
Otros títulos de
la colección

Otros títulos de
la colección

ACELERANDO
LA FUSIÓN DE
IMÁGENES MEDIANTE
COMPUTACIÓN
HETEROGÉNEA

Rubén Javier Medina Daza

Andrés Ovidio Restrepo Rodríguez
Nelson Enrique Vera Parra

Medina Daza, Rubén Javier

Acelerando la fusión de imágenes mediante computación heterogénea / Rubén
Javier Medina Daza, Andrés Ovidio Restrepo Rodríguez, Nelson Enrique Vera Parra. --
1a ed. -- Bogotá : Universidad Distrital Francisco José de Caldas, 2021.

119 p. ; 24 cm -- (Doctorado en Ingeniería)

Incluye reseña de los autores en la pasta -- Contiene referencias bibliográficas.

ISBN 978-958-49-4957-8 (Impreso) - 978-958-49-4958-5 (Digital)

1. Procesamiento de imágenes - Técnicas digitales
2. Computación heterogénea I. Restrepo Rodríguez, Andrés Ovidio II. Vera Parra,
Nelson Enrique III. Título IV. Serie

CDD: 006.6 ed. 23 CO-BoBN– a1088110

© Universidad Distrital Francisco José de Caldas
© Doctorado en Ingeniería
© Rubén Javier Medina Daza - Andrés Ovidio Restrepo Rodríguez –
 Nelson Enrique Vera Parra

ISBN Impreso: 978-958-49-4957-8
ISBN Digital: 978-958-49-4958-5

Primera edición: Bogotá, diciembre de 2021

Corrección de estilo, diseño gráfico y producción editorial:
IngeEdit Editores – Sandra Patricia Rodríguez Lamus - ingeeditorial@gmail.com

Impresión:
IngeEdit Editores – Sandra Patricia Rodríguez Lamus

Doctorado en Ingeniería
Carrera 7 No. 40B – 53 Bogotá
Correo electrónico: investigacion.doctoradoing@udistrital.edu.co

Todos los derechos reservados. Esta publicación no puede ser reproducida total ni parcialmente o trasmitida
por un sistema de recuperación de información, en ninguna forma ni por ningún medio, sin el permiso previo
del Doctorado en Ingeniería de la Universidad Distrital Francisco José de Caldas.

Hecho el depósito legal.

Impreso y hecho en Colombia
Printed and made in Colombia

mailto:investigacion.doctoradoing@udistrital.edu.co

Tabla de contenido

Prefacio ... 11

Capítulo 1
Introducción, problema de investigación y objetivos 13

1.1 Introducción a la fusión de Imágenes ... 13
1.2 Introdución a la computación heterogénea 17
1.2.1 CUDA .. 19
1.2.1.1 Modelo de programación de CUDA .. 20
1.3 Reto computacional para implementar la fusión de imágenes en

arquitecturas computacionales heterogéneas 25
1.4 Objetivo de este libro ... 26

Capítulo 2
Fusión de imágenes basado
en operaciones algebraicas .. 27

2.1 Algoritmos de fusión de imágenes ... 27
2.2 Revisión de métodos de fusión de imágenes satelitales................. 28
2.3 Transformada de Brovey .. 32

2.3.1 Modelo de procesamiento heterogéneo para
 la transformada de Brovey ... 33
2.3.2 Implementación de la transformada de Brovey en Python 33
2.4 Método de multiplicación .. 40
2.4.1 Modelo de procesamiento heterogéneo para el método de

multiplicación ... 41
2.4.2 Implementación del método de multiplicación en Python 41

Capítulo 3
Métodos basados en transformadas: métodos de
sustitución de componentes .. 49

3.1 Fusión de imágenes usando análisis de componente principales ... 49
3.1.1 Modelo de procesamiento heterogéneo para PCA 51
3.1.2 Implementación de PCA en Python .. 52

Capítulo 4
Métodos basados en Transformadas
Wavelet Discretas (TWD) ... 71
4.1 Principios básicos de la transformada Wavelet 71
4.2 Transformada Wavelet Discreta (DWT) .. 76
4.2.1 Función de escala y Función Wavelet ... 77
4.2.2 Coeficientes de escala (c_(j,k)) y Coeficientes Wavelet (d_(j,k)) 78
4.2.3 Espacios vectoriales V_i y W_i .. 78
4.2.4 Aplicación de Transformada discreta de
 Wavelet para la fusión de imágenes ... 79
4.3 Fusión de imágenes usando la Transformada Wavelet 80
4.4 Análisis multirresolución y las transformaciones Wavelet 81
4.4.1 Método À trous para la fusión de imágenes 81
4.4.2 Algoritmos de À trous ... 82
4.5 Método de fusión usando el algoritmo de À trous 84

4.5.1 Implementación de la Transformada Wavelet
 algoritmo de Á trous para la fusión de imágenes WorldView-2 84
4.5.2 Modelo de procesamiento heterogéneo
 para la transformada Wavelet À trous ... 86
4.5.3 Implementación de la transformada Wavelet Á trous en Python .. 87

Capítulo 5
Índices de evaluación de la calidad espacial y espectral
de las imágenes fusionadas ... 93

5.1 Bias ... 93
5.2 DIV (Difference In Variance) ... 94
5.3 Entropía .. 94
5.4 Coeficiente de correlación (corr) .. 94
5.5 Índice ERGAS .. 95
5.6 Índice RASE ... 96
5.7 Índice de calidad universal Qu .. 96
5.8 Índice RMSE .. 96

Capítulo 6
Resultados y análisis .. 97

6.1 Metodología de la evaluación .. 97
6.1.1 Entorno computacional .. 97
6.1.2 Imágenes de prueba ... 98
6.1.3 Proceso de evaluación y métricas ... 98
6.2 Tiempos de ejecución y factores de aceleración 99
6.3 Calidad de la imagen fusionada .. 101

Conclusiones ... 107

Anexo ... 109

Referencias ... 115

Índice de figuras

Figura 1. Comparación de la banda 3 y la imagen

pancromática Landsat 8 OLI TIRS .. 15
Figura 2. Valores de píxel durante el proceso de re-muestreo16
Figura 3. Imagen original y la imagen fusionada Ikonos 17
Figura 4. Plataforma heterogénea típica ..19
Figura 5. Escalabilidad automática de CUDA 20
Figura 6. Ejemplo de definición y llamado de un kernel 21
Figura 7. Malla de bloques de hilos .. 22
Figura 8. Ejemplo de definición y llamado de un kernel
 con una malla bidimensional conformada
 por bloques bidimensionales de hilos 22
Figura 9. Jerarquía de memoria en CUDA .. 23
Figura 10. Programación heterogénea .. 24
Figura 11. Diagrama genérico del proceso de fusión a
 nivel de píxel entre las bandas MS y PAN 29
Figura 12. Modelo de procesamiento heterogéneo

para la transformada de Brovey ... 33
Figura 13. Imagen fusionada de 1024x1024 píxeles, mediante la

transformada de Brovey ... 40

Figura 14. Modelo de procesamiento heterogéneo para el método de

multiplicación ... 41
Figura 15. Imagen fusionada de 1024x1024 píxeles,

mediante el método multiplicación 48
Figura 16. Algoritmo de fusión PCA. Fuente Autor 50
Figura 17. Modelo de procesamiento heterogéneo para PCA 52
Figura 18. Imagen fusionada de 1024x1024 píxeles

mediante análisis de componentes principales 70
Figura 19. Comparación entre la STFT (tiempo-frecuencia)
 y el análisis Wavelet (tiempo-escala 73
Figura 20. a) Señal seno. b) Wavelet Daubechies. 74
Figura 21. Algoritmo tipo decimado (TDWM) 82
Figura 22. Diagrama del proceso de fusión
 de imágenes usando TWA. .. 85
Figura 23. Modelo de procesamiento heterogéneo
 para la transformada Wavelet Á trous 86
Figura 24. Imagen fusionada de 1024x1024 píxeles mediante
 Transformada Wavelet algoritmo de Á trous 92
Figura 25. Imagen de prueba con tamaño 20148x2048 pixeles............. 98
Figura 26. Imagen Ikonos 1024x1024 .. 110
Figura 27. Imagen Ikonos tamaño 2048x2048 111
Figura 28. Imagen Landsat 8 OLI TIRS 4096x4096................................112
Figura 29. Imagen Landsat 8 OLI TIRS 8192x8192 113

Índice de tablas

Tabla 1 . Entorno computacional .. 98
Tabla 2. Tiempo de ejecución .. 100
Tabla 3. Tasa de crecimiento del tiempo de ejecución por píxel 100
Tabla 4. Speed-up .. 100
Tabla 5. Análisis Espectral imagen Ikonos 1024

líneas por 1024 columnas ... 101
Tabla 6. Análisis Espacial Ikonos 1024 líneas por 1024 columnas 102
Tabla 7. Análisis Espectral Ikonos 2048 líneas por 2048 columnas 102
Tabla 8. Análisis Espacial Ikonos 2048 líneas por 2048 columnas 103
Tabla 9. Análisis Espectral Landsat 8 OLI TIRS

4096 líneas por 4096 columnas .. 103
Tabla 10. Análisis Espacial Landsat 8 OLI TIRS

4096 líneas por 4096 columnas .. 104
Tabla 11. Análisis Espectral Landsat 8 OLI TIRS

8192 líneas por 8192 columnas .. 105
Tabla 12. Análisis Espacial Landsat 8 OLI TIRS

8192 líneas por 8192 columnas .. 105

Introducción, problema de investigación y objetivos

11

Prefacio

Durante los últimos años el procesamiento de imágenes ha tomado
importancia en el campo científico, su principal objetivo es maximizar el uso
de la información de una imagen para un contexto en particular. De
acuerdo con lo anterior, uno de los principales temas en este campo es la
fusión de imágenes, la cual hace referencia a la combinación de información
relevante obtenida a partir de dos imágenes, esto con el fin de producir una
imagen que contenga una calidad superior a las originales. Dentro de este
campo, se pueden realizar fusiones de imágenes satelitales, donde se debe
proporcionar una imagen pancromática para realizar una inyección de
riqueza espacial en la información espectral asociada a la imagen
multiespectral.

La fusión de imágenes al igual que la gran mayoría de operaciones con
imágenes presentan una exigencia computacional dependiente del tamaño
de la imagen, debido a la granularidad pixel a pixel presente en estas
operaciones. Esta granularidad que aparentemente es un inconveniente
termina convirtiéndose en una ventaja porque habilita la posibilidad de
paralelización masiva sobre arquitecturas computacionales que ofrecen un
alto número de núcleos de procesamiento, tales como las GPU (Graphics
Processing Unit).

Acelerando la fusión de imágenes mediante computación heterogénea

12

Este libro presenta una forma eficiente de acelerar la implementación
de los principales métodos de fusión de imágenes mediante procesamiento
heterogéneo, segmentando y distribuyendo tareas convenientemente
entre cómputo secuencial sobre CPU y cómputo paralelo masivo sobre
GPU.

Introducción, problema de investigación y objetivos

13

Capítulo 1

Introducción, problema de
investigación y objetivos

La fusión de imágenes de teledetección de muy alta resolución o pan-
sharpening, consiste en añadir o inyectar la información espacial que
contiene la imagen pancromática a las bandas espectrales de la imagen
Multiespectral, preservando las características espectrales de esta. Sin
embargo, en este proceso se introducen distorsiones, además de las
inherentes al registro de los datos Multiespectral (MS) y Pancromática
(PAN). En este contexto, para intentar evitar este inconveniente a lo largo
de la última década se han desarrollado multitud de algoritmos de
pansharpening (Vivone et al., 2015). Sin embargo, no existe en la actualidad
ninguno que se postule como la solución óptima para la fusión de
imágenes.

1.1 Introducción a la fusión de imágenes
El concepto de fusión de datos se remonta a los años 1950 y 1960

(Wang et al., 2005) cuando se inició la búsqueda de métodos prácticos que
permitieran mezclar imágenes procedentes de diversos sensores, con el fin
de proporcionar una imagen que facilitara una mejor identificación de
objetos naturales y artificiales, de aquí, que actualmente se disponga de un
gran número de metodologías y algoritmos para la fusión de imágenes

Acelerando la fusión de imágenes mediante computación heterogénea

14

ópticas, siendo las técnicas basadas en análisis multirresolución (MRA) las
más utilizadas.

Algunas técnicas son muy sencillas desde un punto de vista conceptual,
como la transformada de Brovey, Multiplicación, el Análisis de
Componentes Principales o la transformada HSI, sin embargo, como se
demuestra en numerosos trabajos, estas metodologías proporcionan
imágenes fusionadas con considerables distorsiones respecto al color de
las imágenes multiespectrales originales. Para minimizar estas distorsiones
se han presentado un gran número de métodos basados principalmente en
técnicas de análisis multirresolución, que proporcionan una mínima
distorsión espectral de las imágenes fusionadas con resultados superiores
a los métodos citadas previamente.

“La fusión de imágenes es una respuesta a la frecuente necesidad de tener
en una sola imagen datos de alta resolución espectral y espacial a partir de
imágenes multiespectrales y pancromáticas de diferente resolución espacial
y diferentes sensores remotos. La fusión permite obtener información
detallada sobre el medio ambiente urbano y rural, útil para una aplicación
específica en estudio” (Wald, 1999; Alparone et al., 2007).

Corresponde a técnicas que permiten mezclar, a nivel de píxel, las
virtudes de diversas imágenes mejorando la capacidad de discriminación
digital de los fenómenos espaciales, permitiendo al usuario cambiar la
escala del análisis espacial con la misma imagen. En pocas palabras, lo que
se pretende es mejorar la calidad de los datos, lo que además sirve para
mejorar la fiabilidad de las estimaciones de una determinada variable
(Chuvieco, 2002).

La fusión de imágenes genera imágenes sintéticas, producto de la
combinación de uno o más sensores, por ejemplo, imágenes de radar con
ópticas, térmicas con ópticas, etc. Una de las aplicaciones más recurrentes
es la de mejorar la resolución espacial de una imagen multiespectral,
usando una imagen de resolución espectral pobre, pero de mayor
resolución espacial. Hace unos años lo más natural era fusionar bandas de

Introducción, problema de investigación y objetivos

15

Landsat 5 TM, de 30 m. de resolución espacial, con la banda pancromática
de Spot, con píxel de 10 m (Chuvieco, 2008). El resultado poseía lo mejor de
los dos mundos, la riqueza espectralidad Landsat junto a la riqueza espacial
de la Spot. Este procedimiento también puede hacerse entre fotografías
aéreas e imágenes de cualquier satélite.

Hoy lo más común es utilizar la banda pancromática, propia del mismo
satélite y fusionarla con sus bandas espectrales. La ventaja de esto, es que
ambas imágenes son de la misma fecha y tienen el mismo ángulo de
inclinación de la toma, por lo tanto, tendrán las mismas características de
sombras e igualdad de condiciones atmosféricas.

Generalmente la relación entre el tamaño del píxel de las bandas
espectrales y la banda pancromática es de 1 a 2, es decir, si una banda
espectral posee resolución espacial de 30 m. por píxel, la banda
pancromática poseería una resolución de 15 m. (ver Figura 1).

Para realizar la fusión de imágenes se debe cumplir:

1. La georreferenciación o corregistración de las imágenes involucradas,
debe ser la misma. Es decir, la ubicación de los objetos en el espacio
debe coincidir.

2. La extensión de las imágenes debe ser la misma, en otras palabras, la
cantidad de líneas y columnas debe ser igual.

3. El tamaño del píxel también debe ser igual en todas las bandas
involucradas. Es decir, el tamaño del píxel de la imagen multiespectral
debe coincidir con el tamaño de la imagen pancromática.

Figura 1. Comparación de la banda 3 y la imagen pancromática Landsat 8 OLI TIRS.

Acelerando la fusión de imágenes mediante computación heterogénea

16

Para cumplir estos requisitos, las bandas espectrales deben ser
procesadas. Lo primero es igualar las matrices en cuanto a tamaño del píxel
y cantidad de las bandas espectrales a la imagen pancromática. El
procedimiento se llama remuestreo e implica recalcular la matriz raster de
las bandas para que esta sea igual a la matriz de la imagen pancromática.

La Figura 2, muestra lo que ocurre con los valores de los píxeles durante
el proceso. En esta, la relación es 1 a 2, donde 1 píxel espectral se multiplica
por 4, pero los valores asignados no cambian, se repiten, ya que no se está
mejorando la imagen o no hay nueva información espectral que
representar. Se debe mencionar que el peso de la nueva banda en el disco
duro será de 4 veces mayor que la original. Para el caso de imágenes con
relación 1 a 4 el peso aumenta 16 veces.

Figura 2. Valores de píxel durante el proceso de remuestreo.

La calidad de las imágenes a fusionar es muy relevante cuando éstas
provienen de distintos sensores. Wald et al. (1997) recomiendan que se
cumplan ciertas condiciones medibles matemáticamente, a través de
índices estadísticos, pueden ser los ERGAS espectral (Erreur Relative Globale
Adimensionelle de Synthèse), de Wald (2000) o ERGAS Espacial, para evaluar
la calidad espacial de la fusión, de Lillo-Saavedra y Gonzalo (2005). También
se puede utilizar la diferencia de los valores medios, la diferencia de
varianzas, la desviación estándar o el error medio cuadrático (RMS),

Introducción, problema de investigación y objetivos

17

correlaciones espaciales, entre otros, y que van más allá de mera inspección
visual. Estas condiciones se pueden resumir en:

1. Cualquier imagen fusionada una vez degradada de su resolución original,
debe ser lo más similar posible a la imagen original (antes de la fusión).

2. Cualquier imagen fusionada debe ser lo más similar posible a la imagen
original del sensor que aporta la imagen de mayor resolución espacial.

Como ejemplo de fusión, con una imagen Ikonos de Bogotá, RGB

verdadero color, 4 metros de resolución espacial, y una imagen
pancromática 1 m de resolución, (ver Figura 3).

Figura 3. Imagen original y la imagen fusionada Ikonos.

1.2 Introducción a la computación heterogénea
A través de la historia de la computación, el paradigma de desarrollo y

evolución de los procesadores se había enfocado en el aumento de su
capacidad de cómputo mediante el incremento de la frecuencia de reloj,
con el objeto de ejecutar una mayor cantidad de instrucciones en el menor
tiempo posible. Sin embargo, desde 2003 debido al consumo de energía y
los problemas de disipación de calor que limitan la construcción de
procesadores que aumenten la frecuencia de reloj y el nivel de actividades
productivas que puede ejecutarse en cada periodo de reloj en un único
procesador, se cambió el enfoque integrando múltiples unidades de
procesamiento en un mismo chip para aumentar el poder de
procesamiento (De Antonio y Marina, 2005). Gracias al desarrollo de estos
procesadores se abrió la posibilidad de resolver problemas

Acelerando la fusión de imágenes mediante computación heterogénea

18

computacionales que antes hubieran sido imposibles (Alba, 2005). Estos
problemas deben ser solucionados de una manera distinta a como se
resuelven linealmente, tomando un problema cualquiera se divide en un
conjunto de subproblemas para resolver éstos simultáneamente sobre
diferentes unidades de procesamiento.

 De acuerdo a lo expuesto en el párrafo anterior, en la actualidad el
desarrollo de sistemas de procesamiento se ha enfocado en producir
dispositivos con la capacidad de ejecución simultánea de dos manera
diferentes: La primera opción es el diseño de CPUs multi-core, optimizadas
para reducir el tiempo de ejecución de procesos secuenciales (lactency
cores); la segunda opción, es el diseño de sistemas de procesamiento many-
thread, como por ejemplo las GPUs (Graphics Processing Unit / Unidades de
Procesamiento Gráfico) optimizadas para mejorar el desempeño (menos
tiempo y menos consumo de energía eléctrica) en la ejecución de procesos
paralelizables (throughput cores). Debido a que la mayoría de problemas
computacionalmente intensivos poseen procesos tanto secuenciales como
paralelizables, en los últimos años se ha iniciado el proceso de integración
de los sistemas multi-core y los sistemas many-thread en plataformas
computacionales denominadas heterogéneas (Kirk & Wen-mei, 2012).

Una plataforma de computación heterogénea se define como un
sistema conformada por lo menos de dos tipos diferentes de procesadores,
normalmente, con el objeto de incorporar capacidades de procesado
especializadas para realizar tareas particulares (Shan, 2006). Un sistema
heterogéneo se conforma habitualmente por una o más CPU que cumplen
la función de unidad de procesamiento principal (llamado generalmente
Host) y uno o más dispositivos de procesamiento diferentes, como por
ejemplo GPUs (Graphics Processing Units), DSPs (Digital Signal Processors),
FPGAs (Field Programmable Gate Arrays), que cumplen la función de
aceleradores (ver Figura 4). También se puede encontrar la integración de
dos o más tipos de procesadores en un solo chip, por ejemplo, un APU

Introducción, problema de investigación y objetivos

19

(accelerated processing unit) es un microprocesador que integra una CPU
multinúcleo y una GPU mediante un bus de alta velocidad.

Figura 4. Plataforma heterogénea típica.

Así como la heterogeneidad entre dispositivos de procesamiento
representa una ventaja al ofrecer capacidades de procesado especializadas
para realizar tareas particulares, también representa una gran desventaja
desde el punto de vista del desarrollo. La heterogeneidad entre dispositivos
de procesamiento se centra principalmente en la diferencia entre
arquitecturas de conjuntos de instrucciones ISA (Instruction Set
Architecture), por tal motivo cada uno de los tipos de dispositivos podrá
contar con modelos, paradigmas y herramientas de programación
totalmente diferentes, lo que conlleva a procesos de desarrollo separados
con tortuosas integraciones. Los limitantes en la integración de procesos
de desarrollo para los diferentes tipos de dispositivos que pueden estar
involucrados en un sistema heterogéneo, se han comenzado a mitigar con
la creación de estándares de plataformas y modelos de programación tales
como CUDA y OpenCL.

1.2.1 CUDA

CUDA es una plataforma de computación paralela de propósito general
y un modelo de programación. Su principal objetivo es habilitar el uso de
GPUs NVIDIA para soluciona problemas computacionales complejos de una
forma más eficiente que como se hace sobre una CPU (CUDA C

Acelerando la fusión de imágenes mediante computación heterogénea

20

Programming Guide, 2017). CUDA incluye un entorno de software que
permite a los desarrolladores usar C como un lenguaje de alto nivel.
También soporta otros lenguajes de programación y APIs.

1.2.1.1 Modelo de programación de CUDA
El modelo de programación de CUDA se soporta sobre 3 abstracciones

claves: jerarquía de grupos de hilos, memorias compartidas y barreras de
sincronización, que se presentan al programador como un conjunto mínimo
de extensiones de lenguaje. Estas abstracciones guían al programador a
dividir el problema en subproblemas gruesos que pueden resolverse de
forma independiente en paralelo mediante bloques de hilos, y cada
subproblema en piezas más finas que se pueden resolver
cooperativamente en paralelo por todos los hilos dentro del bloque.

El modelo es escalable de forma automática, en el sentido que los
bloques de hilos no van sujetos al número de multiprocesadores de la GPU.
La ejecución de los bloques se adapta al número de multiprocesadores
disponibles (ver Figura 5).

Figura 5. Escalabilidad automática de CUDA: los bloques de hilos se distribuyen de forma

homogénea entre los SMs (Streaming Multiprocessors).
Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide.

http://docs.nvidia.com/cuda/cuda-c-programming-guide

Introducción, problema de investigación y objetivos

21

Figura 6. Ejemplo de definición y llamado de un kernel.

Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide.

Kernels: CUDA extiende C de tal forma que el programador pueda
definir funciones denominadas kernels, que cuando sean llamadas, se
ejecuten N veces en paralelo por N diferentes Hilos CUDA. El número de
hilos a ejecutar la función se define en el momento de llamar el kernel. En
la Figura 6 se puede observar un ejemplo de definición y llamado de un
kernel.

Jerarquía de hilos: en CUDA los hilos se pueden agrupar en bloques de
1, 2 o 3 dimensiones y a su vez esos bloques se pueden agrupar en mallas
de 1, 2 o 3 dimensiones. En la Figura 7 se puede observar una grilla de 2
dimensiones conformada por bloques de hilos también de 2 dimensiones.

