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Prefacio

Vivimos en una era gobernada por datos, donde la intuicion y el azar
se han visto rezagados ante predicciones que soportan tanto decisiones
cotidianas como grandes politicas gubernamentales. Una era donde la
nueva riqueza se encuentra en los datos y en los métodos que permiten
hacer un uso eficiente de éstos. En los Ultimos afios, los métodos de proce-
samiento de datos que mayor precision han presentado en tareas predicti-
vas han sido aquellos basados en aprendizaje profundo, como por ejemplo
las redes neuronales convolucionales. Este tipo de métodos representan
un reto tanto por su alta exigencia de recurso computacional como por su
complejidad de disefio e implementacidn.

Tomando como motivacién lo anterior, en este libro el lector encon-
trard una guia practica paralaimplementacion, entrenamiento y validacion
de redes neuronales convolucionales usando Keras y acelerando con GPU.
La guia se desarrolla mediante un caso de estudio tipico enmarcado en las
clasificaciones de imagenes satelitales. Adicionalmente la evaluacion del
modelo implementado incluye la comparacidén a nivel de speed-up con los
modelos de redes neuronales pre-entenados mas comunes: MobileNet,
MobileNetV2, ResNet50 y VGG16.
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Intfroducciédn

En esta seccidn, se presentan conceptos claves y fundamentales
referentes a aprendizaje de maquina, aprendizaje profundo de maquinay
procesamiento de datos en arquitecturas heterégeneas CPU-GPU. Lo an-
terior, con el propdsito de contextualizar al lector y brindar herramientas
para la compresion de este libro.

(Qué es el aprendizaje de maquina?

El término “aprender” en el dominio de las maquinas hace referencia a
generalizar comportamientos a partir de una informacién suministrada en
forma de ejemplos. De acuerdo a la forma que “aprenden” las maquinas,
los algoritmos se puede clasificar en supervisados y no supervisados. En el
aprendizaje supervisado los datos traen relacionado un objetivo, mientras
que en el no supervisado los datos no traen ninguna relacién explicita con
algun objetivo. Los algoritmos que utilizan aprendizaje supervisado (veci-
nos mas cercanos, maquinas de vectores de soporte, arboles de decision,
regresion, entre otros) normalmente cumplen funciones de clasificacién o
regresion, mientras que los no supervisados (modelos gausianos, aprendi-
zaje multiple, estimacion de densidad, entre otros) cumplen funciones de
agrupamiento.

17



Redes Neuronales Convolucionales Usando Keras y Acelerando con GPU

¢Cuales son las técnicas mas comunes de aprendizaje de
maquina supervisado?

Vecinos mds cercanos (K-NN). Es un método de clasificacién supervi-
sada no paramétrico que permite estimar la funcidon de densidad de pro-
babilidad o la probabilidad a posteriori de que un elemento pertenece a
una clase determinada. El cdlculo de esta probabilidad se basa en anali-
zar a qué clase pertenecen los k vecinos mas cercanos. Para determinar
cuales son los vecinos mas cercanos se utiliza generalmente la distancia
euclidiana. Un buen ejemplo para esclarecer el funcionamiento de K-NN
es su uso en la clasificacion de clientes de bancos en confiables o no para
realizarles un crédito. En la figura 1 el cliente a ser clasificado se denota
con el cuadro verde, mientras que los clientes que han realizado créditos
y no los han pagado con la estrella roja y aquellos que si pagaron con el
triangulo azul. Si se emplea un k = 5, seria mas probable que el cliente
pague debido a que 3 de sus 5 vecinos también pagaron. Si se emplea un
k =10, seria mds probable que el cliente no pague debido a que 6 de sus
10 vecinos tampoco pagaron (Wu Jian et.al., 2014).

Figura 1 Ejemplo de clasificacién de clientes
Fuente (Wu Jian et. al., 2014)

Mdquinas de Vectores de Soporte (SVM). Técnica de aprendizaje super-
visado creada por Vladimir Vapnik (1995) que permite realizar tareas de cla-
sificacion y de regresidon mediante la creacién de hiperplanos que separan
los datos de entrada.

18
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a
O

X

Figura 2 Hiperplano que separan los datos de entrada.
Fuente: http://www.swarthmore.edu/NatSci/mzuckeri/opencv-2.4.10-docs/doc/
tutorials/ml/introduction_to_svm/introduction_to_svm.html

Un hiperplano es un plano de n-1 dimensiones que divide en dos a un
plano n dimensional. En la figura 2 se muestran algunos hiperplanos (en
este caso rectas) que dividen en dos el plano bidimensional donde se en-
cuentran unos datos de entrenamiento (cuadros y circulos). SVM permite
encontrar el hiperplano que mejor separe los datos de entrenamiento, es
decir aquel que presente una mayor margen hacia los datos de cadauna de
las clases (Paul Mather, Brandt Tso, 2009) (ver figura 3).

Xz‘ . O

N
Maximum
*. Margin

“\ N

o &
0

Figura 3 Hiperplano éptimo.
Fuente: http://www.swarthmore.edu/NatSci/mzuckeri/opencv-2.4.10-docs/doc/
tutorials/ml/introduction_to_svm/introduction_to_svm.html

Cuando los datos no son separables linealmente, SVM ofrece unas
funciones kernels que permiten llevar los datos a una dimensidén superior
donde si sean separables (ver figura 4).
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Figura 4 Funcidn kernel.
Fuente: http://www.swarthmore.edu/NatSci/mzuckeri/opencv-2.4.10-docs/doc/tuto-
rials/ml/introduction_to_svm/introduction_to_svm.html

Arboles de decisién. Son un método de aprendizaje supervisado no pa-
ramétrico utilizado para la clasificacién y la regresidn. Su funcidén es crear
un modelo que prediga el valor de una variable objetivo mediante el apren-
dizaje de reglas simples de decision inferidas a partir de las caracteristicas
de los datos. Esas reglas se representan mediante un grafo (ver figura 5)
y son una serie de condiciones aplicadas a los atributos de los datos. Los
nodos iniciales o intermedios del grafo representan atributos de los datos,
las aristas representan las condiciones que deben cumplir para tomar ese
camino y los nodos finales representan la decisidn de regresion o clasifica-
cion a tomar. Para seleccionar el orden de cada uno de los atributos en el
arbol, se utilizan métricas de la teoria de informacién, tales como, cantidad
de informacién, entropia y ganancia de informacién (Giovanni, G., & Velas-
quez, V., 2014).

Valor Valor
Atributo Atributo
objetivo objetivo

Figura 5 Arbol de decisién
Fuente: (Giovanni, G., & Velasquez, V., 2014).
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Regresion lineal. Los métodos de regresion estudian la construccion
de modelos para explicar o representar la dependencia entre una variable
respuesta o dependiente (Y) y la(s) variable(s) explicativa(s) o indepen-
diente(s), X. Si la relacién entre esos dos tipos de variables es lineal y el
numero de variables explicativas o independientes es de 1, la regresion es
simple lineal, en el caso de que la relacidn sea lineal, pero haya mas de una
variable explicativa la regresion es lineal multivariable.

La regresion lineal simple se modela mediante la ecuacion 1; donde €
es el error generado por valores aleatorios. Si € es despreciado el modelo
se reduce ala ecuacién de una recta donde o es el corte con el eje Yy 1 es
la pendiente. o y B1 son llamados estimadores y se calculan normalmente
por el método de minimos cuadrados con el fin de reducir el error entre los
valores reales y los generados por la ecuacién de la recta.

y=P0+B1x +€

Ecuacién 1 Modelo de regresion lineal simple

La precisidn de las predicciones realizadas con este modelo dependera
del grado de asociacidn lineal existente entre las variables y la bondad del
ajuste de la recta de regresion a los datos observados. Para medir este gra-
do de linealidad y esta bondad de ajuste se utilizan dos coeficientes: el de
correlacién lineal de Pearsony el de determinacion. En la figura 6 se pueden
observar varios valores de coeficientes de correlacién.

r=1 r=0.7

ra
Y o Y
-
L.
X X
r=o0
r=-1 r=-0.7
.,
Y ~. Y
“,
iy
X X

Figura 6 Factor de correlacién de Pearson (r).
Fuente: Autor.
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Redes Neuronales Artificiales (ANN). Como su nombre lo indica es una
técnica de aprendizaje de maquina que se inspira en la estructura y el fun-
cionamiento de las redes neuronales de nuestro cerebro. Utiliza unidades
de procesamiento bdsicas que imitan la operacidn eléctrica de las neuro-
nas mediante una funcién de activacion que entrega una salida en fun-
cidon de las entradas, las cuales a su vez provienen de las salidas de otras
neuronas. La conexidn entre salida y entrada de las neuronas posee un
factor de amplificacién o de atenuacién al cual se le llama peso; la
actualizacion de estos pesos representa el proceso de aprendizaje,
es decir la sinapsis (ver figura 7).

