
REDES

NEURONALES

CONVOLUCIONALES

USANDO KERAS

Y ACELERANDO

CON GPU

Nelson Enrique Vere-Parra

Andrés Ovidio Restrepo-Rodriguez

Rubén Xavier Medina-Daza

REDES
NEURONALES

CONVOLUCIONALES 
USANDO KERAS
Y ACELERANDO

CON GPU

Nelson Enrique Vera-Parra
Andrés Ovidio Restrepo-Rodríguez

Rubén Javier Medina-Daza



Neíson Enrique Vera-Parra

Ingeniero Electróni-

co de la Universidad

S u rc o Io mb ia n a ,

Magíster en Cien-

cias de la Informa-

cióny las Comunica-

cionesy Doctor en

Ingeniería de la Universidad Distri-

tal Francisco José de Caldas. Profe-

sor Titular de la misma Universi-

dad. Investigador en HPC, Ciencia

de datosy Bioinformática.

Andrés Ovidio Restrepo-Rodríguez

Ingeniero de siste-

mas y actual estu-

diante de la Maes-

tría en Ciencias de la

Información y las

Comunicaciones en

la Universidad Dis-

trital Francisco José de Caldas. Mis

campos de investigación incluyen

Inteligencia Artificial, Learning

Analytics, Entornos Inmersivos y

Computación Heterogénea.

Aubén Javier Medina-Daza

Doctor en Informá-

tica, énfasis: Siste-

mas de Información

Geográfica, Magís-

teren Teleinformáti-

ca, Licenciado en

Matemáticas de la

Universidad Distrital Francisco

José de Caldas. Profesor Titular

de Ingeniería Catastraly Geodesia,

de la Maestría en Ciencias de la

Informacióny las Comunicaciones

y del Doctorado de Ingeniería.

Nelson Enrique Vera-Parra

Ingeniero Electróni-
co de la Universidad 
S u r c o l o m b i a n a , 
Magíster en Cien-
cias de la Informa-
ción y las Comunica-
ciones y Doctor en 

Ingeniería de la Universidad Distri-
tal Francisco José de Caldas. Profe-
sor Titular de la misma Universi-
dad. Investigador en HPC, Ciencia
de datos y Bioinformática.

Andrés Ovidio Restrepo-Rodríguez

Ingeniero de siste-
mas y actual estu-
diante de la Maes-
tría en Ciencias de la 
Información y las 
Comunicaciones en 
la Universidad Dis- 

trital Francisco José de Caldas. Mis 
campos de investigación incluyen 
Inteligencia Artificial, Learning 
Analytics, Entornos Inmersivos y 
Computación Heterogénea.

Rubén Javier Medina-Daza

Doctor en Informá-
tica, énfasis: Siste-
mas de Información 
Geográfica, Magís-
ter en Teleinformáti-
ca, Licenciado en 
Matemáticas de la 

Universidad Distrital Francisco 
José de Caldas. Profesor Titular
de Ingeniería Catastral y Geodesia, 
de la Maestría en Ciencias de la 
Información y las Comunicaciones 
y del Doctorado de Ingeniería.



REDES

NEURONALES

CONVOLUCIONALES

USANDO KERAS

Y ACELERANDO

CON GPU

Nelson Enrique Vera-Parra

Andrés Ovidio Restrepo-Rodriguez

Rubén Javier Medînn-Dnza

REDES
NEURONALES
CONVOLUCIONALES 
USANDO KERAS
Y ACELERANDO
CON GPU

Nelson Enrique Vera-Parra
Andrés Ovidio Restrepo-Rodríguez

Rubén Javier Medina-Daza



Vera Parra, Nelson Enrique

Redes neuronales convolucionales usando kerasy aceleran-

do con GPU / Nelson Enrique Vera Parra, Andrés Ovidio Restrepo

Rodríguez, Rubén Javier Medina DaZa. -- 1a. ed. -- Bogotá: Universi-

dad Distrital Francisco José de Caldas, zozo.

122 páginas;24 cm.-- (Doctorado en Ingeniería).

Incluye bibliografía.

ISBN 97 -958-787-2$2-3 (impreso) -978-gç8-7 -2$3- (digital)

1. Redes neuronales (computadores) 1. Restrepo Rodríguez,

Andrés Ovidio II. Medina Daza, Rubén Javier III. Título IV. Serie

CDD: oo6.2 ed.23 CO-BoBN—a10575 7

ü Universidad Distrital Francisco José de Caldas

ü Doctorado en Ingeniería

O Nelson Enrique Vera-Parra - Andrés Ovidio Restrepo-Rodríguez - Rubén Javier Medina-Daza

ISBN Impreso:978-gJ -7 -2$2-§

ISBN Digital:97 -958-77-2$3-0

Primera edición: Bogotá, octubre de zozo.

Corrección de estiloy diseíio gráfico:

Amadgraf Impresores Ltda.

Impresión:

Amadgraf Impresores Ltda.

Doctorado en Ingeniería

Carreray # oB-53

Bogotá

Correo electrónico: investigacion.doctoradoing@udistritaI.edu.co

Todos los derechos reservados. Esta publicación no puede serreproducida total ni parcialmente

o transmitida por un sistema de recuperación de inforación, en ninguna forma no por ningún

medio, sin el permiso previo del Doctorado en Ingeniería de la Universidad Distrital

Francisco josé de Caldas.

Hecho el depósito legal.

Impresoy hecho en Colombia

© Universidad Distrital Francisco José de Caldas
©  Doctorado en Ingeniería
©  Nelson Enrique Vera-Parra - Andrés Ovidio Restrepo-Rodríguez - Rubén Javier Medina-Daza

ISBN Impreso: 978-958-787-232-3
ISBN Digital: 978-958-787-233-0

Primera edición: Bogotá, octubre de 2020.

Corrección de estilo y diseño gráfico:
Amadgraf Impresores Ltda.
Impresión:
Amadgraf Impresores Ltda.

Doctorado en Ingeniería
Carrera 7 # 40B-53
Bogotá
Correo electrónico: investigacion.doctoradoing@udistrital.edu.co

Todos los derechos reservados. Esta publicación no puede ser reproducida total ni parcialmente
o transmitida por un sistema de recuperación de inforación, en ninguna forma no por ningún
medio, sin el permiso previo del Doctorado en Ingeniería de la Universidad Distrital
Francisco josé de Caldas.

Hecho el depósito legal.

Impreso y hecho en Colombia
Printed and made in Colombia.

Vera Parra, Nelson Enrique
 Redes neuronales convolucionales usando keras y aceleran-
do con GPU / Nelson Enrique Vera Parra, Andrés Ovidio Restrepo 
Rodríguez, Rubén Javier Medina Daza. -- 1a. ed. -- Bogotá : Universi-
dad Distrital Francisco José de Caldas, 2020.
    
 122 páginas ; 24 cm. -- (Doctorado en Ingeniería).

 Incluye bibliografía.

ISBN 978-958-787-232-3 (impreso) -- 978-958-787-233-0 (digital)
 
 1. Redes neuronales (computadores) I. Restrepo Rodríguez, 
Andrés Ovidio II. Medina Daza, Rubén Javier III. Título IV. Serie

CDD: 006.32 ed. 23    CO-BoBN– a1057507



Prefocio.............................................................................................1

Introducción..........................................................................................17

CapÍtU(O1

Caso de Estudio ........................................................................................ 1

1.1 Descripción ............................................................................. 31

1.1.1 ¿Qué esuna imagen*.................................................. 31

1.1.z ¿Qué esuna imagen aérea*.........................................

1.z Conjunto de datos .................................................................

Capítulo2

Dependenciasy configuración ............................. --- --- - - - - - - 37

2.1 Dependencias .........................................................................3

2.1.1 Keras...................................... ----------------------------------37

z.1.z TensorFlow................................................................. 8

2.1.3 Scikit-Learn................................................................. 8

2.1.’t Cipy............................................................................ §9

z.1.5 Numpy........................................................................ g9

2.1.6 Matplotlib...................................................................4o

2.1.7 Procedimiento para importar dependencias..... 40

2.2 Configuración de la sesión GPU ......................- - - - - 43

Tabla de Contenido
     

	 Prefacio.............................................................................................15

	 Introducción .......................................................................................... 17
     
	 Capítulo 1
	 Caso de Estudio ........................................................................................ 31 
		  1.1	 Descripción ............................................................................. 31
			   1.1.1	 ¿Qué es una imagen?.................................................. 31 
			   1.1.2	 ¿Qué es una imagen aérea?.........................................33
		  1.2	 Conjunto de datos ................................................................. 33
	 Capítulo 2
	 Dependencias y configuración .............................................................37
		  2.1	 Dependencias .........................................................................37
			   2.1.1	 Keras ............................................................................ 37
			   2.1.2	 TensorFlow .................................................................  38
			   2.1.3	 Scikit-Learn ................................................................. 38
			   2.1.4	 Scipy ............................................................................ 39
			   2.1.5	 Numpy ........................................................................ 39
			   2.1.6	 Matplotlib ................................................................... 40
			   2.1.7	 Procedimiento para importar dependencias .......... 40
		  2.2	 Configuración de la sesión GPU ............................................ 43

https://drive.google.com/drive/folders/1uF0331HDofMrdL1zIxN0ep0hcW6_X8rY?usp=sharing. 


2.2.1 Procedimiento para configurar

la sesión de GPU......................................................... 43

Capítulo3

CapÍtU(O4

Modelo de la Red Neuronal por Convolución ....................---------------53

4.1 DiseñodelModelo................................ ................................ 5›

4.1.1 Capas de convolución........................ 54

4.1.z Capas pooling............................................................. 6

4.1.3 Capas dropout..............................- - - - - - - - 57

4.1.4 Capas flatten .............................................................. 8

4.1.$ Capas dense .................................--------------------------59

4.1.6 Modelo para el caso de estudio................................. 6o

4.1.7 Procedimiento para diseñar el modelo .................... 62

4.2 COmpilación delModelo ....................................................... 66

4.2.1 Función de pérdida.................................................... 66

4.2.2 Optimizador............................................................... 6y

4.2.3 Métricas......................................................................67

4.2.4 Procedimiento de compilación del modelo ...........67

43 Entrenamiento delModelo................................................... 68

4 §.1 Procedimiento para entrenar el modelo ..................69

Capítulo5

Evaluación delModelo .......................................------- ---- ---- ---- ---- ---- 77

5.1 Cargadelmodelo..................................------------------------------77

5.1.1 Procedimiento para cargar el modelo ........... 7

.2 Función Evaluate....................................................................78

	 	 	 2.2.1	 Procedimiento para configurar
				    la sesión de GPU......................................................... 43
	
	 Capítulo 3
	 Preprocesamiento de Imágenes ............................................................ 47
		  3.1	 Generador de Imágenes ........................................................ 48
			   3.1.1	 Procedimiento para establecer el generador
				    de imágenes .............................................................. 48
		  3.2	 Carga de Imágenes ................................................................ 49
			   3.2.1	 Procedimiento para cargar las imágenes.................49
     
	 Capítulo 4
	 Modelo de la Red Neuronal por Convolución ....................................... 53
		  4.1	 Diseño del Modelo ................................................................. 53
      			   4.1.1	 Capas de convolución.................................................54
			   4.1.2	 Capas pooling.............................................................56
			   4.1.3	 Capas dropout ............................................................ 57
	 	 	 4.1.4	 Capas flatten ..............................................................58
			   4.1.5	 Capas dense ............................................................... 59
			   4.1.6	 Modelo para el caso de estudio ................................. 60
			   4.1.7	 Procedimiento para diseñar el modelo .................... 62
		  4.2	 Compilación del Modelo ....................................................... 66
			   4.2.1	 Función de pérdida .................................................... 66
			   4.2.2	 Optimizador ............................................................... 67
			   4.2.3	 Métricas ...................................................................... 67
			   4.2.4	 Procedimiento de compilación del modelo ........... 67
		  4.3	 Entrenamiento del Modelo ................................................... 68
			   4.3.1	 Procedimiento para entrenar el modelo .................. 69

	 Capítulo 5
	 Evaluación del Modelo ............................................................................ 77
		  5.1	 Carga del modelo .................................................................... 77
			   5.1.1	 Procedimiento para cargar el modelo ......................78
		  5.2	 Función Evaluate .................................................................... 78



5.2.1 Procedimiento para calcular

la función evaluate.......................... ---- ---- ---- ---- 7

5.3 Curvasde ROC.........................................................................8o

5 3.1 Procedimiento para calcular las curvas de ROC.......8

5.3.2 Procedimiento para graficar las Curvas de ROC ... 9

5 4 AccuracyScore.................................... -----90

54.1 Procedimiento para calcular el valor de accuracy.....g1

$• Precision Score....................................................................... 92

ç.$.1 Procedimiento para calcular el Precision Score ....---92

.6 Recall Score ............................................................................ 93

s.6.1 Procedimiento para calcular el Recall Score....... 94

5•7 F1 Score.................................................................................... gp

s-y.1 Procedimiento para calcular F1 Score ............----------9s

s. Coeficiente de Kappa...............................- - - - - 96

ç.8.1 Procedimiento para calcular

el coeficiente de Kappa....................... ---- ---- ---- -------97

5 9 Matriz de Confusión ............................. - - - 9

5-9.1 Procedimiento para calcular

la matriz de confusión .............................................. 99

5 9.2 Procedimiento para graficar

la matriz de confusión.............................................. 100

CapÍtU(OÓ

ResultadosyAnálisis...............................................................................10a

6.‹ Entornode prueba................................................................ 10a

6.2 Resultado General.................................................................10$

6 3 Resultadosespecíficos..........................................................105

6.3.1 Modelo Implementado ........................................... 10

6.$.2 Modelos Pre-entrenados.........................................107

6.4 Análisis....................................................................................111

Conclusiones.......................................................................................11

Referencios...........................................................................................11s

			   5.2.1	 Procedimiento para calcular
				    la función evaluate ..................................................... 78
		  5.3	 Curvas de ROC ......................................................................... 80
			   5.3.1	 Procedimiento para calcular las curvas de ROC ....... 83
	 	 	 5.3.2	 Procedimiento para graficar las curvas de ROC .......89
     		  5.4	 Accuracy Score ....................................................................... 90
      			   5.4.1	 Procedimiento para calcular el valor de accuracy.....91
     		  5.5	 Precision Score ....................................................................... 92
      			   5.5.1	 Procedimiento para calcular el Precision Score ....... 92
		  5.6	 Recall Score ............................................................................ 93
			   5.6.1	 Procedimiento para calcular el Recall Score ............. 94
		  5.7	 F1 Score .................................................................................... 95
			   5.7.1	 Procedimiento para calcular F1 Score ...................... 95
		  5.8	 Coeficiente de Kappa ............................................................. 96
			   5.8.1	 Procedimiento para calcular
	 	 	 	 el coeficiente de Kappa .............................................. 97
		  5.9	 Matriz de Confusión ............................................................. 98
			   5.9.1	 Procedimiento para calcular
				    la matriz de confusión .............................................. 99
	 	 	 5.9.2	 Procedimiento para graficar
				    la matriz de confusión .............................................. 100
	
	 Capítulo 6
	 Resultados y Análisis ............................................................................... 103
		  6.1	 Entorno de prueba ................................................................ 103
		  6.2	 Resultado General.................................................................103
		  6.3	 Resultados específicos .......................................................... 105
			   6.3.1	 Modelo Implementado ........................................... 105
			   6.3.2	 Modelos Pre-entrenados .........................................  107
		  6.4	 Análisis .................................................................................... 111
	

	 Conclusiones ....................................................................................... 113

	
	 Referencias ...........................................................................................  115





Figura1

Figura2

Figura3

Figura§

Figura

Figura6

Figuray

Figura8

Figura9

Figura 10

Figura 11

Figura 12

Figura 1Ș

Figura14

Figura 1Ș

Figura 16

Figura17

Figura 18

Figura 1g

Ejemplo de clasificación de clientes ........................................... 18

Hiperplano que separan los datos de entrada.............................19

Hiperplano óptimo ....................................................................... 19

Función kernel ............................................................................. zo

Árbol de decisión ........................................................................ zo

Factorde correlación de Pearson(r).............................................21

Neurona artificial ......................................................................... zz

Red Neuronal Artificial Multi-layer Perceptrón ......................... 23

Arquitectura general de una red neuronal convolucional .... *4

CPU (lactency cores) vs GPU (throughput cores) ..................... z6

Plataforma heterogénea típica .......................... *7

Muestra conjunto de datos NWPU-RESIS§5 ............ ------- - 34

Muestra conjunto de datos UC Merced Land Use............ -- - 34

Distribución conjunto de datos .......................... --------- -------- 35

Logotipo de Keras ..................................... 37

Logotipo de TensorFlow.............................................................. 8

Logotipo de Scikit-Learn ............................................................. 8

Logotipo de SciPy......................................................................... 9

Logotipo de NumPy...................................................................... 9

      Índice de Ilustraciones

	 Figura 1	 Ejemplo de clasificación de clientes ........................................... 18

	 Figura 2	 Hiperplano que separan los datos de entrada ............................. 19

	 Figura 3	 Hiperplano óptimo ....................................................................... 19

	 Figura 4	 Función kernel ............................................................................. 20

	 Figura 5	 Árbol de decisión ........................................................................ 20

	 Figura 6	 Factor de correlación de Pearson (r) ............................................. 21

	 Figura 7	 Neurona artificial ......................................................................... 22

	 Figura 8	 Red Neuronal Artificial Multi-layer Perceptrón ......................... 23

	 Figura 9	 Arquitectura general de una red neuronal convolucional  ....... 24

	 Figura 10	 CPU (lactency cores) vs GPU (throughput cores) ..................... 26

	 Figura 11	 Plataforma heterogénea típica .................................................. 27

	 Figura 12	 Muestra conjunto de datos NWPU-RESIS45 ............................. 34

	 Figura 13	 Muestra conjunto de datos UC Merced Land Use ...................... 34

	 Figura 14	 Distribución conjunto de datos ................................................... 35

	 Figura 15	 Logotipo de Keras ........................................................................ 37

	 Figura 16	 Logotipo de TensorFlow .............................................................. 38

	 Figura 17	 Logotipo de Scikit-Learn ............................................................. 38

	 Figura 18	 Logotipo de SciPy ......................................................................... 39

	 Figura 19	 Logotipo de NumPy ...................................................................... 39



Figura zo Logotipo de Matplotlib ................................ - - - 40

Figura z1 Dispositivos locales ...................................................................... 44

FÍgurd 22 Dispositivos GPU disponibles ........................... - -- 44

Figuraz Aumentando el conjunto de datos de entrenamiento

mediante transformaciones ............................ - -- 4

Figuraz4 Resultado train_generator.............................- ---- --- ---- --- - 51

Figura z5 Resultado vaIidation_generator ........................ ------ ----- ----- 51

Figura z6 Resultado test generator............................... --------- ----- ---- -- 52

Figura27 Operación de convolución..............................------- -------------- 54

Figura z8 Resultado de la aplicación de kernels ................... ss

Figura zg Relleno de la imagen de entrada ........................ ss

Figura lo Funciones de activación................................ -------------------------56

Figura 1 Operación pooling por máximo ................................................... 57

Figura Hz Dropout..................................................................................... 58

Figura Efecto de una capa flatten.............................. s

Figura z4 Ejemplo de capas dense.............................................................. 5g

Figura 5 Función softmax.......................................................................... 5g

Figura 6 Modelo de redneuronal convolucional

para el caso de estudio .................................................................. 61

Figura by Iteraciones deentrenamiento............................---------------------73

Figura 8 Precisión global del modelo en fase de entrenamiento......... y5

Figura z9 Función de pérdida del modelo en fase de entrenamiento..... y6

Figura ço Función Evaluate...................................... - - 79

FÍgUFd g1 Tasa de VP frentea FP en diferentes

umbrales de clasificación............................................................ 81

Figura §z AUC (área bajo la curva ROC)....................................................... 82

Figuraq Curvas de ROC del modelo entrenado...................................... go

Figura qq Métrica de Accuracy (Precisión global)..................-------------91

Figura q5 Métrica Precision Score............................................................... gp

Figura q6 Métrica Recall Score...................................----------------------------94

Figura e7 Métrica F1 Score......................................--------------------------------96

	 Figura 20	Logotipo de Matplotlib ................................................................ 40

	 Figura 21	 Dispositivos locales ...................................................................... 44

	 Figura 22	 Dispositivos GPU disponibles ...................................................... 44

	 Figura 23	 Aumentando el conjunto de datos de entrenamiento

		  mediante transformaciones ........................................................ 48

	 Figura 24	 Resultado train_generator ........................................................... 51

	 Figura 25	 Resultado validation_generator ................................................. 51

	 Figura 26	Resultado test_generator............................................................ 52

	 Figura 27	 Operación de convolución.......................................................... 54

	 Figura 28	Resultado de la aplicación de 3 kernels ..................................... 55

	 Figura 29	 Relleno de la imagen de entrada ............................................... 55

	 Figura 30	Funciones de activación.............................................................. 56

	 Figura 31 Operación pooling por máximo ................................................... 57

	 Figura 32	 Dropout..................................................................................... 58

	 Figura 33	 Efecto de una capa flatten.......................................................... 58

	 Figura 34	Ejemplo de capas dense.............................................................. 59

	 Figura 35	 Función softmax.......................................................................... 59

	 Figura 36 Modelo de red neuronal convolucional 

		  para el caso de estudio .................................................................. 61

	 Figura 37	 Iteraciones de entrenamiento..................................................... 73

	 Figura 38	Precisión global del modelo en fase de entrenamiento......... 75

	 Figura 39	Función de pérdida del modelo en fase de entrenamiento..... 76

	 Figura 40	Función Evaluate.......................................................................... 79

	 Figura 41	 Tasa de VP frente a FP en diferentes

	 	 umbrales de clasificación............................................................ 81

	 Figura 42	 AUC (área bajo la curva ROC)....................................................... 82

	 Figura 43	Curvas de ROC del modelo entrenado...................................... 90

	 Figura 44	Métrica de Accuracy (Precisión global).................................... 91

	 Figura 45	Métrica Precision Score............................................................... 93

	 Figura 46	Métrica Recall Score.................................................................... 94

	 Figura 47	 Métrica F1 Score........................................................................... 96



Figura48 Métrica Coeficiente de Kappa.......................... - -- - - 9

Figura 49 Métrica Matriz de Confusión........................... -- -- --- - 99

Figuras Resultado gráfico Matriz de Confusión..................................... 101

Figuras1 Entorno de prueba..................................................................... 104

Figurasz Comparación general de tiempos de entrenamiento

de todos los modelos de CNN.................................................. 105

Figura se Tiempo de entrenamiento iteracióna iteración

del modelo Implementado ....................................................... 106

Figura s4 Tiempo de entrenamiento iteración

a iteración de MobileNet ........................................................... 108

Figura ss Tiempo de entrenamiento iteración

a iteración de MobileNetVz ....................................................... 109

Figuras6 Tiempo de entrenamiento iteracióna iteración de ResNetso ... 110

Figura s7 Tiempo de entrenamiento iteracióna iteración de VGG16 ....... 111

	 Figura 48	Métrica Coeficiente de Kappa................................................... 98

	 Figura 49	Métrica Matriz de Confusión..................................................... 99

	 Figura 50	Resultado gráfico Matriz de Confusión..................................... 101

	 Figura 51	 Entorno de prueba..................................................................... 104

	 Figura 52	 Comparación general de tiempos de entrenamiento

		  de todos los modelos de CNN.................................................. 105

	 Figura 53	 Tiempo de entrenamiento iteración a iteración

		  del modelo Implementado ....................................................... 106

	 Figura 54	Tiempo de entrenamiento iteración

		  a iteración de MobileNet ........................................................... 108

	 Figura 55	 Tiempo de entrenamiento iteración

		  a iteración de MobileNetV2 ....................................................... 109

	 Figura 56	Tiempo de entrenamiento iteración a iteración de ResNet50 ... 110

	 Figura 57	 Tiempo de entrenamiento iteración a iteración de VGG16 ....... 111





Tabla1

Tabla2

Tabla$

Tabla4

Tabla$

Tabla6

Tabla7

Contingenciaomatrizde confusión......................................... 8o

Tiempo de ejecución general ................................................104

Tiempo de entrenamiento por iteraciones

Modelo Implementado ......................................................... 106

Tiempo deentrenamiento por iteraciones MobileNet.........10

Tiempo de entrenamiento por iteraciones MobileNetV2 ... 108

Tiempo deentrenamiento por iteracionesResNetso ----......109

Tiempo de entrenamiento por iteraciones VGG16 ............... 110

Índice de Tablas

	 Tabla 1	 Contingencia o matriz de confusión ......................................... 80

	 Tabla 2	 Tiempo de ejecución general ................................................ 104

	 Tabla 3	 Tiempo de entrenamiento por iteraciones

		  Modelo Implementado ......................................................... 106

	 Tabla 4	 Tiempo de entrenamiento por iteraciones MobileNet ......... 107

	 Tabla 5	 Tiempo de entrenamiento por iteraciones MobileNetV2 ... 108

	 Tabla 6	 Tiempo de entrenamiento por iteraciones ResNet50 .......... 109

	 Tabla 7	 Tiempo de entrenamiento por iteraciones VGG16 ............... 110





ECuación1

ECuación2

Ecuación$

ECuación4

Ecuacións

Ecuación6

ECuación7

Ecuación8

ECuación9

ECuación 1o

ECuación 11

ECuación 12

Modelo de regresión lineal simple ...................................... 21

MatrizN x M de cantidades discretas .................................. 32

Matriz de píxelse....................................................................... 32

Niveles de gris ..................................... -------------------------------32

Tasa de verdaderos positivos ................................................. 8o

Tasa de falsos positivos ............................................................ 81

Exactitud global ......................................................................90

Precisión................................................................................... 92

Exhaustividad......................................---------------------------------92

Recall ........................................................................................ 93

F1-Score.....................................................................................95

Coeficiente de Kappa ............................... --------------------------96

Índice de Ecuaciones

Ecuación 1	 Modelo de regresión lineal simple ...................................... 21

Ecuación 2	 Matriz N x M de cantidades discretas .................................. 32

Ecuación 3	 Matriz de píxelse ....................................................................... 32

Ecuación 4	 Niveles de gris ......................................................................... 32

Ecuación 5	 Tasa de verdaderos positivos ................................................. 80

Ecuación 6	 Tasa de falsos positivos ............................................................ 81

Ecuación 7	 Exactitud global ...................................................................... 90

Ecuación 8	 Precisión ................................................................................... 92

Ecuación 9	 Exhaustividad ........................................................................... 92

Ecuación 10	Recall ........................................................................................ 93

Ecuación 11	 F1 - Score ..................................................................................... 95

Ecuación 12	Coeficiente de Kappa .............................................................. 96
    





Vivimos en una era gobernada por datos, donde la intuicióny el azar

se han visto rezagados ante predicciones que soportan tanto decisiones

cotidianas como grandes políticas gubernamentales. Una era donde la

nueva riqueza se encuentra en losdatosy en losmétodos que permiten

hacer un uso eficiente de éstos. En los últimos años, losmétodos de proce-

samiento de datos que mayor precisión han presentado en tareas predicti-

vashansidoaquellosbasadosenaprendzaeprofundo,comoporejempo

las redes neuronales convolucionales. Este tipo de métodos representan

un reto tanto por su alta exigencia de recurso computacional como porsu

complejidad de diseñoe implementación.

Tomando como motivación loanterior, en este libro el lector encon-

trará una guía práctica para la implementación, entrenamientoy validación

de redes neuronales convoluCionales usando Kerasy acelerando con GPU.

Laguía se desarrolla mediante un caso de estudio típico enmarcado en las

clasificaciones de imágenes satelitales. Adicionalmente la evaluación del

modelo implementado incluye la comparacióna nivel de speed-up con los

modelos de redes neuronales pre-entenados más comunes: MobileNet,

MobileNetV2, ResNet$oy VGG16.
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Prefacio

Vivimos en una era gobernada por datos, donde la intuición y el azar 
se han visto rezagados ante predicciones que soportan tanto decisiones 
cotidianas como grandes políticas gubernamentales. Una era donde la 
nueva riqueza se encuentra en los datos y en los métodos que permiten 
hacer un uso eficiente de éstos. En los últimos años, los métodos de proce-
samiento de datos que mayor precisión han presentado en tareas predicti-
vas han sido aquellos basados en aprendizaje profundo, como por ejemplo 
las redes neuronales convolucionales. Este tipo de métodos representan 
un reto tanto por su alta exigencia de recurso computacional como por su 
complejidad de diseño e implementación.

Tomando como motivación lo anterior, en este libro el lector encon-
trará una guía práctica para la implementación, entrenamiento y validación 
de redes neuronales convolucionales usando Keras y acelerando con GPU.
La guía se desarrolla mediante un caso de estudio típico enmarcado en las 
clasificaciones de imágenes satelitales. Adicionalmente la evaluación del 
modelo implementado incluye la comparación a nivel de speed-up con los 
modelos de redes neuronales pre-entenados más comunes: MobileNet, 
MobileNetV2, ResNet50 y VGG16.
     
     





En esta sección, se presentan conceptos clavesy fundamentales

referentesa aprendizaje de máquina, aprendizaje profundo de máquinay

procesamiento de datos en arquitecturas heterógeneas CPU-GPU. Lo an-

terior, con el propósito de contextualizar al lectory brindar herramientas

para la compresión de este libro.

¿C}ué es el aprendizaje de máquina?

El término “aprender” en el dominio de las máquinas hace referenciaa

generalizar comportamientosa partir de una información suministrada en

forma de ejemplos. De acuerdoa la forma que “aprenden” las máquinas,

losalgoritmos se puede clasificar en supervisadosy no supervisados. En el

aprendizaje supervisado losdatos traen relacionado un objetivo, mientras

que en el no supervisado losdatos no traen ninguna relación explicita con

algún objetivo. Los algoritmos que utilizan aprendizaje supervisado (veci-

nos más cercanos, máquinas de vectores de soporte, árboles de decisión,

regresión, entre otros) normalmente cumplen funciones de clasificacióno

regresión, mientras que losno supervisados (modelos gausianos, aprendi-

zaje múltiple, estimación de densidad, entre otros) cumplen funciones de

agrupamiento.
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Introducción

     En esta sección, se presentan conceptos claves y fundamentales 
referentes a aprendizaje de máquina, aprendizaje profundo de máquina y 
procesamiento de datos en arquitecturas heterógeneas CPU-GPU. Lo an-
terior, con el propósito de contextualizar al lector y brindar herramientas 
para la compresión de este libro.

¿Qué es el aprendizaje de máquina?

El término “aprender” en el dominio de las máquinas hace referencia a 
generalizar comportamientos a partir de una información suministrada en 
forma de ejemplos. De acuerdo a la forma que “aprenden” las máquinas, 
los algoritmos se puede clasificar en supervisados y no supervisados. En el 
aprendizaje supervisado los datos traen relacionado un objetivo, mientras 
que en el no supervisado los datos no traen ninguna relación explicita con 
algún objetivo. Los algoritmos que utilizan aprendizaje supervisado (veci-
nos más cercanos, máquinas de vectores de soporte, árboles de decisión, 
regresión, entre otros) normalmente cumplen funciones de clasificación o 
regresión, mientras que los no supervisados (modelos gausianos, aprendi-
zaje múltiple, estimación de densidad, entre otros) cumplen funciones de 
agrupamiento.
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¿Cuáles son lastécnicas más comunes de aprendizaje de

máquina supervisado*

\/ecinos más cercanos (K-NN}. Es un método de clasificación supervi-

sada no paramétrico que permite estimar la función de densidad de pro-

babilidado la probabilidada posteriori de que un elemento pertenecea

una clase determinada. El cálculo de esta probabilidad se basa en anali-

zara qué clase pertenecen losk vecinos más cercanos. Para determinar

cuáles son los vecinos más cercanos se utiliza generalmente la distancia

euclidiana. Un buen ejemplo para esclarecer el funcionamiento de K-NN

essu usoen la clasificación de clientes de bancos en confiableso no para

realizarles un crédito. En la figura1 el clientea ser clasificado se denota

con el cuadro verde, mientras que losclientes que han realizado créditos

y no los han pagado con la estrella rojay aquellos que si pagaron con el

triángulo azul. Si se emplea unk = ç, sería más probable que el cliente

pague debidoa que de suss vecinos también pagaron. Si se emplea un

k = 1o,sería más prObable que el cliente no pague debidoa que6 de sus

1ovecinos tampoco pagaron (Wu Jian et.al.,2O14)

figurai Ejemplo de clnsiJícación de clientes

Fuente(tVu Iran et. of., 20 Eq)

Máquinas de Vectores de Soporte (SVM}. Técnica de aprendizaje super-

visado creada por Vladimir Vapnik(199s) que permite realizar tareas de cla-

sificacióny de regresión mediante la creación de hiperplanos que separan

losdatos de entrada.
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¿Cuáles son las técnicas más comunes de aprendizaje de
máquina supervisado?

Vecinos más cercanos (K-NN). Es un método de clasificación supervi-
sada no paramétrico que permite estimar la función de densidad de pro-
babilidad o la probabilidad a posteriori de que un elemento pertenece a 
una clase determinada. El cálculo de esta probabilidad se basa en anali-
zar a qué clase pertenecen los k vecinos más cercanos. Para determinar 
cuáles son los vecinos más cercanos se utiliza generalmente la distancia 
euclidiana. Un buen ejemplo para esclarecer el funcionamiento de K-NN 
es su uso en la clasificación de clientes de bancos en confiables o no para 
realizarles un crédito. En la figura 1 el cliente a ser clasificado se denota 
con el cuadro verde, mientras que los clientes que han realizado créditos 
y no los han pagado con la estrella roja y aquellos que si pagaron con el 
triángulo azul. Si se emplea un k = 5, sería más probable que el cliente 
pague debido a que 3 de sus 5 vecinos también pagaron. Si se emplea un 
k = 10, sería más probable que el cliente no pague debido a que 6 de sus 
10 vecinos tampoco pagaron (Wu Jian et.al., 2014).

     
     

Máquinas de Vectores de Soporte (SVM). Técnica de aprendizaje super-
visado creada por Vladimir Vapnik (1995) que permite realizar tareas de cla-
sificación y de regresión mediante la creación de hiperplanos que separan 
los datos de entrada.

Figura 1 Ejemplo de clasificación de clientes 
Fuente (Wu Jian et. al.,  2014)
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Figuro2 Hiperplano que separan losdatos de entrada.

Fuente: http://www.swarthmore.edu/NatSci/mzucker1/opencv-2.§.lo-docs/doc/

tutoriofs/ml/introduction_to_svm/introduction_to_svm.html

Un hiperplano es un plano de n-1 dimensiones que divide en dosa un

planon dimensional. En la figura2 se muestran algunos hiperplanos (en

este caso rectas) que dividen en dos el plano bidimensional donde seen-

cuentran unos datos de entrenamiento (cuadrosy círculos). SVM permite

encontrar el hiperplano que mejor separe losdatos de entrenamiento, es

decir aquel que presente una mayormargen hacia losdatos de cada una de

las clases (Paul Mather, Brandt TSO, 2009) (ver figura 3)

X
z O

Maxmum’

’ Margin

X
1

Figuro$ Hiperplano óptimo.

Fuente: http://www.sworthmore.edu/NatSci/mzucker1/opencv-2.q.10-docs/doc/

tutoriofs/ml/introduction_to_svm/introduction_to_svm.html

Cuando losdatos no son separables linealmente, SVM ofrece unas

funciones kernels que permiten llevar los datosa una dimensión superior

donde si sean separables (ver figura 4)
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Un hiperplano es un plano de n-1 dimensiones que divide en dos a un 
plano n dimensional. En la figura 2 se muestran algunos hiperplanos (en 
este caso rectas) que dividen en dos el plano bidimensional donde se en-
cuentran unos datos de entrenamiento (cuadros y círculos). SVM permite 
encontrar el hiperplano que mejor separe los datos de entrenamiento, es 
decir aquel que presente una mayor margen hacia los datos de cada una de 
las clases (Paul Mather, Brandt Tso, 2009) (ver figura 3).