Acelerando la fusión de imágenes mediante computación heterogénea

22

Figura 7. Malla de bloques de hilos.

Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide.

Figura 8. Ejemplo de definición y llamado de un kernel con una malla bidimensional conformada

por bloques bidimensionales de hilos.
 Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide.

El número de hilos por bloque y el número de bloques por malla se
determinan en el momento de llamar el kernel. Dentro del kernel tanto los
bloques como los hilos tienen un identificador que se puede acceder a
través de una variable (built-in). Para el caso de los bloques la variable es
blockIdx y para el caso de los hilos es threadIdx. Adicionalmente se puede
acceder a la dimensión de los bloques mediante la variable blockDim.

http://docs.nvidia.com/cuda/cuda-c-programming-guide

Introducción, problema de investigación y objetivos

23

En el ejemplo de la figura 8 se definen bloques de tamaño 16x16 (256
hilos), que se agrupan en una malla bidimensional definida de tal forma que
hallan suficientes bloques como para disponer de un hilo por cada
elemento de la matriz a procesar.

Jerarquía de memoria: Las memorias con las cuales se cuenta en CUDA
se organizan de forma jerárquica de acuerdo a su visibilidad. Cada hilo tiene
una memoria privada de uso exclusivo, cada bloque de hilos tiene una
memoria compartida a la cual pueden acceder todos los hilos de un bloque,
pero no los de otros bloques, por último, todos los hilos sin importar de que
bloque sean pueden acceder a una memoria denominada global. Adicional
a esta memoria global existen otras dos memorias de acceso general para
todos los hilos pero únicamente para su lectura, estas memorias son la de
textura y la constante.

En la Figura 9 se pueden observar los diferentes tipos de memoria en
CUDA con su visibilidad por parte de los hilos, los bloques y las mallas.

Figura 9. Jerarquía de memoria en CUDA.

Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide.

Acelerando la fusión de imágenes mediante computación heterogénea

24

Programación heterogénea: el modelo de programación de CUDA
asume que sus hilos se ejecutan en un dispositivo separado físicamente que
actúa como coprocesador del host donde se ejecuta el programa C desde
el cual se llaman los kernels. Para el caso de tener una CPU y una GPU, esta
última actuará como coprocesador del host CPU.

El modelo también asume que tanto la GPU como la CPU poseen su
propio espacio de memoria independiente en la DRAM y se refiere a estos
espacios como memoria de dispositivo y memoria de host
respectivamente. En la Figura 10 se puede observar el concepto de
programación heterogénea: un programa en C que ejecuta de forma
secuencial código serial que es ejecutado en el host y código paralelo que
es ejecutado en el dispositivo (GPU).

Figura 10. Programación heterogénea.

Fuente: http://docs.nvidia.com/cuda/cuda-c-programming-guide.

Introducción, problema de investigación y objetivos

25

1.3 Reto computacional para implementar la fusión de
imágenes en arquitecturas computacionales
heterogéneas

Como se mencionó en los párrafos anteriores, la fusión de imágenes
utiliza una serie de algoritmos que tienen algo en común: involucran en
gran medida operaciones pixel a pixel, lo que genera una dependencia
directa entre el tamaño de la imagen y la exigencia computacional. Sin
embargo, esas operaciones pixel a pixel presentan una baja o nula
interdependencia, lo que habilita su parelización masiva para acelerar su
cómputo mediante arquitecturas many-core, como por ejemplo las
unidades de procesamiento gráfico o GPU como se puede evidenciar en las
implementaciones de Yoo et al. (2009) y de Lu et al. (2011).

Evidentemente la paralelización masiva mediante arquitecturas many-
core es el camino a seguir para enfrentar la alta exigencia computacional
de la fusión de imágenes, y mucho más si se tiene en cuenta que
actualmente se dispone de un gran número de librerías eficientes para el
cómputo matricial sobre GPU, como por ejemplo CUBLAS (Toolkit, 2011) o
clBLAS (Nugteren, 2018).

Sin embargo los algoritmos de fusión de imágenes no están
conformados exclusivamente de procesos paralelizables eficientemente,
sino que involucran: a) procesos secuenciales con cierto grado de
interdependencia que conlleva a que su ejecución en una plataforma many-
core no represente ninguna aceleración sino que por el contrario implique
tiempos y recursos de memoria adicionales; b) procesos paralelizables que
por su alta transferencia de datos entre las plataformas multi-core y many-
core es más eficiente su ejecución secuencial. Esto exige un modelo de
procesamiento heterogéneo que segmente y distribuya convenientemente
tareas entre los dos tipos de arquitecturas, teniendo en cuenta no solo la
capacidad de paralelización de los procesos sino también el costo de la

Acelerando la fusión de imágenes mediante computación heterogénea

26

transferencia de los datos y el uso eficiente de las estructuras de memoria
disponibles.

1.4 Objetivo de este libro
Este libro busca diseñar e implementar modelos de procesamiento

heterogéneos que permitan la aceleración eficiente de los principales
métodos de fusión de imágenes sobre plataformas computacionales que
integren arquitecturas multi-core (CPU) y arquitecturas many-core (GPU).

En los capítulos 2, 3 y 4, el lector encontrará los conceptos de los
métodos de fusión por transformada de Brovey, por multiplicación, por
análisis de componentes principales y por el algoritmo de À trous; así como
también encontrará el modelo de procesamiento y el código que permite
su implementación eficiente en arquitecturas heterogéneas (CPU/GPU).
Adicionalmente el libro cuenta con un repositorio (https://github.com/
Parall-UD/libro_fusion_imagenes_satelitales_GPU) donde se encuentran
los scripts y las imágenes de prueba. En el capítulo 5 se exponen las
diferentes métricas que permiten evaluar la calidad de la imagen fusionada
tanto espacial como espectralmente. En el capítulo 6 se presentan y
analizan los resultados de la evaluación de los modelos y su
implementación tanto a nivel de aceleración como a nivel de calidad de la
imagen fusionada. Finalmente se presentan las conclusiones.

https://github.com/%20Parall-UD/libro_fusion_imagenes_satelitales_GPU
https://github.com/%20Parall-UD/libro_fusion_imagenes_satelitales_GPU

Fusión de imágenes basado en operaciones algebraicas

27

Capítulo 2

Fusión de imágenes basado en
operaciones algebraicas

En función del algoritmo de fusión aplicado se obtendrán imágenes con
mayor o menor calidad espacial, pero estableciéndose siempre un
compromiso entre esta y la calidad espectral de la imagen fusionada, ya que
cuanto mayor será la cantidad de información proveniente de la imagen
pancromática que se le inyecta a la multiespectral mejor será su calidad
espacial, pero también mayor será la distorsión de las características
espectrales de la multiespectral original y viceversa. En la mayoría de los
casos, el objetivo es obtener una imagen con una resolución espacial
próxima a la de la imagen pancromática, introduciendo la mínima distorsión
espectral posible.

2.1 Algoritmos de fusión de imágenes
La fusión puede definirse como la combinación simultanea de

información procedente de fuentes distintas que se complementan y cuyo
resultado permite mejorar la calidad y la interpretabilidad de los datos
originales. En el contexto de la teledetección, la fusión consiste en la
combinación de dos o más imágenes con el fin de obtener una nueva

Acelerando la fusión de imágenes mediante computación heterogénea

28

imagen que contenga la información deseada de cada una de ellas. Este
proceso de fusión puede llevarse a cabo a distintos niveles: de píxel, de
objeto y de decisión (Stathaki 2008, Zhang 2010).

La fusión a nivel de píxel es el nivel de procesado más bajo y consiste
en generar una imagen fusionada donde la información asociada a cada
píxel se obtiene a partir de los pixeles de las imágenes de origen. La fusión
a nivel de objeto se basa en la extracción previa de los objetos en las
imágenes origen en base a criterios como tamaño, forma o vecindad,
empleando técnicas de segmentación. Finalmente, la fusión a nivel de
decisión consiste en fusionar la información al nivel más alto de
abstracción. Así, las imágenes fuente son procesadas independientemente
para extraer la información que a continuación se combina aplicando reglas
de decisión para reforzar la interpretación común.

En este escenario, una de las herramientas de procesado novedosas, y
que presentan gran interés por parte de la comunidad científica, son las
técnicas de fusión a nivel de píxel o pansharpening, que permiten obtener
imágenes de varias bandas del espectro con el máximo nivel de detalle
espacial. Así, el principal objetivo de la fusión a nivel de píxel consiste en la
aplicación de algoritmos de procesado para mejorar la resolución espacial
de las diferentes bandas multiespectrales sin alterar sus características
espectrales (Li, Lixin y Mingyi, 2012).

2.2 Revisión de métodos de fusión de imágenes satelitales
De forma genérica, el proceso básico para la fusión de imágenes

multiespectrales y pancromáticas de un mismo sensor es el que se muestra
en la Figura 11. Lógicamente, y como paso previo a la fusión, es importante
garantizar el perfecto registro de las diferentes imágenes. Se aprecia que la
primera transformación consiste en la interpolación para ajustar el tamaño
de la imagen multiespectral (MS) al de la pancromática (PAN), para
seguidamente aplicar el algoritmo de fusión correspondiente.

Fusión de imágenes basado en operaciones algebraicas

29

La fusión de imágenes a nivel de píxel es un campo de investigación
muy activo. Si bien, es verdad que desde hace bastantes años se habían
comenzado a estudiar, es a partir del año 2000 cuando ha despertado un
interés creciente asociado a la disponibilidad de datos procedentes de
sensores ópticos de diferentes resoluciones espaciales.

Figura 11. Diagrama genérico del proceso de fusión a nivel de píxel entre las bandas MS y PAN.

Fuente: elaboración propia.

Existen diferentes formas de clasificar los distintos algoritmos de
fusión (Kpalma et al., 2013; Amro et al., 2011; Zhang, 2010; González-
Audícana, 2007).

A continuación, se muestra una de ellas atendiendo a los detalles de su
implementación:

• Métodos basados en operaciones algebraicas: las imágenes
fusionadas se obtienen como resultado de operaciones aritméticas
entre bandas de la imagen MS y la PAN.

Acelerando la fusión de imágenes mediante computación heterogénea

30

• Métodos basados en sustitución de componentes: el principio teórico
de estos métodos es la realización de una transformación de la
imagen MS original en una serie de componentes transformadas, de
tal forma que al sustituir una de dichas componentes por la imagen
PAN y realizar la operación de transformación inversa se consiga una
imagen fusionada de alta resolución espectral y espacial.

• Métodos basados en la inyección de altas frecuencias: estos métodos
se basan en extraer las componentes de alta frecuencia de la imagen
PAN, por ejemplo, usando un filtrado paso alto, que posteriormente
se inyectan a la MS.

• Métodos basados en el análisis multirresolución: estas técnicas
descomponen las bandas MS y PAN a diferentes escalas para extraer
los detalles espaciales que se importan a las bandas MS a la escala
más fina. Los métodos basados en la transformada wavelet discreta
son los algoritmos más empleados en este ámbito de la fusión de
imágenes.

Con independencia de la clasificación utilizada por diversos autores, en
la actualidad se dispone de un gran número de algoritmos de fusión (Vivone
et al., 2015; Amro et al., 2011; Marcello-Ruiz et al., 2011; Ehlers et al. 2010;
Stathaki, 2008) principalmente aplicados para la fusión de imágenes
ópticas e IR cercanas.

En sus inicios, las técnicas más populares fueron las basadas en
operaciones aritméticas, destacando los algoritmos de Brovey, Synthetic
Variable Ratio o Ratio Enhancement, y las basadas en la sustitución de
bandas tras la aplicación de una transformada, destacando el Análisis de
Componentes Principales (PCA, Principal Component Analysis), la
transformada Intensidad-Brillo-Saturación (IHS, Intensity-Hue-Saturation) o
el algoritmo Gram-Schmidt (GS).

La utilización de estos algoritmos está muy extendida dada la baja
complejidad computacional que presentan. Sin embargo, proporcionan
imágenes fusionadas de menor calidad espectral, es decir cuyo color
presenta distorsiones respecto al color de las imágenes multiespectrales
originales. Esto impide su uso en diferentes aplicaciones en el área de la
teledetección, como son la clasificación de imágenes o la detección de

Fusión de imágenes basado en operaciones algebraicas

31

cambios. Más recientemente, para el tratamiento de datos de satélite de
nuevos sensores con mayor número de bandas, como es el caso de
Worldview-2 o de los sensores hiperespectrales, se ha desarrollado nuevos
algoritmos como, por ejemplo, el Hyperspecral Colour Sharpening (HCS) (Li,
He et al., 2013, Padwick, Deskevich et al., 2010).

Para solventar las limitaciones espectrales de los algoritmos
mencionados, surgieron técnicas que inyectan la información de alta
frecuencia, destacando los métodos HPF (High- Pass-Filtering), HPM (High-
Pass-Modulation) o el basado en la aplicación de filtros paso alto en el
dominio de Fourier (Lillo‐Saavedra, Gonzalo et al., 2005). Sin embargo, los
métodos que utilizan el análisis multirresolución, y fundamentalmente la
Transformada Wavelet Discreta (TWD) son los más populares para
disminuir la distorsión espectral. En particular, para lograr resultados
óptimos de fusión, diversos esquemas basados en wavelets han sido
propuestos por varios investigadores (Hong, Zhang 2008; Amolins, Zhang
y Dare, 2007; Lillo - Saavedra, Gonzalo, 2006; Otazu et al., 2005), destacando
los algoritmos de Mallat y À trous, cuya principal diferencia se refiere al
sentido en el que se realiza la estrategia multirresolución, pues en el primer
caso se diezma la imagen mientras que para À trous no se aplica ningún
diezmado.

En el ámbito de esta investigación se han seleccionados los algoritmos
de pan-sharpening que a continuación se detallan para llevar a cabo el
proceso de evaluación de la calidad espacial y espectral empleando las
métricas existentes. Se han seleccionado algoritmos pertenecientes a
diferentes categorías y, en especial, aquellos cuyo comportamiento
espectral y espacial es conocido al estar ampliamente documentado en la
literatura científica. Hay que destacar que el objetivo es fusionar imágenes
para analizar las prestaciones de los índices de calidad.

Acelerando la fusión de imágenes mediante computación heterogénea

32

2.3 Transformada de Brovey
Es un algoritmo de bajo coste computacional basado en operaciones

aritméticas y que da como resultado imágenes de buena calidad espacial,
pero baja calidad espectral. Utiliza un método que multiplica cada píxel de
la imagen multiespectral por la relación entre la intensidad de cada píxel de
la pancromática y la suma de las intensidades de todas las bandas de la
multiespectral.

Fue originariamente diseñado para imágenes de satélites de tres bandas
(composiciones RGB). Así, la transformada de Brovey (Hallada and Cox,
1983) inicial puede ser implementada según la expresión matemática
siguiente:

𝑁𝑁𝑁𝑁1 = (3𝐵𝐵1/(𝐵𝐵1 + 𝐵𝐵2 + 𝐵𝐵3)) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 (1)
𝑁𝑁𝑁𝑁2 = (3𝐵𝐵2/(𝐵𝐵1 + 𝐵𝐵2 + 𝐵𝐵3)) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 (2)
𝑁𝑁𝑁𝑁3 = (3𝐵𝐵3/(𝐵𝐵1 + 𝐵𝐵2 + 𝐵𝐵3)) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 (3)

donde NB1, NB2 y NB3 son las bandas fusionadas y PAN es la pancromática.
Al realizar la implementación del algoritmo ha de tenerse en cuenta que los
valores a utilizar deben estar normalizados para evitar desbordamientos de
rango. A continuación, se muestra la ecuación extendida del algoritmo para
imágenes con N bandas:

𝑁𝑁𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹,𝑏𝑏𝑏𝑏 = � 𝑁𝑁𝑁𝑁×𝑁𝑁𝐷𝐷𝑏𝑏𝑏𝑏
𝑁𝑁𝐷𝐷𝑏𝑏𝑏𝑏+𝑁𝑁𝐷𝐷𝑏𝑏𝑏𝑏+⋅⋅⋅+𝐵𝐵𝐵𝐵𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏

� ∗ 𝑁𝑁𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 (4)

Donde:

NB es el número de bandas espectrales.

NDFUS,bi es el valor digital de la banda fusionada i.

NDbi es el valor digital de la banda multiespectral i.

NDPAN es el valor digital de la banda PAN.

Fusión de imágenes basado en operaciones algebraicas

33

2.3.1 Modelo de procesamiento heterogéneo para la transformada de
Brovey

El modelo de procesamiento heterogéneo para implementar la
transformada de Brovey sobre una arquitectura CPU/GPU se presenta en la
Figura 12. El primer paso es la separación de bandas para la imagen
multiespectral. Posteriormente, se realiza la transferencia de los niveles
digitales a memoria global de la GPU, con el fin de realizar una
normalización de las bandas. Este proceso consiste en tomar cada una de
las bandas, multiplicarlas por un factor, el cual corresponde al número total
de bandas y finalmente dividir este valor entre la suma de cada una de las
bandas. Acto seguido, se multiplica elemento a elemento cada una de las
bandas normalizadas con la imagen pancromática, esto con el propósito de
inyectar la riqueza espacial en cada una de las bandas. Después, se calcula
el valor máximo y mínimo de las bandas con inyección espacial, para
posteriormente en el último paso, realizar un ajuste de riqueza espectral, el
cual consiste en restar el valor mínimo a cada elemento de una banda,
multiplicarlos por un factor de 255 y este resultado, debe ser dividido por la
resta entre el valor máximo y mínimo. Este ajuste se realiza por cada una de
las bandas.

Figura 12. Modelo de procesamiento heterogéneo para la transformada de Brovey

2.3.2 Implementación de la transformada de Brovey en Python

A continuación, se presentan fragmentos secuenciales de código en
Python, utilizados para poder llevar a cabo la fusión de imágenes satelitales

Acelerando la fusión de imágenes mediante computación heterogénea

34

mediante la transformada de Brovey. En el repositorio del libro se
encuentra el script completo con las imágenes de prueba:
https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU.

Definición de dependencias - Líneas 1 – 7:

1. import skimage.io
2. import pycuda.autoinit
3. import pycuda.driver as drv
4. import pycuda.gpuarray as gpuarray
5. import numpy as np
6. import skcuda.linalg as linalg
7. from pycuda.elementwise import ElementwiseKernel

En estas líneas de código se importan las librerías necesarias para llevar
a cabo la fusión de imágenes satelitales mediante la transformada de
Brovey haciendo uso de una arquitectura CPU/GPU. Por un lado, la librería
skimage mediante el módulo io, nos permite leer imágenes con extensión
TIFF. Asimismo, la librería pycuda, permite acceder a la interfaz de
programación de aplicaciones (API) de computación paralela CUDA del
Nvidia desde Python. En este orden de ideas, pycuda admite el manejo de
arreglos en memoria de GPU, mediante su módulo gpuarray, y el módulo
elementwise contiene herramientas para la generación de núcleos para la
evaluación de expresiones de etapas múltiples en uno o varios operandos
en un solo recorrido. También, se importa la librería Numpy, la cual es un
paquete fundamental para la computación científica en Python,
proporcionando herramientas para el manejo de objetos matriciales
multidimensionales y poder realizar rutinas de operaciones rápidas entre
matrices. Por último, se encuentra la librería Scikit-Cuda, proporcionando
interfaces de Python para muchas de las funciones de dispositivo/tiempo
de CUDA, CUBLAS, CUFFT y CUSOLVER, propias del Kit de programación de
CUDA de NVIDIA. En este caso, mediante su módulo linalg se proporciona
la posibilidad de realizar operaciones de álgebra lineal en GPU.

https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU

Fusión de imágenes basado en operaciones algebraicas

35

Función para normalización de bandas - Líneas 8 – 10:

8. def step_1(matrix_color, matrix_suma):
9. matrix_1=gpuarray.if_positive(matrix_suma, (3*matrix_color)

/matrix_suma,matrix_suma)
10. return matrix_1

En estas líneas de código se realiza la declaración de una función
nombrada step_1, la cual tiene como propósito realizar la división de una
banda entre la suma de todas las bandas. Mediante la función if_positive
del módulo gpuarray se realiza la evaluación de cada posición de la matriz,
tomando como criterio si el valor es positivo. De acuerdo a este valor, se
realiza la primera operación o la segunda constatando una sentencia de
condicional.

Función para la inyección de riqueza espacial - Líneas 11 – 13:

11. def step_2(matrix_1, matrix_image_pan):
12. matrix_2 = linalg.multiply(matrix_1, matrix_image_pan)
13. return matrix_2

Asimismo, se define la función step_2, la cual permite realizar una
multiplicación posición a posición entre dos matrices. Lo anterior, mediante
la función multiply propia del módulo linalg. Esta función recibe como
parámetros las dos matrices que se desean multiplicar posición a posición.

Función para obtener máximos y mínimos - Líneas 14– 17:

14. def step_3(matrix_1):
15. mat_max = np.amax(matrix_1.get())
16. mat_min = np.amin(matrix_1.get())
17. return mat_max, mat_min

Adicionalmente, se debe establecer una función que permita calcular
el valor máximo y mínimo a partir de una matriz de entrada. Debido a esto
se define la función step_3.

Acelerando la fusión de imágenes mediante computación heterogénea

36

Núcleo para ajuste espectral - Líneas 18 – 21:

18 lin_comb = ElementwiseKernel(
19. "float a, float *x, float b, float *z",
20. "z[i] = ((x[i]-a)*255)/(b-a)",
21. "linear_combination")

En estas líneas de código se establece la variable lin_comb la cual
almacena una función ElementwiseKernel, recibiendo como parámetros
dos valores tipo float y tres matrices flotantes. Donde la matriz Z se
convertirá en la matriz de salida de esta función. Cada vez que se haga un
llamado a esta función se generará un núcleo y se realizará una operación
de ajuste de riqueza espectral.

Función para ajuste espectral - Líneas 22 – 24:

22. def step_4(matrix_1, matrix_color, mat_max, mat_min):
23. lin_comb(mat_min, matrix_1, mat_max, matrix_color)
24. return matrix_color

Sin embargo, para mantener uniformidad en el código, se define una
función propia en el lenguaje de Python, llamada step_4. Esta función,
estará encargada de realizar el llamado a la función de Elementwise,
establecida previamente.

Lectura y carga de imágenes - Líneas 25 – 26:

25. multispectral = skimage.io.imread('multispectral.tiff', plugin = 'tifffile')
26. panchromatic = skimage.io.imread('panchromatic.tiff', plugin = 'tifffile')

A partir de estas líneas de código, se realiza la lectura de la imagen
multiespectral y pancromática. Lo anterior, mediante la función imread,
perteneciente al módulo io de la librería scikit-image. Esta función
convierte las imágenes que se desean leer a un arreglo multidimensional de

Fusión de imágenes basado en operaciones algebraicas

37

numpy, con el propósito de poder ser utilizadas y manejadas mediante su
representación matricial.

Conversión de tipo de dato de las bandas - Líneas 27 – 32:

27. multispectral = multispectral.astype(np.float32)
28. r = multispectral[:,:,0].astype(np.float32)
29. g = multispectral[:,:,1].astype(np.float32)
30. b = multispectral[:,:,2].astype(np.float32)
31. panchromatic = panchromatic.astype(np.float32)
32. msuma = r+g+b

Una vez se han leído y cargado las imágenes, se procede a especificar
el tipo de dato de cada uno de los píxeles de la imagen, en este caso para
manejar uniformidad se especifica un tipo flotante de 32 bits haciendo uso
del tipo de float32 de numpy. Adicionalmente, en las líneas 28 a 30, se
realiza una indexación sobre la matriz que contiene la información de la
imagen multiespectral, con el fin de obtener cada una de las bandas de su
espacio de color, que en este caso es rojo, verde, azul (RGB). Para finalizar,
la transformada de Brovey, requiere conformar un arreglo bidimensional
que reúna la suma pixel a pixel de cada una de las bandas extraídas
anteriormente. Esto se almacena en la variable msuma.