Ax6n Sinapsis
Dendritas Cuerpo

Cuello
del axén

/

Funcion de
activacion

Axén

Salida

Xn
Entradas Pesos

Sumatorio y umbral

Figura 7 Neurona artificial.
Fuente: Autor

La forma como se conecten y operen las neuronas entre si definen la
arquitectura de lared. Una de las arquitecturas mas utilizadas es la multi-la-
yer perceptron. Esta arquitectura es muy utilizada en tareas de clasifica-
cién y consiste en una capa de entrada con una cantidad de neuronas igual
al nimero de rasgos a tener en cuenta para la clasificacién, una o mas ca-
pas ocultas y una capa de salida con un nidmero de neuronas igual al nime-
ro de clases, de tal forma que la neurona que se activa define el resultado
de la clasificacién. En la figura 8 se puede ver un ejemplo de red neuronal
multi-layer perceptrén totalmente conectada con una capa de entrada de
4 neuronas, dos capas ocultas de 5y 7 neuronas respectivamente y una
capa de salida de tres neuronas que permitiria realizar una clasificacién de
3 clases o categorias.
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Figura 8 Red Neuronal Artificial Multi-layer Perceptron
Fuente: https://www.datasciencecentral.com/
profiles/blogs/how-to-configure-the-number-of-layers-and-nodes-in-a-neural.

{Qué es el aprendizaje de maquina profundo?

Al inicio de esta introduccion se define el aprendizaje de las maquinas
como la accién de generalizar comportamientos a partir de una informa-
cién suministrada en forma de ejemplos. La pregunta a resolver ahora, es
:Qué hace que ese aprendizaje de maquina sea profundo?. El término pro-
fundo hace referencia a la capacidad de identificacién y extraccién auto-
matica de rasgos mediante capas consecutivas conformadas por unidades
de procesamiento no lineales que permiten hacer una abstraccidn jerarqui-
ca de caracteristicas (LeCun, Y., Bengio, Y., & Hinton, G., 2015).

Las técnicas de aprendizaje de maquina convencionales (no profun-
do) requieren un preprocesamiento para extraer rasgos identificados o
determinados de forma no automatica, es decir el aprendizaje de ma-
quina convencional no involucra la identificacion de rasgos, este es un
proceso que se debe definir por humanos y que influye altamente en la
precisidn de la técnica. Las técnicas de aprendizaje de maquina profundo
extienden el aprendizaje a la identificacidn y extraccion de rasgos de tal
forma que la maquina “aprende” cuales son los rasgos que definen una
clase de datos de entrada y cdmo se deben extraer estos rasgos.
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{Qué son las redes neuronales convolucionales?

Una de las técnicas de aprendizaje profundo mas utilizada y de ma-
yor precisién son las redes neuronales convolucionales. Una red neuronal
convolucional presenta una arquitectura conformada por dos bloques
secuenciales, el primero cumple el propdsito de deteccidn de caracteris-
ticas o rasgos mediante la aplicacién iterativa de filtros y el segundo se
encarga de tomar la decision (regularmente de clasificacién) mediante
una red neuronal totalmente conectada (convencional) (Krizhevsky, A.,
Sutskever, I., & Hinton, G.E., 2012). En la figura 9 se puede observar la
arquitectura general de una red neuronal convolucional utilizada para la
clasificacion de imagenes.
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Figura 9 Arquitectura general de una red neuronal convolucional.
Fuente: https://la.mathworks.com/solutions/deep-learning/convolutional-neural-network.html

El primer bloque se encarga del aprendizaje profundo, es decir de la
extraccion automatica de rasgos o caracteristicas. Para cumplir esta tarea,
este bloque posee una gran cantidad de capas conectadas entre si de for-
ma secuencial (la salida de una es la entrada de la siguiente); cada capa
representa un filtro. Normalmente los filtros son 2 0 3 que se van aplicando
iterativamente. Los filtros mas usados son:

e Convolucién: Esta capa/filtro aplica una mdscara mediante una
operacion de convolucion que permite resaltar rasgos o caracte-
risticas propias de los datos de entrada.

e RelU: La unidad lineal rectificada tiene una funcién similar a un
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rectificador de media onda en términos de electrdnica, es decir
lleva a cero los valores negativos y mantiene los valores
positivos. Esto se realiza con el fin de conseguir un entrena
miento mas rapido y efectivo. Esta rectificacién se conoce como
activacion, ya que solo las caracteristicas activadas prosiguen su
camino hacia la siguiente capa.

e Pooling: Esta capa realiza una tarea de agrupacion con el fin de
simplificar la salida mediante la disminucién no lineal de Ia tasa
de muestreo, lo que reduce el nimero de parametros que
necesita la red para aprender.

Las técnicas de aprendizaje de maquina convencionales (no profun-
do) requieren un preprocesamiento para extraer rasgos identificados o
determinados de forma no automadtica, es decir el aprendizaje de ma-
quina convencional no involucra la identificacién de rasgos, este es un
proceso que se debe definir por humanos y que influye altamente en Ia
precision de la técnica. Las técnicas de aprendizaje de maquina profundo
extienden el aprendizaje a la identificacion y extraccidon de rasgos de tal
forma que la maquina “aprende” cudles son los rasgos que definen una
clase de datos de entrada y cdmo se deben extraer estos rasgos.

¢Qué es la computacion heterogénea CPU-GPU?

A través de la historia de la computacidn, el paradigma de desarrollo
y evolucidn de los procesadores se habia enfocado en el aumento de su
capacidad de cémputo mediante el incremento de la frecuencia de reloj,
con el objeto de ejecutar una mayor cantidad de instrucciones en el menor
tiempo posible. Sin embargo, desde 2003 debido al consumo de energia
y los problemas de disipacion de calor que limitan la construccién de pro-
cesadores que aumenten la frecuencia de reloj y el nivel de actividades
productivas que puede ejecutarse en cada periodo de reloj en un unico
procesador, se cambid el enfoque integrando muiltiples unidades de pro-
cesamiento en un mismo chip para aumentar el poder de procesamiento
(de Antonio & Marina, 2005). Gracias al desarrollo de estos procesadores
se abrid la posibilidad de resolver problemas computacionales que antes
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hubieran sido imposibles (Alba, 2005). Estos problemas deben ser solucio-
nados de una manera distinta a como se resuelven linealmente, toman-
do un problema cualquiera se divide en un conjunto de sub-problemas
para resolver éstos simultdaneamente sobre diferentes unidades
de procesamiento.

De acuerdo alo expuesto en el parrafo anterior, en la actualidad el de-
sarrollo de sistemas de procesamiento se ha enfocado en producir disposi-
tivos con la capacidad de ejecucién simultanea de dos manera diferentes:
La primera opcidn es el disefio de CPUs multi-core, optimizadas para re-
ducir el tiempo de ejecucién de procesos secuenciales (lactency cores); la
segunda opcidn, es el disefio de sistemas de procesamiento many-thread,
como por ejemplo las GPUs (Unidades de Procesamiento Grafico) optimi-
zadas para mejorar el desempefo (menos tiempo y menos consumo de
energia eléctrica) en la ejecucién de procesos paralelizables (throughput
cores) (ver figura 10). Debido a que la mayoria de problemas computacio-
nalmente intensivos poseen procesos tanto secuenciales como paraleliza-
bles, en los ultimos afios se ha iniciado el proceso de integracidon de los
sistemas multi-core y los sistemas many-thread en plataformas computa-
cionales denominadas heterogéneas (Kirk & Wen-mei, 2012).

Latency and Throughput Orientation

CPU
o)
i

DRAM

Figura 10 CPU (lactency cores) vs GPU (throughput cores).
Fuente: https://gigazine.net/gsc_news/en/20130725-40-year-cpu-history.

Una plataforma de computacién heterogénea se define como un sis-
tema conformada por lo menos de dos tipos diferentes de procesadores,
normalmente, con el objeto de incorporar capacidades de procesado es-
pecializadas para realizar tareas particulares (Amar Shan, 2006). Un siste-
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ma heterogéneo se conforma habitualmente por una o mas CPU(s) que
cumple(n) la funcién de unidad de procesamiento principal (llamado ge-
neralmente Host) y uno o mas dispositivos de procesamiento diferentes,
como por ejemplo GPUs (Graphics Processing Units), DSPs (Digital Signal
Processors), FPGAs (Field Programmable Gate Arrays), que cumple(n) la
funcién de aceleradores (ver figura 11). También se puede encontrar la inte-
gracion de dos o mas tipos de procesadores en un solo Chip, por ejemplo,
un APU (accelerated processing unit) es un microprocesador que integra
una CPU multindcleo y una GPU mediante un bus de alta velocidad.

GPU

DSP

FPGA

U
-8

Dispositivos aceleradores

Figura 11 Plataforma heterogénea tipica.
Fuente: Autor

Asi como la heterogeneidad entre dispositivos de procesamiento re-
presenta una ventaja al ofrecer capacidades de procesado especializadas
para realizar tareas particulares, también representa una gran desventaja
desde el punto de vista del desarrollo. La heterogeneidad entre disposi-
tivos de procesamiento se centra principalmente en la diferencia entre
arquitecturas de conjuntos de instrucciones ISA (Instruction Set Architec-
ture), por tal motivo cada uno de los tipos de dispositivos podra contar
con modelos, paradigmas y herramientas de programacion totalmente di-
ferentes, lo que conlleva a procesos de desarrollo separados con tortuosas
integraciones. Los limitantes en la integracion de procesos de desarrollo
para los diferentes tipos de dispositivos que pueden estar involucrados en
un sistema heterogéneo se han comenzado a mitigar con la creacién de
estandares de plataformas y modelos de programacion tales como CUDA
y OpenCL.
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¢Como ayuda la computacién heterogénea CPU-GPU
al aprendizaje profundo?