Cuando los datos no son separables linealmente, SVM ofrece unas 
funciones kernels que permiten llevar los datos a una dimensión superior 
donde si sean separables (ver figura 4).

x2

x1

Figura 2 Hiperplano que separan los datos de entrada. 
Fuente: http://www.swarthmore.edu/NatSci/mzucker1/opencv-2.4.10-docs/doc/

tutorials/ml/introduction_to_svm/introduction_to_svm.html

x2

x1

Optimal Hyperplane

Maximum
Margin

Figura 3 Hiperplano óptimo. 
Fuente: http://www.swarthmore.edu/NatSci/mzucker1/opencv-2.4.10-docs/doc/

tutorials/ml/introduction_to_svm/introduction_to_svm.html
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e

eo

g O

O Q

e o •

o Kernel

0
e o

g Decision Surface

e o geq

Figuroq Función kernel.

Fuente: http://www.sworthmore.edu/NotSci/mzuckerJ/opencv-2.§.10-docs/doc/tuto-

riafs/ml/introduction_to_svm/introduction_to_svm.html

Árboles de decisión. Son un método deaprendizaje supervisado no pa-

ramétrico utilizado para la clasificacióny la regresión. Su función es crear

un modelo que prediga el valor de una variable objetivo mediante el apren-

dizaje de reglas simples de decisión inferidasa partir de las características

de los datos. Esas reglas se representan mediante un grafo (ver figura ç)

y son una serie de condiciones aplicadasa los atributos de los datos. Los

nodos inicialeso intermedios delgrafo representan atributos de los datos,

las aristas representan las condiciones que deben cumplir para tomar ese

caminoy losnodos finales representan la decisión de regresióno clasifica-

cióna tomar. Para seleccionar el orden de cada uno de losatributos en el

árbol, se utilizan métricas de la teoría de información, tales como, cantidad

de información, entropíay ganancia de información (Giovanni, G.,& Velas-

quez, V., 2014)a

Val J

VaI_J

Atributoj

Atributoi

Val n2

Val_n

Atributok

Figura$ Árbol de decisión

Fuente: (ffiiovanni, G.,& Velasquez, V., zofq}.
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Árboles de decisión. Son un método de aprendizaje supervisado no pa-
ramétrico utilizado para la clasificación y la regresión. Su función es crear 
un modelo que prediga el valor de una variable objetivo mediante el apren-
dizaje de reglas simples de decisión inferidas a partir de las características 
de los datos. Esas reglas se representan mediante un grafo (ver figura 5) 
y son una serie de condiciones aplicadas a los atributos de los datos. Los 
nodos iniciales o intermedios del grafo representan atributos de los datos, 
las aristas representan las condiciones que deben cumplir para tomar ese 
camino y los nodos finales representan la decisión de regresión o clasifica-
ción a tomar. Para seleccionar el orden de cada uno de los atributos en el 
árbol, se utilizan métricas de la teoría de información, tales como, cantidad 
de información, entropía y ganancia de información (Giovanni, G., & Velas-
quez, V., 2014).     

     
          
      

Kernel
Decision Surface

Figura 4 Función kernel. 
Fuente: http://www.swarthmore.edu/NatSci/mzucker1/opencv-2.4.10-docs/doc/tuto-

rials/ml/introduction_to_svm/introduction_to_svm.html

Atributo i

Val_1 Val_n

Val_1 Val_n2

. . .

. . .
. . .

Atributo j Atributo k

Valor
Atributo
objetivo

Valor
Atributo
objetivo

Figura 5 Árbol de decisión 
Fuente: (Giovanni, G., & Velasquez, V., 2014).
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Regresión lineal. Los métodos de regresión estudian la construcción

de modelos para explicaro representar la dependencia entre una variable

respuestao dependiente (Y)y la(s) variable(s) explicativa(s)o indepen-

diente(s), X. Si la relación entre esos dos tipos de variables es linealy el

número de variables explicativaso independientes es de 1, la regresión es

simple lineal, en el caso de que la relación sea lineal, pero haya más de una

variable explicativa la regresión es lineal multivariable.

La regresión lineal simple se modela mediante la ecuación 1; dondee

esel error generado por valores aleatorios. Sie es despreciado el modelo

sereducea la ecuación de una recta donde §o esel corte con el ejeY y ¢1 es

la pendiente. ¢oy ¢1 son llamados estimadoresy se calculan normalmente

por el método de mínimos cuadrados con el fin de reducir el error entre los

valores realesy los generados por la ecuación de la recta.

y = §o + §1X + c

Ecuación1 Modelo de regresión lineal simple

La precisión de las predicciones realizadas con este modelo dependerá

delgrado de asociación lineal existente entre las variablesy la bondad del

ajuste de la recta de regresióna losdatos observados. Para medir este gra-

do de linealidady esta bondad de ajuste se utilizan dos coeficientes: el de

correlación lineal de Pearsony el de determinación. En la figura6 se pueden

observar varios valores de coeficientes de correlación.

Figuro6 Factor de correlación de Pearson (r).

Fuente: Autor.
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Regresión lineal. Los métodos de regresión estudian la construcción 
de modelos para explicar o representar la dependencia entre una variable 
respuesta o dependiente (Y) y la(s) variable(s) explicativa(s) o indepen-
diente(s), X. Si la relación entre esos dos tipos de variables es lineal y el 
número de variables explicativas o independientes es de 1, la regresión es 
simple lineal, en el caso de que la relación sea lineal, pero haya más de una 
variable explicativa la regresión es lineal multivariable.

La regresión lineal simple se modela mediante la ecuación 1; donde ε 
es el error generado por valores aleatorios. Si ε es despreciado el modelo 
se reduce a la ecuación de una recta donde β0 es el corte con el eje Y y β1 es 
la pendiente. β0 y β1 son llamados estimadores y se calculan normalmente 
por el método de mínimos cuadrados con el fin de reducir el error entre los 
valores reales y los generados por la ecuación de la recta.

La precisión de las predicciones realizadas con este modelo dependerá 
del grado de asociación lineal existente entre las variables y la bondad del 
ajuste de la recta de regresión a los datos observados. Para medir este gra-
do de linealidad y esta bondad de ajuste se utilizan dos coeficientes: el de 
correlación lineal de Pearson y el de determinación. En la figura 6 se pueden 
observar varios valores de coeficientes de correlación.

     
      

Ecuación 1 Modelo de regresión lineal simple

y = β0 + β1x + ε

r = 1 r = 0.7

r = 0
X X

Y Y

X X

Y Y

r = -1 r = -0.7

Figura 6 Factor de correlación de Pearson (r). 
Fuente: Autor.
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Redes Neuronales Artí§cioles {ANN}. Como sunombre loindica es una

técnica de aprendizaje de máquina que se inspira en la estructuray el fun-

cionamiento de las redes neuronales de nuestro cerebro. Utiliza unidades

de procesamiento básicas que imitan la operación eléctrica de las neuro-

nas mediante una función de activación que entrega una salida en fun-

ción de las entradas, las cualesa su vez provienen de las salidas de otras

neuronas. La conexión entre saliday entrada de las neuronas posee un

factor de amplificación o de atenuación al cual se le Ilama peso; la

actualización de estos pesos representa el proceso de aprendizaje,

es decir la sinapsis (ver figura 7)a

Axón Sinapsis

X,

X r

W
Dendrilas Cuerpo

W 2

Entradas Pesos

Cuello

del axón

Z f , „d

W0

Sumatorioy umbral

Figuro7 Neurona artificial.

Fuente: Autor

Función de

activación

La forma como seconecteny operen las neuronas entre sí definen la

arquitectura de la red. Una de las arquitecturas más utilizadas es la multi-la-

yer perceptrón. Esta arquitectura es muy utilizada en tareas de clasifica-

cióny consiste en una capa de entrada con una cantidad de neuronas igual

al número de rasgosa tener en cuenta para la clasificación, una o más ca-

pas ocultasy una capa de salida con un número de neuronas igual al núme-

rode clases, de tal forma que la neurona que se activa define el resultado

de la clasificación. En la figura8 se puede verun ejemplo de red neuronal

multi-layer perceptrón totalmente conectada con una capa de entrada de

4 neuronas, dos capas ocultas des y 7 neuronas respectivamentey una

capa de salida de tres neuronas que permitiría realizar una clasificación de

3 Claseso categorías.
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Redes Neuronales Artificiales (ANN). Como su nombre lo indica es una 
técnica de aprendizaje de máquina que se inspira en la estructura y el fun-
cionamiento de las redes neuronales de nuestro cerebro. Utiliza unidades 
de procesamiento básicas que imitan la operación eléctrica de las neuro-
nas mediante una función de activación que entrega una salida en fun-
ción de las entradas, las cuales a su vez provienen de las salidas de otras 
neuronas. La conexión entre salida y entrada de las neuronas posee un
factor de amplificación o de atenuación al cual se le llama peso; la
actualización de estos pesos representa el proceso de aprendizaje,
es decir la sinapsis (ver figura 7).

La forma como se conecten y operen las neuronas entre sí definen la 
arquitectura de la red. Una de las arquitecturas más utilizadas es la multi-la-
yer perceptrón. Esta arquitectura es muy utilizada en tareas de clasifica-
ción y consiste en una capa de entrada con una cantidad de neuronas igual 
al número de rasgos a tener en cuenta para la clasificación, una o más ca-
pas ocultas y una capa de salida con un número de neuronas igual al núme-
ro de clases, de tal forma que la neurona que se activa define el resultado 
de la clasificación. En la figura 8 se puede ver un ejemplo de red neuronal 
multi-layer perceptrón totalmente conectada con una capa de entrada de 
4 neuronas, dos capas ocultas de 5 y 7 neuronas respectivamente y una 
capa de salida de tres neuronas que permitiría realizar una clasificación de 
3 clases o categorías.

Figura 7 Neurona artificial.
Fuente: Autor



E

Figura8 Red Neuronal Arti#cial Multi-loyer Perceptrón

Fuente: https://www.dotosciencecentrol.com/

pro}iles/blogs/how-to-con/Jgure-the-number-o{-layers-and-nodes-in-a-neural.

¿Qué eselaprendizaje de máquina profundo*

introducción

AI inicio de esta introducción se define el aprendizaje de las máquinas

como la acción de generalizar comportamientosa partir de una informa-

ción suministrada en forma de ejemplos. La preguntaa resolver ahora, es

¿Qué hace que ese aprendizaje de máquina seaprofundo*. El término pro-

fundo hace referenciaa la capacidad de identificacióny extracción auto-

mática de rasgos mediante capas consecutivas conformadas por unidades

de procesamiento no lineales que permiten hacer una abstracción jerárqui-

ca de características (LeCun, Y., Bengio, Y.,& Hinton, G., 201 ).

Las técnicas de aprendizaje de máquina convencionales (no profun-

do) requieren un preprocesamiento para extraer rasgos identificadoso

determinados de forma no automática, es decir el aprendizaje de

quina convencional no involucra la identificación de rasgos, este es un

proceso que se debe definir por humanosy que influye altamente en la

precisión de la técnica. Las técnicas de aprendizaje de máquina profundo

extienden el aprendizajea la identificacióny extracción de rasgos de tal

forma que la máquina “aprende” cuáles son los rasgos que definen una

clase de datos de entraday cómo sedeben extraer estos rasgos.
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¿Qué es el aprendizaje de máquina profundo?

Al inicio de esta introducción se define el aprendizaje de las máquinas 
como la acción de generalizar comportamientos a partir de una informa-
ción suministrada en forma de ejemplos. La pregunta a resolver ahora, es 
¿Qué hace que ese aprendizaje de máquina sea profundo?. El término pro-
fundo hace referencia a la capacidad de identificación y extracción auto-
mática de rasgos mediante capas consecutivas conformadas por unidades 
de procesamiento no lineales que permiten hacer una abstracción jerárqui-
ca de características (LeCun, Y., Bengio, Y., & Hinton, G., 2015).

Las técnicas de aprendizaje de máquina convencionales (no profun-
do) requieren un preprocesamiento para extraer rasgos identificados o 
determinados de forma no automática, es decir el aprendizaje de má-
quina convencional no involucra la identificación de rasgos, este es un 
proceso que se debe definir por humanos y que influye altamente en la 
precisión de la técnica. Las técnicas de aprendizaje de máquina profundo 
extienden el aprendizaje a la identificación y extracción de rasgos de tal 
forma que la máquina “aprende” cuáles son los rasgos que definen una 
clase de datos de entrada y cómo se deben extraer estos rasgos.

     

Figura 8 Red Neuronal Artificial Multi-layer Perceptrón 
Fuente: https://www.datasciencecentral.com/

profiles/blogs/how-to-configure-the-number-of-layers-and-nodes-in-a-neural.
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¿Qué sonlasredes neuronales convolucionales*

Una de lastécnicas de aprendizaje profundo más utilizaday de ma-

yor precisión son lasredes neuronales convolucionales. Una red neuronal

convolucional presenta una arquitectura conformada por dos bloques

secuenciales, el primero cumple el propósito de detección de caracterís-

ticaso rasgos mediante la aplicación iterativa de filtrosy el segundo se

encarga de tomar la decisión (regularmente de clasificación) mediante

una red neuronal totalmente conectada (convencional) (Krizhevsky, A.,

Sutskever, l.,& Hinton, G.E., 2012). En la figurag se puede observar la

arquitectura general de una red neuronal convolucional utilizada para la

clasificación de imágenes.

FEATUR£ L¢ARNING CLASSIFICATION

rigura9 Arquitectura general de uno red neuronal convolucionol.

Fuente: https://lo.mathworks.com/solutions/deep-Learning/convofutionaI-neural-network.html

El primer bloque se encarga del aprendizaje profundo, es decir de la

extracción automática de rasgoso características. Para cumplir esta tarea,

este bloque posee una gran cantidad de capas conectadas entre sí de for-

ma secuencial (la salida de una es la entrada de la siguiente); cada capa

representa un filtro. Normalmente losfiltros sOn 2 o que se van aplicando

iterativamente. Los filtros más usados son:

• Convolución: Esta capa/filtro aplica una máscara mediante una

operación de convolución que permite resaltar rasgoso caracte-

rísticas propias de los datos de entrada.

• ReLU: La unidad lineal rectificada tiene una función similara un
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    ¿Qué son las redes neuronales convolucionales?
  
Una de las técnicas de aprendizaje profundo más utilizada y de ma-

yor precisión son las redes neuronales convolucionales. Una red neuronal 
convolucional presenta una arquitectura conformada por dos bloques 
secuenciales, el primero cumple el propósito de detección de caracterís-
ticas o rasgos mediante la aplicación iterativa de filtros y el segundo se 
encarga de tomar la decisión (regularmente de clasificación) mediante 
una red neuronal totalmente conectada (convencional) (Krizhevsky, A., 
Sutskever, I., & Hinton, G.E., 2012). En la figura 9 se puede observar la 
arquitectura general de una red neuronal convolucional utilizada para la 
clasificación de imágenes.

     
      
     

El primer bloque se encarga del aprendizaje profundo, es decir de la 
extracción automática de rasgos o características. Para cumplir esta tarea, 
este bloque posee una gran cantidad de capas conectadas entre sí de for-
ma secuencial (la salida de una es la entrada de la siguiente); cada capa 
representa un filtro. Normalmente los filtros son 2 o 3 que se van aplicando 
iterativamente. Los filtros más usados son:

•	 Convolución: Esta capa/filtro aplica una máscara mediante una 
	 operación de convolución que permite resaltar rasgos o caracte-
	 rísticas propias de los datos de entrada.
•	 ReLU: La unidad lineal rectificada tiene una función similar a un 

Figura 9 Arquitectura general de una red neuronal convolucional.
 Fuente: https://la.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
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rectificador de media onda en términos de electrónica, es decir

Ileva a cero los valores negativos y mantiene los valores

positivos. Esto se realiza con el fin de conseguir un entrena

miento más rápidoy efectivo. Esta rectificación se conoce como

activación, ya que solo las características activadas prosiguen su

camino hacia la siguiente capa.

• Pooling: Esta capa realiza una tarea de agrupación con el fin de

simplificar la salida mediante la disminución no lineal de la tasa

de muestreo, lo que reduce el número de parámetros que

necesita la red para aprender.

Las técnicas de aprendizaje de máquina convencionales (no profun-

do) requieren un preprocesamiento para extraer rasgos identificadoso

determinados de forma no automática, es decir el aprendizaje de má-

quina convencional no involucra la identificación de rasgos, este es un

proceso que se debe definir por humanosy que influye altamente en la

precisión de la técnica. Las técnicas de aprendizaje de máquina profundo

extienden el aprendizajea la identificacióny extracción de rasgos de tal

forma que la máquina “aprende” cuáles son los rasgos que definen una

clase de datos de entraday cómo sedeben extraer estos rasgos.

¿Qué esla computación heterogénea CPU-GPU*

A través de la historia de la computación, el paradigma de desarrollo

y evolución de los procesadores se había enfocado en el aumento de su

capacidad de cómputo mediante el incremento de la frecuencia de reloj,

con el objeto de ejecutar una mayor cantidad de instrucciones en el menor

tiempo posible. Sin embargo, desde 2oo debido al consumo de energía

y losproblemas de disipación de calor que limitan la construcción de pro-

cesadores que aumenten la frecuencia de relojy el nivel de actividades

productivas que puede ejecutarse en cada periodo de reloj en un único

procesador, se cambió el enfoque integrando múltiples unidades de pro-

cesamiento en un mismo chip para aumentar el poder de procesamiento

(de Antonio& Marina, zoom). Gracias al desarrollo de estos procesadores

se abrió la posibilidad de resolver problemas computacionales que antes
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	 rectificador de media onda en términos de electrónica, es decir
	 lleva a cero los valores negativos y mantiene los valores
	 positivos. Esto se realiza con el fin de conseguir un entrena
	 miento más rápido y efectivo. Esta rectificación se conoce como 
	 activación, ya que solo las características activadas prosiguen su 
	 camino hacia la siguiente capa.
•	 Pooling: Esta capa realiza una tarea de agrupación	con el fin de 
	 simplificar la salida mediante la disminución no lineal de la tasa 
	 de muestreo, lo que reduce el número de parámetros que
	 necesita la red para aprender.
     
Las técnicas de aprendizaje de máquina convencionales (no profun-

do) requieren un preprocesamiento para extraer rasgos identificados o 
determinados de forma no automática, es decir el aprendizaje de má-
quina convencional no involucra la identificación de rasgos, este es un 
proceso que se debe definir por humanos y que influye altamente en la 
precisión de la técnica. Las técnicas de aprendizaje de máquina profundo 
extienden el aprendizaje a la identificación y extracción de rasgos de tal 
forma que la máquina “aprende” cuáles son los rasgos que definen una 
clase de datos de entrada y cómo se deben extraer estos rasgos.

     
¿Qué es la computación heterogénea CPU-GPU?

A través de la historia de la computación, el paradigma de desarrollo 
y evolución de los procesadores se había enfocado en el aumento de su 
capacidad de cómputo mediante el incremento de la frecuencia de reloj, 
con el objeto de ejecutar una mayor cantidad de instrucciones en el menor 
tiempo posible. Sin embargo, desde 2003 debido al consumo de energía 
y los problemas de disipación de calor que limitan la construcción de pro-
cesadores que aumenten la frecuencia de reloj y el nivel de actividades 
productivas que puede ejecutarse en cada periodo de reloj en un único 
procesador, se cambió el enfoque integrando múltiples unidades de pro-
cesamiento en un mismo chip para aumentar el poder de procesamiento 
(de Antonio & Marina, 2005). Gracias al desarrollo de estos procesadores 
se abrió la posibilidad de resolver problemas computacionales que antes 
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hubieran sido imposibles (Alba, 20 5). Estos problemas deben sersolucio-

nados de una manera distintaa como seresuelven linealmente, toman-

do un problema cualquiera se divide en un conjunto de sub-problemas

para resolver éstos simultáneamente sobre diferentes unidades

de procesamiento.

De acuerdoa loexpuesto en el párrafo anterior, en la actualidad el de-

sarrollo de sistemas de procesamiento se ha enfocado en producir disposi-

tivos con la capacidad de ejecución simultánea de dos manera diferentes:

La primera opción es el diseño de CPUs multi-core, optimizadas para re-

ducir el tiempo de ejecución de procesos secuenciales (lactency cores); la

segunda opción, es el diseño de sistemas de procesamiento many-thread,

como porejemplo las GPUs (Unidades de Procesamiento Gráfico) optimi-

zadas para mejorar el desempeñio (menos tiempoy menos consumo de

energía eléctrica) en la ejecución de procesos paralelizables (throughput

cores) (ver figura 10). Debidoa que la mayoría de problemas computacio-

nalmente intensivos poseen procesos tanto secuenciales como paraleliza-

bles, en los últimos años se ha iniciado el proceso de integración de los

sistemas multi-corey los sistemas many-thread en plataformas computa-

cionales denominadas heterogéneas (Kirk& Wen-mei, 2012).

Latency and Throughput Orientation

CPU GPU

Figura lo €PU (foctency cores) vs GPU (throughput cores}.

Fuente: https://gigazine.net/gsc_news/en/2o1fi^72'i-go-year-cpu-history.

Una plataforma de computación heterogénea se define como unsis-

tema conformada por lo menos de dostipos diferentes de procesadores,

normalmente, con el objeto de incorporar capacidades de procesado es-

pecializadas para realizar tareas particulares (Amar Shan, 2oO6). Un siste-
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hubieran sido imposibles (Alba, 2005). Estos problemas deben ser solucio-
nados de una manera distinta a como se resuelven linealmente, toman-
do un problema cualquiera se divide en un conjunto de sub-problemas
para resolver éstos simultáneamente sobre diferentes unidades
de procesamiento.

 
De acuerdo a lo expuesto en el párrafo anterior, en la actualidad el de-

sarrollo de sistemas de procesamiento se ha enfocado en producir disposi-
tivos con la capacidad de ejecución simultánea de dos manera diferentes: 
La primera opción es el diseño de CPUs multi-core, optimizadas para re-
ducir el tiempo de ejecución de procesos secuenciales (lactency cores); la 
segunda opción, es el diseño de sistemas de procesamiento many-thread, 
como por ejemplo las GPUs (Unidades de Procesamiento Gráfico) optimi-
zadas para mejorar el desempeño (menos tiempo y menos consumo de 
energía eléctrica)  en la ejecución de procesos paralelizables (throughput 
cores) (ver figura 10). Debido a que la mayoría de problemas computacio-
nalmente intensivos poseen procesos tanto secuenciales como paraleliza-
bles, en los últimos años se ha iniciado el proceso de integración de los 
sistemas multi-core y los sistemas many-thread en plataformas computa-
cionales denominadas heterogéneas (Kirk & Wen-mei, 2012). 

          
          
         
    

Una plataforma de computación heterogénea se define como un sis-
tema conformada por lo menos de dos tipos diferentes de procesadores, 
normalmente, con el objeto de incorporar capacidades de procesado es-
pecializadas para realizar tareas particulares (Amar Shan, 2006). Un siste-

Latency and Throughput Orientation
CPU GPU

Figura 10 CPU (lactency cores) vs GPU (throughput cores).
 Fuente: https://gigazine.net/gsc_news/en/20130725-40-year-cpu-history.
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ma heterogéneo se conforma habitualmente por unao más CPU(s) que

cumple(n) la función de unidad de procesamiento principal (Ilamado ge-

neralmente Host)y unoo más dispositivos de procesamiento diferentes,

como porejemplo GPUs (Graphics Processing Units), DSPs (Digital Signal

Processors), FPGAs (Field Programmable Gate Arrays), que cumple(n) la

función de aceleradores (verfigura 11). También sepuede encontrar la inte-

gración de doso más tipos de procesadores en un solo Chip, por ejemplo,

un APU (accelerated processing unit) es un microprocesador que integra

una CPU multinúcleoy una GPU mediante un bus de alta velocidad.

Host

Dispositivos aceleradores

Figura 11 Plataforma heterogénea típica.

Fuente: Autor

Asícomo la heterogeneidad entre dispositivos de procesamiento re-

presenta una ventaja al ofrecer capacidades de procesado especializadas

para realizar tareas particulares, también representa una gran desventaja

desde el punto de vista del desarrollo. La heterogeneidad entre disposi-

tivos de procesamiento se centra principalmente en la diferencia entre

arquitecturas de conjuntos de instrucciones ISA (Instruction Set Architec-

ture), por tal motivo cada uno de lostipos de dispositivos podrá contar

con modelos, paradigmasy herramientas de programación totalmente di-

ferentes, lo que conllevaa procesos de desarrollo separados con tortuosas

integraciones. Los limitantes en la integración de procesos de desarrollo

para losdiferentes tipos de dispositivos que pueden estar involucrados en

un sistema heterogéneo se han comenzadoa mitigar con la creación de

estándares de plataformasy modelos de programación tales como CUDA

y OpenCL.

Introducción

27

ma heterogéneo se conforma habitualmente por una o más CPU(s) que 
cumple(n) la función de unidad de procesamiento principal (llamado ge-
neralmente Host) y uno o más dispositivos de procesamiento diferentes, 
como por ejemplo GPUs (Graphics Processing Units), DSPs (Digital Signal 
Processors), FPGAs (Field Programmable Gate Arrays), que cumple(n) la 
función de aceleradores (ver figura 11). También se puede encontrar la inte-
gración de dos o más tipos de procesadores en un solo Chip, por ejemplo, 
un APU (accelerated processing unit) es un microprocesador que integra 
una CPU multinúcleo y una GPU mediante un bus de alta velocidad.

Así como la heterogeneidad entre dispositivos de procesamiento re-
presenta una ventaja al ofrecer capacidades de procesado especializadas 
para realizar tareas particulares, también representa una gran desventaja 
desde el punto de vista del desarrollo. La heterogeneidad entre disposi-
tivos de procesamiento se centra principalmente en la diferencia entre 
arquitecturas de conjuntos de instrucciones ISA (Instruction Set Architec-
ture), por tal motivo cada uno de los tipos de dispositivos podrá contar 
con modelos, paradigmas y herramientas de programación totalmente di-
ferentes, lo que conlleva a procesos de desarrollo separados con tortuosas 
integraciones. Los limitantes en la integración de procesos de desarrollo 
para los diferentes tipos de dispositivos que pueden estar involucrados en 
un sistema heterogéneo se han comenzado a mitigar con la creación de 
estándares de plataformas y modelos de programación tales como CUDA 
y OpenCL.

Figura 11 Plataforma heterogénea típica.
 Fuente: Autor
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¿Cómo ayuda la computación heterogénea CPU-GPU

al aprendizaje profundo*

Arriba se mencionó que el término profundo hace referenciaa la capa-

cidad de identificacióny extracción automática de rasgos mediante capas

consecutivas conformadas por unidades de procesamiento no lineales que

permiten hacer una abstracción jerárquica de características; también se

indicó que las capas más populares son Convolución, ReLUy Pooling. Aun-

que la complejidad de las operaciones que conforman estas capas es rela-

tivamente baja, la aplicación consecutivae iterativa de éstas representa

una tarea muy intensiva computacionalmente, debido al gran volumen de

datos que debe contener el conjunto de entrenamiento para que la iden-

tificacióny extracción automática de características sea altamente preci-

sa; adicionalmente estas operaciones se aplican mediante un barrido por

todos loselementos que constituyen cada dato de entrada lo que eleva

sustancialmente la carga computacional.

Estas funciones que permiten la identificacióny extracción automá-

tica de características, tienen una particularidad que representa una gran

oportunidad para superar la intensividad computacional: las operaciones

que se aplican en el barrido son totalmente independientes de bloque

a bloque loque habilita la paralelización masiva de su implementacióny

ejecución. Funciones tales como la Convolución, ReLUy Pooling se con-

forman de operaciones de complejidad mediao baja que se deben aplicar

(interdependientemente) muchísimas veces, esto hace que este tipo de

funciones sean totalmente adecuadas para acelerarlas mediante platafor-

mas many-thread como porejemplo las GPU.

¿Qué pretende este libroy cómo está organizado*

El propósito de este libro es presentar una guía práctica muy simple

de seguir para la implementación, entrenamientoy validación de redes

neuronales convolucionales usando Kerasy acelerando con GPU. La guía

se desarrolla mediante un caso de estudio típico enmarcado en las clasifl-

caciones de imágenes satelitales.
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¿Cómo ayuda la computación heterogénea CPU-GPU
al aprendizaje profundo?

Arriba se mencionó que el término profundo hace referencia a la capa-
cidad de identificación y extracción automática de rasgos mediante capas 
consecutivas conformadas por unidades de procesamiento no lineales que 
permiten hacer una abstracción jerárquica de características; también se 
indicó que las capas más populares son Convolución, ReLU y Pooling. Aun-
que la complejidad de las operaciones que conforman estas capas es rela-
tivamente baja, la aplicación consecutiva e iterativa de éstas representa 
una tarea muy intensiva computacionalmente, debido al gran volumen de 
datos que debe contener el conjunto de entrenamiento para que la iden-
tificación y extracción automática de características sea altamente preci-
sa; adicionalmente estas operaciones se aplican mediante un barrido por 
todos los elementos que constituyen cada dato de entrada lo que eleva 
sustancialmente la carga computacional.

          
Estas funciones que permiten la identificación y extracción automá-

tica de características, tienen una particularidad que representa una gran 
oportunidad para superar la intensividad computacional: las operaciones 
que se aplican en el barrido son totalmente independientes de bloque 
a bloque lo que habilita la paralelización masiva de su implementación y 
ejecución. Funciones tales como la Convolución, ReLU y Pooling se con-
forman de operaciones de complejidad media o baja que se deben aplicar 
(interdependientemente) muchísimas veces, esto hace que este tipo de 
funciones sean totalmente adecuadas para acelerarlas mediante platafor-
mas many-thread como por ejemplo las GPU.

     
¿Qué pretende este libro y cómo está organizado?

El propósito de este libro es presentar una guía práctica muy simple 
de seguir para la implementación, entrenamiento y validación de redes 
neuronales convolucionales usando Keras y acelerando con GPU. La guía 
se desarrolla mediante un caso de estudio típico enmarcado en las clasifi-
caciones de imágenes satelitales.



Introducción

La estructura del libro correspondea cada una de las fases que com-

prenden el desarrollo de un proyecto típico de clasificación de imáge-

nes utilizando redes neuronales convolucionales: el capítulo1 describe

el caso de estudioy presenta la conformación delconjunto de datos con

el cual se vaa trabajar; el capítuloz explica las dependencias necesarias

para desarrollar el proyectoy la configuración de la sesión de la GPU; el

capítulo3 trata el preprocesamiento de las imágenes que conforman el

conjunto de datos, incluyendo la generacióny la carga de estas imáge-

nes; el capítulo4 corresponde al núcleo de este libro, allí se diseña, com-

pilay entrena el modelo de redneuronal convolucional; el capítuloç pre-

senta la validación del modelo presentandoy analizando los resultados

de la evaluación mediante gráficas como la ROC y métricas tales como

F1-Score, recall, accuracy, coeficiente de kappa, etc.; el capítulo6 presen-

tay analiza los resultados de la comparación de desempeño computacio-

naldelproceso de entrenamiento bajo losdos tipos de plataforma: CPU

vs GPU, no solamente delmodelo implementado sino también de otros

modelos típicos; finalmente se exponen las conclusiones obtenidas del

proceso desarrolladoa través de todo el libro.
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La estructura del libro corresponde a cada una de las fases que com-
prenden el desarrollo de un proyecto típico de clasificación de imáge-
nes utilizando redes neuronales convolucionales: el capítulo 1 describe 
el caso de estudio y presenta la conformación del conjunto de datos con 
el cual se va a trabajar; el capítulo 2 explica las dependencias necesarias 
para desarrollar el proyecto y la configuración de la sesión de la GPU; el 
capítulo 3 trata el preprocesamiento de las imágenes que conforman el 
conjunto de datos, incluyendo la generación y la carga de estas imáge-
nes; el capítulo 4 corresponde al núcleo de este libro, allí se diseña, com-
pila y entrena el modelo de red neuronal convolucional; el capítulo 5 pre-
senta la validación del modelo presentando y analizando los resultados 
de la evaluación mediante gráficas como la ROC y métricas tales como 
F1-score, recall, accuracy, coeficiente de kappa, etc.; el capítulo 6 presen-
ta y analiza los resultados de la comparación de desempeño computacio-
nal del proceso de entrenamiento bajo los dos tipos de plataforma: CPU 
vs GPU, no solamente del modelo implementado sino también de otros 
modelos típicos; finalmente se exponen las conclusiones obtenidas del  
proceso desarrollado a través de todo el libro.          

      





Caso de Estudio

En este capítulo se pretende exponer el caso de estudio que se desa-

rrollaráa lo largo de este libro. Además de esto, se presentará el conjunto

de datos que se utilizará para llevara cabo el desarrollo del mismo. Lo an-

terior, con el propósito de contextualizar al lector, dentro del problema

que setrabajará.

1.1 Descripción

J.1.1 ¿Qué esuna imagen*

Una imagen puede serdefinida matemáticamente como unafunción

bidimensional, /{x, y}, dondex yy soncoordenadas espaciales (en un pla-

no),y / en cualquier par de coordenadas es la intensidado nivel de gris de

la imagen en esacoordenada.

Cuando x, y,y los valores de/ son todas cantidades flnitas, discretas,

se dice que la imagen es una imagen digital. Una imagen digital se com-

pone de un número finito de elementos, cada uno con un Iugary valor

específicos. Estos elementos son llamados pels,o píxelse (Gonzálezy

Woods,1996).
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      Capítulo 1

Caso de Estudio

En este capítulo se pretende exponer el caso de estudio que se desa-
rrollará a lo largo de este libro. Además de esto, se presentará el conjunto 
de datos que se utilizará para llevar a cabo el desarrollo del mismo. Lo an-
terior, con el propósito de contextualizar al lector, dentro del problema 
que se trabajará.

1.1 Descripción

1.1.1	 ¿Qué es una imagen?

Una imagen puede ser definida matemáticamente como una función 
bidimensional, ƒ(x, y), donde x y y son coordenadas espaciales (en un pla-
no), y ƒ en cualquier par de coordenadas es la intensidad o nivel de gris de 
la imagen en esa coordenada.

Cuando x, y, y los valores de ƒ son todas cantidades finitas, discretas, 
se dice que la imagen es una imagen digital. Una imagen digital se com-
pone de un número finito de elementos, cada uno con un lugar y valor 
específicos. Estos elementos son llamados pels, o píxelse (González y 
Woods,1996).
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a) Una imagen continua donde sedescribe de forma aproximada por

una serie de muestras igualmente espaciadas organizadas en forma de una

matrizN x M como seindica en la ecuación 2, donde cada elemento de la

matriz es una cantidad discretay el término de la derecha representa lo

que comúnmente sedenomina una imagen digital:

/(0, 0) /(0,1)

N(1, 0) f(1,1)

f(M — 1, 0) /(Of —1,1)

Ecuación2 MotrizN x M de cantidades discretos.

b) Otra manera de representar la imagen digital es con una notación

de matrices más tradicional (ecuación ) donde cada uno de suselementos

es un píxelo elemento de la imagen.

0,1 0,A -1

‘1 N -1

Ecuación$ Matriz de píxefse.

En cualquiera de los dos casos, no se requiere un valor especial de M

y N, salvo que sean enteros positivos. En el caso delnúmero de niveles de

gris, éste es usualmente una potencia entera de2 (ecuación 4):

Ecuaciónq Niveles de gris.
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a) Una imagen continua donde se describe de forma aproximada por 
una serie de muestras igualmente espaciadas organizadas en forma de una 
matriz N x M como se indica en la ecuación 2, donde cada elemento de la 
matriz es una cantidad discreta y el término de la derecha representa lo 
que comúnmente se denomina una imagen digital:

     

b) Otra manera de representar la imagen digital es con una notación 
de matrices más tradicional (ecuación 3) donde cada uno de sus elementos 
es un píxel o elemento de la imagen.

     

      
En cualquiera de los dos casos, no se requiere un valor especial de M 

y N, salvo que sean enteros positivos. En el caso del número de niveles de 
gris, éste es usualmente una potencia entera de 2 (ecuación 4):

(0,0) (0,1) . . . (0, 1)
(1,0) (1,1) . . . (1, 1)

..
( , )

..

