteriormente y la imagen pancromdtica. Para
finalizar, se inicializa el médulo de algebra lineal de la libreria scikit-cuda, lo
anterior al ejecutar linalg.init(). Después de realizar esto, ya se pueden
ejecutar funcionalidades de este médulo.

Inyeccidn de riqueza espacial a bandas - Lineas 34 - 36:

34. m33 gpu =step 1(r_gpu, panchromatic_gpu)
35. M44 gpu =step 1(g_gpu, panchromatic_gpu)
36. m55 gpu =step 1(b_gpu, panchromatic_gpu)

45

Acelerando la fusién de imdgenes mediante computacién heterogénea

Mediante estas lineas de cddigo, se busca tomar la riqueza espacial de
la imagen pancromatica e inyectarla en cada una de las bandas, todo esto
en GPU. Este proceso, se realiza mediante la funcién step_1() definida
previamente. Dicha funcidn, realiza la multiplicacién pixel a pixel entre las
bandas (R, G, B) y la representacién matricial de laimagen pancromatica.

Ajuste espectral de bandas - Lineas 37 - 45:

37. Amax, Amin = step_2(m33_gpu.get())
38. br gpu =gpuarray.empty like(r_gpu)
39. br host =step 3(m33_gpu, br _gpu, Amax, Amin)
40. Amax, Amin = step 2(m44_gpu.get())
41. bg gpu = gpuarray.empty like(g_gpu)
42. bg host =step 3(m44_gpu, bg gpu, Amax, Amin)
43. Amax, Amin = step 2(m55_gpu.get())
44. bb gpu = gpuarray.empty like(b_gpu)
45. bb_host =step 3(m55_gpu, bb_gpu, Amax, Amin)

Posteriormente, mediante estas lineas de cddigo, se obtienen los
valores maximos y minimos de la matriz resultado de la multiplicacion de
cada banda y la imagen pancromatica. Asimismo, mediante la funcién
empty _like(), se separa espacio en memoria de la GPU para las matrices que
se obtendran en estas lineas de cédigo. La funcidn empty_like recibe como
parametro el tamafo de la matriz que se desea separar, en este caso se
toma una matriz como guia. Esto quiere decir que se separard en memoria
y se creara un arreglo en GPU exactamente del tamafio de la matriz que se
pasa por parametro. Para finalizar, utilizando la funcién step_3() se aplica
el proceso de ajuste espectral, dicha funciéon hace el llamado al nucleo
simple de Elementwise creado con anterioridad, para realizar el ajuste
espectral de cada una de las bandas enriquecidas espacialmente. Ese
proceso de ajuste espectral consiste en que el valor minimo se resta de cada
banda generada mediante la funcién step_2() y los datos resultantes se
multiplican por 255 para la posterior normalizacién (divisién) por la

46

Fusién de imdgenes basado en operaciones algebraicas

diferencia entre los valores maximo y minimo. Ese proceso se realiza para
cada una de las bandas (R,G,B) procesadas anteriormente.

Transferencia de bandas resultantes a memoria CPU - Lineas 46 - 48:

46. brr=br host.astype(np.uint8)
47. bgg=bg host.astype(np.uint8)
48. bbb =bb_host.astype(np.uint8)

Estas lineas de cddigo realizan una conversion de tipo de datos, donde
se pasa de un float32 a un uint8, es decir se convierte de un flotante de 32
bits a entero de 8 bits. Esta conversion se realiza para cada una de las
bandas que ha sido ajustada espectralmente.

Generacion de nueva imagen - Lineas 49 - 50:

49. fusioned image = np.stack((brr, bgg, bbb),axis=2)
50. skimage.io.imsave('multiplicativegpu_image.tif',fusioned_image, plugin="tifffile')

Finalmente, se realiza el proceso de concatenacidon de las bandas
procesadas, mediante la funcién stack de numpy. Eso produce una nueva
imagen que mantiene la riqueza espectral ajustada de la imagen
multiespectral junto con la resolucidn espacial de la imagen pancromatica.
Adicionalmente, la funcién imsave de skimage permite guardar localmente
la imagen generada a partir de la fusion de estas imagenes. La Figura 15C,
presenta la imagen resultado, al realizar la fusién de la imagen
multiespectral (Figura 15A) y pancromatica (Figura 15B), ambas con
dimension de 1024 pixeles por 1024 pixeles. Lo anterior, mediante el
método de multiplicacidn.

47

Acelerando la fusién de imdgenes mediante computacion heterogénea

/ ,l-.):

A) B) 9

Figura 15. Imagen fusionada de 1024x1024 pixeles, mediante el método Multiplicacién

48

Métodos basados en transformadas: métodos de sustitucién de componentes

Capitulo 3

Métodos basados en transformadass:
métodos de sustitucién de componentes

La mayoria de los sensores MS recogen informacién en bandas
adyacentes del espectro electromagnético, lo que habitualmente implica
detectar informaciéon redundante, ya que muchas de las cubiertas
existentes sobre la superficie terrestre tienden a presentar
comportamientos similares en regiones proximas del espectro.

3.1 Fusidn de imagenes usando analisis
de componente principales

El andlisis en componente principales, también denominado
transformacion PCA (de sus siglas en inglés Principal Component Analysis) o
transformada de Karhunen-Loéve o Hotelling (Shettigara, 1992), crea
nuevas imagenes a partir de las originales llamadas componentes
principales (CP), no correlacionadas entre si, que reorganizan la
informacién original. Con las componentes principales se elimina esa
informacién redundante entre componentes, de forma que la primera CP
se define como ladirecciénalo largo de la cual la varianza de los datos tiene

49

Acelerando la fusién de imdgenes mediante computacién heterogénea

su maximo. Es decir, la esencia del analisis en componentes principales es
la transformacién de un conjunto de variables correlacionadas en un nuevo
conjunto de variables no correlacionadas.

El método de fusion PCA (Shettigara, 1992) es similar al IHS en cuanto a que
se basa en la transformacién de las bandas de la imagen multiespectral en
una serie de componentes, para luego sustituir una de ellas por la imagen
pancromadtica adaptada, buscando de esta manera afiadir la informacidon
espacial a la espectral. Tal y como se puede observar en la Figura 16, el
proceso a seguir para desarrollar este método de fusidn es el que se
presenta a continuacion. En primer lugar, se obtienen tantas componentes
principales como bandas tenga la imagen multiespectral. De este modo, la
CP1 contiene informacién espacial y las CP restantes la informacién
espectral. A continuacion, se iguala el histograma de la imagen
pancromatica al de la primera componente principal CP1, es decir, a aquella
que contiene informacidn relativa al conjunto de las bandas.

La imagen pancromatica modificada (una vez ajustado su histograma)
sustituye a la primera componente principal CP1. Aplicando a estas bandas
la transformacidn inversa se obtienen las bandas de la imagen fusionada.

B2
B1 PAN

Se iguala el histograma
De PAN al de C1

CpP2

—_— PAN-C1
CcP2 —————| PAN-CP1
CcpP1
MS

Figura 16. Algoritmo de fusién PCA. Fuente Autor

50

Métodos basados en transformadas: métodos de sustitucién de componentes

Una de las ventajas de este método es que no estd limitado aimagenes
de 3 bandas, sino que puede utilizarse para un nimero ilimitado de bandas.
Sin embargo, introduce distorsidn espectral en la imagen fusionada, esto
es asi pues se parte de la base de que tras la transformacién PCA, la
disociacién entre informacion espacial y espectral de la imagen
multiespectral es total, pero esto no es asi. Computacionalmente este
algoritmo de fusidn es pesado ya que implica la realizacién del calculo de la
matriz de covarianza, el calculo de los autovalores y autovectores, generar
la matriz ortogonal y diversas operaciones algebraicas (producto de
matrices, matrices inversas, transposiciones, etc.) para generar las
componentes principales CP1, CP2 hasta CPN, donde N corresponderad al
numero de bandas de la imagen multiespectral.

3.1.1 Modelo de procesamiento heterogéneo para PCA

La Figura 17 presenta laimplementacion de PCA sobre una arquitectura
de computacién heterogénea CPU/GPU. Como primera instancia en el paso
ndmero uno, se le realiza a la imagen multiespectral la descomposicion en
sus bandas, en este caso (R, G, B). Después en el paso nimero dos se lleva
a cabo la transferencia de los niveles digitales amemoria global de la tarjeta
grafica, con el propdsito calcular el promedio de cada uno y restar dicho
valor de cada uno de los pixeles de las bandas. Lo anterior, con el propdsito
de calcular la matriz de covarianza para cada una de las bandas en GPU.
Posterior a esto en el paso nimero tres, se carga la matriz de covarianza a
la memoria de la CPU, con el fin de calcular el coeficiente de diagonalizacion
ortogonal, determinar el polinomio caracteristico y calcular vectores y
valores propios, para obtener la matriz ortogonalizada. En el paso
siguiente, se transfiere la matriz ortogonalizada a memoria global de la
GPU, para calcular los componentes principales mediante las bandas R, G,
B originales. A partir de los componentes calculados, la imagen
pancromatica y la inversa de la matriz ortogonalizada se calculan los

51

Acelerando la fusién de imdgenes mediante computacién heterogénea

componentes finales. Finalmente, se transfieren a CPU para realizar el stack
de los componentes y generar laimagen resultante.

Componentes Compontes
Matriz de P p

| principales —> principales
covarianza .. .
inciales inversos
2 4 5

Figura 17. Modelo de procesamiento heterogéneo para PCA

3.1.2 Implementacién de PCA en Python

A continuacién, se presentan fragmentos secuenciales de cddigo en
Python, utilizados para poder llevar a cabo la fusidn de imagenes satelitales
mediante la técnica de andlisis de componentes principales. En el
repositorio del libro (https://github.com/Parall-UD/libro_fusion
imagenes_satelitales GPU) se encuentra el script completo con las
imagenes de prueba.

Definicién de dependencias - Lineas 1 - 10:

import skimage.io

import numpy as np

from numpy import linalg as la

import pycuda.autoinit

import pycuda.driver as drv

import pycuda.gpuarray as gpuarray

from pycuda import compiler

import skcuda.misc as misc

from pycuda.elementwise import ElementwiseKernel

O (00 [N OV VT |D (W [N (2

Como se realizé en las dos técnicas de fusidn anteriores, estas primeras
lineas de cddigo tienen como objetivo importar las librerias necesarias para
la correcta ejecucion de los siguientes fragmentos de cddigo. De igual

52

https://github.com/Parall-UD/libro_fusion_%20imagenes_satelitales_%20GPU
https://github.com/Parall-UD/libro_fusion_%20imagenes_satelitales_%20GPU

Métodos basados en transformadas: métodos de sustitucién de componentes

manera, se hace uso de librerias mencionadas anteriormente como lo son
Pycuda, Numpy, Scikit-image y Scikit-cuda. Sin embargo, para esta técnica
se hace necesario importar un nuevo mdédulo de esta ultima libreria. El
mddulo es misc, el cual nos proporciona rutinas misceldneas, es decir,
utilidades que no se han contemplado en otros mdédulos. Finalmente, para
la libreria Pycuda se importa un nuevo médulo llamado compiler, el cual nos
permite compilar bloques de cddigo escritos en lenguaje C-CUDA y asi
poder ser ejecutados en Python.

Nucleo para calcular la matriz de varianza-covarianza - Lineas 11 — 44:

10. kernel var cov="""

1. #include <stdio.h>

12. _ global void CovarianceKernel(float *R, float *G, float *B, float *D)
13. {

14. const uint tx = threadldx.x;

15. const uint ty = threadldx.y;

16. shared _ float prueba_salida;

17. if (threadldx.x == 0) prueba_salida = o;

18. float valor_temp = o;

19. float salida_temp[9];

20. __syncthreads();

21. const int size = 3;

22. float arreglo[size];

23. arreglo[o] = R[ty * %(BLOCK_SIZE)s + tx];

24. arreglo[1] = G[ty * %(BLOCK_SIZE)s + tx];

25. arreglo[2] = B[ty * %(BLOCK_SIZE)s + tx];

26. syncthreads();

27. for(intk = 0; k < 3; k++){

28. for(int h = 0; h < 3; h++){

29. valor_temp = arreglo[k]*arreglo[h];
30. salida_temp[k*3+h] = valor_temp;
31. valor_temp =0;

32. }

33. }

1. syncthreads();

5 for (inti=o0;i<9; ++){

36. atomicAdd(&prueba_salida,salida_templi]);
37. syncthreads();

38. D[i] += prueba_salida;

39. syncthreads();

53

Acelerando la fusién de imdgenes mediante computacién heterogénea

40. prueba_salida = 0.0;
41. syncthreads();
42. }

43. }

44. nn

En este fragmento de cédigo se establece un nucleo escrito en lenguaje de
C-CUDA. El objetivo de este nucleo es calcular la matriz de varianza-
covarianza a partir de las bandas RGB de la imagen multiespectral. Para
realizar este proceso se utiliza la palabra reservarda de C-CUDA threadldx
mediante sus atributos x, y, para obtener la posicion del hilo que se esta
ejecutando en los bloques de hilos de la GPU. Adicionalmente, mediante Ia
funcién syncthreads() se realiza la sincronizacién de todos los hilos que se
estén ejecutando paralelamente. Lo anterior, con el objetivo de coordinar
los accesos a memoria, es decir, que ninguno de los hilos puede seguir
realizando su tarea hasta que el resto de hilos hayan terminado. Asimismo,
realiza una operacién atédmica de lectura-modificacidon-escritura con datos
que residan en memoria global o compartida. Por ejemplo, la funcién
atomicAdd() nos permite tomar un valor en memoria global o compartida
y afiadirle un ndimero y escribir el resultado exactamente en la misma
direccidn, lo que se conoce como sobreescritura. La operacion es atémica,
dado que garantiza que se realizara sin interferencia de otros hilos. En otras
palabras, ningun otro hilo puede acceder a esta direccidon hasta que se
complete la operacidn. La funcidn CovarianceKernel escrita en C-CUDA se
almacenada en la variable global kernel_var_cov de Python y recibe como
parametros la matriz que almacena la banda Roja, la matriz de la banda
verde y la matriz de la banda azul (R, G, B) y por ultimo, recibe una matriz
D, la cual serd la matriz de salida de esta operacidn.

54

Métodos basados en transformadas: métodos de sustitucién de componentes

Nucleo para calcular componentes principales iniciales - Lineas 45 — 74:

45. kernel componentes principales_original ="""

46. #include <stdio.h>

47. __global__ void componentesPrincipalesOriginal(float *R, float *G, float *B,
float *Q, float *S1, float *S2, float *S3)

48.

49. const uint tx = threadldx.x;

50. const uint ty = threadldx.y;

51. const int size = 3;

52. float salida_temp [size];

53. float valor_temp = 0.0;

54. float arreglo[size];

55. arreglo[o] = R[ty * %(BLOCK_SIZE)s + tx];

56. arreglo[1] = G[ty * %(BLOCK_SIZE)s + tx];

57. arreglo[2] = B[ty * %(BLOCK_SIZE)s + txJ;

58. __syncthreads();

59. for(inti=0;i<3; ++i){

60. for(intj=0;j< 3; ++)){

61. valor_temp += (Q[i*3+j] * arreglo[j]);

62. }

63. salida_temp[i] = valor_temp;

64. valor_temp = 0.0;

65. }

66. syncthreads();

67. S1[ty * %(BLOCK_SIZE)s + tx] = salida_temp[o];

68. syncthreads();

69. S2[ty * %(BLOCK SIZE)s + tx] = (-1.0)*salida_temp[1];

70. syncthreads();

71. S3[ty * %(BLOCK SIZE)s + tx] = salida_temp[2];

72. syncthreads();

73 }

74‘ nmn

En estas lineas de cddigo, se define un nucleo para el cdlculo de los

componentes principales a partir de las bandas originales de la imagen

multiespectral. De igual manera, este nucleo que se ejecutard en la GPU

mediante el lenguaje C-CUDA. En este nlcleo, se reitera el uso de los

identificadores para cada uno de los hilos del bloque mediante threadldx.x

y threadldx.y. Asimismo, se interpretan los arreglos bidimensionales como

55

Acelerando la fusién de imdgenes mediante computacién heterogénea

arreglos unidimensionales, tal como sucede en el contexto natural del
lenguaje de programacién C. De nuevo, se hace uso de la funciénreservada
syncthreads(), para sincronizar todos los hilos que se estén ejecutando en
cierto momento de la rutina. Por dltimo, se va llenando posicidn a posicidn
por cada hilo, las matrices resultantes, que en este caso hacen referencia a
los tres componentes principales obtenidos. La funcidn
componentesPrincipalesOriginal() escrita en C-CUDA y almacenada en la
variable global kernel_componentes_principales_original de Python, recibe
como parametros la matriz que almacena las bandas originales (R, G, B) de
la imagen multiespectral, un arreglo Q que contiene valores propios y por
ultimo, recibe las matrices S1, S2 y S3 las cuales seran la matrices de salida
de esta operacion.