Arriba se menciond que el término profundo hace referencia a la capa-
cidad de identificacion y extraccidon automatica de rasgos mediante capas
consecutivas conformadas por unidades de procesamiento no lineales que
permiten hacer una abstraccion jerdrquica de caracteristicas; también se
indicé que las capas mas populares son Convolucion, ReLU y Pooling. Aun-
que la complejidad de las operaciones que conforman estas capas es rela-
tivamente baja, la aplicacidn consecutiva e iterativa de éstas representa
una tarea muy intensiva computacionalmente, debido al gran volumen de
datos que debe contener el conjunto de entrenamiento para que la iden-
tificacion y extracciéon automatica de caracteristicas sea altamente preci-
sa; adicionalmente estas operaciones se aplican mediante un barrido por
todos los elementos que constituyen cada dato de entrada lo que eleva
sustancialmente la carga computacional.

Estas funciones que permiten la identificacidn y extraccidon automa-
tica de caracteristicas, tienen una particularidad que representa una gran
oportunidad para superar la intensividad computacional: las operaciones
que se aplican en el barrido son totalmente independientes de bloque
a bloque lo que habilita la paralelizacién masiva de su implementacién y
ejecucion. Funciones tales como la Convolucién, ReLU y Pooling se con-
forman de operaciones de complejidad media o baja que se deben aplicar
(interdependientemente) muchisimas veces, esto hace que este tipo de
funciones sean totalmente adecuadas para acelerarlas mediante platafor-
mas many-thread como por ejemplo las GPU.

¢Qué pretende este libro y cémo esta organizado?

El propdsito de este libro es presentar una guia practica muy simple
de seguir para la implementacion, entrenamiento y validacion de redes
neuronales convolucionales usando Keras y acelerando con GPU. La guia
se desarrolla mediante un caso de estudio tipico enmarcado en las clasifi-
caciones de imagenes satelitales.
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La estructura del libro corresponde a cada una de las fases que com-
prenden el desarrollo de un proyecto tipico de clasificacion de image-
nes utilizando redes neuronales convolucionales: el capitulo 1 describe
el caso de estudio y presenta la conformacién del conjunto de datos con
el cual se va a trabajar; el capitulo 2 explica las dependencias necesarias
para desarrollar el proyecto y la configuracién de la sesién de la GPU; el
capitulo 3 trata el preprocesamiento de las imagenes que conforman el
conjunto de datos, incluyendo la generacién y la carga de estas image-
nes; el capitulo 4 corresponde al ntcleo de este libro, alli se disefia, com-
pilay entrena el modelo de red neuronal convolucional; el capitulo 5 pre-
senta la validacién del modelo presentando y analizando los resultados
de la evaluacién mediante graficas como la ROC y métricas tales como
F1-score, recall, accuracy, coeficiente de kappa, etc.; el capitulo 6 presen-
tay analiza los resultados de la comparacion de desempefio computacio-
nal del proceso de entrenamiento bajo los dos tipos de plataforma: CPU
vs GPU, no solamente del modelo implementado sino también de otros
modelos tipicos; finalmente se exponen las conclusiones obtenidas del
proceso desarrollado a través de todo el libro.
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Capitulo 1

Caso de Estudio

En este capitulo se pretende exponer el caso de estudio que se desa-
rrollara a lo largo de este libro. Ademas de esto, se presentara el conjunto
de datos que se utilizara para llevar a cabo el desarrollo del mismo. Lo an-
terior, con el propdsito de contextualizar al lector, dentro del problema
que se trabajara.

1.1 Descripcién

1.1.1 ¢Qué es una imagen?

Una imagen puede ser definida matemdticamente como una funcién
bidimensional, f(x, y), donde x y y son coordenadas espaciales (en un pla-
no), y f en cualquier par de coordenadas es la intensidad o nivel de gris de
laimagen en esa coordenada.

Cuando x, y, y los valores de f son todas cantidades finitas, discretas,
se dice que la imagen es una imagen digital. Una imagen digital se com-
pone de un ndmero finito de elementos, cada uno con un lugar y valor
especificos. Estos elementos son llamados pels, o pixelse (Gonzdlez y
Wo0ds,1996).
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a) Una imagen continua donde se describe de forma aproximada por
una serie de muestras igualmente espaciadas organizadas en forma de una
matriz N x M como se indica en la ecuacién 2, donde cada elemento de la
matriz es una cantidad discreta y el término de la derecha representa lo
que comunmente se denomina una imagen digital:

[ £(0,0) 7o) . . . fON-1) |
F(1,0) f4y . . . fLN-D
f(x,y)=
S(M-10) f(M-L) . . . f(M-1N-1)

Ecuacion 2 Matriz N x M de cantidades discretas.

b) Otra manera de representar la imagen digital es con una notacién
de matrices mas tradicional (ecuacién 3) donde cada uno de sus elementos
es un pixel o elemento de laimagen.

Ao ay Ay n-1
a a, A N-1
A=
yroio By - - - Gy e

Ecuacion 3 Matriz de pixelse.

En cualquiera de los dos casos, no se requiere un valor especial de M
y N, salvo que sean enteros positivos. En el caso del nimero de niveles de
gris, éste es usualmente una potencia entera de 2 (ecuacion 4):

L=2KKEZ

Ecuacion 4 Niveles de gris.
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1.1.2 ¢Qué es una imagen aérea?

La fotografia aérea se obtiene por la realizacidn de un vuelo foto-
gramétrico, es decir, un vuelo en el que un aeroplano sobrevuela una
zona tomando repetidas fotos para componer toda la superficie. Dicha
fotografia es la representacion cdnica de la realidad y por lo tanto esta
afectada por las limitaciones debidas a la perspectiva, a las que hay que
sumar las deformaciones del relieve del terreno (objetos de las mismas
dimensiones reales al estar mas préximos al objetivo apareceran de ma-
yor tamafo, y viceversa), la falta de verticalidad de la toma fotografi-
ca (objetos de considerable altura como edificios y drboles aparecerdn
abatidos) y las distorsiones propias del objetivo de la cdmara empleada
(ASPRS, 1980).

1.2  Conjunto de datos

Uno de los principales aspectos a considerar en la clasificacion de
imagenes es el conjunto de datos de entrenamiento que se va a utilizar.
En la clasificaciéon de imagenes aéreas se cuenta con un ndmero limitado
de conjuntos de datos publicos, uno de ellos es NWPU-RESIS45, el cual
es un punto de referencia en la clasificacion de imagenes de deteccidnre-
mota. Este conjunto de datos, fue creado por la Universidad Politécnica
del Noroeste ubicada en China. Ademads, cuenta con un total 31.500 ima-
genes, distribuidas en un total de 45 clases, cada una con alrededor de
700 imagenes. Las clases de este conjunto de datos son: avién, aeropuer-
to, diamante de béisbol, cancha de baloncesto, playa, puente, chaparral,
iglesia, tierras de cultivo circulares, nube, darea comercial, residencial den-
so, desierto, bosque, autopista, campo de golf, campo de tierra, puerto,
area industrial, interseccion, isla, lago, prado, residencial medio, parque
de casas mdviles, montafia, paso elevado, palacio, estacionamiento,
ferrocarril, estacion de ferrocarril, tierras de cultivo rectangulares, rio,
rotonda, pista de aterrizaje, mar, barco, snowberg, residencial escaso,
estadio, tanque de almacenamiento, cancha de tenis, terraza, central tér-
mica y humedal (Cheng, G., Han, J., & Lu, X, 2017). La figura 12, presenta
una muestra de las imagenes consolidadas en este conjunto de datos.
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Figura 12 Muestra conjunto de datos NWPU-RESIS45.
Fuente: Autor

Otro conjunto de datos disponible y abierto al publico es UC Merced
Land Use, compuesto por un total de 21 clases, cada una de ellas con 100
imagenes. Las clases de este conjunto de datos son las siguientes: Agri-
cultura, avién, diamante de béisbol, playa, edificios, chaparral, residencial
denso, bosque, autopista, campo de golf, puerto, interseccidn, residencial
medio, parque de casas mdviles, puente, estacionamiento, rio, pista de
aterrizaje, residencial escaso, tanque de almacenamiento y cancha de tenis
(Yang, Y., & Newsam, S., 2010). A continuacién, se expone una muestra de
este dataset (ver figura 13).

Figura 13 Muestra conjunto de datos UC Merced Land Use.
Fuente: Autor.

Con base enlo anterior,los autores de este libro realizaron un proceso
de unidn entre los dos conjuntos de datos presentados previamente. Sin
embargo, con el propdsito de simplificar el desarrollo del problema a lo
largo del libro, se seleccionaron tan solo tres clases: Avidn, barco y estadio.
Porlo general, los conjuntos de datos utilizados para llevar a cabo clasifica-
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cién de imagenes mediante redes neuronales por convolucidn, presentan
en su distribucion, imagenes de entrenamiento, imagenes de validacion e
imagenes de prueba.

En consecuencia, la figura 14, presenta la distribucion del conjunto de
datos que se utilizard a lo largo de este libro, donde un total de 1540 ima-
genes componen el entrenamiento, 360 imagenes son de validacién y 300
imagenes son utilizadas para probar el modelo.

g & Airplane (560 imé&genes)
---------- #w Ship (490 imagenes)
{-eeeeeoeo- i Stadium (560 imagenes)

............... £ Validation
presse 2w Airplane (140 imagenes)
; - i Ship (110 iméagenes)
Crswassaes 2w Stadium (110 imagenes)
L — o Test
prassmnsaes & Airplane (100 imagenes)
-~ I Ship (100 imagenes)

-- & Stadium (100 imagenes)

Figura 14 Distribucion conjunto de datos.
Fuente: Autor.