..
( 1,0) ( 1,1) . . . ( 1, 1)

f f f N
F f f N

f x y

f M f M f M N

-
-

=

- - - -
Ecuación 2 Matriz N x M de cantidades discretas.

L=2  ,� Є Z�

Ecuación 4 Niveles de gris.

Ecuación 3 Matriz de píxelse.

1,01,00,0

1,11,10,1

1,11,10,1

. . .

. . .
..
..
..

. . .

N

N

NMMM

a a a
a a a

A

a a a

=

- - - -

-
-



J.1.z ¿Qué esuna imagen aérea*

Caso de Estudio

La fotografía aérea se obtiene por la realización de un vuelo foto-

gramétrico, es decir, un vuelo en el que un aeroplano sobrevuela una

zona tomando repetidas fotos para componer toda la superficie. Dicha

fotografía es la representación cónica de la realidady por lo tanto está

afectada por las limitaciones debidasa la perspectiva,a las que hay que

sumar las deformaciones del relieve del terreno (objetos de las mismas

dimensiones reales al estar más próximos al objetivo aparecerán de ma-

yor tamaño,y viceversa), la falta de verticalidad de la toma fotográfi-

ca (objetos de considerable altura como edificiosy árboles aparecerán

abatidos)y las distorsiones propias del objetivo de la cámara empleada

(ASPRS,19 )

1.z Conjunto de datos

Uno de losprincipales aspectosa considerar en la clasificación de

imágenes es el conjunto de datos de entrenamiento que se vaa utilizar.

En la clasificación de imágenes aéreas se cuenta con un número limitado

de conjuntos de datos públicos, uno de ellos es NWPU-RESIS4s, el cual

es un punto de referencia en la clasificación de imágenes de detección re-

mota. Este conjunto de datos, fue creado por la Universidad Politécnica

del Noroeste ubicada en China. Además, cuenta con un total31.$00 imá-

genes, distribuidas en un total de 4s clases, cada una con alrededor de

7OO imágenes. Las clases de este conjunto de datos son: avión, aeropuer-

to,diamante de béisbol, cancha de baloncesto, playa, puente, chaparral,

iglesia, tierras de cultivo circulares, nube, área comercial, residencial den-

so,desierto, bosque, autopista, campo de golf, campo detierra, puerto,

área industrial, intersección, isla, lago, prado, residencial medio, parque

de casas móviles, montaña, paso elevado, palacio, estacionamiento,

ferrocarril, estación de ferrocarril, tierras de cultivo rectangulares, río,

rotonda, pista de aterrizaje, mar, barco, snowberg, residencial escaso,

estadio, tanque de almacenamiento, cancha de tenis, terraza, central tér-

micay humedad (Cheng, G., Han, 1.,& LU, X, 2O17). La figura 1z, presenta
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1.1.2	 ¿Qué es una imagen aérea?
    
 La fotografía aérea se obtiene por la realización de un vuelo foto-

gramétrico, es decir, un vuelo en el que un aeroplano sobrevuela una 
zona tomando repetidas fotos para componer toda la superficie. Dicha 
fotografía es la representación cónica de la realidad y por lo tanto está 
afectada por las limitaciones debidas a la perspectiva, a las que hay que 
sumar las deformaciones del relieve del terreno (objetos de las mismas 
dimensiones reales al estar más próximos al objetivo aparecerán de ma-
yor tamaño, y viceversa), la falta de verticalidad de la toma fotográfi-
ca (objetos de considerable altura como edificios y árboles aparecerán 
abatidos) y las distorsiones propias del objetivo de la cámara empleada 
(ASPRS, 1980).

1.2	 Conjunto de datos
          
Uno de los principales aspectos a considerar en la clasificación de 

imágenes es el conjunto de datos de entrenamiento que se va a utilizar. 
En la clasificación de imágenes aéreas se cuenta con un número limitado 
de conjuntos de datos públicos, uno de ellos es NWPU-RESIS45, el cual 
es un punto de referencia en la clasificación de imágenes de detección re-
mota. Este conjunto de datos, fue creado por la Universidad Politécnica 
del Noroeste ubicada en China. Además, cuenta con un total 31.500 imá-
genes, distribuidas en un total de 45 clases, cada una con alrededor de 
700 imágenes. Las clases de este conjunto de datos son: avión, aeropuer-
to, diamante de béisbol, cancha de baloncesto, playa, puente, chaparral, 
iglesia, tierras de cultivo circulares, nube, área comercial, residencial den-
so, desierto, bosque, autopista, campo de golf, campo de tierra, puerto, 
área industrial, intersección, isla, lago, prado, residencial medio, parque 
de casas móviles, montaña, paso elevado, palacio, estacionamiento, 
ferrocarril, estación de ferrocarril, tierras de cultivo rectangulares, río, 
rotonda, pista de aterrizaje, mar, barco, snowberg, residencial escaso, 
estadio, tanque de almacenamiento, cancha de tenis, terraza, central tér-
mica y humedal  (Cheng, G., Han, J., & Lu, X, 2017). La figura 12, presenta 
una muestra de las imágenes consolidadas en este conjunto de datos. 
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r‹guro 12 Muestra conjunto de datos NWPU-RESIS4s

Fuente: Autor

Otro conjunto de datos disponibley abierto al público es UC Merced

Land Use, compuesto por un total de 21 clases, cada una de ellas con 1oo

imágenes. Las clases de este conjunto de datos son las siguientes: Agri-

cultura, avión, diamante de béisbol, playa, edificios, chaparral, residencial

denso, bosque, autopista, campo degolf, puerto, intersección, residencial

medio, parque de casas móviles, puente, estacionamiento, río, pista de

aterrizaje, residencial escaso, tanque de almacenamientoy cancha de tenis

(Yang, Y.,& Newsam, S., 2O1O).A continuación, se expone una muestra de

este dataset (ver figura 1$).

Figura Muestrac •iunto de datos UC Merced Land Use.

Fuente: Autor.

Con base en loanterior,Ios autores de este libro realizaron un proceso

de unión entre losdos conjuntos de datos presentados previamente. Sin

embargo, con el propósito de simplificar el desarrollo del problemaa lo

largo del libro, se seleccionaron tan solo tres clases: Avión, barcoy estadio.

Por lo general, los conjuntos de datos utilizados para llevara cabo clasifica-
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Otro conjunto de datos disponible y abierto al público es UC Merced 
Land Use, compuesto por un total de 21 clases, cada una de ellas con 100 
imágenes. Las clases de este conjunto de datos son las siguientes: Agri-
cultura, avión, diamante de béisbol, playa, edificios, chaparral, residencial 
denso, bosque, autopista, campo de golf, puerto, intersección, residencial 
medio, parque de casas móviles, puente, estacionamiento, río, pista de 
aterrizaje, residencial escaso, tanque de almacenamiento y cancha de tenis 
(Yang, Y., & Newsam, S., 2010). A continuación, se expone una muestra de 
este dataset (ver figura 13).

     

     

Con base en lo anterior,los autores de este libro realizaron un proceso 
de unión entre los dos conjuntos de datos presentados previamente. Sin 
embargo, con el propósito de simplificar el desarrollo del problema a lo 
largo del libro, se seleccionaron tan solo tres clases: Avión, barco y estadio.
Por lo general, los conjuntos de datos utilizados para llevar a cabo clasifica-

Figura 12 Muestra conjunto de datos NWPU-RESIS45. 
Fuente: Autor

Figura 13 Muestra conjunto de datos UC Merced Land Use.
 Fuente: Autor.
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ción de imágenes mediante redes neuronales por convolución, presentan

en su distribución, imágenes de entrenamiento, imágenes de validacióne

irnágenesdeprueba.

Enconsecuencia, la figura14› presenta la distribución del conjunto de

datos que se utilizaráa lo largo de este libro, donde un total de154 imá-

genes componen el entrenamiento,36o imágenes son de validacióny Roo

imágenes son utilizadas para probar el modelo.

Database

Training

---- m Airplane (560 imágenes)

m Validation

.w Test

, Ship (490 imágenes)

za Stadium (560 imágenes)

t•----- --- Airplane (140 imágenes)

- - m S diu

0

(110 te genes)

- w Airplane (100 imágenes)

, Ship (100 imágenes)

- - Stadium (100 imágenes)

Figura J§ Distribución conjunto de datos.

Fuente: Autor.

El conjunto de datos se encuentra disponible para su descarga en la

siguiente dirección.

https://drive.googIe.com/drive/foIders/1uFo 1HDofMrdL1zlxN0epohcW6 X8rY?usp=sharing.

Una vez, se ha realizado la socialización del caso de estudioa desarro-

llary el conjunto de datosa utilizar en este proceso, se procedea presentar

las dependenciasy configuración del entorno de trabajo.
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ción de imágenes mediante redes neuronales por convolución, presentan 
en su distribución, imágenes de entrenamiento, imágenes de validación e 
imágenes de prueba.

     
En consecuencia, la figura 14, presenta la distribución del conjunto de 

datos que se utilizará a lo largo de este libro, donde un total de 1540 imá-
genes componen el entrenamiento, 360 imágenes son de validación y 300 
imágenes son utilizadas para probar el modelo.

     

El  conjunto de datos se encuentra disponible para su descarga en la 
siguiente dirección.
https://drive.google.com/drive/folders/1uF0331HDofMrdL1zIxN0ep0hcW6_X8rY?usp=sharing.

Una vez, se ha realizado la socialización del caso de estudio a desarro-
llar y el conjunto de datos a utilizar en este proceso, se procede a presentar 
las dependencias y configuración del entorno de trabajo.

Figura 14 Distribución conjunto de datos. 
Fuente: Autor.

Database
Training

Validation

Test

Airplane (560 imágenes)

Airplane (140 imágenes)
Ship (110 imágenes)
Stadium (110 imágenes)

Airplane (100 imágenes)
Ship (100 imágenes)
Stadium (100 imágenes)

Ship (490 imágenes)
Stadium (560 imágenes)

https://drive.google.com/drive/folders/1uF0331HDofMrdL1zIxN0ep0hcW6_X8rY?usp=sharing. 




Dependenciasy configuración

En este capítulo, se tiene como objetivo realizar un vistazo de cada una

de las dependenciaso librerías que se utilizarána lo largo del desarrollo de

este libro. Así mismo, se presenta la configuración requerida para ejectuar

el código fuente sobre una Unidad de Procesamiento Gráfica (GPU).

2.1 DependenciasKeras

2.1.2 Keras

Keras
Figura IS Logotipo de Keros.

Fuente: https://keras.io/

Keras (Chollet, F., zOls) es una API de alto nivel para desarrollar redes

neuronales, está escrita en Pythony se puede ejecutar sobre TensorFlow,

CNTKo Theano. Permite eldesarrollo fácily rápido de dos tipos de redes

neuronales de aprendizaje profundo: redes neuronales convolucionalesy
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Capítulo 2

Dependencias y configuración

En este capítulo, se tiene como objetivo realizar un vistazo de cada una 
de las dependencias o librerías que se utilizarán a lo largo del desarrollo de 
este libro. Así mismo, se presenta la configuración requerida para ejectuar 
el código fuente sobre una Unidad de Procesamiento Gráfica (GPU).

2.1	 DependenciasKeras

2.1.2	 Keras

Keras (Chollet, F., 2015) es una API de alto nivel para desarrollar redes 
neuronales, está escrita en Python y se puede ejecutar sobre TensorFlow, 
CNTK o Theano. Permite el desarrollo fácil y rápido de dos tipos de redes 
neuronales de aprendizaje profundo: redes neuronales convolucionales y 

Figura 15 Logotipo de Keras.
 Fuente: https://keras.io/
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redes neuronales recurrentes, también permite la combinación de estos

dos tipos de redes. Para facilitar el proceso de entrenamiento, Keras se

ejecuta tanto en CPU como enGPU.

2.1.z TensorFlow

rigura i6 Logotipo de TensorF-low.

Fuente: https://www.tensor{low.org/

TensorFlow (Abadi, M., et.al., 2016) es una plataforma de código

abierto que permite el desarrollo de aplicaciones de aprendizaje de máqui-

na. Está constituida por un ecosistema integral de herramientas, librerías

y recursos dirigido tanto al investigador que desea aportar al estado del

arte del aprendizaje de máquina como al desarrollador que requiere crear

y desplegar fácilmente aplicaciones de aprendizaje de máquina. Tensor-

Flow fue desarrollado por Google en el marco delproyecto Google Brainy

fue liberado como software de código abierto el9 de noviembre de 2o1.

2.J.$ Scikit-Learn

rigura 7 ogotipo de Scikii-Learn.

Fuente: https://scikit-team.org

Scikit-Learn (Pedregosa, F., 2011) es un paquete de Python que incluye

herramientas eficientesy simples para analizar datos mediante algoritmos

de aprendizaje de máquina en tareas de regresión, clasificacióny agrupa-

ción. Dentro de los algoritmos que implementa están: máquinas de vecto-
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redes neuronales recurrentes, también permite la combinación de estos 
dos tipos de redes. Para facilitar el proceso de entrenamiento, Keras se 
ejecuta tanto en CPU como en GPU.

2.1.2	 TensorFlow

     
TensorFlow (Abadi, M., et.al., 2016) es una plataforma de código 

abierto que permite el desarrollo de aplicaciones de aprendizaje de máqui-
na. Está constituida por un ecosistema integral de herramientas, librerías 
y recursos dirigido tanto al investigador que desea aportar al estado del 
arte del aprendizaje de máquina como al desarrollador que requiere crear 
y desplegar fácilmente aplicaciones de aprendizaje de máquina. Tensor-
Flow fue desarrollado por Google en el marco del proyecto Google Brain y 
fue liberado como software de código abierto el 9 de noviembre de 2015.

2.1.3	 Scikit-Learn
     

Scikit-Learn (Pedregosa, F., 2011) es un paquete de Python que incluye 
herramientas eficientes y simples para analizar datos mediante algoritmos 
de aprendizaje de máquina en tareas de regresión, clasificación y agrupa-
ción. Dentro de los algoritmos que implementa están: máquinas de vecto-

Figura 16 Logotipo de TensorFlow.
 Fuente: https://www.tensorflow.org/

Figura 17 Logotipo de Scikit-Learn.
 Fuente: https://scikit-learn.org
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resde soporte, bosques aleatorios, Gradient boosting, K-means, DBSCAN,

redes neuronales, etc.

z.1.ą Scipy

Figuro 18 1ogotipo de SciPy.

Fuente: https://www.scipy.org/

Scipy (Jones, E., Oliphant, T.,& Peterson, P., 20o1) es un ecosistema

conformado porsoftware de código abierto basado en Pythony diseñados

para las matemáticas, las cienciasy la ingeniería. El núcleo de Scipy está

conformado por6 paquetes: Numpy, Matplotlib,I python, Sympy, Pandas

y las librerías propias de Scipy.

2.J-s Numpy

NumPy

Figura 19 Logotipo de NumPy.

Fuente: https://numpy.org/

NumPy esun paquete fundamental para desarrollar computación

científica con Python. Su principal aporte se centra en una estructura de

datos n-dimensional (denominada arreglo) muy eficiente tanto en el alma-

cenamiento como ensuoperación (Van Der Walt, S., Colbert, S.C.,& Varo-

quaux, G., 2011). Numpy nosolo ofrece la estructura de datos sino también

una gran biblioteca de funciones matemáticas de alto nivel para operar

eficientemente dichos arreglos.
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res de soporte, bosques aleatorios, Gradient boosting, K-means, DBSCAN, 
redes neuronales, etc.  

     
2.1.4	 Scipy 

     
Scipy (Jones, E., Oliphant, T., & Peterson, P., 2001) es un ecosistema 

conformado por software de código abierto basado en Python y diseñados 
para las matemáticas, las ciencias y la ingeniería. El núcleo de Scipy está 
conformado por 6 paquetes: Numpy, Matplotlib, Ipython, Sympy, Pandas 
y las librerías propias de Scipy.

2.1.5	 Numpy

NumPy es un paquete fundamental para desarrollar computación 
científica con Python.  Su principal aporte se centra en una estructura de 
datos n-dimensional (denominada arreglo) muy eficiente tanto en el alma-
cenamiento como en su operación (Van Der Walt, S., Colbert, S.C., & Varo-
quaux, G., 2011). Numpy no solo ofrece la estructura de datos sino también 
una  gran biblioteca de funciones matemáticas de alto nivel para operar 
eficientemente dichos arreglos.

Figura 18 Logotipo de SciPy. 
Fuente: https://www.scipy.org/

Figura 19 Logotipo de NumPy. 
Fuente: https://numpy.org/
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2.1.6 Matplotlib

matpIs:¢Ztlib
Figura 2o Logotipo de Matpfotfib.

Fuente: https://motplotfib.org/

Matplotlib (Hunter, J.D.,2Oo7) esuna librería para la generación de

gráficOs 2D en Python. Matplotlib tiene la capacidad de generar gráficos

en ambientes estáticoso dinámicos, con datos provenientes de diferentes

estructuras de datos, como porejemplo listas, arreglos, dataframes, entre

otros. Los gráficos se pueden generar desde scripts de Python, consolas

de Pythono Ipython, Notebooks de Jupitero desde servidores web.

2.1.7 Procedimiento para importar dependencias

Con el propósito de ejecutar exitosamente el código de Python

presentadoa lo largo del desarrollo de este libro, es fundamental importar

cada una de las dependencias necesarias para llevar este procesoa cabo.

El siguiente fragmento de código presenta la manera de importar cada una

de las librerías.

1. import keras

2. from keras.models import Sequential, load model

3. from keras.layers import Conv2D, MaxPoolíng2D,Dense, Dropout,

Flatten, Activation

4. from keras.callbacks import EarlyStoppíng, ModelCheckpoínt

5. import tensorflow as tf

6. from keras import backend asK

7. from tensorflow.python.client import devíce líb

8. from keras.preprocessing.image import ImageDataGenerator

9. from keras.utils import to categorical

10. import numpy as np

11. from scípy import ínterp

12. from sklearn.metrics import accuracy score
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2.1.6	 Matplotlib

     Matplotlib (Hunter, J.D., 2007) es una librería para la generación de 
gráficos 2D en Python. Matplotlib tiene la capacidad de generar gráficos 
en ambientes estáticos o dinámicos, con datos provenientes de diferentes 
estructuras de datos, como por ejemplo listas, arreglos, dataframes, entre 
otros. Los gráficos se pueden generar desde scripts de Python, consolas 
de Python o Ipython, Notebooks de Jupiter o desde servidores web.

2.1.7	 Procedimiento para importar dependencias

     Con el propósito de ejecutar exitosamente el código de Python 
presentado a lo largo del desarrollo de este libro, es fundamental importar 
cada una de las dependencias necesarias para llevar este proceso a cabo. 
El siguiente fragmento de código presenta la manera de importar cada una 
de las librerías.

Figura 20 Logotipo de Matplotlib. 
Fuente: https://matplotlib.org/

1.  import keras 

2.  from keras.models import Sequential, load_model 

3. from keras.layers import Conv2D, MaxPooling2D,Dense, Dropout, 

Flatten, Activation 

4.  from keras.callbacks import EarlyStopping, ModelCheckpoint 

5.  import tensorflow as tf 

6.  from keras import backend as K 

7.  from tensorflow.python.client import device_lib 

8.  from keras.preprocessing.image import ImageDataGenerator 

9.  from keras.utils import to_categorical 

10. import numpy as np  

11. from scipy import interp 

12. from sklearn.metrics import accuracy_score 

13. from sklearn.metrics import precision_score 

14. from sklearn.metrics import recall_score 

15. from sklearn.metrics import f1_score 

16. from sklearn.metrics import cohen_kappa_score 

17. from sklearn.metrics import roc_auc_score 

18. from sklearn.metrics import confusion_matrix 

19. from sklearn.metrics import roc_curve, auc 

20. import matplotlib.pyplot as plt 

21. from itertools import cycle 
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13. from sklearn.metrics import precision_score

14. from sklearn.metrics import recall_score

15. from sklearn.metrics import fl score

16. from sklearn.metrics import cohen_kappa_score

17. from sklearn.metrícs import roc_auc_score

18. from sklearn.metrics import confusion_matrix

19. from sklearn.metrics import roc curve, abc

20. import matplotlíb.pyplot as pdt

21. from itertools import cycle

Líneas 1-4:

import keras

from keras.models import Sequential, load_model

from keras.layers import Conv2D, MaxPooling2D,Dense, Dropout, Flatten,

Activatíon

from keras.callbacks import EarlyStopping, ModelCheckpoint

Enestas líneas se cargan las librerías relacionadas con los modelos

de redes neuronales por convolución, por lo tanto, están encargadas

de hacer posible el diseño, compilación, entrenamiento y carga

delosmodelos.

Líneas$-7:

import tensorflow as tf

from keras import backend asK

from tensorflow.python.client import device_lib

Lasanteriores líneas de código permiten importar las dependencias

requeridas para la definición de sesión de trabajo en la GPU y posterior

ejecución del código fuente sobre dicho dispositivo.
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Líneas 1-4:

En estas líneas se cargan las librerías relacionadas con los modelos 
de redes neuronales por convolución, por lo tanto, están encargadas
de hacer posible el diseño, compilación, entrenamiento y carga
de los modelos.

Líneas 5-7:

Las anteriores líneas de código permiten importar las dependencias 
requeridas para la definición de sesión de trabajo en la GPU y posterior 
ejecución del código fuente sobre dicho dispositivo.

1.  import keras 

2.  from keras.models import Sequential, load_model 

3. from keras.layers import Conv2D, MaxPooling2D,Dense, Dropout, 

Flatten, Activation 

4.  from keras.callbacks import EarlyStopping, ModelCheckpoint 

5.  import tensorflow as tf 

6.  from keras import backend as K 

7.  from tensorflow.python.client import device_lib 

8.  from keras.preprocessing.image import ImageDataGenerator 

9.  from keras.utils import to_categorical 

10. import numpy as np  

11. from scipy import interp 

12. from sklearn.metrics import accuracy_score 

13. from sklearn.metrics import precision_score 

14. from sklearn.metrics import recall_score 

15. from sklearn.metrics import f1_score 

16. from sklearn.metrics import cohen_kappa_score 

17. from sklearn.metrics import roc_auc_score 

18. from sklearn.metrics import confusion_matrix 

19. from sklearn.metrics import roc_curve, auc 

20. import matplotlib.pyplot as plt 

21. from itertools import cycle 

import keras 

from keras.models import Sequential, load_model 

from keras.layers import Conv2D, MaxPooling2D,Dense, Dropout, Flatten, 

Activation 

from keras.callbacks import EarlyStopping, ModelCheckpoint 

import tensorflow as tf 

from keras import backend as K 

from tensorflow.python.client import device_lib 
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Línea 8:

from keras.preprocessing.image import ImageDataGenerator

Dado que el conjunto de datos es un factor importante para el desa-

rrollo de redes neuronales por convolución, se hace necesario importar el

módulo de la línea 8, para poder realizar un preprocesamientoa las imáge-

nes que componen dicho conjunto.

Líneas 9-•9:

from keras.utils import to_categorical

import numpy as np

from scípy import ínterp

from sklearn.metrics import accuracy_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall score

from sklearn.metrícs import fl score

from sklearn.metrics import cohen_kappa_score

from sklearn.metrics import roc_auc_score

from sklearn.metrícs import confusíon matrix

from sklearn.metrics import roc curve, auc

Estas líneas de código permiten cargar los distintos módulos de las

librerías necesarias para llevara cabo la evaluación del modelo de la red

neuronal por convolución. Lo anterior, haciendo uso de distintas métricas

como: Curvas de ROC, Precision Score, Accuracy Score, F1 Score, Recall

Score, Coeficiente de Kappay Matriz de Confusión.

Líneas zo-z1:

import matplotlib.pyplot as pdt

from itertools import cycle
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Línea 8:

Dado que el conjunto de datos es un factor importante para el desa-
rrollo de redes neuronales por convolución, se hace necesario importar el 
módulo de la línea 8, para poder realizar un preprocesamiento a las imáge-
nes que componen dicho conjunto.

Líneas 9-19:

Estas líneas de código permiten cargar los distintos módulos de las 
librerías necesarias para llevar a cabo la evaluación del modelo de la red 
neuronal por convolución. Lo anterior, haciendo uso de distintas métricas 
como: Curvas de ROC, Precision Score, Accuracy Score, F1 Score, Recall 
Score, Coeficiente de Kappa y Matriz de Confusión.

Líneas 20-21:

from keras.preprocessing.image import ImageDataGenerator 

from keras.utils import to_categorical 

import numpy as np  

from scipy import interp 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

from sklearn.metrics import f1_score 

from sklearn.metrics import cohen_kappa_score 

from sklearn.metrics import roc_auc_score 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import roc_curve, auc 

import matplotlib.pyplot as plt 

from itertools import cycle 



Dependenciasy con guroción

Finalmente, las líneas anteriores, tienen el propósito de permitir pre-

sentar resultados gráficos durante el desarrollo de este caso de estudio.

2.2 Configuración de la sesión GPU

La interacción entre librerías como Kerasy Tensorflow, generan la po-

sibilidad de trabajar distintos procesos relacionados con la implementación

de redes neuronales por convolución en una arquitectura paralelizada, ha-

ciendo uso de dispositivos como GPU. Sinembargo, si usted no cuenta con

una tarjeta graficadora puede omitir el procedimiento de configuración

de sesión en GPU y todo el proceso expuesto en el libro se ejecutará por

defecto en CPU.

2.2.1 Procedimiento para configurar la sesión de GPU

El siguiente fragmento de código fuente, permite realizar la

configuración de la sesión de trabajo en GPU para la ejecución de tareas

propias de Keras.

22. print(devíce_líb.list_local_devíces())

23. K.tensorflow backend. get available gpus()

24. config = tf.ConfigProto()

25. sess = tf.Session(config=config)

26. keras.backend.set_sessíon(sess)

Línea zz:

print(device lib.list local devices())

Esta línea de código, mediante la función list local devices (), preten-

de mostrar por consola el listado de dispositivos disponibles localmente.

AI ejecutar esta línea de código se puede presentar algo similara lo que se

presenta en la figura 21.
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Finalmente, las líneas anteriores, tienen el propósito de permitir pre-
sentar resultados gráficos durante el desarrollo de este caso de estudio.

2.2	 Configuración de la sesión GPU

La interacción entre librerías como Keras y Tensorflow, generan la po-
sibilidad de trabajar distintos procesos relacionados con la implementación 
de redes neuronales por convolución en una arquitectura paralelizada, ha-
ciendo uso de dispositivos como GPU. Sin embargo, si usted no cuenta con 
una tarjeta graficadora puede omitir el procedimiento de configuración 
de sesión en GPU y todo el proceso expuesto en el libro se ejecutará por
defecto en CPU.

2.2.1	 Procedimiento para configurar la sesión de GPU

El siguiente fragmento de código fuente, permite realizar la 
configuración de la sesión de trabajo en GPU para la ejecución de tareas

propias de Keras.

Línea 22:

Esta línea de código, mediante la función list_local_devices (), preten-
de mostrar por consola el listado de dispositivos disponibles localmente.
Al ejecutar esta línea de código se puede presentar algo similar a lo que se 
presenta en la figura 21.

22. print(device_lib.list_local_devices()) 

23. K.tensorflow_backend._get_available_gpus() 

24. config = tf.ConfigProto() 

25. sess = tf.Session(config=config) 

26. keras.backend.set_session(sess) 

print(device_lib.list_local_devices()) 
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[name: "/device:CPU:0”

device_type: “CPU”

memory_limit: 268435456

locality { }

incarnation: 17310413457301815335,

name: "/device:GPU:0”

device type: "GPU"

memory limit: 6686052843

locality ( bus_id: 1 links ( ) )

incarnation: 3753028348053837586

physical_device_desc: “device: 0,

name: GeForce GTX 1070,

pci bus id: 0000:01:00.0,

compute capability: 6.1“ ]

Figura zi Dispositivos locales.

Fuente: Autor.

La figura 21, expone que, el computador utilizado tiene un dispositivo

CPU y un dispositivo GPU, el cual presentaa detalle características como la

marca de Unidad de procesamiento gráfico que se posee, en este caso una

GeForce GTX 107a,además de la memoria límite.

Línea 2$:

K.tensorflow_backend._get_avaílable_gpus()

Unavezsehanencontrado losdispositivos que se posee localmente,-

se procede mediante la función get available gpus()a obtener losdispo-

sitivos GPUs queseencuentra disponibles. AI ejecutar esta línea de código,

se puede presentar el siguiente resultado (ver figura 22).

['/job:localhost/replica:0/task:0/device:GPU:0']

Línea zq-26:

F-igura 22 Dispositivos GPU disponibles.

Fuente: Autor.

config = tf.ConfigProto()

sess = tf.Session(confíg=confíg)

keras.backend.set session(sess)
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La figura 21, expone que, el computador utilizado tiene un dispositivo 
CPU y un dispositivo GPU, el cual presenta a detalle características como la 
marca de Unidad de procesamiento gráfico que se posee, en este caso una 
GeForce GTX 1070, además de la memoria límite.

Línea 23:

Una vez se han encontrado los dispositivos que se posee localmente,-
se procede mediante la función _get_available_gpus() a obtener los dispo-
sitivos GPUs que se encuentra disponibles. Al ejecutar esta línea de código, 
se puede presentar el siguiente resultado (ver figura 22).

Línea  24-26:

Figura 21 Dispositivos locales. 
Fuente: Autor.

Figura 22 Dispositivos GPU disponibles. 
Fuente: Autor.

K.tensorflow_backend._get_available_gpus() 

config = tf.ConfigProto() 

sess = tf.Session(config=config) 

keras.backend.set_session(sess) 



Dependenciasy con guroción

Como primera instancia, en estas líneas, la función ConfigProto() se

utiliza para configurar la sesión de Tensorflow, dado quea esta función

no se pasa ningún tipo de parámetros, por defecto se inicializan todos los

dispositivos GPU disponibles, en este caso tan solo se inicializará uno y di-

cha configuración se almacena en la variable config. Acto seguido, en la

variable sess, se almacena la creación de la sesión de Tensorflow usando la

función Session(), pasando como parámetros la configuración establecida

anteriormente. Por último, se “setea” como sistema de fondo la sesión

configurada en GPU, invocando el módulo Backende implementando su

función set session() recibiendo como parámetro la sesión de Tensorflow.

Finalizado tanto el proceso de importación de cada una de la librerías

necesarias para la ejecución del código fuente asociado al caso de estu-

dioa desarrollar como el proceso de configuración de la sesión bajo una

GPU, se prosigue en el siguiente capítuloa realizar el preprocesamiento

de imágenes.
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Como primera instancia, en estas líneas, la función ConfigProto() se 
utiliza para configurar la sesión de Tensorflow, dado que a esta función 
no se pasa ningún tipo de parámetros, por defecto se inicializan todos los 
dispositivos GPU disponibles, en este caso tan solo se inicializará uno y di-
cha configuración se almacena en la variable config. Acto seguido, en la 
variable sess, se almacena la creación de la sesión de Tensorflow usando la 
función Session(), pasando como parámetros la configuración establecida 
anteriormente. Por último, se “setea” como sistema de fondo la sesión 
configurada en GPU, invocando el módulo Backend e implementando su 
función set_session() recibiendo como parámetro la sesión de Tensorflow.

Finalizado tanto el proceso de importación de cada una de la librerías 
necesarias para la ejecución del código fuente asociado al caso de estu-
dio a desarrollar como el proceso de configuración de la sesión bajo una 
GPU, se prosigue en el siguiente capítulo a realizar el preprocesamiento 
de imágenes.

     





Preprocesamiento de lmógenes

En este capítulo, se daráa conocer los fundamentos delpreprocesa-

miento de imágenesy algunos de sus tareas clave, tales como: la transfor-

mación, la generacióny la carga de imágenes.

El preprocesamiento de imágenes con fines de entrenamiento de una

red neuronal convolucional puede estar enrutado en dos sentidos:

• Aplicar transformaciones para favorecero facilitar tanto el sumi-

nistro como el procesamiento de las imágenes en la red neuronal, como

porejemplo cambiar tamaños, hacer escalamientos, normalizaciones,

entre otras.

• Aplicar transformaciones para aumentar el conjunto de datos de

entrenamiento generando nuevas imágenesa partir de la alteración de las

existentes con el propósito de mejorar el resultado del entrenamiento. Las

alteraciones pueden serrotaciones, reflejos, cambio de posiciones, entre

otras,y se pueden aplicar de forma aleatoria (ver figura 2§).
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Capítulo 3
	

Preprocesamiento de Imágenes

     
En este capítulo, se dará a conocer los fundamentos del preprocesa-

miento de imágenes y algunos de sus tareas clave, tales como: la transfor-
mación, la generación y la carga de imágenes.

El preprocesamiento de imágenes con fines de entrenamiento de una 
red neuronal convolucional puede estar enrutado en dos sentidos: 

• Aplicar transformaciones para favorecer o facilitar tanto el sumi-
nistro como el procesamiento de las imágenes en la red neuronal, como 
por ejemplo cambiar tamaños, hacer escalamientos, normalizaciones,
entre otras.

• Aplicar transformaciones para aumentar el conjunto de datos de 
entrenamiento generando nuevas imágenes a partir de la alteración de las 
existentes con el propósito de mejorar el resultado del entrenamiento. Las 
alteraciones pueden ser rotaciones, reflejos, cambio de posiciones, entre 
otras, y se pueden aplicar de forma aleatoria (ver figura 23).
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IMAGEN ORIGINAL IMÁGENES ORIGINADAS

Figuro z$ Aumentando el conjunto de datos de entrenamiento mediante trons{ormociones.

Fuente Imagen modificada de https://www.pyimogesearch.Com/2019/o7IO8|keras-imagedatagenera-

tor-and-data-augmentationf

$.1 Generador de Imágenes

Los dos tipos de preprocesamiento mencionados arriba se puede

realizar en Kerasa través de los métodos de la clase ImageDataGenerator

como porejemplo apply transform, que mediante uno de susparámetros

permite aplcar operaciones corno rotacones, reflejos, inversión, zoomo

mediante el método random transform que permite aplicar las mis opera-

ciones, pero de forma aleatoria.

$.1.J Procedimiento para establecer el generador

de imágenes

El siguiente fragmento de código fuente, presenta la manera de invo-

car el generador de imágenes, propio de la librería Keras.

27. ruta dataset entrenamiento "ruta/local/dataset/training"

28. ruta_dataset_prueba "ruta/local/dataset//test"

29. ruta_dataset_validacion "ruta/local/dataset//validation"

30. train datagen ImageDataGenerator(rescale=1./255)

31. test_datagen ImageDataGenerator(rescale=1./255)

32. validation_datagen ImageDataGenerator(rescale=1./255)
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3.1	 Generador de Imágenes

Los dos tipos de preprocesamiento mencionados arriba se puede 
realizar en Keras a través de los métodos de la clase ImageDataGenerator 
como por ejemplo apply_transform, que mediante uno de sus parámetros 
permite aplicar operaciones como rotaciones, reflejos, inversión, zoom o 
mediante el método random_transform que permite aplicar las mis opera-
ciones, pero de forma aleatoria.

3.1.1	 Procedimiento para establecer el generador
		  de imágenes
     
El siguiente fragmento de código fuente, presenta la manera de invo-

car el generador de imágenes, propio de la librería Keras.

IMAGEN ORIGINAL IMÁGENES ORIGINADAS

Figura 23 Aumentando el conjunto de datos de entrenamiento mediante transformaciones. 
Fuente Imagen modificada de https://www.pyimagesearch.com/2019/07/08/keras-imagedatagenera-

tor-and-data-augmentation/

27. ruta_dataset_entrenamiento = "ruta/local/dataset/training" 

28. ruta_dataset_prueba = "ruta/local/dataset//test" 

29. ruta_dataset_validacion = "ruta/local/dataset//validation" 

30. train_datagen = ImageDataGenerator(rescale=1./255) 

31. test_datagen = ImageDataGenerator(rescale=1./255) 

32. validation_datagen = ImageDataGenerator(rescale=1./255) 



Líneas27-2g:

Preprocesamiento de Imágenes

ruta_dataset_entrenamiento "ruta/local/dataset/training"

ruta_dataset_prueba "ruta/local/dataset//test"

ruta_dataset_valídacíon "ruta/local/dataset//valídatíon"

Enestas líneas se realiza una tarea simple, tanto solo se definen las ru-

tas locales donde seencuentran alojadas las imágenes de entrenamiento,

validacióny prueba.