Ntcleo para calcular los componentes principales finales - Lineas 75 — 104:

75. kernel componentes principales_pancromatica="""

76. #include <stdio.h>

77. __global _ void componentesPrincipalesPancromatica(float *R, float *G, float
*B, float *E, float *S1, float *S2, float *S3)

78. {

79. const uint tx = threadldx.x;

80. const uint ty = threadldx.y;

81. constint size = 3;

82. float salida_temp [size];

83. float valor temp = 0.0;

84. float arreglo[size];

85. arreglo[o] = R[ty * %(BLOCK_SIZE)s + tx];

86. arreglo[1] = G[ty * %(BLOCK SIZE)s + tx];

87. arreglo[2] = B[ty * %(BLOCK_SIZE)s + tx];

88. syncthreads();

89. for(inti=o0;i<3; ++i)f

9o. for(intj=0;j<3; ++){

91. valor_temp += (E[i*3+j] * arreglo[j]);

92. }

93. salida_temp[i] = valor_temp;

94. valor temp = 0.0;

95. }

96. _ syncthreads();

97. Sty * %(BLOCK SIZE)s + tx] = salida_temp[o];

56

Métodos basados en transformadas: métodos de sustitucién de componentes

98. _ syncthreads();

99. S2[ty * %(BLOCK_SIZE)s + tx] = salida_temp[1];
100. __ syncthreads();

101. S3[ty * %(BLOCK SIZE)s + tx] = salida_temp[2];
102. _ syncthreads();

103. }

104. nn

En este mismo orden de ideas, este fragmento de cddigo tiene como
proposito establecer un nucleo para el cdlculo de nuevos componentes
principales a partir de la matriz inversa de los vectores propios, el segundo
y tercer componente principal calculados inicialmente y de la
representaciéon matricial de la imagen pancromatica. Este nicleo también
hace uso de los identificadores para cada uno de los hilos del bloque
mediante threadldx.x y threadldx.y. Adicionalmente, se hace uso de la
funcidn reservada syncthreads() para sincronizar todos los hilos que se
estén ejecutando en cierto momento de la rutina, tal como se ha
presentado en ntcleos anteriores. Por ultimo, se van llenando posicién a
posicion por cada hilo las matrices resultantes, que en este caso hacen
referencia a los tres nuevos componentes principales obtenidos. La funcidn
componentesPrincipalesPancromatica() es escrita en lenguaje C-CUDAy es
almacenada en la variable global kernel_componentes_
principales_pancromatica de Python. Dicha funcién, recibe como
parametros la matriz de la inversa de los vectores propios, el componente
principal 2 y 3y laimagen pancromatica. Finalmente, recibe las matrices S1,
S2y S3 las cudles serdn las matrices de salida de esta operacion.

Funcion para la division de una matriz en submatrices - Lineas 105 - 107:

105. def split(array, nrows, ncols):

106. r, h = array.shape

107. return (array.reshape(h//nrows,nrows,-1,ncols).swapaxes(1,2) .reshape(-
1, nrows, ncols))

57

Acelerando la fusién de imdgenes mediante computacién heterogénea

En estas lineas de cddigo, se define la funcion split(), la cual permite dividir
una matriz cuadrada en submatrices de igual tamafio que cumplan su
estructura N x N. Esta funcion recibe los siguientes parametros:

- array: hace referencia a la matriz o arreglo bidimensional que se
desea segmentar en submatrices.
- nrows: nimero de filas que deben tener las submatrices.

- ncols: nimero de columnas que deben tener las submatrices.

Funcidn para calcular la matriz de varianza-covarianza - Lineas 108 - 118:

108. defvarianza cov(R s,G s, B s):

109. kernel code = kernel var_cov % {'"BLOCK_SIZE': BLOCK SIZE}

110. mod = compiler.SourceModule(kernel code)

11. covariance_kernel = mod.get function("CovarianceKernel")

112. salida_gpu = gpuarray.zeros((3, 3), np.float32)

113. Rs_gpu = gpuarray.to_gpu(R_s)

14. Gs_gpu = gpuarray.to_gpu(G_s)

115. Bs_gpu = gpuarray.to_gpu(B s)

116. foriinrange(len(R _s)):

117. covariance_kernel(Rs_gpu[i], Gs_gpul[i],
Bs_gpu[i],salida_gpu,block = (32, 32, 1)

118. return salida_gpu.get()

Anteriormente, se ha creado un ntcleo para calcular en GPU la matriz de
varianza-covarianza de las bandas originales de la imagen multiespectral.
Sin embargo, ese nucleo debe ser llamado mediante funciones de Python.
Debido a esto, se define la funcién varianza_cov(), la cual establece un
tamafio del bloque de hilo que se va a ejecutar paralelamente enla GPU y
compila el ndcleo mediante compiler.SourceModule. Asimismo, se obtiene
el nucleo a través de la funcidon get function() propia del mddulo
compilado. Ademas de esto, se separa espacio en memoria para la matriz
de salida, se hace transferencia de las submatrices de las bandas R,G,B a
memoria global de la GPU y se calcula iterativamente |la matriz de varianza-
covarianza para cada submatriz de las bandas.

58

Métodos basados en transformadas: métodos de sustitucién de componentes

Funcién para el apilamiento de submatrices - Lineas 119 - 131:

119. defstack values(list_cp, array_split, size, block size):

120. block_size = block_size

121. valor inicial =0

122. valor final=o0

123. list cp nueva =[]

124. factor div = (size//block _size)

125. factor ite =len(array_split)//factor_div

126. foriin range(factor ite):

127. valor_final = valor_final + factor_div

128. list_cp_nueva.append(np.hstack(list_cp[valor_inicial:
valor_final]))

129. valor_inicial = valor_inicial + factor_div

130. cp_final = np.vstack(list cp nueva)

131. return cp_final

En este caso, este fragmento de cddigo establece la funcidn stack_values()
para poder apilar las submatrices resultantes de los procesos asociados al
calculo de la matriz de varianza-covarianza, los componentes principales
haciendo uso de los vectores propios y con la imagen pancromatica. Para
llevar a cabo esto, se hace uso de funciones como hstack() y vstack()
propias de la libreria de numpy.

Funcion para calcular componentes principales iniciales - Lineas 132 - 154:

132. def componentes_principales_original(r_s,g s,b_s,q,size, block_size):

133. cp1_temp, cp2_temp,cp3_temp =[]

134. size =size

135. block size = block size

136. kernel_code = kernel_componentes_principales_original % { 'BLOCK_SIZE":
BLOCK SIZE}

137. mod = compiler.SourceModule(kernel code)

138. kernel = mod.get_function("componentesPrincipalesOriginal)

139. s1_gpu = gpuarray.zeros((block_size,block_size),np.float32)

140. s2 gpu = gpuarray.zeros((block size,block size),np.float32)

141. s3_gpu = gpuarray.zeros((block size,block size),np.float32)

142. g _gpu = gpuarray.to_gpu(q)

143. Rs_gpu_t=gpuarray.to_gpu(r_s)

144. Gs_gpu_t =gpuarray.to_gpu(g_s)

145. Bs gpu t=gpuarray.to_gpu(b_s)

59

Acelerando la fusién de imdgenes mediante computacién heterogénea

146. foriinrange(len(r_s)):

147. kernel(Rs_gpu_t[i],Gs_gpu_t[i],Bs_gpu_t[i],q_gpuy,
s1_gpu,s2_gpu,s3_gpu,block=(block size, block size,1))

148. cp1_temp.append(s1_gpu.get())

149. cp2 temp.append(s2_gpu.get())

150. cp3_temp.append(s3_gpu.get())

151. cp1=stack values(cp1 temp,r_s, size, block size)

152. cp2 =stack values(cp2_temp,r s, size, block size)

153. ¢p3 = stack values(cp3 temp,r s, size, block size)

154. return cpt, cp2, cp3

Anteriormente, se ha creado un nucleo para realizar el calculo de los
componentes principales en GPU. Sin embargo, ese nucleo debe ser
llamado mediante funciones de Python. Debido a esto, se define la funcién
componentes_principales_original () la cual establece un tamano del
bloque de 32x32 de hilos que se van a ejecutar paralelamente en la GPU y
se compila el nicleo mediante compiler.SourceModule. Este nimero de
hilos sera definido posteriormente mediante un variable global. Asimismo,
se obtiene el nlcleo a través de la funcidn get_function() propia del médulo
compilado, pasando como pardmetro el nombre de la funcién de C-CUDA
(““componentesPrincipalesOriginal”’). Ademds de esto, se separa espacio en
memoria para las submatrices de salida de cada componente principal.
Adema3s, se hace transferencia de las submatrices de las bandas R, G, B a
memoria global de la GPU y se calcula iterativamente la submatrices que
contienen los componentes principales. Estas submatrices se almacenanen
diferentes listas de Python. Finalmente, mediante la funcién stack_values()
definida anteriormente, se realiza el apilamiento de cada submatriz y asi
poder tener los tres componentes principales en su totalidad. Dichos
componentes se consolidan en las variables cp1, cp2 y cp3.

60

Métodos basados en transformadas: métodos de sustitucién de componentes

Funcién para calcular componentes principales finales - Lineas 155 — 177:

155. def componentes_principales_panchromartic(r_s, g_s, b_s, q, size,
block size):
156. block size = block size
157. nb1_temp, nb2_temp, nb3 temp =[]
158. size = size
159. kernel_code = kernel_componentes_principales_pancromatica % {
'BLOCK SIZE': BLOCK SIZE}
160. mod = compiler.SourceModule(kernel code)
161. kernel =
mod.get function("componentesPrincipalesPancromatica")
162. s1_gpu = gpuarray.zeros((block size,block size),np.float32)
163. s2_gpu = gpuarray.zeros((block_size,block_size),np.float32)
164. s3_gpu = gpuarray.zeros((block_size,block size),np.float32)
165. Rs_gpu_t=gpuarray.to_gpu(r_s)
166. Gs_gpu_t=gpuarray.to_gpu(g_s)
167. Bs_gpu t=gpuarray.to_gpu(b s)
168. g_gpu = gpuarray.to_gpu(q)
169. foriinrange(len(r_s)):
170. kernel(Rs_gpu_t[i], Gs_gpu_t[i], Bs_gpu_t[i], q_gpuy,
s1_gpu, s2_gpu, s3_gpu, block = (block_size, block_size, 1))
171. nb1_temp.append(s1_gpu.get())
172. nb2 temp.append(s2_gpu.get())
173. nb3_temp.append(s3_gpu.get())
174. nb1 = stack values(nb1_temp, g s, size, block size)
175. nb2 = stack values(nb2_temp, g s, size, block_size)
176. nb3 = stack values(nb3 temp, g s, size, block_size)
177. return nb1, nb2, nb3

De igual manera, en fragmentos anteriores se ha definido un nuicleo para
realizar el calculo de los componentes principales a partir de la imagen
pancromatica en GPU. Sin embargo, ese nucleo también debe ser llamado
mediante funciones de Python. Debido a esto, se define la funcién
componentes_principales_panchromatic() la cual establece un tamafio del
bloque de 32x32 de hilos que se van a ejecutar paralelamente en la GPU y
se compila el ndcleo mediante compiler.SourceModule. Adicionalmente, se
obtiene el nucleo a través de la funcién get_function() propia del médulo
compilado, pasando como parametro el nombre de la funcién de C-CUDA

61

Acelerando la fusién de imdgenes mediante computacién heterogénea

(““‘componentesPrincipalesPancromatica”). Ademas de esto, se separa
espacio en memoria para las submatrices de salida de cada componente
principal, se hace transferencia de la matriz inversa de los vectores propios
y de las submatrices de los componentes principales iniciales 2 y 3 a
memoria global de la GPU. Una vez se realiza esto, se calcula iterativamente
la submatrices que contienen los nuevos componentes principales. Estas
submatrices se almacenan en diferentes listas de Python. Finalmente,
mediante la funcién stack_values() definida anteriormente, se realiza el
apilamiento de cada submatriz, para consolidar los tres componentes
principales en su totalidad. Dichos componentes se consolidan en las
variables nb1, nb2 y nb3.

Nucleo para restar de una matriz un valor constante - Lineas 178 - 181:

178. substract = ElementwiseKernel(

179. "float *x, float y, float *z",
180. "2[i] = x[i]y",
181. "substract_value")

En estas lineas de cddigo se utiliza la funcion ElementwiseKernel, para
poder establecer un nucleo simple, el cual va a tomar una matriz de entrada
X junto con un valor flotante y. Esto con el propdsito de realizar en GPU, la
resta posicion a posicidn de la matriz x y el valor de y. Adicionalmente, el
parametro z tan solo es la matriz de salida de esta operacion.

Nucleo para ajuste espectral - Lineas 182 - 185:

182. negative adjustment = ElementwiseKernel(

183. "float *x, float *z",
184. "if(x[i] < 0){z[i] = 0.0;}else{z[i] = x[i];}",
185. "adjust_value")

De igual manera, en estas lineas de cddigo, se establece un nuevo ntcleo
de tipo ElementwiseKernel. Esta funcidn tiene como propdsito realizar un
ajuste de valores negativos. Por lo tanto, tomara una matriz y evaluard cada
una de sus posiciones, si el valor de una posicion especifica resulta ser

62

Métodos basados en transformadas: métodos de sustitucién de componentes

negativa se convertira a un valor de cero. Este ntcleo escrito en C-CUDA, se
almacena en la variable negative_adjustment para poder ser invocada
posteriormente.

Funcidn para obtener traza de potencias sucesivas - Lineas 186 — 193:

186. def successive_powers(ortogonal matrix):

187. size_mat_ort = len(ortogonal _matrix)

188. s = np.zeros((size_mat_ort,1))

189. B = np.zeros((size_mat_ort,size_mat_ort))

190. foriinrange(y, (size_mat_ort+1)):

191. B=la.matrix_power(ortogonal matrix,i)
192. s[i-1]=np.trace(B)

193. return s

De acuerdo con este fragmento de codigo, lo que se busca es establecer
una funcién de Python nombrada successive_powers(), la cual encontrard
la traza de potencias sucesivas a partir de una matriz proporcionada por
parametro.

Funcidn para calcular coeficientes de un polinomio - Lineas 194 - 202:

194. def polynomial_coefficients(polynomial_trace, ortogonal matrix):

195. n_interations = len(ortogonal _matrix)

196. polynomial = np.zeros((n_interations))

197. polynomial[o] = -polynomial_trace[o]

198. foriinrange(1,n_interations):

199. polynomial[i]=-polynomial_trace[i]/(i+1)

200. for jin range(i):

201. polynomial[i]=polynomial[i]-(polynomial[j]*
(polynomial_trace[(i-)-1])/(i+1))

202. return polynomial

En este conjunto de lineas se pretende establecer una funcién que se
ejecute en CPU, cuyo objetivo sea calcular los coeficientes del polinomio
caracteristico a partir de una matriz ortogonal y su respectiva traza
polindmica. Para esto, se define la funcién polynomial_coefficients().