El conjunto de datos se encuentra disponible para su descarga en la
siguiente direccion.
https://drive.google.com/drive/folders/tuF0331HDofMrdL1zIxNoepohcW6_X8rY?usp=sharing.

Una vez, se ha realizado la socializacién del caso de estudio a desarro-
llary el conjunto de datos a utilizar en este proceso, se procede a presentar
las dependencias y configuracion del entorno de trabajo.
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Capitulo 2

Dependencias y configuracién

En este capitulo, se tiene como objetivo realizar un vistazo de cada una
de las dependencias o librerias que se utilizaran a lo largo del desarrollo de
este libro. Asi mismo, se presenta la configuracion requerida para ejectuar
el cédigo fuente sobre una Unidad de Procesamiento Grafica (GPU).

2.1 DependenciasKeras

2.1.2 Keras

Keras

Figura 15 Logotipo de Keras.
Fuente: https://keras.io/

Keras (Chollet, F., 2015) es una API de alto nivel para desarrollar redes
neuronales, estd escrita en Python y se puede ejecutar sobre TensorFlow,
CNTK o Theano. Permite el desarrollo facil y rapido de dos tipos de redes
neuronales de aprendizaje profundo: redes neuronales convolucionales y
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redes neuronales recurrentes, también permite la combinacién de estos
dos tipos de redes. Para facilitar el proceso de entrenamiento, Keras se
ejecuta tanto en CPU como en GPU.

2.1.2 TensorFlow

Figura 16 Logotipo de TensorFlow.
Fuente: https://www.tensorflow.org/

TensorFlow (Abadi, M., et.al., 2016) es una plataforma de cddigo
abierto que permite el desarrollo de aplicaciones de aprendizaje de maqui-
na. Estd constituida por un ecosistema integral de herramientas, librerias
y recursos dirigido tanto al investigador que desea aportar al estado del
arte del aprendizaje de maquina como al desarrollador que requiere crear
y desplegar facilmente aplicaciones de aprendizaje de maquina. Tensor-
Flow fue desarrollado por Google en el marco del proyecto Google Brain y
fue liberado como software de cddigo abierto el 9 de noviembre de 2015.

2.1.3 Scikit-Learn

.Eewm

Figura 17 Logotipo de Scikit-Learn.
Fuente: https://scikit-learn.org

Scikit-Learn (Pedregosa, F., 2011) es un paquete de Python que incluye
herramientas eficientes y simples para analizar datos mediante algoritmos
de aprendizaje de maquina en tareas de regresion, clasificacion y agrupa-
cion. Dentro de los algoritmos que implementa estan: maquinas de vecto-
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res de soporte, bosques aleatorios, Gradient boosting, K-means, DBSCAN,
redes neuronales, etc.

2.1.4 Scipy

Figura 18 Logotipo de SciPy.
Fuente: https://www.scipy.org/

Scipy (Jones, E., Oliphant, T., & Peterson, P., 2001) es un ecosistema
conformado por software de cédigo abierto basado en Python y disefiados
para las matematicas, las ciencias y la ingenieria. El nlcleo de Scipy esta
conformado por 6 paquetes: Numpy, Matplotlib, Ipython, Sympy, Pandas
y las librerias propias de Scipy.

2.1.5 Numpy

u
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NumPy

Figura 19 Logotipo de NumPy.
Fuente: https://numpy.org/

NumPy es un paquete fundamental para desarrollar computacién
cientifica con Python. Su principal aporte se centra en una estructura de
datos n-dimensional (denominada arreglo) muy eficiente tanto en el alma-
cenamiento como en su operacién (Van Der Walt, S., Colbert, S.C., & Varo-
quaux, G., 2011). Numpy no solo ofrece la estructura de datos sino también
una gran biblioteca de funciones matematicas de alto nivel para operar
eficientemente dichos arreglos.
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2.1.6 Matplotlib

matpl:tlib

Figura 20 Logotipo de Matplotlib.
Fuente: https://matplotlib.org/

Matplotlib (Hunter, J.D., 2007) es una libreria para la generacién de
graficos 2D en Python. Matplotlib tiene la capacidad de generar graficos
en ambientes estaticos o dindmicos, con datos provenientes de diferentes
estructuras de datos, como por ejemplo listas, arreglos, dataframes, entre
otros. Los graficos se pueden generar desde scripts de Python, consolas
de Python o Ipython, Notebooks de Jupiter o desde servidores web.

2.1.7 Procedimiento para importar dependencias

Con el propdsito de ejecutar exitosamente el céddigo de Python
presentado a lo largo del desarrollo de este libro, es fundamental importar
cada una de las dependencias necesarias para llevar este proceso a cabo.
El siguiente fragmento de cédigo presenta la manera de importar cada una
de las librerias.

1. import keras
2. from keras.models import Sequential, load model

3. from keras.layers import Conv2D, MaxPooling2D,Dense, Dropout,

Flatten, Activation
4. from keras.callbacks import EarlyStopping, ModelCheckpoint

5. import tensorflow as tf

6. from keras import backend as K

7. from tensorflow.python.client import device 1lib

8. from keras.preprocessing.image import ImageDataGenerator
9. from keras.utils import to categorical

10. import numpy as np
11. from scipy import interp

12. from sklearn.metrics import accuracy_ score
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13. from sklearn.metrics import precision score
14. from sklearn.metrics import recall score

15. from sklearn.metrics import fl score

16. from sklearn.metrics import cohen kappa score
17. from sklearn.metrics import roc auc score

18. from sklearn.metrics import confusion matrix
19. from sklearn.metrics import roc_curve, auc
20. import matplotlib.pyplot as plt

21. from itertools import cycle

Lineas 1-4:
import keras
from keras.models import Sequential, load model

from keras.layers import Conv2D, MaxPooling2D,Dense, Dropout, Flatten,

Activation

from keras.callbacks import EarlyStopping, ModelCheckpoint

En estas lineas se cargan las librerias relacionadas con los modelos
de redes neuronales por convolucidn, por lo tanto, estan encargadas
de hacer posible el disefio, compilacién, entrenamiento y carga
de los modelos.

Lineas 5-7:

import tensorflow as tf
from keras import backend as K

from tensorflow.python.client import device lib

Las anteriores lineas de cédigo permiten importar las dependencias
requeridas para la definiciéon de sesién de trabajo en la GPU y posterior
ejecucion del cddigo fuente sobre dicho dispositivo.
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Linea 8:

from keras.preprocessing.image import ImageDataGenerator

Dado que el conjunto de datos es un factor importante para el desa-
rrollo de redes neuronales por convolucidn, se hace necesario importar el
mddulo de lalinea 8, para poder realizar un preprocesamiento a las image-
nes que componen dicho conjunto.

Lineas 9-19:

from keras.utils import to categorical

import numpy as np

from scipy import interp

from

from

from

from

from

from

from

from

sklearn.metrics import

sklearn.

sklearn.

sklearn.

sklearn.

sklearn.

sklearn.

sklearn.

metrics

metrics

metrics

metrics

metrics

metrics

metrics

import
import
import
import
import
import

import

accuracy_score
precision_score
recall score

fl score

cohen kappa score
roc_auc_score
confusion matrix

roc_curve, auc

Estas lineas de cddigo permiten cargar los distintos mddulos de las
librerias necesarias para llevar a cabo la evaluacién del modelo de la red
neuronal por convolucién. Lo anterior, haciendo uso de distintas métricas
como: Curvas de ROC, Precision Score, Accuracy Score, F1 Score, Recall
Score, Coeficiente de Kappa y Matriz de Confusidn.

Lineas 20-21:

import matplotlib.pyplot as plt

from itertools import cycle

42



Dependencias y configuracion

Finalmente, las lineas anteriores, tienen el propdsito de permitir pre-
sentar resultados graficos durante el desarrollo de este caso de estudio.

2.2 Configuraciéon de la sesién GPU

La interaccion entre librerias como Keras y Tensorflow, generan la po-
sibilidad de trabajar distintos procesos relacionados con laimplementacién
de redes neuronales por convolucidn en una arquitectura paralelizada, ha-
ciendo uso de dispositivos como GPU. Sin embargo, si usted no cuenta con
una tarjeta graficadora puede omitir el procedimiento de configuracién
de sesién en GPU y todo el proceso expuesto en el libro se ejecutara por
defecto en CPU.

2.2.1 Procedimiento para configurar la sesién de GPU

El siguiente fragmento de cédigo fuente, permite realizar Ila
configuracion de la sesién de trabajo en GPU para la ejecucion de tareas
propias de Keras.

22. print(device lib.list local devices())
23. K.tensorflow backend. get available gpus/()
24. config = tf.ConfigProto()

25. sess = tf.Session(config=config)

26. keras.backend.set session (sess)

Linea 22:
print (device 1lib.list local devices())
Esta linea de cédigo, mediante la funcién list_local _devices (), preten-
de mostrar por consola el listado de dispositivos disponibles localmente.

Al ejecutar esta linea de cddigo se puede presentar algo similar a lo que se
presenta en la figura 21.
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[name: "/device:CPU:0"

device type: "CPU"

memory limit: 268435456

locality { }

incarnation: 17310413457301815335,
name: "/device:GPU:0"
device_type: "GPU"

memory limit: 6686052843
locality { bus_id: 1 links { } }
incarnation: 3753028348053837586
physical device desc: "device: 0,
name: GeForce GTX 1070,

pci bus id: 0000:01:00.0,

compute capability: 6.1" ]

Figura 21 Dispositivos locales.
Fuente: Autor.