Líneas $o-$2:

train_datagen = ImageDataGenerator(rescale=l./255)

test datagen = ImageDataGenerator(rescale=1./255)

validation_datagen ImageDataGenerator(rescale=l./255)

Adicionalmente, se deben inicializar los generadores de imágenes de

cada sub conjunto de datos. Lo anterior, mediante la función ImageData-

Generator(), en este caso, al establecer un factor de 1/2ss de rescale, se

tomará cada una de las imágenes en su proceso de cargay se multiplican

píxela píxel por dicho factor.

§.2 Carga de Imágenes

Como sehaexpuesto anteriormente, el conjunto de datos es un as-

pecto primordial en los métodos de aprendizaje profundo, es por esto que,

es indispensable tomar lel directorio fuente donde seencuentran alojadas

las imágenesy cargarlasa un arreglo en memoria. Adicionalmente, dado

que se emplea aprendizaje supervisado, se debe generarlasetiquetasco-

rrespondientesacada unadelasimágenescargadas.

$.2.1 Procedimiento para cargar lasimágenes

El código fuente expuestoa continuación, tiene como propósito rea-

lizarlacarga de cada una delasimágenesque componenlossubconjun-

tosde datos, entendiéndose como, datos de entrenamiento, validación

y prueba.
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Líneas 27-29:

En estas líneas se realiza una tarea simple, tanto solo se definen las ru-
tas locales donde se encuentran alojadas las imágenes de entrenamiento, 
validación y prueba.

Líneas 30-32:

Adicionalmente, se deben inicializar los generadores de imágenes de 
cada sub conjunto de datos. Lo anterior, mediante la función ImageData-
Generator(), en este caso, al establecer un factor de 1/255 de rescale, se 
tomará cada una de las imágenes en su proceso de carga y se multiplicará 
píxel a píxel por dicho factor.

3.2	 Carga de Imágenes

Como se ha expuesto anteriormente, el conjunto de datos es un as-
pecto primordial en los métodos de aprendizaje profundo, es por esto que, 
es indispensable tomar lel directorio fuente donde se encuentran alojadas 
las imágenes y cargarlas a un arreglo en memoria. Adicionalmente, dado 
que se emplea aprendizaje supervisado, se debe generar las etiquetas co-
rrespondientes a cada una de las imágenes cargadas.

3.2.1	 Procedimiento para cargar las imágenes

El código fuente expuesto a continuación, tiene como propósito rea-
lizar la carga de cada una de las imágenes que componen los subconjun-
tos de datos, entendiéndose como, datos de entrenamiento, validación
y prueba.

ruta_dataset_entrenamiento = "ruta/local/dataset/training" 

ruta_dataset_prueba = "ruta/local/dataset//test" 

ruta_dataset_validacion = "ruta/local/dataset//validation" 

train_datagen = ImageDataGenerator(rescale=1./255) 

test_datagen = ImageDataGenerator(rescale=1./255) 

validation_datagen = ImageDataGenerator(rescale=1./255) 
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33. train generator train_datagen.flow_from directory(ruta dataset

entrenamiento,target size=(80,80),color mode='rgb',batch_size

=32,class_mode='categorícal',shuffle=True)

34. validation generator validation datagen.flow from directory(

ruta dataset validacion,target size=(80,80),color mode='rgb',b

atch_size=32,class_mode='categorical',shuffle=True)

35. test generator test datagen.flow_from directory(ruta dataset

prueba,target size=(80,80),color mode='rgb',batch_size=1,class

_mode='categorical',shuffle=False)

Línea $$:

traín_generator traín datagen.flow from dírectory(ruta dataset

entrenamiento,target size=(80,80),color mode='rgb',batch size

=32,class_mode='categorícal',shuffle=True)

Enesta línea se utiliza el generador de entrenamiento mediante la fun-

ción datagen_flow_from_directory(), la cual sirve para cargar un conjunto

de imágenesa partir de una dirección local. Adicionalmente, esta función

permite dividiry agrupar las imágenes cargadas de acuerdoa su distribu-

ción en su carpeta local. Lo anterior, es fundamental en el entrenamiento

de máquina supervisado, donde se hace necesario tener la referenciao

identificador de cada uno de losdatos de entrenamiento. El primer pará-

metro de esta función es la dirección donde seencuentran las imágenes.

Posteriormente, se define un target size de 8ox8o píxeles, es decir, cada

una de las imágenes de2s6x2$6 seredimensionarána 8ox8o. Además de

esto, al establecer el parámetro color mode como ‘rgb’, se indica que se

tendrán imágenesa color en tres bandas (red, green, blue). El siguiente pa-

rámetro batch size, tiene como finalidad, agrupar todas las imágenes en

lotes de Hz imágenes, con sus respectivas etiquetas de identificación. Acto

seguido, se define el parámetro de mode_cIass, en donde se estipula un

modo categórico, el cual tomará importancia en la fase de entrenamiento

delmodelo de la red neuronal por convolución. Finalmente, al establecer

como verdadero el parámetro shuffle, se genera la cargay agrupación de

las imágenes en lotes, de manera aleatoria. La figura24 presenta el resul-

tado obtenido al ejecutar esta línea de código.
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Línea 33:

En esta línea se utiliza el generador de entrenamiento mediante la fun-
ción datagen_flow_from_directory(), la cual sirve para cargar un conjunto 
de imágenes a partir de una dirección local. Adicionalmente, esta función 
permite dividir y agrupar las imágenes cargadas de acuerdo a su distribu-
ción en su carpeta local. Lo anterior, es fundamental en el entrenamiento 
de máquina supervisado, donde se hace necesario tener la referencia o 
identificador de cada uno de los datos de entrenamiento. El primer pará-
metro de esta función es la dirección donde se encuentran las imágenes. 
Posteriormente, se define un target_size de 80x80 píxeles, es decir, cada 
una de las imágenes de 256x256 se redimensionarán a 80x80. Además de 
esto, al establecer el parámetro color_mode como ‘rgb’, se indica que se 
tendrán imágenes a color en tres bandas (red, green, blue). El siguiente pa-
rámetro batch_size, tiene como finalidad, agrupar todas las imágenes en 
lotes de 32 imágenes, con sus respectivas etiquetas de identificación. Acto 
seguido, se define el parámetro de mode_class, en donde se estipula un 
modo categórico, el cual tomará importancia en la fase de entrenamiento 
del modelo de la red neuronal por convolución. Finalmente, al establecer 
como verdadero el parámetro shuffle, se genera la carga y agrupación de 
las imágenes en lotes, de manera aleatoria. La figura 24 presenta el resul-
tado obtenido al ejecutar esta línea de código. 

33. train_generator = train_datagen.flow_from_directory(ruta_dataset 

_entrenamiento,target_size=(80,80),color_mode='rgb',batch_size

=32,class_mode='categorical',shuffle=True) 

34. validation_generator = validation_datagen.flow_from_directory( 

ruta_dataset_validacion,target_size=(80,80),color_mode='rgb',b

atch_size=32,class_mode='categorical',shuffle=True) 

35. test_generator = test_datagen.flow_from_directory(ruta_dataset_ 

prueba,target_size=(80,80),color_mode='rgb',batch_size=1,class

_mode='categorical',shuffle=False) 

train_generator = train_datagen.flow_from_directory(ruta_dataset 

_entrenamiento,target_size=(80,80),color_mode='rgb',batch_size

=32,class_mode='categorical',shuffle=True) 



PreproceSomiento de! mógenes

Found 1540 images belonging to 3 classes.

Figuro 2q Resultado troin enerator.

Fuente: Autor.

Como sehaespecificado con anterioridad, el conjunto de datos de

entrenamiento tiene un total de1s4o imágenes distribuidas en3 clases.

Línea $zt:

valídatíon_generator validatíon datagen.flow from dírectory(

ruta dataset validacion,target size=(80,80),color mode='rgb',b

atch_síze=32,class_mode='categorícal',shuffle=True)

Esta línea de código, es prácticamente iguala la línea z3› tan solo con

una excepción, en este caso se cargan las imágenes que se utilizarán en

la validación del modelo. AI ejecutar este código, se debe presentar el

siguiente resultado (ver figurazs).

Found 360 images belonging to 3 classes.

figuraz5 Resultado vtifidotion enerator.

fuente: Sudor.

En este caso, al ejecutar esta línea se encontraron 36o imágenes

distribuidas en aviones, barcosy estadios.

Línea $$:

test generator test datagen.flow from directory(rata dataset

prueba,target size=(80,80),color mode='rgb',batch_size=l,class

mode='categorical',shuffle=False)

Finalmente, se deben cargar las imágenes que se utilizarán para la

etapa de evaluación del modelo. La línea 35› posee dos diferencias fren-

tea la carga de imágenes de entrenamientoy validación. La primera de

ellas es el número de imágenes por lote, en este se indica que, un lote

estará conformado por tan solo una imagen. La segunda, hace referen-

cia al orden de carga de imágenes, por lo tanto, al setear como falso
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Como se ha especificado con anterioridad, el conjunto de datos de 
entrenamiento tiene un total de 1540 imágenes distribuidas en 3 clases.

Línea 34:

Esta línea de código, es prácticamente igual a la línea 33, tan solo con 
una excepción, en este caso se cargan las imágenes que se utilizarán en 
la validación del modelo. Al ejecutar este código, se debe presentar el
siguiente resultado (ver figura 25).

     
En este caso, al ejecutar esta línea se encontraron 360 imágenes

distribuidas en aviones, barcos y estadios.

Línea 35:

Finalmente, se deben cargar las imágenes que se utilizarán para la 
etapa de evaluación del modelo. La línea 35, posee dos diferencias fren-
te a la carga de imágenes de entrenamiento y validación. La primera de 
ellas es el número de imágenes por lote, en este se indica que, un lote 
estará conformado por tan solo una imagen. La segunda, hace referen-
cia al orden de carga de imágenes, por lo tanto, al setear como falso 

test_generator = test_datagen.flow_from_directory(ruta_dataset_ 

prueba,target_size=(80,80),color_mode='rgb',batch_size=1,class

_mode='categorical',shuffle=False) 

validation_generator = validation_datagen.flow_from_directory( 

ruta_dataset_validacion,target_size=(80,80),color_mode='rgb',b

atch_size=32,class_mode='categorical',shuffle=True) 

Figura 24  Resultado train_generator. 
Fuente: Autor.

Figura 25 Resultado validation_generator. 
Fuente: Autor.
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este parámetro, las imágenes se cargan en el orden en que se encuen-

tran en las carpetas. De acuerdo con la figura 26, al ejecutar esta línea

de código, se encontraron un total de Roo imágenes prueba, es decir, 100

para cada una de las clases.

Found 300 images belonging to 3 classes.

Yigura z6 Resultndo test enerator.

Fuente: Autor.

Después de aplicar la fase de preprocesamiento de imágenes al con-

junto de datos utilizado en este libro, se da Iugara la presentación del mo-

delo de la red neuronal por convolución empleado en esta investigación.
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este parámetro, las imágenes se cargan en el orden en que se encuen-
tran en las carpetas. De acuerdo con la figura 26, al ejecutar esta línea
de código, se encontraron un total de 300 imágenes prueba, es decir, 100 
para cada una de las clases.

Después de aplicar la fase de preprocesamiento de imágenes al con-
junto de datos utilizado en este libro, se da lugar a la presentación del mo-
delo de la red neuronal por convolución empleado en esta investigación.

Figura 26 Resultado test_generator. 
Fuente: Autor.
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A lo largo de este capítulo, se explicarán las fases de diseño, compila-

cióny entrenamiento de un modelo de redes neuronales por convolución.

Para llevar esto acabo, se explicarán las distintas capas de este tipo de mo-

delosy loshiperparámetros de compilacióny de entrenamiento.

g.1 Diseño delModelo

Keras permite construir dos tipos de modelos de redes neuronales,

uno secuencialy uno funcional. El secuencial es el modelo más utilizado

debidoa que permite implementar fácilmente la arquitectura típica mul-

ticapa de una red neuronal donde las salidas de una capa representan las

entradas de la capa siguiente (Torres, J., 2018). El modelo funcional, ope-

ra como unaespecie de API donde el proceso de diseño del modelo es

más complejo, pero permite mayor flexibilidad para permitir arquitecturas

atípicas.
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Capítulo 4

Modelo de la Red Neuronal
por Convolución

     

A lo largo de este capítulo, se explicarán las fases de diseño, compila-
ción y entrenamiento de un modelo de redes neuronales por convolución.
Para llevar esto acabo, se explicarán las distintas capas de este tipo de mo-
delos y los hiperparámetros de compilación y de entrenamiento.

4.1	 Diseño del Modelo

Keras permite construir dos tipos de modelos de redes neuronales, 
uno secuencial y uno funcional. El secuencial es el modelo más utilizado 
debido a que permite implementar fácilmente la arquitectura típica mul-
ticapa de una red neuronal donde las salidas de una capa representan las 
entradas de la capa siguiente (Torres, J., 2018). El modelo funcional, ope-
ra como una especie de API donde el proceso de diseño del modelo es 
más complejo, pero permite mayor flexibilidad para permitir arquitecturas
atípicas.
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Un modelo secuencial de red neuronal está conformado por bloques

conectados en forma de tubería donde cada bloque implica aplicar una

funcióna los datos de entrada.Cada de uno de esos bloques es llamado

capa. Cada tipo de capa representa una función diferente que se le aplicaa

los datos de entrada. Keras dispone de un gran número decapas, dentro de

éstas se encuentran las típicas para diseñar una red neuronal convolucional:

capas de convolución de 1D,2Dy 3D, capas de pooling de 1D,2D, D usando

máximoo promedio, capas de dropout, capas de flatteny capas tipo dense.

g.1.1 Capas de convolución

Este tipo de capa permite aplicar un número específico de filtroso

kernelsa los datos de entrada mediante una operación de convolución,

es decir el kernel recorre todos losdatos de entraday en cada posición se

obtiene un valor correspondientea la media de losproductos elementoa

elemento delkernely del bloque seleccionado de losdatos (ver figura27)

El resultado de la aplicación de cada kernel tiene la misma dimensión de

losdatos de entraday habrá tantos resultados como filtros aplicados, por

ejemplo, en la figura 28 se puede observar la aplicación de kernelsa una

imagen de entraday como resultado se obtienen imágenes filtradas que

resaltan un patrón en función del kernel aplicado.

Figura27 Operación de convolución.

Fuente: https://end-to-end-mochine-Learning.teochabfe.com
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Un modelo secuencial de red neuronal está conformado por bloques 
conectados en forma de tubería donde cada bloque implica aplicar una
función a los datos de entrada.Cada de uno de esos bloques es llamado 
capa. Cada tipo de capa representa una función diferente que se le aplica a 
los datos de entrada. Keras dispone de un gran número de capas, dentro de 
éstas se encuentran las típicas para diseñar una red neuronal convolucional: 
capas de convolución de 1D, 2D y 3D, capas de pooling de 1D, 2D, 3D usando 
máximo o promedio, capas de dropout, capas de flatten y capas tipo dense.

4.1.1	 Capas de convolución

Este tipo de capa permite aplicar un número específico de filtros o 
kernels a los datos de entrada mediante una operación de convolución, 
es decir el kernel recorre todos los datos de entrada y en cada posición se 
obtiene un valor correspondiente a la media de los productos elemento a 
elemento del kernel y del bloque seleccionado de los datos (ver figura 27). 
El resultado de la aplicación de cada kernel tiene la misma dimensión de 
los datos de entrada y habrá tantos resultados como filtros aplicados, por 
ejemplo, en la figura 28 se puede observar la aplicación de 3 kernels a una 
imagen de entrada y como resultado se obtienen 3 imágenes filtradas que 
resaltan un patrón en función del kernel aplicado.

Figura 27 Operación de convolución. 
Fuente: https://end-to-end-machine-learning.teachable.com
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Figuro 28 Resultado de lo aplicación dey kernels.

Fuente: https://end-to-end-mochine-learning.teachobIe.com

En el proceso de construcción de una capa de convolución en Keras

se deben especificar algunos parámetros, como porejemplo el número de

filtrosa aplicar, el tamaño de esos filtros, el rellenoo no de los datos de

entrada (si se requiere que losdatos filtrados mantengan el mismo tamaño

que losde entrada, se debe aumentar en1 el tamaño de losdatos de entra-

da en cada una de susdimensiones, eso se hace rellenando de ceros como

sepuede veren la figura29)y la función de activación que es la operación

aplicadaa los datos después de la convolución (en la figura o se pueden

veralgunas funciones de activación).

0 0 0 0

56 139 85 0

54 84 128 0

0 13’1 99 70 129 127 0

0 80 97 11b ’69 134 0

0 104 12ó 123 95 130 0

0 0 0 0 0 0 0

Kernel

0 -1 0

-1 5 -l

0 -1 0

Figura z9 Relleno de laimagen de entrado.

Fuente: https://www.pyimageseorch.com/zo18/f2/$1/keros-conv2d-and-convolutionol-foyers/
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En el proceso de construcción de una capa de convolución en Keras 
se deben especificar algunos parámetros, como por ejemplo el número de 
filtros a aplicar, el tamaño de esos filtros, el relleno o no de los datos de 
entrada (si se requiere que los datos filtrados mantengan el mismo tamaño 
que los de entrada, se debe aumentar en 1 el tamaño de los datos de entra-
da en cada una de sus dimensiones, eso se hace rellenando de ceros como 
se puede ver en la figura 29) y la función de activación que es la operación 
aplicada a los datos después de la convolución (en la figura 30 se pueden 
ver algunas funciones de activación).

     
     

Figura 28 Resultado de la aplicación de 3 kernels. 
Fuente: https://end-to-end-machine-learning.teachable.com

Figura 29 Relleno de la imagen de entrada.
 Fuente: https://www.pyimagesearch.com/2018/12/31/keras-conv2d-and-convolutional-layers/
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Stpp

0!0 05 1!0 -6

Sigmoid

Figura o Funciones de activación.

Fuente: https:llwww.pyimagesearch.com/2o18/12/ 1Ikeras-convzd-and-convolutional-layers/

g.J.2 Capas pooling

Las capas pooling permiten reducir el tamaño de los datos filtrados

manteniendo el patrón resaltado por la operación de convolución, de esta

manera se Ilevaa cabo una abstracción jerárquicae iterativa de rasgos.

La reducción de datos se realiza mediante un agrupamiento empleando

principalmente el máximoo el promedio (en la figura $1 se puede veruna

operación pooling por máximo).
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4.1.2	 Capas pooling

Las capas poolíng permiten reducir el tamaño de los datos filtrados 
manteniendo el patrón resaltado por la operación de convolución, de esta 
manera se lleva a cabo una abstracción jerárquica e iterativa de rasgos.
La reducción de datos se realiza mediante un agrupamiento empleando 
principalmente el máximo o el promedio (en la figura 31 se puede ver una 
operación pooling por máximo).
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Figura 30 Funciones de activación. 
Fuente: https://www.pyimagesearch.com/2018/12/31/keras-conv2d-and-convolutional-layers/
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maximun

Figuro 1 Operación pooling por móximo.

Fuente: https://end-to-end-mochine-learning.teachable.com

4-*-3 Capas dropout

Dropout esuna técnica que permite regularizar la red neuronal evitan-

do el sobreajustey favoreciendo la generalización mediante la desactiva-

ción aleatoria de neuronas durante el proceso de aprendizaje (Srivastava,

N., et.al.,2O14). La inhabilitación de algunas neuronas obligaa que otras

neuronas deban intervenir para que la decisión final no se altere, esto im-

pide que cada decisión de la red no dependa específicamente de lospesos

de unas pocas neuronas. En Keras esta técnica se implementa mediante

una capa que durante el entrenamiento Ilevaa cero una cantidad de ele-

mentos de losdatos de entrada seleccionados aleatoriamente, la propor-

ción de datos llevadosa cero se pueden definir mediante un parámetro del

constructor de la capa (ver figura $2).
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4.1.3	 Capas dropout

Dropout es una técnica que permite regularizar la red neuronal evitan-
do el sobreajuste y favoreciendo la generalización mediante la desactiva-
ción aleatoria de neuronas durante el proceso de aprendizaje (Srivastava, 
N., et.al., 2014). La inhabilitación de algunas neuronas obliga a que otras 
neuronas deban intervenir para que la decisión final no se altere, esto im-
pide que cada decisión de la red no dependa específicamente de los pesos 
de unas pocas neuronas. En Keras esta técnica se implementa mediante 
una capa que durante el entrenamiento lleva a cero una cantidad de ele-
mentos de los datos de entrada seleccionados aleatoriamente, la propor-
ción de datos llevados a cero se pueden definir  mediante un parámetro del 
constructor de la capa (ver figura 32).

 

maximun

Figura 31 Operación pooling por máximo.
Fuente: https://end-to-end-machine-learning.teachable.com



RedeS Neuronnles Convolucionaies Usandoü erasy Acelerando con GPU

(a) Standard Neural Net (b) Afte applying dropout.

Figura $2 Oropout

Fuente (Srivostavo, N., et. ol., 2O1q}.

4.*.4 Capas flatten

Estas capas toman losresultados de la sección de deteccióny ex-

tracción automática de rasgosy los representa en una estructura unidi-

mensional concatenándolos todos en un único vector que se convertirá

en la entrada de una red neuronal convencional totalmente conectada

(ver figura 33)
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Fuente: https://end-to-end-mochine-Learning.teochabfe.com

Redes Neuronales Convolucionales Usando Keras y Acelerando con GPU

58

4.1.4	 Capas flatten

Estas capas toman los resultados de la sección de detección y ex-
tracción automática de rasgos y los representa en una estructura unidi-
mensional concatenándolos todos en un único vector que se convertirá 
en la entrada de una red neuronal convencional totalmente conectada
(ver figura 33).

     
       

     

(a) Standard Neural Net (b) Afte applying dropout.
Figura 32 Dropout 

Fuente (Srivastava, N., et. al., 2014).

Figura 33 Efecto de una capa flatten. 
Fuente: https://end-to-end-machine-learning.teachable.com
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4.1.g Capas dense

Modelo óe la Red Neuronnl por Convolución

Una capa dense correspondea una capa de una red neuronal conven-

cional totalmente conectada (ver figura34),seutilizan en la parte final de

una red neuronal convolucional, es decir en la sección donde se realiza la

clasificación en función de los rasgos identificadosy extraidos. Dentro de los

parámetros que se configuran en este tipo de capa está el número de neu-

ronasy la función de activación. Para el caso de un problema de clasificación

multiclase, una de las funciones de activación más utilizadas es Softmax. Esta

función es una generalización de una función logística que permite mapear

unvector n-dimensional (de logists)a la distribución de probabilidad sobreK

diferentes posibles salidas (ver figura 3s).

Flattening Output value

figura3‹^iemplo de cnpns dense.

Fuente: https://www.superd0t0science.com/blogs/convoJutionof-neurnl-networks-cnn-step-

-full-connection/

Figuro $y Funcións tmax.

Fuente: https://medium.com/dato-science-bootcamp/understond-the-so/tm••-function-in-minu-

tes-{3n596qie86d
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4.1.5	 Capas dense

Una capa dense corresponde a una capa de una red neuronal conven-
cional totalmente conectada (ver figura 34), se utilizan en la parte final de 
una red neuronal convolucional, es decir en la sección donde se realiza la 
clasificación en función de los rasgos identificados y extraidos. Dentro de los 
parámetros que se configuran en este tipo de capa está el número de neu-
ronas y la función de activación. Para el caso de un problema de clasificación 
multiclase, una de las funciones de activación más utilizadas es Softmax. Esta 
función es una generalización de una función logística que permite mapear 
un vector n-dimensional (de logists) a la distribución de probabilidad sobre K 
diferentes posibles salidas (ver figura 35).

     

Figura 34 Ejemplo de capas dense. 
Fuente: https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-

-full-connection/

Figura 35 Función softmax. 
Fuente: https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minu-

tes-f3a59641e86d
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q.1.6 Modelo para elcaso de estudio

Para darle solución al caso de estudio se plantea un modelo basado

en Burachonok (2017), el cual posee4 bloques de identificacióny extrac-

ción de rasgos,y un bloque de clasificación. Los bloques de identificacióny

extracción de rasgos están conformados por capas: convolución, pooling

por máximoy dropout. Todas las capas de pooling hacen un agrupamiento

por ventanas de zx2 de tal forma que el tamañio de la imagen filtrada se

reducea la mitad en cada una de susdimensiones, de esta manera median-

te4 capas de dropout se reducen losdatos de entrada de una dimensión

de 8ox8o elementosa sx5 elementos. Todas las capas de dropout de este

bloque se configuran para que inhabiliten el25% de las neuronas duran-

te el proceso de entrenamiento. En cuantoa las capas de convolución se

configuran de tal forma que posean una función de activación ReLUy un

tamaño de kernel de x3 para IaS primeras capasy de 1ox1O para la últi-

ma capa. El bloque de clasificación se conforma de una capa flatten que le

suministra las entradasa una capa dense de $12neuronasy una función de

activación ReLU, continúa con una capa dropout que inhabilitad la mitad

de las neuronas en el proceso de entrenamientoy finalmente una capa

dense de neuronasy una función de activación softmax que indica cuál

de las categorías tiene mayor probabilidad (ver figura 6).

Redes Neuronales Convolucionales Usando Keras y Acelerando con GPU

60

4.1.6	 Modelo para el caso de estudio

Para darle solución al caso de estudio se plantea un modelo basado 
en Burachonok (2017), el cual posee 4 bloques de identificación y extrac-
ción de rasgos, y un bloque de clasificación. Los bloques de identificación y
extracción de rasgos están conformados por 3 capas: convolución, pooling 
por máximo y dropout. Todas las capas de pooling hacen un agrupamiento 
por ventanas de 2x2 de tal forma que el tamaño de la imagen filtrada se 
reduce a la mitad en cada una de sus dimensiones, de esta manera median-
te 4 capas de dropout se reducen los datos de entrada de una dimensión 
de 80x80 elementos a 5x5 elementos. Todas las capas de dropout de este 
bloque se configuran para que inhabiliten el 25% de las neuronas duran-
te el proceso de entrenamiento. En cuanto a las capas de convolución se 
configuran de tal forma que posean una función de activación ReLU y un 
tamaño de kernel de 3x3 para las 3 primeras capas y de 10x10 para la últi-
ma capa. El bloque de clasificación se conforma de una capa flatten que le 
suministra las entradas a una capa dense de 512 neuronas y una función de 
activación ReLU, continúa con una capa dropout que inhabilitad la mitad 
de las neuronas en el proceso de entrenamiento y finalmente una capa 
dense de 3 neuronas y una función de activación softmax que indica cuál 
de las 3 categorías tiene mayor probabilidad (ver figura 36).
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IMÁGENES

AVIÓN BARCO ESTADIO

Figuro y6 Modelo de redneuronal convolucional paro ef caso de estudio.

Fuente: Autor.
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IMÁGENES

AVIÓN BARCO ESTADIO
Figura 36 Modelo de red neuronal convolucional para el caso de estudio. 

Fuente: Autor.
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4.*.7 Procedimiento para diseñar el modelo

El siguiente fragmento de código fuente, tiene como objetivo la crea-

cióny el diseño de la red neuronal descrita arriba para darle solución al

problema de clasificación del caso de estudio.

36. num_classes 3

37. model = Sequential()

38. model.add(Conv2D(fílters=32,kernel_síze=(3,3),padding='same',

input_shape=(80, 80, 3), activation='relu'))

39. model.add(MaxPooling2D(pool_size=(2, 2))) #40x40

40. model.add(Dropout(rate=0.25))

41. model.add(Conv2D(fílters=32,kernel_síze=(3,3), paddíng='same',

activation='relu'))

42. model.add(MaxPooling2D(pool size=(2, 2))) #20x20

43. model.add(Dropout(rate=0.25))

44. model.add(Conv2D(fílters=32,kernel size=(3,3), padding='same',

actívatíon='relu'))

45. model.add(MaxPooling2D(pool_size=(2, 2))) #10xl0

46. model.add(Dropout(rate=0.25))

47. model.add(Conv2D(fílters=32,kernel size=(10,10), paddíng='same',

activation='relu'))

48. model.add(MaxPooling2D(pool size=(2, 2))) #5x5

49. model.add(Dropout(rate=0.25))

50. model.add(Flatten())

51. model.add(Dense(units=512, activation='relu'))

52. model.add(Dropout(rate=0.5))

53. model.add(Dense(units=num classes, activation='softmax'))

Línea $6:

num_classes 3

Esta línea tan solo define la cantidad de clases finales de nuestro con-

junto de imágenes, por lo tanto, ese valor hace referenciaa aviones, bar-

cos estadio, siendo en total clases.

Redes Neuronales Convolucionales Usando Keras y Acelerando con GPU

62

     4.1.7	 Procedimiento para diseñar el modelo

El siguiente fragmento de código fuente, tiene como objetivo la crea-
ción y el diseño de la red neuronal descrita arriba para darle solución al 
problema de clasificación del caso de estudio.

Línea 36:

Esta línea tan solo define la cantidad de clases finales de nuestro con-
junto de imágenes, por lo tanto, ese valor hace referencia a aviones, bar-
cos y estadio, siendo en total 3 clases.

36.  num_classes = 3 

37.  model = Sequential() 

38.  model.add(Conv2D(filters=32,kernel_size=(3,3),padding='same', 

               input_shape=(80, 80, 3), activation='relu')) 

39.  model.add(MaxPooling2D(pool_size=(2, 2))) #40x40 

40.  model.add(Dropout(rate=0.25)) 

41.  model.add(Conv2D(filters=32,kernel_size=(3,3), padding='same', 

activation='relu')) 

42.  model.add(MaxPooling2D(pool_size=(2, 2))) #20x20 

43.  model.add(Dropout(rate=0.25)) 

44.  model.add(Conv2D(filters=32,kernel_size=(3,3), padding='same',  

activation='relu')) 

45. model.add(MaxPooling2D(pool_size=(2, 2))) #10x10 

46. model.add(Dropout(rate=0.25)) 

47. model.add(Conv2D(filters=32,kernel_size=(10,10), padding='same',  

activation='relu')) 

48. model.add(MaxPooling2D(pool_size=(2, 2))) #5x5 

49. model.add(Dropout(rate=0.25)) 

50. model.add(Flatten()) 

51. model.add(Dense(units=512, activation='relu')) 

52. model.add(Dropout(rate=0.5)) 

53. model.add(Dense(units=num_classes, activation='softmax')) 

num_classes = 3 



model = Sequential()

Modelo óe la Red Neuronnl por Convolución

En esta línea se inicializa la variable model, como unmodelo secuen-

cial de Keras, mediante la función Sequential(). Un modelo secuencial, sig-

nifica que las capas de dicho modelo seañadirán secuencialmente, es decir

una tras otray este será su orden definitivo.

líneas 8-go:

model.add(Conv2D(filters=32,kernel size=(3,3),padding='same',

input shape=(80, 80, 3), activation='relu'))

model.add(MaxPoolíng2D(pool_size=(2, 2))) #40x40

model.add(Dropout(rate=0.25))

Enlosmodelos de redes neuronales por convolución, se deben esta-

blecer bloques de extracción de característicasy es precisamente en estas

líneas que se realiza esta tarea. Para añadir cualquier tipo de capa en un

modelo secuencial se utiliza la función add(), la cual recibe por parámetros

la capa que se desea agregar.

Como primera instancia, se añade una capa de convolución, donde se

específica que se aplicaran un total de g2 filtros mediante el parámetro fil-

ters, los cuales se aplicaran mediante una ventana de3x3 píxeles, es decir

esta ventana recorrerá píxela píxel cada imagen aplicando los filtros. El

parámetro padding se configura en ‘same’ para añadir un borde de ceros

a la imagen de entrada con el propósito de que la imagen resultante de la

convolución tenga el mismo tamañio que la de entrada. Por lo general, en

la primera capa que se agrega, se debe establecer la dimensión de entrada

del modelo, en este caso mediante el parámetro input shape se estipula

una dimensión de 8ox8o píxeles, con tres canales de color (R, G, B). Fina-

lizando la capa de convolución se define la función ReLU como función de

activación.
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Línea 37:

     
En esta línea se inicializa la variable model, como un modelo secuen-

cial de Keras, mediante la función Sequential(). Un modelo secuencial, sig-
nifica que las capas de dicho modelo se añadirán secuencialmente, es decir 
una tras otra y este será su orden definitivo.

Líneas 38-40:

En los modelos de redes neuronales por convolución, se deben esta-
blecer bloques de extracción de características y es precisamente en estas 
líneas que se realiza esta tarea. Para añadir cualquier tipo de capa en un 
modelo secuencial se utiliza la función add(), la cual recibe por parámetros 
la capa que se desea agregar.

Como primera instancia, se añade una capa de convolución, donde se 
específica que se aplicaran un total de 32 filtros mediante el parámetro fil-
ters, los cuales se aplicaran mediante una ventana de 3x3 píxeles, es decir 
esta ventana recorrerá píxel a píxel cada imagen aplicando los filtros. El 
parámetro padding se configura en ‘same’ para añadir un borde de ceros 
a la imagen de entrada con el propósito de que la imagen resultante de la 
convolución tenga el mismo tamaño que la de entrada. Por lo general, en 
la primera capa que se agrega, se debe establecer la dimensión de entrada 
del modelo, en este caso mediante el parámetro input_shape se estipula 
una dimensión de 80x80 píxeles, con tres canales de color (R, G, B). Fina-
lizando la capa de convolución se define la función ReLU como función de 
activación.

model = Sequential() 

model.add(Conv2D(filters=32,kernel_size=(3,3),padding='same', 

               input_shape=(80, 80, 3), activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) #40x40 

model.add(Dropout(rate=0.25)) 
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Habitualmente, después de agregar una capa de convolución, se adi-

ciona una capa de pooling, con el fin de reducir las característicasy mejorar

este proceso de extracción. Para efectos de este modelo, se añade una

capa de max pooling, mediante la función MaxpoolingzD(), dado que, se

contemplan las imágenes como surepresentación matricial en z dimen-

siones. El parámetro pool size, el cual se define comO 2x2píxeles, es la

ventana de reducción que se aplicará.

Finalmente, para cerrar este bloque de extracción de característica,

se agrega una capa de regulación mediante la función Dropout(). Para esta

capa, se dispone una tasa de desconexión de neuronas delzs%. Lo ante-

rior, al inicializar el parámetro rate en un o.2ç.

Líneas q1-z¡6:

model.add(Conv2D(filters=32,kernel size=(3,3), padding='same',

actívatíon='relu'))

model.add(MaxPoolíng2D(pool_síze=(2, 2))) #20x20

model.add(Dropout(rate=0.25))

model.add(Conv2D(fílters=32,kernel_síze=(3,3), paddíng='same',

activation='relu'))

model.add(MaxPoolíng2D(pool_síze=(2, 2))) #l0xl0

model.add(Dropout(rate=0.25))

En las líneas41a la46, seagregan otros dos bloques de extracción

de característicasa nuestro modelo de red neuronal por convolución.

Sin embargo, se presenta un cambio,y se puede observar en la primera

capa de convolución agregada, como yasehadeterminado la dimensión

entrada, no es necesario volvera deflnirla en estas capas de convolución.

Se puede observar que, estos bloques siguen exactamente el mismo pa-

tróny parámetros que se presentan en el bloque agregado anteriormente.
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Habitualmente, después de agregar una capa de convolución, se adi-
ciona una capa de pooling, con el fin de reducir las características y mejorar 
este proceso de extracción. Para efectos de este modelo, se añade una 
capa de max pooling, mediante la función Maxpooling2D(), dado que, se 
contemplan las imágenes como su representación matricial en 2 dimen-
siones. El parámetro pool_size, el cual se define como 2x2 píxeles, es la 
ventana de reducción que se aplicará.