Transferencia de variables a memoria global de GPU - Líneas 33 – 38:

33. r_gpu = gpuarray.to_gpu(r)
34. g_gpu = gpuarray.to_gpu(g)
35. b_gpu = gpuarray.to_gpu(b)
36. panchromatic_gpu = gpuarray.to_gpu(panchromatic)
37. msuma_gpu = gpuarray.to_gpu(msuma)
38. linalg.init()

Durante todo este momento, se ha venido trabajando sobre la CPU del
equipo. Sin embargo, en estas líneas de código se realiza la transferencia
de los arreglos de numpy que contienen las diferentes bandas a arreglos de
pycuda, es decir, esta transferencia se realiza de memoria CPU a memoria

Acelerando la fusión de imágenes mediante computación heterogénea

38

global de la GPU. Esto se logra mediante la función to_gpu propia del
módulo gpuarray. Dicha función recibe por parámetro el arreglo que
deseamos transferir. En esta oportunidad se realiza la transferencia a GPU
de la banda roja, verde, azul, la imagen pancromática y la matriz que tiene
la suma de las bandas. Por último, se inicializa el módulo de operaciones de
álgebra lineal de scikit-cuda.

Normalización e inyección espacial de bandas - Líneas 39 – 44:

39. m11_gpu = step_1(r_gpu, msuma_gpu)
40. m22_gpu = step_2(m11_gpu, panchromatic_gpu)
41. m33_gpu = step_1(b_gpu, msuma_gpu)
42. m44_gpu = step_2(m33_gpu, panchromatic_gpu)
43. m55_gpu = step_1(g_gpu, msuma_gpu)
44. m66_gpu = step_2(m55_gpu, panchromatic_gpu)

En esta línea de código se realiza la división de las bandas (R, G, B) entre
la matriz que contiene la suma de estas bandas, esto mediante la función
step_1() declarada al inicio de este proceso. Acto seguido, a través de la
función step_2, se toma el resultado de la división de matrices para cada
una de las bandas y se realiza una multiplicación posición a posición con la
imagen pancromática. Es importante resaltar que todo este proceso se
realizó en la GPU.

Ajuste espectral de bandas - Líneas 45 – 53:

45. Amax_host, Amin_host = step_3(m22_gpu)
46. rr_gpu = gpuarray.empty_like(r_gpu)
47. step_4(m22_gpu, rr_gpu, Amax_host, Amin_host)
48. Amax_host, Amin_host = step_3(m66_gpu)
49. gg_gpu = gpuarray.empty_like(g_gpu)
50. step_4(m66_gpu, gg_gpu, Amax_host, Amin_host)
51. Amax_host, Amin_host = step_3(m44_gpu)
52. bb_gpu = gpuarray.empty_like(b_gpu)
53. step_4(m44_gpu, bb_gpu, Amax_host, Amin_host)

Fusión de imágenes basado en operaciones algebraicas

39

Acto seguido, se obtienen los valores máximos y mínimos de la matriz
resultado de la multiplicación de la banda y la imagen pancromática.
Asimismo, se separa espacio en memoria para las matrices que se
obtendrán en esta línea de código, eso mediante la función empty_like() la
cual recibe como parámetro el tamaño de la matriz que se desea separar,
en este caso se toma una matriz como guía. Esto quiere decir que se
separará en memoria y se creará un arreglo en GPU exactamente del
tamaño de la matriz que se pasa por parámetro. Para finalizar, se aplica el
proceso de ajuste espectral mediante la función step_4() la cual hace el
llamado a la función Elementwise. Ese proceso de ajuste espectral consiste
en que el valor mínimo se resta de cada banda generada mediante la
función step_2() y los datos resultantes se multiplican por un coeficiente de
255 para la posterior normalización (división) por la diferencia entre los
valores máximo y mínimo. Ese proceso se realiza para cada una de las
bandas (R, G, B) procesadas anteriormente.

Transferencia de bandas resultantes a memoria CPU - Líneas 54 – 56:

54. ggg_host = gg_gpu.get().astype(np.uint8)
55. rrr_host = rr_gpu.get().astype(np.uint8)
56. bbb_host = bb_gpu.get().astype(np.uint8)

El proceso anterior se realizó sobre la GPU, sin embargo, es necesario
realizar una conversión de tipo de datos, donde se pasa de un flotante de
32 bits a un entero de 8 bits, para que la imagen resultado puede ser
visualizada fácilmente. Este proceso de conversión se realiza para cada una
de las bandas resultantes y adicionalmente, se realiza sobre CPU. Mediante
la función get(), se realiza la transferencia de datos desde memoria GPU a
memoria CPU.

Generación de nueva imagen - Líneas 57 – 58:

57. fusioned_image = np.stack((rrr_host, ggg_host, bbb_host),axis=2)
58. skimage.io.imsave('broveygpu_image.tif',fusioned_image,plugin = 'tifffile')

Acelerando la fusión de imágenes mediante computación heterogénea

40

Para finalizar, se realiza el proceso de concatenación de las bandas
procesadas mediante la función stack de numpy. Eso produce una nueva
imagen que mantiene la riqueza espectral ajustada de la imagen
multiespectral junto con la resolución especial de la imagen pancromática.
Por último, mediante la función imsave de skimage se guarda localmente la
imagen generada a partir de la fusión de estas imágenes. La Figura 13C,
presenta la imagen resultado, al realizar la fusión de la imagen
multiespectral (Figura 13A) y pancromática (Figura 13B), ambas con
dimensión de 1024 píxeles por 1024 píxeles. Lo anterior mediante la
transformada de Brovey.

 A) B) C)

Figura 13. Imagen fusionada de 1024x1024 píxeles, mediante la transformada de Brovey

2.4 Método de multiplicación
Este método aplica un algoritmo simple de multiplicación, para

incorporar el contenido de la imagen pancromática en la imagen
multiespectral (Pohl and Van Genderen, 1998).

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃 (5)

En donde

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 es la imagen fusionada

𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 imagen multiespectral banda k

Fusión de imágenes basado en operaciones algebraicas

41

2.4.1 Modelo de procesamiento heterogéneo
para el método de multiplicación

La Figura 14 presenta la interacción entre la CPU y la GPU implementada
para el método de multiplicación. Como primer paso, se realiza la
separación de las bandas de la imagen multiespectral en CPU. Acto seguido,
se realiza la transferencia de las bandas a la memoria global de la GPU, para
inyectar la riqueza espacial en cada banda. Este proceso se realiza mediante
la multiplicación elemento a elemento de la imagen pancromática con cada
una de las bandas. Posteriormente, se calcula el valor máximo y mínimo de
las bandas con inyección espacial, para finalmente realizar un ajuste de
riqueza espectral, el cual consiste en restar el valor mínimo a cada elemento
de una banda multiplicarlos por un factor de 255, este resultado debe ser
dividido por la resta entre el valor máximo y mínimo. Este ajuste se realiza
por cada una de las bandas.

Figura 14. Modelo de procesamiento heterogéneo para el método de multiplicación.

2.4.2 Implementación del método de
multiplicación en Python

A continuación, se presentan fragmentos secuenciales de código en
Python, utilizados para poder llevar a cabo la fusión de imágenes satelitales
mediante el método de multiplicación. En el repositorio del libro
(https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU) se
encuentra el script completo con las imágenes de prueba.

https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU

Acelerando la fusión de imágenes mediante computación heterogénea

42

Definición de dependencias - Líneas 1 – 7:

1. import skimage.io
2. import numpy as np
3. import pycuda.autoinit
4. import pycuda.driver as drv
5. import pycuda.gpuarray as gpuarray
6. import skcuda.linalg as linalg
7. from pycuda.elementwise import ElementwiseKernel

De igual manera en el que se presentó al inicio de la implementación de
la transformada de Brovey, para el método de multiplicación también es
necesario importar un conjunto de librerías como scikit-image, numpy,
pycuda y scikit-cuda. Estas librerías se explican de mejor manera en las
primeras líneas de la transformada de Brovey, sin embargo, estas librerías
nos permiten la lectura y almacenamiento de imágenes con extensión .TIFF,
la interacción con herramientas para realizar operaciones matriciales, una
interfaz para la interacción con computación paralela mediante el
framework CUDA, entre otras funcionalidades.

Función para la inyección de riqueza espacial - Líneas 8 – 10:

8. def step_1(color_matrix, image_matrix):
9. matrix_sal = linalg.multiply(color_matrix, image_matrix)
10. return matrix_sal

Como primera instancia, es necesario realizar la inyección de riqueza
espacial de la imagen pancromática a la imagen multiespectral. Debido a
esto, se requiere establecer una función que permita realizar esta tarea,
mediante la multiplicación posición a posición entre dos matrices. Es por
esto que, se crea la función step_1(), la cual recibe por parámetros las dos
matrices que se desean multiplicar. Por último, esta función retorna la
matriz resultante de la multiplicación posición a posición.

Fusión de imágenes basado en operaciones algebraicas

43

Función para obtener máximos y mínimos - Líneas 11 – 14:

11. def step_2(matrix_1):
12. mat_max = np.amax(matrix_1)
13. mat_min = np.amin(matrix_1)
14. return mat_max, mat_min

En estas líneas de código se define una función nombrada como
step_2(), cuyo propósito es obtener el máximo y mínimo valor entre un
arreglo bidimensional. A su vez, esta función retorna estos dos valores. Lo
anterior se realiza mediante las funciones amax() y amin() de numpy.

Núcleo para ajuste espectral - Líneas 15 – 18:

15. lin_comb = ElementwiseKernel(
16. "float a, float *x, float b, float *z",
17. "z[i] = ((x[i]-a)*255)/(b-a)",
18. "linear_combination")

Posteriormente, mediante este fragmento de código, donde se hace
uso de la función ElementwiseKernel(), se establece el procedimiento de
ajuste espectral. Este proceso consiste en tomar el valor mínimo y restarlo
de su respectiva matriz para poder ser multiplicada por un valor constante
de 255. Después, se toman los valores obtenidos y se realiza una
normalización respecto a la diferencia entre los valores máximos y mínimos
de dicha matriz inicial. Es importante resaltar que, lo que se encuentra
dentro de la función es un pequeño fragmento de código de C-CUDA,
embebido dentro de Python.

Función para ajuste espectral - Líneas 19 – 21:

19. def step_3(matrix_1, matrix_color, mat_max, mat_min):
20. lin_comb(mat_min, matrix_1, mat_max, matrix_color)
21. return matrix_color.get()

Acelerando la fusión de imágenes mediante computación heterogénea

44

Estas líneas tienen como objetivo definir una función propia de Python,
donde se realice el llamado al núcleo Elementwise que se encarga de
realizar el ajuste espectral. Esta función recibe los siguientes parámetros:

• matrix_1: es la matriz que se desea ajustar espectralmente, es decir en
este caso serán las distintas bandas que han sido procesadas durante
la aplicación de este método.

• matrix_color: es una matriz vacía donde se almacenará la matriz
resultado de aplicar esta función de Elementwise.

• mat_max: es el valor máximo de la matrix_1.
• mat_min: es el valor mínimo de la matrix_1.

Finalmente, esta función retorna la matrix_color. Sin embargo, se debe
tener en cuenta que este proceso se realiza en GPU, en este caso se desea
realizar la transferencia de esta variable a memoria de CPU, por lo tanto,
utilizamos la función get().

Lectura y carga de imágenes - Líneas 22 – 23:

22. multispectral = skimage.io.imread('multispectral.tiff', plugin='tifffile')
23. panchromatic = skimage.io.imread('panchromatic.tiff', plugin='tifffile')

En estas líneas de código, se realiza la lectura y carga de las imágenes
de punto de partida para fusión de imágenes satelitales. Estas son, la
imagen multiespectral y pancromática. Además de esto, la librería scikit-
image, lee estas imágenes y las presenta al público mediante su
representación matricial de tipo numpy.

Conversión de tipo de dato de las bandas - Líneas 24 – 28:

24. multispectral = multispectral.astype(np.float32)
25. r = multispectral[:,:,0].astype(np.float32)
26. g = multispectral[:,:,1].astype(np.float32)
27. b = multispectral[:,:,2].astype(np.float32)
28. panchromatic = panchromatic.astype(np.float32)

Fusión de imágenes basado en operaciones algebraicas

45

Posteriormente, al leer la imagen multiespectral y pancromática, y
tenerlas en su representación matricial, se realiza la conversión de tipos de
datos a un flotante de 32 bits, lo anterior con el propósito de mantener
homogeneidad en las operaciones matriciales. Esta conversión, se realiza
mediante la función propia de todo elemento de numpy como lo es
astype(), donde por parámetro que recibe es el tipo de dato. Así mismo, la
imagen multiespectral está compuesta por un conjunto de bandas
dependiendo de su espacio de color. Para esta ocasión el espacio de color
es RGB, lo cual indica que tiene tres bandas, una roja, una verde y una azul
(red, green, blue). De acuerdo a esto, mediante la indexación de matrices
en numpy se extraen cada una de estas bandas.

Transferencia de variables a memoria global de GPU - Líneas 29 – 33:

29. r_gpu = gpuarray.to_gpu(r)
30. g_gpu = gpuarray.to_gpu(g)
31. b_gpu = gpuarray.to_gpu(b)
32. panchromatic_gpu = gpuarray.to_gpu(panchromatic)
33. linalg.init()

Como se ha mencionado anteriormente, se desea realizar la
implementación de esta técnica de fusión sobre una arquitectura GPU, por
lo tanto, es necesario realizar la transferencia de las variables necesarias
para este proceso de memoria de CPU y a memoria global de GPU. En este
orden de ideas, mediante la función to_gpu() se envía a GPU cada una de
las bandas extraídas anteriormente y la imagen pancromática. Para
finalizar, se inicializa el módulo de álgebra lineal de la librería scikit-cuda, lo
anterior al ejecutar linalg.init(). Después de realizar esto, ya se pueden
ejecutar funcionalidades de este módulo.

Inyección de riqueza espacial a bandas - Líneas 34 – 36:

34. m33_gpu = step_1(r_gpu, panchromatic_gpu)
35. m44_gpu = step_1(g_gpu, panchromatic_gpu)
36. m55_gpu = step_1(b_gpu, panchromatic_gpu)

Acelerando la fusión de imágenes mediante computación heterogénea

46

Mediante estas líneas de código, se busca tomar la riqueza espacial de
la imagen pancromática e inyectarla en cada una de las bandas, todo esto
en GPU. Este proceso, se realiza mediante la función step_1() definida
previamente. Dicha función, realiza la multiplicación píxel a píxel entre las
bandas (R, G, B) y la representación matricial de la imagen pancromática.

Ajuste espectral de bandas - Líneas 37 – 45:

37. Amax, Amin = step_2(m33_gpu.get())
38. br_gpu = gpuarray.empty_like(r_gpu)
39. br_host = step_3(m33_gpu, br_gpu, Amax, Amin)
40. Amax, Amin = step_2(m44_gpu.get())
41. bg_gpu = gpuarray.empty_like(g_gpu)
42. bg_host = step_3(m44_gpu, bg_gpu, Amax, Amin)
43. Amax, Amin = step_2(m55_gpu.get())
44. bb_gpu = gpuarray.empty_like(b_gpu)
45. bb_host = step_3(m55_gpu, bb_gpu, Amax, Amin)

Posteriormente, mediante estas líneas de código, se obtienen los
valores máximos y mínimos de la matriz resultado de la multiplicación de
cada banda y la imagen pancromática. Asimismo, mediante la función
empty_like(), se separa espacio en memoria de la GPU para las matrices que
se obtendrán en estas líneas de código. La función empty_like recibe como
parámetro el tamaño de la matriz que se desea separar, en este caso se
toma una matriz como guía. Esto quiere decir que se separará en memoria
y se creará un arreglo en GPU exactamente del tamaño de la matriz que se
pasa por parámetro. Para finalizar, utilizando la función step_3() se aplica
el proceso de ajuste espectral, dicha función hace el llamado al núcleo
simple de Elementwise creado con anterioridad, para realizar el ajuste
espectral de cada una de las bandas enriquecidas espacialmente. Ese
proceso de ajuste espectral consiste en que el valor mínimo se resta de cada
banda generada mediante la función step_2() y los datos resultantes se
multiplican por 255 para la posterior normalización (división) por la

Fusión de imágenes basado en operaciones algebraicas

47

diferencia entre los valores máximo y mínimo. Ese proceso se realiza para
cada una de las bandas (R,G,B) procesadas anteriormente.

Transferencia de bandas resultantes a memoria CPU - Líneas 46 – 48:

46. brr = br_host.astype(np.uint8)
47. bgg = bg_host.astype(np.uint8)
48. bbb = bb_host.astype(np.uint8)

Estas líneas de código realizan una conversión de tipo de datos, donde
se pasa de un float32 a un uint8, es decir se convierte de un flotante de 32
bits a entero de 8 bits. Esta conversión se realiza para cada una de las
bandas que ha sido ajustada espectralmente.

Generación de nueva imagen - Líneas 49 – 50:

49. fusioned_image = np.stack((brr, bgg, bbb),axis=2)
50. skimage.io.imsave('multiplicativegpu_image.tif',fusioned_image, plugin='tifffile')

Finalmente, se realiza el proceso de concatenación de las bandas
procesadas, mediante la función stack de numpy. Eso produce una nueva
imagen que mantiene la riqueza espectral ajustada de la imagen
multiespectral junto con la resolución espacial de la imagen pancromática.
Adicionalmente, la función imsave de skimage permite guardar localmente
la imagen generada a partir de la fusión de estas imágenes. La Figura 15C,
presenta la imagen resultado, al realizar la fusión de la imagen
multiespectral (Figura 15A) y pancromática (Figura 15B), ambas con
dimensión de 1024 píxeles por 1024 píxeles. Lo anterior, mediante el
método de multiplicación.

Acelerando la fusión de imágenes mediante computación heterogénea

48

 A) B) C)

Figura 15. Imagen fusionada de 1024x1024 píxeles, mediante el método Multiplicación

Métodos basados en transformadas: métodos de sustitución de componentes

49

Capítulo 3

Métodos basados en transformadas:
métodos de sustitución de componentes

La mayoría de los sensores MS recogen información en bandas
adyacentes del espectro electromagnético, lo que habitualmente implica
detectar información redundante, ya que muchas de las cubiertas
existentes sobre la superficie terrestre tienden a presentar
comportamientos similares en regiones próximas del espectro.

3.1 Fusión de imágenes usando análisis
de componente principales

El análisis en componente principales, también denominado
transformación PCA (de sus siglas en inglés Principal Component Analysis) o
transformada de Karhunen-Loève o Hotelling (Shettigara, 1992), crea
nuevas imágenes a partir de las originales llamadas componentes
principales (CP), no correlacionadas entre sí, que reorganizan la
información original. Con las componentes principales se elimina esa
información redundante entre componentes, de forma que la primera CP
se define como la dirección a lo largo de la cual la varianza de los datos tiene

Acelerando la fusión de imágenes mediante computación heterogénea

50

su máximo. Es decir, la esencia del análisis en componentes principales es
la transformación de un conjunto de variables correlacionadas en un nuevo
conjunto de variables no correlacionadas.

El método de fusión PCA (Shettigara, 1992) es similar al IHS en cuanto a que
se basa en la transformación de las bandas de la imagen multiespectral en
una serie de componentes, para luego sustituir una de ellas por la imagen
pancromática adaptada, buscando de esta manera añadir la información
espacial a la espectral. Tal y como se puede observar en la Figura 16, el
proceso a seguir para desarrollar este método de fusión es el que se
presenta a continuación. En primer lugar, se obtienen tantas componentes
principales como bandas tenga la imagen multiespectral. De este modo, la
CP1 contiene información espacial y las CP restantes la información
espectral. A continuación, se iguala el histograma de la imagen
pancromática al de la primera componente principal CP1, es decir, a aquella
que contiene información relativa al conjunto de las bandas.

La imagen pancromática modificada (una vez ajustado su histograma)
sustituye a la primera componente principal CP1. Aplicando a estas bandas
la transformación inversa se obtienen las bandas de la imagen fusionada.

Figura 16. Algoritmo de fusión PCA. Fuente Autor

Métodos basados en transformadas: métodos de sustitución de componentes

51

Una de las ventajas de este método es que no está limitado a imágenes
de 3 bandas, sino que puede utilizarse para un número ilimitado de bandas.
Sin embargo, introduce distorsión espectral en la imagen fusionada, esto
es así pues se parte de la base de que tras la transformación PCA, la
disociación entre información espacial y espectral de la imagen
multiespectral es total, pero esto no es así. Computacionalmente este
algoritmo de fusión es pesado ya que implica la realización del cálculo de la
matriz de covarianza, el cálculo de los autovalores y autovectores, generar
la matriz ortogonal y diversas operaciones algebraicas (producto de
matrices, matrices inversas, transposiciones, etc.) para generar las
componentes principales CP1, CP2 hasta CPN, donde N corresponderá al
número de bandas de la imagen multiespectral.

3.1.1 Modelo de procesamiento heterogéneo para PCA

La Figura 17 presenta la implementación de PCA sobre una arquitectura
de computación heterogénea CPU/GPU. Como primera instancia en el paso
número uno, se le realiza a la imagen multiespectral la descomposición en
sus bandas, en este caso (R, G, B). Después en el paso número dos se lleva
a cabo la transferencia de los niveles digitales a memoria global de la tarjeta
gráfica, con el propósito calcular el promedio de cada uno y restar dicho
valor de cada uno de los pixeles de las bandas. Lo anterior, con el propósito
de calcular la matriz de covarianza para cada una de las bandas en GPU.
Posterior a esto en el paso número tres, se carga la matriz de covarianza a
la memoria de la CPU, con el fin de calcular el coeficiente de diagonalización
ortogonal, determinar el polinomio característico y calcular vectores y
valores propios, para obtener la matriz ortogonalizada. En el paso
siguiente, se transfiere la matriz ortogonalizada a memoria global de la
GPU, para calcular los componentes principales mediante las bandas R, G,
B originales. A partir de los componentes calculados, la imagen
pancromática y la inversa de la matriz ortogonalizada se calculan los

Acelerando la fusión de imágenes mediante computación heterogénea

52

componentes finales. Finalmente, se transfieren a CPU para realizar el stack
de los componentes y generar la imagen resultante.

Figura 17. Modelo de procesamiento heterogéneo para PCA

3.1.2 Implementación de PCA en Python

A continuación, se presentan fragmentos secuenciales de código en
Python, utilizados para poder llevar a cabo la fusión de imágenes satelitales
mediante la técnica de análisis de componentes principales. En el
repositorio del libro (https://github.com/Parall-UD/libro_fusion_
imagenes_satelitales_ GPU) se encuentra el script completo con las
imágenes de prueba.

Definición de dependencias - Líneas 1 – 10:

1. import skimage.io
2. import numpy as np
3. from numpy import linalg as la
4. import pycuda.autoinit
5. import pycuda.driver as drv
6. import pycuda.gpuarray as gpuarray
7. from pycuda import compiler
8. import skcuda.misc as misc
9. from pycuda.elementwise import ElementwiseKernel

Como se realizó en las dos técnicas de fusión anteriores, estas primeras
líneas de código tienen como objetivo importar las librerías necesarias para
la correcta ejecución de los siguientes fragmentos de código. De igual

https://github.com/Parall-UD/libro_fusion_%20imagenes_satelitales_%20GPU
https://github.com/Parall-UD/libro_fusion_%20imagenes_satelitales_%20GPU

Métodos basados en transformadas: métodos de sustitución de componentes

53

manera, se hace uso de librerías mencionadas anteriormente como lo son
Pycuda, Numpy, Scikit-image y Scikit-cuda. Sin embargo, para esta técnica
se hace necesario importar un nuevo módulo de esta última librería. El
módulo es misc, el cual nos proporciona rutinas misceláneas, es decir,
utilidades que no se han contemplado en otros módulos. Finalmente, para
la librería Pycuda se importa un nuevo módulo llamado compiler, el cual nos
permite compilar bloques de código escritos en lenguaje C-CUDA y así
poder ser ejecutados en Python.