La figura 21, expone que, el computador utilizado tiene un dispositivo
CPU y un dispositivo GPU, el cual presenta a detalle caracteristicas como la
marca de Unidad de procesamiento grafico que se posee, en este caso una
GeForce GTX 1070, ademas de la memoria limite.

Linea 23:

K.tensorflow backend. get available gpus()

Una vez se han encontrado los dispositivos que se posee localmente,-
se procede mediante la funcidon _get available_gpus() a obtener los dispo-
sitivos GPUs que se encuentra disponibles. Al ejecutar esta linea de cédigo,
se puede presentar el siguiente resultado (ver figura 22).

['/Jjob:localhost/replica:0/task:0/device:GPU:(0"]

Figura 22 Dispositivos GPU disponibles.
Fuente: Autor.

Linea 24-26:

config = tf.ConfigProto ()
sess = tf.Session(config=config)

keras.backend.set session(sess)

44



Dependencias y configuracion

Como primera instancia, en estas lineas, la funcién ConfigProto() se
utiliza para configurar la sesién de Tensorflow, dado que a esta funcién
no se pasa ningun tipo de parametros, por defecto se inicializan todos los
dispositivos GPU disponibles, en este caso tan solo se inicializara uno y di-
cha configuracion se almacena en la variable config. Acto seguido, en la
variable sess, se almacena la creacién de la sesidn de Tensorflow usando la
funcién Session(), pasando como pardmetros la configuracidn establecida
anteriormente. Por Ultimo, se “setea” como sistema de fondo la sesidn
configurada en GPU, invocando el médulo Backend e implementando su
funcién set_session() recibiendo como parametro la sesién de Tensorflow.

Finalizado tanto el proceso de importacion de cada una de la librerias
necesarias para la ejecucion del cddigo fuente asociado al caso de estu-
dio a desarrollar como el proceso de configuracion de la sesién bajo una
GPU, se prosigue en el siguiente capitulo a realizar el preprocesamiento
de imagenes.
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Capitulo 3

Preprocesamiento de Imdgenes

En este capitulo, se dara a conocer los fundamentos del preprocesa-
miento de imagenes y algunos de sus tareas clave, tales como: la transfor-
macion, la generacién y la carga de imagenes.

El preprocesamiento de imagenes con fines de entrenamiento de una
red neuronal convolucional puede estar enrutado en dos sentidos:

e Aplicar transformaciones para favorecer o facilitar tanto el sumi-
nistro como el procesamiento de las imagenes en la red neuronal, como
por ejemplo cambiar tamafios, hacer escalamientos, normalizaciones,
entre otras.

e Aplicar transformaciones para aumentar el conjunto de datos de
entrenamiento generando nuevas imagenes a partir de la alteracién de las
existentes con el propdsito de mejorar el resultado del entrenamiento. Las
alteraciones pueden ser rotaciones, reflejos, cambio de posiciones, entre
otras, y se pueden aplicar de forma aleatoria (ver figura 23).
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IMAGEN ORIGINAL IMAGENES ORIGINADAS

Figura 23 Aumentando el conjunto de datos de entrenamiento mediante transformaciones.
Fuente Imagen modificada de https://www.pyimagesearch.com/2019/07/08/keras-imagedatagenera-
tor-and-data-augmentation/

3.1  Generador de Imagenes

Los dos tipos de preprocesamiento mencionados arriba se puede
realizar en Keras a través de los métodos de la clase ImageDataGenerator
como por ejemplo apply_transform, que mediante uno de sus parametros
permite aplicar operaciones como rotaciones, reflejos, inversién, zoom o
mediante el método random_transform que permite aplicar las mis opera-
ciones, pero de forma aleatoria.

3.1.1 Procedimiento para establecer el generador
de imagenes

El siguiente fragmento de cddigo fuente, presenta la manera de invo-
car el generador de imagenes, propio de la libreria Keras.

27. ruta dataset entrenamiento = "ruta/local/dataset/training"
28. ruta dataset prueba = "ruta/local/dataset//test"

29. ruta dataset validacion = "ruta/local/dataset//validation"
30. train datagen = ImageDataGenerator (rescale=1./255)

31. test datagen = ImageDataGenerator (rescale=1./255)

32. validation datagen = ImageDataGenerator (rescale=1./255)
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Lineas 27-29:
ruta_dataset entrenamiento = "ruta/local/dataset/training"
ruta dataset prueba = "ruta/local/dataset//test"

ruta dataset validacion = "ruta/local/dataset//validation"

En estas lineas se realiza una tarea simple, tanto solo se definen las ru-
tas locales donde se encuentran alojadas las imagenes de entrenamiento,
validacion y prueba.

Lineas 30-32:
train datagen = ImageDataGenerator (rescale=1./255)
test datagen = ImageDataGenerator (rescale=1./255)

validation datagen = ImageDataGenerator (rescale=1./255)

Adicionalmente, se deben inicializar los generadores de imagenes de
cada sub conjunto de datos. Lo anterior, mediante la funcién ImageData-
Generator(), en este caso, al establecer un factor de 1/255 de rescale, se
tomard cada una de las imagenes en su proceso de carga y se multiplicara
pixel a pixel por dicho factor.

3.2  Cargadelmagenes

Como se ha expuesto anteriormente, el conjunto de datos es un as-
pecto primordial en los métodos de aprendizaje profundo, es por esto que,
es indispensable tomar lel directorio fuente donde se encuentran alojadas
las imagenes y cargarlas a un arreglo en memoria. Adicionalmente, dado
que se emplea aprendizaje supervisado, se debe generar las etiquetas co-
rrespondientes a cada una de las imagenes cargadas.

3.2.1 Procedimiento para cargar las imagenes

El cddigo fuente expuesto a continuacidn, tiene como propdsito rea-
lizar la carga de cada una de las imagenes que componen los subconjun-
tos de datos, entendiéndose como, datos de entrenamiento, validacion
y prueba.
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33. train generator = train datagen.flow from directory(ruta dataset
_entrenamiento, target size=(80,80),color mode='rgb',batch size

=32,class_mode='categorical', shuffle=True)

34. validation generator = validation datagen.flow from directory(
ruta dataset validacion,target size=(80,80),color mode='rgb',b

atch size=32,class mode='categorical',6 shuffle=True)

35. test generator = test datagen.flow from directory(ruta dataset
prueba, target size=(80,80),color mode='rgb',batch size=1,class

_mode="'categorical',shuffle=False)

Linea 33:

train generator = train datagen.flow from directory(ruta dataset
_entrenamiento, target size=(80,80),color mode='rgb',batch size

=32,class_mode='categorical', shuffle=True)

En estalinea se utiliza el generador de entrenamiento mediante la fun-
cién datagen_flow from_directory(), la cual sirve para cargar un conjunto
de imagenes a partir de una direccién local. Adicionalmente, esta funcion
permite dividir y agrupar las imagenes cargadas de acuerdo a su distribu-
cién en su carpeta local. Lo anterior, es fundamental en el entrenamiento
de maquina supervisado, donde se hace necesario tener la referencia o
identificador de cada uno de los datos de entrenamiento. El primer para-
metro de esta funcidn es la direccién donde se encuentran las imagenes.
Posteriormente, se define un target size de 80x80 pixeles, es decir, cada
una de las imagenes de 256x256 se redimensionardn a 80x80. Ademas de
esto, al establecer el pardmetro color_mode como ‘rgb’, se indica que se
tendrdnimdgenes a color en tres bandas (red, green, blue). El siguiente pa-
rametro batch_size, tiene como finalidad, agrupar todas las imagenes en
lotes de 32 imagenes, con sus respectivas etiquetas de identificacion. Acto
seguido, se define el parametro de mode_class, en donde se estipula un
modo categdrico, el cual tomard importancia en la fase de entrenamiento
del modelo de la red neuronal por convolucién. Finalmente, al establecer
como verdadero el parametro shuffle, se genera la carga y agrupacion de
las imagenes en lotes, de manera aleatoria. La figura 24 presenta el resul-
tado obtenido al ejecutar esta linea de cédigo.

50



Preprocesamiento de Imdgenes

Found 1540 images belonging to 3 classes.

Figura 24 Resultado train_generator.
Fuente: Autor.

Como se ha especificado con anterioridad, el conjunto de datos de
entrenamiento tiene un total de 1540 imagenes distribuidas en 3 clases.

Linea 34:

validation generator = validation datagen.flow from directory(
ruta dataset validacion,target size=(80,80),color mode='rgb',b

atch size=32,class_mode='categorical', shuffle=True)

Esta linea de cddigo, es practicamente igual a la linea 33, tan solo con
una excepcion, en este caso se cargan las imagenes que se utilizardn en
la validacidn del modelo. Al ejecutar este cédigo, se debe presentar el
siguiente resultado (ver figura 25).

Found 360 images belonging to 3 classes.

Figura 25 Resultado validation_generator.
Fuente: Autor.

En este caso, al ejecutar esta linea se encontraron 360 imagenes
distribuidas en aviones, barcos y estadios.