Finalmente, para cerrar este bloque de extracción de característica, 
se agrega una capa de regulación mediante la función Dropout(). Para esta 
capa, se dispone una tasa de desconexión de neuronas del 25%. Lo ante-
rior, al inicializar el parámetro rate en un 0.25.

Líneas 41-46:

En las líneas 41 a la 46, se agregan otros dos bloques de extracción 
de características a nuestro modelo de red neuronal por convolución. 
Sin embargo, se presenta un cambio, y se puede observar en la primera 
capa de convolución agregada, como ya se ha determinado la dimensión
entrada, no es necesario volver a definirla en estas capas de convolución.
Se puede observar que, estos bloques siguen exactamente el mismo pa-
trón y parámetros que se presentan en el bloque agregado anteriormente.

model.add(Conv2D(filters=32,kernel_size=(3,3), padding='same', 

activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) #20x20 

model.add(Dropout(rate=0.25)) 

model.add(Conv2D(filters=32,kernel_size=(3,3), padding='same',  

activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) #10x10 

model.add(Dropout(rate=0.25)) 



líneas qy-qg:
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model.add(Conv2D(filters=32,kernel size=(10,10), padding='same',

activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2))) #5x5

model.add(Dropout(rate=0.25))

Estas líneas de código permiten agregar nuestro último bloque de ex-

tracción de características. No obstante, en la capa de convolución se pre-

senta una variación frentea los bloques anteriores. Este cambio consiste

en pasar de un tamaño de kernel de 2x2 píxelesa 1Ox1O píxeles, es decir se

agrandó el tamaño de la ventana que recorre la imagen píxela píxel apli-

cando losfiltros. Es importe mencionar que cuando es necesario extraer

las características de patrones en imágenes complejas, se recomienda uti-

lizar varios de estos bloques.

model.add(Flatten())

model.add(Dense(units=512, activation='relu'))

model.add(Dropout(rate=0.5))

model.add(Dense(uníts=num_classes, activation='softmax'))

Enla parte final de los modelos de redes neuronales por convolucióny

posteriora los bloques de extracción de características, se debe presentar

lo que se denomina como la capa totalmente conectada, la cual es la capa

clasificadora del modelo. Como primera instancia de estas líneas de código,

se agrega una capa mediante la función Flatten() para “aplanar” los datos

que se han obtenido con los bloques de extracción de características, es de-

cir que estos datos se conviertena un arreglo unidimensional. Una vez se

realiza este proceso, se añade una capa que nos permite tener un número

determinado de neuronas ocultas. Lo anterior, se logra mediante la función

Dense(), especificando un total de ç12 neuronas en el parámetro units. Pos-

teriormente, se agrega otra capa de Dropout con una tasa de desconexión

aleatoria entre neuronas delço%. Finalmente, todos los modelos deben fina-

lizar con una capa de neuronas ocultas, donde esenúmero de neuronas está

determinado por número de clases que se tiene, como sepuede obs
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Líneas 47-49:

Estas líneas de código permiten agregar nuestro último bloque de ex-
tracción de características. No obstante, en la capa de convolución se pre-
senta una variación frente a los bloques anteriores. Este cambio consiste 
en pasar de un tamaño de kernel de 2x2 píxeles a 10x10 píxeles, es decir se 
agrandó el tamaño de la ventana que recorre la imagen píxel a píxel apli-
cando los filtros. Es importe mencionar que cuando es necesario extraer 
las características de patrones en imágenes complejas, se recomienda uti-
lizar varios de estos bloques.

Líneas 50-53:

En la parte final de los modelos de redes neuronales por convolución y 
posterior a los bloques de extracción de características, se debe presentar 
lo que se denomina como la capa totalmente conectada, la cual es la capa 
clasificadora del modelo. Como primera instancia de estas líneas de código, 
se agrega una capa mediante la función Flatten() para “aplanar” los datos 
que se han obtenido con los bloques de extracción de características, es de-
cir que estos datos se convierten a un arreglo unidimensional. Una vez se 
realiza este proceso, se añade una capa que nos permite tener un número 
determinado de neuronas ocultas. Lo anterior, se logra mediante la función 
Dense(), especificando un total de 512 neuronas en el parámetro units. Pos-
teriormente, se agrega otra capa de Dropout con una tasa de desconexión 
aleatoria entre neuronas del 50%. Finalmente, todos los modelos deben fina-
lizar con una capa de neuronas ocultas, donde ese número de neuronas está 
determinado por número de clases que se tiene, como se puede observar 

model.add(Conv2D(filters=32,kernel_size=(10,10), padding='same',  

activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) #5x5 

model.add(Dropout(rate=0.25)) 

model.add(Flatten()) 

model.add(Dense(units=512, activation='relu')) 

model.add(Dropout(rate=0.5)) 

model.add(Dense(units=num_classes, activation='softmax')) 
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en la última línea, el parámetro units de la capa Dense(), está definido por

la variable num_cIasses, la cual almacena el número de clases de nuestro

conjunto de datos. Sin embargo,a lo largo de las capas agregadas se utili-

zaba la misma función de activación manteniendo homogeneidad en este

aspecto, pero en este caso se utiliza la función de activación Softmax, dado

que, de acuerdo con (Restrepo Rodríguez, A., et al., 2018), esta función es la

más utilizada en la capa de saliday permite realizar una representación de la

distribución categórica necesaria para generar la clasificación.

4.2 COmpilación delModelo

Finalizado el proceso de construcción del modelo donde sedefinió

su arquitecturay configuración capaa capa, se continúa con la fase de

compilación. La compilación de un modelo de redneuronal convolucional

en keras consiste en configurar el proceso de entrenamiento mediante la

definición de una función de pérdida, un optimizadory unas métricas.

g.z.1 Función de pérdida

Lafunción de pérdida define la forma como la red puede medir su ren-

dimiento en el proceso de entrenamiento con el fin de poder dirigir éste en

la mejor dirección. En otras palabras, la función de pérdida permite medir

“que tanIejos” se encuentra una predicción del objetivo real.

Keras cuenta con las siguientes funciones de pérdida: mean

squared error, mean absolute error, mean absolute percentage error,

mean squared logarithmic error, squared hinge, hinge, categorical hin-

ge, logcosh, categorical crossentropy, sparse categorical crossentropy,

binary crossentropy, kullback leibler divergence, poisson, cosine proxi-

mity, is_categoricaI_crossentropy.

En los problemas similares al caso de estudio de este libro, es decir

problemas de clasificación multiclase con etiqueta sencilla la función de

pérdida siempre debería ser la entropía categórica cruzada (categorical

crossentropy) ya que ésta minimiza la distancia entre las distribuciones

de probabilidad producidas por la red y la verdadera distribución de los

ob”etivos.
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en la última línea, el parámetro units de la capa Dense(), está definido por 
la variable num_classes, la cual almacena el número de clases de nuestro 
conjunto de datos. Sin embargo, a lo largo de las capas agregadas se utili-
zaba la misma función de activación manteniendo homogeneidad en este 
aspecto, pero en este caso se utiliza la función de activación Softmax, dado 
que, de acuerdo con (Restrepo Rodríguez, A., et al., 2018), esta función es la 
más utilizada en la capa de salida y permite realizar una representación de la 
distribución categórica necesaria para generar la clasificación.

4.2	 Compilación del Modelo

Finalizado el proceso de construcción del modelo donde se definió 
su arquitectura y configuración capa a capa, se continúa con la fase de 
compilación. La compilación de un modelo de red neuronal convolucional 
en keras consiste en configurar el proceso de entrenamiento mediante la 
definición de una función de pérdida, un optimizador y unas métricas.

4.2.1	 Función de pérdida

La función de pérdida define la forma como la red puede medir su ren-
dimiento en el proceso de entrenamiento con el fin de poder dirigir éste en 
la mejor dirección. En otras palabras, la función de pérdida permite medir 
“que tan lejos” se encuentra una predicción del objetivo real.

Keras cuenta con las siguientes funciones de pérdida: mean_
squared_error, mean_absolute_error, mean_absolute_percentage_error, 
mean_squared_logarithmic_error, squared_hinge, hinge, categorical_hin-
ge, logcosh, categorical_crossentropy, sparse_categorical_crossentropy, 
binary_crossentropy, kullback_leibler_divergence, poisson, cosine_proxi-
mity, is_categorical_crossentropy.

En los problemas similares al caso de estudio de este libro, es decir 
problemas de clasificación multiclase con etiqueta sencilla la función de 
pérdida siempre debería ser la entropía categórica cruzada (categorical_
crossentropy) ya que ésta minimiza la distancia entre las distribuciones
de probabilidad producidas por la red y la verdadera distribución de los 
objetivos.



4.2.2 Optimizador
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El optimizador es el mecanismoa través del cual la red se actualiza

basado en la función de pérdida. Específicamente el optimizador actualiza

los parámetros de la red con el fin de minimizar (o en algunos casos maxi-

mizar) la función de pérdida. Los algoritmos de optimización se pueden

agrupar en dos categorías:

• Los de primer orden, donde seencuentran todos aquellos algorit-

mos que minimizano maximizan la función de pérdida usando susvalores

gradientes con respectoa los parámetros de la red. La derivada de pri-

mer orden informa si la función incrementao decrementa en un punto es-

pecífico (la derivada es una línea recta tangentea la función en el punto

determinado). El algoritmo más usado en esta categoría es el gradiente

descendente.

• Los de segundo orden, donde seencuentran todos losalgoritmos

que utilizan la derivada de segundo orden (Hessian) para minimizaro maxi-

mizar la función de pérdida. La segunda derivada informa sobre la curvatu-

ra de la función. Hessian es una matriz conformada por las derivadas par-

ciales de segundo orden.

Keras cuenta con las siguientes funciones de optimización: SGD,

RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam.

4.2.Ç Métricas

En Keras una métrica es una función que permite medir el desempeño

delmodelo; se comporta de forma similara las funciones de pérdida con

la diferencia que las métricas se emplean para evaluar, pero no para ajus-

ta el proceso de entrenamiento. Keras cuenta con las siguientes métricas:

accuracy, binary accuracy, categorical accuracy, sparse categorical ac-

curacy, top k categorical accuracy, sparse top k categorical accuracy,

cosine proximity, también secuenta con la opción de clonar métricaso de

definir sus propias métricas.
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4.2.2	 Optimizador

El optimizador es el mecanismo a través del cual la red se actualiza 
basado en la función de pérdida. Específicamente el optimizador actualiza 
los parámetros de la red con el fin de minimizar (o en algunos casos maxi-
mizar) la función de pérdida. Los algoritmos de optimización se pueden 
agrupar en dos categorías:

• Los de primer orden, donde se encuentran todos aquellos algorit-
mos que minimizan o maximizan la función de pérdida usando sus valores 
gradientes con respecto a los parámetros de la red. La derivada de pri-
mer orden informa si la función incrementa o decrementa en un punto es-
pecífico (la derivada es una línea recta tangente a la función en el punto 
determinado). El algoritmo más usado en esta categoría es el gradiente 
descendente.

• Los de segundo orden, donde se encuentran todos los algoritmos 
que utilizan la derivada de segundo orden (Hessian) para minimizar o maxi-
mizar la función de pérdida. La segunda derivada informa sobre la curvatu-
ra de la función. Hessian es una matriz conformada por las derivadas par-
ciales de segundo orden.

Keras cuenta con las siguientes funciones de optimización: SGD, 
RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam.

4.2.3	 Métricas

En Keras una métrica es una función que permite medir el desempeño 
del modelo; se comporta de forma similar a las funciones de pérdida con 
la diferencia que las métricas se emplean para evaluar, pero no para ajus-
ta el proceso de entrenamiento. Keras cuenta con las siguientes métricas: 
accuracy, binary_accuracy, categorical_accuracy, sparse_categorical_ac-
curacy, top_k_categorical_accuracy, sparse_top_k_categorical_accuracy, 
cosine_proximity, también se cuenta con la opción de clonar métricas o de 
definir sus propias métricas.
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z}.2.zt Procedimiento de compilación delmodelo

Lasiguiente línea de código se utiliza para llevara cabo la compilación

delmodelo creado anteriormente.

54. model.compile(loss='categorícal_crossentropy',optímízer='adam',

metrics=['accuracy'])

Enesta línea se hace uso de la función compile(), propia de los mode-

los de Keras. Los parámetros de esta función son los siguiente:

• loss, permite definir cuál función de pérdida se utilizará en fase de

entrenamientoy de prueba. En este caso se implementa entropía

categórica cruzada, mediante la palabra reservada ‘categoricaI_

crossentropy. Es acá donde se debe referenciar el proceso de

carga de imágenes, donde se estableció un modo de clase cate

górico, precisamente para utilizar este tipo de función de pérdida.

• optimizer, hace referencial optimizador utilizado para evaluar

cuantoy como corregir el pesoa lo largo del aprendizaje, es decir

el ritmo de aprendizaje. En este caso se utiliza el optimizador Adam.

• metrics, como sunombre en inglés lo indica, son las métricas que

se utilizarán para monitorear el proceso de entrenamiento, sin

embargo no presenta ningún tipo de incidencia en este.

4-3 Entrenamiento delModelo

Enel aprendizaje de máquina supervisado, el entrenamiento de una red

neuronal consiste en la actualización iterativa de sus pesos con el fin de que

la salida predicha sea similara la salida esperada definida por un conjunto de

datos de entrenamiento. El entrenamiento de una red neuronal se realiza

por épocas (epoch), que consisten en ciclos en los cuales se utiliza por com-

pleto el conjunto de datos de entrenamiento. Se debe aclarar que, aunque

en cada época el conjunto de datos de entrenamiento se utiliza por comple-

to la forma como sesuministraa la red neuronal es particionado en bloques

(batch), de tal forma que al final de cada bloque seactualizan losparámetros

de la red teniendo en cuenta la función de perdiday el optimizador definido

durante la compilación delmodelo.
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4.2.4	 Procedimiento de compilación del modelo

La siguiente línea de código se utiliza para llevar a cabo la compilación 
del modelo creado anteriormente.

En esta línea se hace uso de la función compile(), propia de los mode-
los de Keras. Los parámetros de esta función son los siguiente:

• loss, permite definir cuál función de pérdida se utilizará en fase de
	 entrenamiento y de prueba. En este caso se implementa entropía 
	 categórica cruzada, mediante la palabra reservada ‘categorical_
	 crossentropy’. Es acá donde se debe referenciar el proceso de 
	 carga de imágenes, donde se estableció un modo de clase cate
	 górico, precisamente para utilizar este tipo de función de pérdida.
•	optimizer, hace referencial optimizador utilizado para evaluar
	 cuanto y como corregir el peso a lo largo del aprendizaje, es decir 
	 el ritmo de aprendizaje. En este caso se utiliza el optimizador Adam.
•	metrics, como su nombre en inglés lo indica, son las métricas que 
	 se utilizarán para monitorear el proceso de entrenamiento, sin 
	 embargo no presenta ningún tipo de incidencia en este.

4.3	 Entrenamiento del Modelo

En el aprendizaje de máquina supervisado, el entrenamiento de una red 
neuronal consiste en la actualización iterativa de sus pesos con el fin de que 
la salida predicha sea similar a la salida esperada definida por un conjunto de 
datos de entrenamiento. El entrenamiento de una red neuronal se realiza 
por épocas (epoch), que consisten en ciclos en los cuales se utiliza por com-
pleto el conjunto de datos de entrenamiento. Se debe aclarar que, aunque 
en cada época el conjunto de datos de entrenamiento se utiliza por comple-
to la forma como se suministra a la red neuronal es particionado en bloques 
(batch), de tal forma que al final de cada bloque se actualizan los parámetros 
de la red teniendo en cuenta la función de perdida y el optimizador definido 
durante la compilación del modelo.

54. model.compile(loss='categorical_crossentropy',optimizer='adam', 

metrics=['accuracy']) 
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Keras dispone de un conjunto de funciones denominadas callback que

se aplican en un estado determinado de entrenamiento con el fin de moni-

torearloo de intervenirlo para mejorar su eficiencia y/o calidad. Dentro de

las funciones callback más utilizadas están:

• Detección temprana (EarlyStopping) que como sunombre loindica

detiene el entrenamiento cuando un parámetro monitoreado haya dejado

de mejorar, evitando asíel sobreentrenamiento.

• Punto de chequeo (ModelCheckpoint), que guarda el modelo

después de cada época.

• Reducción de tasa (ReduceLROnPlateau), que reduce la tasa de

aprendizaje cuando una métrica ha dejado de mejorar.

• Registroa CSV (CSVLogger), que envíaa un archivo CSV losresulta-

dos de cada época.

• Monitoreo remoto (RemoteMonitor), que envía toda la informa-

ción de loseventos delentrenamientoa un servidor.

4-$.1 Procedimiento para entrenar elmodelo

A continuación, se presenta el código fuente para entrenar el mode-

lode la red neuronal por convolución compilado anteriormente, además

de presentar un par de gráficas asociadasa este proceso.

55. early stop = EarlyStopping(monitor='val_loss', mode='min',

verbose=1, patience=5)

56. check point= ModelCheckpoint(filepath="ruta/local/model.h5”,

monitor='val loss', save best only=True, verbose=1,mode='min')

57. callbacks = [early stop, check point]

58. step_size_train=train_generator.n/train_generator.batch_size

59. step size valídatíon=valídatíon_generator.n/validatíon_

generator.batch_size

60. hîstory=model.fit_generator(generator=train_generator,steps_

per epoch= step size train,validation data = validation

generator,valîdatîon_steps= step_sîze_valîdatîon,epochs=32,

callbacks=callbacks)

61. pdt.plot(hístory.hístory['acc'])

62. pdt.plot(history.history['val acc'])
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Keras dispone de un conjunto de funciones denominadas callback que 
se aplican en un estado determinado de entrenamiento con el fin de moni-
torearlo o de intervenirlo para mejorar su eficiencia y/o calidad. Dentro de 
las funciones callback más utilizadas están:

•	 Detección temprana (EarlyStopping) que como su nombre lo indica 
detiene el entrenamiento cuando un parámetro monitoreado haya dejado 
de mejorar, evitando así el sobreentrenamiento.

•	 Punto de chequeo (ModelCheckpoint), que guarda el modelo
después de cada época.

•	 Reducción de tasa (ReduceLROnPlateau), que reduce la tasa de 
aprendizaje cuando una métrica ha dejado de mejorar.

•	 Registro a CSV (CSVLogger), que envía a un archivo CSV los resulta-
dos de cada época.

•	 Monitoreo remoto (RemoteMonitor), que envía toda la informa-
ción de los eventos del entrenamiento a un servidor.

4.3.1	 Procedimiento para entrenar el modelo

     A continuación, se presenta el código fuente para entrenar el mode-
lo de la red neuronal por convolución compilado anteriormente, además 
de presentar un par de gráficas asociadas a este proceso.

55. early_stop = EarlyStopping(monitor='val_loss', mode='min', 

verbose=1, patience=5) 

56. check_point= ModelCheckpoint(filepath="ruta/local/model.h5",  

monitor='val_loss', save_best_only=True, verbose=1,mode='min') 

57. callbacks = [early_stop, check_point] 

58. step_size_train=train_generator.n/train_generator.batch_size 

59. step_size_validation=validation_generator.n/validation_ 

generator.batch_size 

60. history=model.fit_generator(generator=train_generator,steps_ 

per_epoch= step_size_train,validation_data = validation_ 

generator,validation_steps= step_size_validation,epochs=32, 

callbacks=callbacks) 

61. plt.plot(history.history['acc']) 

62. plt.plot(history.history['val_acc']) 

63. plt.title('model accuracy') 

64. plt.ylabel('accuracy') 

65. plt.xlabel('epoch') 

66. plt.legend(['train', 'test'], loc='upper left') 

67. plt.show() 

68. plt.plot(history.history['loss']) 

69. plt.plot(history.history['val_loss']) 
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63. pdt.title('model accuracy')

64. pdt.ylabel('accuracy')

65. pdt.xlabel('epoch')

66. pdt.legend(['train', 'test'j, loc='upper left')

67. pdt.show()

68. pdt.plot(history.history['loss'j)

69. pdt.plot(hístory.hístory['val_loss'j)

70. pdt.title('model loss')

71. pdt.ylabel('loss')

72. pdt.xlabel('epoch')

73. pdt.legend(['train', 'test'), loc='upper left')

74. pdt.show()

Líneas çç-57•-

early stop EarlyStopping(monitor='val loss', mode='min',verbose=1,

patience=5)

check point= ModelCheckpoint(filepath="ruta/local/model.h5",

monitor='val loss', save best_only=True, verbose=1,mode='min')

callbacks = [early_stop, check_poíntj

En estas líneas de código se realizar la declaración de las funciones

callbacky se consolidan en una Iista para ser invocada durante el entrena-

miento delmodelo. Primero, se define la variable early stop, siendo igua-

ladaa la función EarlyStopping(), la cual como sunombre lo indica, genera

una detención temprana en el entrenamiento del modelo, de acuerdoa

la función de pérdidao las métricas establecidas. Sus argumentos son los

siguiente:

• monitor, hace referenciaa la variable que se vaa monitoreary de

acuerdoa esa variable se lanzará la acción de detención, en este

caso se monitorea el valor de la función de pérdida obtenido

iteración a iteración en el proceso de validación, mediante el

conjunto de datos destinado para este proceso.
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Líneas 55-57:

En estas líneas de código se realizar la declaración de las funciones 
callback y se consolidan en una lista para ser invocada durante el entrena-
miento del modelo. Primero, se define la variable early_stop, siendo igua-
lada a la función EarlyStopping(), la cual como su nombre lo indica, genera 
una detención temprana en el entrenamiento del modelo, de acuerdo a 
la función de pérdida o las métricas establecidas. Sus argumentos son los 
siguiente:

•	 monitor, hace referencia a la variable que se va a monitorear y de 
	 acuerdo a esa variable se lanzará la acción de detención, en este 
	 caso se monitorea el valor de la función de pérdida obtenido
	 iteración a iteración en el proceso de validación, mediante el
	 conjunto de datos destinado para este proceso.

early_stop = EarlyStopping(monitor='val_loss', mode='min',verbose=1, 

patience=5) 

check_point= ModelCheckpoint(filepath="ruta/local/model.h5",  

monitor='val_loss', save_best_only=True, verbose=1,mode='min') 

callbacks = [early_stop, check_point] 

70. plt.title('model loss') 

71. plt.ylabel('loss') 

72. plt.xlabel('epoch') 

73. plt.legend(['train', 'test'], loc='upper left') 

74. plt.show() 

55. early_stop = EarlyStopping(monitor='val_loss', mode='min', 

verbose=1, patience=5) 

56. check_point= ModelCheckpoint(filepath="ruta/local/model.h5",  

monitor='val_loss', save_best_only=True, verbose=1,mode='min') 

57. callbacks = [early_stop, check_point] 

58. step_size_train=train_generator.n/train_generator.batch_size 

59. step_size_validation=validation_generator.n/validation_ 

generator.batch_size 

60. history=model.fit_generator(generator=train_generator,steps_ 

per_epoch= step_size_train,validation_data = validation_ 

generator,validation_steps= step_size_validation,epochs=32, 

callbacks=callbacks) 

61. plt.plot(history.history['acc']) 

62. plt.plot(history.history['val_acc']) 

63. plt.title('model accuracy') 

64. plt.ylabel('accuracy') 

65. plt.xlabel('epoch') 

66. plt.legend(['train', 'test'], loc='upper left') 

67. plt.show() 

68. plt.plot(history.history['loss']) 

69. plt.plot(history.history['val_loss']) 
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• mode, debe tomar el valor de auto, max o min. Cuando se define

como ‘min’ el entrenamiento de detendrá cuando la variable mo

nitoreada haya dejado de disminuir.

• verbose, se utiliza tan solo para definir si los resultados de esta

función se observaran en pantalla durante el entrenamientoo no.

AI definirlo en 1, esto indica que si se presentaran en la consola.

• patience, indica el número de iteraciones de entrenamiento

que el algoritmo esperara sin tener una mejora en la variable

de detención. Una vez se cumplan esta cantidad de iteracionesy

no se presente mejora, se accionará la función de detección

temprana. En este caso, el número deinteracciones establecido es s-

Por otro Iado, la función ModelCheckpoint(), se utilizará para guardar

el modelo que sevaentrenando iteración tras iteración, siemprey cuando

secumplan algunas condiciones, dadas por los parámetros establecido, los

cuales se presentana continuación:

• g/epath, en este parámetro se especifica la ruta del directorio

local donde sedesea que se guarde el modelo. Este archivo tiene

como extensión.hsy enunasección posterior, severa como cargar

y utilizar ese modelo mediante Keras,a partir del archivo guardado.

• monitor, similara la función de detención temprana, es la variable

que se evaluaráo monitoreará, para determinar si se guardao no

el modelo de dicha iteración. En este caso, se define la misma

variable que en la función anterior, es decir, el valor de función de

pérdida en etapa de validación.

• snve_best_on/y, al “setear” este parámetro en True, el último

mejor modelo de acuerdoa la cantidad monitoreada no se sobre

escribirá.

• verbose, al ser definido Como 1, en el proceso de entrenamiento

se imprimirá en pantalla cada vez que se sobrescriba el archivo

que guarda el modelo.

• mode, de igual forma que en la función anterior, se define como

‘min’, dado que la situación ideal se presenta cuando la función

de pérdida empieza a disminuiry toma valores relativamente

cercanosa o.
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•	mode, debe tomar el valor de auto, max o min. Cuando se define 
	 como ‘min’ el entrenamiento de detendrá cuando la variable mo
	 nitoreada haya dejado de disminuir.
•	verbose, se utiliza tan solo para definir si los resultados de esta 
	 función se observaran en pantalla durante el entrenamiento o no.
	 Al definirlo en 1, esto indica que si se presentaran en la consola.
•	patience, indica el número de iteraciones de entrenamiento
	 que el algoritmo esperara sin tener una mejora en la variable
	 de detención. Una vez se cumplan esta cantidad de iteraciones y 
	 no se presente mejora, se accionará la función de detección
	 temprana. En este caso, el número de interacciones establecido es 5.

Por otro lado, la función ModelCheckpoint(), se utilizará para guardar 
el modelo que se va entrenando iteración tras iteración, siempre y cuando 
se cumplan algunas condiciones, dadas por los parámetros establecido, los 
cuales se presentan a continuación:

•	filepath, en este parámetro se especifica la ruta del directorio 
	 local donde se desea que se guarde el modelo. Este archivo tiene 
	 como extensión . h5 y en una sección posterior, severa como cargar 
	 y utilizar ese modelo mediante Keras, a partir del archivo guardado.
•	monitor, similar a la función de detención temprana, es la variable 
	 que se evaluará o monitoreará, para determinar si se guarda o no 
	 el modelo de dicha iteración. En este caso, se define la misma
	 variable que en la función anterior, es decir, el valor de función de 
	 pérdida en etapa de validación.
•	save_best_only, al “setear” este parámetro en True, el último 
	 mejor modelo de acuerdo a la cantidad monitoreada no se sobre
	 escribirá.
•	verbose, al ser definido como 1, en el proceso de entrenamiento 
	 se imprimirá en pantalla cada vez que se sobrescriba el archivo 
	 que guarda el modelo.
•	mode, de igual forma que en la función anterior, se define como 
	 ‘min’, dado que la situación ideal se presenta cuando la función 
	 de pérdida empieza a disminuir y toma valores relativamente 
	 cercanos a 0.  
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Finalmente, se declara la variable callbacks, la cual almacena una Iista

con las variables referentesa la función de detención tempranay de pun-

tos de control del modelo.

Líneas y8-yp:

step_size_train=train_generator.n/train_generator.batch_size

step_síze validation=valídatíon_generator.n/valídatíon_generator.bat

ch size

En estas líneas se calcula el número de muestras por lote que se uti-

lizaran por iteración. En este caso se realiza mediante losgeneradores de

entrenamientoy validación, donde al invocar el atributo. n, se obtiene la

cantidad de imágenes cargadasy se divide entre el tamaño dellote, me-

diante el atributo .batch size, propio de losgeneradores.

Línea 6o:

history=model.fit_generator(generator=train_generator,steps per_epoc

h= step size train,validation data = validation generator,

validation_steps= step_size_validation,epochs=32,callbacks=

callbacks)

Finalmente, se ha llegadoa la línea de código que acciona el entrena-

miento delmodelo. Esta tarea se realiza mediante la función fit genera-

tor(),a la cual se le pasan los siguientes parámetros:

• generator, es el conjunto de datos de entrenamiento que se

cargó mediante el generador de imágenes de Keras, en este caso

se utiliza la variable train enerator, la cual almacena el objeto

secuencial que contiene las imágenesy el arreglo de etiquetado

de las imagenes.

• steps_per_epoc, este parámetro debe serun enteroe indica la

cantidad de muestras por lote que se utilizaran por iteración.

Es allí, donde se hace uso de la variable step_size_train, definida

anteriormente.

• volidation_dato, hace referencia al conjunto de imágenes que se
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Finalmente, se declara la variable callbacks, la cual almacena una lista 
con las variables referentes a la función de detención temprana y de pun-
tos de control del modelo.

Líneas 58-59:

En estas líneas se calcula el número de muestras por lote que se uti-
lizaran por iteración. En este caso se realiza mediante los generadores de 
entrenamiento y validación, donde al invocar el atributo. n, se obtiene la 
cantidad de imágenes cargadas y se divide entre el tamaño del lote, me-
diante el atributo .batch_size, propio de los generadores.

Línea 60:

Finalmente, se ha llegado a la línea de código que acciona el entrena-
miento del modelo. Esta tarea se realiza mediante la función fit_genera-
tor(), a la cual se le pasan los siguientes parámetros:

•	generator, es el conjunto de datos de entrenamiento que se
	 cargó mediante el generador de imágenes de Keras, en este caso 
	 se utiliza la variable train_generator, la cual almacena el objeto 
	 secuencial que contiene las imágenes y el arreglo de etiquetado 
	 de las imágenes.
•	steps_per_epoc, este parámetro debe ser un entero e indica la 
	 cantidad de muestras por lote que se utilizaran por iteración. 
	 Es allí, donde se hace uso de la variable step_size_train, definida
	 anteriormente.
•	validation_data, hace referencia al conjunto de imágenes que se 

history=model.fit_generator(generator=train_generator,steps_per_epoc

h= step_size_train,validation_data = validation_generator, 

validation_steps= step_size_validation,epochs=32,callbacks= 

callbacks) 

step_size_train=train_generator.n/train_generator.batch_size 

step_size_validation=validation_generator.n/validation_generator.bat

ch_size 
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utilizará para validar el modelo iteración tras iteración. Se utiliza

el generador de imágenes de validación que se establecido en

pasos anteriores.

• va/idatíon_steps, en relación con el parámetro inmediatamente

anterior, establece el número de muestras por lote que se

utilizará, al hacer uso de este conjunto de datos de validación. Es

aquí donde, se implementa la variable step_size_validation.

• epochs, corresponde al número de iteraciones que se disponen

para el entrenamiento del modelo. En este caso, se definen un

total de z iteraciones. Sin embargo, es poco probable que

se complete esa cantidad de iteraciones, debidoa la función de

detención temprana definida.

• ca//backs, relacionado con una lista de funciones que se Ilaman

iterativamente cuando se acaba cada una de las iteraciones,

debidoa esto se declara con la Iista nombrada callback, la Cual

al macena la función de puntos de control del modeloy la

detección temprana delentrenamiento.

Además, es relevante exponer que, el proceso de entrenamiento se

está almacenado en una variable denominada como history, la cual se

utilizará posteriormente en la graficación de la función de pérdiday de

las métricas. Por otra parte, al ejecutar esta línea de código se debe pre-

sentar por consola un resultado similar al que se exponea continuación

(ver figura s7)
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	 utilizará para validar el modelo iteración tras iteración. Se utiliza 
	 el generador de imágenes de validación que se establecido en 
	 pasos anteriores.
•	validation_steps, en relación con el parámetro inmediatamente 
	 anterior, establece el número de muestras por lote que se
	 utilizará, al hacer uso de este conjunto de datos de validación. Es 
	 aquí donde, se implementa la variable step_size_validation.
•	epochs, corresponde al número de iteraciones que se disponen 
	 para el entrenamiento del modelo. En este caso, se definen un
	 total de 32 iteraciones. Sin embargo, es poco probable que 
	 se complete esa cantidad de iteraciones, debido a la función de
	 detención temprana definida.
•	callbacks, relacionado con una lista de funciones que se llaman 
	 iterativamente cuando se acaba cada una de las iteraciones,
	 debido a esto se declara con la lista nombrada callback, la cual
	 al macena la función de puntos de control del modelo y la
	 detección temprana del entrenamiento.

Además, es relevante exponer que, el proceso de entrenamiento se 
está almacenado en una variable denominada como history, la cual se 
utilizará posteriormente en la graficación de la función de pérdida y de 
las métricas. Por otra parte, al ejecutar esta línea de código se debe pre-
sentar por consola un resultado similar al que se expone a continuación
(ver figura 37).
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Epoch 1/32 49/48 =-=--=========-===-=====-=====) - 2s 50ms/step - loss: 1.0380 - acc: 0.4265

- val_loss: 1.2350 - val_acc: 0.3083 Epoch 00001: val_loss improved from inf to 1.23499,

saving model to /ruta/local/model.h5

Epoch 2/32 49/48 [------=-=-=--=-----===---==---) - 1s 28ms/step - loss: 0.8274 - acc: 0.6231

sav ’model

0t87

r.t ..: m.

e Epoch 00002: val_loss improved from 1.23499 to 0.87940,

Epoch 3/32 49/48 [==============================) - 2s 35ms/step - loss: 0.7095 - acc: 0.7002

- val_loss: 0.8365 - va1_acc: 0.6444 Epoch 00003: va1_loss improved from 0.87940 to 0.83650,

saving model to /ruta/local/model.h5

Epoch 20/32 49/48 [==============================) - 2s 35ms/step - loss: 0.1712 - acc: 0.9305

va1_loss: 0.3139 — val_acc: 0.9056 Epoch 00020: val_loss improved from 0.374B6 to 0.31392,

4aving model to /ruta/local/model.h5

Epoch 22/32 49/48 [==============================J - 2s 35ns/step - loss- 0 . 1320 - acc- 0 . 945 9

- vat loss• 0.3258 - vat acc: 0.8 889 Epoch 00022: vat loss Qid not i mprove :5zor« 0 . 313 92

fipoch 2 3/32 4 9/48 [------------------------------] 2s 3 6ms/s tep 1 oss: 0. 2885 acc: 0.8 923

- val_loss: 0.?'339 - val_acc: 0. 9093 Epoch 000 23: val_loss did not improve from0.3 1392

Epoch2 4/32 4 9/d8 [==============================] -2s 3 6ms/s tcp -1 oss: 0 . 133 l - ac c: 0 . 9477

— val loss: 0.3512 — va1 a ce: 0.8 694 Epoch 0002d: va1 loss did not improve f rom 0. 31392

Epoch 25/32 49/48 {==============================) 2s 35ms/step loss: 0.1202 acc: 0.9528

- val loss: 0.3973 - val acc: 0.8472

Epoch 00025: val_loss did not improve from 0.31392

Spoch 00025: early stopping

Figura yy Iteraciones de entrenamiento.

Fuente: Autor.

De acuerdo Con la figura 37› se pueden observar los siguientes aspectos:

• Iteración tras iteración se hace Ilamada de las funciones de

callback, por ejemplo, cuando se enuncia saving model tolrutaf

local/mode/.hy se hace Ilamadoa la función de puntos de control

del model, solo cuando disminuye el val_loss, el cual hace referencia

al valor de función de pérdida con el conjunto de validación.

• La función de detención temprana, se ve en acción cuando en

conso/a se muestra vaI_loss improved (rom y_vaIue to x_

value, dondex value es menor quey value. Además, seve el uso

del parámetro patience, dado que, en la iteración número 2ofue

la última vez que este valor disminuyó,y durante las siguite cinco

iteraciones no se presentó mejora, por lo tanto, en la iteración

númerozs. se detiene el entrenamiento y el último modelo

guardado fue el de la iteración zo.