Núcleo para calcular la matriz de varianza-covarianza - Líneas 11 – 44:

10. kernel_var_cov = """
11. #include <stdio.h>
12. __global__ void CovarianceKernel(float *R, float *G, float *B, float *D)
13. {
14. const uint tx = threadIdx.x;
15. const uint ty = threadIdx.y;
16. __shared__ float prueba_salida;
17. if (threadIdx.x == 0) prueba_salida = 0;
18. float valor_temp = 0;
19. float salida_temp[9];
20. __syncthreads();
21. const int size = 3;
22. float arreglo[size];
23. arreglo[0] = R[ty * %(BLOCK_SIZE)s + tx];
24. arreglo[1] = G[ty * %(BLOCK_SIZE)s + tx];
25. arreglo[2] = B[ty * %(BLOCK_SIZE)s + tx];
26. __syncthreads();
27. for(int k = 0; k < 3; k++){
28. for(int h = 0; h < 3; h++){
29. valor_temp = arreglo[k]*arreglo[h];
30. salida_temp[k*3+h] = valor_temp;
31. valor_temp = 0;
32. }
33. }

4. __syncthreads();
5. for (int i = 0; i < 9; ++i){
36. atomicAdd(&prueba_salida,salida_temp[i]);
37. __syncthreads();
38. D[i] += prueba_salida;
39. __syncthreads();

Acelerando la fusión de imágenes mediante computación heterogénea

54

40. prueba_salida = 0.0;
41. __syncthreads();
42. }
43. }
44. """

En este fragmento de código se establece un núcleo escrito en lenguaje de
C-CUDA. El objetivo de este núcleo es calcular la matriz de varianza-
covarianza a partir de las bandas RGB de la imagen multiespectral. Para
realizar este proceso se utiliza la palabra reservarda de C-CUDA threadIdx
mediante sus atributos x, y, para obtener la posición del hilo que se está
ejecutando en los bloques de hilos de la GPU. Adicionalmente, mediante la
función syncthreads() se realiza la sincronización de todos los hilos que se
estén ejecutando paralelamente. Lo anterior, con el objetivo de coordinar
los accesos a memoria, es decir, que ninguno de los hilos puede seguir
realizando su tarea hasta que el resto de hilos hayan terminado. Asimismo,
realiza una operación atómica de lectura-modificación-escritura con datos
que residan en memoria global o compartida. Por ejemplo, la función
atomicAdd() nos permite tomar un valor en memoria global o compartida
y añadirle un número y escribir el resultado exactamente en la misma
dirección, lo que se conoce como sobreescritura. La operación es atómica,
dado que garantiza que se realizará sin interferencia de otros hilos. En otras
palabras, ningún otro hilo puede acceder a esta dirección hasta que se
complete la operación. La función CovarianceKernel escrita en C-CUDA se
almacenada en la variable global kernel_var_cov de Python y recibe como
parámetros la matriz que almacena la banda Roja, la matriz de la banda
verde y la matriz de la banda azul (R, G, B) y por último, recibe una matriz
D, la cual será la matriz de salida de esta operación.

Métodos basados en transformadas: métodos de sustitución de componentes

55

Núcleo para calcular componentes principales iniciales - Líneas 45 – 74:

45. kernel_componentes_principales_original = """
46. #include <stdio.h>
47. __global__ void componentesPrincipalesOriginal(float *R, float *G, float *B,

float *Q, float *S1, float *S2, float *S3)
48. {
49. const uint tx = threadIdx.x;
50. const uint ty = threadIdx.y;
51. const int size = 3;
52. float salida_temp [size];
53. float valor_temp = 0.0;
54. float arreglo[size];
55. arreglo[0] = R[ty * %(BLOCK_SIZE)s + tx];
56. arreglo[1] = G[ty * %(BLOCK_SIZE)s + tx];
57. arreglo[2] = B[ty * %(BLOCK_SIZE)s + tx];
58. __syncthreads();
59. for(int i = 0; i < 3; ++i){
60. for(int j = 0; j < 3; ++j){
61. valor_temp += (Q[i*3+j] * arreglo[j]);
62. }
63. salida_temp[i] = valor_temp;
64. valor_temp = 0.0;
65. }
66. __syncthreads();
67. S1[ty * %(BLOCK_SIZE)s + tx] = salida_temp[0];
68. __syncthreads();
69. S2[ty * %(BLOCK_SIZE)s + tx] = (-1.0)*salida_temp[1];
70. __syncthreads();
71. S3[ty * %(BLOCK_SIZE)s + tx] = salida_temp[2];
72. __syncthreads();
73. }
74. """

En estas líneas de código, se define un núcleo para el cálculo de los
componentes principales a partir de las bandas originales de la imagen
multiespectral. De igual manera, este núcleo que se ejecutará en la GPU
mediante el lenguaje C-CUDA. En este núcleo, se reitera el uso de los
identificadores para cada uno de los hilos del bloque mediante threadIdx.x
y threadIdx.y. Asimismo, se interpretan los arreglos bidimensionales como

Acelerando la fusión de imágenes mediante computación heterogénea

56

arreglos unidimensionales, tal como sucede en el contexto natural del
lenguaje de programación C. De nuevo, se hace uso de la función reservada
syncthreads(), para sincronizar todos los hilos que se estén ejecutando en
cierto momento de la rutina. Por último, se va llenando posición a posición
por cada hilo, las matrices resultantes, que en este caso hacen referencia a
los tres componentes principales obtenidos. La función
componentesPrincipalesOriginal() escrita en C-CUDA y almacenada en la
variable global kernel_componentes_principales_original de Python, recibe
como parámetros la matriz que almacena las bandas originales (R, G, B) de
la imagen multiespectral, un arreglo Q que contiene valores propios y por
último, recibe las matrices S1, S2 y S3 las cuales serán la matrices de salida
de esta operación.

Núcleo para calcular los componentes principales finales - Líneas 75 – 104:

75. kernel_componentes_principales_pancromatica = """
76. #include <stdio.h>
77. __global__ void componentesPrincipalesPancromatica(float *R, float *G, float

*B, float *E, float *S1, float *S2, float *S3)
78. {
79. const uint tx = threadIdx.x;
80. const uint ty = threadIdx.y;
81. const int size = 3;
82. float salida_temp [size];
83. float valor_temp = 0.0;
84. float arreglo[size];
85. arreglo[0] = R[ty * %(BLOCK_SIZE)s + tx];
86. arreglo[1] = G[ty * %(BLOCK_SIZE)s + tx];
87. arreglo[2] = B[ty * %(BLOCK_SIZE)s + tx];
88. __syncthreads();
89. for(int i = 0; i < 3; ++i){
90. for(int j = 0; j < 3; ++j){
91. valor_temp += (E[i*3+j] * arreglo[j]);
92. }
93. salida_temp[i] = valor_temp;
94. valor_temp = 0.0;
95. }
96. __syncthreads();
97. S1[ty * %(BLOCK_SIZE)s + tx] = salida_temp[0];

Métodos basados en transformadas: métodos de sustitución de componentes

57

98. __syncthreads();
99. S2[ty * %(BLOCK_SIZE)s + tx] = salida_temp[1];
100. __syncthreads();
101. S3[ty * %(BLOCK_SIZE)s + tx] = salida_temp[2];
102. __syncthreads();
103. }
104. """

En este mismo orden de ideas, este fragmento de código tiene como
propósito establecer un núcleo para el cálculo de nuevos componentes
principales a partir de la matriz inversa de los vectores propios, el segundo
y tercer componente principal calculados inicialmente y de la
representación matricial de la imagen pancromática. Este núcleo también
hace uso de los identificadores para cada uno de los hilos del bloque
mediante threadIdx.x y threadIdx.y. Adicionalmente, se hace uso de la
función reservada syncthreads() para sincronizar todos los hilos que se
estén ejecutando en cierto momento de la rutina, tal como se ha
presentado en núcleos anteriores. Por último, se van llenando posición a
posición por cada hilo las matrices resultantes, que en este caso hacen
referencia a los tres nuevos componentes principales obtenidos. La función
componentesPrincipalesPancromatica() es escrita en lenguaje C-CUDA y es
almacenada en la variable global kernel_componentes_
principales_pancromatica de Python. Dicha función, recibe como
parámetros la matriz de la inversa de los vectores propios, el componente
principal 2 y 3 y la imagen pancromática. Finalmente, recibe las matrices S1,
S2 y S3 las cuáles serán las matrices de salida de esta operación.

Función para la división de una matriz en submatrices - Líneas 105 – 107:

105. def split(array, nrows, ncols):
106. r, h = array.shape
107. return (array.reshape(h//nrows,nrows,-1,ncols).swapaxes(1,2) .reshape(-

1, nrows, ncols))

Acelerando la fusión de imágenes mediante computación heterogénea

58

En estas líneas de código, se define la función split(), la cual permite dividir
una matriz cuadrada en submatrices de igual tamaño que cumplan su
estructura N x N. Esta función recibe los siguientes parámetros:

- array: hace referencia a la matriz o arreglo bidimensional que se

desea segmentar en submatrices.

- nrows: número de filas que deben tener las submatrices.

- ncols: número de columnas que deben tener las submatrices.

Función para calcular la matriz de varianza-covarianza - Líneas 108 – 118:

108. def varianza_cov(R_s, G_s, B_s):
109. kernel_code = kernel_var_cov % {'BLOCK_SIZE': BLOCK_SIZE}
110. mod = compiler.SourceModule(kernel_code)
111. covariance_kernel = mod.get_function("CovarianceKernel")
112. salida_gpu = gpuarray.zeros((3, 3), np.float32)
113. Rs_gpu = gpuarray.to_gpu(R_s)
114. Gs_gpu = gpuarray.to_gpu(G_s)
115. Bs_gpu = gpuarray.to_gpu(B_s)
116. for i in range(len(R_s)):
117. covariance_kernel(Rs_gpu[i], Gs_gpu[i],

Bs_gpu[i],salida_gpu,block = (32, 32, 1)
118. return salida_gpu.get()

Anteriormente, se ha creado un núcleo para calcular en GPU la matriz de
varianza-covarianza de las bandas originales de la imagen multiespectral.
Sin embargo, ese núcleo debe ser llamado mediante funciones de Python.
Debido a esto, se define la función varianza_cov(), la cual establece un
tamaño del bloque de hilo que se va a ejecutar paralelamente en la GPU y
compila el núcleo mediante compiler.SourceModule. Asimismo, se obtiene
el núcleo a través de la función get_function() propia del módulo
compilado. Además de esto, se separa espacio en memoria para la matriz
de salida, se hace transferencia de las submatrices de las bandas R,G,B a
memoria global de la GPU y se calcula iterativamente la matriz de varianza-
covarianza para cada submatriz de las bandas.

Métodos basados en transformadas: métodos de sustitución de componentes

59

Función para el apilamiento de submatrices - Líneas 119 – 131:

119. def stack_values(list_cp, array_split, size, block_size):
120. block_size = block_size
121. valor_inicial = 0
122. valor_final = 0
123. list_cp_nueva = []
124. factor_div = (size//block_size)
125. factor_ite = len(array_split)//factor_div
126. for i in range(factor_ite):
127. valor_final = valor_final + factor_div
128. list_cp_nueva.append(np.hstack(list_cp[valor_inicial:

valor_final]))
129. valor_inicial = valor_inicial + factor_div
130. cp_final = np.vstack(list_cp_nueva)
131. return cp_final

En este caso, este fragmento de código establece la función stack_values()
para poder apilar las submatrices resultantes de los procesos asociados al
cálculo de la matriz de varianza-covarianza, los componentes principales
haciendo uso de los vectores propios y con la imagen pancromática. Para
llevar a cabo esto, se hace uso de funciones como hstack() y vstack()
propias de la librería de numpy.

Función para calcular componentes principales iniciales - Líneas 132 – 154:

132. def componentes_principales_original(r_s,g_s,b_s,q,size, block_size):
133. cp1_temp, cp2_temp,cp3_temp = []
134. size = size
135. block_size = block_size
136. kernel_code = kernel_componentes_principales_original % { 'BLOCK_SIZE':

BLOCK_SIZE }
137. mod = compiler.SourceModule(kernel_code)
138. kernel = mod.get_function("componentesPrincipalesOriginal")
139. s1_gpu = gpuarray.zeros((block_size,block_size),np.float32)
140. s2_gpu = gpuarray.zeros((block_size,block_size),np.float32)
141. s3_gpu = gpuarray.zeros((block_size,block_size),np.float32)
142. q_gpu = gpuarray.to_gpu(q)
143. Rs_gpu_t = gpuarray.to_gpu(r_s)
144. Gs_gpu_t = gpuarray.to_gpu(g_s)
145. Bs_gpu_t = gpuarray.to_gpu(b_s)

Acelerando la fusión de imágenes mediante computación heterogénea

60

146. for i in range(len(r_s)):
147. kernel(Rs_gpu_t[i],Gs_gpu_t[i],Bs_gpu_t[i],q_gpu,

s1_gpu,s2_gpu,s3_gpu,block=(block_size, block_size,1))
148. cp1_temp.append(s1_gpu.get())
149. cp2_temp.append(s2_gpu.get())
150. cp3_temp.append(s3_gpu.get())
151. cp1 = stack_values(cp1_temp, r_s, size, block_size)
152. cp2 = stack_values(cp2_temp, r_s, size, block_size)
153. cp3 = stack_values(cp3_temp, r_s, size, block_size)
154. return cp1, cp2, cp3

Anteriormente, se ha creado un núcleo para realizar el cálculo de los
componentes principales en GPU. Sin embargo, ese núcleo debe ser
llamado mediante funciones de Python. Debido a esto, se define la función
componentes_principales_original () la cual establece un tamaño del
bloque de 32x32 de hilos que se van a ejecutar paralelamente en la GPU y
se compila el núcleo mediante compiler.SourceModule. Este número de
hilos será definido posteriormente mediante un variable global. Asimismo,
se obtiene el núcleo a través de la función get_function() propia del módulo
compilado, pasando como parámetro el nombre de la función de C-CUDA
(“componentesPrincipalesOriginal”). Además de esto, se separa espacio en
memoria para las submatrices de salida de cada componente principal.
Además, se hace transferencia de las submatrices de las bandas R, G, B a
memoria global de la GPU y se calcula iterativamente la submatrices que
contienen los componentes principales. Estas submatrices se almacenan en
diferentes listas de Python. Finalmente, mediante la función stack_values()
definida anteriormente, se realiza el apilamiento de cada submatriz y así
poder tener los tres componentes principales en su totalidad. Dichos
componentes se consolidan en las variables cp1, cp2 y cp3.

Métodos basados en transformadas: métodos de sustitución de componentes

61

Función para calcular componentes principales finales - Líneas 155 – 177:

155. def componentes_principales_panchromartic(r_s , g_s, b_s, q, size,
block_size):

156. block_size = block_size
157. nb1_temp, nb2_temp, nb3_temp = []
158. size = size
159. kernel_code = kernel_componentes_principales_pancromatica % {

'BLOCK_SIZE': BLOCK_SIZE }
160. mod = compiler.SourceModule(kernel_code)
161. kernel =

mod.get_function("componentesPrincipalesPancromatica")
162. s1_gpu = gpuarray.zeros((block_size,block_size),np.float32)
163. s2_gpu = gpuarray.zeros((block_size,block_size),np.float32)
164. s3_gpu = gpuarray.zeros((block_size,block_size),np.float32)
165. Rs_gpu_t = gpuarray.to_gpu(r_s)
166. Gs_gpu_t = gpuarray.to_gpu(g_s)
167. Bs_gpu_t = gpuarray.to_gpu(b_s)
168. q_gpu = gpuarray.to_gpu(q)
169. for i in range(len(r_s)):
170. kernel(Rs_gpu_t[i], Gs_gpu_t[i], Bs_gpu_t[i], q_gpu,

s1_gpu, s2_gpu, s3_gpu, block = (block_size, block_size, 1))
171. nb1_temp.append(s1_gpu.get())
172. nb2_temp.append(s2_gpu.get())
173. nb3_temp.append(s3_gpu.get())
174. nb1 = stack_values(nb1_temp, g_s, size, block_size)
175. nb2 = stack_values(nb2_temp, g_s, size, block_size)
176. nb3 = stack_values(nb3_temp, g_s, size, block_size)
177. return nb1, nb2, nb3

De igual manera, en fragmentos anteriores se ha definido un núcleo para
realizar el cálculo de los componentes principales a partir de la imagen
pancromática en GPU. Sin embargo, ese núcleo también debe ser llamado
mediante funciones de Python. Debido a esto, se define la función
componentes_principales_panchromatic() la cual establece un tamaño del
bloque de 32x32 de hilos que se van a ejecutar paralelamente en la GPU y
se compila el núcleo mediante compiler.SourceModule. Adicionalmente, se
obtiene el núcleo a través de la función get_function() propia del módulo
compilado, pasando como parámetro el nombre de la función de C-CUDA

Acelerando la fusión de imágenes mediante computación heterogénea

62

(“componentesPrincipalesPancromatica”). Además de esto, se separa
espacio en memoria para las submatrices de salida de cada componente
principal, se hace transferencia de la matriz inversa de los vectores propios
y de las submatrices de los componentes principales iniciales 2 y 3 a
memoria global de la GPU. Una vez se realiza esto, se calcula iterativamente
la submatrices que contienen los nuevos componentes principales. Estas
submatrices se almacenan en diferentes listas de Python. Finalmente,
mediante la función stack_values() definida anteriormente, se realiza el
apilamiento de cada submatriz, para consolidar los tres componentes
principales en su totalidad. Dichos componentes se consolidan en las
variables nb1, nb2 y nb3.

Núcleo para restar de una matriz un valor constante - Líneas 178 – 181:

178. substract = ElementwiseKernel(
179. "float *x, float y, float *z",
180. "z[i] = x[i]-y",
181. "substract_value")

En estas líneas de código se utiliza la función ElementwiseKernel, para
poder establecer un núcleo simple, el cual va a tomar una matriz de entrada
x junto con un valor flotante y. Esto con el propósito de realizar en GPU, la
resta posición a posición de la matriz x y el valor de y. Adicionalmente, el
parámetro z tan solo es la matriz de salida de esta operación.

Núcleo para ajuste espectral - Líneas 182 – 185:

182. negative_adjustment = ElementwiseKernel(
183. "float *x, float *z",
184. "if(x[i] < 0){z[i] = 0.0;}else{z[i] = x[i];}",
185. "adjust_value")

De igual manera, en estas líneas de código, se establece un nuevo núcleo
de tipo ElementwiseKernel. Esta función tiene como propósito realizar un
ajuste de valores negativos. Por lo tanto, tomará una matriz y evaluará cada
una de sus posiciones, si el valor de una posición específica resulta ser

Métodos basados en transformadas: métodos de sustitución de componentes

63

negativa se convertirá a un valor de cero. Este núcleo escrito en C-CUDA, se
almacena en la variable negative_adjustment para poder ser invocada
posteriormente.

Función para obtener traza de potencias sucesivas - Líneas 186 – 193:

186. def successive_powers(ortogonal_matrix):
187. size_mat_ort = len(ortogonal_matrix)
188. s = np.zeros((size_mat_ort,1))
189. B = np.zeros((size_mat_ort,size_mat_ort))
190. for i in range(1, (size_mat_ort+1)):
191. B=la.matrix_power(ortogonal_matrix,i)
192. s[i-1]=np.trace(B)
193. return s

De acuerdo con este fragmento de código, lo que se busca es establecer
una función de Python nombrada successive_powers(), la cual encontrará
la traza de potencias sucesivas a partir de una matriz proporcionada por
parámetro.

Función para calcular coeficientes de un polinomio - Líneas 194 – 202:

194. def polynomial_coefficients(polynomial_trace, ortogonal_ matrix):
195. n_interations = len(ortogonal_matrix)
196. polynomial = np.zeros((n_interations))
197. polynomial[0] = -polynomial_trace[0]
198. for i in range(1,n_interations):
199. polynomial[i]=-polynomial_trace[i]/(i+1)
200. for j in range(i):
201. polynomial[i]=polynomial[i]-(polynomial[j]*

(polynomial_trace[(i-j)-1])/(i+1))
202. return polynomial

En este conjunto de líneas se pretende establecer una función que se
ejecute en CPU, cuyo objetivo sea calcular los coeficientes del polinomio
característico a partir de una matriz ortogonal y su respectiva traza
polinómica. Para esto, se define la función polynomial_coefficients().

Acelerando la fusión de imágenes mediante computación heterogénea

64

Función para normalizar vectores propios - Líneas 203 – 212:

203. def eigenvectors_norm(mat_eigenvalues, ortogonal_matrix,
mat_eigenvectors):

204. n = len(mat_eigenvalues)
205. V = np.zeros((n,n))
206. S = np.zeros((n,1))
207. for i in range(n):
208. B= ortogonal_matrix[1:n,1:n]-mat_eigenvalues[i,i]* np.eye(n-1)
209. temp_s=la.lstsq(B,mat_eigenvectors,rcond=-1)[0].transpose()
210. S=np.insert(temp_s,0,1);
211. V[0:n,i]=S/la.norm(S)
212. return V, V.transpose()

En estas líneas de código se define la función eigenvectors_norm(). Esta
función busca calcular los vectores propios normalizados. Lo anterior,
recibiendo como parámetros la matriz ortogonal, la matriz de vectores
propios y la matriz de valores propios. Donde, cada vector propio es una
columna de la matriz ortogonal base. El retorno de esta función es un
arreglo con los vectores propios normalizados y su respectiva transpuesta.

Lectura y carga de imágenes - Líneas 213 – 217:

213. multispectral = skimage.io.imread('multispectral.tiff', plugin='tifffile')
214. panchromatic = skimage.io.imread('panchromatic.tiff', plugin='tifffile')
215. size_rgb = multispectral.shape
216. BLOCK_SIZE = 32
217. n_bands = size_rgb[2]

Una vez se han definido las funciones presentadas a lo largo de esta
implementación, se procede a invocarlas secuencialmente haciendo saltos
entre memoria de CPU y GPU. Sin embargo, en estas líneas de código, se
realiza la lectura de la imagen multiespectral y pancromática. Esto,
mediante la función imread perteneciente al módulo io de la librería scikit-
image. Esta función consolida las imágenes a un arreglo multidimensional
de numpy, por lo tanto, quedan listas para ser utilizadas y manipuladas.
Adicionalmente, se crea la variable size_rgb la cual almacena la dimensión

Métodos basados en transformadas: métodos de sustitución de componentes

65

con sus respectivas bandas de la imagen multiespectral. Además de esto,
se define la variable BLOCK_SIZE con un valor por defecto de 32. Este valor,
nos ayudará a lo largo de la implementación a establecer el tamaño del
bloque de hilos que se ejecutará en GPU. Por último, se extrae el número
de bandas de las que se compone la imagen multiespectral. En este caso, al
manejar un espacio de color RGB se debe obtener un total de 3 bandas.

Conversión de tipo de dato de las bandas - Líneas 218 – 222:

218. m_host = multispectral.astype(np.float32)
219. r_host = m_host[:,:,0].astype(np.float32)
220. g_host = m_host[:,:,1].astype(np.float32)
221. b_host = m_host[:,:,2].astype(np.float32)
222. panchromatic_host = panchromatic.astype(np.float32)

Posteriormente, en este fragmento de código, mediante la función
astype(), se define que el tipo de datos de las matrices multiespectral y
pancromática será flotante de 32 bits. Adicionalmente, se extraen las
bandas R, G, B (Red, Blue, Green) de la imagen multiespectral a partir de la
indexación de arreglo de numpy.

Transferencia de variables a memoria global de GPU - Líneas 223 – 229:

223. r_gpu = gpuarray.to_gpu(r_host)
224. g_gpu = gpuarray.to_gpu(g_host)
225. b_gpu = gpuarray.to_gpu(b_host)
226. p_gpu = gpuarray.to_gpu(panchromatic_host)
227. mean_r_gpu = misc.mean(r_gpu)
228. mean_g_gpu = misc.mean(g_gpu)
229. mean_b_gpu = misc.mean(b_gpu)

En las cuatro primeras líneas de este fragmento de código, se realiza la
transferencia de cada una de las bandas extraídas anteriormente y de la
imagen pancromática, a memoria global de GPU. Posteriormente,
mediante la función mean() del módulo misc propio de la librería scikit-
cuda, se calcula el promedio de cada una de los arreglos que almacenan las

Acelerando la fusión de imágenes mediante computación heterogénea

66

bandas en GPU. Estos promedios son esenciales para poder obtener la
matriz de varianza-covarianza de la imagen multiespectral.