Linea 35:

test generator = test datagen.flow from directory(ruta dataset
prueba, target size=(80,80),color mode="'rgb', batch size=1,class
_mode="'categorical',shuffle=False)

Finalmente, se deben cargar las imagenes que se utilizaran para la
etapa de evaluacién del modelo. La linea 35, posee dos diferencias fren-
te a la carga de imagenes de entrenamiento y validacién. La primera de
ellas es el nimero de imagenes por lote, en este se indica que, un lote
estard conformado por tan solo una imagen. La segunda, hace referen-
cia al orden de carga de imdgenes, por lo tanto, al setear como falso
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este parametro, las imagenes se cargan en el orden en que se encuen-
tran en las carpetas. De acuerdo con la figura 26, al ejecutar esta linea
de cddigo, se encontraron un total de 300 imagenes prueba, es decir, 100
para cada una de las clases.

Found 300 images belonging to 3 classes.

Figura 26 Resultado test_generator.
Fuente: Autor.

Después de aplicar la fase de preprocesamiento de imagenes al con-
junto de datos utilizado en este libro, se da lugar a la presentacién del mo-
delo de la red neuronal por convolucién empleado en esta investigacion.
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Capitulo 4

Modelo de la Red Neuronal
por Convolucién

Alo largo de este capitulo, se explicaran las fases de disefio, compila-
cién y entrenamiento de un modelo de redes neuronales por convolucidn.
Para llevar esto acabo, se explicaran las distintas capas de este tipo de mo-
delos y los hiperparametros de compilacidon y de entrenamiento.

4.1 Diseno del Modelo

Keras permite construir dos tipos de modelos de redes neuronales,
uno secuencial y uno funcional. El secuencial es el modelo mas utilizado
debido a que permite implementar facilmente la arquitectura tipica mul-
ticapa de una red neuronal donde las salidas de una capa representan las
entradas de la capa siguiente (Torres, J., 2018). El modelo funcional, ope-
ra como una especie de APl donde el proceso de disefio del modelo es
mas complejo, pero permite mayor flexibilidad para permitir arquitecturas
atipicas.
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Un modelo secuencial de red neuronal esta conformado por bloques
conectados en forma de tuberia donde cada bloque implica aplicar una
funcién a los datos de entrada.Cada de uno de esos bloques es llamado
capa. Cada tipo de capa representa una funcidn diferente que se le aplica a
los datos de entrada. Keras dispone de un gran nimero de capas, dentro de
éstas se encuentran las tipicas para disefiar unared neuronal convolucional:
capas de convolucién de 1D, 2D y 3D, capas de pooling de 1D, 2D, 3D usando
maximo o promedio, capas de dropout, capas de flatteny capas tipo dense.

4.1.1 Capas de convolucién

Este tipo de capa permite aplicar un nimero especifico de filtros o
kernels a los datos de entrada mediante una operacién de convolucidn,
es decir el kernel recorre todos los datos de entrada y en cada posicion se
obtiene un valor correspondiente a la media de los productos elemento a
elemento del kernel y del bloque seleccionado de los datos (ver figura 27).
El resultado de la aplicacion de cada kernel tiene la misma dimension de
los datos de entrada y habra tantos resultados como filtros aplicados, por
ejemplo, en la figura 28 se puede observar la aplicacion de 3 kernels a una
imagen de entrada y como resultado se obtienen 3 imagenes filtradas que
resaltan un patrén en funcidn del kernel aplicado.

1+1+1+1+1+1+1+1+1
9

L

Figura 27 Operacién de convolucion.
Fuente: https://end-to-end-machine-learning.teachable.com
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Figura 28 Resultado de la aplicacién de 3 kernels.
Fuente: https://end-to-end-machine-learning.teachable.com

En el proceso de construccién de una capa de convolucidn en Keras
se deben especificar algunos parametros, como por ejemplo el nimero de
filtros a aplicar, el tamafio de esos filtros, el relleno o no de los datos de
entrada (si se requiere que los datos filtrados mantengan el mismo tamafo
que los de entrada, se debe aumentar en 1 el tamafo de los datos de entra-
da en cada una de sus dimensiones, eso se hace rellenando de ceros como
se puede ver en la figura 29) y la funcién de activacién que es la operacion
aplicada a los datos después de la convolucién (en la figura 30 se pueden
ver algunas funciones de activacion).

Kernel
139 [ 85 | © ® || 4 || ® !
84 [128| o a || 5 || «
129 [127 | © o | 1| o

0 | 80 [57 [115| 69 |134| o

0 | 104|126 |123 | 95 [130| ©

Figura 29 Relleno de la imagen de entrada.
Fuente: https://www.pyimagesearch.com/2018/12/31/keras-conv2d-and-convolutional-layers/
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Figura 30 Funciones de activacion.
Fuente: https://www.pyimagesearch.com/2018/12/31/keras-conv2d-and-convolutional-layers/

4.1.2 Capas pooling

Las capas pooling permiten reducir el tamafio de los datos filtrados
manteniendo el patrdn resaltado por la operacién de convolucidn, de esta
manera se lleva a cabo una abstraccion jerdrquica e iterativa de rasgos.
La reduccion de datos se realiza mediante un agrupamiento empleando
principalmente el maximo o el promedio (en la figura 31 se puede ver una
operacién pooling por maximo).
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Figura 31 Operacién pooling por mdaximo.
Fuente: https://end-to-end-machine-learning.teachable.com

4.1.3 Capas dropout

Dropout es una técnica que permite regularizar la red neuronal evitan-
do el sobreajuste y favoreciendo la generalizacién mediante la desactiva-
cién aleatoria de neuronas durante el proceso de aprendizaje (Srivastava,
N., et.al., 2014). La inhabilitacién de algunas neuronas obliga a que otras
neuronas deban intervenir para que la decisidn final no se altere, esto im-
pide que cada decisién de la red no dependa especificamente de los pesos
de unas pocas neuronas. En Keras esta técnica se implementa mediante
una capa que durante el entrenamiento lleva a cero una cantidad de ele-
mentos de los datos de entrada seleccionados aleatoriamente, la propor-
cion de datos llevados a cero se pueden definir mediante un parametro del
constructor de la capa (ver figura 32).
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(a) Standard Neural Net (b) Afte applying dropout.

Figura 32 Dropout
Fuente (Srivastava, N., et. al., 2014).

4.1.4 Capas flatten

Estas capas toman los resultados de la seccidn de deteccidén y ex-
traccion automatica de rasgos y los representa en una estructura unidi-
mensional concatenandolos todos en un Unico vector que se convertira
en la entrada de una red neuronal convencional totalmente conectada

(ver figura 33).
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Figura 33 Efecto de una capa flatten.
Fuente: https://end-to-end-machine-learning.teachable.com
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4.1.5 Capas dense

Una capa dense corresponde a una capa de una red neuronal conven-
cional totalmente conectada (ver figura 34), se utilizan en la parte final de
una red neuronal convolucional, es decir en la seccién donde se realiza la
clasificacién en funcion de los rasgos identificados y extraidos. Dentro de los
parametros que se configuran en este tipo de capa esta el nimero de neu-
ronas y la funcién de activacion. Para el caso de un problema de clasificacién
multiclase, una de las funciones de activacidon mas utilizadas es Softmax. Esta
funcidn es una generalizacién de una funcidn logistica que permite mapear
un vector n-dimensional (de logists) a la distribucién de probabilidad sobre K
diferentes posibles salidas (ver figura 35).

X1

Flattening X2 Output value

Xm

Figura 34 Ejemplo de capas dense.
Fuente: https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-
-full-connection/
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Figura 35 Funcién softmax.
Fuente: https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minu-
tes-f3a59641e86d

59



Redes Neuronales Convolucionales Usando Keras y Acelerando con GPU

4.1.6 Modelo para el caso de estudio

Para darle solucidn al caso de estudio se plantea un modelo basado
en Burachonok (2017), el cual posee 4 bloques de identificacion y extrac-
cién de rasgos, y un bloque de clasificacion. Los bloques de identificacidny
extraccion de rasgos estan conformados por 3 capas: convolucidn, pooling
por maximo y dropout. Todas las capas de pooling hacen un agrupamiento
por ventanas de 2x2 de tal forma que el tamafio de la imagen filtrada se
reduce ala mitad en cada una de sus dimensiones, de esta manera median-
te 4 capas de dropout se reducen los datos de entrada de una dimensidn
de 80x80 elementos a 5x5 elementos. Todas las capas de dropout de este
bloque se configuran para que inhabiliten el 25% de las neuronas duran-
te el proceso de entrenamiento. En cuanto a las capas de convolucidén se
configuran de tal forma que posean una funcién de activacion ReLU y un
tamafo de kernel de 3x3 para las 3 primeras capas y de 10x10 para la ulti-
ma capa. El bloque de clasificacién se conforma de una capa flatten que le
suministra las entradas a una capa dense de 512 neuronas y una funcién de
activacion RelLU, continda con una capa dropout que inhabilitad la mitad
de las neuronas en el proceso de entrenamiento y finalmente una capa
dense de 3 neuronas y una funcién de activacion softmax que indica cual
de las 3 categorias tiene mayor probabilidad (ver figura 36).
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Figura 36 Modelo de red neuronal convolucional para el caso de estudio.
Fuente: Autor.
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4.1.7 Procedimiento para disefiar el modelo

El siguiente fragmento de cddigo fuente, tiene como objetivo la crea-
cién y el disefio de la red neuronal descrita arriba para darle solucién al
problema de clasificacidn del caso de estudio.