63

Acelerando la fusién de imdgenes mediante computacién heterogénea

Funcién para normalizar vectores propios - Lineas 203 - 212:

203. def eigenvectors_norm(mat_eigenvalues, ortogonal_matrix,
mat_eigenvectors):

204. n = len(mat_eigenvalues)

205. V = np.zeros((n,n))

206. S = np.zeros((n,1))

207. foriin range(n):

208. B= ortogonal _matrix[1:n,1:n]-mat_eigenvalues[i,i]* np.eye(n-1)
209. temp_s=la.Istsq(B,mat_eigenvectors,rcond=-1)[0].transpose()
210. S=np.insert(temp _s,0,1);

211. V[o:n,i]=S/la.norm(S)

212. returnV, V.transpose()

En estas lineas de cddigo se define la funcidn eigenvectors_norm(). Esta
funcion busca calcular los vectores propios normalizados. Lo anterior,
recibiendo como pardmetros la matriz ortogonal, la matriz de vectores
propios y la matriz de valores propios. Donde, cada vector propio es una
columna de la matriz ortogonal base. El retorno de esta funcién es un
arreglo con los vectores propios normalizados y su respectiva transpuesta.

Lectura y carga de imdgenes - Lineas 213 - 217:

213. multispectral = skimage.io.imread('multispectral.tiff', plugin="tifffile')
214. panchromatic = skimage.io.imread('panchromatic.tiff', plugin="tifffile")
215. size rgb = multispectral.shape

216. BLOCK SIZE =32

217. n_bands =size rgb[2]

Una vez se han definido las funciones presentadas a lo largo de esta
implementacidn, se procede a invocarlas secuencialmente haciendo saltos
entre memoria de CPU y GPU. Sin embargo, en estas lineas de cddigo, se
realiza la lectura de la imagen multiespectral y pancromatica. Esto,
mediante la funcidn imread perteneciente al médulo io de la libreria scikit-
image. Esta funcidn consolida las imagenes a un arreglo multidimensional
de numpy, por lo tanto, quedan listas para ser utilizadas y manipuladas.
Adicionalmente, se crea la variable size_rgb la cual almacena la dimensidn

64

Métodos basados en transformadas: métodos de sustitucién de componentes

con sus respectivas bandas de la imagen multiespectral. Ademas de esto,
se define la variable BLOCK_SIZE con un valor por defecto de 32. Este valor,
nos ayudard a lo largo de la implementacién a establecer el tamafio del
bloque de hilos que se ejecutara en GPU. Por ultimo, se extrae el nimero
de bandas de las que se compone la imagen multiespectral. En este caso, al
manejar un espacio de color RGB se debe obtener un total de 3 bandas.

Conversion de tipo de dato de las bandas - Lineas 218 - 222:

218. m_host = multispectral.astype(np.float32)

219. r_host=m_host[:,:;,0].astype(np.float32)

220. g host=m_host[:,:1].astype(np.float32)

221. b _host =m_host[:,:;,2].astype(np.float32)

222. panchromatic_host = panchromatic.astype(np.float32)

Posteriormente, en este fragmento de cddigo, mediante la funcidén
astype(), se define que el tipo de datos de las matrices multiespectral y
pancromatica serd flotante de 32 bits. Adicionalmente, se extraen las
bandas R, G, B (Red, Blue, Green) de la imagen multiespectral a partir de la
indexacion de arreglo de numpy.

Transferencia de variables a memoria global de GPU - Lineas 223 - 229:

223. r_gpu=gpuarray.to _gpu(r_host)
224. g gpu=gpuarray.to_gpu(g_host)
225. b gpu=gpuarray.to_gpu(b_host)
226. p_gpu = gpuarray.to_gpu(panchromatic_host)
227. mean _r_gpu=misc.mean(r_gpu)
228. mean_g gpu = misc.mean(g_gpu)
229. mean b gpu=misc.mean(b_gpu)

En las cuatro primeras lineas de este fragmento de cddigo, se realiza la
transferencia de cada una de las bandas extraidas anteriormente y de la
imagen pancromatica, a memoria global de GPU. Posteriormente,
mediante la funcion mean() del médulo misc propio de la libreria scikit-
cuda, se calcula el promedio de cada una de los arreglos que almacenan las

65

Acelerando la fusién de imdgenes mediante computacién heterogénea

bandas en GPU. Estos promedios son esenciales para poder obtener la
matriz de varianza-covarianza de la imagen multiespectral.

Resta de bandas y promedio en GPU - Lineas 230 - 235:

230. r_gpu_subs = gpuarray.zeros_like(r_gpu,np.float32)
231. g gpu_subs = gpuarray.zeros_like(g_gpu,np.float32)
232. b gpu subs = gpuarray.zeros_like(b_gpu,np.float32)
233. substract(r_gpu, mean r gpu.get(),r gpu subs)

234. substract(g _gpu, mean_g gpu.get(), g gpu_subs)
235. substract(b_gpu, mean b gpu.get(), b _gpu subs)

En estas lineas se realizan arreglos llenos de ceros mediante la funcién
zeros_like del médulo gpuarray de Pycuda. Estos arreglos son de la misma
dimensidn que los que consolidan las bandas R, G, B en GPU. Después, se
invoca la funcién substract() la cual realiza la resta entre cada una de las
bandas y su respectivo promedio. Todo lo anterior se lleva a cabo en GPU.

Divisién de bandas en submatrices - Lineas 236 - 238:

236. r subs split = split(r_gpu_subs.get(),BLOCK SIZE,BLOCK SIZE)
237. g subs split = split(g_gpu_subs.get(),BLOCK SIZE,BLOCK SIZE)
238. b _subs_split = split(b_gpu_ subs.get(),BLOCK SIZE,BLOCK SIZE)

Posteriormente ya en CPU, se realiza la divisidn de las matrices resultado
del fragmento de cddigo anterior. El resultado de esta operacién es un
arreglo de arreglos con las submatrices de un tamafio de 32 x 32. Esto para
cada una de las bandas (R, G, B).

Cadlculo de la matriz de covarianza y derivados - Lineas 239 - 244:

239. mat_var _cov =varianza_cov(r_subs_split,g subs_split, b _subs_split)

240. coefficient = 1.0/((size_rgb[o]*size rgb[1])-1)

241. ortogonal matrix = mat_var_cov*coefficient

242. polynomial trace = successive_powers(ortogonal matrix)

243. characteristic_polynomial = polynomial_coefficients(polynomial
trace,ortogonal matrix)

244. characteristic_polynomial_roots = np.roots(np.insert(
characteristic_polynomial,0,1))

66

Métodos basados en transformadas: métodos de sustitucién de componentes

Acto seguido, se hace uso de estas bandas divididas para poder calcular en
GPU la matriz de varianza-covarianza mediante la funcién varianza_cov/().
En este orden de ideas, se toma cada submatriz de cada banday se calcula
su matriz de varianza-covarianza, asi hasta recorrerlas completamente y al
final poder realizar una concatenacion de estas matrices. Después, se
calcula el coeficiente requerido para poder diagonalizar ortogonalmente la
matriz de varianza-covarianza. Ademas de esto, al multiplicar la matriz de
varianza-covarianza con este coeficiente se obtiene lo que se llamara matriz
ortogonal. Posterior a ello, pasando como parametro esta matriz a la
funcién successive_powers() se genera la traza de las potencias sucesivas
de la matriz ortogonal. Es necesario calcular los coeficientes del polinomio
caracteristico a partir de la matriz ortogonal y de la traza polinémica. Lo
anterior, invocando la funcidn polynomial_coefficients() descrita con
anterioridad. Por ultimo, mediante la funcién roots de numpy se hallan las
raices reales del polinomio caracteristico.

Procesamiento de valores y vectores propio - Lineas 245 - 253:

245. eigenvalues_mat = np.diag(characteristic_polynomial_roots)

246. eigenvectors_mat = -1*ortogonal_matrix[1:n_bands,0]

247. mat_ortogonal base, q_matrix = eigenvectors_norm
(eigenvalues_mat,ortogonal_matrix, eigenvectors_mat)

248. g _matrix_list = q_matrix.tolist()

249. q_matrix_cpu = np.array(q_matrix_list).astype(np.float32)

250. wi1=q_matrix_cpufo,:]

251. w2 =(-1)*q_matrix_cpu[1,:]

252. w3 =q_matrix_cpu[2,:]

253. eigenvectors = np.array((w1,w2,w3))

En estas lineas, se obtiene la matriz diagonal de las raices del polinomio
caracteristico esto mediante la funcién diag() de numpy. Lo anterior se
realiza dado que en la diagonal de esta matriz se encuentran los valores
propios. Una vez se han obtenido estos valores, se procede a calcular los
vectores propios a partir de la matriz ortogonal. En este orden de ideas, se
cuenta un vector propio para cada valor propio. Posteriormente, en el resto

67

Acelerando la fusién de imdgenes mediante computacién heterogénea

de lineas se generan los vectores propios normalizados, donde cada
columna de la matriz mat_ortogonal_base es un vector propio. Finalmente,
estos vectores propios normalizados se almacenan en la variable
eigenvectors.

Calculo de matriz inversa de vectores propios - Lineas 254 - 256:

254. inv_eigenvectors = la.inv(eigenvectors)
255. Inv_list =inv_eigenvectors.tolist()
256. inv_eigenvector cpu = np.array(inv_list).astype(np.float32)

En este fragmento de cddigo se obtiene la matriz inversa de los vectores
propios normalizados. Esto, a través de la funcidn inv propia del mddulo
linalg de Numpy. Posterior a esto, se convierte a una lista y se pasa a un
arreglo de numpy en CPU especificando float32 como el tipo de dato de
este arreglo. Es decir, finalmente la variable inv_eigenvector_cpu almacena
la matriz inversa de los vectores propios.

Divisién de bandas para calculo de componentes principales - Lineas 257 - 259:

257. r _subs split_cp = split(r_host,BLOCK SIZE,BLOCK SIZE)
258. g subs split cp = split(g_host,BLOCK SIZE,BLOCK SIZE)
259. b subs split_cp = split(b_host,BLOCK SIZE,BLOCK SIZE)

Se vuelve a realizar el proceso de division las bandas de la imagen
multiespectral en submatrices de 32x32, que se consolidan en arreglos de
arreglos de Numpy. Este proceso, se lleva a cabo mediante la funcién
split(), expuesta durante esta implementacién.

Calculo de componentes principales iniciales y finales - Lineas 260 - 264:

260. pc_1,pc_2,pc_3 =componentes_principales_original
(r_subs_split_cp,g_subs_split_cp,b_subs_split_cp,q_matrix_cpu,r_host.shape
[0], BLOCK_SIZE)

261. p_subs split_nb = split(panchromatic_host,BLOCK SIZE, BLOCK_SIZE)

262. pc 2 subs split nb = split(pc_2,BLOCK SIZE,BLOCK SIZE)

263. pc_3 subs split_nb = split(pc_3,BLOCK SIZE,BLOCK SIZE)

68

Métodos basados en transformadas: métodos de sustitucién de componentes

264. nb1,nb2,nb3 = componentes_principales_panchromartic
(p_subs_split_nb,pc_2_subs_split_nb,pc_3 subs_split_nb,inv_eigenvector _cp
u,r_host.shape[o], BLOCK SIZE)

En estas lineas las variables pc_1, pc_2 y pc_3 almacenan los componentes
principales iniciales. Esto es posible al hacer uso de la funcién
componentes_principales_original(), la cual invoca iterativamente el nticleo
(‘componentesPrincipalesOriginal’) en GPU. En cada una de estas
iteraciones utiliza las submatrices de las bandas R, G, B conjuntamente con
la matriz de vectores propios. Posteriormente, se realiza la divisidon de
submatrices de laimagen pancromatica y del segundoy tercer componente
principal obtenido anteriormente (pc2 y pc3). Lo anterior se lleva a cabo
con el propdsito de poder calcular los nuevos componentes principales a
partir de la imagen pancromatica, los componentes principales 2y 3y la
matriz inversa de los vectores propios. Estos nuevos componentes se
almacenan en las variables nb1, nb2 y nb3.

Ajuste espectral de componentes principales finales - Lineas 265 - 276:

265. nb11 = nb1.astype(np.float32)

266. nb22 = nb2.astype(np.float32)

267. nb33 = nb3.astype(np.float32)

268. nb11_gpu = gpuarray.to_gpu(nb11)

269. nb22 gpu = gpuarray.to_gpu(nb22)

270. nb33_gpu = gpuarray.to_gpu(nb33)

271. nb111_gpu = gpuarray.empty like(nb11_gpu)
272. nb222 gpu = gpuarray.empty like(nb22 gpu)
273. nb333_gpu = gpuarray.empty like(nb33_gpu)
274. negative_adjustment(nb11_gpu,nb111_gpu)
275. negative adjustment(nb22 _gpu,nb222 gpu)
276. negative adjustment(nb33_gpu,nb333 gpu)

Una vez se han calculado los componentes principales finales (nb1, nb2 y
nb3), es necesario convertirlos a un tipo de dato flotante de 32 bits para
mantener uniformidad en los calculos realizados. Asi mismo, se hace
transferencia de estos componentes a variables en memoria global de GPU.

69

Acelerando la fusion de imdgenes mediante computacion heterogénea

Por ultimo, se realiza el ajuste de valores negativos, donde en algunos casos
por computo se generan valores negativos que deberian ser valores en
cero. De acuerdo a esto, se invoca el nucleo negative_adjustment y se
realiza dicho ajuste. De otra manera, sin realizar este ajuste se tendrian
pixeles erréneos dado que deberian estar en una escala entre 0y 255.

Generacion de la nueva imagen - Lineas 277 - 281:

277. nb111_cpu =nb111_gpu.get().astype(np.uint8)

278. nb222 cpu=nb222_gpu.get().astype(np.uint8)

279. nb333 cpu=nb333_gpu.get().astype(np.uint8)

280. fusioned image=np.stack((nb111_cpu,nb222_cpu,nb333_cpu), axis=2)
281. skimage.io.imsave('pcagpu_image.tif',fusioned_image, plugin="tifffile")

Para finalizar esta implementacidn, se realiza el proceso de concatenacién
de los componentes principales ajustados mediante la funcién stack de
numpy. Por Ultimo, mediante la funcién imsave de skimage se guarda
localmente la imagen generada a partir de la fusidn de estas imagenes. La
Figura 18C, presenta la imagen resultado al realizar la fusién de la imagen
multiespectral (Figura 18A) y pancromatica (Figura 18B), ambas con
dimensidén de 1024 pixeles por 1024 pixeles. Lo anterior, mediante el analisis
de componentes principales.

Figura 18. Imagen Fusionada de 1024x1024 pixeles mediante andlisis de componentes principales.

70

Métodos basados en Transformadas Wavelet Discretas (TWD)

Capitulo 4

Métodos basados en Transformadas
Wavelet Discretas (TWD)

Los métodos que utilizan el andlisis multirresolucion, vy
fundamentalmente la Transformada Wavelet Discreta (TWD), son los mds
populares para disminuir la distorsidn espectral. En particular, para lograr
fusiones de alta calidad, diversos esquemas basados en wavelets han sido
propuestos por varios investigadores (Hong y Zhang, 2008; Amolins, Zhang
y Dare, 2007; Lillo- Saavedra y Gonzalo, 2006) destacando los algoritmos de
Mallat y A trous, cuya principal diferencia se refiere al sentido en el que se
realiza la estrategia multirresolucidn, pues en el primer caso se diezma la
imagen mientras que para A trous no se aplica ningiin diezmado, se ha
demostrado que en los resultados con el algoritmo A trous las imdgenes
son de mejor calidad espacial y degradan en menor valor la riqueza
espectral.

4.1 Principios basicos de la transformada Wavelet

Cualquier transformada que se aplica a una sefial se hace con la
finalidad de obtener informacién de ella, informacion que no esta
disponible en el dominio del tiempo. Cuando se grafica una sefial en el

71

Acelerando la fusién de imdgenes mediante computacién heterogénea

dominio del tiempo, se obtiene una representacion de la amplitud de la
sefial, ésta no es una buena representacion para el procesamiento de una
sefal. La informacidn que interesa se encuentra oculta en la frecuencia. El
espectro en frecuencia muestra cudles son las frecuencias que existenenla
sefial. Laformaen la que se puede encontrar la frecuencia contenida en una
sefial es mediante la Transformada de Fourier (TF). Es decir, al obtener la
TF de una sefal en el dominio del tiempo, se consigue la representacion de
la sefal en la frecuencia (Nieto y Orozco, 2008).