Resta de bandas y promedio en GPU - Líneas 230 – 235:

230. r_gpu_subs = gpuarray.zeros_like(r_gpu,np.float32)
231. g_gpu_subs = gpuarray.zeros_like(g_gpu,np.float32)
232. b_gpu_subs = gpuarray.zeros_like(b_gpu,np.float32)
233. substract(r_gpu, mean_r_gpu.get(), r_gpu_subs)
234. substract(g_gpu, mean_g_gpu.get(), g_gpu_subs)
235. substract(b_gpu, mean_b_gpu.get(), b_gpu_subs)

En estas líneas se realizan arreglos llenos de ceros mediante la función
zeros_like del módulo gpuarray de Pycuda. Estos arreglos son de la misma
dimensión que los que consolidan las bandas R, G, B en GPU. Después, se
invoca la función substract() la cual realiza la resta entre cada una de las
bandas y su respectivo promedio. Todo lo anterior se lleva a cabo en GPU.

División de bandas en submatrices - Líneas 236 – 238:

236. r_subs_split = split(r_gpu_subs.get(),BLOCK_SIZE,BLOCK_SIZE)
237. g_subs_split = split(g_gpu_subs.get(),BLOCK_SIZE,BLOCK_SIZE)
238. b_subs_split = split(b_gpu_subs.get(),BLOCK_SIZE,BLOCK_SIZE)

Posteriormente ya en CPU, se realiza la división de las matrices resultado
del fragmento de código anterior. El resultado de esta operación es un
arreglo de arreglos con las submatrices de un tamaño de 32 x 32. Esto para
cada una de las bandas (R, G, B).

Cálculo de la matriz de covarianza y derivados - Líneas 239 – 244:

239. mat_var_cov = varianza_cov(r_subs_split,g_subs_split, b_subs_split)
240. coefficient = 1.0/((size_rgb[0]*size_rgb[1])-1)
241. ortogonal_matrix = mat_var_cov*coefficient
242. polynomial_trace = successive_powers(ortogonal_matrix)
243. characteristic_polynomial = polynomial_coefficients(polynomial_

trace,ortogonal_matrix)
244. characteristic_polynomial_roots = np.roots(np.insert(

characteristic_polynomial,0,1))

Métodos basados en transformadas: métodos de sustitución de componentes

67

Acto seguido, se hace uso de estas bandas divididas para poder calcular en
GPU la matriz de varianza-covarianza mediante la función varianza_cov().
En este orden de ideas, se toma cada submatriz de cada banda y se calcula
su matriz de varianza-covarianza, así hasta recorrerlas completamente y al
final poder realizar una concatenación de estas matrices. Después, se
calcula el coeficiente requerido para poder diagonalizar ortogonalmente la
matriz de varianza-covarianza. Además de esto, al multiplicar la matriz de
varianza-covarianza con este coeficiente se obtiene lo que se llamará matriz
ortogonal. Posterior a ello, pasando como parámetro esta matriz a la
función successive_powers() se genera la traza de las potencias sucesivas
de la matriz ortogonal. Es necesario calcular los coeficientes del polinomio
característico a partir de la matriz ortogonal y de la traza polinómica. Lo
anterior, invocando la función polynomial_coefficients() descrita con
anterioridad. Por último, mediante la función roots de numpy se hallan las
raíces reales del polinomio característico.

Procesamiento de valores y vectores propio - Líneas 245 – 253:

245. eigenvalues_mat = np.diag(characteristic_polynomial_roots)
246. eigenvectors_mat = -1*ortogonal_matrix[1:n_bands,0]
247. mat_ortogonal_base, q_matrix = eigenvectors_norm
 (eigenvalues_mat,ortogonal_matrix, eigenvectors_mat)
248. q_matrix_list = q_matrix.tolist()
249. q_matrix_cpu = np.array(q_matrix_list).astype(np.float32)
250. w1 = q_matrix_cpu[0,:]
251. w2 = (-1)*q_matrix_cpu[1,:]
252. w3 = q_matrix_cpu[2,:]
253. eigenvectors = np.array((w1,w2,w3))

En estas líneas, se obtiene la matriz diagonal de las raíces del polinomio
característico esto mediante la función diag() de numpy. Lo anterior se
realiza dado que en la diagonal de esta matriz se encuentran los valores
propios. Una vez se han obtenido estos valores, se procede a calcular los
vectores propios a partir de la matriz ortogonal. En este orden de ideas, se
cuenta un vector propio para cada valor propio. Posteriormente, en el resto

Acelerando la fusión de imágenes mediante computación heterogénea

68

de líneas se generan los vectores propios normalizados, donde cada
columna de la matriz mat_ortogonal_base es un vector propio. Finalmente,
estos vectores propios normalizados se almacenan en la variable
eigenvectors.

Cálculo de matriz inversa de vectores propios - Líneas 254 – 256:

254. inv_eigenvectors = la.inv(eigenvectors)
255. Inv_list = inv_eigenvectors.tolist()
256. inv_eigenvector_cpu = np.array(inv_list).astype(np.float32)

En este fragmento de código se obtiene la matriz inversa de los vectores
propios normalizados. Esto, a través de la función inv propia del módulo
linalg de Numpy. Posterior a esto, se convierte a una lista y se pasa a un
arreglo de numpy en CPU especificando float32 como el tipo de dato de
este arreglo. Es decir, finalmente la variable inv_eigenvector_cpu almacena
la matriz inversa de los vectores propios.

División de bandas para cálculo de componentes principales - Líneas 257 – 259:

257. r_subs_split_cp = split(r_host,BLOCK_SIZE,BLOCK_SIZE)
258. g_subs_split_cp = split(g_host,BLOCK_SIZE,BLOCK_SIZE)
259. b_subs_split_cp = split(b_host,BLOCK_SIZE,BLOCK_SIZE)

Se vuelve a realizar el proceso de división las bandas de la imagen
multiespectral en submatrices de 32x32, que se consolidan en arreglos de
arreglos de Numpy. Este proceso, se lleva a cabo mediante la función
split(), expuesta durante esta implementación.

Cálculo de componentes principales iniciales y finales - Líneas 260 – 264:

260. pc_1,pc_2,pc_3 = componentes_principales_original
(r_subs_split_cp,g_subs_split_cp,b_subs_split_cp,q_matrix_cpu,r_host.shape
[0], BLOCK_SIZE)

261. p_subs_split_nb = split(panchromatic_host,BLOCK_SIZE, BLOCK_SIZE)
262. pc_2_subs_split_nb = split(pc_2,BLOCK_SIZE,BLOCK_SIZE)
263. pc_3_subs_split_nb = split(pc_3,BLOCK_SIZE,BLOCK_SIZE)

Métodos basados en transformadas: métodos de sustitución de componentes

69

264. nb1,nb2,nb3 = componentes_principales_panchromartic
(p_subs_split_nb,pc_2_subs_split_nb,pc_3_subs_split_nb,inv_eigenvector_cp
u,r_host.shape[0], BLOCK_SIZE)

En estas líneas las variables pc_1, pc_2 y pc_3 almacenan los componentes
principales iniciales. Esto es posible al hacer uso de la función
componentes_principales_original(), la cual invoca iterativamente el núcleo
(‘componentesPrincipalesOriginal’) en GPU. En cada una de estas
iteraciones utiliza las submatrices de las bandas R, G, B conjuntamente con
la matriz de vectores propios. Posteriormente, se realiza la división de
submatrices de la imagen pancromática y del segundo y tercer componente
principal obtenido anteriormente (pc2 y pc3). Lo anterior se lleva a cabo
con el propósito de poder calcular los nuevos componentes principales a
partir de la imagen pancromática, los componentes principales 2 y 3 y la
matriz inversa de los vectores propios. Estos nuevos componentes se
almacenan en las variables nb1, nb2 y nb3.

Ajuste espectral de componentes principales finales - Líneas 265 – 276:

265. nb11 = nb1.astype(np.float32)
266. nb22 = nb2.astype(np.float32)
267. nb33 = nb3.astype(np.float32)
268. nb11_gpu = gpuarray.to_gpu(nb11)
269. nb22_gpu = gpuarray.to_gpu(nb22)
270. nb33_gpu = gpuarray.to_gpu(nb33)
271. nb111_gpu = gpuarray.empty_like(nb11_gpu)
272. nb222_gpu = gpuarray.empty_like(nb22_gpu)
273. nb333_gpu = gpuarray.empty_like(nb33_gpu)
274. negative_adjustment(nb11_gpu,nb111_gpu)
275. negative_adjustment(nb22_gpu,nb222_gpu)
276. negative_adjustment(nb33_gpu,nb333_gpu)

Una vez se han calculado los componentes principales finales (nb1, nb2 y
nb3), es necesario convertirlos a un tipo de dato flotante de 32 bits para
mantener uniformidad en los cálculos realizados. Así mismo, se hace
transferencia de estos componentes a variables en memoria global de GPU.

Acelerando la fusión de imágenes mediante computación heterogénea

70

Por último, se realiza el ajuste de valores negativos, donde en algunos casos
por computo se generan valores negativos que deberían ser valores en
cero. De acuerdo a esto, se invoca el núcleo negative_adjustment y se
realiza dicho ajuste. De otra manera, sin realizar este ajuste se tendrían
píxeles erróneos dado que deberían estar en una escala entre 0 y 255.

Generación de la nueva imagen - Líneas 277 – 281:

277. nb111_cpu = nb111_gpu.get().astype(np.uint8)
278. nb222_cpu = nb222_gpu.get().astype(np.uint8)
279. nb333_cpu = nb333_gpu.get().astype(np.uint8)
280. fusioned_image=np.stack((nb111_cpu,nb222_cpu,nb333_cpu), axis=2)
281. skimage.io.imsave('pcagpu_image.tif',fusioned_image, plugin='tifffile')

Para finalizar esta implementación, se realiza el proceso de concatenación
de los componentes principales ajustados mediante la función stack de
numpy. Por último, mediante la función imsave de skimage se guarda
localmente la imagen generada a partir de la fusión de estas imágenes. La
Figura 18C, presenta la imagen resultado al realizar la fusión de la imagen
multiespectral (Figura 18A) y pancromática (Figura 18B), ambas con
dimensión de 1024 píxeles por 1024 píxeles. Lo anterior, mediante el análisis
de componentes principales.

 A) B) C)

Figura 18. Imagen Fusionada de 1024x1024 píxeles mediante análisis de componentes principales.

Métodos basados en Transformadas Wavelet Discretas (TWD)

71

Capítulo 4

Métodos basados en Transformadas
Wavelet Discretas (TWD)

Los métodos que utilizan el análisis multirresolución, y
fundamentalmente la Transformada Wavelet Discreta (TWD), son los más
populares para disminuir la distorsión espectral. En particular, para lograr
fusiones de alta calidad, diversos esquemas basados en wavelets han sido
propuestos por varios investigadores (Hong y Zhang, 2008; Amolins, Zhang
y Dare, 2007; Lillo‐ Saavedra y Gonzalo, 2006) destacando los algoritmos de
Mallat y À trous, cuya principal diferencia se refiere al sentido en el que se
realiza la estrategia multirresolución, pues en el primer caso se diezma la
imagen mientras que para À trous no se aplica ningún diezmado, se ha
demostrado que en los resultados con el algoritmo À trous las imágenes
son de mejor calidad espacial y degradan en menor valor la riqueza
espectral.

4.1 Principios básicos de la transformada Wavelet
Cualquier transformada que se aplica a una señal se hace con la

finalidad de obtener información de ella, información que no está
disponible en el dominio del tiempo. Cuando se gráfica una señal en el

Acelerando la fusión de imágenes mediante computación heterogénea

72

dominio del tiempo, se obtiene una representación de la amplitud de la
señal, ésta no es una buena representación para el procesamiento de una
señal. La información que interesa se encuentra oculta en la frecuencia. El
espectro en frecuencia muestra cuáles son las frecuencias que existen en la
señal. La forma en la que se puede encontrar la frecuencia contenida en una
señal es mediante la Transformada de Fourier (TF). Es decir, al obtener la
TF de una señal en el dominio del tiempo, se consigue la representación de
la señal en la frecuencia (Nieto y Orozco, 2008).

Este capítulo se presenta una corta explicación de la teoría básica del
análisis Wavelet y una de sus aplicaciones en la reconstrucción de señales.
Inicialmente se hace una comparación con el análisis de Fourier y se justifica
la importancia y necesidad de utilizar la transformada Wavelet. Luego se
presenta matemáticamente la transformada Wavelet Continua, se
discretizan los parámetros de tiempo y frecuencia obteniendo la
Transformada Wavelet Discreta, por último, se explica la forma como se
puede descomponer y representar los planos Wavelet en una señal
bidimensional mediante el algoritmo À trous para fusionar imágenes
satelitales.

En el procesamiento de señales se pueden encontrar diferentes tipos de
señales estacionarias y no estacionarias. Las primeras son localizadas en el
tiempo ya que su frecuencia no varía, este tipo de ondas son estudiadas por
medio del análisis de Fourier, que permite su descomposición en términos
de sus componentes sinusoidales, es decir, transforma la señal de la base
de tiempo a la base de frecuencia y de igual manera permite el paso del
dominio de la frecuencia al dominio del tiempo, sin embargo, en este último
se pierde información necesaria, que, por ser de carácter estacionario no
resulta relevante. En el caso de las señales con comportamiento no-
estacionario, es decir, aquellas cuya frecuencia varía en el tiempo, al tener
la señal producto de la transformada de Fourier resulta imposible realizar
el paso al dominio del tiempo porque no permite determinar en qué
momento se presenta un cambio en la frecuencia.

Métodos basados en Transformadas Wavelet Discretas (TWD)

73

Surge entonces la necesidad de contar con una representación localizada
en el tiempo y la frecuencia, como consecuencia de la desventaja
presentada por el análisis de Fourier. De esta manera Gabor implementa el
uso de la STFT (Short Time Fourier Transform) (Upegui y Medina, 2019), que
consiste en analizar una pequeña sección de la señal a través de una
ventana de longitud fija, llevando la información contenida en este
pequeño intervalo del dominio del tiempo a la escala bidimensional de
tiempo y frecuencia, donde se puede conocer cuándo y a qué frecuencia
ocurre un suceso.

Al utilizar la STFT se presenta una nueva deficiencia, el tamaño fijo de la
ventana temporal que impide analizar pequeños detalles en señales de
frecuencia variable. Es así como se introduce el análisis Wavelet como
herramienta que permite obtener una representación, descomposición y
reconstrucción de señales, que presenten cambios abruptos en sus
componentes de tiempo-frecuencia en forma instantánea, a través del
análisis de multirresolución con ventanas de longitud variable adaptadas al
cambio de frecuencia de la señal. Es decir, esta técnica permite el uso de
intervalos grandes de tiempo en aquellos segmentos en los que se requiere
mayor precisión en baja frecuencia, e intervalos más pequeños donde se
requiere información en alta frecuencia (ver Figura 19).

Figura 19. Comparación entre la STFT (tiempo-frecuencia) y el análisis Wavelet (tiempo-escala).

Fuente: (Nieto & Orozco, 2008)

Acelerando la fusión de imágenes mediante computación heterogénea

74

A diferencia de Fourier, en donde las funciones base son senos y cosenos
de duración infinita, en el análisis Wavelet la base son funciones localizadas
en frecuencia (dilatación) y en tiempo (traslación). Una Wavelet es una
"pequeña onda" de duración limitada, es decir, su energía está concentrada
en el tiempo alrededor de un punto, lo que proporciona una adecuada
herramienta para el análisis de fenómenos transitorios, no estacionarios,
variables en el tiempo y aquellos que presenten discontinuidades (ver
Figura 20).

Figura 20. a) Señal seno. b) Wavelet Daubechies.

Transformada wavelet continua (CWT), permite el análisis de una señal en
un segmento localizado de esta y consiste en expresar una señal continua
como una expansión de términos o coeficientes del producto interno entre
la señal y una Función Wavelet Madre 𝜓𝜓(𝑡𝑡). Una Wavelet Madre es una
función localizada, perteneciente al espacio 𝐿𝐿2(𝑅𝑅), que contiene todas las
funciones con energía finita y funciones de cuadrado integrable definida.

𝑓𝑓 ∈ 𝐿𝐿2 ⇒ ∫|𝑓𝑓(𝑡𝑡)|2𝑑𝑑𝑑𝑑 = 𝐸𝐸 < ∞ (6)

De esta manera se cuenta con una única ventana modulada y a partir de
esta se genera una completa familia de funciones elementales mediante
dilataciones o contracciones y traslaciones en el tiempo 𝜓𝜓𝑢𝑢,𝑠𝑠(𝑡𝑡),
denominados átomos wavelet o wavelet hijas que cumplen con todas las
condiciones de la forma:

Métodos basados en Transformadas Wavelet Discretas (TWD)

75

𝜓𝜓𝑢𝑢,𝑠𝑠(𝑡𝑡) = 1

√𝑠𝑠
𝜓𝜓 �𝑡𝑡−𝑢𝑢

𝑠𝑠
� (7)

La Wavelet Madre debe cumplir con la condición de admisibilidad

𝐶𝐶𝜓𝜓 = ∫ �𝜓𝜓(𝜔𝜔)�
𝜔𝜔

2
𝑑𝑑𝑑𝑑 < ∞∞

0 (8)

Lo que quiere decir que la función 𝜓𝜓(𝑡𝑡) esta bien localizada en el tiempo,
es decir, que la función oscile alrededor de un eje y su promedio sea cero,

matemáticamente ∫ 𝜓𝜓(𝑡𝑡)∞
−∞ 𝑑𝑑𝑑𝑑 = 0, y que la transformada de Fourier 𝜓𝜓(𝑡𝑡)

sea un filtro continuo pasa-banda, con rápido decrecimiento hacia el infinito
y hacia 𝜔𝜔 = 0 (Medina et al., 2004).

La transformada Wavelet de una función 𝑓𝑓(𝑡𝑡) a una escala 𝑠𝑠 y una posición
𝑢𝑢, es calculada por la correlación de 𝑓𝑓(𝑡𝑡) con una 𝜓𝜓𝑢𝑢,𝑠𝑠(𝑡𝑡) de la forma

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢, 𝑠𝑠) = �𝑓𝑓,𝜓𝜓𝑢𝑢,𝑠𝑠� = ∫ 𝑓𝑓(𝑡𝑡)𝜓𝜓𝑢𝑢,𝑠𝑠
∞
−∞ (𝑡𝑡)𝑑𝑑𝑑𝑑 (9)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢, 𝑠𝑠) = ∫ 𝑓𝑓(𝑡𝑡) 1

√𝑠𝑠
𝜓𝜓 �𝑡𝑡−𝑢𝑢

𝑠𝑠
�∞

−∞ 𝑑𝑑𝑑𝑑 (10)

Para escalas pequeñas (𝑠𝑠 < 1), con la CWT se obtiene información
localizada en el dominio del tiempo de 𝑓𝑓(𝑡𝑡) y para escalas (𝑠𝑠 > 1) la
información de 𝑓𝑓(𝜔𝜔) se presenta localizada en el dominio de la frecuencia.

La transformada wavelet maneja un plano de tiempo-escala, pero también
puede ser de tiempo-frecuencia, para esto se recurre al Teorema de
Parseval y de esta manera es posible definir la transformada Wavelet en el
dominio de la frecuencia 𝜔𝜔.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢, 𝑠𝑠) = ∫ 𝑓𝑓(𝑡𝑡)√𝑠𝑠𝜓𝜓
∗
(𝑠𝑠𝑠𝑠)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗∞

−∞ 𝑑𝑑𝑑𝑑 (11)

Para poder introducir el término de escala y frecuencia, es necesario ante
todo definir una constante (𝑐𝑐), que permite realizar un cambio de variable
de una escala 𝑠𝑠a una frecuencia 𝜔𝜔:

Acelerando la fusión de imágenes mediante computación heterogénea

76

𝑠𝑠 → 𝜔𝜔 = 𝑐𝑐
𝑠𝑠
 (12)

Con este cambio de variable es posible observar que la CWT localiza de
forma simultánea la señal 𝑓𝑓(𝑡𝑡) en el dominio del tiempo como su espectro
𝑓𝑓(𝜔𝜔) en el dominio de la frecuencia (Bracewell, 1978).

De igual manera es posible realizar una transformada Wavelet inversa, que
permita reconstruir la señal a partir de la CWT (que preserva la energía de
la señal) y las 𝜓𝜓𝑢𝑢,𝑠𝑠(𝑡𝑡).

𝑓𝑓(𝑡𝑡) = 𝐶𝐶𝜓𝜓 ∫ ∫ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢, 𝑠𝑠)𝜓𝜓𝑢𝑢,𝑠𝑠(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑠𝑠2

∞
−∞

∞
−∞ (13)

4.2 Transformada Wavelet discreta (DWT)
Por la complejidad en el tratamiento numérico de la DWT, debido a la

variabilidad en forma continua de los parámetros de escala como de
traslación, es indispensable contar con una herramienta que permita la
discretización de esta. Es así que se pasará de un mapeo continuo a un
espectro o conjunto finito de valores, a través del cambio de la integral por
una aproximación con sumatorias. La discretización permite representar
una señal en términos de funciones elementales acompañadas de
coeficientes.

𝑓𝑓(𝑡𝑡) = �𝑐𝑐𝜆𝜆𝜙𝜙𝜆𝜆
𝜆𝜆

En los sistemas Wavelet, las Wavelet madre 𝜓𝜓(𝑡𝑡) traen consigo unas
funciones de escala 𝜑𝜑(𝑡𝑡), las primeras son las encargadas de representar
los detalles finos de la función mientras las funciones de escala realizan una
aproximación. Es posible entonces representar una señal 𝑓𝑓(𝑡𝑡) como una
sumatoria de funciones Wavelet y funciones de escala:

𝑓𝑓(𝑡𝑡) = ∑ ∑ 𝑐𝑐𝑗𝑗,𝑘𝑘𝜑𝜑(𝑡𝑡)𝑗𝑗𝑘𝑘 + ∑ ∑ 𝑑𝑑𝑗𝑗,𝑘𝑘𝜓𝜓(𝑡𝑡)𝑗𝑗𝑘𝑘 (14)

Métodos basados en Transformadas Wavelet Discretas (TWD)

77

4.2.1 Función de escala y Función Wavelet

Una forma de discretizar los parámetros de escala y frecuencia es
mediante un muestreo exponencial, para garantizar una mejor
aproximación, con el cual se pueden redefinir los parámetros a valores
discretos de la siguiente manera:

𝑠𝑠 = 𝑎𝑎−𝑗𝑗𝑢𝑢 = 𝑘𝑘𝑘𝑘𝑎𝑎−𝑗𝑗

De esta manera y reemplazando en la ecuación (7), obtenemos la familia de
funciones discretizadas que constituyen bases ortonormales de Wavelets
en 𝐿𝐿2(𝑅𝑅).

𝜓𝜓𝑢𝑢,𝑠𝑠(𝑡𝑡) =
1

√𝑎𝑎−𝑗𝑗
𝜓𝜓 �

𝑡𝑡 − 𝑘𝑘𝑘𝑘𝑎𝑎−𝑗𝑗

𝑎𝑎−𝑗𝑗
�

= 𝑎𝑎
𝑗𝑗
2𝜓𝜓(𝑎𝑎𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑘𝑘) (15)

Para obtener una mejor aproximación de la señal en niveles de resolución
muy finos, es necesario que las Wavelet sean dilatas por un factor de 2−𝑗𝑗,
permitiendo tener una resolución de 2𝑗𝑗, estas funciones son denominadas
Wavelets Diádicas.

𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) = 2
𝑗𝑗
2𝜓𝜓(2𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑘𝑘)𝑗𝑗, 𝑘𝑘 ∈ 𝑍𝑍 (16)

Teniendo en cuenta la ecuación (9) la transformada Discreta Wavelet tiene
la forma:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑗𝑗, 𝑠𝑠𝑠𝑠) = �𝑓𝑓,𝜓𝜓𝑗𝑗,𝑘𝑘� = ∫ 𝑓𝑓(𝑡𝑡)𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡)∞
−∞ 𝑑𝑑𝑑𝑑 (17)

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑗𝑗,𝑘𝑘) = ∫ 𝑓𝑓(𝑡𝑡)2
𝑗𝑗
2𝜓𝜓(2𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑘𝑘)∞

−∞ 𝑑𝑑𝑑𝑑 (18)

Teniendo en cuenta el anterior procedimiento es posible generar una
familia de funciones de escala definidas:

𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡) = 2
𝑗𝑗
2𝜑𝜑(2𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑘𝑘)𝑗𝑗,𝑘𝑘 ∈ 𝑍𝑍 (19)

La representación general de la señal 𝑓𝑓(𝑡𝑡) será de la forma:

Acelerando la fusión de imágenes mediante computación heterogénea

78

𝑓𝑓(𝑡𝑡) = ∑ ∑ 𝑐𝑐𝑗𝑗,𝑘𝑘2
𝑗𝑗
2𝜑𝜑(2𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑘𝑘)𝑗𝑗𝑘𝑘 + ∑ ∑ 𝑑𝑑𝑗𝑗,𝑘𝑘2

𝑗𝑗
2𝜓𝜓(2𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑘𝑘)𝑗𝑗𝑘𝑘 (20)

4.2.2 Coeficientes de escala (𝒄𝒄𝒋𝒋,𝒌𝒌) y
Coeficientes Wavelet (𝒅𝒅𝒋𝒋,𝒌𝒌)

Para representar una señal 𝑓𝑓(𝑡𝑡) y teniendo en cuenta la ecuación (20),
es necesario encontrar los valores de los coeficientes (𝑐𝑐𝑗𝑗,𝑘𝑘) y (𝑑𝑑𝑗𝑗,𝑘𝑘) los
cuales permiten finalmente hacer la aproximación de la señal. Estos son
producto de una multiplicación vectorial entre la función 𝑓𝑓(𝑡𝑡) y la función
de escala (𝜑𝜑) o wavelet (𝜓𝜓). Para los coeficientes de escala tenemos:

𝑐𝑐𝑗𝑗,𝑘𝑘 = �𝑓𝑓(𝑡𝑡),𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡)� = ∫ �𝑓𝑓(𝑡𝑡)𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡)�∞
−∞ 𝑑𝑑𝑑𝑑 (21)

�𝑓𝑓(𝑡𝑡),𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡)� = 𝑐𝑐𝑗𝑗,−∞�𝜑𝜑𝑗𝑗,−∞(𝑡𝑡),𝜑𝜑(𝑗𝑗,𝑘𝑘)(𝑡𝑡)� +⋯+

 𝑐𝑐𝑗𝑗,𝑘𝑘�𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡),𝜑𝜑(𝑗𝑗,𝑘𝑘)(𝑡𝑡)�+. . . 𝑐𝑐𝑗𝑗,∞�𝜑𝜑𝑗𝑗,∞(𝑡𝑡),𝜑𝜑(𝑗𝑗,𝑘𝑘)(𝑡𝑡)� (22)

Ya que las funciones wavelet y de escala cumplen la propiedad de
ortonormalidad, es posible asegurar que uno de los productos vectoriales
sea diferente de cero, ��𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡),𝜑𝜑𝑗𝑗,𝑚𝑚(𝑡𝑡)� = 𝛿𝛿(𝑘𝑘 −𝑚𝑚)� o

��𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡),𝜑𝜑𝑗𝑗,𝑚𝑚(𝑡𝑡)� = 𝛿𝛿(𝑘𝑘 −𝑚𝑚)� por lo tanto:

𝑐𝑐𝑗𝑗,𝑘𝑘 = �𝑓𝑓(𝑡𝑡),𝜑𝜑𝑗𝑗,𝑚𝑚(𝑡𝑡)� = ∫ 𝑓𝑓(𝑡𝑡)𝜑𝜑𝑗𝑗,𝑘𝑘(2𝑗𝑗𝑡𝑡 − 𝑘𝑘)𝑡𝑡2
𝑡𝑡1

𝑑𝑑𝑑𝑑 (23)

De igual manera para los coeficientes Wavelet:

𝑑𝑑𝑗𝑗,𝑘𝑘 = �𝑓𝑓(𝑡𝑡),𝜓𝜓𝑗𝑗,𝑚𝑚(𝑡𝑡)� = ∫ 𝑓𝑓(𝑡𝑡)𝜓𝜓𝑗𝑗,𝑘𝑘(2𝑗𝑗𝑡𝑡 − 𝑘𝑘)𝑡𝑡2
𝑡𝑡1

𝑑𝑑𝑑𝑑 (24)

4.2.3 Espacios vectoriales 𝑽𝑽𝒊𝒊 y 𝑾𝑾𝒊𝒊

Las funciones de escala (𝜑𝜑) corresponden a la proyección ortogonal de
𝑓𝑓(𝑡𝑡) sobre un espacio 𝑉𝑉𝑖𝑖 ⊂ 𝐿𝐿2(𝑅𝑅). Dicho espacio agrupa todas las
aproximaciones con resolución 2−𝑗𝑗 y en él está contenida toda la
información necesaria para realizar aproximaciones con menor resolución,

Métodos basados en Transformadas Wavelet Discretas (TWD)

79

con lo que se puede afirmar que todos los espacios son versiones escaladas
del espacio central 𝑉𝑉0 (Espacios anidados).

. . .⊂ 𝑉𝑉−1 ⊂ 𝑉𝑉0 ⊂ 𝑉𝑉1 ⊂. . .⊂ 𝐿𝐿2
∀𝑗𝑗 ∈ 𝑍𝑍, 𝑓𝑓(𝑡𝑡) ∈ 𝑉𝑉𝑗𝑗 ⇔ 𝑓𝑓(2𝑗𝑗𝑡𝑡) ∈ 𝑉𝑉0 (25)

Las funciones Wavelet 𝜓𝜓 generan el espacio vectorial 𝑊𝑊𝑗𝑗 (espacio de
detalle) definido como el complemento ortogonal de 𝑉𝑉𝑗𝑗 en 𝑉𝑉𝑗𝑗−1, donde

𝑉𝑉𝑗𝑗−1 = 𝑉𝑉𝑗𝑗 ⊕𝑊𝑊𝑗𝑗 (26)

Estos espacios presentan al igual que los espacios 𝑉𝑉𝑗𝑗 , la propiedad de
escalado, por lo cual:

∀𝑗𝑗 ∈ 𝑍𝑍, 𝑓𝑓(𝑡𝑡) ∈ 𝑊𝑊𝑗𝑗 ⇔ 𝑓𝑓(2𝑗𝑗𝑡𝑡) ∈ 𝑊𝑊0 (27)

4.2.4 Aplicación de Transformada discreta
de Wavelet para la fusión de imágenes

El mayor inconveniente de los métodos anteriores trabajados en esta
investigación, es que modifican la información espectral de las bandas MS
originales, lo que puede suponer un problema, por ejemplo, si las imágenes
fusionadas resultantes se van a emplear para la obtención de información
temática vía clasificación espectral.

El análisis multirresolución (MRA por sus siglas en inglés) se basa en la
teoría según la cual el análisis de una imagen y la búsqueda de patrones son
más eficientes si la imagen es analizada a diferentes niveles de resolución.
El MRA permite descomponer datos bidimensionales en componentes de
distinta frecuencia, para estudiar cada una de estas componentes a una
resolución espacial acorde con su tamaño. De esta forma, en cada
resolución la información de detalle (componentes de alta frecuencia)
caracteriza distintas estructuras.

Este método se ha convertido en una herramienta de gran aplicación en el
desarrollo de nuevos métodos de fusión. A lo largo de los años, se han

Acelerando la fusión de imágenes mediante computación heterogénea

80

propuesto nuevos métodos de fusión empleando el MRA basado en las
transformaciones Wavelet discretas (TWD), que permiten minimizar el
problema anteriormente citado. La aproximación discreta de la
transformada Wavelet puede realizarse a partir de distintos algoritmos.
Dos de los más empleados en la fusión de imágenes de teledetección son
los algoritmos de Mallat y À trous. Cada uno, con diferentes propiedades
matemáticas conduce a distintas descomposiciones y, por lo tanto, a
distintas imágenes fusionadas, dado las investigaciones realizadas los
mejores resultados se obtienen usando el algoritmo À trous. (González‐
Audícana, et al., 2005).

4.3 Fusión de imágenes usando la Transformada Wavelet
En las últimas décadas, las estrategias de fusión de imágenes más

utilizadas se han basado en técnicas de análisis multirresolución. El objetivo
es encontrar una transformada discreta que mejore la respuesta espacial y
que no degrade la resolución espectral, desde este punto de vista la
transformada discreta de ondículas (Wavelet) (TDW) se puede considerar
según los resultados de la evaluación de la fusión de imágenes, han
demostrado que la fusión de imágenes satelitales usando la transformada
de wavelet mejora la resolución espacial y degrada en menor valor la
resolución espectral que los métodos tradicionales (Núñez et al., 1999).

La transformada discreta Wavelet, es una transformación lineal que tiene
una gran utilidad en el área de procesamiento de señales. Una de sus
principales aplicaciones consiste en separar un conjunto de datos en
componentes de distinta frecuencia espacial representados en escalas
comunes.

Los algoritmos de Mallat y el ‘À trous’ son los algoritmos de transformación
wavelet discreta más empleados en el ámbito de la fusión de imágenes.
Cada uno, con distintas propiedades matemáticas, conduce a distintas
descomposiciones y, por lo tanto, a distintas imágenes fusionadas. A pesar

Métodos basados en Transformadas Wavelet Discretas (TWD)

81

de que desde el punto de vista teórico el algoritmo ‘Á trous’ es menos
adecuado que el de Mallat para extraer detalle espacial en el ámbito del
análisis multirresolución, este ha permitido obtener imágenes con una
calidad global sensiblemente mayor que el de Mallat (González-Audícana,
2003).

4.4 Análisis multirresolución y las Transformaciones
Wavelet

El análisis multirresolución, basado en la teoría Wavelet permite
descomponer datos bidimensionales en componentes de distinta
frecuencia y estudiar cada componente a una resolución acorde con su
tamaño. A diferente resolución, el detalle de una imagen (componentes de
alta frecuencia) caracteriza distintas estructuras físicas de la escena
(Mallat, 1989). A resoluciones groseras, este detalle corresponde a las
estructuras o elementos de mayor tamaño mientras que a resoluciones
finas este detalle corresponde a las estructuras de menor tamaño. Las
transformaciones Wavelet permiten en el ámbito del análisis
multirresolución, extraer el detalle espacial que se pierde al pasar de una
resolución espacial a otra menor. La aproximación discreta de la
transformada Wavelet puede realizarse a partir de distintos algoritmos.
Uno de los más empleados en la fusión de imágenes es el algoritmo de ‘À
trous’.

4.4.1 Método À trous para la fusión de imágenes

Dutilleux en (1987), propuso el algoritmo de À trous basado en la
transformada de ondículas (Wavelet) calculadas mediante el algoritmo de
cavidades (À trous). En 1987 Dutilleux propuso el algoritmo de Wavelet À
trous (“con hoyos”). Presenta una independencia en la direccionalidad del
proceso de filtrado y por otro lado es redundante, en el sentido de que,
entre dos niveles de degradación consecutivos, no existe una compresión
espacial diádica de la imagen original, si no que se mantiene el tamaño de

Acelerando la fusión de imágenes mediante computación heterogénea

82

dicha imagen. Si bien esto se traduce en un mayor coste computacional
(Chibani y Houacine, 2003), ha mostrado que tanto la calidad espacial como
espectral de las imágenes fusionadas mediante el algoritmo À trous es
superior a la proporcionada por otros algoritmos. En este método de fusión
existe una amplia gama de estrategias para integrar la información espacial
contenida en la imagen pancromática (PAN), dentro de cada una de las
bandas de la imagen multiespectral (MULTI), ninguna de estas estrategias
permite controlar de una forma objetiva el compromiso entre la calidad
espectral y espacial de las imágenes fusionadas. Con objeto de paliar la
limitación descrita en el párrafo anterior, en esta investigación se presenta
la fusión de imágenes mediante el algoritmo Wavelet À trous, que
establece objetivamente el grado de compromiso entre la calidad espectral
y espacial de la imagen resultante mediante curvas características. Estas
curvas representan conjuntamente índices de calidad espacial y espectral.

4.4.2 Algoritmos de À trous

Dutilleux propuso el algoritmo basado en la transformada de ondículas
calculada mediante el algoritmo de (con agujeros) À trous. En la Figura 21
es posible observar una representación del proceso de degradación de una
imagen, utilizando un del algoritmo de tipo no decimado (TDWM). El detalle
espacial que se pierde al pasar de un nivel al nivel consecutivo se obtiene
directamente restando las imágenes aproximadas de dichos niveles.

Figura 21. Algoritmo tipo decimado (TDWM). Fuente: (González-Audícana, 2004).

Métodos basados en Transformadas Wavelet Discretas (TWD)

83

Diversos trabajos han demostrado que las transformadas de ondículas
redundantes o no decimadas, proporcionan mejores resultados en
determinadas aplicaciones de procesado de imágenes, como son
eliminación de ruido (Mallat, 1996) o clasificación de texturas y más
recientemente en el caso de la fusión de imágenes (Chibani, 2003) (Núñez,
1999).

Las aproximaciones discretas de la transformación Wavelet algoritmo ‘À
trous’ (con agujeros) (Starck y Murtagh 1994), el esquema de
descomposición de imágenes se representa con un paralelepípedo (Figura
7). La base de éste es también la imagen original 𝐴𝐴2𝑗𝑗 de resolución 2𝑗𝑗 de 𝐶𝐶
columnas y 𝐹𝐹 filas. Cada nivel del paralelepípedo es una imagen
aproximación de la imagen original. Conforme se asciende de nivel, las
sucesivas aproximaciones presentan menor resolución, siendo ésta de 2𝑁𝑁
en el nivel 𝑁𝑁 del paralelepípedo ya que también en este caso el factor de
degradación es diádico. Cada una de las imágenes aproximación se obtiene
aplicando una función de escala. El detalle espacial que se pierde al pasar
de la imagen 𝐴𝐴2𝑗𝑗 a 𝐴𝐴2𝑗𝑗−1 se recoge en una única imagen de coeficientes
wavelet, 𝑤𝑤2𝑗𝑗−1, frecuentemente denominada plano wavelet y que se
obtiene restando las imágenes original y aproximación. Cuando se aplica la
transformación inversa, la imagen aproximación 𝐴𝐴2𝑗𝑗 puede reconstruirse
sumando a la imagen aproximación 𝐴𝐴2𝑗𝑗−1 el plano wavelet 𝑤𝑤2𝑗𝑗−1., el
algoritmo ‘À trous’ es invariante a la translación por lo que todas las
imágenes aproximación y todos los planos wavelet resultantes de la
descomposición tienen el mismo tamaño que la imagen original. La
implementación práctica del algoritmo ‘À trous’ se realiza empleando un
filtro bidimensional de paso bajo asociado a la función de escala, en este
caso, una spline bi-cúbica. El algoritmo ‘À trous’, es no-ortogonal, lo implica
que un determinado plano wavelet 𝑤𝑤2𝑗𝑗−1 para una escala 2𝑗𝑗−1, puede
retener información de la escala vecina 2𝑗𝑗.

Acelerando la fusión de imágenes mediante computación heterogénea

84

El análisis multirresolución basado en la teoría de Wavelet, permite la
presentación de los conceptos de detalle entre niveles sucesivos de escala
o resolución. La descomposición de Wavelet es usada para la
descomposición de imágenes. El método está basado en la descomposición
de la imagen en múltiples canales basados en su frecuencia local. La
transformación de la Wavelet provee un esquema para descomponer una
imagen en un nuevo número de imágenes, cada una de ellas con un grado
de resolución diferente.

4.5 Método de fusión usando el algoritmo de À trous
La transformada Wavelet Á trous para la fusión de imágenes satelitales

permite generar mejores imágenes fusionadas gracias a la forma en que se
obtienen los coeficientes resultantes de la transformación, obteniendo así
los planos wavelet que tienen mayor información espacial y espectral de las
imágenes originales.

4.5.1 Implementación de la Transformada Wavelet algoritmo de Á
trous para la fusión de imágenes WorldView-2

Sintéticamente y como resultado de esta investigación se proponen los
siguientes pasos para la implementación de la transformada Wavelet
algoritmo de Á trous, generando dos planos Wavelet, para la fusión de
imágenes satelitales (Upegui y Medina, 2019).

Paso 1. Registrar una composición a color RGB (verdadero color) de la
imagen MS con la imagen PAN, usando el mismo tamaño de píxel de esta
última. Transformar la imagen RGB en componentes HSV (Value, Tono y
Saturación).

Paso 2. Ajustar la PAN a la componente Value (Pan-V), ajuste de
histogramas. Aplicar el concepto de Transformada Wavelet algoritmo de Á
trous al componente Pan-V, se resta Pan-V con la imagen resultante, de esta
manera obteniendo el plano Wavelet w1, donde se almacena la información

Métodos basados en Transformadas Wavelet Discretas (TWD)

85

espacial de Pan-V. se aplica Transformada Wavelet algoritmo de Á trous a
la imagen resultante y al restarla con la anterior se obtiene el segundo plano
Wavelet w2.

Paso 3. Generar una nueva componente Tono a partir de la suma de los
planos Wavelet y la componente V, la matriz obtenida inmediatamente
anterior para obtener la nueva componente Value (N-VAL), el cual
corresponde N-Val=V+w1+w2.

Paso 4. Generar una nueva composición HSV (N-HSV), concatenando la N-
VAL junto con las componentes originales H y S (obtenidas en el paso 1).

Paso 5. Realizar la transformación HSV a RGB, usando la nueva composición
N-HSV. De esta manera se obtiene la nueva imagen multiespectral
fusionada, que mantiene la resolución espectral ganando así la resolución
espacial, (ver Figura 22).

Figura 22. Diagrama del proceso de fusión de imágenes usando TWA.

Fuente: Adaptado de González-Audícana et al, 2005

Acelerando la fusión de imágenes mediante computación heterogénea

86

De esta manera la transformada Wavelet Á trous implementada para la
fusión de imágenes satelitales permite generar mejores imágenes
fusionadas gracias a la forma en que se obtienen los planos Wavelet, estos
planos Wavelet tienen mayor información espacial y espectral de las
imágenes originales.

4.5.2 Modelo de procesamiento heterogéneo para la
transformada Wavelet À trous

La Figura 23 presenta el modelo de procesamiento CPU/GPU usado
para esta técnica, donde se inicia con la conversión de un espacio de color
RGB a HSV. Después, se realiza el ajuste de la imagen pancromática a partir
del histograma de Value, todo esto haciendo uso de la CPU. Acto seguido,
se transfiere la pancromática ajustada a la memoria global de la GPU para
realizar un proceso de filtrado. Este proceso de filtrado se obtiene al aplicar
la operación de convolución entre la pancromática ajustada y el filtro
Bicubic Spline. Así mismo, se repite este proceso, pero se utilizan la matriz
resultante filtrada anteriormente y el filtro Bicubic Spline agregando
columnas y filas en cero, todo esto en GPU. Posteriormente se obtienen los
planos Wavelet a partir de la aplicación de estos filtros, para finalmente,
generar la nueva componente Value a partir de la pancromática original y
los dos planos wavelet obtenidos. Una vez se ha realizado esto, se hace un
stack de las bandas originales de Hue y Saturation con la nueva Value. Por
último, se realiza la conversión de HSV a RGB.

Figura 23. Modelo de procesamiento heterogéneo para la transformada Wavelet Á trous.

Métodos basados en Transformadas Wavelet Discretas (TWD)

87

4.5.3 Implementación de la transformada Wavelet Á trous en
Python

A continuación, se presentan fragmentos secuenciales de código en
Python utilizados para poder llevar a cabo la fusión de imágenes satelitales
mediante el método À Trous. En el repositorio del libro se encuentra el
script completo con las imágenes de prueba: https://github.com/Parall-
UD/libro_fusion_imagenes_satelitales_GPU.

Definición de dependencias - Líneas 1 – 9:

1. import skimage.io
2. from skimage.color import rgb2hsv, hsv2rgb
3. import numpy as np
4. import pycuda.autoinit
5. import pycuda.driver as drv
6. import pycuda.gpuarray as gpuarray
7. from pycuda.elementwise import ElementwiseKernel
8. import cupy as cp
9. from cupyx.scipy.ndimage import filters

De igual manera como en las implementaciones descritas a lo largo de este
libro, lo primero que se debe realizar es la importación de librerías
necesarias para la correcta ejecución del código. De acuerdo a esto, de
nuevo se importan librerías como scikit-image, numpy y pycuda. Sin
embargo, en esta ocasión se hace uso de un módulo extra de la librería
scikit-image, este módulo es color el cual nos proporciona funcionalidades
para trabajar en distintos espacios de color. Adicionalmente, se importa
cupy la cual es una librería matricial de código abierto acelerada mediante
CUDA proporcionando computación acelerada por GPU con Python.

Núcleo para ajuste espectral - Líneas 10 – 13:

10. adjustment_values = ElementwiseKernel(
11. "float *x, float *z",
12. "if(x[i] < 0){z[i] = 0.0;}else{z[i] = x[i];}",
13. "adjust_value")

https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU
https://github.com/Parall-UD/libro_fusion_imagenes_satelitales_GPU

Acelerando la fusión de imágenes mediante computación heterogénea

88

En estas líneas de código, se establece un núcleo simple mediante la
función ElementwiseKernel. Este núcleo tiene como propósito tomar una
matriz y evaluar cada uno de sus posiciones, si el valor de una posición dada
resulta ser negativo se convertirá a un cero. Como se puede observar en
estas líneas lo que se realiza es embeber código de C-CUDA en una variable
netamente del lenguaje de Python.

Función para el ajuste de histogramas - Líneas 14 – 25:

14. def hist_match(source, template):
15. oldshape = source.shape
16. source = source.ravel()
17. template = template.ravel()
18. s_values,bin_idx,s_counts=np.unique(source, return_inverse=

True,return_counts=True)
19. t_values, t_counts = np.unique(template, return_counts=True)
20. s_quantiles = np.cumsum(s_counts).astype(np.float64)
21. s_quantiles /= s_quantiles[-1]
22. t_quantiles = np.cumsum(t_counts).astype(np.float64)
23. t_quantiles /= t_quantiles[-1]
24. interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)
25. return interp_t_values[bin_idx].reshape(oldshape)

En este fragmento de código, se define la función nombrada hist_match()
la cual tiene como objetivo realizar un ajuste de histogramas entre dos
imágenes mediante su representación matricial. En este proceso, como
primera instancia se obtienen el conjunto de valores de píxeles únicos y sus
índices, con su respectivo recuento. Acto seguido, se aplica la función de
numpy cumsum a los recuentos y así poder realizar un proceso de
normalización, haciendo uso del número de píxeles para obtener las
funciones empíricas de distribución acumulativa para las imágenes
denominada source y template. Finalmente, se realiza una interpolación
lineal para encontrar los valores de píxeles en la imagen template que se
correspondan más con los cuartiles en la imagen source.

Métodos basados en Transformadas Wavelet Discretas (TWD)

89

Lectura y carga de imágenes - Líneas 26 – 27:

26. multispectral=skimage.io.imread('multispectral.tiff',plugin = 'tifffile')
27. panchromatic = skimage.io.imread('panchromatic.tiff',plugin = 'tifffile')

En estas líneas de código, se realiza la lectura de la imagen multiespectral y
pancromática, esto, mediante la función imread perteneciente al módulo io
de la librería scikit-image. Esta función convierte las imágenes que se
desean leer, a un arreglo multidimensional de numpy; esto, con el
propósito de poder ser utilizadas y manejadas mediante su representación
matricial.

Conversión de espacio de color RGB a HSV - Líneas 28 – 32:

28. hsv = rgb2hsv(multispectral)
29. val = hsv[:,:,2]
30. sat = hsv[:,:,1]
31. mat = hsv[:,:,0]
32. pani = hist_match(panchromatic,val)

A partir de estas líneas, se realiza la conversión de la imagen multiespectral
de un espacio de color RGB a Hue Saturation Value (HSV), esto mediante la
función rgb2hsv() de la librería scikit-image. Acto seguido, se realiza la
separación de bandas como valor, saturación y matiz. Lo anterior, haciendo
uso de indexación de matrices de numpy. Por último, utilizando la función
hist_match() se realiza el ajuste de histogramas entre la imagen
pancromática y la banda de valor, extraída previamente almacenando su
resultado en la variable pani. Tanto la separación de bandas, como el ajuste
de histogramas se realiza sobre la CPU.