• Finalmente, se puede observar que, el modelo con el conjunto
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De acuerdo con la figura 37, se pueden observar los siguientes aspectos:

•	 Iteración tras iteración se hace llamada de las funciones de
	 callback, por ejemplo, cuando se enuncia saving model to /ruta/
	 local/model.h5 se hace llamado a la función de puntos de control 
	 del model, solo cuando disminuye el val_loss, el cual hace referencia 
	 al valor de función de pérdida con el conjunto de validación.
•	 La función de detención temprana, se ve en acción cuando en 
	 consola se muestra val_loss improved from y_value to x_
	 value, donde x_value es menor que y_value. Además, se ve el uso 
	 del parámetro patience, dado que, en la iteración número 20 fue 
	 la última vez que este valor disminuyó, y durante las siguite cinco
	 iteraciones no se presentó mejora, por lo tanto, en la iteración 
	 número 25, se detiene el entrenamiento y el último modelo
	 guardado fue el de la iteración 20.
•	 Finalmente, se puede observar que, el modelo con el conjunto

Figura 37 Iteraciones de entrenamiento. 
Fuente: Autor.
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de entrenamientoy validación, presenta una función de pérdida

relativamente cercanaa o y una probabilidad de precisión por

encima del -9-

líneas 61-6y.

61. pdt.plot(history.history['acc'])

62. pdt.plot(history.history['val_acc'])

63. pdt.title('model accuracy')

64. pdt.ylabel('accuracy')

65. pdt.xlabel('epoch')

66. pdt.legend(['train', 'test'], loc='upper left')

67. pdt.show()

Estas líneas de código tienen como objetivo graficar el registro de la

métrica accuracy para el dataset de entrenamientoy validación, iteración

a iteración. Tenga en cuenta que si usted está utilizando una versión de

Tensorflow inferiora 2.o, debe cambiar la claves del diccionario history,

por ‘acc’y ‘val acc’ respectivamente. La figura3 presenta el resultado

de correr estas líneas de código.

0.9
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0.5

0.4

03

0

Accuracy Modelo

10

Iteración

15

entrenamiento

validación

20

Figura 8 Precisión g/abad del modelo enbase de entrenamiento.

Fuente: Autor.
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	 de entrenamiento y validación, presenta una función de pérdida
	 relativamente cercana a 0 y una probabilidad de precisión por 
	 encima del 0.9.

Líneas 61-67:

Estas líneas de código tienen como objetivo graficar el registro de la 
métrica accuracy para el dataset de entrenamiento y validación, iteración 
a iteración. Tenga en cuenta que si usted está utilizando una versión de 
Tensorflow inferior a 2.0, debe cambiar la claves del diccionario history, 
por ‘acc’ y ‘val_acc’ respectivamente . La figura 38, presenta el resultado 
de correr estas líneas de código.

61. plt.plot(history.history['acc']) 

62. plt.plot(history.history['val_acc']) 

63. plt.title('model accuracy') 

64. plt.ylabel('accuracy') 

65. plt.xlabel('epoch') 

66. plt.legend(['train', 'test'], loc='upper left') 

67. plt.show() 
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Figura 38 Precisión global del modelo en fase de entrenamiento. 
Fuente: Autor.
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Líneas 68-yq:

68. pdt.plot(history.history['loss'])

69. pdt.plot(history.history['val loss'])

70. pdt.title('model loss')

71. pdt.ylabel('loss')

72. pdt.xlabel('epoch')

73. pdt.legend(['train', 'test'], loc='upper left')

74. pdt.show()

Mediante estas líneas, se puede graficar el registro de la función de

pérdida para el dataset de entrenamientoy validación, iteracióna itera-

ción. La figura a9. presenta el resultado de ejecutar estas líneas de código.

1.2

0.8

0.4

0.2

0

Función de Pérdida Modelo

10

Iteración

15

entrenamiento

validación

20

Figuro 19función de pérdida delmodelo en (ase de entrenamiento.

Fuente: Autor.

25

Justo después de obtener un modelo de CNN ya entrenado, es con-

veniente realizar la evaluación del mismo. Espor esto que, en el siguiente

cápitulo se abordan dicho aspecto.
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Líneas 68-74:

Mediante estas líneas, se puede graficar el registro de la función de 
pérdida para el dataset de entrenamiento y validación, iteración a itera-
ción. La figura 39, presenta el resultado de ejecutar estas líneas de código.

Justo después de obtener un modelo de CNN ya entrenado, es con-
veniente realizar la evaluación del mismo. Es por esto que, en el siguiente 
cápitulo se abordará dicho aspecto. 

Figura 39 Función de pérdida del modelo en fase de entrenamiento.
 Fuente: Autor.
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68. plt.plot(history.history['loss']) 

69. plt.plot(history.history['val_loss']) 

70. plt.title('model loss') 

71. plt.ylabel('loss') 

72. plt.xlabel('epoch') 

73. plt.legend(['train', 'test'], loc='upper left') 

74. plt.show() 



Evaluación del Modelo

Una de las tareas más importantes dentro del aprendizaje profundo

es poder determinar si el modelo entrenado realiza un buen trabajo en su

etapa de clasificacióno predicción de clases. Durante esta etapa, se debe

establecer un protocolo de evaluación, en el cual se debe tener definido el

conjunto de datos de pruebay cuáles vana ser las métricas que se tomarán

como punto de referencia para determinar el nivel de rendimiento del mo-

delo de la red neuronal por convolución. En este capítulo, las métricas que

se trabajarán son: Función Evalute, Curvas de ROC, Accuracy, Precision Sco-

re, Recall Score, Coeficiente de Kappay la Matriz de confusión. Lo anterior,

mediante el conjunto de prueba, compuesto porun total de Roo imágenes,

1OO pOr cada clase.

$.1 Carga delmodelo

En el campo delaprendizaje de máquina más específicamente en el

aprendizaje profundo, donde el entrenamiento de losmodelos de redes

neuronales por convolución presenta un alto costo computacional, es ne-

cesario poder cargar un modelo que haya sido entrenado previamente. De

esta manera, el modelo de la CNN puede serutilizo en distintos entornos con

el mismo propósito, sin la necesidad de entrenarlo de nuevo.
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Capítulo 5

Evaluación del Modelo

Una de las tareas más importantes dentro del aprendizaje profundo 
es poder determinar si el modelo entrenado realiza un buen trabajo en su 
etapa de clasificación o predicción de clases. Durante esta etapa, se debe 
establecer un protocolo de evaluación, en el cual se debe tener definido el 
conjunto de datos de prueba y cuáles van a ser las métricas que se tomarán 
como punto de referencia para determinar el nivel de rendimiento del mo-
delo de la red neuronal por convolución. En este capítulo, las métricas que 
se trabajarán son: Función Evalute, Curvas de ROC, Accuracy, Precision Sco-
re, Recall Score, Coeficiente de Kappa y la Matriz de confusión. Lo anterior,
mediante el conjunto de prueba, compuesto por un total de 300 imágenes, 
100 por cada clase.

     
5.1	 Carga del modelo

En el campo del aprendizaje de máquina más específicamente en el 
aprendizaje profundo, donde el entrenamiento de los modelos de redes 
neuronales por convolución presenta un alto costo computacional, es ne-
cesario poder cargar un modelo que haya sido entrenado previamente. De 
esta manera, el modelo de la CNN puede ser utilizo en distintos entornos con 
el mismo propósito, sin la necesidad de entrenarlo de nuevo.
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$.J.1 Procedimiento para cargar el modelo

Lasiguiente línea de código fuente, se utiliza para cargar un modelo

de unaredneuronal por convolución que haya sido previamente guardado.

75. model loaded load model("ruta/local/model.h5")

En esta línea se puede observar que, Keras cuenta con una función

propia para realizar la carga de un modelo previamente guardado. Esta es

la función load model(), la cual recibe por parámetro, la dirección donde

está alojado el modeloy el nombre delarchivo, por supuesto, como seha-

bíamencionado anteriormente este archivo debe tener una extensión. hp.

En este paso, se carga el modelo entrenado anteriormente, con el

propósito de realizar la evaluación de distintas métricas utilizando este

modelo. De acuerdoa esto, el modelo cargado se almacena en la variable

model loaded.

$.2 Función Evaluate

Como sepresenció durante la fase de entrenamiento delmodelo, dos

valores son calculados iteracióna iteración. Estos valores son: la función

de pérdiday el nivel de precisión (accuracy). De acuerdoa esto, la librería

Keras, brinda las condiciones necesarias para permitir el cálculo de estos

dos valores mediante el conjunto de prueba. Lo anterior, mediante la fun-

ción evaluate.

5-2.1 Procedimiento para calcular la función evaluate

A continuación, se expone las líneas del código fuente, utilizadas

para llevara cabo el cálculo de la función evaluate.

76. step size test=test generator.n/test generator.batch size

77. result evaluate model loaded.evaluate generator(test

generator,step size test,verbose=1)

Redes Neuronales Convolucionales Usando Keras y Acelerando con GPU

78

5.1.1	 Procedimiento para cargar el modelo

La siguiente línea de código fuente, se utiliza para cargar un modelo 
de una red neuronal por convolución que haya sido previamente guardado.

En esta línea se puede observar que, Keras cuenta con una función 
propia para realizar la carga de un modelo previamente guardado. Esta es 
la función load_model(), la cual recibe por parámetro, la dirección donde 
está alojado el modelo y el nombre del archivo, por supuesto, como se ha-
bía mencionado anteriormente este archivo debe tener una extensión. h5.

En este paso, se carga el modelo entrenado anteriormente, con el
propósito de realizar la evaluación de distintas métricas utilizando este 
modelo. De acuerdo a esto, el modelo cargado se almacena en la variable
model_loaded.

     
5.2	 Función Evaluate

Como se presenció durante la fase de entrenamiento del modelo, dos 
valores son calculados iteración a iteración. Estos valores son: la función 
de pérdida y el nivel de precisión (accuracy). De acuerdo a esto, la librería 
Keras, brinda las condiciones necesarias para permitir el cálculo de estos 
dos valores mediante el conjunto de prueba. Lo anterior, mediante la fun-
ción evaluate.

5.2.1	 Procedimiento para calcular la función evaluate

     A continuación, se expone las líneas del código fuente, utilizadas 
para llevar a cabo el cálculo de la función evaluate.

75. model_loaded = load_model("ruta/local/model.h5") 

76. step_size_test=test_generator.n/test_generator.batch_size 

77. result_evaluate =  model_loaded.evaluate_generator(test_ 

generator,step_size_test,verbose=1) 



línea y6:

Evaluación delModelo

step_size_test=test_generator.n/test_generator.batch_size

Enesta línea se calcula el número de muestras por lote que se utiliza-

ran por iteración. En este caso se realiza mediante el generador de prue-

ba, donde seal invocar el atributo .n, se obtiene la cantidad de imágenes

cargadasy se divide entre el tamaño dellote, mediante el atributo .batch_

size, propio de los generadores.

línea 77:

result evaluate model loaded.evaluate generator(generator=test

generator, steps=step_size_test,verbose=l)

Finalmente, digitando esta línea se calcula la función de pérdiday la

precisión con el conjunto de datos de prueba. Lo anterior, mediante la fun-

ción evaluate generator(), la cual recibe lo siguiente parámetros:

• generator, es el conjunto de datos de prueba que se cargó

mediante el generador de imágenes de Keras, en este caso se

utiliza la variable test enerator, la cual almacena el objeto

secuencial que contiene las imágenesy el arreglo de etiquetado

de cada imagen.

• steps, es el total de muestras por lote que se estipulan para

generar la evaluación del conjunto de datos de prueba.

En este punto, se utiliza la variable step_size_test, calculada

anteriormente.

• verbose, se utiliza tan solo para definir si el procesoy resultado

de esta función se observaran en pantalla durante la invocación

de la misma. AI definirlo en 1, esto indica que si se presentaran en

laconsola.

Al ejecutar esta línea se obtiene el siguiente resultado (ver figura4o).

[0.3224358580739467, 0.8833333333333333]

Figura go Función Evaluate.

Fuente: Autor.
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Línea 76:

En esta línea se calcula el número de muestras por lote que se utiliza-
ran por iteración. En este caso se realiza mediante el generador de prue-
ba, donde se al invocar el atributo .n, se obtiene la cantidad de imágenes 
cargadas y se divide entre el tamaño del lote, mediante el atributo .batch_
size, propio de los generadores.

Línea 77:

Finalmente, digitando esta línea se calcula la función de pérdida y la 
precisión con el conjunto de datos de prueba. Lo anterior, mediante la fun-
ción evaluate_generator(), la cual recibe lo siguiente parámetros:

•	 generator, es el conjunto de datos de prueba que se cargó
	 mediante el generador de imágenes de Keras, en este caso se
	 utiliza la variable test_generator, la cual almacena el objeto
	 secuencial que contiene las imágenes y el arreglo de etiquetado 
	 de cada imagen.
•	 steps, es el total de muestras por lote que se estipulan para
	 generar la evaluación del conjunto de datos de prueba.
	 En este punto, se utiliza la variable step_size_test, calculada
	 anteriormente.
•	 verbose, se utiliza tan solo para definir si el proceso y resultado 
	 de esta función se observaran en pantalla durante la invocación 
	 de la misma. Al definirlo en 1, esto indica que si se presentaran en 
	 la consola.

Al ejecutar esta línea se obtiene el siguiente resultado (ver figura 40).

   

step_size_test=test_generator.n/test_generator.batch_size 

result_evaluate =  model_loaded.evaluate_generator(generator=test_ 

generator, steps=step_size_test,verbose=1) 

Figura 40 Función Evaluate. 
Fuente: Autor.
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En la primera línea la figura4o, sepresenta el detalle del proceso de la

función evaluate generator(), procesando un total de Roo imágenes en 1,

segundos. Después, la segunda línea es el resultado de aplicar esta fun-

ción. La primera posición de esta lista corresponde al valor de la función de

pérdiday la segunda posición al valor de precisión obtenido.

s.3 Curvas de ROC

Una curva ROC (curva de característica operativa del recepto) es una

representación gráfica que muestra el rendimiento de un modelo de clasifi-

cación en todos losumbrales de clasificación (Zhou, Hall,& ShapirO,1997)›

(Zou KH, O'Malley AJ, Mauri L., 20 7). Esta curva representa dos paráme-

tros, de un Iado la tasa de verdaderos positivos (TPR},y del otro Iado la

tasa de falsos positivos (FPR).

El punto de partida para el análisis de la curva ROC, es la tabla de con-

tingencia (para validación de imágenes), para cada punto de corte. Esta

tabla de contingencia puede entenderse como la matriz de confusión

(tabla 1) en la clasificación de imágenes.

Tab/o1 Contingenciao motriz de confusión.

Fuente: Autor.

Matriz de Confusión

Real

Negativo

Predicho /ModeIo

Negativo

VN verdadero

negativo

FN

Falso Negativo

Positivo

FP

Falso Positivo

VP verdadero

positivo

La tasa de verdaderos positivos (TPR) es sinónimo de exhaustividad y,

por lo tanto, se define en la ecuación ç:

TPR ——
VP + FN

Ecuacións Tasa de verdaderos positivos.
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En la primera línea la figura 40, se presenta el detalle del proceso de la 
función evaluate_generator(), procesando un total de 300 imágenes en 1, 
3 segundos. Después, la segunda línea es el resultado de aplicar esta fun-
ción. La primera posición de esta lista corresponde al valor de la función de 
pérdida y la segunda posición al valor de precisión obtenido.   

5.3	 Curvas de ROC

Una curva ROC (curva de característica operativa del recepto) es una 
representación gráfica que muestra el rendimiento de un modelo de clasifi-
cación en todos los umbrales de clasificación (Zhou, Hall, & Shapiro, 1997), 
(Zou KH, O’Malley AJ, Mauri L., 2007). Esta curva representa dos paráme-
tros, de un lado la tasa de verdaderos positivos (TPR), y del otro lado la 
tasa de falsos positivos (FPR).

El punto de partida para el análisis de la curva ROC, es la tabla de con-
tingencia (para validación de imágenes), para cada punto de corte. Esta 
tabla de contingencia puede entenderse como la matriz de confusión
(tabla 1) en la clasificación de imágenes.

     
     

La tasa de verdaderos positivos (TPR) es sinónimo de exhaustividad y, 
por lo tanto, se define en la ecuación 5:

Matriz de Confusión  
Predicho /Modelo

Negativo Positivo  

Real  
Negativo  VN verdadero 

negativo 

 
FP

Falso Positivo  

Positivo  FN 
 

Falso Negativo  
VP verdadero

positivo 

Ecuación 5 Tasa de verdaderos positivos.

Tabla 1 Contingencia o matriz de confusión.
 Fuente: Autor.
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Siendo VP los verdaderos positivos,y FN los falsos negativos. Por su

parte, la tasa de falsos positivos (FPR) es sinónimo de especificidad,y se

define en la ecuación 6:

FPR=
FP

FP+VN
Ecuación6 Tasa de {olsos positivos.

Siendo FP los falsos positivos,y VN los verdaderos negativos.

Tiendo en cuenta que una curva ROC representa la TPR frentea la FPR

en diferentes umbrales de clasificación, reducir el umbral de clasificación

clasifica más elementos como positivos, por lo que aumentarán tanto los

falsos positivos como losverdaderos positivos. La figura41 muestra una

curva ROC típica.

Figura §f Tasa de VP frenteo FP en diferentes umbrales de cfosi}fcoción.

Fuente: Ajustado de (Benavides, 2ofy).

Para calcular los puntos en una curva ROC, se puede evaluar un mo-

delo de regresión logística muchas veces con diferentes umbrales de cla-

sificación, pero esto es ineficiente. Por lo que se utiliza el algoritmo AUC

(área bajo la curva ROC), el cual es eficiente basado en ordenamiento de

la información (ver figura42). El AUC mide toda el área bidimensional por

debajo de la curva ROC completa proporciona una medición agregada del

rendimiento en todos losumbrales de clasificación posibles de (o,o)a (1,1).
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Siendo VP los verdaderos positivos, y FN los falsos negativos. Por su 
parte, la tasa de falsos positivos (FPR) es sinónimo de especificidad, y se 
define en la ecuación 6:

        
     

Siendo FP los falsos positivos, y VN los verdaderos negativos.

Tiendo en cuenta que una curva ROC representa la TPR frente a la FPR 
en diferentes umbrales de clasificación, reducir el umbral de clasificación 
clasifica más elementos como positivos, por lo que aumentarán tanto los 
falsos positivos como los verdaderos positivos. La figura 41 muestra una 
curva ROC típica.

     
     
    

Para calcular los puntos en una curva ROC, se puede evaluar un mo-
delo de regresión logística muchas veces con diferentes umbrales de cla-
sificación, pero esto es ineficiente. Por lo que se utiliza el algoritmo AUC 
(área bajo la curva ROC), el cual es eficiente basado en ordenamiento de 
la información (ver figura 42). El AUC mide toda el área bidimensional por 
debajo de la curva ROC completa proporciona una medición agregada del 
rendimiento en todos los umbrales de clasificación posibles de (0,0) a (1,1).

Ecuación 6 Tasa de falsos positivos.

Tasa de VP
Tasa deVP frente a
FP en otro umbral
de decisión

Tasa deVP frente
a FP e un umbral
de decisión

Tasa de FP

1

0
0 1

Figura 41 Tasa de VP frente a FP en diferentes umbrales de clasificación. 
Fuente: Ajustado de (Benavides, 2017).
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Tasa de VP

1

0

0 Tasa de FP

figura qz RUC (órea baio la curva ROC).

Fuente:Ai•stodo de (Benavides, 2o*7)-

1

EIAUC esla probabilidad de que el modelo clasifique un ejemplo po-

sitivo aleatorio más alto que un ejemplo negativo aleatorio, oscila en valor

delo al 1. Un modelo cuyas predicciones son un 1oo% incorrectas tiene un

AUC de o.o; otro cuyas predicciones son un 100% correctas tiene un AUC de

1.0.En el caso de un AUC deo,s esuna prueba sincapacidad discriminatoria

diagnóstica, de (o.ç,o.6) es un test malo, de (o.6,o.7s) es un test regular,

de (o 75›0.9) es un test bueno, de (o.9. -9s) es un test muy bueno,y de

( 97,1) es un test excelente.

El AUC es conveniente por las dos razones Swetsy Picket (198*): la

primera es porque es invariable con respectoa la escala ya que mide qué

tanbien se clasifican las predicciones, en lugar de sus valores absolutos. La

segunda razón es porque el AUC es invariable con respecto al umbral de

clasificación, es decir que mide la calidad de las predicciones del modelo,

sintener en Cuenta qué umbral de clasificación se elige.

Sin embargo, estas dos razones tienen algunas advertencias, que pue-

den limitar la utilidad del AUC en determinados casos. Primero la invaria-

bilidad de escala no siempre es conveniente, que el AUC no muestra los

resultados de probabilidad bien calibrados. Segundo, la invariabilidad del

umbraldeclasificaciónnosiempreesconveniente,yaqueenlos casos en

que hay amplias discrepancias en las consecuencias de losfalsos negativos
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El AUC es la probabilidad de que el modelo clasifique un ejemplo po-
sitivo aleatorio más alto que un ejemplo negativo aleatorio, oscila en valor 
del 0 al 1. Un modelo cuyas predicciones son un 100% incorrectas tiene un 
AUC de 0.0; otro cuyas predicciones son un 100% correctas tiene un AUC de 
1.0.En el caso de un AUC de 0,5 es una prueba sin capacidad discriminatoria 
diagnóstica, de (0.5,0.6) es un test malo, de (0.6,0.75) es un test regular, 
de (0.75,0.9) es un test bueno, de (0.9,0.97) es un test muy bueno, y de 
(0.97,1) es un test excelente.

El AUC es conveniente por las dos razones Swets y Picket (1982): la 
primera es porque es invariable con respecto a la escala ya que mide qué 
tan bien se clasifican las predicciones, en lugar de sus valores absolutos. La 
segunda razón es porque el AUC es invariable con respecto al umbral de 
clasificación, es decir que mide la calidad de las predicciones del modelo, 
sin tener en cuenta qué umbral de clasificación se elige.

     
Sin embargo, estas dos razones tienen algunas advertencias, que pue-

den limitar la utilidad del AUC en determinados casos. Primero la invaria-
bilidad de escala no siempre es conveniente, que el AUC no muestra los 
resultados de probabilidad bien calibrados. Segundo, la invariabilidad del 
umbral de clasificación no siempre es conveniente, ya que en los casos en 
que hay amplias discrepancias en las consecuencias de los falsos negativos 

Tasa de VP

Tasa de FP

1

10
0

Figura 42 AUC (área bajo la curva ROC). 
Fuente: Ajustado de (Benavides, 2017).
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frentea losfalsos positivos, es posible que sea fundamental minimizar un

tipo de error de clasificación. El AUC no es una métrica útil para este tipo

de optimización.

§.3.1 Procedimiento para calcular las curvas de ROC

A continuación, se presenta el código utilizado para el cálculo de las

curvas de ROC Macro-promedioy Micro-promedio.

78. y pred prob = model loaded.predict_generator(generator=test_

generator, steps= step size test)

79. y pred classes = np.argmax (array=y pred prob, axis=1)

80. test_labels_one_hot = to_categorícal(test_generator.classes)

81. fpr = dict()

82. tpr = dict()

83. roc_auc = díct()

84. for i in range(nam classes):

85. fpr[i], tpr[i], = roc_curve(test_labels_one_hot[:, i],

y_pred_ prob[:, i])

86. roc auc[i] = abc(fpr[i], tpr[i])

87. fpr[“micro”], tpr[“micro”], =roc curve(test labels one hot.

Ravel(), y_pred_prob.ravel())

88. roc auc[“micro”] = abc(fpr[“micro”], tpr[“micro”])

89. all fpr = np.unique(np.concatenate([fpr[i] for i in range

(num_classes)]))

90. mean tpr = np.zeros like(all fpr)

91. for i in range(num classes):

92. mean_tpr *= interp(all_fpr, fpr[i], tpr[i])

93. mean tpr /= num classes

94. fpr[“macro”] = all_fpr

95. tpr[“macro”] = mean_tpr

96. roc_auc[“macro”] = abc(fpr[“macro”], tpr[“macro”])
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frente a los falsos positivos, es posible que sea fundamental minimizar un 
tipo de error de clasificación. El AUC no es una métrica útil para este tipo 
de optimización.

5.3.1	 Procedimiento para calcular las curvas de ROC

A continuación, se presenta el código utilizado para el cálculo de las 
curvas de ROC Macro-promedio y Micro-promedio.

     78.  y_pred_prob =  model_loaded.predict_generator(generator=test_ 

generator, steps= step_size_test) 

79.  y_pred_classes = np.argmax(array=y_pred_prob, axis=1) 

80.  test_labels_one_hot = to_categorical(test_generator.classes) 

81.  fpr = dict() 

82.  tpr = dict() 

83.  roc_auc = dict() 

84.  for i in range(num_classes): 

85.      fpr[i], tpr[i], _ = roc_curve(test_labels_one_hot[:, i], 

y_pred_ prob[:, i]) 

86.      roc_auc[i] = auc(fpr[i], tpr[i]) 

87. fpr[“micro”], tpr[“micro”], _=roc_curve(test_labels_one_hot. 

Ravel(), y_pred_prob.ravel()) 

88. roc_auc[“micro”] = auc(fpr[“micro”], tpr[“micro”]) 

89. all_fpr = np.unique(np.concatenate([fpr[i] for i in range 

(num_classes)])) 

90. mean_tpr = np.zeros_like(all_fpr) 

91. for i in range(num_classes): 

92.     mean_tpr += interp(all_fpr, fpr[i], tpr[i]) 

93. mean_tpr /= num_classes 

94. fpr[“macro”] = all_fpr 

95. tpr[“macro”] = mean_tpr 

96. roc_auc[“macro”] = auc(fpr[“macro”], tpr[“macro”]) 
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Líneas78-8o:

y_pred prob = model loaded.predict generator(generator=test_

generator, steps= step_size_test)

y_pred_classes np.argmax(array=y_pred_prob, axis=1)

test_labels_categorical= to_categorícal(test_generator.classes)

Estas líneas de código tienen como finalidad obtener las predicciones

realizadas por el modeloa partir del conjunto de datos de prueba. Es im-

portante resaltar que, cada una de las variables declaradas en estas líneas

serán utilizadas no solo para calcular las curvas de ROC, si no cada una de

las métricas contempladas.

Como primera parte, mediante la función predict generator(), se ge-

neran lasprediccionesa partirde un conjunto de entradasespecificamen-

teun generador de datos. Es decir, por cada imagen evaluada se genera un

arreglo con un número de posiciones iguales al número de clases. En dicho

arreglo, se consolida la probabilidad que tiene esa imagen de sercada una

de las clases. Donde la posición donde seacumule la mayor probabilidad

está directamente relacionada con la clase en la cual el modelo clasificó

esa imagen. Los parámetros utilizados para esta función son lossiguiente:

• generator, es el conjunto de datos de prueba que se cargó

previamente mediante el generador de imágenes de Keras, en

este caso se utiliza la variable test enerator, la cual almacena

el objeto secuencial que contiene las imágenesy el arreglo de

etiquetado de cada imagen.

• steps, es el total de muestras por lote que se estipulan para

generar las predicciones del conjunto de datos de prueba. En

este punto, se utiliza la variable step_size_test, calculada

anteriormente.

Una vez se han calculado las probabilidades de predicción, se procede

a obtener puntualmente la clase predicha por el modelo de la red neuro-

nal por convolución. Lo anterior, mediante la función argmax(), propia de

Redes Neuronales Convolucionales Usando Keras y Acelerando con GPU

84

Líneas 78-80:

Estas líneas de código tienen como finalidad obtener las predicciones 
realizadas por el modelo a partir del conjunto de datos de prueba. Es im-
portante resaltar que, cada una de las variables declaradas en estas líneas 
serán utilizadas no solo para calcular las curvas de ROC, si no cada una de 
las métricas contempladas.

Como primera parte, mediante la función predict_generator(), se ge-
neran las predicciones a partir de un conjunto de entradas específicamen-
te un generador de datos. Es decir, por cada imagen evaluada se genera un 
arreglo con un número de posiciones iguales al número de clases. En dicho 
arreglo, se consolida la probabilidad que tiene esa imagen de ser cada una 
de las clases. Donde la posición donde se acumule la mayor probabilidad 
está directamente relacionada con la clase en la cual el modelo clasificó 
esa imagen. Los parámetros utilizados para esta función son los siguiente:

•	generator, es el conjunto de datos de prueba que se cargó
	 previamente mediante el generador de imágenes de Keras, en
	 este caso se utiliza la variable test_generator, la cual almacena 
	 el objeto secuencial que contiene las imágenes y el arreglo de 
	 etiquetado de cada imagen.

•	steps, es el total de muestras por lote que se estipulan para 
	 generar las predicciones del conjunto de datos de prueba. En
	 este punto, se utiliza la variable step_size_test, calculada
	 anteriormente.

Una vez se han calculado las probabilidades de predicción, se procede 
a obtener puntualmente la clase predicha por el modelo de la red neuro-
nal por convolución. Lo anterior, mediante la función argmax(), propia de 

y_pred_prob =  model_loaded.predict_generator(generator=test_ 

generator, steps= step_size_test) 

y_pred_classes = np.argmax(array=y_pred_prob, axis=1) 

test_labels_categorical= to_categorical(test_generator.classes) 
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la librería Numpy. Esta función, retorna los índices del elemento máximo

de un arreglo sobre un eje particular. En este caso, devuelve la posición

del arreglo de predicción de cada imagen, donde seencuentran la mayor

probabilidad. Para implementar dicha función, se utilizaron los siguientes

parámetros:

• array, en este parámetro se debe especificar el arreglo al cual

se le va a aplicar la función. En este caso se igualaa la variable

y pred prob, que tiene el arreglo de probabilidades generado

previamente.

• axis, estipula sobre cual eje se va a obtener el índice donde se

encuentra el máximo valor. Este parámetro se define en 1, para

aplicar la función de manera horizontal.

Por último, haciendo uso de la función to categorical(), propia de

la librería Keras, se conviertena un formato categórico las etiquetas de

clase, guardadas en el generador de imágenes de prueba test_generator.

Líneas 81-8$:

fpr = dict()

tpr = dict()

roc_auc = dict()

Enestas líneas, se inicializan diccionarios vacíos para almacenar la tasa

de falsos positivos, tasa de verdaderos positivosy el área bajo la curva de

ROC. Lasvariables destinadas para esto fueron fpr, tpr, roc auc, respecti-

vamente.

Líneas84-86:

for i in range(num_classes):

fpr[i], tpr[i], = roc curve(y_true=test_labels_categorical[:,

i],y score=y pred prob[:, i])

roc auc[i] = auc(x=fpr[i], y=tpr[i])
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la librería Numpy. Esta función, retorna los índices del elemento máximo 
de un arreglo sobre un eje particular. En este caso, devuelve la posición 
del arreglo de predicción de cada imagen, donde se encuentran la mayor 
probabilidad. Para implementar dicha función, se utilizaron los siguientes 
parámetros:

•	array, en este parámetro se debe especificar el arreglo al cual 
	 se le va a aplicar la función. En este caso se iguala a la variable
	 y_pred_prob, que tiene el arreglo de probabilidades generado 
	 previamente.

•	axis, estipula sobre cual eje se va a obtener el índice donde se 
	 encuentra el máximo valor. Este parámetro se define en 1, para
	 aplicar la función de manera horizontal.

Por último, haciendo uso de la función to_categorical(), propia de 
la librería Keras, se convierten a un formato categórico las etiquetas de 
clase, guardadas en el generador de imágenes de prueba test_generator.

Líneas 81-83:

En estas líneas, se inicializan diccionarios vacíos para almacenar la tasa 
de falsos positivos, tasa de verdaderos positivos y el área bajo la curva de 
ROC. Las variables destinadas para esto fueron fpr, tpr, roc_auc, respecti-
vamente.

Líneas 84-86:

fpr = dict() 

tpr = dict() 

roc_auc = dict() 

for i in range(num_classes): 

     fpr[i], tpr[i], _ = roc_curve(y_true=test_labels_categorical[:, 

i], y_score=y_pred_prob[:, i]) 

     roc_auc[i] = auc(x=fpr[i], y=tpr[i]) 
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Este ciclo se usa para iterar en un rango definido por el número clases,

en este caso . Dentro de este ciclo, se computa la Curva de rocy el área

bajo cada una de las curvas para cada una de las clases. La función roc cur-

ve() realiza el cálculo de la curva de rocy recibe los siguientes parámetros:

• y_true, hace referencia al conjunto de etiquetas binarias (0,1).

Por lo tanto, son las etiquetas categóricas correctas de las imágenes

de prueba, por esa razón, se utiliza la variable test_labels_cate

gorical.

• y_score, define los puntajes objetivos, que pueden ser

estimaciones de probabilidad de la clase positiva. Debidoa esta

razón, se hace uso de la variable y_pred_prob, la cual contienen

las probabilidades de predicción de cada una de las imágenes.

Adicionalmente, se calcula el área bajo la curva de ROC de cada una de

las clases. Lo anterior, mediante la función auc(), recibiendo lossiguientes

parámetros.

• x, debe serun arreglo que contenga las coordenadas de la curva de

ROC en el eje X. Por lo tanto, se debe utilizar la variable /pr, la cual

contiene la tasa de falsos positivos obtenidos en el cómputo de

la curva de ROC.

• y, se refiere al conjunto de coordenadas de la curva de ROC en el eje

Y. En este parámetro, se utiliza la variable tpr. Esta variable almacena

la tasa de verdaderos positivos obtenidos en el cómputo de la

curva de ROC.

Línea 8y:

fpr[“micro”), tpr[“micro”], =roc curve(y true=test labels one hot.

ravel(), y_score=y_pred_prob.ravel())

roc_auc[“micro”] = auc(fpr[“micro”], tpr[“mícro”])

Enestas líneas se crea una nueva clave para losdiccionarios de datos

creados anteriormente denominada ‘micro’. Lo que se pretende con esto,

es almacenar losvalores asociadosa la micro-promedio curva de ROC y
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Este ciclo se usa para iterar en un rango definido por el número clases, 
en este caso 3. Dentro de este ciclo, se computa la curva de roc y el área 
bajo cada una de las curvas para cada una de las clases. La función roc_cur-
ve() realiza el cálculo de la curva de roc y recibe los siguientes parámetros:

•	y_true, hace referencia al conjunto de etiquetas binarias {0,1}.
	 Por lo tanto, son las etiquetas categóricas correctas de las imágenes 
	 de prueba, por esa razón, se utiliza la variable test_labels_cate
	 gorical.
•	y_score, define los puntajes objetivos, que pueden ser
	 estimaciones de probabilidad de la clase positiva. Debido a esta 
	 razón, se hace uso de la variable y_pred_prob, la cual contienen 
	 las probabilidades de predicción de cada una de las imágenes.

Adicionalmente, se calcula el área bajo la curva de ROC de cada una de 
las clases. Lo anterior, mediante la función auc(), recibiendo los siguientes 
parámetros.

•	x, debe ser un arreglo que contenga las coordenadas de la curva de 
	 ROC en el eje X. Por lo tanto, se debe utilizar la variable fpr, la cual
	 contiene la tasa de falsos positivos obtenidos en el cómputo de 
	 la curva de ROC.
•	y, se refiere al conjunto de coordenadas de la curva de ROC en el eje 
	 Y. En este parámetro, se utiliza la variable tpr. Esta variable almacena 
	 la tasa de verdaderos positivos obtenidos en el cómputo de la 
	 curva de ROC.