Este capitulo se presenta una corta explicacion de la teoria basica del
analisis Wavelet y una de sus aplicaciones en la reconstruccion de sefales.
Inicialmente se hace una comparacién con el andlisis de Fourier y se justifica
la importancia y necesidad de utilizar la transformada Wavelet. Luego se
presenta matematicamente la transformada Wavelet Continua, se
discretizan los pardmetros de tiempo y frecuencia obteniendo Ila
Transformada Wavelet Discreta, por ultimo, se explica la forma como se
puede descomponer y representar los planos Wavelet en una sefial
bidimensional mediante el algoritmo A trous para fusionar imdgenes
satelitales.

En el procesamiento de sefales se pueden encontrar diferentes tipos de
sefales estacionarias y no estacionarias. Las primeras son localizadas en el
tiempo ya que su frecuencia no varia, este tipo de ondas son estudiadas por
medio del andlisis de Fourier, que permite su descomposicién en términos
de sus componentes sinusoidales, es decir, transforma la sefial de la base
de tiempo a la base de frecuencia y de igual manera permite el paso del
dominio de la frecuencia al dominio del tiempo, sin embargo, en este tltimo
se pierde informacién necesaria, que, por ser de caracter estacionario no
resulta relevante. En el caso de las sefiales con comportamiento no-
estacionario, es decir, aquellas cuya frecuencia varia en el tiempo, al tener
la sefial producto de la transformada de Fourier resulta imposible realizar
el paso al dominio del tiempo porque no permite determinar en qué
momento se presenta un cambio en la frecuencia.

72

Métodos basados en Transformadas Wavelet Discretas (TWD)

Surge entonces la necesidad de contar con una representacion localizada
en el tiempo y la frecuencia, como consecuencia de la desventaja
presentada por el andlisis de Fourier. De esta manera Gabor implementa el
uso de la STFT (Short Time Fourier Transform) (Upegui y Medina, 2019), que
consiste en analizar una pequefia seccidn de la sefal a través de una
ventana de longitud fija, llevando la informacién contenida en este
pequefio intervalo del dominio del tiempo a la escala bidimensional de
tiempo y frecuencia, donde se puede conocer cuando y a qué frecuencia
ocurre un suceso.

Al utilizar la STFT se presenta una nueva deficiencia, el tamafio fijo de la
ventana temporal que impide analizar pequefios detalles en sefiales de
frecuencia variable. Es asi como se introduce el analisis Wavelet como
herramienta que permite obtener una representacion, descomposicion y
reconstruccion de sefiales, que presenten cambios abruptos en sus
componentes de tiempo-frecuencia en forma instantanea, a través del
analisis de multirresolucidn con ventanas de longitud variable adaptadas al
cambio de frecuencia de la sefal. Es decir, esta técnica permite el uso de
intervalos grandes de tiempo en aquellos segmentos en los que se requiere
mayor precisidn en baja frecuencia, e intervalos mas pequefios donde se
requiere informacién en alta frecuencia (ver Figura 19).

TRANSFORMADA RAPIDA DE FOURIER ANALISIS WAVELET

- -~

FRECUENCIA EscALA

-

TIEMPO TEMPO
Figura 19. Comparacién entre la STFT (tiempo-frecuencia) y el andlisis Wavelet (tiempo-escala).
Fuente: (Nieto & Orozco, 2008)

73

Acelerando la fusién de imdgenes mediante computacién heterogénea

A diferencia de Fourier, en donde las funciones base son senos y cosenos
de duracidn infinita, en el andlisis Wavelet la base son funciones localizadas
en frecuencia (dilatacién) y en tiempo (traslacion). Una Wavelet es una
"pequefia onda" de duracidn limitada, es decir, su energia esta concentrada
en el tiempo alrededor de un punto, lo que proporciona una adecuada
herramienta para el andlisis de fendmenos transitorios, no estacionarios,
variables en el tiempo y aquellos que presenten discontinuidades (ver
Figura 20).

Figura 20. a) Sefial seno. b) Wavelet Daubechies.

Transformada wavelet continua (CWT), permite el andlisis de una sefal en
un segmento localizado de esta y consiste en expresar una sefial continua
como una expansion de términos o coeficientes del producto interno entre
la sefial y una Funcién Wavelet Madre 1 (t). Una Wavelet Madre es una
funcién localizada, perteneciente al espacio L?(R), que contiene todas las
funciones con energjia finita y funciones de cuadrado integrable definida.

feEL?= [If(OPdt =E < (6)

De esta manera se cuenta con una unica ventana modulada y a partir de
esta se genera una completa familia de funciones elementales mediante
dilataciones o contracciones y traslaciones en el tiempo (1),
denominados dtomos wavelet o wavelet hijas que cumplen con todas las
condiciones de la forma:

74

Métodos basados en Transformadas Wavelet Discretas (TWD)

t—u

Yus(®) = =9 () (7)

La Wavelet Madre debe cumplir con la condicién de admisibilidad

2
¢y = [T do <o ®)

Lo que quiere decir que la funcién 1 (t) esta bien localizada en el tiempo,
es decir, que la funcidn oscile alrededor de un eje y su promedio sea cero,

matemadticamente fjoool/)(t) dt = 0, y que la transformada de Fourier 1 (t)

sea un filtro continuo pasa-banda, con rdpido decrecimiento hacia el infinito
y hacia w = 0 (Medina et al., 2004).

La transformada Wavelet de una funcion f(t) a una escala s y una posicion
u, es calculada por la correlacion de f(t) con una ¥, ((t) de la forma

CWTf(w,s) = {f,Pus) = [, f(OPys (Ot ©)
CWTf(w,5) = [f(&) =9 () dt (10)

Para escalas pequefias (s < 1), con la CWT se obtiene informacidn
localizada en el dominio del tiempo de f(t) y para escalas (s >1) la
informacion de f(w) se presenta localizada en el dominio de la frecuencia.

La transformada wavelet maneja un plano de tiempo-escala, pero también
puede ser de tiempo-frecuencia, para esto se recurre al Teorema de
Parseval y de esta manera es posible definir la transformada Wavelet en el
dominio de la frecuencia w.

CWTf(w,s) = [~ FEVsY (sw)e™* dw (11)

Para poder introducir el término de escala y frecuencia, es necesario ante
todo definir una constante (c), que permite realizar un cambio de variable
de una escala sa una frecuencia w:

75

Acelerando la fusién de imdgenes mediante computacién heterogénea

Sow= (12)
Con este cambio de variable es posible observar que la CWT localiza de
forma simultanea la sefial f(t) en el dominio del tiempo como su espectro
f(w) en el dominio de la frecuencia (Bracewell, 1978).

De igual manera es posible realizar una transformada Wavelet inversa, que
permita reconstruir la sefial a partir de la CWT (que preserva la energia de

la sefial) y las i, 5 ().

duds

f&) = Cy Jo 2 CWTf(u,)us () =~ (13)

4.2 Transformada Wavelet discreta (DWT)

Por la complejidad en el tratamiento numérico de la DWT, debido a la
variabilidad en forma continua de los pardmetros de escala como de
traslacion, es indispensable contar con una herramienta que permita la
discretizacidon de esta. Es asi que se pasara de un mapeo continuo a un
espectro o conjunto finito de valores, a través del cambio de la integral por
una aproximacion con sumatorias. La discretizacidon permite representar
una sefial en términos de funciones elementales acompafiadas de
coeficientes.

O =) i

A

En los sistemas Wavelet, las Wavelet madre ¥(t) traen consigo unas
funciones de escala ¢(t), las primeras son las encargadas de representar
los detalles finos de la funcidon mientras las funciones de escala realizan una
aproximacion. Es posible entonces representar una sefial f(t) como una
sumatoria de funciones Wavelet y funciones de escala:

f@®) =2k 2jCup(®) + 2k Xjdjh(t) (14)

76

Métodos basados en Transformadas Wavelet Discretas (TWD)

4.2.1 Funcidn de escala y Funcion Wavelet

Una forma de discretizar los parametros de escala y frecuencia es
mediante un muestreo exponencial, para garantizar una mejor
aproximacion, con el cual se pueden redefinir los pardmetros a valores
discretos de la siguiente manera:

s=a’u=kna’’l

De esta maneray reemplazando en la ecuacién (7), obtenemos la familia de
funciones discretizadas que constituyen bases ortonormales de Wavelets

en L?(R).
1 t —kna™/
b=y (22
= aél,b(ajt — kn) (15)

Para obtener una mejor aproximacion de la sefial en niveles de resolucidon
muy finos, es necesario que las Wavelet sean dilatas por un factor de 27/,
permitiendo tener una resolucidn de 2/, estas funciones son denominadas
Wavelets Diddicas.

(8) = 292t — kn)j k € Z (16)

Teniendo en cuenta la ecuacién (9) la transformada Discreta Wavelet tiene
la forma:

CWTF (G, sk) = (f ju) = S, f(Owj(8) dt (17)

DWTF(j,k) = [~ f(©)229(2t — kn) dt (18)

Teniendo en cuenta el anterior procedimiento es posible generar una
familia de funciones de escala definidas:

@) = 2502t — kn)j k € (19)

La representacion general de la sefial f(t) sera de la forma:

77

Acelerando la fusién de imdgenes mediante computacién heterogénea
I ; I i
f@) = 2xXjcia229 (20t — kn) + X X djp 220 (27t — ken) (20)

4.2.2 Coeficientes de escala (c; ;) y
Coeficientes Wavelet (d; ;)

Para representar una sefial f(t) y teniendo en cuenta la ecuacién (20),
es necesario encontrar los valores de los coeficientes (c;jx) y (d;) los
cuales permiten finalmente hacer la aproximacion de la sefial. Estos son
producto de una multiplicacidon vectorial entre la funcién f(t) y la funcién
de escala (¢) o wavelet (). Para los coeficientes de escala tenemos:

G = (f0), 9, (0) = [T | ()9 ()] dt 21)

(f(t)JPj,k(t)) = Cj,—oo((pj,—oo(t)'(p(j,k)(t)) +-t
Cj,k<(p]',k @), ©in (t)>+- o Cj,m<§0j,oo), 9 (t)) (22)

Ya que las funciones wavelet y de escala cumplen la propiedad de
ortonormalidad, es posible asegurar que uno de los productos vectoriales
sea diferente de cero, ({@jx(),@jm@®)) =8k -m)) o

(¥ (0), @jm(®)) = 8(k —m)) por lo tanto:
G = {F(£), @;m(®)) = fttff O (27t — k) dt (23)
De igual manera para los coeficientes Wavelet:

dige = (F O, Yim(@®) = [, F OO0t = k) dt (24)

4.2.3 Espacios vectorialesV;y W;

Las funciones de escala (¢) corresponden a la proyeccién ortogonal de
f(t) sobre un espacio V; c L?(R). Dicho espacio agrupa todas las
aproximaciones con resolucién 27/ y en él estd contenida toda la
informacion necesaria para realizar aproximaciones con menor resolucion,

78

Métodos basados en Transformadas Wavelet Discretas (TWD)

con lo que se puede afirmar que todos los espacios son versiones escaladas
del espacio central V,, (Espacios anidados).

...cV,cV,cV c..cl?
VieEZf(t) eV, & f(2/t) €V, (25)

Las funciones Wavelet { generan el espacio vectorial W; (espacio de
detalle) definido como el complemento ortogonal de V; en V;_,, donde

Viia =V, W, (26)

Estos espacios presentan al igual que los espacios V; , la propiedad de
escalado, por lo cual:

Vji€Zf(t) EW; & f(2/t) e W, (27)

4.2.4 Aplicacion de Transformada discreta
de Wavelet para la fusién de imagenes

El mayor inconveniente de los métodos anteriores trabajados en esta
investigacion, es que modifican la informacién espectral de las bandas MS
originales, lo que puede suponer un problema, por ejemplo, si las imagenes
fusionadas resultantes se van a emplear para la obtencién de informacién
tematica via clasificacion espectral.

El andlisis multirresolucion (MRA por sus siglas en inglés) se basa en la
teoria segun la cual el analisis de unaimageny la bisqueda de patrones son
mas eficientes si la imagen es analizada a diferentes niveles de resolucidn.
El MRA permite descomponer datos bidimensionales en componentes de
distinta frecuencia, para estudiar cada una de estas componentes a una
resolucion espacial acorde con su tamafio. De esta forma, en cada
resolucién la informacién de detalle (componentes de alta frecuencia)
caracteriza distintas estructuras.

Este método se ha convertido en una herramienta de gran aplicacién en el
desarrollo de nuevos métodos de fusion. A lo largo de los afios, se han

79

Acelerando la fusién de imdgenes mediante computacién heterogénea

propuesto nuevos métodos de fusién empleando el MRA basado en las
transformaciones Wavelet discretas (TWD), que permiten minimizar el
problema anteriormente citado. La aproximacidon discreta de Ia
transformada Wavelet puede realizarse a partir de distintos algoritmos.
Dos de los mas empleados en la fusion de imagenes de teledeteccion son
los algoritmos de Mallat y A trous. Cada uno, con diferentes propiedades
matematicas conduce a distintas descomposiciones y, por lo tanto, a
distintas imagenes fusionadas, dado las investigaciones realizadas los
mejores resultados se obtienen usando el algoritmo A trous. (Gonzélez-
Audicana, et al., 2005).

4.3 Fusién de imagenes usando la Transformada Wavelet

En las dltimas décadas, las estrategias de fusion de imagenes mas
utilizadas se han basado en técnicas de analisis multirresolucién. El objetivo
es encontrar una transformada discreta que mejore la respuesta espacial y
que no degrade la resolucidn espectral, desde este punto de vista la
transformada discreta de ondiculas (Wavelet) (TDW) se puede considerar
segun los resultados de la evaluacién de la fusidon de imagenes, han
demostrado que la fusién de imagenes satelitales usando la transformada
de wavelet mejora la resolucidn espacial y degrada en menor valor la
resolucién espectral que los métodos tradicionales (Nufez et al., 1999).

La transformada discreta Wavelet, es una transformacion lineal que tiene
una gran utilidad en el drea de procesamiento de sefiales. Una de sus
principales aplicaciones consiste en separar un conjunto de datos en
componentes de distinta frecuencia espacial representados en escalas
comunes.

Los algoritmos de Mallat y el ‘A trous’ son los algoritmos de transformacion
wavelet discreta mas empleados en el ambito de la fusidon de imagenes.
Cada uno, con distintas propiedades matematicas, conduce a distintas
descomposiciones y, por lo tanto, a distintas imagenes fusionadas. A pesar

80

Métodos basados en Transformadas Wavelet Discretas (TWD)

de que desde el punto de vista tedrico el algoritmo ‘A trous’ es menos
adecuado que el de Mallat para extraer detalle espacial en el ambito del
analisis multirresolucién, este ha permitido obtener imagenes con una
calidad global sensiblemente mayor que el de Mallat (Gonzalez-Audicana,
2003).

4.4 Analisis multirresolucién y las Transformaciones
Wavelet

El analisis multirresolucién, basado en la teoria Wavelet permite
descomponer datos bidimensionales en componentes de distinta
frecuencia y estudiar cada componente a una resolucién acorde con su
tamano. A diferente resolucion, el detalle de una imagen (componentes de
alta frecuencia) caracteriza distintas estructuras fisicas de la escena
(Mallat, 1989). A resoluciones groseras, este detalle corresponde a las
estructuras o elementos de mayor tamafio mientras que a resoluciones
finas este detalle corresponde a las estructuras de menor tamafo. Las
transformaciones Wavelet permiten en el ambito del andlisis
multirresolucidn, extraer el detalle espacial que se pierde al pasar de una
resolucion espacial a otra menor. La aproximacion discreta de la
transformada Wavelet puede realizarse a partir de distintos algoritmos.
Uno de los mas empleados en la fusién de imagenes es el algoritmo de ‘A
trous’.