Filtrado con Bicubi Spline - Líneas 33 – 36:

33. s = np.array([[1/256,1/64,3/128,1/64,1/256],[1/64,1/16,
3/32,1/16,1/64],[3/128,3/32,9/64,3/32,3/128],[1/64,1/16,3/32,1/16,1/64],[1/256,1/64,
3/128,1/64,1/256]])

34. s_gpu = cp.array(s)
35. p_gpu = cp.array(pani)
36. I1_gpu = filters.correlate(p_gpu, s_gpu, mode='constant')

Acelerando la fusión de imágenes mediante computación heterogénea

90

Posteriormente, en estas líneas se crea la variable s, la cual almacena un
arreglo de numpy, dicho arreglo representa el filtro Bicubic Spline. Después
se transfiere a memoria global de la GPU este filtro junto con la
pancromática ajustada. Lo anterior, mediante la función array() de la
librería cupy. Una vez se tiene estas variables en la GPU, se procede a aplicar
un proceso de filtrado, al aplicar la operación de convolución entre la
pancromática ajustada y el filtro Bicubic Spline. Este filtrado se realiza
mediante la función Correlate() propia del módulo filters de cupyx, y se
almacena en la variable I1_gpu.

Filtrado con Bicubic Spline modificado - Líneas 37 – 39:

37. s1 = np.array([[1/256, 0, 1/64, 0, 3/128, 0, 1/64, 0, 1/256],[0, 0, 0, 0, 0, 0, 0, 0, 0],[1/64,
0, 1/16, 0, 3/32, 0, 1/16, 0, 1/64],[0, 0, 0, 0, 0, 0, 0, 0, 0], [3/128, 0, 3/32, 0, 9/64, 0,
3/32, 0, 3/128],[0, 0, 0, 0, 0, 0, 0, 0, 0],[1/64, 0, 1/16, 0, 3/32, 0, 1/16, 0, 1/64], [0,
0, 0, 0, 0, 0, 0, 0, 0],[1/256, 0, 1/64, 0, 3/128, 0, 1/64, 0, 1/256]])

38. s1_gpu = cp.array(s1)
39. I2_gpu = filters.correlate(I1_gpu, s1_gpu, mode='constant')

Asimismo, se repite de nuevo el proceso anterior, pero se establece un
nuevo filtro el cual es Bicubic Spline agregando columnas y filas en cero.
Este filtro es almacenado en la variable s1 en CPU. Acto seguido, se hace la
transferencia de este nuevo filtro a memoria global de GPU mediante la
librería cupy. Una vez se ha realizado esto, se procede a utilizar la matriz
guardada en la variable I1_gpu y s1_gpu para llevar a cabo el proceso de
filtrado mediante convolución. Lo anterior, siendo ejecutado sobre la GPU.

Generación del primer plano Wavelet - Líneas 40 – 44:

40. W1=(pani-I1_gpu.get())
41. W1_gpu = gpuarray.to_gpu(W1)
42. W1_gpu_new = gpuarray.empty_like(W1_gpu)
43. adjustment_values(W1_gpu,W1_gpu_new)
44. W1 = W1_gpu_new.get().astype(np.uint8)

Métodos basados en Transformadas Wavelet Discretas (TWD)

91

En estas líneas de código, se realiza el proceso para obtener el primer plano
Wavelet. Este proceso consiste en tomar la pancromática ajustada y
restarle en CPU la matriz consolidada en la variable I1_gpu. Posteriormente,
se realiza un salto a GPU del resultado de la resta anterior, para poder
realizar de forma más rápida el ajuste de valores negativos, mediante el
núcleo generado al inicio de esta implementación usando
ElementwiseKernel. Por último, se realiza la transferencia a memoria de
CPU del plano Wavelet siendo almacenado en la variable W1.

Generación del segundo plano Wavelet - Líneas 45 – 49:

45. W2=(I1_gpu.get()-I2_gpu.get())
46. W2_gpu = gpuarray.to_gpu(W2)
47. W2_gpu_new = gpuarray.empty_like(W2_gpu)
48. adjustment_values(W2_gpu,W2_gpu_new)
49. W2 = W2_gpu_new.get().astype(np.uint8)

En este mismo orden de ideas, se debe obtener un segundo plano Wavelet.
Sin embargo, aunque en este caso el proceso es el mismo, las variables
utilizadas en este no lo son. Como primera instancia, se debe realiza la resta
entre la variable I1_gpu y I2_gpu utilizando la función get() para ejecutar
esta operación en CPU. Acto seguido, se transfiere a memoria global de
GPU la matriz resultado de esta resta para realizar su ajuste de valores
negativos. Para finalizar se trae a memoria de CPU dicha variable y se realiza
su conversión a enteros de 8 bits. Finalmente, la variable que contiene el
segundo plano Wavelet es nombrada W2.

Generación del nuevo componente de intensidad - Líneas 50 – 51:

50. nint=(panchromatic+W1+W2).astype(np.uint8)
51. n_hsv = np.stack((mat, sat, nint),axis=2)

A partir de estas líneas, se genera un nuevo componente de intensidad al
realizar la suma de la representación matricial de la imagen pancromática y
los planos Wavelt W1 y W2 generados previamente. Después, se realiza el

Acelerando la fusión de imágenes mediante computación heterogénea

92

proceso de concatenación de las bandas de matiz, saturación y el nuevo
componente de intensidad mediante la función stack de numpy .

Generación de la nueva imagen - Líneas 52 – 53:

52. fusioned_image = hsv2rgb(n_hsv).astype(np.uint8)
53. skimage.io.imsave('atrousgpu_image.tif',fusioned_image, plugin = 'tifffile')

Sin embargo, al realizar la concatenación de estas bandas se sigue
manteniendo el espacio de color HSV, pero se requiere realizar la
conversión al espacio de color RGB. Debido a esto, mediante la función
hsv2rgb() se realiza este proceso y se almacena en la variable
fusioned_image. Por último, mediante la función imsave de skimage se
guarda localmente la imagen generada a partir de la fusión de estas
imágenes. La Figura 24C presenta la imagen resultado al realizar la fusión
de la imagen multiespectral (Figura 24A) y pancromática (Figura 24B),
ambas con dimensión de 1024 píxeles por 1024 píxeles. Lo anterior,
mediante la transformada Wavelet À trous.

 A) B) C)

Figura 24. Imagen fusionada de 1024x1024 píxeles mediante
Transformada Wavelet algoritmo de Á trous.

Índices de evaluación de la calidad espacial y espectral de las imágenes fusionadas

93

Capítulo 5

Índices de evaluación de la
calidad espacial y espectral
de las imágenes fusionadas

El procesamiento de imágenes es una herramienta muy útil en muchos
campos de las ciencias modernas, una de los procesos corresponde a la
fusión de imágenes satelitales, el resultado de estos algoritmos
matemáticos son imágenes, las cuales deben ser evaluadas para su
interpretación. Las imágenes fusionadas a menudo deben correlacionarse
con la imagen original para garantizar que la imagen resultante cumple
algún propósito en específico, para la evaluación de la calidad de estas
imágenes fusionadas se utilizan los siguientes índices: coeficiente de
correlación, entropía, DIV, Bias, ERGAS, RASE, RMES, Qu, los cuales son
muy útiles para decidir qué imagen fusionada degrada en menor valor la
riqueza espectral con una ganancia significativa espacialmente.

5.1 Bias
Se basa en la división de los valores medios de la imagen procesada y

original. El ideal teórico del valor de sesgo es 0. Un pequeño valor positivo

Acelerando la fusión de imágenes mediante computación heterogénea

94

o negativo de sesgo significa una fuerte similitud entre x e y. (Vaiopoulos,
2011).

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1− 𝑥̄𝑥
𝑦̄𝑦
 (28)

5.2 DIV (Difference In Variance)
DIV (diferencia en varianza): representa la varianza de la imagen

procesada dividida por la varianza de la imagen original sustraído por uno.
Los valores de interpretación son similares al sesgo (Vaiopoulos, 2011).

𝐷𝐷𝐷𝐷𝐷𝐷 = 1 − 𝜎𝜎𝑦𝑦2

𝜎𝜎𝑥𝑥2
 (29)

5.3 Entropía
Imagen Entropía (E): este índice refleja la cantidad de información

incluida en una determinada imagen. La entropía requiere análisis de
histograma: p es el porcentaje de píxeles cuyo valor cae en una
determinada clase bin, mientras que bc es el número total de clases bin
(Vaiopoulos, 2011).

𝐸𝐸 = −∑ 𝑝𝑝 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙2
(𝑝𝑝)𝑏𝑏𝑏𝑏

𝐾𝐾=1 (30)

5.4 Coeficiente de correlación (corr)
La correlación entre las diferentes bandas de las imágenes fusionadas

y las bandas de la imagen original se pueden calcular con la siguiente
ecuación:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴/𝐵𝐵) =
∑ �𝐴𝐴𝑗𝑗−𝐴𝐴

−
�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1 �𝐵𝐵𝐽𝐽−𝐵𝐵
−
�

�∑ �𝐴𝐴𝑗𝑗−𝐴𝐴
−
�∑ �𝐵𝐵𝑗𝑗−𝐵𝐵

−
�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑗𝑗=1

 (31)

Donde 𝐴𝐴 y 𝐵𝐵 son los valores de la media de las imágenes correspondientes,
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴/𝐵𝐵) se llama coeficiente de correlación y varía entre –1 y +1. Se usan
los signos + y – para las correlaciones positivas y negativas,

Índices de evaluación de la calidad espacial y espectral de las imágenes fusionadas

95

respectivamente. Nótese que 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴/𝐵𝐵) es una cantidad adimensional, es
decir no depende de las unidades empleadas. El valor ideal de la
correlación, tanto espectral como espacial es 1.

5.5 Índice ERGAS
La evaluación de la calidad de las imágenes fusionadas se puede llevar

a cabo mediante los índices ERGAS espectral y espacial. La definición de
ERGAS espectral (del francés Erreur Relative Globale Adimensionallede
Synthèse) (Wald, 2002; Ranchin et al., 2003) viene dada por la ecuación 32:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 100 ℎ
𝑙𝑙
� 1
𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

∑ �
(𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖))2

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑖𝑖)2
�𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑖𝑖=1 (32)

Donde ℎ y 𝑙𝑙 representan la resolución espacial de las imágenes 𝑃𝑃𝑃𝑃𝑃𝑃 y
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀; NBandas es el número de bandas de la imagen fusionada; 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑖𝑖
es el valor de la radiancia de la banda 𝑖𝑖 − é𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠de imagen MULTI (Wald,
2000) y RMSE será definida como sigue (33):

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖) = 1
𝑁𝑁𝑁𝑁
�∑ (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑖𝑖(𝑗𝑗) − 𝐹𝐹𝐹𝐹𝑆𝑆𝑖𝑖(𝑗𝑗))2𝑁𝑁𝑁𝑁

𝑖𝑖=1 (33)

Siendo 𝑁𝑁𝑁𝑁 el número de píxeles de la imagen 𝐹𝐹𝐹𝐹𝑆𝑆𝑖𝑖(𝑥𝑥,𝑦𝑦). Adicionalmente,
Lillo y su equipo (2005) proponen otro índice, denominado 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
que está inspirado en el índice ERGAS espectral (Lillo-Saavedra et al., 2005).
El objetivo del índice 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 es evaluar la calidad espacial de las
imágenes fusionadas por lo que se define como (34):

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 100 ℎ
𝑙𝑙
� 1
𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

∑ �
(𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖))2

(𝑃𝑃𝑃𝑃𝑁𝑁𝑖𝑖)2
�𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑖𝑖=1 (34)

Donde 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 es definido como sigue en la ecuación 35:

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖) = 1
𝑁𝑁𝑃𝑃
�∑ (𝑃𝑃𝑃𝑃𝑁𝑁𝑖𝑖(𝑗𝑗) − 𝐹𝐹𝐹𝐹𝑆𝑆𝑖𝑖(𝑗𝑗))2𝑁𝑁𝑁𝑁

𝑖𝑖=1 (35)

Acelerando la fusión de imágenes mediante computación heterogénea

96

Los mejores resultados de estos índices (ERGAS espacial y espectral) se
obtienen cuando es más cercano a cero.

5.6 Índice RASE
El índice RASE se expresa como un porcentaje (ecuación 36):

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 100 ℎ
𝑙𝑙
�1
𝑁𝑁
∑ �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐵𝐵𝑖𝑖))2

𝑀𝑀𝑖𝑖
2 �𝑛𝑛

𝑖𝑖=1 (36)

Donde ℎ es la resolución de la imagen de alta resolución especial (PAN) y 𝑙𝑙
es la resolución de la imagen de baja resolución espacial (MULTI) (Wald,
2000). Los mejores resultados se obtienen cuanto el porcentaje está más
cerca a cero.

5.7 Índice de calidad universal 𝑸𝑸𝑸𝑸
Este modelo de índice de calidad identifica cualquier distorsión como

una combinación de tres factores: pérdida de correlación, distorsión de
luminancia y contraste de distorsión (Wang & Bovink, 2002). El índice se
obtiene con la ecuación 37.

𝑄𝑄𝑄𝑄 = 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

⋅ 2𝑥̄𝑥𝑦̄𝑦
(𝑥𝑥)2+(𝑦𝑦)2

⋅ 2𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
𝜎𝜎𝑥𝑥2+𝜎𝜎𝑥𝑥2

 (37)

Los mejores valores de este índice se obtienen cuando el valor es más
cercano a uno.

5.8 Índice RMSE
RMSE (Root Mean Squared Error): quizás uno de los índices más

populares y comúnmente utilizados. Es la raíz de la diferencia al cuadrado
de dos conjuntos de datos (x, y) divididos por el número de elementos (o
píxeles) n:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑥𝑥𝑖𝑖−𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖1

𝑛𝑛
 (38)

Resultados y análisis

97

Capítulo 6

Resultados y análisis

En este capítulo se describe la metodología utilizada para llevar a cabo
la evaluación tanto a nivel de tiempo de procesamiento (homogéneo vs
heterogéneo) como a nivel de calidad de la imagen fusionada. Posterior a
esto se presentan y analizan los resultados de dicha evaluación.

6.1 Metodología de la evaluación
Esta sección tiene como finalidad presentar la metodología que se tuvo

en cuenta para realizar la evaluación de los modelos propuestos y sus
implementaciones. Los aspectos de evaluación a tratar en esta sección son:
el entorno de computación, las imágenes utilizadas y los criterios a analizar.

6.1.1 Entorno computacional

La Tabla 1, presenta las características del entorno de computación
utilizado para llevar a cabo la evaluación de la librería Sallfus. Este entorno
de computación fue acondicionado con la instalación de paquetes como
Scipy, Numpy, Pycuda y Cupy.

Acelerando la fusión de imágenes mediante computación heterogénea

98

Tabla 1. Entorno computacional.

Sigla Procesador GPU Memoria

EC Intel (R) Xeon (R) CPU E-52697 v3 @
2.60GHZ

NVIDIA Tesla
k80

128GB

6.1.2 Imágenes de prueba

Para realizar la evaluación se tomaron un total de cuatro pares de
imágenes, es decir cada par es compuesto por su respectiva imagen
multiespectral y pancromática. Estos pares de imágenes tienen distintos
tamaños los cuales son: 1024x1024, 2048x2048, 4096x4096 y 8192x8192
píxeles. Además, las imágenes de 1024 y 2048 píxeles son subescenas de
una imagen IKONOS y las otras dos imágenes fueron tomadas mediante el
satélite Landsat. La Figura 25(A) presenta la imagen multiespectral de
2048x2048 píxeles y la Figura 25(B) la imagen pancromática.

A) B)

Figura 25. Imagen de prueba con tamaño 20148x2048 pixeles.
 A) Multiespectral, B) Pancromática.

6.1.3 Proceso de evaluación y métricas

Este proceso de evaluación está orientado a probar cada uno de los
métodos de fusión de imágenes satelitales con los distintos pares de
imágenes presentados anteriormente. Esto con el propósito de calcular los
tiempos de ejecución de cada método sobre la arquitectura homogénea y

Resultados y análisis

99

heterogénea, para obtener el factor de aceleración o speed-up.
Adicionalmente, al aplicar el proceso de fusión se determinará la calidad de
la imagen, a partir de los índices matemático-estadísticos expuestos en el
capítulo 5. Este proceso se realizará tanto a nivel espectral como a nivel
espacial. Esto quiere decir que, se tomará la imagen fusionada y se
obtendrán sus índices teniendo como referencia las imágenes de entrada:
multiespectral y pancromática. Para esta evaluación se usa un script en
lenguaje Matlab, que calcula automáticamente ocho índices (Vaiopoulos,
2011).

6.2 Tiempos de ejecución y factores de aceleración
La Tabla 2, presenta el tiempo de ejecución para cada una de las

técnicas de fusión implementadas. Se realiza una discriminación por
tamaño y tipo de arquitectura implementada.

Con base en la Tabla 2, se puede observar que para cada una de las técnicas
implementadas tanto secuencial como paralelamente, a medida que
incrementa el tamaño de la imagen aumenta su tiempo de ejecución. Sin
embargo, para las técnicas de fusión que utilizan exclusivamente la CPU, se
presentan incrementos de tiempo mucho más significativos que los
presentados en las implementaciones en CPU/GPU. La Tabla 3 presenta la
tasa de crecimiento en segundos por píxel de cada una de las técnicas. Esto
se realizó, mediante una linealización para obtener la pendiente que
representa la tasa de crecimiento del tiempo de ejecución en función de los
píxeles. Lo anterior, dado que algunas de las técnicas presentan un
comportamiento exponencial y otras aproximadamente lineal. Analizando
esta tabla se evidencia que las tasas de crecimiento disminuyen
sustancialmente al utilizar CPU/GPU (mucho más significativo para Brovey
y Multiplicative), lo que indica que a mayor tamaño de las imágenes se
sacará mayor beneficio de la plataforma heterogénea y se obtendrá mayor
aceleración.

Acelerando la fusión de imágenes mediante computación heterogénea

100

Tabla 2. Tiempo de ejecución.

Método Arq.
Tiempo por tamaño

1024x
1024px

2048x
2048px

4096x
4096px

8192x
8192px

Brovey
CPU 25.39s 76.76s 311.85s 1437.85s

CPU/GPU 1.43s 1.49s 1.72s 2.70s

Multiplicative
CPU 9.27s 36.66s 136.37s 534.57s

CPU/GPU 0.98s 1.02s 1.22s 1.90s

PCA
CPU 23.29s 86.32s 342.03s 1360.40s

CPU/GPU 3.05s 7.53s 24.36s 74.35s

À trous
CPU 1.94s 7.40s 30.86s 142.62s

CPU/GPU 1.08s 2.11s 5.84s 22.93s

Tabla 3. Tasa de crecimiento del tiempo de ejecución por píxel.

Método
Tasa por arquitectura

CPU CPU/GPU

Brovey 2.13x10-5 s/píxel 1.93x10-8 s/píxel

Multiplicative 7.95x10-6 s/píxel 1.39x10-8 s/píxel

PCA 2.02x10-5 s/píxel 1.08x10-6 s/píxel

À trous 2.12x10-6 s/píxel 3.30x10-7 s/píxel

A partir de la Tabla 4 y teniendo en cuenta el tamaño más alto de imagen,
que en este caso corresponde a 8192x8192 píxeles, se puede observar que,
la técnica que presenta la mayor aceleración en CPU/GPU respecto a CPU
es Brovey con un total de 531.85x. Después se ubica Multiplicative con un
total de 281.06x, posteriormente, se encuentra PCA con 18.30x y por último
está À trous, evidenciando solo 6.22x.

Tabla 4. Speed-up.

Método
Speed- up por tamaño

1024x
1024px

2048x
2048px

4096x
4096px

8192x
8192px

Brovey 17,80x 51,47x 180,83x 531,85x
Multiplicative 9,44x 35,95x 112,02x 281,06x

PCA 7,63x 11,47x 14,04x 18,30x
À trous 1,79x 3,51x 5,29x 6,22x

Resultados y análisis

101

6.3 Calidad de la imagen fusionada
En la tabla 5 se realiza el análisis espectral de las imágenes fusionadas

con la Transformada Brovey, Multiplicación (Multi), PCA y la Transformada
Wavelet con el algoritmo À trous, con una subescena Ikonos de tamaño
1024x1024, con los índices de Correlación, BIAS, DIV, Entropía, ERGAS,
índice de calidad Universal Qu, RASE y RMSE, donde se puede observar que
los mejores resultados con el índice de correlación se obtienen con el
método de multiplicación (promedio de 82.6% de dependencia lineal), sin
embargo con los 7 índices BIAS, DIV, Entropía, ERGAS, Qu,RASE y RMSE los
mejores resultados espectralmente se obtienen con la transformada
Wavelet usando el algoritmo À trous.

Tabla 5. Análisis Espectral imagen Ikonos 1024 líneas por 1024 columnas.

Imagen
fusionada R G B BIAS DIV

Entropía
5.99 ERGAS Qu RASE RMSE

RGB/Brovey 0.67 0.53 0.46 0.37 0.59 5.59 11.8 0.67 46.8 26.9
RGB/Multi 0.84 0.83 0.81 0.76 0.69 4.47 19.9 0.56 79.6 45.1
RGB/PCA 0.58 0.56 0.58 0.41 0.64 5.45 12.5 0.50 49.7 27.9

RGB/À trous 0.69 0.56 0.51 0.11 0.21 5.86 7.61 0.58 30.52 17.2

En la Tabla 6 se realiza el análisis espacial de las imágenes fusionadas con la
Transformada Brovey, Multiplicación (Multi), PCA y la Transformada
Wavelet con el algoritmo À trous, con una subescena Ikonos de tamaño
1024x1024 con los índices de Correlación, BIAS, DIV, Entropía, ERGAS, índice
de calidad Universal Qu, RASE y RMSE, donde se puede observar que los
mejores resultados con el índice de correlación se obtienen con el método
de multiplicación (promedio de 97% de dependencia lineal) y con la
transformada Wavelet con el algoritmo À trous (promedio de 96.3% de
dependencia lineal). Cuando se analizan los 7 índices: BIAS, DIV, Entropía,
ERGAS, Qu,RASE y RMSE, se observa que los mejores resultados
espectralmente se obtienen con la transformada Wavelet usando el
algoritmo À trous.

Acelerando la fusión de imágenes mediante computación heterogénea

102

Tabla 6. Análisis Espacial Ikonos 1024 líneas por 1024 columna.s

Imagen
fusionada

R G B BIAS DIV Entropía
5.92

ERGAS Qu RASE RMSE

RGB/Brovey 0.96 0.98 0.97 0.38 0.56 5.59 10.12 0.76 40.4 23.4
RGB/Multi 0.83 0.85 0.84 0.77 0.68 4.47 19.93 0.31 79.7 46.2
RGB/ PCA 0.94 0.97 0.91 0.42 0.63 5.54 11.32 0.70 45.2 26.2

RGB/À trous 0.95 0.98 0.96 0.13 0.18 5.86 4.11 0.94 16.3 9.53

En la tabla 7 se realiza el análisis espectral, de las imágenes fusionadas con
la Transformada Brovey, Multiplicación (Multi), PCA y la Transformada
Wavelet con el algoritmo À trous, con una subescena Ikonos de tamaño
2048x2048, con los índices de Correlación, BIAS, DIV, Entropía, ERGAS,
índice de calidad Universal Qu, RASE y RMSE, donde se puede observar que
los mejores resultados con el índice de correlación se obtienen con el
método de multiplicación (promedio de 82.3% de dependencia lineal) y la
transformada Wavelet con el algoritmo À trous (promedio de 53.3% de
dependencia lineal). Cuando se analizan los 7 índices: BIAS, DIV, Entropía,
ERGAS, Qu,RASE y RMSE, se observa que los mejores resultados
espectralmente se obtienen con la transformada Wavelet usando el
algoritmo À trous.

Tabla 7. Análisis Espectral Ikonos 2048 líneas por 2048 columnas.