Línea 87:

En estas líneas se crea una nueva clave para los diccionarios de datos 
creados anteriormente denominada ‘micro’. Lo que se pretende con esto, 
es almacenar los valores asociados a la micro-promedio curva de ROC y 

fpr[“micro”], tpr[“micro”], _=roc_curve(y_true=test_labels_one_hot. 

ravel(), y_score=y_pred_prob.ravel()) 

roc_auc[“micro”] = auc(fpr[“micro”], tpr[“micro”]) 
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posteriormente, calcular el área bajo de esta. De igual manera que en las

líneas 4-86, se utilizan las funciones roc curve()y auc(). Sin embargo, se

presenta una variación, en los argumentos de la función roc curve(), dado

que se utilizan las mismas variables, pero, se les aplica la función propia

de la librería Numpy ravel(), la cual convierte un arreglo n-dimensionala

un arreglo unidimensional. Lo anterior, con el objetivo de tomar losdatos

asociadosa las etiquetas correctasy de predicción, para procesarlas como

ungran conjunto de valores.

líneas 8g-go.”

all_fpr = np.uníque(np.concatenate([fpr[i] for i in range(num_

classes)]))

mean_tpr = np.zeros_líke(all_fpr)

Conestas líneas de código se da inicio al proceso de cálculo de la ma-

cro-promedio curva de ROC. Como primera parte, mediante la función con-

catenate() de Numpy, seconcatenan losvalores de tasa de falsos positivos

de cada clase, previamente almacenados en la variable fpr. Posteriormen-

te, se obtienen los valores únicos del arreglo resultante del proceso de

concatenación, lo anterior, mediante la función unique(), también de Num-

py.Esto se consolida en la variable all fpr. Adicionalmente, se crea un arre-

glo Ileno de ceros nombrado como mean tpr, de las mismas dimensiones

que all fpr, para esto se hace uso de la función zeros like(), pasando por

parámetro la variable all fpr.

líneas g1-g:

for i in range(num classes):

mean_tpr *= interp(x=all_fpr, xp=fpr[i], fp=tpr[i])

mean_tpr /= num_classes

Eneste ciclo se llena el arreglo mean_tpr, mediante una suma acumu-

lativa. Los valores que se suman acumulativamente, son el resultado de

interpolar toda la tasa de falsos positivos, la tasa de falsos positivos por

clasey la tasa de verdaderos positivos por clase. Este proceso se realiza
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all_fpr = np.unique(np.concatenate([fpr[i] for i in range(num_ 

classes)])) 

mean_tpr = np.zeros_like(all_fpr) 

posteriormente, calcular el área bajo de esta. De igual manera que en las 
líneas 84-86, se utilizan las funciones roc_curve() y auc(). Sin embargo, se 
presenta una variación, en los argumentos de la función roc_curve(), dado 
que se utilizan las mismas variables, pero, se les aplica la función propia 
de la librería Numpy ravel(), la cual convierte un arreglo n-dimensional a 
un arreglo unidimensional. Lo anterior, con el objetivo de tomar los datos 
asociados a las etiquetas correctas y de predicción, para procesarlas como 
un gran conjunto de valores.

Líneas 89-90:

Con estas líneas de código se da inicio al proceso de cálculo de la ma-
cro-promedio curva de ROC. Como primera parte, mediante la función con-
catenate() de Numpy, se concatenan los valores de tasa de falsos positivos 
de cada clase, previamente almacenados en la variable fpr. Posteriormen-
te, se obtienen los valores únicos del arreglo resultante del proceso de 
concatenación, lo anterior, mediante la función unique(), también de Num-
py. Esto se consolida en la variable all_fpr. Adicionalmente, se crea un arre-
glo lleno de ceros nombrado como mean_tpr, de las mismas dimensiones 
que all_fpr, para esto se hace uso de la función zeros_like(), pasando por 
parámetro la variable all_fpr.

Líneas 91-93:

En este ciclo se llena el arreglo mean_tpr, mediante una suma acumu-
lativa. Los valores que se suman acumulativamente, son el resultado de 
interpolar toda la tasa de falsos positivos, la tasa de falsos positivos por 
clase y la tasa de verdaderos positivos por clase. Este proceso se realiza 

for i in range(num_classes): 

    mean_tpr += interp(x=all_fpr, xp=fpr[i], fp=tpr[i]) 

mean_tpr /= num_classes 
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mediante la función interp() propia de la librería Scipy. Dicha función reci-

be los siguientes parámetros:

• x, son las coordenadasX consolidadas en un arreglo, en las que

evaluar los valores interpolados. Para este caso, se debe utilizar

la variable a(I_/pr.

• xp, correspondea la primera secuencia de números flotantes

o coordenadas del eje X, las cuales serán elementos

fundamentales en el proceso de interpolación. Como esta

actividad se realiza en un ciclo con iteraciones igual al número

de clases, se utiliza la variable {pr, siendo indexada por la

iteración actual.

• /p, hacer referencia a la segunda secuencia de número

flotanteso coordenadas en el eje Y, utilizadas en la tarea de

interpolación. Como esta actividad se realiza en un ciclo con

iteraciones igual al número de clases, se utiliza la variable tpr,

siendo indexada por la iteración actual.

Finalmente, se calcula el promedio de la tasa de verdaderos positivos,

dividendo cada uno de los valores alojados en el arreglo mean tprsobre

el número de clases.

Líneas 94-96:

fpr[“macro”] = all fpr

tpr[“macro”j = mean_tpr

roc_auc[“macro”) = auc(fpr[“macro”], tpr[“macro”])

Porúltimo, se crean las claves “macro” en losdiccionarios fpry tpr,

almacenando las variables aII_fpry mean_tpr respectivamente. Una vez se

ha realizado esta tarea, se computa el área bajo la curva de la macro-pro-

medio de la curva de ROC mediante la función auc()y se guarda su resulta-

do en la clave “macro” deldiccionario roc auc.
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mediante la función interp() propia de la librería Scipy. Dicha función reci-
be los siguientes parámetros:

•	x, son las coordenadas X consolidadas en un arreglo, en las que 
	 evaluar los valores interpolados. Para este caso, se debe utilizar 
	 la variable all_fpr.
•	xp, corresponde a la primera secuencia de números flotantes 
	 o coordenadas del eje X, las cuales serán elementos
	 fundamentales en el proceso de interpolación. Como esta
	 actividad se realiza en un ciclo con iteraciones igual al número 
	 de clases, se utiliza la variable fpr, siendo indexada por la
	 iteración actual.
•	fp, hacer referencia a la segunda secuencia de número
	 flotantes o coordenadas en el eje Y, utilizadas en la tarea de
	 interpolación. Como esta actividad se realiza en un ciclo con 
	 iteraciones igual al número de clases, se utiliza la variable tpr, 
	 siendo indexada por la iteración actual.

Finalmente, se calcula el promedio de la tasa de verdaderos positivos, 
dividendo cada uno de los valores alojados en el arreglo mean_tpr  sobre 
el número de clases.

Líneas 94-96:

Por último, se crean las claves “macro” en los diccionarios fpr y tpr, 
almacenando las variables all_fpr y mean_tpr respectivamente. Una vez se 
ha realizado esta tarea, se computa el área bajo la curva de la macro-pro-
medio de la curva de ROC mediante la función auc() y se guarda su resulta-
do en la clave “macro” del diccionario roc_auc.

fpr[“macro”] = all_fpr 

tpr[“macro”] = mean_tpr 

roc_auc[“macro”] = auc(fpr[“macro”], tpr[“macro”]) 
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$.$.z Procedimiento para graficar las curvas de ROC

Las siguientes líneas de código fuente, tienen como objetivo realizar

una representación gráfica de los valores obtenidos en el procedimiento

llevadoa cabo para calcular las curvas de ROC.

97. pdt.figure(1)

98. pdt.plot((fpr[“micro”]), (tpr[“micro”]),label=’micro-average

ROC curve (area = (0:0.2f})”’.format(roc auc[“micro”]),color=

’deeppink’, linestyle=’ :’, linewidth=4)

99. pit.plot(fpr[“macro”], tpr[“macro”],label=’macro-average ROC

curve (area (0:0.2f})”’.format(roc auc[“macro”]),color=

’navy’, linestyle=’ :’, linewidth=4)

100. colors = cycle([’aqua’, ’darkorange’, ’cornflowerblue’])

101. for i, color in zip(range(num classes), colors):

102. pdt.plot(fpr[i], tpr[i], color=color, lw=2,label=’ROC

curve of class (0} (area = (1:0.2f})”’.format(i,

roc auc[i]))

103. pdt.plot([0, 1], [0, 1], ’k—', lw=2)

104. pdt.xlim([0.0, 1.0])

105. pdt.ylim([0.0, 1.05])

106. pdt.xlabel('ralse Positive Rate’)

107. pdt.ylabel(’True Positive Rate’)

108. pdt.title(’Curve ROC General DataSetOriginal')

109. pdt.legend(loc="lower right")

110. pdt.show()

Alejecutar estas líneas, se puede obtener un resultado similar

al de la figura 43

Evaluación del Modelo

89

5.3.2	 Procedimiento para graficar las curvas de ROC

Las siguientes líneas de código fuente, tienen como objetivo realizar 
una representación gráfica de los valores obtenidos en el procedimiento 
llevado a cabo para calcular las curvas de ROC.

     

Al ejecutar estas líneas, se puede obtener un resultado similar
al de la figura 43.

97.   plt.figure(1) 

98.   plt.plot((fpr[“micro”]), (tpr[“micro”]),label=’micro-average 

ROC curve (area = {0:0.2f})’’’.format(roc_auc[“micro”]),color= 

‘deeppink’, linestyle=’:’, linewidth=4) 

99.   plt.plot(fpr[“macro”], tpr[“macro”],label=’macro-average ROC 

curve (area = {0:0.2f})’’’.format(roc_auc[“macro”]),color= 

‘navy’, linestyle=’:’, linewidth=4) 

100.  colors = cycle([‘aqua’, ‘darkorange’, ‘cornflowerblue’]) 

101.  for i, color in zip(range(num_classes), colors): 

102.      plt.plot(fpr[i], tpr[i], color=color, lw=2,label=’ROC 

curve   of class {0} (area = {1:0.2f})’’’.format(i, 

roc_auc[i])) 

103.  plt.plot([0, 1], [0, 1], ‘k—', lw=2) 

104.  plt.xlim([0.0, 1.0]) 

105.  plt.ylim([0.0, 1.05]) 

106.  plt.xlabel(‘False Positive Rate’) 

107.  plt.ylabel(‘True Positive Rate’) 

108.  plt.title(‘Curve ROC General DataSetOriginal') 

109.  plt.legend(loc="lower right") 

110.  plt.show() 
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0.2

Curvas de ROC

• • micro—promedio curva de ROC (área = 0.95)

• • macro-promedio curva de ROC (área = 0.95)

Curvas de ROC de la clase0 (área = 0.95)

”, x“ Curvas de ROC de la clase1 (área = 0.95)

“ Curvas de ROC de la clase2 (área = 0.95)

0.0 ”*

0.0 0.2 0.4 0.6 0.8
Tasa de Falsos Positivos

Figurag Curvas de ROC delmodelo entrenado.

Fuente: Autor.

1.0

La figura 43› presenta las Curvas de ROC macro-promedio, micro-pro-

medio con su respectivo valor de área bajo la curva, que en este caso es

o.g para cada una. Esto indica que presenta en promedio un o.g$ de pro-

babilidad de acierto en su fase de clasificación. Adicionalmente, se presen-

tas las curvas de ROC para cada una de las clases, donde la claseo hace

referenciaa Avión, la clase1 a Barcoy la clasez a Estadio.

Por otro Iado, Lin, Alvarezy Ruiz (zooz) definen las siguientes relacio-

nes: accuracy, precision,y recall.

s-‹ Accuracy Score

Se calcula dividiendo el número total de píxeles correctamente clasi-

ficados por el número total de píxeles de referenciay expresándolo como

porcentaje (ecuación 7)a

Exactitud glabal ——
TPC

TPR

Ecuación7 *xactitud global.
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La figura 43, presenta las Curvas de ROC macro-promedio, micro-pro-
medio con su respectivo valor de área bajo la curva, que en este caso es 
0.95 para cada una. Esto indica que presenta en promedio un 0.95 de pro-
babilidad de acierto en su fase de clasificación. Adicionalmente, se presen-
tas las curvas de ROC para cada una de las clases, donde la clase 0 hace 
referencia a Avión, la clase 1 a Barco y la clase 2 a Estadio.

Por otro lado, Lin, Alvarez y Ruiz (2002) definen las siguientes relacio-
nes: accuracy, precision, y recall.

5.4	 Accuracy Score

Se calcula dividiendo el número total de píxeles correctamente clasi-
ficados por el número total de píxeles de referencia y expresándolo como 
porcentaje (ecuación 7).

     
     
     
     

Curvas  de ROC
Ta

sa
 d

e 
 V

er
da

de
ro

s 
Po

si
tiv

os

Tasa de Falsos Positivos

1.0

0.8

0.6

0.4

0.2

0.0
0.0               0.2               0.4                0.6               0.8                1.0

micro-promedio curva de ROC (área = 0.95)
macro-promedio curva de ROC (área = 0.95)
Curvas de ROC de la clase  0 (área =  0.95)
Curvas de ROC de la clase  1 (área =  0.95)
Curvas de ROC de la clase  2 (área =  0.95)

Ecuación 7 Exactitud global.

Figura 43 Curvas de ROC del modelo entrenado. 
Fuente: Autor.
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Donde, TPC es el total de píxeles correctamente clasificadosy TPR:

corresponde al total de píxeles de referencia.

$.§.1 Procedimiento para calcular el valor de accuracy

Las siguientes lineas de códgo muestran la forma de cacuar la

métdcadenominadaAccuacy.

111. accuracy=accuracy_score(y_true=test_generator.classes,y_pred=

y_pred_classes)

112. print('Accuracy: %f' % accuracy)

En estas líneas, se acudea la función accuracy score(), propia de la

librería sckit-learn. Esta función se utiliza para calcular el valor de accuracy

y recibe los siguientes parámetros.

• y_true, este parámetro indica las etiquetas correctas del conjunto

de imágenes de prueba. Es decir, lo que debería obtener el modelo en la

clasificación de cada una de las imágenes. En este caso, se utiliza el atribu-

to .clasess, del generator de imágenes de prueba. Este atributo contiene

las etiquetas en su respectivo orden de las imágenes de test cargadas pre-

viamente.

• y_pred, hace referencia al conjunto de predicciones realizadas por

el modelo, haciendo uso de las imágenes de prueba. Para esta situación, se

utiliza la variabley pred classes, la cual como sehamencionado anterior-

mente contiene las clases predichas por el modelo de la red neuronal por

convolución.

Por último, se mandaa imprimir el resultado por consola, así como lo

muestra la figura 44

Accuracy: 0.790000

Figura qq Métrica de Accuracy (Precisión global}.

Fuente: Autor.
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Donde, TPC es el total de píxeles correctamente clasificados y TPR: 
corresponde al total de píxeles de referencia.

5.4.1	 Procedimiento para calcular el valor de accuracy

Las siguientes líneas de código muestran la forma de calcular la
métrica denominada Accuracy.

     

En estas líneas, se acude a la función accuracy_score(), propia de la 
librería sckit-learn. Esta función se utiliza para calcular el valor de accuracy 
y recibe los siguientes parámetros.

•	y_true, este parámetro indica las etiquetas correctas del conjunto 
de imágenes de prueba. Es decir, lo que debería obtener el modelo en la 
clasificación de cada una de las imágenes. En este caso, se utiliza el atribu-
to .clasess, del generator de imágenes de prueba. Este atributo contiene 
las etiquetas en su respectivo orden de las imágenes de test cargadas pre-
viamente.

•	y_pred, hace referencia al conjunto de predicciones realizadas por 
el modelo, haciendo uso de las imágenes de prueba. Para esta situación, se 
utiliza la variable y_pred_classes, la cual como se ha mencionado anterior-
mente contiene las clases predichas por el modelo de la red neuronal por 
convolución.

Por último, se manda a imprimir el resultado por consola, así como lo 
muestra la figura 44.

111. accuracy=accuracy_score(y_true=test_generator.classes,y_pred= 

y_pred_classes) 

112. print('Accuracy: %f' % accuracy) 

Accuracy: 0.790000

Figura 44 Métrica de Accuracy (Precisión global).
 Fuente: Autor.
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$.$ Precision Score

La precisión intenta responder la pregunta tQué proporción de iden-

tificaciones positivas fue correcta*, se define en la ecuación 8. Un modelo

que no produce falsos positivos tiene una precisión de 1.o.

Precisión ——
VP + FP

Ecuación8 Precisión.

Donde VP sonlosverdaderos positivosy FP son los falsos positivos.

De manera similar, la exhaustividad intenta responder la pregunta

¿Qué proporción de positivos reales se identificó correctamente*,y se de-

fine por la ecuación 9:

Exhaustividad ——
VP

VP + FN

Ecuaciónp Exhaustividad

Donde VP sonlosverdaderos positivos, FN son los falsos negativos.

$.$.1 Procedimiento para calcular el Precision Score

Las siguientes líneas de código muestran la forma de calcular la métri-

ca denominada Precision score.

113. precision=precision score(y true=test generator.classes,

y pred=y_pred_classes, average='mícro')

114. print('Precision: ', precision)

Enestas líneas, se acudea la función precision score(), propia de la

librería sckit-learn. Esta función se utiliza para calcular el valor de precisión

y recibe los siguientes parámetros.
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5.5	 Precision Score

La precisión intenta responder la pregunta ¿Qué proporción de iden-
tificaciones positivas fue correcta?, se define en la ecuación 8. Un modelo 
que no produce falsos positivos tiene una precisión de 1.0.

     
     
     
Donde VP son los verdaderos positivos y FP son los falsos positivos.

De manera similar, la exhaustividad intenta responder la pregunta 
¿Qué proporción de positivos reales se identificó correctamente?, y se de-
fine por la ecuación 9:

     
     
Donde VP son los verdaderos positivos, FN son los falsos negativos.

5.5.1	 Procedimiento para calcular el Precision Score

Las siguientes líneas de código muestran la forma de calcular la métri-
ca denominada Precision score.

En estas líneas, se acude a la función precision_score(), propia de la 
librería sckit-learn. Esta función se utiliza para calcular el valor de precisión 
y recibe los siguientes parámetros.

Ecuación 8 Precisión.

Ecuación 9 Exhaustividad

113. precision=precision_score(y_true=test_generator.classes, 

y_pred=y_pred_classes, average='micro') 

114. print('Precision:', precision) 
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• y_true, este parámetro indica las etiquetas correctas del conjunto

de imágenes de prueba. Es decir, lo que debería obtener el

modelo en la clasificación de cada una de las imágenes.

En este caso, se utiliza el atributo .clasess, del generator de

imágenes de prueba. Este atributo contiene las etiquetas en

su respectivo orden de las imágenes de test cargadas previamente.

• y_pred, hace referencia al conjunto de predicciones realizadas por

el modelo, haciendo uso de las imágenes de prueba. Para esta

situación, se utiliza la variable y_pred_c/osses, la cual como seha

mencionado anteriormente contiene las clases predichas por el

modelo de la red neuronal por convolución.

• average, al ser un problema multiclase, es decir más de una clase,

se hace necesario especificar este parámetro. Para le cálculo de

esta métrica, se selecciona la opción ‘micro’, ya que permite realizar

un cálculo global contando el total de verdaderos positivos, falsos

negativosy falsos positivos.

Por último, se mandaa imprimir el resultado por consola,así como lo

muestra la figura 45

Precision: 0.790113

Figuro #'iMétrica Precision Score.

Fuente: Autor.

$.6 Recall Score

El recall score es intuitivamente la capacidad del clasificador para en-

contrar todas las muestras positivas. El mejor valor es1y el peor valor es o.

Se calcula según la ecuación 1o.

Recall ——
TP

TP + FN

Ecuación no Recall

Donde TP es el número de verdaderos positivosy FN el número de

falsos negativos.
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•	y_true, este parámetro indica las etiquetas correctas del conjunto 
	 de imágenes de prueba. Es decir, lo que debería obtener el
	 modelo en la clasificación de cada una de las imágenes. 
	 En este caso, se utiliza el atributo .clasess, del generator de 
	 imágenes de prueba. Este atributo contiene las etiquetas en 
	 su respectivo orden de las imágenes de test cargadas previamente.
•	y_pred, hace referencia al conjunto de predicciones realizadas por 
	 el modelo, haciendo uso de las imágenes de prueba. Para esta
	 situación, se utiliza la variable y_pred_classes, la cual como se ha 
	 mencionado anteriormente contiene las clases predichas por el
	 modelo de la red neuronal por convolución.
•	average, al ser un problema multiclase, es decir más de una clase,
	 se hace necesario especificar este parámetro. Para le cálculo de 
	 esta métrica, se selecciona la opción ‘micro’, ya que permite realizar 
	 un cálculo global contando el total de verdaderos positivos, falsos 
	 negativos y falsos positivos.

Por último, se manda a imprimir el resultado por consola,así como lo 
muestra la figura 45.

5.6	 Recall Score

El recall score es intuitivamente la capacidad del clasificador para en-
contrar todas las muestras positivas. El mejor valor es 1 y el peor valor es 0. 
Se calcula según la ecuación 10.

     
    

Donde TP es el número de verdaderos positivos y FN el número de 
falsos negativos.

Ecuación 10 Recall

Precision: 0.790113

Figura 45 Métrica Precision Score. 
Fuente: Autor.
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$.6.1 Procedimiento para calcular el Recall Score

Lassiguientes líneas de código muestran la forma de calcular la métri-

ca denominada Recall score.

115. recall = recall score(y true=test generator.classes, y pred=

y_pred_classes, average = 'micro')

116. print('Recall: %f' % recall)

Estas líneas tienen como objetivo, obtener el valor de Recall. Lo an-

terior, mediante la función recall score(), propia de la librería Scikit-learn.

Esta función recibe los siguientes parámetros.

• y_true, este parámetro indica las etiquetas correctas del conjunto

de imágenes de prueba. Es decir, lo que debería obtener el modelo

en la clasificación de cada una de las imágenes. En este caso, se

utiliza el atributo .clasess, del generator de imágenes de prueba.

Este atributo contiene las etiquetas en su respectivo orden de las

imágenes de test cargadas previamente.

• y_pred, hace referencia al conjunto de predicciones realizadas por

el modelo, haciendo uso de las imágenes de prueba. Para esta

situación, se utiliza la variable y_pred_c/osses, la cual como seha

mencionado anteriormente contiene las clases predichas por el

modelo de la red neuronal por convolución.

• average, al ser un problema multiclase, es decir más de una clase, se

hace necesario especificar este parámetro. Para le cálculo de esta

métrica se selecciona la opción ‘micro’, ya que permite realizar un

cálculo global contando el total de verdaderos positivos, falsos

negativosy falsos positivos.

Por último, se mandaa imprimir el resultado por consola (ver figura46).

Recall: 0.790000

rigur0 q6 íVIétrico Recall Score.

Fuente: Autor.
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5.6.1	 Procedimiento para calcular el Recall Score

Las siguientes líneas de código muestran la forma de calcular la métri-
ca denominada Recall score.

Estas líneas tienen como objetivo, obtener el valor de Recall. Lo an-
terior, mediante la función recall_score(), propia de la librería Scikit-learn.
Esta función recibe los siguientes parámetros.

•	y_true, este parámetro indica las etiquetas correctas del conjunto 
	 de imágenes de prueba. Es decir, lo que debería obtener el modelo 
	 en la clasificación de cada una de las imágenes. En este caso, se 
	 utiliza el atributo .clasess, del generator de imágenes de prueba. 
	 Este atributo contiene las etiquetas en su respectivo orden de las 
	 imágenes de test cargadas previamente.
•	y_pred, hace referencia al conjunto de predicciones realizadas por 
	 el modelo, haciendo uso de las imágenes de prueba. Para esta
	 situación, se utiliza la variable y_pred_classes, la cual como se ha 
	 mencionado anteriormente contiene las clases predichas por el 
	 modelo de la red neuronal por convolución.
•	average, al ser un problema multiclase, es decir más de una clase, se 
	 hace necesario especificar este parámetro. Para le cálculo de esta 
	 métrica se selecciona la opción ‘micro’, ya que permite realizar un 
	 cálculo global contando el total de verdaderos positivos, falsos
	 negativos y falsos positivos.

Por último, se manda a imprimir el resultado por consola (ver figura 46).

115. recall = recall_score(y_true=test_generator.classes, y_pred= 

y_pred_classes, average = 'micro') 

116. print('Recall: %f' % recall) 

Recall: 0.790000

Figura 46 Métrica Recall Score. 
Fuente: Autor.



5.7 FI Score

Evniunción dei Modelo

F1-Score (también Ilamado Valor-Fo Medida-F en español) (Lewisy

Gale, 1g94) COmbina las medidas de precisióny exhaustividad para devol-

ver una medida de calidad más general del modelo. Se calcula como la me-

dia armónica de las métricas mencionadas (ecuación 11):

Fl—score ——
2

+

precisión exhaustividad
TP+

TP

FP + FN

2

fcu0ción ii Fi - Score.

El valor del F1-Score varía entreo (peor valor posible)y 1 (mejor

valor posible).

Concejero (20 4) concluye que las curvas ROC empíricas son una he-

rramienta potente,y que, con el esquema de contraste de hipótesis esta-

dísticas sin supuestos de partida en cuantoa la forma de las distribuciones,

son una metodologíaa la vez sencillay potente que ha visto reflejadas es-

tas características en la enorme cantidad de estudios que la utilizan.

5.7.› Procedimiento para calcular FI Score

Lassiguientes líneas de código muestran la forma de calcular la métri-

ca denominada F1 score.

117. f1 f1 score(y true=test_generator.classes,y pred=y_pred_

classes,average= 'micro')

118. print('F1 score: %f' % fl)

En estas líneas, se hace uso de la función f1 score(), propia de

la librería Scikit-learn. Esta función se utiliza para Calcular el valor de esta

métricay recibe los siguientes parámetros.

• y_true, este parámetro indica las etiquetas correctas del conjunto

de imágenes de prueba. Esdecir, toque debería obtenerel modeloen
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5.7	 F1 Score

F1-Score (también llamado Valor-F o Medida-F en español) (Lewis y 
Gale, 1994) combina las medidas de precisión y exhaustividad para devol-
ver una medida de calidad más general del modelo. Se calcula como la me-
dia armónica de las métricas mencionadas (ecuación 11):

     
El valor del F1-Score varía entre 0 (peor valor posible) y 1 (mejor

valor posible).

Concejero (2004) concluye que las curvas ROC empíricas son una he-
rramienta potente, y que, con el esquema de contraste de hipótesis esta-
dísticas sin supuestos de partida en cuanto a la forma de las distribuciones, 
son una metodología a la vez sencilla y potente que ha visto reflejadas es-
tas características en la enorme cantidad de estudios que la utilizan.

5.7.1	 Procedimiento para calcular F1 Score

Las siguientes líneas de código muestran la forma de calcular la métri-
ca denominada F1 score.

     
     En estas líneas, se hace uso de la función f1_score(), propia de 

la librería Scikit-learn. Esta función se utiliza para calcular el valor de esta
métrica y recibe los siguientes parámetros.

•	y_true, este parámetro indica las etiquetas correctas del conjunto 
	 de imágenes de prueba.  Es decir,  lo que debería obtener el modelo en 

1

Ecuación 11 F1 - Score.

117. f1 = f1_score(y_true=test_generator.classes,y_pred=y_pred_ 

classes,average= 'micro') 

118. print('F1 score: %f' % f1) 
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la clasificación de cada una de las imágenes. En este caso, se utiliza

el atributo .clasess, del generator de imágenes de prueba. Este

atributo contiene las etiquetas en su respectivo orden de las

imágenes de test cargadas previamente.

• y_pred, hace referencia al conjunto de predicciones realizadas

por el modelo, haciendo uso de las imágenes de prueba. Para esta

situación, se utiliza la variable y_pred_classes, la cual como seha

mencionado anteriormente contiene las clases predichas por el

modelo de la red neuronal por convolución.

• average, al ser un problema multiclase, es decir más de una clase,

se hace necesario especificar este parámetro. Para el cálculo de esta

métrica, se selecciona la opción ‘micro’, ya que permite realizar un

cálculo global contando el total de verdaderos positivos, falsos

negativosy falsos positivos.

Finalmente, se mandaa imprimir el resultado por consola, asícomo lo

muestra la figura 47

F1 score: 0.788318

Figura 47 Métrica E-1 Score.

Fuente: Autor.

$.8 Coeficiente de Kappa

El índice de Kappa, un instrumento diseñado por Cohen que ajusta el

efecto del azar en la proporción de la concordancia observada. La estima-

ción por el índice de Kappa sigue la ecuación:

P —P
K ——

o e

Ecuación 12Coeficiente de Kappa.

Donde Po esla proporción de concordancia observada, Pe es la pro-

porción de concordancia esperada por azary 1— Pe, representa el acuerdo

o concordancia máxima posible no debida al azar. Entonces, el numera-

expresa la proporción del acuerdo observado
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	 la clasificación de cada una de las imágenes. En este caso, se utiliza 
	 el atributo .clasess, del generator de imágenes de prueba. Este 
	 atributo contiene las etiquetas en su respectivo orden de las
	 imágenes de test cargadas previamente.

•	y_pred, hace referencia al conjunto de predicciones realizadas
	 por el modelo, haciendo uso de las imágenes de prueba. Para esta 
	 situación, se utiliza la variable y_pred_classes, la cual como se ha 
	 mencionado anteriormente contiene las clases predichas por el 
	 modelo de la red neuronal por convolución.
•	average, al ser un problema multiclase, es decir más de una clase,
	 se hace necesario especificar este parámetro. Para el cálculo de esta 
	 métrica, se selecciona la opción ‘micro’, ya que permite realizar un 
	 cálculo global contando el total de verdaderos positivos, falsos
	 negativos y falsos positivos.

Finalmente, se manda a imprimir el resultado por consola, así como lo 
muestra la figura 47.

5.8	 Coeficiente de Kappa

El índice de Kappa, un instrumento diseñado por Cohen que ajusta el 
efecto del azar en la proporción de la concordancia observada. La estima-
ción por el índice de Kappa sigue la ecuación:

     
     
Donde Po es la proporción de concordancia observada, Pe es la pro-

porción de concordancia esperada por azar y 1 – Pe, representa el acuerdo 
o concordancia máxima posible no debida al azar. Entonces, el numera-
dor del coeficiente Kappa expresa la proporción del acuerdo observado 

F1 score: 0.788318

Figura 47 Métrica F1 Score.
 Fuente: Autor.

Ecuación 12 Coeficiente de Kappa.
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menos el esperado, en tanto que el denominador es la diferencia entre

un total acuerdoy la proporción esperada por azar (J. Wang, Y. Yang and

B. Xia, 2019). En conclusión, el Kappa corrige el acuerdo sólo por azar, en

tanto es la proporción del acuerdo observado que excede la proporción

por azar. Si este valor es iguala 1, estaríamos frentea una situación en

que la concordancia es perfecta (100% de acuerdoo total acuerdo) y, por

tanto, la proporción por azar es cero; cuando el valor es o, hay total

desacuerdoy entonces la proporción esperada por azar se hace igual

a la proporción observada.

(Landisy Koch,1977) propusieron una interpretación cualitativa del

índice de Kappa utilizada clásicamente en la que la fuerza de concordancia

se califica como:

• Pobreo débil para valores menoresa o,40,

• Moderada, para valores de entreo,41y o,6o,

• Buena, entre o,61y o,8o,y

• Muy buena para valores superiores hastd 1. (Altman,1991)

s. .› Procedimiento para calcular el coeficiente de Kappa

Lassiguientes líneas de código muestran la forma de calcular la métri-

ca denominada Coeficiente de Kappa.

119. kappa=cohen_kappa_score(yl=test_generator.classes, y2=y_pred

classes)

120. print('Cohens kappa: %f' % kappa)

Conel propósito de obtener el coeficiente de Kappa, se implementa la

función cohen kappa score(), la cual hace parte de la librería Scikit-learn.

DiCha función utiliza los siguientes parámetros.

• y1, es el conjunto de etiquetas, las cuales van a ser el punto de

comparación de otro conjunto de etiquetas. Para este caso, nuestro

conjunto de etiquetas referente son las clases del generador de

prueba, obteniéndolasa partir del atributo. classes de la variable

test enerator.
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menos el esperado, en tanto que el denominador es la diferencia entre 
un total acuerdo y la proporción esperada por azar (J. Wang, Y. Yang and 
B. Xia, 2019). En conclusión, el Kappa corrige el acuerdo sólo por azar, en
tanto es la proporción del acuerdo observado que excede la proporción 
por azar. Si este valor es igual a 1, estaríamos frente a una situación en 
que la concordancia es perfecta (100% de acuerdo o total acuerdo) y, por
tanto, la proporción por azar es cero; cuando el valor es 0, hay total
desacuerdo y entonces la proporción esperada por azar se hace igual
a la proporción observada. 

(Landis y Koch, 1977) propusieron una interpretación cualitativa del 
índice de Kappa utilizada clásicamente en la que la fuerza de concordancia 
se califica como: 

	 • Pobre o débil para valores menores a 0,40,
     • Moderada, para valores de entre 0,41 y 0,60,
     • Buena, entre 0,61 y 0,80, y 
     • Muy buena para valores superiores hasta 1. (Altman, 1991)

5.8.1	 Procedimiento para calcular el coeficiente de Kappa

Las siguientes líneas de código muestran la forma de calcular la métri-
ca denominada Coeficiente de Kappa.

Con el propósito de obtener el coeficiente de Kappa, se implementa la 
función cohen_kappa_score(), la cual hace parte de la librería Scikit-learn.
Dicha función utiliza los siguientes parámetros.

•	  y1, es el conjunto de etiquetas, las cuales van a ser el punto de 
	 comparación de otro conjunto de etiquetas. Para este caso, nuestro 
	 conjunto de etiquetas referente son las clases del generador de
	 prueba, obteniéndolas a partir del atributo . classes de la variable 
	 test_generator.

119. kappa=cohen_kappa_score(y1=test_generator.classes, y2=y_pred 

_classes) 

120. print('Cohens kappa: %f' % kappa) 



Redes Neuronales Convo/uciono/es Usando Serasy Acelerando con GPU

• y2,hace referencia al segundo conjunto de etiquetas, es decir, el que

se quiere comparar frentea losdatos de referencia. De acuerdoa lo

anterior, este parámetro se iguala al arreglo que contiene las

predicciones realizadas por el modelo, por lo tanto, invocamos la

variable y_pred_classes.

Al ejecutar estas líneas de código, se debería presentar un resultado

similar al presentado en la figura48.

Cohens Kappa: 0.685000

rigura z¡8 Métrica Coeficiente de Kappa.

Fuente: Autor.

$.g Matriz de Confusión

El contenido de una matriz de confusión es un conjunto de valores

que contabilizan el grado de semejanza entre observaciones emparejadas:

un conjunto de datos bajo control (CDC)y un conjunto de datos de refe-

rencia (CDR), para losque se ha establecido una clasificación. Usualmente

el CDR es la verdad terreno, es decir, la realidad,y suele conocerse por

medio de un muestreo. La matriz de confusión puede construirsea partir

de píxeles, agrupaciones de píxeleso cualquier tipo de objeto geográfico

(p.ej.polígonos). Con independencia de su tipología, los elementos delCDC

se comparan con sushomólogos en el CDR.

Se trata de una matriz cuadrada de dimensión M“M (filas “columnas),

donde M denota el número de clases en consideración. Las clases del CDR

las denominamos (clases referencia)F
R
y las clases del CDC las denomina-

mos (clases producto) Gy. Cada uno de los M2 elementos de la matriz los

denominamos celdas de la matriz. Las celdas de la diagonal de la matriz de

confusión contienen las cantidades correspondientesa los ítems bien clasi-

ficados (coincide una Gp Con su correspondiente rá). Estas celdas las deno-

minamosC
C
(celdas coincidencia). Las celdas de fuera de la diagonal contie-

nen las cantidades correspondientesa las confusiones, los errores debidos

a las omisionesy comisiones. Estas celdas las denominamosC
€'

(celdas error

o no coincidencia). Como sepuede veren la tabla 2, sección $.$.
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•	y2, hace referencia al segundo conjunto de etiquetas, es decir, el que 
	 se quiere comparar frente a los datos de referencia. De acuerdo a lo 
	 anterior, este parámetro se iguala al arreglo que contiene las 
	 predicciones realizadas por el modelo, por lo tanto, invocamos la 
	 variable y_pred_classes.

Al ejecutar estas líneas de código, se debería presentar un resultado 
similar al presentado en la figura 48.