4.4.1 Método A trous para la fusién de imagenes

Dutilleux en (1987), propuso el algoritmo de A trous basado en la
transformada de ondiculas (Wavelet) calculadas mediante el algoritmo de
cavidades (A trous). En 1987 Dutilleux propuso el algoritmo de Wavelet A
trous (““con hoyos”). Presenta una independencia en la direccionalidad del
proceso de filtrado y por otro lado es redundante, en el sentido de que,
entre dos niveles de degradacién consecutivos, no existe una compresion
espacial diadica de la imagen original, si no que se mantiene el tamafio de

81

Acelerando la fusién de imdgenes mediante computacién heterogénea

dicha imagen. Si bien esto se traduce en un mayor coste computacional
(Chibani y Houacine, 2003), ha mostrado que tanto la calidad espacial como
espectral de las imagenes fusionadas mediante el algoritmo A trous es
superior a la proporcionada por otros algoritmos. En este método de fusion
existe una amplia gama de estrategias para integrar la informacidn espacial
contenida en la imagen pancromatica (PAN), dentro de cada una de las
bandas de la imagen multiespectral (MULTI), ninguna de estas estrategias
permite controlar de una forma objetiva el compromiso entre la calidad
espectral y espacial de las imagenes fusionadas. Con objeto de paliar la
limitacidn descrita en el parrafo anterior, en esta investigacion se presenta
la fusion de imagenes mediante el algoritmo Wavelet A trous, que
establece objetivamente el grado de compromiso entre la calidad espectral
y espacial de la imagen resultante mediante curvas caracteristicas. Estas
curvas representan conjuntamente indices de calidad espacial y espectral.

4.4.2 Algoritmos de A trous

Dutilleux propuso el algoritmo basado en la transformada de ondiculas
calculada mediante el algoritmo de (con agujeros) A trous. En la Figura 21
es posible observar una representacion del proceso de degradacion de una
imagen, utilizando un del algoritmo de tipo no decimado (TDWM). El detalle
espacial que se pierde al pasar de un nivel al nivel consecutivo se obtiene
directamente restando las imagenes aproximadas de dichos niveles.

Imagen 27 (x y)

Imagen 27 .(x. 1)

Imagen 27 (x. 1)

Imagen 2/, (x, ¥)

Diferenciaentre eldetalle

espacial del nivel 2/ y 2"

Figura 21. Algoritmo tipo decimado (TDWM). Fuente: (Gonzdlez-Audicana, 2004).

82

Métodos basados en Transformadas Wavelet Discretas (TWD)

Diversos trabajos han demostrado que las transformadas de ondiculas
redundantes o no decimadas, proporcionan mejores resultados en
determinadas aplicaciones de procesado de imagenes, como son
eliminacion de ruido (Mallat, 1996) o clasificacion de texturas y mas
recientemente en el caso de la fusidn de imagenes (Chibani, 2003) (Nufiez,

1999).

Las aproximaciones discretas de la transformacién Wavelet algoritmo ‘A
trous’ (con agujeros) (Starck y Murtagh 1994), el esquema de
descomposicion de imagenes se representa con un paralelepipedo (Figura
7). La base de éste es también la imagen original A,; de resolucién 2/ de C
columnas y F filas. Cada nivel del paralelepipedo es una imagen
aproximacion de la imagen original. Conforme se asciende de nivel, las
sucesivas aproximaciones presentan menor resolucién, siendo ésta de 2V
en el nivel N del paralelepipedo ya que también en este caso el factor de
degradacion es diadico. Cada una de las imagenes aproximacion se obtiene
aplicando una funcién de escala. El detalle espacial que se pierde al pasar
de la imagen A,; a A,j-1 se recoge en una Unica imagen de coeficientes
wavelet, w,;-1, frecuentemente denominada plano wavelet y que se
obtiene restando las imagenes original y aproximacion. Cuando se aplica la
transformacion inversa, la imagen aproximacién A,; puede reconstruirse
sumando a la imagen aproximacion A,j-1 el plano wavelet w,j-1., el
algoritmo ‘A trous’ es invariante a la translacién por lo que todas las
imagenes aproximacion y todos los planos wavelet resultantes de la
descomposicion tienen el mismo tamafio que la imagen original. La
implementacién practica del algoritmo ‘A trous’ se realiza empleando un
filtro bidimensional de paso bajo asociado a la funcién de escala, en este
caso, una spline bi-cibica. El algoritmo ‘A trous’, es no-ortogonal, lo implica
que un determinado plano wavelet w,j-1 para una escala 2/71, puede

retener informacién de la escala vecina 2/.

83

Acelerando la fusién de imdgenes mediante computacién heterogénea

El andlisis multirresolucion basado en la teoria de Wavelet, permite Ia
presentacion de los conceptos de detalle entre niveles sucesivos de escala
o resoluciéon. La descomposicion de Wavelet es usada para la
descomposicidon deimagenes. Elmétodo esta basado en la descomposicion
de la imagen en mudiltiples canales basados en su frecuencia local. La
transformacion de la Wavelet provee un esquema para descomponer una
imagen en un nuevo numero de imagenes, cada una de ellas con un grado
de resolucion diferente.

4.5 Método de fusién usando el algoritmo de A trous

La transformada Wavelet A trous para la fusién de imagenes satelitales
permite generar mejores imagenes fusionadas gracias a la forma en que se
obtienen los coeficientes resultantes de la transformacién, obteniendo asi
los planos wavelet que tienen mayor informacidn espacial y espectral de las
imagenes originales.

4.5.1 Implementacién de la Transformada Wavelet algoritmo de A
trous para la fusién de imagenes WorldView-2

Sintéticamente y como resultado de esta investigacion se proponen los
siguientes pasos para la implementacion de la transformada Wavelet
algoritmo de A trous, generando dos planos Wavelet, para la fusién de
imagenes satelitales (Upegui y Medina, 2019).

Paso 1. Registrar una composicién a color RGB (verdadero color) de la
imagen MS con la imagen PAN, usando el mismo tamafio de pixel de esta
dltima. Transformar la imagen RGB en componentes HSV (Value, Tono y
Saturacion).

Paso 2. Ajustar la PAN a la componente Value (Pan-V), ajuste de
histogramas. Aplicar el concepto de Transformada Wavelet algoritmo de A
trous al componente Pan-V, se resta Pan-V con laimagenresultante, de esta
manera obteniendo el plano Wavelet w1, donde se almacena lainformacién

84

Métodos basados en Transformadas Wavelet Discretas (TWD)

espacial de Pan-V. se aplica Transformada Wavelet algoritmo de A trous a
laimagenresultante y al restarla con la anterior se obtiene el segundo plano
Wavelet wa.

Paso 3. Generar una nueva componente Tono a partir de la suma de los
planos Wavelet y la componente V, la matriz obtenida inmediatamente
anterior para obtener la nueva componente Value (N-VAL), el cual
corresponde N-Val=V+w1+w2.

Paso 4. Generar una nueva composicion HSV (N-HSV), concatenando la N-
VAL junto con las componentes originales H y S (obtenidas en el paso 1).

Paso 5. Realizar la transformacién HSV a RGB, usando la nueva composicién
N-HSV. De esta manera se obtiene la nueva imagen multiespectral
fusionada, que mantiene la resolucidn espectral ganando asi la resolucidén
espacial, (ver Figura 22).

Multiespectral Pancromatica
RGB
B Pan lgualar Histograma Pan alde V
[G
R Pan-V FRNRFREE
o Plano Wavelet l_ : _:'s 1 J_;i _,F
a4 Jd 1 4 &4
; : . 313 % 33
! wi Diferencia l Filtrar |75 5 77 & 7%
l_ LA A R A &
TEE Y
RGB - IH5 9 Pan- \/ EEmE
H ‘ "’r')i.!”.'},:‘."lfﬁuﬁl\.'
LU I I I I |
v o |— B @ Jis® Ja @ Jig 0 Sl
- & LU oo 0 o0 0
w2 | Diferencia | Filtrar ¢ 44,0 %, 04,04,
|_ EN RN -'J'u"rj":
1 ¢
1 Fos @ B ® T 0 Bis© sl
¢ %00 4 a0 00
Pan- y o ey
e v Jase® Jaa 0 Bt Jog 0 Bsd
G fu
H| | IHS -RrGB R fus
V=wilrw2

Figura 22. Diagrama del proceso de fusién de imdgenes usando TWA.
Fuente: Adaptado de Gonzdlez-Audicana et al, 2005

85

Acelerando la fusién de imdgenes mediante computacién heterogénea

De esta manera la transformada Wavelet A trous implementada para la
fusion de imagenes satelitales permite generar mejores imagenes
fusionadas gracias a la forma en que se obtienen los planos Wavelet, estos
planos Wavelet tienen mayor informacion espacial y espectral de las
imagenes originales.

4.5.2 Modelo de procesamiento heterogéneo parala
transformada Wavelet A trous

La Figura 23 presenta el modelo de procesamiento CPU/GPU usado
para esta técnica, donde se inicia con la conversidn de un espacio de color
RGB a HSV. Después, se realiza el ajuste de laimagen pancromatica a partir
del histograma de Value, todo esto haciendo uso de la CPU. Acto seguido,
se transfiere la pancromatica ajustada a la memoria global de la GPU para
realizar un proceso de filtrado. Este proceso de filtrado se obtiene al aplicar
la operacidon de convolucién entre la pancromdtica ajustada y el filtro
Bicubic Spline. Asi mismo, se repite este proceso, pero se utilizan la matriz
resultante filtrada anteriormente y el filtro Bicubic Spline agregando
columnas y filas en cero, todo esto en GPU. Posteriormente se obtienen los
planos Wavelet a partir de la aplicacion de estos filtros, para finalmente,
generar la nueva componente Value a partir de la pancromatica original y
los dos planos wavelet obtenidos. Una vez se ha realizado esto, se hace un
stack de las bandas originales de Hue y Saturation con la nueva Value. Por
ultimo, se realiza la conversiéon de HSV a RGB.

1 2 5

Generaciéon de la

nueva banc

intensidad

2 Aplicacion s Planos
O: de filtros Wavelet
3 4

Figura 23. Modelo de procesamiento heterogéneo para la transformada Wavelet A trous.

86

Métodos basados en Transformadas Wavelet Discretas (TWD)

4.5.3 Implementacién de la transformada Wavelet A trous en
Python

A continuacién, se presentan fragmentos secuenciales de cddigo en
Python utilizados para poder llevar a cabo la fusidn de imagenes satelitales
mediante el método A Trous. En el repositorio del libro se encuentra el
script completo con las imagenes de prueba: https://github.com/Parall-
UD/libro_fusion_imagenes_satelitales GPU.

Definicion de dependencias - Lineas 1 - 9:

1. import skimage.io

2. from skimage.color import rgb2hsv, hsvargb
3. import numpy as np

4. import pycuda.autoinit

5. import pycuda.driver as drv
6

7

8

9

import pycuda.gpuarray as gpuarray

from pycuda.elementwise import ElementwiseKernel
import cupy as cp

from cupyx.scipy.ndimage import filters

De igual manera como en las implementaciones descritas a lo largo de este
libro, lo primero que se debe realizar es la importacion de librerias
necesarias para la correcta ejecucién del cédigo. De acuerdo a esto, de
nuevo se importan librerias como scikit-image, numpy y pycuda. Sin
embargo, en esta ocasion se hace uso de un mddulo extra de la libreria
scikit-image, este mddulo es color el cual nos proporciona funcionalidades
para trabajar en distintos espacios de color. Adicionalmente, se importa
cupy la cual es una libreria matricial de cddigo abierto acelerada mediante
CUDA proporcionando computacion acelerada por GPU con Python.

Nucleo para ajuste espectral - Lineas 10 - 13:

10. adjustment values = ElementwiseKernel(

1. "float *x, float *z",
2. "if(x[i] < 0){z[i] = 0.0;}else{z[i] = x[i];}",
13. "adjust_value")

87

https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU
https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU

Acelerando la fusién de imdgenes mediante computacién heterogénea

En estas lineas de cddigo, se establece un nucleo simple mediante la
funcién ElementwiseKernel. Este nucleo tiene como propdsito tomar una
matriz y evaluar cada uno de sus posiciones, si el valor de una posicién dada
resulta ser negativo se convertird a un cero. Como se puede observar en
estas lineas lo que se realiza es embeber cddigo de C-CUDA en una variable
netamente del lenguaje de Python.

Funcion para el ajuste de histogramas - Lineas 14 - 25:

14. def hist_match(source, template):

15. oldshape = source.shape

16. source = source.ravel()

17. template = template.ravel()

18. s_values,bin_idx,s_counts=np.unique(source, return_inverse=
True,return_counts=True)

19. t values, t counts = np.unique(template, return_counts=True)

20. s_quantiles = np.cumsum(s_counts).astype(np.float64)

21. s quantiles /=s_quantiles[-1]

22. t_quantiles = np.cumsum(t_counts).astype(np.float64)

23. t _quantiles /=t quantiles[-1]

24. interp t values = np.interp(s_quantiles, t_quantiles, t_values)

25. returninterp t values[bin_idx].reshape(oldshape)

En este fragmento de cddigo, se define la funcién nombrada hist_match()
la cual tiene como objetivo realizar un ajuste de histogramas entre dos
imagenes mediante su representacidon matricial. En este proceso, como
primera instancia se obtienen el conjunto de valores de pixeles Unicos y sus
indices, con su respectivo recuento. Acto seguido, se aplica la funcion de
numpy cumsum a los recuentos y asi poder realizar un proceso de
normalizacién, haciendo uso del nimero de pixeles para obtener las
funciones empiricas de distribucion acumulativa para las imagenes
denominada source y template. Finalmente, se realiza una interpolacion
lineal para encontrar los valores de pixeles en la imagen template que se
correspondan mas con los cuartiles en la imagen source.

88

Métodos basados en Transformadas Wavelet Discretas (TWD)

Lectura y carga de imdgenes - Lineas 26 - 27:

26. multispectral=skimage.io.imread('multispectral.tiff',plugin = 'tifffile')
27. panchromatic = skimage.io.imread('panchromatic.tiff',plugin = 'tifffile")

En estas lineas de cddigo, se realiza la lectura de laimagen multiespectral y
pancromatica, esto, mediante la funcién imread perteneciente al mddulo io
de la libreria scikit-image. Esta funcidn convierte las imagenes que se
desean leer, a un arreglo multidimensional de numpy; esto, con el
propdsito de poder ser utilizadas y manejadas mediante su representacion
matricial.

Conversion de espacio de color RGB a HSV - Lineas 28 - 32:

28. hsv = rgb2hsv(multispectral)

29. val = hsv[:,:,2]

30. sat = hsv[;,:,1]

31. mat = hsv[;,:,0]

32. pani = hist_match(panchromatic,val)

A partir de estas lineas, se realiza la conversidn de laimagen multiespectral
de un espacio de color RGB a Hue Saturation Value (HSV), esto mediante la
funcion rgbz2hsv() de Ia libreria scikit-image. Acto seguido, se realiza la
separacion de bandas como valor, saturaciéon y matiz. Lo anterior, haciendo
uso de indexacién de matrices de numpy. Por ultimo, utilizando la funcién
hist_match() se realiza el ajuste de histogramas entre la imagen
pancromatica y la banda de valor, extraida previamente almacenando su
resultado en la variable pani. Tanto la separacion de bandas, como el ajuste
de histogramas se realiza sobre la CPU.

Filtrado con Bicubi Spline - Lineas 33 - 36:

33. s = np.array([[1/256,1/64,3/128,1/64,1/256],[1/64,1/16,
3/32,1/16,1/641],[3/128,3/32,9/64,3/32,3/128],[1/64,1/16,3/32,1/16,1/64],[1/256,1/6 4,
3/128,1/64,1/256]])

34.s_gpu = cp.array(s)

35. p_gpu = cp.array(pani)

36. I1_gpu =filters.correlate(p_gpu, s_gpu, mode='constant’)

89

Acelerando la fusién de imdgenes mediante computacién heterogénea

Posteriormente, en estas lineas se crea la variable s, la cual almacena un
arreglo de numpy, dicho arreglo representa el filtro Bicubic Spline. Después
se transfiere a memoria global de la GPU este filtro junto con la
pancromdtica ajustada. Lo anterior, mediante la funcién array() de la
libreria cupy. Una vez se tiene estas variables en la GPU, se procede a aplicar
un proceso de filtrado, al aplicar la operacion de convolucién entre la
pancromatica ajustada y el filtro Bicubic Spline. Este filtrado se realiza
mediante la funcién Correlate() propia del mddulo filters de cupyx, y se
almacena en la variable I1_gpu.