Imagen
fusionada R G B BIAS DIV

Entropía
6.33 ERGAS Qu RASE RMSE

RGB/Brovey 0.66 0.51 0.41 0.43 0.61 5.84 12.8 0.39 51.0 19.3
RGB/Multi 0.84 0.83 0.80 0.74 0.70 5.01 19.3 0.33 77.6 22.4
RGB/ PCA 0.55 0.54 0.57 0.42 0.61 5.73 12.5 0.43 50.6 18.5

RGB/À trous 0.68 0.53 0.45 0.12 0.11 6.23 7.9 0.55 31.9 20.1

En la Tabla 8 se realiza el análisis espacial de las imágenes fusionadas con la
Transformada Brovey, Multiplicación (Multi), PCA y la Transformada
Wavelet con el algoritmo À trous, con una subescena Ikonos de tamaño
2048x2048, con los índices de Correlación, BIAS, DIV, Entropía, ERGAS,
índice de calidad Universal Qu, RASE y RMSE, donde se puede observar que
los mejores resultados con el índice de correlación se obtienen con la
transformada Brovey (promedio de 96.3% de dependencia lineal) y la

Resultados y análisis

103

transformada Wavelet con el algoritmo À trous (promedio de 96% de
dependencia lineal). Cuando se analizan los 7 índices: BIAS, DIV, Entropía,
ERGAS, Qu,RASE y RMSE, se observa que los mejores resultados
espectralmente se obtienen con la transformada Wavelet usando el
algoritmo À trous.

Tabla 8. Análisis Espacial Ikonos 2048 líneas por 2048 columnas.

Imagen
fusionada

R G B BIAS DIV Entropía
6.31

ERGAS Qu RASE RMSE

RGB/Brovey 0.95 0.98 0.96 0.42 0.62 5.84 11.20 0.70 47.1 28.3
RGB/Multi 0.98 0.85 0.85 0.74 0.72 5.01 19.34 0.33 77.4 48.9
RGB/ PCA 0.94 0.97 0.89 0.42 0.62 5.73 11.27 0.70 45.7 28.5

RGB/À trous 0.94 0.99 0.95 0.12 0.15 6.23 3.97 0.94 17.8 10.0

En la Tabla 9 se realiza el análisis espectral de las imágenes fusionadas con
la Transformada Brovey, Multiplicación (Multi), PCA y la Transformada
Wavelet con el algoritmo À trous, con una subescena Landsat 8 OLI TIRS de
tamaño 4096x4096, con los índices de Correlación, BIAS, DIV, Entropía,
ERGAS, índice de calidad Universal Qu, RASE y RMSE, donde se puede
observar que los mejores resultados con el índice de correlación se
obtienen con la transformada Brovey, con PCA y con la transformada
Wavelet con el algoritmo À trous (97% de dependencia lineal). Cuando se
analiza el índice DIV el mejor es el método de multiplicación, cuando se
analizan los 6 índices: BIAS, Entropía, ERGAS, Qu,RASE y RMSE, se observa
que los mejores resultados espectralmente se obtienen con la
transformada Wavelet usando el algoritmo À trous.

Tabla 9. Análisis Espectral Landsat 8 OLI TIRS 4096 líneas por 4096 columnas.

Imagen
fusionada

R G B BIAS DIV
Entropía

4.96 ERGAS Qu RASE RMSE

RGB/Brovey 0.97 0.97 0.97 0.25 -2.70 5.67 23.1 0.76 46.2 17.3
RGB/Multi 0.95 0.96 0.97 0.80 -0.33 3.65 40.8 0.35 81.7 30.7
RGB/ PCA 0.97 0.97 0.97 0.45 -1.07 5.45 24.7 0.76 49.5 18.4

RGB/À trous 0.97 0.97 0.97 0.10 -4.51 5.94 27.5 0.69 55.1 20.6
En la Tabla 10 se realiza el análisis espacial de las imágenes fusionadas con
la Transformada Brovey, Multiplicación (Multi), PCA y la Transformada

Acelerando la fusión de imágenes mediante computación heterogénea

104

Wavelet con el algoritmo À trous, con una subescena Landsat 8 OLI TIRS de
tamaño 4096x4096, con los índices de Correlación, BIAS, DIV, Entropía,
ERGAS, índice de calidad Universal Qu, RASE y RMSE, donde se puede
observar que los mejores resultados con el índice de correlación se
obtienen con la transformada Brovey, con PCA y con la transformada
Wavelet con el algoritmo À trous (99% de dependencia lineal). Cuando se
analizan los 7 índices: BIAS, DIV, Entropía, ERGAS, Qu,RASE y RMSE, se
observa que los mejores resultados espectralmente se obtienen con la
transformada Wavelet usando el algoritmo À trous.

Tabla 10. Análisis Espacial Landsat 8 OLI TIRS 4096 líneas por 4096 columnas

Imagen
fusionada

R G B BIAS DIV Entropía
5.98

ERGAS Qu RASE RMSE

RGB/Brovey 0.99 0.99 0.99 0.24 0.40 5.67 16.9 0.92 33.9 12.2
RGB/Multi 0.94 0.94 0.94 0.80 0.78 3.65 49.4 0.27 98.8 36.2
RGB/ PCA 0.99 0.99 0.99 0.43 0.66 5.45 30.4 0.73 61.2 22.3

RGB/À trous 0.99 0.99 0.99 0.08 0.10 5.92 5.79 0.98 14.3 4.2

En la Tabla 11 se realiza el análisis espectral de las imágenes fusionadas con
la Transformada Brovey, Multiplicación (Multi), PCA y la Transformada
Wavelet con el algoritmo À trous, con una subescena Landsat 8 OLI TIRS de
tamaño 8192x8192, con los índices de Correlación, BIAS, DIV, Entropía,
ERGAS, índice de calidad Universal Qu, RASE y RMSE, donde se puede
observar que los mejores resultados con el índice de correlación se
obtienen con la transformada Brovey, con PCA y con la transformada
Wavelet con el algoritmo À trous (promedio de 97.3% de dependencia
lineal). Cuando se analiza el índice DIV, se observa que el mejor es el método
de multiplicación, cuando se analizan los 6 índices: BIAS, Entropía, ERGAS,
Qu,RASE y RMSE, se observa que los mejores resultados espectralmente se
obtienen con la transformada Wavelet usando el algoritmo À trous.

Resultados y análisis

105

Tabla 11. Análisis Espectral Landsat 8 OLI TIRS 8192 líneas por 8192 columnas.

Imagen
fusionada

R G B BIAS DIV Entropía
4.69

ERGAS Qu RASE RMSE

RGB/Brovey 0.98 0.97 0.97 0.33 -2.42 5.21 24.3 0.75 48.7 17.5
RGB/Multi 0.96 0.97 0.97 0.83 -0.28 3.15 42.3 0.30 85.0 30.4
RGB/ PCA 0.98 0.97 0.97 0.50 -0.98 5.13 26.9.0 0.73 53.3 19.2

RGB/À trous 0.98 0.97 0.97 0.18 -4.30 5.54 27.3 0.70 54.5 19.6

En la Tabla 12 se realiza el análisis espacial de las imágenes fusionadas con
la Transformada Brovey, Multiplicación (Multi), PCA y la Transformada
Wavelet con el algoritmo À trous, con una subescena Landsat 8 OLI TIRS de
tamaño 8192x8192, con los índices de Correlación, BIAS, DIV, Entropía,
ERGAS, índice de calidad Universal Qu, RASE y RMSE, donde se puede
observar que los mejores resultados con el índice de correlación se
obtienen con la transformada Brovey, con PCA y con la transformada
Wavelet con el algoritmo À trous (99% de dependencia lineal). Cuando se
analizan los 7 índices: BIAS, DIV, Entropía, ERGAS, Qu,RASE y RMSE, se
observa que los mejores resultados espectralmente se obtienen con la
transformada Wavelet usando el algoritmo À trous.

Tabla 12. Análisis Espacial Landsat 8 OLI TIRS 8192 líneas por 8192 columnas.

Imagen
fusionada

R G B BAI DIV Entropía
5.55

ERGAS Qu RASE RMSE

RGB/Brovey 0.99 0.99 0.99 0.25 0.42 5.21 18.2 0.96 36.5 7.74
RGB/Multi 0.94 0.95 0.95 0.81 0.78 3.15 50.8 0.99 101.7 0.58
RGB/ PCA 0.99 0.99 0.99 0.43 0.66 5.13 31.6 0.99 63.3 3.00

RGB/À trous 0.99 0.99 0.99 0.08 0.10 5.54 7.51 0.98 15.0 3.77

La comparación visual de las imágenes fusionadas usando la
Transformada de Brovey, Multiplicación, Análisis de Componentes
principales y la transformada Wavelet À trous con los diferentes tamaños,
se pueden ver en el anexo.

Acelerando la fusión de imágenes mediante computación heterogénea

106

Conclusiones

107

Conclusiones

A partir de la comparación de tiempos de ejecución realizado, se

demuestra que todos los métodos implementados presentan una
disminución significativa en su tiempo de ejecución. Sin embargo, Brovey
es el método que expone el mejor esquema de paralelización, dado que
llega a ser aproximadamente 532 veces más rápido que en CPU.
Adicionalmente, analizando la tasa de crecimiento del tiempo de ejecución
por pixel, se evidencia que el método PCA presenta un comportamiento
atípico frente a los otros métodos sobre una arquitectura heterogénea,
esto podría significar que el costo de transferencia entre unidades de
procesamiento es más alto que en las otras técnicas y que si de igual
manera se presenta una mejora significativa en el tiempo de ejecución, las
operaciones realizadas en PCA siguen representando un alto costo
computacional en dispositivos many-core.

En cuanto a calidad espectral y espacial de la imagen fusionada, las
evaluaciones realizadas anteriormente han demostrado que los métodos
de fusión de imágenes basados en la transformada de Wavelet usando el
algoritmo de “Á trous” son más adecuados para la fusión de imágenes que
los métodos convencionales.

Los resultados obtenidos del análisis cuantitativo demuestran que los
mejores resultados de la imagen satelitales Ikonos de 2048 por 2048
fusionada de imágenes usando la TWA implementada en Python ofrece

Acelerando la fusión de imágenes mediante computación heterogénea

108

mejores resultados con valores de los índices BIAS, DIV, ERGAS, RASE, Qu,
RMSE son mejores que los obtenidos con las imágenes Ikonos de tamaño
1024x1024. Con el índice de correlación los mejores resultados se obtienen
con los métodos convencionales. Lo que significa que la mejor dependencia
lineal tanto espectral como espacial se obtiene con los métodos
tradicionales.

Los resultados obtenidos del análisis cuantitativo demuestran que los
mejores resultados de la imagen satelitales Landsat 8 OLI TIRS de
8192x8192 fusionada de imágenes usando la TWA implementada en Python
ofrece mejores resultados con valores de los índices BIAS, DIV, ERGAS,
RASE, Qu, RMSE son mejores que los obtenidos con las imágenes Landsat
8 OLI TIRS de tamaño 4096x4096. Lo que significa que la mejor
dependencia lineal tanto espectral como espacial se obtienen con los
métodos tradicionales.

La metodología propuesta permite implementar de forma eficiente las
principales metodologías de fusión de imágenes sobre plataformas
computacionales heterogéneas (CPU/GPU), permitiendo obtener de forma
rápida, imágenes fusionadas que ofrecen a los usuarios información
detallada sobre los entornos urbanos y rurales, lo cual es útil para
aplicaciones como la planificación y la gestión urbana. Su utilidad se
extiende al desarrollo de proyectos en diversos campos como agricultura,
hidrología, medioambiente y gestión de emergencias producidas por
catástrofes naturales (inundaciones, incendios forestales), entre otros.

Anexo

109

Anexo

A continuación, se presenta el conjunto de datos y las imágenes
resultantes de la evaluación bajo cada una de las metodologías de fusión:
Transformada de Brovey, multiplicación, PCA y transformada Wavelet À
trous. El conjunto de datos corresponde a 4 pares (Multiespectral y
Pancromática) de imágenes satelitales:

- Ikonos 1024x1024

- Ikonos tamaño 2048x2048

- Landsat 8 OLI TIRS 4096x4096

- Landsat 8 OLI TIRS 8192x8192

Las imágenes se presentan en arreglos de 2 filas por dos columnas que
comprenden las 2 imágenes originales de entrada y las 4 imágenes
resultantes de la fusión por cada uno de los métodos. Esto facilita la
inspección visual de la calidad de la imagen resultante y la comparación de
los métodos.

Acelerando la fusión de imágenes mediante computación heterogénea

110

 A) B)

 C) D)

 E) F)

Figura 26. Imagen Ikonos 1024x1024.. Entrada: A)Multiespectral; B)Pancromática.
 Salida: C)Transformada Brovey; D)Multiplicación; E)PCA; F)Transformada Wavelet À trous

Anexo

111

 A) B)

 C) D)

 E) F)

Figura 27. Imagen Ikonos tamaño 2048x2048. Entrada: A)Multiespec.; B)Pancromática. Salida:
C)Transformada Brovey; D)Multiplicación; E)PCA; F)Transformada Wavelet À trous

Acelerando la fusión de imágenes mediante computación heterogénea

112

 A) B)

 C) D)

 E) F)

Figura 28. Imagen Landsat 8 OLI TIRS 4096x4096. Entrada: A)Multiespec..; B)Pancromática. Salida:
C)Transformada Brovey; D)Multiplicación; E)PCA; F)Transformada Wavelet À trous

Anexo

113

 A) B)

 C) D)

 E) F)

Figura 29. Imagen Landsat 8 OLI TIRS 8192x8192. Entrada: A)Multiespec..; B)Pancromática. Salida:
C)Transformada Brovey; D)Multiplicación; E)PCA; F)Transformada Wavelet À trou

Acelerando la fusión de imágenes mediante computación heterogénea

114

Referencias bibliográficas

115

Referencias bibliográficas

Alba, E. (2005). Parallel metaheuristics: a new class of algorithms (47). John Wiley &

Sons.

Amolins, K., Zhang, Y. and Dare, P., (2007). Wavelet based image fusion techniques —
An introduction, review and comparison. ISPRS Journal of Photogrammetry and
remote Sensing, 62(4), 249-263.

Amro, I., Mateos, J., Vega, M., Molina, R. and Katsaggelos, A., (2011). A survey of
classical methods and new trends in pansharpening of multispectral images.
EURASIP Journal on Advances in Signal Processing, (1), 1-22.

Bracewell, R. N. (1978). The Fourier Transform and ist Applications, MacGraw-Hill.

Chibani, Y., Houacine, (2003). A. Redundant versus ortogonal Wavelet descomposition
for multisensor image fusion, Pattern Recognition. (36), 879-889.

Chuvieco, E. (2002). Teledetección Ambiental. La Observación de la Tierra Desde el
Espacio. Barcelona: Ariel, 2002. ISBN 84-344-8047-6

Chuvieco, E., (2008). Teledetección Ambiental Espacial., 3ª Edición. Ed., Ariel Ciencia.
ISBN: 978-84-344-8073-3.

CUDA C. (September 22, 2017) Programming Guide. http://docs.nvidia.com/cuda/cuda-
c-programming-guide.

De Antonio, M., y Marina, L. (2005). Computación paralela y entornos heterogéneos.

Dutilleux, P. (1987). An implementation of the algorithm a trous to compute the
Wavelet transform. In Compt-rendus du congres ondulttes et methods temp-
fréquence et espace des phase, Marseille, Springer Verlag, 298-304.

Ehlers, M., Klonus, S., Johan Åstrand, P. and Rosso, P., (2010). Multi-sensor image
fusion for pansharpening in remote sensing. International Journal of Image and
Data Fusion, 1(1), 25- 45.

González-Audícana, M. (2003). Bondad de los Algoritmos de descomposición Wavelet
de Mallat y ‘à trous’ Para la fusión de imágenes Quickbird. Teledetección y
Desarrollo Regional. X Congreso de Teledetección. Cáceres, España. 295-300.

Acelerando la fusión de imágenes mediante computación heterogénea

116

González-Audícana, M., (2007). Métodos clásicos de fusión de Imágenes de satélite, I
Jornadas de Fusión. Asociación Española de Teledetección.

González-Audicana, M., X. Otazu, O. Fors y A. Seco (2005). Comparison Between the
Mallat’s and the à trous Discrete Wavelet Transform Based Algorithms for the
Fusion of multispectral and Panchromatic Images, International Journal of
Remote Sensing, (26), 597-616.

González-Audícana, X. Otazu, O. Fors, A. Seco y R. García. (2003). Bondad de los
Algoritmos de descomposición Wavelet de Mallat y ‘à trous’ Para la fusión de
imágenes Quickbird. Teledetección y Desarrollo Regional. X Congreso de
Teledetección. Cáceres, España. 295-300.

Hallada, W.A. and Cox, S., (1983). Image sharpening for mixed spatial and spectral
resolution satellite systems. International Symposium on Remote Sensing of
Environment, 17 th, Ann Arbor, 1023-1032.

He, C., Liu, Q., Li, H., Wang, H: Multimodal Medical Image Fusion Base don IHS and PCA,
IN: Symposium on Security Detection and Information Processing, Vol 7, pp.
280-285, Elsevier (2010).

Hong, G. and Zhang, Y., (2008). Comparison and improvement of wavelet‐based image
fusion. International Journal of Remote Sensing, 29(3), 673-691.

Kirk, D. B., & Wen-mei, W. H. (2012). Programming massively parallel processors: a
hands-on approach. Newnes.

Kpalma, K., El-Mezouar, M.C. and Taleb, N., (2013). Recent Trends in Satellite Image
Pansharpening techniques, 1st International Conference on Electrical,
Electronic and Computing Engineering.

L. Alparone, L.Wald, J.Chanussoat, C. Thomas, P.Gamba, L. Bruce, (2007). “Comparison
of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data Fusion
Contest”, IEEE Transactions on Geoscience and Remote Sensing,Vol. 45, No. 10,
pp 3012-3021, doi: 10.1109/TGRS.2007.904923.

Li, X., Lixin, L. and Mingyi, H., (2012). A Novel Pansharpening Algorithm for WorldView-
2 Satellite Images, International Conference on Industrial and Intelligent
Information (ICIII 2012), 17-18.

Lillo-Saavedra M. y C., Gonzalo. (2006). Spectral or Spatial Quality for Fused Satellite
Imagery? A Trade-Off Solution Using Wavelet à trous Algorithm. International
Journal of Remote Sensing, 27(7), 1453-1464.

Lillo-Saavedra, M. Gonzalo, C. Arquero, A. and Martínez, E. (2005). Fusion of
multispectral and panchromatic satellite sensor imagery based on tailored
filtering in the Fourier domain. International Journal of Remote Sensing. (26),
1263-1268.

Referencias bibliográficas

117

Lu, J., Zhang, B., He, H., & Zhang, H. (2011). The high-pass filtering fusion based on GPU.
In 2011 International Symposium on Computer Science and Society, 122-125).
IEEE.

Mallat, Stéphane. (1989). A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence. (II), 7.

Mallat, Stéphane. (1996). Wavelet for Vision. Proceedings of the IEEE. 4(84).

Medina, J., Lizarazo, I. (2004) Fusión de Imágenes Satelitales usando la Transformada
de Wavelet. Universidad Distrital Francisco José de Caldas. ISBN: 958-8175-97-6.
2004.

Nieto N., Orozco D., (Junio 2008). El uso de la Transformada Wavelet Discreta en la
Construcción de Señales Senosoidales. Scientia et Technica, (38). Universidad
Tecnológica de Pereira. ISSN 0122-1701

Nugteren, C. (2018, May). Clblast: A tuned opencl blas library. In Proceedings of the
International Workshop on OpenCL, 1-10.

Nuñez, J., Otazu, X., Fors, O., Prades, A., Palá, V., Arbiol, R. (1999). Multiresolution-
Based Image fusion whit Additive Wavelet Decomposition. IEEE Transactions on
Geoscience and Remote Sensing. 3(37), 1204 -1211.

Otazu, X., González-A. M., Fors, O. and Ñuñez, J. (2005). Introduction of sensor spectral
response into image fusion methods. application to wavelet-based methods.
IEEE Trans. on geoscience and rem. sensing, 43(10).

Padwick, C., M. Deskevich, F. Pacifici, and S. Smallwood. (2010). “WorldView-2 Pan-
Sharping”. Paper presented at the 2010 Conference of American Society for
Photogrammetry and Remote Sensing. San Diego, CA, April 26–30.

Pohl, C. and Van Genderen, J. L. (1998). Multisensor image fusion in sensing: concepts
methods and application. int. J. Remote Sensing. 5(19), 823-854.

Ranchin T., Aiazzi B., Alparone L., Baronti S., Wald L., (2003). Image fusion. The ARSIS
concept and some successful implementation schemes. ISPRS Journal of
Photogrammetry & Remote Sensing, 58, 4-18.

Ruiz, Marcello., Rodríguez-Esparragón, J., Rodríguez-Esparragón, D. y Eugenio-
González, F. (2011). Identificación y análisis de técnicas de fusión en imágenes
de satélites de muy alta resolución. 525-528.

Shan, A. (2006). Heterogeneous processing: a strategy for augmenting moore's law.
Linux Journal, 2006(142), 7.

Shettigara, V. K., (1992). A Generalized Component Substitution Technique for Spatial
Enhancement of Multispectral Images Using a Higher Resolution Data Set,
Photogrammetric Engineering & Remote Sensing, 5 (58), 561-567.

Acelerando la fusión de imágenes mediante computación heterogénea

118

Starck, Jean-Luc & Murtagh, Fionn. (1994). Image Restoration with Noise Suppression
Using the Wavelet Transform. Astronomy and Astrophysics. 288. 342-348.

Stathaki, T., (2008). Image fusion: algorithms and applications. London [etc.]: (xxk):
Academic Press,

Toolkit, C. U. D. A. (2011). 4.0 cublas library. Nvidia Corporation, 2701, 59-60.

Upegui E. Medina, J. (2019). Análisis de imágenes usando las transformadas de Fourier
y Wavelet. Editorial Universidad Distrital Francisco José de Caldas, Bogotá-
Colombia.

Vaiopoulos, A. D. (2011). Developing Matlab scripts for image analysis and quality
assessment Developing Matlab scripts for image analysis and quality
assessment. Earth Resources and Environmental Remote Sensing/GIS
Applications II, Proc. of SPIE Vol. 8181, 81810B.

Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., Garzelli, A., Licciardi, G.A.,
Restaino, R. and Wald, L., (2015). A critical comparison among pansharpening
algorithms. Geoscience and Remote Sensing, IEEE Transactions on, 53(5), pp.
2565-2586.

Wald, L. (1999). Some terms of reference in data fusion. IEEE Transactions on
Geoscience and Remote Sensing, 37(3), 1190–1193. doi:10.1109/36.763269

Wald, L. (2000). Quality of high resolution synthesized images: is there a simple
criterion? Proceedings of the third conference Fusion of Earth data: merging
point measurements, raster maps and remotely sensed image, Sophia Antipolis,
T Ranchin and L. Wald Editors, published by SEE/URISCA, Nice, France, 99-105.

Wald, L., (2002). Data fusion definitions and architectures, fusion of images of different
spatial resolutions, Les Presses de l’École des Mines, Paris.

Wald, L., Ranchin, T. & Mangolini, M., (1997). Fusion of Satellite Images of Different
SpatialResolutions: Assessing the Quality of Resulting Images,
Photogrammetric Engineering & Remote Sensing, 6(63), 691-699.

Wang, Z., Ziou, D., Armenakis, C., Li, D., and Li, Q. (2005). A comparative analysis of
image fusion methods. IEEE Trans. on geoscience and rem. sensing, 43(6).

Yoo, S. H., Park, J. H., & Jeong, C. S. (2009, December). Accelerating multi-scale image
fusion algorithms using CUDA. In 2009 International Conference of Soft
Computing and Pattern Recognition (pp. 278-282). IEEE.

Zhang, J., (2010). Multi-source remote sensing data fusion: status and trends.
International Journal of Image & Data Fusion, 1(1), pp. 5-24.

Zhou Wang, Alan C. Bovik. (2002). A Universal Image Quality Index. IEEE Signal
Processing Letter, Vol. XX, No. Y March.

Otros títulos de
la colección

Otros títulos de
la colección

	porta 1.pdf
	Página 1

	porta 1 - copia.pdf
	Página 1

	porta 1 - copia (3).pdf
	Página 1