36. num classes = 3

37. model = Sequential ()

38. model.add(Conv2D(filters=32, kernel size=(3,3),padding="'same’,
input_shape=(80, 80, 3), activation='relu'))

39. model.add(MaxPooling2D (pool size=(2, 2))) #40x40

40. model.add (Dropout (rate=0.25))

41. model.add(Conv2D(filters=32,kernel size=(3,3), padding='same',

activation='relu'))
42. model.add(MaxPooling2D (pool size=(2, 2))) #20x20
43. model.add (Dropout (rate=0.25))

44. model.add(Conv2D(filters=32,kernel size=(3,3), padding='same',

activation='relu'))
45. model.add (MaxPooling2D (pool size=(2, 2))) #10x10
46. model.add (Dropout (rate=0.25))

47. model.add (Conv2D(filters=32, kernel size=(10,10), padding='same',

activation='relu'))
48. model.add (MaxPooling2D (pool size=(2, 2))) #5x5
49. model.add (Dropout (rate=0.25))
50. model.add(Flatten())
51. model.add (Dense (units=512, activation='relu'))
52. model.add (Dropout (rate=0.5))

53. model.add (Dense (units=num classes, activation='softmax'))

Linea 36:

num_classes = 3

Esta linea tan solo define la cantidad de clases finales de nuestro con-
junto de imagenes, por lo tanto, ese valor hace referencia a aviones, bar-
cos y estadio, siendo en total 3 clases.
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Linea 37:

model = Sequential ()

En esta linea se inicializa la variable model, como un modelo secuen-
cial de Keras, mediante la funcién Sequential(). Un modelo secuencial, sig-
nifica que las capas de dicho modelo se afiadiran secuencialmente, es decir
una tras otra y este sera su orden definitivo.

Lineas 38-40:

model.add (Conv2D (filters=32, kernel size=(3,3),padding="'same’,
input shape=(80, 80, 3), activation='relu'))
model.add (MaxPooling2D (pool size=(2, 2))) #40x40

model.add (Dropout (rate=0.25))

En los modelos de redes neuronales por convolucién, se deben esta-
blecer bloques de extraccidn de caracteristicas y es precisamente en estas
lineas que se realiza esta tarea. Para afiadir cualquier tipo de capa en un
modelo secuencial se utiliza la funcién add(), la cual recibe por parametros
la capa que se desea agregar.

Como primera instancia, se afiade una capa de convolucién, donde se
especifica que se aplicaran un total de 32 filtros mediante el pardmetro fil-
ters, los cuales se aplicaran mediante una ventana de 3x3 pixeles, es decir
esta ventana recorrera pixel a pixel cada imagen aplicando los filtros. El
parametro padding se configura en ‘same’ para afiadir un borde de ceros
a laimagen de entrada con el propdsito de que la imagen resultante de la
convolucidon tenga el mismo tamafio que la de entrada. Por lo general, en
la primera capa que se agrega, se debe establecer la dimension de entrada
del modelo, en este caso mediante el pardmetro input_shape se estipula
una dimensién de 80x80 pixeles, con tres canales de color (R, G, B). Fina-
lizando la capa de convolucidén se define la funcién ReLU como funcién de
activacion.
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Habitualmente, después de agregar una capa de convolucidn, se adi-
ciona una capa de pooling, con el fin de reducir las caracteristicas y mejorar
este proceso de extraccidn. Para efectos de este modelo, se afiade una
capa de max pooling, mediante la funcién Maxpooling2D(), dado que, se
contemplan las imagenes como su representaciéon matricial en 2 dimen-
siones. El pardmetro pool_size, el cual se define como 2x2 pixeles, es la
ventana de reduccidn que se aplicara.

Finalmente, para cerrar este bloque de extraccion de caracteristica,
se agrega una capa de regulaciéon mediante la funcién Dropout(). Para esta
capa, se dispone una tasa de desconexidn de neuronas del 25%. Lo ante-
rior, al inicializar el pardmetro rate en un 0.25.

Lineas 41-46:
model.add (Conv2D (filters=32, kernel size=(3,3), padding='same',
activation:'reluT))
model.add (MaxPooling2D (pool size=(2, 2))) #20x20
model .add (Dropout (rate=0.25))

model.add (Conv2D (filters=32, kernel size=(3,3), padding='same',

activation='relu'))
model.add (MaxPooling2D (pool size=(2, 2))) #10x10

model.add (Dropout (rate=0.25))

En las lineas 41 a la 46, se agregan otros dos bloques de extraccidén
de caracteristicas a nuestro modelo de red neuronal por convolucién.
Sin embargo, se presenta un cambio, y se puede observar en la primera
capa de convolucion agregada, como ya se ha determinado la dimensién
entrada, no es necesario volver a definirla en estas capas de convolucidn.
Se puede observar que, estos bloques siguen exactamente el mismo pa-
trén y pardmetros que se presentan en el bloque agregado anteriormente.
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Lineas 47-49:

model.add (Conv2D (filters=32, kernel size=(10,10), padding='same',

activation="relu'))
model.add (MaxPooling2D (pool size=(2, 2))) #5x5

model.add (Dropout (rate=0.25))

Estas lineas de codigo permiten agregar nuestro ultimo bloque de ex-
traccién de caracteristicas. No obstante, en la capa de convolucidn se pre-
senta una variacion frente a los bloques anteriores. Este cambio consiste
en pasar de un tamafio de kernel de 2x2 pixeles a 10x10 pixeles, es decir se
agrand¢ el tamafo de la ventana que recorre la imagen pixel a pixel apli-
cando los filtros. Es importe mencionar que cuando es necesario extraer
las caracteristicas de patrones en imagenes complejas, se recomienda uti-
lizar varios de estos bloques.

Lineas 50-53:
model.add (Flatten())
model.add (Dense (units=512, activation='relu'))
model.add (Dropout (rate=0.5))

model.add (Dense (units=num classes, activation='softmax'))

En la parte final de los modelos de redes neuronales por convolucién y
posterior a los bloques de extraccidon de caracteristicas, se debe presentar
lo que se denomina como la capa totalmente conectada, la cual es la capa
clasificadora del modelo. Como primera instancia de estas lineas de cddigo,
se agrega una capa mediante la funcién Flatten() para “aplanar” los datos
que se han obtenido con los bloques de extraccidn de caracteristicas, es de-
cir que estos datos se convierten a un arreglo unidimensional. Una vez se
realiza este proceso, se afiade una capa que nos permite tener un nimero
determinado de neuronas ocultas. Lo anterior, se logra mediante la funcién
Dense(), especificando un total de 512 neuronas en el pardmetro units. Pos-
teriormente, se agrega otra capa de Dropout con una tasa de desconexion
aleatoria entre neuronas del 50%. Finalmente, todos los modelos deben fina-
lizar con una capa de neuronas ocultas, donde ese nimero de neuronas esta
determinado por nimero de clases que se tiene, como se puede observar
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en la dltima linea, el pardmetro units de la capa Dense(), esta definido por
la variable num_classes, la cual almacena el nimero de clases de nuestro
conjunto de datos. Sin embargo, a lo largo de las capas agregadas se utili-
zaba la misma funcidn de activacion manteniendo homogeneidad en este
aspecto, pero en este caso se utiliza la funcién de activacién Softmax, dado
que, de acuerdo con (Restrepo Rodriguez, A., et al., 2018), esta funcién es la
mas utilizada en la capa de salida y permite realizar una representacion de la

distribucién categdrica necesaria para generar la clasificacion.
4.2  Compilacién del Modelo

Finalizado el proceso de construccidon del modelo donde se definié
su arquitectura y configuracion capa a capa, se continda con la fase de
compilacién. La compilacién de un modelo de red neuronal convolucional
en keras consiste en configurar el proceso de entrenamiento mediante la
definicion de una funcién de pérdida, un optimizador y unas métricas.

4.2.1 Funcidn de pérdida

La funcidn de pérdida define la forma como la red puede medir su ren-
dimiento en el proceso de entrenamiento con el fin de poder dirigir éste en
la mejor direccidn. En otras palabras, la funcién de pérdida permite medir
“que tan lejos” se encuentra una prediccidn del objetivo real.

Keras cuenta con las siguientes funciones de pérdida: mean_
squared_error, mean_absolute_error, mean_absolute_percentage_error,
mean_squared_logarithmic_error, squared_hinge, hinge, categorical_hin-
ge, logcosh, categorical_crossentropy, sparse_categorical_crossentropy,
binary_crossentropy, kullback_leibler_divergence, poisson, cosine_proxi-
mity, is_categorical _crossentropy.

En los problemas similares al caso de estudio de este libro, es decir
problemas de clasificacién multiclase con etiqueta sencilla la funcién de
pérdida siempre deberia ser la entropia categdrica cruzada (categorical_
crossentropy) ya que ésta minimiza la distancia entre las distribuciones
de probabilidad producidas por la red y la verdadera distribucion de los
objetivos.
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4.2.2 Optimizador

El optimizador es el mecanismo a través del cual la red se actualiza
basado en la funcién de pérdida. Especificamente el optimizador actualiza
los parametros de la red con el fin de minimizar (o en algunos casos maxi-
mizar) la funcién de pérdida. Los algoritmos de optimizacién se pueden
agrupar en dos categorias:

* Los de primer orden, donde se encuentran todos aquellos algorit-
mos que minimizan o maximizan la funcién de pérdida usando sus valores
gradientes con respecto a los parametros de la red. La derivada de pri-
mer orden informa si la funcién incrementa o decrementa en un punto es-
pecifico (la derivada es una linea recta tangente a la funcién en el punto
determinado). El algoritmo mds usado en esta categoria es el gradiente
descendente.