Filtrado con Bicubic Spline modificado - Lineas 37 - 39:

37.s1=np.array([[1/256, 0, 1/64, 0, 3/128, 0, 1/64, 0, 1/256],[0, 0, 0, 0, 0, 0, 0, 0, 0],[1/64,
0,1/16, 0, 3/32, 0, 1/16, 0, 1/64],[0, 0, 0, 0, 0, 0, 0, 0, 0], [3/128, 0, 3/32, 0, 9/64, O,
3/32, 0, 3/128],[0, 0, 0, 0, 0, 0, 0, 0, 0],[1/64, 0, 1/16, 0, 3/32, 0, 1/16, 0, 1/64], [0,
0,0,0,0,0,0,0,0],[1256, 0, 1/64, 0, 3/128, 0, 1/64, 0, 1/256]])

38.s1_gpu = cp.array(s1)

39. [2_gpu =filters.correlate(l1_gpu, s1_gpu, mode='constant')

Asimismo, se repite de nuevo el proceso anterior, pero se establece un
nuevo filtro el cual es Bicubic Spline agregando columnas vy filas en cero.
Este filtro es almacenado en la variable s1 en CPU. Acto seguido, se hace la
transferencia de este nuevo filtro a memoria global de GPU mediante la
libreria cupy. Una vez se ha realizado esto, se procede a utilizar la matriz
guardada en la variable I1_gpu y s1_gpu para llevar a cabo el proceso de
filtrado mediante convolucidn. Lo anterior, siendo ejecutado sobre la GPU.

Generacion del primer plano Wavelet - Lineas 40 - 44:

40. Wi=(pani-l1_gpu.get())

41. W1_gpu = gpuarray.to_gpu(W1)

42. W1_gpu_new = gpuarray.empty like(W1_gpu)
43. adjustment_values(W1_gpu,W1_gpu_new)
44.W1=W1_gpu_new.get().astype(np.uint8)

90

Métodos basados en Transformadas Wavelet Discretas (TWD)

En estas lineas de cddigo, se realiza el proceso para obtener el primer plano
Wavelet. Este proceso consiste en tomar la pancromadtica ajustada y
restarle en CPU la matriz consolidada en la variable I1_gpu. Posteriormente,
se realiza un salto a GPU del resultado de la resta anterior, para poder
realizar de forma mas rdpida el ajuste de valores negativos, mediante el
nicleo generado al inicio de esta implementacién usando
ElementwiseKernel. Por ultimo, se realiza la transferencia a memoria de
CPU del plano Wavelet siendo almacenado en la variable W1.

Generacion del segundo plano Wavelet - Lineas 45 - 49:

45. W2=(I1_gpu.get()-12_gpu.get())

46. W2 gpu = gpuarray.to_gpu(W2)

47.W2_gpu new = gpuarray.empty like(W2_gpu)
48. adjustment_values(W2_gpu,W2 gpu new)
49. W2 =W2 gpu new.get().astype(np.uint8)

En este mismo orden de ideas, se debe obtener un segundo plano Wavelet.
Sin embargo, aunque en este caso el proceso es el mismo, las variables
utilizadas en este no lo son. Como primera instancia, se debe realizalaresta
entre la variable I1_gpu y 12_gpu utilizando la funcién get() para ejecutar
esta operacién en CPU. Acto seguido, se transfiere a memoria global de
GPU la matriz resultado de esta resta para realizar su ajuste de valores
negativos. Para finalizar se trae amemoria de CPU dicha variable y se realiza
su conversion a enteros de 8 bits. Finalmente, la variable que contiene el
segundo plano Wavelet es nombrada Wa2.

Generacion del nuevo componente de intensidad - Lineas 50 - 51:

50. nint=(panchromatic+W1+W2).astype(np.uint8)
51. n_hsv = np.stack((mat, sat, nint),axis=2)

A partir de estas lineas, se genera un nuevo componente de intensidad al
realizar la suma de la representacion matricial de laimagen pancromaticay
los planos Wavelt W1y W2 generados previamente. Después, se realiza el

91

Acelerando la fusion de imdgenes mediante computacion heterogénea

proceso de concatenacion de las bandas de matiz, saturacion y el nuevo
componente de intensidad mediante la funcién stack de numpy .

Generacion de la nueva imagen - Lineas 52 - 53:

52. fusioned_image = hsvargb(n_hsv).astype(np.uint8)
53. skimage.io.imsave('atrousgpu_image.tif',fusioned image, plugin = 'tifffile')

Sin embargo, al realizar la concatenaciéon de estas bandas se sigue
manteniendo el espacio de color HSV, pero se requiere realizar la
conversion al espacio de color RGB. Debido a esto, mediante la funcién
hsv2rgb() se realiza este proceso y se almacena en la variable
fusioned_image. Por ultimo, mediante la funcidn imsave de skimage se
guarda localmente la imagen generada a partir de la fusidon de estas
imagenes. La Figura 24C presenta la imagen resultado al realizar la fusion
de la imagen multiespectral (Figura 24A) y pancromdtica (Figura 24B),
ambas con dimensidon de 1024 pixeles por 1024 pixeles. Lo anterior,
mediante la transformada Wavelet A trous.

o i . o

Figura 24. Imagen fusionada de 1024x1024 pixeles mediante
Transformada Wavelet algoritmo de A trous.

92

indices de evaluacién de la calidad espacial y espectral de las imdgenes fusionadas

Capitulo 5

Indices de evaluaciéon de la
calidad espacial y espectral
de las imégenes fusionadas

El procesamiento de imagenes es una herramienta muy util en muchos
campos de las ciencias modernas, una de los procesos corresponde a la
fusién de imagenes satelitales, el resultado de estos algoritmos
matematicos son imagenes, las cuales deben ser evaluadas para su
interpretacion. Las imagenes fusionadas a menudo deben correlacionarse
con la imagen original para garantizar que la imagen resultante cumple
algun propdsito en especifico, para la evaluacion de la calidad de estas
imagenes fusionadas se utilizan los siguientes indices: coeficiente de
correlacidn, entropia, DIV, Bias, ERGAS, RASE, RMES, Qu, los cuales son
muy Utiles para decidir qué imagen fusionada degrada en menor valor la
riqueza espectral con una ganancia significativa espacialmente.

5.1 Bias

Se basa en la division de los valores medios de la imagen procesada y
original. El ideal tedrico del valor de sesgo es 0. Un pequefio valor positivo

93

Acelerando la fusién de imdgenes mediante computacién heterogénea

o0 negativo de sesgo significa una fuerte similitud entre x e y. (Vaiopoulos,
2011).

Bias =1 — (28)

Rl&

5.2 DIV (Difference In Variance)

DIV (diferencia en varianza): representa la varianza de la imagen
procesada dividida por la varianza de la imagen original sustraido por uno.
Los valores de interpretacion son similares al sesgo (Vaiopoulos, 2011).

2
Div=1- —g (29)

5.3 Entropia

Imagen Entropia (E): este indice refleja la cantidad de informacidon
incluida en una determinada imagen. La entropia requiere analisis de
histograma: p es el porcentaje de pixeles cuyo valor cae en una
determinada clase bin, mientras que bc es el nimero total de clases bin
(Vaiopoulos, 2011).

E=-Y,p-log? (30)

5.4 Coeficiente de correlacién (corr)

La correlacién entre las diferentes bandas de las imagenes fusionadas
y las bandas de la imagen original se pueden calcular con la siguiente
ecuacion:

znp”‘(A] A)(B]—é)

corr(A/B) = —
Jznplx nplx(B] B)

€2))

Donde Ay B son los valores de la media de las imagenes correspondientes,
corr(A/B) se llama coeficiente de correlacién y varia entre -1y +1. Se usan
los signos + y - para las correlaciones positivas y negativas,

94

indices de evaluacién de la calidad espacial y espectral de las imdgenes fusionadas

respectivamente. Nétese que corr(A4/B) es una cantidad adimensional, es
decir no depende de las unidades empleadas. El valor ideal de la
correlacion, tanto espectral como espacial es 1.

5.5 Indice ERGAS

La evaluacidn de la calidad de las imagenes fusionadas se puede llevar
a cabo mediante los indices ERGAS espectral y espacial. La definicion de
ERGAS espectral (del francés Erreur Relative Globale Adimensionallede
Synthése) (Wald, 2002; Ranchin et al., 2003) viene dada por la ecuacién 32:

ERGAS — 1002 1 ZNBandas (RMSEEspectral(Bandai))z
Espectral 1\ Npandas i=1 (MULTIi)Z

(32)

Donde h y [representan la resolucion espacial de las imagenes PAN y
MULTI; NBandas es el nimero de bandas de la imagen fusionada; MULTI*
es el valor de la radiancia de la banda i — ésimade imagen MULTI (Wald,
2000) y RMSE sera definida como sigue (33):

RMSEgspectrar(Banda’) = — \/Z’i"fl(MULTIi(j) — FUSI(j))? (33)

Siendo NP el nimero de pixeles de la imagen FUS!(x, y). Adicionalmente,
Lillo y su equipo (2005) proponen otro indice, denominado ERGASgpqcial
que estd inspirado en el indice ERGAS espectral (Lillo-Saavedra et al., 2005).
El objetivo del indice ERGASggpqciar €S €valuar la calidad espacial de las
imagenes fusionadas por lo que se define como (34):

h 1 Npandas | (RMSE ial(Bandat))?
ERGASEspacial = 1007\/_21':[?1 ¢ Eszgif;;i)z (34)

NBandas

Donde RMSEgpqciq; €8 definido como sigue en la ecuacion 35:

RMS Egspacia (Banda') = &[SI, (PANLG) — FUS'(1)? (35)

95

Acelerando la fusién de imdgenes mediante computacién heterogénea

Los mejores resultados de estos indices (ERGAS espacial y espectral) se
obtienen cuando es mas cercano a cero.

5.6 Iindice RASE

El indice RASE se expresa como un porcentaje (ecuacion 36):

2
M;

RASE = 100%\]%2?:1 W] (36)

Donde h es la resolucién de la imagen de alta resolucién especial (PAN) y [
es la resolucién de la imagen de baja resolucién espacial (MULTI) (Wald,
2000). Los mejores resultados se obtienen cuanto el porcentaje estd mas
cerca a cero.

5.7 Indice de calidad universal Qu

Este modelo de indice de calidad identifica cualquier distorsién como
una combinacion de tres factores: pérdida de correlacidn, distorsion de
luminancia y contraste de distorsion (Wang & Bovink, 2002). El indice se
obtiene con la ecuacién 37.

2Xy 20x0y

_ Oxy
Qu -)2 2 52452
oxoy (X)?+()* ox+ox

(37)

Los mejores valores de este indice se obtienen cuando el valor es mas
cercano a uno.

5.8 indice RMSE

RMSE (Root Mean Squared Error): quizas uno de los indices mas
populares y cominmente utilizados. Es la raiz de la diferencia al cuadrado
de dos conjuntos de datos (x, y) divididos por el nimero de elementos (o

RMSE = /M (38)

pixeles) n:

96

Resultados y andlisis

Capitulo 6

Resultados y andlisis

En este capitulo se describe la metodologia utilizada para llevar a cabo
la evaluacidn tanto a nivel de tiempo de procesamiento (homogéneo vs
heterogéneo) como a nivel de calidad de la imagen fusionada. Posterior a
esto se presentan y analizan los resultados de dicha evaluacion.

6.1 Metodologia de la evaluacién

Esta seccidn tiene como finalidad presentar lametodologia que se tuvo
en cuenta para realizar la evaluacion de los modelos propuestos y sus
implementaciones. Los aspectos de evaluacidn a tratar en esta seccion son:
el entorno de computacion, lasimagenes utilizadas y los criterios a analizar.

6.1.1 Entorno computacional

La Tabla 1, presenta las caracteristicas del entorno de computacion
utilizado para llevar a cabo la evaluacién de la libreria Sallfus. Este entorno
de computacién fue acondicionado con la instalaciéon de paquetes como
Scipy, Numpy, Pycuda y Cupy.

97

Acelerando la fusion de imdgenes mediante computacion heterogénea

Tabla 1. Entorno computacional.

Sigla Procesador GPU Memoria
Intel (R) Xeon (R) CPU E-52697 v3 @ NVIDIA Tesla
BC 2.60GHZ k8o 128CB

6.1.2 Imagenes de prueba

Para realizar la evaluacidn se tomaron un total de cuatro pares de
imagenes, es decir cada par es compuesto por su respectiva imagen
multiespectral y pancromatica. Estos pares de imagenes tienen distintos
tamafios los cuales son: 1024x1024, 2048x2048, 4096x4096 y 8192x8192
pixeles. Ademas, las imagenes de 1024 y 2048 pixeles son subescenas de
una imagen IKONOS y las otras dos imdgenes fueron tomadas mediante el
satélite Landsat. La Figura 25(A) presenta la imagen multiespectral de
2048x2048 pixeles y la Figura 25(B) laimagen pancromatica.

A) B)

Figura 25. Imagen de prueba con tamafno 20148x2048 pixeles.
A) Multiespectral, B) Pancromdtica.

6.1.3 Proceso de evaluacidon y métricas

Este proceso de evaluacion esta orientado a probar cada uno de los
métodos de fusidn de imdagenes satelitales con los distintos pares de
imagenes presentados anteriormente. Esto con el propdsito de calcular los
tiempos de ejecucion de cada método sobre la arquitectura homogénea y

98

Resultados y andlisis

heterogénea, para obtener el factor de aceleracion o speed-up.
Adicionalmente, al aplicar el proceso de fusidn se determinarad la calidad de
la imagen, a partir de los indices matematico-estadisticos expuestos en el
capitulo 5. Este proceso se realizard tanto a nivel espectral como a nivel
espacial. Esto quiere decir que, se tomard la imagen fusionada y se
obtendran sus indices teniendo como referencia las imdgenes de entrada:
multiespectral y pancromatica. Para esta evaluacidn se usa un script en
lenguaje Matlab, que calcula automaticamente ocho indices (Vaiopoulos,
2011).

6.2 Tiempos de ejecucion y factores de aceleracién

La Tabla 2, presenta el tiempo de ejecuciéon para cada una de las
técnicas de fusidon implementadas. Se realiza una discriminacidon por
tamafio y tipo de arquitectura implementada.

Con base en la Tabla 2, se puede observar que para cada una de las técnicas
implementadas tanto secuencial como paralelamente, a medida que
incrementa el tamafio de la imagen aumenta su tiempo de ejecucidn. Sin
embargo, para las técnicas de fusidn que utilizan exclusivamente la CPU, se
presentan incrementos de tiempo mucho mas significativos que los
presentados en las implementaciones en CPU/GPU. La Tabla 3 presenta la
tasa de crecimiento en segundos por pixel de cada una de las técnicas. Esto
se realizd, mediante una linealizacion para obtener la pendiente que
representa la tasa de crecimiento del tiempo de ejecuciéon en funcién de los
pixeles. Lo anterior, dado que algunas de las técnicas presentan un
comportamiento exponencial y otras aproximadamente lineal. Analizando
esta tabla se evidencia que las tasas de crecimiento disminuyen
sustancialmente al utilizar CPU/GPU (mucho mas significativo para Brovey
y Multiplicative), lo que indica que a mayor tamafio de las imagenes se
sacard mayor beneficio de la plataforma heterogénea y se obtendra mayor
aceleracion.

99

Acelerando la fusién de imdgenes mediante computacién heterogénea

Tabla 2. Tiempo de ejecucidn.

Tiempo por tamaiio
Método Arq. 1024x 2048x 4096x 8192x
1024px 2048px 4096px 8192px
CPU 25.39s 76.76s 311.85s 1437.85s
Brovey CPU/GPU 1.43s 1.49s 1.72s 2.70s
e CPU 9.27s 36.66s 136.37s 534.57
Multiplicat
uitipiicative CPU/GPU 0.98s 1.025 1.22s 1.90s
PCA CPU 23.29s 86.32s 342.03s 1360.40s
CPU/GPU 3.05S 7.53s 24.36s 74.35S
N CPU 1.94s 7.40S 30.86s 142.62s
Atrous CPU/GPU 1.08s 2.1 5.84s 22.93s
Tabla 3. Tasa de crecimiento del tiempo de ejecucidn por pixel.
Tasa por arquitectura
Método
CPU CPU/GPU
Brovey 2.13x10° s/pixel 1.93x10°8 s/pixel
Multiplicative 7.95x10°° s/pixel 1.39x10°8 s/pixel
PCA 2.02x10° s/pixel 1.08x10° s/pixel
A trous 2.12x10°° s/pixel 3.30x107 s/pixel

A partir de la Tabla 4 y teniendo en cuenta el tamafio mas alto de imagen,
que en este caso corresponde a 8192x8192 pixeles, se puede observar que,
la técnica que presenta la mayor aceleracion en CPU/GPU respecto a CPU
es Brovey con un total de 531.85x. Después se ubica Multiplicative con un
total de 281.06x, posteriormente, se encuentra PCA con 18.30x y por ultimo
estd A trous, evidenciando solo 6.22x.