5.9	 Matriz de Confusión 

El contenido de una matriz de confusión es un conjunto de valores 
que contabilizan el grado de semejanza entre observaciones emparejadas: 
un conjunto de datos bajo control (CDC) y un conjunto de datos de refe-
rencia (CDR), para los que se ha establecido una clasificación. Usualmente 
el CDR es la verdad terreno, es decir, la realidad, y suele conocerse por 
medio de un muestreo. La matriz de confusión puede construirse a partir 
de píxeles, agrupaciones de píxeles o cualquier tipo de objeto geográfico 
(p.ej.polígonos). Con independencia de su tipología, los elementos del CDC 
se comparan con sus homólogos en el CDR.

Se trata de una matriz cuadrada de dimensión M´M (filas ´ columnas), 
donde M denota el número de clases en consideración. Las clases del CDR 
las denominamos (clases referencia) ΓR y las clases del CDC las denomina-
mos (clases producto) GP. Cada uno de los M2 elementos de la matriz los 
denominamos celdas de la matriz. Las celdas de la diagonal de la matriz de 
confusión contienen las cantidades correspondientes a los ítems bien clasi-
ficados (coincide una GP con su correspondiente ΓR). Estas celdas las deno-
minamos CC (celdas coincidencia). Las celdas de fuera de la diagonal contie-
nen las cantidades correspondientes a las confusiones, los errores debidos 
a las omisiones y comisiones. Estas celdas las denominamos Ce (celdas error 
o no coincidencia). Como se puede ver en la tabla 2, sección 5.3.

Cohens Kappa: 0.685000
Figura 48 Métrica Coeficiente de Kappa.

 Fuente: Autor.
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ç.g.1 Procedimiento para calcular la matriz de confusión

A continuación, se presenta el código fuente para computar los valo-

res de la matriz de confusión.

121. matrix=confusion matrix(y true=test generator.classes,y pred=

y_pred_classes)

122. print(matrix)

En estas líneas, se hace uso de la función confusión matrix(), de la

librería Scikit-learn. Esta función se utiliza para calcular el valor de esta mé-

tricay recibe los siguientes parámetros.

• y_true, este parámetro indica las etiquetas correctas del conjunto

de imágenes de prueba. Es decir, lo que debería obtener el modelo

en la clasificación de cada una de las imágenes. En este caso, se

utiliza el atributo .clasess, del generator de imágenes de prueba.

Este atributo contiene las etiquetas en su respectivo orden de las

imágenes de test cargadas previamente.

• y_pred, hace referencia al conjunto de predicciones realizadas por

el modelo, haciendo uso de las imágenes de prueba. Para esta

situación, se utiliza la variable y_pred_classes, la cual como seha

mencionado anteriormente contiene las clases predichas por el

modelo de la red neuronal por convolución.

AI ejecutar estas líneas de código, se presentarla un resultado por

consola como el siguiente (ver figura 49)

[[ 87 10 3]

[ 4 81 15]

[ 16 15 69]]

Figuro q9 Métrica Matriz de Confusión.

Fuente: Autor.
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5.9.1	 Procedimiento para calcular la matriz de confusión

A continuación, se presenta el código fuente para computar los valo-
res de la matriz de confusión.

En estas líneas, se hace uso de la función confusión_matrix(), de la 
librería Scikit-learn. Esta función se utiliza para calcular el valor de esta mé-
trica y recibe los siguientes parámetros.

•	y_true, este parámetro indica las etiquetas correctas del conjunto 
	 de imágenes de prueba. Es decir, lo que debería obtener el modelo 
	 en la clasificación de cada una de las imágenes. En este caso, se
	 utiliza el atributo .clasess, del generator de imágenes de prueba.
	 Este atributo contiene las etiquetas en su respectivo orden de las 
	 imágenes de test cargadas previamente.
•	y_pred, hace referencia al conjunto de predicciones realizadas por 
	 el modelo, haciendo uso de las imágenes de prueba. Para esta 
	 situación, se utiliza la variable y_pred_classes, la cual como se ha 
	 mencionado anteriormente contiene las clases predichas por el 
	 modelo de la red neuronal por convolución.

Al ejecutar estas líneas de código, se presentaría un resultado por 
consola como el siguiente (ver figura 49).

121. matrix=confusion_matrix(y_true=test_generator.classes,y_pred= 

y_pred_classes) 

122. print(matrix) 

[[ 87  10   3]
[  4  81  15]
[ 16  15  69]]

Figura 49 Métrica Matriz de Confusión. 
Fuente: Autor.
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ç.g.z Procedimiento para graficar la matriz de confusión

Lassiguientes líneas de código, tiene como objetivo presentar de for-

ma agradabley gráfica la matriz de confusión.

123. cmap = pdt.get cmap('Blues')

124. pdt.figure(figsize=(8, 6))

125. pdt.imshow(matrix, interpolation='nearest',cmap=cmap)

126. pdt.title(”Confusíon Matrix")

127. pdt.colorbar()

128. target_names = ['avión', 'barco', 'estadio'j

128. tick_marks = np.arange(len(target_names))

129. pdt.xticks(tick marks, target names, rotation=45)

130. pdt.ytícks(tick_marks, target_names)

thresh = matrix.max() / 1.5

132. matrix.max() / 2

133. for i, j in itertools.product(range(matrix.shapel0j), range

(matrix.shape[lj)):

134. pdt.text(j, i, "(:,}".format(matrix[i, j]), horízont

alalignment="center”,color="white” if matrix[i, j) >

thresh else "black”)

pdt.tight_layout()

136. pdt.ylabel('Etiqueta Verdadera')

137. pdt.xlabel('Etiqueta predicha ')

138. pdt.show()

Alejecutar estas líneas, se obtiene un resultado similar al presentado

a continuación (ver figura $o).
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5.9.2	 Procedimiento para graficar la matriz de confusión

Las siguientes líneas de código, tiene como objetivo presentar de for-
ma agradable y gráfica la matriz de confusión.

     

Al ejecutar estas líneas, se obtiene un resultado similar al presentado 
a continuación (ver figura 50).

123. cmap = plt.get_cmap('Blues') 

124. plt.figure(figsize=(8, 6)) 

125. plt.imshow(matrix, interpolation='nearest',cmap=cmap) 

126. plt.title("Confusion Matrix") 

127. plt.colorbar() 

128. target_names = ['avión', 'barco', 'estadio'] 

128. tick_marks = np.arange(len(target_names)) 

129. plt.xticks(tick_marks, target_names, rotation=45) 

130. plt.yticks(tick_marks, target_names) 

131. thresh = matrix.max() / 1.5  

132. matrix.max() / 2 

133. for i, j in itertools.product(range(matrix.shape[0]), range 

(matrix.shape[1])): 

134.      plt.text(j, i, "{:,}".format(matrix[i, j]), horizont 

alalignment="center",color="white" if matrix[i, j] > 

thresh else "black") 

135. plt.tight_layout() 

136. plt.ylabel('Etiqueta Verdadera') 

137. plt.xlabel('Etiqueta predicha ') 

138. plt.show() 



Matriz de Confución

Figura §o Resultado gró}ico Motriz de Confusión.

Fuente: Autor.
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Con este capítulo, se finaliza el proceso de codificación dispuesto en

este libro.A continuación se presentan lo resultados obtenidos durante el

desarrollo de esta investigacióny su respectivo análisis.
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Con este capítulo, se finaliza el proceso de codificación dispuesto en 
este libro. A continuación se presentan lo resultados obtenidos durante el 
desarrollo de esta investigación y su respectivo análisis.
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Figura 50 Resultado gráfico Matriz de Confusión. 

Fuente: Autor.





Resultadosy Anólisis

En esta sección se presentany analizan losresultados de la evaluación

y comparación de lostiempos de entrenamiento del modelo implemen-

tado en loscapítulos anteriores frentea modelos típicos pre-entrenados

como: MobileNet, MobileNetV2, ResNetçoy VGG16. La evaluación se rea-

liza tanto en CPU como enGPU para medir el Speed-up de cada modeloy

entre modelos.

Este capítulo tiene la siguiente estructura. Primero, se presentan las

características del entorno de prueba donde se llevóa cabo el entrena-

miento de losdistintos modelos. Luego, se presenta una comparación de

tiempos general entre todos losmodelos de redes neuronales por convo-

lución. Por último, se exponen resultados específicos por cada uno de los

modelos, presentando lostiempos obtenidos iteracióna iteración.

6.1 Entorno de prueba

Lafigura ç1, presenta las características más relevantes del entorno

donde serealizó el entrenamiento de losmodelos. Dentro de estos aspec-

tos, se encuentra el
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Capítulo 6
	

Resultados y Análisis

En esta sección se presentan y analizan los resultados de la evaluación 
y comparación de los tiempos de entrenamiento del modelo implemen-
tado en los capítulos anteriores frente a modelos típicos pre-entrenados 
como: MobileNet, MobileNetV2, ResNet50 y VGG16. La evaluación se rea-
liza tanto en CPU como en GPU para medir el Speed-up de cada modelo y 
entre modelos.

Este capítulo tiene la siguiente estructura. Primero, se presentan las 
características del entorno de prueba donde se llevó a cabo el entrena-
miento de los distintos modelos. Luego, se presenta una comparación de 
tiempos general entre todos los modelos de redes neuronales por convo-
lución. Por último, se exponen resultados específicos por cada uno de los 
modelos, presentando los tiempos obtenidos iteración a iteración.

6.1	 Entorno de prueba

La figura 51, presenta las características más relevantes del entorno 
donde se realizó el entrenamiento de los modelos. Dentro de estos aspec-
tos, se encuentra el uso de un computador con sistema operativo Win-
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dowS10. Adicionalmente, este computador cuenta con una tarjeta grafi-

cadora GeForce GTX 107 n procesador Intel(R) Core(TM) !9de octava

generacióny 16GB de memoria RAM.A partir de los anterior, se puede

argumentar que tanto para el procesamiento en CPU y GPU, se cuentan

con excelentes características, cerrando la posibilidad ventajas en algunos

de losdos casos.

Tarjeta Graficadora

GeForce GTX 1070

Procesador

Intel(R) Core(TM) 19-8950HK

Memoria RAM

16GB

rigur« 'i* Entorno de prueba.

Fuente: Autor.

6.2 Resultado General

Esta subsección presenta una comparación general cada de uno de

losmodelos, sin discriminar el número total de iteraciones de entrena-

miento, tan solo tomando en cuenta el tiempo total de entrenamiento. La

tabla z, presenta losmodelos, su tiempo de ejecución en CPU y en GPU,y

la aceleración obtenida al dividir el tiempo de CPU sobre el tiempo de GPU.

Modelo

Implementado

MobileNet

MobileNetV2

ResNet50

VGG16

Tabla2 Tiempo deeiecución general.

Fuente: Autor.

Tiempo enCPU (s) Tiempo enGPU (s) Aceleración

308,01 46,16 6,67x

337,82

442,8

1122,4

1029,4

24,28

33,72

57,13

45,60

13,91x

13,13x

19,65x

22,57x
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dows10. Adicionalmente, este computador cuenta con una tarjeta grafi-
cadora GeForce GTX 1070, un procesador Intel(R) Core(TM) I9 de octava 
generación y 16GB de memoria RAM. A partir de los anterior, se puede 
argumentar que tanto para el procesamiento en CPU y GPU, se cuentan 
con excelentes características, cerrando la posibilidad ventajas en algunos 
de los dos casos.

     

6.2	 Resultado General

Esta subsección presenta una comparación general cada de uno de 
los modelos, sin discriminar el número total de iteraciones de entrena-
miento, tan solo tomando en cuenta el tiempo total de entrenamiento. La 
tabla 2, presenta los modelos, su tiempo de ejecución en CPU y en GPU, y 
la aceleración obtenida al dividir el tiempo de CPU sobre el tiempo de GPU.

Tarjeta Graficadora
GeForce GTX 1070

Procesador
Intel(R) Core(TM) I9-8950HK

Memoria RAM
16GB

Figura 51 Entorno de prueba. 
Fuente: Autor.

Modelo Tiempo en CPU (s) Tiempo en GPU (s)   

Implementado 308,01 46,16 6,67x 

MobileNet 337,82 24,28 13,91x 

MobileNetV2 442,8 33,72 13,13x 

ResNet50 1122,4 57,13 19,65x 

VGG16 1029,4 45,60 22,57x 

Aceleración

Tabla 2 Tiempo de ejecución general. 
Fuente: Autor.
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Adicionalmente, la figuras2, expone gráficamente los datos consoli-

dados en la tabla z.

1000

800

600

CPU

GPU

Tiempo de entranamiento

400
308.01 337.82

200

46.16

0

442.8

24.28 33.72

1122.4

1029.4

57.13 45.6

Implementado MobileNet MobileNetV2 ResNet50 VGG16

Modelos

Figuro 'iz Comparación general de tiempos de entrenamiento de todos losmodelos de CNN.

Fuente: Autor.

6.$ Resultados específicos

Esta subsección exhibe lostiempos de entrenamiento para cada una

de las iteraciones requeridas por cada modelo utilizado. Estos datos, se

consolidan en una tablay posterior se presentan de una manera gráfica.

6.$.1 Modelo Implementado

Para el modelo implementado, como sepresentó en el Capítulo4

apartadO4 3› el entrenamiento delmodelo tomó un total de 2o iteracio-

nes. Es por esto, que la tabla 3› presenta el tiempo de ejecución de cada

iteración al realizar el entrenamiento en CPUy GPU.
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Adicionalmente, la figura 52, expone gráficamente los datos consoli-
dados en la tabla 2.

6.3	 Resultados específicos

Esta subsección exhibe los tiempos de entrenamiento para cada una 
de las iteraciones requeridas por cada modelo utilizado. Estos datos, se 
consolidan en una tabla y posterior se presentan de una manera gráfica.

6.3.1	 Modelo Implementado

Para el modelo implementado, como se presentó en el Capítulo 4 
apartado 4.3, el entrenamiento del modelo tomó un total de 20 iteracio-
nes. Es por esto, que la tabla 3, presenta el tiempo de ejecución de cada 
iteración al realizar el entrenamiento en CPU y GPU.

Tiempo de entranamiento
Ti

em
po

(S
)

1000

800

600

400

200

0

CPU
GPU

308.01 337.82

Implementado MobileNet MobileNetV2
Modelos

ResNet50 VGG16

46.16 24.28

442.8

33.72 57.13 45.6

1122.4
1029.4

Figura 52 Comparación general de tiempos de entrenamiento de todos los modelos de CNN. 
Fuente: Autor.
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Tabla3 Tiempo de entrenamiento por iteraciones Modelo fmplementodo.

Fuente: Autor.

Dispositivo Dispositivo

No. Iteración CPU GPU No. Iteración CPU GPU

1

2

4

5

6

7

8

9

10

13.34 2.5 11

15.31 1.28 12

15.31 2.35 13

15.31 2.35 14

15.30 2.35 15

15.31 2.37 16

16.32 2.35 17

16.32 2.35 18

15.31 2.35 19

15.31 2.35 20

Tiempo (s)

15.30 2.36

16.32 2.35

15.30 2.35

15.31 2.35

15.30 2.37

15.31 2.37

16.31 2.36

15.31 2.35

15.31 2.35

15.31 2.35

Tiempo (s)

Además de esto, la figura ss, expone el tiempo de entrenamiento

acumulado iteración tras iteración del modelo implementado.

300

250

200

E 150

100

50

0

Tiempo de entranamiento

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteraciones

Figuro §$ Tiempo de entrenamiento iteracióna iteración def modelo Implementado.

Fuente: Autor.
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Además de esto, la figura 53, expone el tiempo de entrenamiento
acumulado iteración tras iteración del modelo implementado.

 Dispositivo  Dispositivo 

No. Iteración CPU GPU No. Iteración CPU GPU 

1 13.34 2.5 11 15.30 2.36 

2 15.31 1.28 12 16.32 2.35 

3 15.31 2.35 13 15.30 2.35 

4 15.31 2.35 14 15.31 2.35 

5 15.30 2.35 15 15.30 2.37 

6 15.31 2.37 16 15.31 2.37 

7 16.32 2.35 17 16.31 2.36 

8 16.32 2.35 18 15.31 2.35 

9 15.31 2.35 19 15.31 2.35 

10 15.31 2.35 20 15.31 2.35 

 Tiempo (s)  Tiempo (s) 

Tabla 3 Tiempo de entrenamiento por iteraciones Modelo Implementado. 
Fuente: Autor.

Ti
em

po
(S

)

CPU
GPU

Tiempo de entranamiento

Iteraciones

300

250

200

150

100

50

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figura 53 Tiempo de entrenamiento iteración a iteración del modelo Implementado. 
Fuente: Autor.



6.3.z Modelos Pre-entrenados

ReSu/todosy Anólisis

En esta sección, se presenta la comparación de cuatro modelos de

CNN típicos los cuales presentan una arquitectura robusta. Lo anterior,

con el propósito de observar al comportamiento delentrenamiento en

CPU y CPU. Dado que la estructura de los modelos de redes neuronales

convolucionales, es uno de los factores que puede incidir en el tiempo de

entrenamiento.

Adicionalmente, para el entrenamiento de estos modelos solo se uti-

lizaron8 iteraciones, ya que, de acuerdo con (Sarkar, D., Bali, R.,& Ghosh,

T., 2018) al entrenar estos modelos no se requiere un gran número de ite-

raciones, convirtiéndose en una ventaja de la transferencia de aprendizaje.

A continuación de presentan cada uno de losmodelos.

6.$.z.1 MobileNet

La tabla 4› expone el tiempo de entrenamiento utilizado en cada una

de lasiteraciones para el modelo MobileNet.

Dispositivo 1

CPU

GPU

Tablaq Tiempo de entrenamiento por iteraciones íVIobileNet.

Fuente: Autor.

2 3 4

Iteraciones

5 6 7 8

44,90 41,85 41,85 41,84 41,85 41,84 41,85 41,84

7,13 2,45 2,45 2,45 2,45 2,45 2,45 2,45

Tiempo (s)

De igual manera, la figura s4› presenta el tiempo de entrenamiento

acumulado iteración tras iteración del modelo MobileNet.
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6.3.2	 Modelos Pre-entrenados

En esta sección, se presenta la comparación de cuatro modelos de 
CNN típicos los cuales presentan una arquitectura robusta. Lo anterior, 
con el propósito de observar al comportamiento del entrenamiento en 
CPU y CPU. Dado que la estructura de los modelos de redes neuronales
convolucionales, es uno de los factores que puede incidir en el tiempo de
entrenamiento.

Adicionalmente, para el entrenamiento de estos modelos solo se uti-
lizaron 8 iteraciones, ya que, de acuerdo con (Sarkar, D., Bali, R., & Ghosh, 
T., 2018) al entrenar estos modelos no se requiere un gran número de ite-
raciones, convirtiéndose en una ventaja de la transferencia de aprendizaje. 
A continuación de presentan cada uno de los modelos.

6.3.2.1	 MobileNet
La tabla 4, expone el tiempo de entrenamiento utilizado en cada una 

de las iteraciones para el modelo MobileNet.

De igual manera, la figura 54, presenta el tiempo de entrenamiento 
acumulado iteración tras iteración del modelo MobileNet.

Tabla 4 Tiempo de entrenamiento por iteraciones MobileNet. 
Fuente: Autor.

 Iteraciones 

Dispositivo 1 2 3 4 5 6 7 8 

CPU 44,90 41,85 41,85 41,84 41,85 41,84 41,85 41,84 

GPU 7,13 2,45 2,45 2,45 2,45 2,45 2,45 2,45 

 Tiempo (s) 
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6 7

Figuras Tiempo de entrenamiento iteracióna iteración de MobifeNet.

Fuente: Autor.

6.g.2.2 MobileNetV2

Latabla ç, presenta el tiempo de entrenamiento utilizado en cada una

de lasiteraciones para el modelo MobileNetV2.

Dispositivo 1

CPU

GPU

Tabla5 Tiempo de entrenamiento por iteraciones íi4obileNetVz.

Fuente: Aiutor.

2 3 4

Iteraciones

5 6 7 8

60,1 56,1 55,1 55,1 55,1 54,1 54,1 53,1

8,17 3,65 3,65 3,65 3,65 3,65 3,65 3,65

Tiempo (s)

Asimismo, la figura s5› expone el tiempo de entrenamiento acumula-

do iteración tras iteración del modelo MobileNetVz.
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6.3.2.2	 MobileNetV2

La tabla 5, presenta el tiempo de entrenamiento utilizado en cada una 
de las iteraciones para el modelo MobileNetV2.

Asimismo, la figura 55, expone el tiempo de entrenamiento acumula-
do iteración tras iteración del modelo MobileNetV2.

Ti
em

po
(S

)
CPU
GPU

Tiempo de entranamiento

Iteraciones

350

300

250

200

150

100

50

0

1 2 3 4 5 6 7 8

Figura 54 Tiempo de entrenamiento iteración a iteración de MobileNet. 
Fuente: Autor.

 Iteraciones 

Dispositivo 1 2 3 4 5 6 7 8 

CPU 60,1 56,1 55,1 55,1 55,1 54,1 54,1 53,1 

GPU 8,17 3,65 3,65 3,65 3,65 3,65 3,65 3,65 

 Tiempo (s) 

Tabla 5 Tiempo de entrenamiento por iteraciones MobileNetV2. 
Fuente: Autor.
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Tiempo de entranamiento por iteración

2 3 4 5 6

Iteraciones

7 6

Figura $$ Tiempo de entrenamiento iteracióna iteración de MobileNetVz.

Fuente: Autor.

6-3.*-s ResNetso

La tabla 6, presenta lostiempos de entrenamiento utilizado en cada

una de lasiteraciones para el modelo MobileNetV2.

Dispositivo 1

CPU

GPU

Tabla6 Tiempo de entrenamiento por iteraciones ResNets»

Fuente: Autor.

2 3 4

Iteraciones

5 6 7 8

143,3 139,3 140,3 140,3 139,3 137,3 140,3 142,3

14,28 6,12 6,12 6,12 6,12 6,12 6,12 6,12

Tiempo (s)

También, la figura 6, exhibe el tiempo de entrenamiento acumulado

iteración tras iteración del modelo ResNet5o.
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6.3.2.3	 ResNet50

La tabla 6, presenta los tiempos de entrenamiento utilizado en cada 
una de las iteraciones para el modelo MobileNetV2.

También, la figura 56, exhibe el tiempo de entrenamiento acumulado 
iteración tras iteración del modelo ResNet50.

    

   

Figura 55 Tiempo de entrenamiento iteración a iteración de MobileNetV2. 
Fuente: Autor.

Tabla 6 Tiempo de entrenamiento por iteraciones ResNet50. 
Fuente: Autor.

Ti
em

po
(S

)
CPU
GPU

Tiempo de entranamiento por iteración

Iteraciones

400

300

200

100

0
1 2 3 4 5 6 7 8

 Iteraciones 

Dispositivo 1 2 3 4 5 6 7 8 

CPU 143,3 139,3 140,3 140,3 139,3 137,3 140,3 142,3 

GPU 14,28 6,12 6,12 6,12 6,12 6,12 6,12 6,12 

 Tiempo (s) 
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Figuro §6 Tiempo de entrenamiento iteracióno iteración de ResNets»

Fuente:Autor.

6•3.2.g VGG16

La tabla 7› expone lostiempos de entrenamiento utilizado en cada

una de las iteraciones para el modelo VGG16.

Dispositivo 1

CPU

GPU

Tabla7 Tiempo de entrenamiento por iteraciones VGG16.

Fuente: Autor.

2 3 4

Iteraciones

5 6 7 8

129,3 123,3 125,3 131,3 128,3 131,3 129,3 131,3

8,154 5,93 5,94 4,91 5,93 4,91 4,91 4,92

Tiempo (s)

Además, la figura 57› presenta el tiempo de entrenamiento acumula-

do iteración tras iteración del modelo VGG16.
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6.3.2.4	 VGG16

La tabla 7, expone los tiempos de entrenamiento utilizado en cada 
una de las iteraciones para el modelo VGG16.

Además, la figura 57, presenta el tiempo de entrenamiento acumula-
do iteración tras iteración del modelo VGG16.

CPU
GPU

Tiempo de entranamiento por iteración

Iteraciones

1000

800

600

400

200

0
1 2 3 4 5 6 7 8

 Iteraciones 

Dispositivo 1 2 3 4 5 6 7 8 

CPU 129,3 123,3 125,3 131,3 128,3 131,3 129,3 131,3 

GPU 8,154 5,93 5,94 4,91 5,93 4,91 4,91 4,92 

 Tiempo (s) 

Tabla 7 Tiempo de entrenamiento por iteraciones VGG16. 
Fuente: Autor.

Figura 56 Tiempo de entrenamiento iteración a iteración de ResNet50.
 Fuente:Autor.



1000

800

600

400

200

ReSultndosy Análisis

Tiempo de entranamiento por iteración

1 2 3 4 5 6 7 8

Iteraciones

Figura $y Tiempo de entrenamiento iteracióna iteración de VCC16.

Fuente: Autor.

6.q Análisis

Los resultados obtenidos en cuanto al factor de aceleración general

(speed-up) para cada uno de losmodelos evaluados evidencian que las

plataformas many-threadsy en este caso específico las GPUs, representan

una solución realy eficientea la intensividad del proceso de entrenamien-

to de las técnicas de aprendizaje profundo, como lo son las redes neuro-

nales convoluCionales. El factor de aceleración osciló entre6,67x (para el

modelo implementado)y z2,s7X (para el modelo VGG16) loque representa

que en el peor de loscasos el tiempo de entrenamiento se reduce en un

8s%y en el mejor de loscasos se reduce casi un g6%. Los modelos que pre-

sentaron mejor factor de aceleración fueron precisamente aquellos mo-

delos que requieren mayor tiempo de entrenamiento, ResNet$o pasó de

emplear 1122,4 segundos sobre CPU a solo tOmáF57,1$ segundos cuando

serealizó sobre GPU y VGG16 pasó de emplear 1oz9.4 segundos sobre CPU

a 4s,6 segundos cuando serealizó sobre GPU.

Los resultados de la evaluación discriminados por época evidencian

un patrón en el factor de aceleración muy similar en todos losmodelos

medidos: la primera época de entrenamiento presenta el menor factor de
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Figura 57 Tiempo de entrenamiento iteración a iteración de VGG16.
 Fuente: Autor.
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6.4	 Análisis

Los resultados obtenidos en cuanto al factor de aceleración general 
(speed-up) para cada uno de los modelos evaluados evidencian que las 
plataformas many-threads y en este caso específico las GPUs, representan 
una solución real y eficiente a la intensividad del proceso de entrenamien-
to de las técnicas de aprendizaje profundo, como lo son las redes neuro-
nales convolucionales. El factor de aceleración osciló entre 6,67x (para el 
modelo implementado) y 22,57x (para el modelo VGG16) lo que representa 
que en el peor de los casos el tiempo de entrenamiento se reduce en un 
85% y en el mejor de los casos se reduce casi un 96%. Los modelos que pre-
sentaron mejor factor de aceleración fueron precisamente aquellos mo-
delos que requieren mayor tiempo de entrenamiento, ResNet50 pasó de 
emplear 1122,4 segundos sobre CPU a solo tomar 57,13 segundos cuando 
se realizó sobre GPU y VGG16 pasó de emplear 1029,4 segundos sobre CPU 
a 45,6 segundos cuando se realizó sobre GPU. 

Los resultados de la evaluación discriminados por época evidencian 
un patrón en el factor de aceleración muy similar en todos los modelos 
medidos: la primera época de entrenamiento presenta el menor factor de 
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aceleración, mientras que las siguientes épocas presentan un mejor fac-

tor de aceleración que se mantiene relativamente estable épocaa época.

Donde más seevidencia esa diferencia entre la primera épocay el resto,

es en el modelo MobileNet el cual presenta un factor de aceleración de

6,gx para la primera época de entrenamientoy un valor cercanOá 17›O8X

para el resto de épocas. Los modelos MobilNet en sus dos versionesy el

modelo ResNetso presentan una particularidad,y es que los tiempos de

entrenamiento sobre GPU para las épocas diferentesa la primera se man-

tienen totalmente estables,a pesar de que lostiempos sobre CPU para

las mismas épocas varían levemente. En el caso de MobilNet lostiempos

de entrenamiento para todas las épocas diferentesa la primera fueron de

2,4a segundos, para la segunda versión de este modelo lostiempos para

esas épocas fueron igualesa ,6$ segundosy para el modelo ResNet$o

fueron de 6,12 segundos.
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aceleración, mientras que las siguientes épocas presentan un mejor fac-
tor de aceleración que se mantiene relativamente estable época a época. 
Donde más se evidencia esa diferencia entre la primera época y el resto, 
es en el modelo MobileNet el cual presenta un factor de aceleración de 
6,3x para la primera época de entrenamiento y un valor cercano a 17,08x 
para el resto de épocas. Los modelos MobilNet en sus dos versiones y el 
modelo ResNet50 presentan una particularidad, y es que los tiempos de 
entrenamiento sobre GPU para las épocas diferentes a la primera se man-
tienen totalmente estables, a pesar de que los tiempos sobre CPU para 
las mismas épocas varían levemente. En el caso de MobilNet los tiempos 
de entrenamiento para todas las épocas diferentes a la primera fueron de 
2,45 segundos, para la segunda versión de este modelo los tiempos para 
esas épocas fueron iguales a 3,65 segundos y para el modelo ResNet50 
fueron de 6,12 segundos.



El aprendizaje profundo fundamenta susbuenos niveles de precisión

en tareas de prediccióno de clasificación en la capacidad de identificación

y extracción automática de rasgos mediante un proceso de abstracción

jerárquicae iterativa basada en operaciones tales como la convolucióny el

agrupamiento en las redes neuronales convolucionales; operaciones que

aunque sucomplejidad es mediao baja, durante el entrenamiento se con-

vierten en un reto computacional debidoa dos factores: su aplicación se

basa en un barridoa través de todos loselementos de cada dato de entra-

day el tamaño de losconjuntos de datos de entrenamiento normalmente

tienen un volumen categorizado como bigdata debidoa que el éxito del

proceso de entrenamiento depende en gran medida deltamañio del con-

junto de datos. El análisis comparativo de losresultados de la evaluación

de lostiempos de entrenamiento tanto del modelo implementado como

delosmodelos típicos sobre losdos tipos de plataforma, multi-core (CPU)

y many-thread (GPU) evidenció que la computación paralela sobre GPU

representa una solución eficientey al reto computacional que implica el

entrenamiento de modelos de aprendizaje profundo tales como las redes

neuronales convolucionales. Los resultadosa niveles de speed-up obte-

nidos en este libro represetan un marco de referencia de desempeño en

cuantoa recursos computacionales muy útil en el proceso de compara-

Conclusiones

113

Conclusiones
         

El aprendizaje profundo fundamenta sus buenos niveles de precisión 
en tareas de predicción o de clasificación en la capacidad de identificación 
y extracción automática de rasgos mediante un proceso de abstracción 
jerárquica e iterativa basada en operaciones tales como la convolución y el 
agrupamiento en las redes neuronales convolucionales; operaciones que 
aunque su complejidad es media o baja, durante el entrenamiento se con-
vierten en un reto computacional debido a dos factores: su aplicación se 
basa en un barrido a través de todos los elementos de cada dato de entra-
da y el tamaño de los conjuntos de datos de entrenamiento normalmente 
tienen un volumen categorizado como big data debido a que el éxito del 
proceso de entrenamiento depende en gran medida del tamaño del con-
junto de datos. El análisis comparativo de los resultados de la evaluación 
de los tiempos de entrenamiento tanto del modelo implementado como 
de los modelos típicos sobre los dos tipos de plataforma, multi-core (CPU) 
y many-thread (GPU) evidenció que la computación paralela sobre GPU 
representa una solución eficiente y al reto computacional que implica el 
entrenamiento de modelos de aprendizaje profundo tales como las redes 
neuronales convolucionales. Los resultados a niveles de speed-up obte-
nidos en este libro represetan un marco de referencia de desempeño en 
cuanto a recursos computacionales muy útil en el proceso de compara-
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cióny selección de modelos de redes neuronales convolucionales tanto de

forma global como deforma detallada por iteraciones.

Mediante el desarrollo de la solución del caso de estudio afrontado en

este libro se pudo evidenciar que el proceso de diseño, implementación,

entrenamientoy evaluación de modelos de redes neuronales convolucio-

nales se puede llevara cabo de forma ágily fácil utilizando una API de alto

nivel como lo es Keras. Esta API ofrece las utilidades necesarias para acon-

dicionar y/o aumentar conjuntos de datos de entrenamientoy de prueba,

para construir modelos con las principales funcionesy operaciones que

involucran las diferentes capas de una red neuronal convolucional, para

compilary entrenar modelos tanto en CPU como enGPU conunaconfigu-

ración muy sencilla, para evaluary analizar el desempeño de los modelos

generados.
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ción y selección de modelos de redes neuronales convolucionales tanto de
forma global como de forma detallada por iteraciones. 

Mediante el desarrollo de la solución del caso de estudio afrontado en 
este libro se pudo evidenciar que el proceso de diseño, implementación, 
entrenamiento y evaluación de modelos de redes neuronales convolucio-
nales se puede llevar a cabo de forma ágil y fácil utilizando una API de alto 
nivel como lo es Keras. Esta API ofrece las utilidades necesarias para acon-
dicionar y/o aumentar conjuntos de datos de entrenamiento y de prueba, 
para construir modelos con las principales funciones y operaciones que 
involucran las diferentes capas de una red neuronal convolucional, para 
compilar y entrenar modelos tanto en CPU como en GPU con una configu-
ración muy sencilla, para evaluar y analizar el desempeño de los modelos 
generados.
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Vivimos en una era gobernada por datos, donde laintui-

cióny el azar se han visto rezagados ante predicciones

que soportan tanto decisiones cotidianos como

grandes po/íticos gubernamentales. Una era

donde lanueva riqueza se encuentra en los

datosy en losmétodos que permiten hacer

un uso e§ciente de éstos. En los últimos años,

los métodos de procesamiento de datos que

mayor precisión man presentado en tareas predicti-

vas han sido aquellos basados en aprendiz•ieprof•ndo,

como poreíemplo las redes neuronales convolucionoles.

Este tipo de métodos representan un reto tonto por su oltri

exigencia de recurso computocionol como porsucompleïi-

dad de diseñoe ímplementnción.

Tomando como motivación Ioanterior, en este libro el lector

encontrarâ uno guía próctïca parn laímplementación, entre-

namientoy validocíón de redes neuronales convolucionales

usando herosy ocelerondo con GPU. La guío se desorroI/a

mediante un caso de estudîo típîco enmarcado en Issclasifì-

caciones de imágenes satelitales. Adicionalmente la evalua-

ción del modelo implementado incluye lo comparaciónn

nivel de speed-up con los modelos de redes neuronales

pre-entenados más comunes: MobileNet, NlobileNetV2, Res-

Netşoy VGGi6.

Vivimos en una era gobernada por datos, donde la intui-
ción y el azar se han visto rezagados ante predicciones 
que soportan tanto decisiones cotidianas como 
grandes políticas gubernamentales. Una era 
donde la nueva riqueza se encuentra en los 
datos y en los métodos que permiten hacer 
un uso eficiente de éstos. En los últimos años, 
los métodos de procesamiento de datos que 
mayor precisión han presentado en tareas predicti-
vas han sido aquellos basados en aprendizaje profundo, 
como por ejemplo las redes neuronales convolucionales. 
Este tipo de métodos representan un reto tanto por su alta 
exigencia de recurso computacional como por su compleji-
dad de diseño e implementación. 
Tomando como motivación lo anterior, en este libro el lector 
encontrará una guía práctica para la implementación, entre-
namiento y validación de redes neuronales convolucionales 
usando Keras y acelerando con GPU. La guía se desarrolla 
mediante un caso de estudio típico enmarcado en las clasifi-
caciones de imágenes satelitales. Adicionalmente la evalua-
ción del modelo implementado incluye la comparación a 
nivel de speed-up con los modelos de redes neuronales 
pre-entenados más comunes: MobileNet, MobileNetV2, Res-
Net50 y VGG16.
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