Tabla 4. Speed-up.

Speed- up por tamafio
Método 1024X 2048x 4096Xx 8192x
1024px 2048px 4096px 8192px
Brovey 17,80X 51,47X 180,83x 531,85X
Multiplicative 9,44X 35,95X 112,02X 281,06x
PCA 7,63x 11,47X 14,04X 18,30x
A trous 1,79X 3,51X 5,29X 6,22x

100

Resultados y andlisis

6.3 Calidad de laimagen fusionada

En la tabla 5 se realiza el andlisis espectral de las imagenes fusionadas
con la Transformada Brovey, Multiplicacién (Multi), PCA y la Transformada
Wavelet con el algoritmo A trous, con una subescena Ikonos de tamafio
1024x1024, con los indices de Correlacidn, BIAS, DIV, Entropia, ERGAS,
indice de calidad Universal Qu, RASE y RMSE, donde se puede observar que
los mejores resultados con el indice de correlacién se obtienen con el
método de multiplicacién (promedio de 82.6% de dependencia lineal), sin
embargo con los 7 indices BIAS, DIV, Entropia, ERGAS, Qu,RASE y RMSE los
mejores resultados espectralmente se obtienen con la transformada
Wavelet usando el algoritmo A trous.

Tabla 5. Andlisis Espectral imagen Ikonos 1024 lineas por 1024 columnas.

Imagen | ¢ ¢ B |BIAs DIV E™OPR@ ppcAs | Qu RASE RMSE
fusionada 5.99
RGB/Brovey |0.67 |0.53 [0.46 | 0.37 |0.59 5.59 11.8 0.67 [46.8 | 26.9
RGB/Multi | 0.84 |0.83 [0.81 |0.76 |0.69 4.47 19.9 0.56 [79.6 | 45.1
RGB/PCA 0.58 |0.56 [0.58 | 0.41 |0.64 5.45 12.5 0.50 |49.7 | 27.9
RGBJ/A trous 0.69 |0.56 |0.51 | 0.1 0.21 5.86 7.61 0.58 [30.52 | 17.2

Enla Tabla 6 se realiza el andlisis espacial de las imagenes fusionadas con la
Transformada Brovey, Multiplicacién (Multi), PCA y la Transformada
Wavelet con el algoritmo A trous, con una subescena lkonos de tamafio
1024x1024 con los indices de Correlacidn, BIAS, DIV, Entropia, ERGAS, indice
de calidad Universal Qu, RASE y RMSE, donde se puede observar que los
mejores resultados con el indice de correlacion se obtienen con el método
de multiplicaciéon (promedio de 97% de dependencia lineal) y con la
transformada Wavelet con el algoritmo A trous (promedio de 96.3% de
dependencia lineal). Cuando se analizan los 7 indices: BIAS, DIV, Entropia,
ERGAS, Qu,RASE y RMSE, se observa que los mejores resultados
espectralmente se obtienen con la transformada Wavelet usando el
algoritmo A trous.

101

Acelerando la fusién de imdgenes mediante computacién heterogénea

Tabla 6. Andlisis Espacial Ikonos 1024 lineas por 1024 columna.s

Imagen R G | B |BAs | piv ntropia
fusionada 5-92

RGB/Brovey | 0.96 | 0.98 [0.97 | 0.38 0.56 5.59 10.12 |0.76 |40.4 |23.4
RGB/Multi 0.83 0.85 [0.84 | 0.77 0.68 4.47 19.93 |0.31 [79.7 |46.2
RGB/ PCA 0.94 0.97 |0.91 | 0.42 0.63 5.54 11.32 |0.70 | 45.2 |26.2

RGB/Atrous | 0.95 | 0.98 0.96 | 0.13 0.18 5.86 411 |0.94 |16.3 |9.53

ERGAS | Qu |RASE RMSE

En la tabla 7 se realiza el analisis espectral, de las imagenes fusionadas con
la Transformada Brovey, Multiplicacién (Multi), PCA y la Transformada
Wavelet con el algoritmo A trous, con una subescena Ikonos de tamafio
2048x2048, con los indices de Correlacién, BIAS, DIV, Entropia, ERGAS,
indice de calidad Universal Qu, RASE y RMSE, donde se puede observar que
los mejores resultados con el indice de correlacidon se obtienen con el
método de multiplicacién (promedio de 82.3% de dependencia lineal) y la
transformada Wavelet con el algoritmo A trous (promedio de 53.3% de
dependencia lineal). Cuando se analizan los 7 indices: BIAS, DIV, Entropia,
ERGAS, Qu,RASE y RMSE, se observa que los mejores resultados
espectralmente se obtienen con la transformada Wavelet usando el
algoritmo A trous.

Tabla 7. Andlisis Espectral Ikonos 2048 lineas por 2048 columnas.

In?agen R G B BIAS | DIV Entropia
fusionada 633

RGB/Brovey [0.66 |0.51 [0.41 | 0.43 | 0.61 5.84 12.8 |0.39 |51.0 19.3
RGB/Multi |0.84 [0.83 0.80 | 0.74 |0.70 5.01 19.3 0.33 |77.6 22.4
RGB/PCA |0.55 |0.54 |0.57 | 0.42 0.61 5.73 12.5 0.43 |50.6 18.5

RGB/Atrous 0.68 |0.53 [0.45 | 0.12 0.1 6.23 7.9 0.55 |31.9 2041

ERGAS | Qu |RASE | RMSE

Enla Tabla 8 se realiza el andlisis espacial de las imagenes fusionadas con la
Transformada Brovey, Multiplicacién (Multi), PCA y la Transformada
Wavelet con el algoritmo A trous, con una subescena Ikonos de tamafio
2048x2048, con los indices de Correlacidn, BIAS, DIV, Entropia, ERGAS,
indice de calidad Universal Qu, RASE y RMSE, donde se puede observar que
los mejores resultados con el indice de correlacién se obtienen con la
transformada Brovey (promedio de 96.3% de dependencia lineal) y la

102

Resultados y andlisis

transformada Wavelet con el algoritmo A trous (promedio de 96% de
dependencia lineal). Cuando se analizan los 7 indices: BIAS, DIV, Entropia,
ERGAS, Qu,RASE y RMSE, se observa que los mejores resultados
espectralmente se obtienen con la transformada Wavelet usando el
algoritmo A trous.

Tabla 8. Andlisis Espacial Ikonos 2048 lineas por 2048 columnas.

Imagen | g ' ¢ B |BiAs Dy ~"trop@
fusionada 6.31

RGB/Brovey |0.95 |0.98 |0.96 [0.42 |0.62 5.84 11.20 |0.70 | 47.1 28.3
RGB/Multi 0.98 | 0.85 |0.85 |0.74 |0.72 5.01 19.34 [0.33 |77.4 48.9
RGB/ PCA 0.94 |0.97 |0.89 |0.42 |0.62 5.73 11.27 [0.70 |45.7 28.5

RGB/Atrous 0.94 |0.99 |0.95 |0.12 | 0.15 6.23 3.97 0.94 |17.8 10.0

ERGAS Qu |RASE | RMSE

En la Tabla 9 se realiza el analisis espectral de las imagenes fusionadas con
la Transformada Brovey, Multiplicacién (Multi), PCA y la Transformada
Wavelet con el algoritmo A trous, con una subescena Landsat 8 OLI TIRS de
tamafo 4096x4096, con los indices de Correlacién, BIAS, DIV, Entropia,
ERGAS, indice de calidad Universal Qu, RASE y RMSE, donde se puede
observar que los mejores resultados con el indice de correlacién se
obtienen con la transformada Brovey, con PCA y con la transformada
Wavelet con el algoritmo A trous (97% de dependencia lineal). Cuando se
analiza el indice DIV el mejor es el método de multiplicacion, cuando se
analizan los 6 indices: BIAS, Entropia, ERGAS, Qu,RASE y RMSE, se observa
que los mejores resultados espectralmente se obtienen con Ila
transformada Wavelet usando el algoritmo A trous.

Tabla 9. Andlisis Espectral Landsat 8 OLI TIRS 4096 lineas por 4096 columnas.

In?agen R G B BIAS DIV Entropia
fusionada 4.96

RGB/Brovey |0.97 |0.97 |0.97 0.25 -2.70 5.67 23.1 0.76 | 46.2 17.3
RGB/Multi |0.95 |0.96 |0.97 | 0.80 |-0.33 | 3.65 40.8 [0.35 | 81.7 30.7
RGB‘/ PCA 0.97 |0.97 |0.97 | 0.45 |-1.07 5.45 24.7 10.76 |49.5 18.4

RGB/Atrous |0.97 |0.97 |0.97 0.10 -4.51 5.94 27.5 0.69 | 55.1 20.6

En la Tabla 10 se realiza el andlisis espacial de las imdgenes fusionadas con

ERGAS |Qu |RASE | RMSE

la Transformada Brovey, Multiplicacién (Multi), PCA y la Transformada

103

Acelerando la fusién de imdgenes mediante computacién heterogénea

Wavelet con el algoritmo A trous, con una subescena Landsat 8 OLI TIRS de
tamafio 4096x4096, con los indices de Correlacion, BIAS, DIV, Entropia,
ERGAS, indice de calidad Universal Qu, RASE y RMSE, donde se puede
observar que los mejores resultados con el indice de correlacién se
obtienen con la transformada Brovey, con PCA y con la transformada
Wavelet con el algoritmo A trous (99% de dependencia lineal). Cuando se
analizan los 7 indices: BIAS, DIV, Entropia, ERGAS, Qu,RASE y RMSE, se
observa que los mejores resultados espectralmente se obtienen con la
transformada Wavelet usando el algoritmo A trous.

Tabla 10. Andlisis Espacial Landsat 8 OLI TIRS 4096 lineas por 4096 columnas

Imagen R G B BAS DIy c"tropi
fusionada 5.98

RGB/Brovey |0.99 |0.99 [0.99 |0.24 |0.40 5.67 16.9 0.92 |[33.9 12.2
RGB/Multi 0.94 |0.94 |0.94 |0.80 |0.78 3.65 49.4 0.27 |98.8 | 36.2
RGB/ PCA 0.99 |0.99 (0.99 [0.43 |0.66 5.45 30.4 | 0.73 | 61.2 22.3

RGB/Atrous |0.99 |0.99 |0.99 |0.08 |0.10 5.92 5.79 |0.98 |14.3 4.2

ERGAS | Qu |RASE |RMSE

En la Tabla 11 se realiza el andlisis espectral de las imagenes fusionadas con
la Transformada Brovey, Multiplicacién (Multi), PCA y la Transformada
Wavelet con el algoritmo A trous, con una subescena Landsat 8 OLI TIRS de
tamafo 8192x8192, con los indices de Correlacién, BIAS, DIV, Entropia,
ERGAS, indice de calidad Universal Qu, RASE y RMSE, donde se puede
observar que los mejores resultados con el indice de correlacidon se
obtienen con la transformada Brovey, con PCA y con la transformada
Wavelet con el algoritmo A trous (promedio de 97.3% de dependencia
lineal). Cuando se analiza el indice DIV, se observa que el mejor es elmétodo
de multiplicacién, cuando se analizan los 6 indices: BIAS, Entropia, ERGAS,
Qu,RASE y RMSE, se observa que los mejores resultados espectralmente se
obtienen con la transformada Wavelet usando el algoritmo A trous.

104

Resultados y andlisis

Tabla 1. Andlisis Espectral Landsat 8 OLI TIRS 8192 lineas por 8192 columnas.

Imagen R G | B |BIAS piv cntropi
fusionada 4.69

RGB/Brovey |0.98 |0.97 |0.97 | 0.33 |-2.42 5.21 243 |0.75 | 48.7 | 175
RGB/Multi |0.96 |0.97 | 0.97 | 0.83 |-0.28 3.15 42.3 p.30 | 85.0 [30.4
RGB/PCA |0.98 |0.97 |0.97 | 0.50 |-0.98 | 5.13 26.9.0 0.73 | 53.3 19.2

RGB/A trous |0.98 |0.97 |0.97 | 0.8 |-4.30 | 5.54 27.3 0.70 | 54.5 |19.6

ERGAS |Qu | RASE RMSE

En la Tabla 12 se realiza el analisis espacial de las imagenes fusionadas con
la Transformada Brovey, Multiplicacién (Multi), PCA y la Transformada
Wavelet con el algoritmo A trous, con una subescena Landsat 8 OLI TIRS de
tamafio 8192x8192, con los indices de Correlacion, BIAS, DIV, Entropia,
ERGAS, indice de calidad Universal Qu, RASE y RMSE, donde se puede
observar que los mejores resultados con el indice de correlacidon se
obtienen con la transformada Brovey, con PCA y con la transformada
Wavelet con el algoritmo A trous (99% de dependencia lineal). Cuando se
analizan los 7 indices: BIAS, DIV, Entropia, ERGAS, Qu,RASE y RMSE, se
observa que los mejores resultados espectralmente se obtienen con la
transformada Wavelet usando el algoritmo A trous.

Tabla 12. Andlisis Espacial Landsat 8 OLI TIRS 8192 lineas por 8192 columnas.

Imagen R |G B |BAI DIv PR |ppcAs | Qu RASE | RMSE
fusionada 5-55
RGB/Brovey 0.99 |0.99 |0.99 |0.25 |0.42 5.21 18.2 |0.96 |36.5 | 7.74
RGB/Multi |0.94 |0.95 |0.95 [0.81 |0.78 3.15 50.8 10.99 [101.7 | 0.58
RGB/ PCA 0.99 |0.99 0.99 |0.43 |0.66 5.13 31.6 0.99 | 63.3 3.00
RGB/A trous (0.99 0.99 |0.99 |0.08 |0.10 5.54 7.51 |0.98 | 15.0 3.77

La comparaciéon visual de las imagenes fusionadas usando la
Transformada de Brovey, Multiplicacién, Andlisis de Componentes
principales y la transformada Wavelet A trous con los diferentes tamafios,
se pueden ver en el anexo.

105

Acelerando la fusién de imdgenes mediante computacién heterogénea

106

Conclusiones

Conclusiones

A partir de la comparacion de tiempos de ejecucidon realizado, se
demuestra que todos los métodos implementados presentan una
disminucidn significativa en su tiempo de ejecucidon. Sin embargo, Brovey
es el método que expone el mejor esquema de paralelizacién, dado que
llega a ser aproximadamente 532 veces mas rapido que en CPU.
Adicionalmente, analizando la tasa de crecimiento del tiempo de ejecucidon
por pixel, se evidencia que el método PCA presenta un comportamiento
atipico frente a los otros métodos sobre una arquitectura heterogénea,
esto podria significar que el costo de transferencia entre unidades de
procesamiento es mas alto que en las otras técnicas y que si de igual
manera se presenta una mejora significativa en el tiempo de ejecucion, las
operaciones realizadas en PCA siguen representando un alto costo
computacional en dispositivos many-core.

En cuanto a calidad espectral y espacial de la imagen fusionada, las
evaluaciones realizadas anteriormente han demostrado que los métodos
de fusion de imagenes basados en la transformada de Wavelet usando el
algoritmo de “A trous” son mas adecuados para la fusién de imagenes que
los métodos convencionales.

Los resultados obtenidos del andlisis cuantitativo demuestran que los
mejores resultados de la imagen satelitales lkonos de 2048 por 2048
fusionada de imagenes usando la TWA implementada en Python ofrece

107

Acelerando la fusién de imdgenes mediante computacién heterogénea

mejores resultados con valores de los indices BIAS, DIV, ERGAS, RASE, Qu,
RMSE son mejores que los obtenidos con las imagenes lkonos de tamafio
1024x1024. Con el indice de correlacién los mejores resultados se obtienen
con los métodos convencionales. Lo que significa que lamejor dependencia
lineal tanto espectral como espacial se obtiene con los métodos
tradicionales.

Los resultados obtenidos del andlisis cuantitativo demuestran que los
mejores resultados de la imagen satelitales Landsat 8 OLI TIRS de
8192x8192 fusionada de imagenes usando la TWA implementada en Python
ofrece mejores resultados con valores de los indices BIAS, DIV, ERGAS,
RASE, Qu, RMSE son mejores que los obtenidos con las imagenes Landsat
8 OLI TIRS de tamafio 4096x4096. Lo que significa que la mejor
dependencia lineal tanto espectral como espacial se obtienen con los
métodos tradicionales.

La metodologia propuesta permite implementar de forma eficiente las
principales metodologias de fusion de imdagenes sobre plataformas
computacionales heterogéneas (CPU/GPU), permitiendo obtener de forma
rapida, imdagenes fusionadas que ofrecen a los usuarios informacion
detallada sobre los entornos urbanos y rurales, lo cual es util para
aplicaciones como la planificacidon y la gestion urbana. Su utilidad se
extiende al desarrollo de proyectos en diversos campos como agricultura,
hidrologia, medioambiente y gestion de emergencias producidas por
catastrofes naturales (inundaciones, incendios forestales), entre otros.

108

Anexo

ANexo

A continuacidn, se presenta el conjunto de datos y las imagenes
resultantes de la evaluacién bajo cada una de las metodologias de fusién:
Transformada de Brovey, multiplicacidn, PCA y transformada Wavelet A
trous. El conjunto de datos corresponde a 4 pares (Multiespectral y
Pancromdtica) de imagenes satelitales:

- lkonos 1024x1024

- lkonos tamano 2048x2048

- Landsat 8 OLI TIRS 4096x4096
- Landsat 8 OLI TIRS 8192x8192

Las imagenes se presentan en arreglos de 2 filas por dos columnas que
comprenden las 2 imagenes originales de entrada y las 4 imagenes
resultantes de la fusidon por cada uno de los métodos. Esto facilita la
inspeccidn visual de la calidad de la imagen resultante y la comparacién de
los métodos.

109

Acelerando la fusion de imdgenes mediante computacion heterogénea

E) F)

Figura 26. Imagen lkonos 1024x1024.. Entrada: A)Multiespectral; B)Pancromdtica.
Salida: C) Transformada Brovey; D)Multiplicacién; E)PCA; F)Transformada Wavelet A trous

110

Anexo

E) F)

Figura 27. Imagen Ikonos tamano 2048x2048. Entrada: A)Multiespec.; B)Pancromadtica. Salida:
C)Transformada Brovey; D)Multiplicacién; E)PCA; F)Transformada Wavelet A trous

M

Acelerando la fusién de imdgenes mediante computacién heterogénea

E) F)
Figura 28. Imagen Landsat 8 OLI TIRS 4096x4096. Entrada: A)Multiespec..; B)Pancromdtica. Salida:
Q)Transformada Brovey; D)Multiplicacién; E)PCA; F)Transformada Wavelet A trous

112

Anexo

Figura 29. Imagen Landsat 8 OLI TIRS 8192x8192. Entrada: A)Multiespec..; B)Pancromdtica. Salida:
C)Transformada Brovey; D)Multiplicacién; E)PCA; F)Transformada Wavelet A trou

113

Acelerando la fusién de imdgenes mediante computacién heterogénea

14

Referencias bibliogrdficas

Referencias bibliograficas

Alba, E. (2005). Parallel metaheuristics: a new class of algorithms (47). John Wiley &
Sons.

Amolins, K., Zhang, Y. and Dare, P., (2007). Wavelet based image fusion techniques —
Anintroduction, review and comparison. ISPRS Journal of Photogrammetry and
remote Sensing, 62(4), 249-263.

Amro, l., Mateos, J., Vega, M., Molina, R. and Katsaggelos, A., (2011). A survey of
classical methods and new trends in pansharpening of multispectral images.
EURASIP Journal on Advances in Signal Processing, (1), 1-22.

Bracewell, R. N. (1978). The Fourier Transform and ist Applications, MacGraw-Hill.

Chibani, Y., Houacine, (2003). A. Redundant versus ortogonal Wavelet descomposition
for multisensor image fusion, Pattern Recognition. (36), 879-889.

Chuvieco, E. (2002). Teledeteccién Ambiental. La Observacion de la Tierra Desde el
Espacio. Barcelona: Ariel, 2002. ISBN 84-344-8047-6

Chuvieco, E., (2008). Teledetecciéon Ambiental Espacial., 37 Edicién. Ed., Ariel Ciencia.
ISBN: 978-84-344-8073-3.

CUDA C. (September 22, 2017) Programming Guide. http://docs.nvidia.com/cuda/cuda-
c-programming-guide.

De Antonio, M., y Marina, L. (2005). Computacién paralela y entornos heterogéneos.

Dutilleux, P. (1987). An implementation of the algorithm a trous to compute the

Wavelet transform. In Compt-rendus du congres ondulttes et methods temp-
fréquence et espace des phase, Marseille, Springer Verlag, 298-304.

Ehlers, M., Klonus, S., Johan Astrand, P. and Rosso, P., (2010). Multi-sensor image
fusion for pansharpening in remote sensing. International Journal of Image and
Data Fusion, 1(1), 25- 45.

Gonzélez-Audicana, M. (2003). Bondad de los Algoritmos de descomposicién Wavelet
de Mallat y ‘a trous’ Para la fusidn de imagenes Quickbird. Teledeteccién y
Desarrollo Regional. X Congreso de Teledeteccidn. Caceres, Espafia. 295-300.

115

Acelerando la fusién de imdgenes mediante computacién heterogénea

Gonzalez-Audicana, M., (2007). Métodos clasicos de fusion de Imédgenes de satélite, |
Jornadas de Fusidn. Asociacién Espafiola de Teledeteccidn.

Gonzélez-Audicana, M., X. Otazu, O. Fors y A. Seco (2005). Comparison Between the
Mallat’s and the a trous Discrete Wavelet Transform Based Algorithms for the
Fusion of multispectral and Panchromatic Images, International Journal of
Remote Sensing, (26), 597-616.

Gonzélez-Audicana, X. Otazu, O. Fors, A. Seco y R. Garcia. (2003). Bondad de los
Algoritmos de descomposicion Wavelet de Mallat y ‘a trous’ Para la fusién de
imagenes Quickbird. Teledeteccién y Desarrollo Regional. X Congreso de
Teledeteccidn. Caceres, Espaina. 295-300.

Hallada, W.A. and Cox, S., (1983). Image sharpening for mixed spatial and spectral
resolution satellite systems. International Symposium on Remote Sensing of
Environment, 17 th, Ann Arbor, 1023-1032.

He, C., Liu, Q., Li, H., Wang, H: Multimodal Medical Image Fusion Base don IHS and PCA,
IN: Symposium on Security Detection and Information Processing, Vol 7, pp.
280-285, Elsevier (2010).

Hong, G. and Zhang, Y., (2008). Comparison and improvement of wavelet-based image
fusion. International Journal of Remote Sensing, 29(3), 673-691.

Kirk, D. B., & Wen-mei, W. H. (2012). Programming massively parallel processors: a
hands-on approach. Newnes.

Kpalma, K., E-Mezouar, M.C. and Taleb, N., (2013). Recent Trends in Satellite Image
Pansharpening techniques, 1st International Conference on Electrical,
Electronic and Computing Engineering.

L. Alparone, L.Wald, J.Chanussoat, C. Thomas, P.Gamba, L. Bruce, (2007). “Comparison
of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data Fusion
Contest”, IEEE Transactions on Geoscience and Remote Sensing,Vol. 45, No. 10,
pp 3012-3021, doi: 10.1109/TGRS.2007.904923.

Li, X., Lixin, L. and Mingyi, H., (2012). A Novel Pansharpening Algorithm for WorldView-
2 Satellite Images, International Conference on Industrial and Intelligent
Information (ICllI 2012), 17-18.

Lillo-Saavedra M. y C., Gonzalo. (2006). Spectral or Spatial Quality for Fused Satellite
Imagery? A Trade-Off Solution Using Wavelet a trous Algorithm. International
Journal of Remote Sensing, 27(7), 1453-1464.

Lillo-Saavedra, M. Gonzalo, C. Arquero, A. and Martinez, E. (2005). Fusion of
multispectral and panchromatic satellite sensor imagery based on tailored
filtering in the Fourier domain. International Journal of Remote Sensing. (26),
1263-1268.

116

Referencias bibliogrdficas

Lu, J., Zhang, B., He, H., & Zhang, H. (2011). The high-pass filtering fusion based on GPU.
In 2011 International Symposium on Computer Science and Society, 122-125).
IEEE.

Mallat, Stéphane. (1989). A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence. (I1), 7.

Mallat, Stéphane. (1996). Wavelet for Vision. Proceedings of the IEEE. 4(84).

Medina, J., Lizarazo, I. (2004) Fusion de Imagenes Satelitales usando la Transformada
de Wavelet. Universidad Distrital Francisco José de Caldas. ISBN: 958-8175-97-6.
2004.

Nieto N., Orozco D., (Junio 2008). El uso de la Transformada Wavelet Discreta en la
Construccién de Sefales Senosoidales. Scientia et Technica, (38). Universidad
Tecnoldgica de Pereira. ISSN 0122-1701

Nugteren, C. (2018, May). Clblast: A tuned opencl blas library. In Proceedings of the
International Workshop on OpenCL, 1-10.

Nufez, J., Otazu, X., Fors, O., Prades, A., Pal3, V., Arbiol, R. (1999). Multiresolution-
Based Image fusion whit Additive Wavelet Decomposition. IEEE Transactions on
Geoscience and Remote Sensing. 3(37), 1204 -1211.

Otazu, X., Gonzélez-A. M., Fors, O. and Nufiez, J. (2005). Introduction of sensor spectral
response into image fusion methods. application to wavelet-based methods.
IEEE Trans. on geoscience and rem. sensing, 43(10).

Padwick, C., M. Deskevich, F. Pacifici, and S. Smallwood. (2010). “WorldView-2 Pan-
Sharping”. Paper presented at the 2010 Conference of American Society for
Photogrammetry and Remote Sensing. San Diego, CA, April 26-30.

Pohl, C. and Van Genderen, J. L. (1998). Multisensor image fusion in sensing: concepts
methods and application. int. J. Remote Sensing. 5(19), 823-854.

Ranchin T., Aiazzi B., Alparone L., Baronti S., Wald L., (2003). Image fusion. The ARSIS
concept and some successful implementation schemes. ISPRS Journal of
Photogrammetry & Remote Sensing, 58, 4-18.

Ruiz, Marcello., Rodriguez-Esparragdn, J., Rodriguez-Esparragén, D. y Eugenio-
Gonzalez, F. (2011). Identificacién y analisis de técnicas de fusién en imagenes
de satélites de muy alta resolucién. 525-528.

Shan, A. (2006). Heterogeneous processing: a strategy for augmenting moore's law.
Linux Journal, 2006(142), 7.

Shettigara, V. K., (1992). A Generalized Component Substitution Technique for Spatial
Enhancement of Multispectral Images Using a Higher Resolution Data Set,
Photogrammetric Engineering & Remote Sensing, 5 (58), 561-567.

117

Acelerando la fusién de imdgenes mediante computacién heterogénea

Starck, Jean-Luc & Murtagh, Fionn. (1994). Image Restoration with Noise Suppression
Using the Wavelet Transform. Astronomy and Astrophysics. 288. 342-348.

Stathaki, T., (2008). Image fusion: algorithms and applications. London [etc.]: (xxk):
Academic Press,

Toolkit, C. U. D. A. (2011). 4.0 cublas library. Nvidia Corporation, 2701, 59-60.

Upegui E. Medina, J. (2019). Analisis de imagenes usando las transformadas de Fourier
y Wavelet. Editorial Universidad Distrital Francisco José de Caldas, Bogotd-
Colombia.

Vaiopoulos, A. D. (2011). Developing Matlab scripts for image analysis and quality
assessment Developing Matlab scripts for image analysis and quality
assessment. Earth Resources and Environmental Remote Sensing/GIS
Applications Il, Proc. of SPIE Vol. 8181, 81810B.

Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., Garzelli, A., Licciardi, G.A,,
Restaino, R. and Wald, L., (2015). A critical comparison among pansharpening
algorithms. Geoscience and Remote Sensing, IEEE Transactions on, 53(5), pp-
2565-2586.

Wald, L. (1999). Some terms of reference in data fusion. IEEE Transactions on
Geoscience and Remote Sensing, 37(3), 1190-1193. d0i:10.1109/36.763269

Wald, L. (2000). Quality of high resolution synthesized images: is there a simple
criterion? Proceedings of the third conference Fusion of Earth data: merging
point measurements, raster maps and remotely sensed image, Sophia Antipolis,
T Ranchin and L. Wald Editors, published by SEE/URISCA, Nice, France, 99-105.

Wald, L., (2002). Data fusion definitions and architectures, fusion of images of different
spatial resolutions, Les Presses de I’Ecole des Mines, Paris.

Wald, L., Ranchin, T. & Mangolini, M., (1997). Fusion of Satellite Images of Different
SpatialResolutions: ~ Assessing the Quality of Resulting Images,
Photogrammetric Engineering & Remote Sensing, 6(63), 691-699.

Wang, Z., Ziou, D., Armenakis, C., Li, D., and Li, Q. (2005). A comparative analysis of
image fusion methods. IEEE Trans. on geoscience and rem. sensing, 43(6).

Yoo, S. H., Park, J. H., & Jeong, C. S. (2009, December). Accelerating multi-scale image
fusion algorithms using CUDA. In 2009 International Conference of Soft
Computing and Pattern Recognition (pp. 278-282). IEEE.

Zhang, J., (2010). Multi-source remote sensing data fusion: status and trends.
International Journal of Image & Data Fusion, 1(1), pp. 5-24.

Zhou Wang, Alan C. Bovik. (2002). A Universal Image Quality Index. IEEE Signal
Processing Letter, Vol. XX, No. Y March.

118

Este libro presenta los resultados de una
investigacion sobre una forma eficiente de
acelerar la implementacion de los
principales métodos de fusion de
imdgenes mediante procesamiento
heterogéneo, segmentando y
distribuyendo tareas

convenientemente entre computo
secuencial sobre CPU y computo paralelo
masivo sobre GPU (Graphics Processing Unit).

La fusion de imdgenes al igual que la gran mayoria de
operdciones con imdgenes presentan una exigencia
computacional dependiente del tamano de la imagen,
debido a la granularidad pixel a pixel presente en estas
operaciones. Esta granularidad que aparentemente es un
inconveniente, termina convirtiéndose en una ventaja
porque habilita la posibilidad de paralelizacion masiva
sobre arquitecturas computacionales que ofrecen un alto
numero de ntcleos de procesamiento, tales como las GPU
(Graphics Processing Unit).

ISBN: 978-958-49-4957-8

95841949

Otros titulos de
la coleccion

QR%“J%HP@@

UNIVERSIDAD DISTRITAL: FRANCISCO JOSE DE CALDAS”

ARQUITECTURAS DE RED NEURO-
CONVOLUCIONAL PARA
APLICACIONES DE ROBOTICA
ASISTENCIAL

DETECCION Y CORRECCION DE
PROPAGACIONES ANOMALAS EN
RADARES METEREOLOGICOS

GESTION DE LA ENERGIA: EL
USUARIO DE ENERGIA COMO
PARTE ACTIVA DEL SISTEMA

GESTION Y CIBERSEGURIDAD PARA
MICRORREDES ELECTRICAS
RESIDENCIALES

INTRODUCCION A LA
INVESTIGACION SOBRE DESASTRES
NATURALES Y CIUDADES
INTELIGENTES

RADIACION-MATERIA: GEANT4
HANDS ON!

INVESTIGACION EN INGENIERIA
FUNDAMENTADA EN LA GESTION
DEL CONOCIMIENTO

LOS RECURSOS DISTRIBUIDOS DE
BIOENERGIA EN COLOMBIA

REDES NEURONALES
CONVOLUCIONALES USANDO
KERAS Y ACELERANDO CON GPU

	porta 1.pdf
	Página 1

	porta 1 - copia.pdf
	Página 1

	porta 1 - copia (3).pdf
	Página 1