* Los de segundo orden, donde se encuentran todos los algoritmos
que utilizan la derivada de segundo orden (Hessian) para minimizar o maxi-
mizar la funcién de pérdida. La segunda derivada informa sobre la curvatu-
ra de la funcién. Hessian es una matriz conformada por las derivadas par-
ciales de segundo orden.

Keras cuenta con las siguientes funciones de optimizacién: SGD,
RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam.

4.2.3 Métricas

En Keras una métrica es una funcion que permite medir el desempefio
del modelo; se comporta de forma similar a las funciones de pérdida con
la diferencia que las métricas se emplean para evaluar, pero no para ajus-
ta el proceso de entrenamiento. Keras cuenta con las siguientes métricas:
accuracy, binary accuracy, categorical _accuracy, sparse_categorical ac-
curacy, top_k_categorical_accuracy, sparse_top_k_categorical_accuracy,
cosine_proximity, también se cuenta con la opcion de clonar métricas o de
definir sus propias métricas.
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4.2.4 Procedimiento de compilacién del modelo

La siguiente linea de cddigo se utiliza para llevar a cabo la compilacidn
del modelo creado anteriormente.

54. model.compile (loss='categorical crossentropy',optimizer='adam',

metrics=["'accuracy'])

En esta linea se hace uso de la funcién compile(), propia de los mode-
los de Keras. Los parametros de esta funcion son los siguiente:

* loss, permite definir cudl funcién de pérdida se utilizard en fase de
entrenamiento y de prueba. En este caso se implementa entropia
categdrica cruzada, mediante la palabra reservada ‘categorical
crossentropy’. Es acd donde se debe referenciar el proceso de
carga de imagenes, donde se establecié un modo de clase cate
gorico, precisamente para utilizar este tipo de funcién de pérdida.

» optimizer, hace referencial optimizador utilizado para evaluar
cuanto y como corregir el peso a lo largo del aprendizaje, es decir
el ritmo de aprendizaje. En este caso se utiliza el optimizador Adam.

» metrics, como su nombre en inglés lo indica, son las métricas que
se utilizardn para monitorear el proceso de entrenamiento, sin
embargo no presenta ningun tipo de incidencia en este.

4.3 Entrenamiento del Modelo

En el aprendizaje de maquina supervisado, el entrenamiento de una red
neuronal consiste en la actualizacién iterativa de sus pesos con el fin de que
la salida predicha sea similar a la salida esperada definida por un conjunto de
datos de entrenamiento. El entrenamiento de una red neuronal se realiza
por épocas (epoch), que consisten en ciclos en los cuales se utiliza por com-
pleto el conjunto de datos de entrenamiento. Se debe aclarar que, aunque
en cada época el conjunto de datos de entrenamiento se utiliza por comple-
to la forma como se suministra a la red neuronal es particionado en bloques
(batch), de tal forma que al final de cada bloque se actualizan los parametros
de la red teniendo en cuenta la funcién de perdida y el optimizador definido

durante la compilacién del modelo.
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Keras dispone de un conjunto de funciones denominadas callback que
se aplican en un estado determinado de entrenamiento con el fin de moni-
torearlo o de intervenirlo para mejorar su eficiencia y/o calidad. Dentro de
las funciones callback mas utilizadas estan:

* Deteccién temprana (EarlyStopping) que como sunombre lo indica
detiene el entrenamiento cuando un parametro monitoreado haya dejado
de mejorar, evitando asi el sobreentrenamiento.

* Punto de chequeo (ModelCheckpoint), que guarda el modelo
después de cada época.

* Reduccién de tasa (ReduceLROnPlateau), que reduce la tasa de
aprendizaje cuando una métrica ha dejado de mejorar.

» Registro a CSV (CSVLogger), que envia a un archivo CSV los resulta-
dos de cada época.

* Monitoreo remoto (RemoteMonitor), que envia toda la informa-
cion de los eventos del entrenamiento a un servidor.

4.3.1 Procedimiento para entrenar el modelo

A continuacidn, se presenta el cédigo fuente para entrenar el mode-
lo de la red neuronal por convolucién compilado anteriormente, ademas
de presentar un par de graficas asociadas a este proceso.

55. early stop = EarlyStopping(monitor='val loss', mode='min',
verbose=1, patience=5)

56. check point= ModelCheckpoint (filepath="ruta/local/model.h5",

monitor='val loss', save best only=True, verbose=1l,mode='min')
57. callbacks = [early stop, check point]
58. step_size train=train generator.n/train generator.batch size

59. step size validation=validation generator.n/validation

generator.batch size

60. history-model.fit generator (generator=train generator,steps_
per epoch= step size train,validation data = validation
generator,validation steps= step size validation,epochs=32,
callbacks=callbacks)

61. plt.plot(history.history['acc'])

62. plt.plot(history.history(['val acc'])
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63. plt.title('model accuracy')

64. plt.ylabel ('accuracy')

65. plt.xlabel ('epoch')

66. plt.legend(['train', 'test'], loc='upper left')
67. plt.show()

68. plt.plot (history.history['loss'])

69. plt.plot(history.history['val loss'])

70. plt.title('model loss')

71. plt.ylabel('loss')

72. plt.xlabel ('epoch')

73. plt.legend(['train', 'test'], loc='upper left')

74. plt.show()

Lineas 55-57:

early stop = EarlyStopping (monitor='val loss', mode='min',verbose=1,

patience=5)

check point= ModelCheckpoint (filepath="ruta/local/model.h5",

monitor='val loss', save best only=True, verbose=1,mode='min')

callbacks = [early stop, check point]

En estas lineas de cddigo se realizar la declaracidn de las funciones
callback y se consolidan en una lista para ser invocada durante el entrena-
miento del modelo. Primero, se define la variable early_stop, siendo igua-
lada a la funcidn EarlyStopping(), la cual como su nombre lo indica, genera
una detencion temprana en el entrenamiento del modelo, de acuerdo a
la funcidn de pérdida o las métricas establecidas. Sus argumentos son los
siguiente:

» monitor, hace referencia a la variable que se va a monitorear y de
acuerdo a esa variable se lanzard la accién de detencién, en este
caso se monitorea el valor de la funcion de pérdida obtenido
iteracion a iteracion en el proceso de validacion, mediante el
conjunto de datos destinado para este proceso.
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* mode, debe tomar el valor de auto, max o min. Cuando se define
como ‘min’ el entrenamiento de detendra cuando la variable mo
nitoreada haya dejado de disminuir.

e verbose, se utiliza tan solo para definir si los resultados de esta
funcidn se observaran en pantalla durante el entrenamiento o no.
Al definirlo en 1, esto indica que si se presentaran en la consola.

e patience, indica el nimero de iteraciones de entrenamiento
que el algoritmo esperara sin tener una mejora en la variable
de detencidn. Una vez se cumplan esta cantidad de iteraciones y
no se presente mejora, se accionard la funcién de deteccién
temprana. En este caso, el nUmero de interacciones establecido es 5.

Por otro lado, la funcién ModelCheckpoint(), se utilizard para guardar
el modelo que se va entrenando iteracidn tras iteracién, siempre y cuando
se cumplan algunas condiciones, dadas por los pardmetros establecido, los
cuales se presentan a continuacion:

o filepath, en este parametro se especifica la ruta del directorio
local donde se desea que se guarde el modelo. Este archivo tiene
como extensién . h5 y en una seccién posterior, severa como cargar
y utilizar ese modelo mediante Keras, a partir del archivo guardado.

» monitor, similar a la funcién de detencién temprana, es la variable
que se evaluard o monitoreard, para determinar si se guarda o no
el modelo de dicha iteracién. En este caso, se define la misma
variable que en la funcién anterior, es decir, el valor de funcién de
pérdida en etapa de validacidn.

e save _best only, al “setear” este pardmetro en True, el Ultimo
mejor modelo de acuerdo a la cantidad monitoreada no se sobre
escribira.

* verbose, al ser definido como 1, en el proceso de entrenamiento
se imprimird en pantalla cada vez que se sobrescriba el archivo
que guarda el modelo.

* mode, de igual forma que en la funcién anterior, se define como
‘min’, dado que la situacion ideal se presenta cuando la funcién
de pérdida empieza a disminuir y toma valores relativamente
cercanos a 0.
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Finalmente, se declara la variable callbacks, la cual almacena una lista
con las variables referentes a la funcién de detencidn temprana y de pun-
tos de control del modelo.

Lineas 58-59:
step size train=train generator.n/train generator.batch size

step size validation=validation generator.n/validation generator.bat

ch size

En estas lineas se calcula el nimero de muestras por lote que se uti-
lizaran por iteracion. En este caso se realiza mediante los generadores de
entrenamiento y validacién, donde al invocar el atributo. n, se obtiene la
cantidad de imagenes cargadas y se divide entre el tamafio del lote, me-
diante el atributo .batch_size, propio de los generadores.

Linea 60:

history=model.fit generator (generator=train generator, steps_per_ epoc
h= step size train,validation data = validation generator,
validation steps= step size validation,epochs=32,callbacks=
callbacks)

Finalmente, se ha llegado a la linea de cddigo que acciona el entrena-
miento del modelo. Esta tarea se realiza mediante la funcién fit_genera-
tor(), a la cual se le pasan los siguientes pardmetros:

* generator, es el conjunto de datos de entrenamiento que se
cargd mediante el generador de imagenes de Keras, en este caso
se utiliza la variable train_generator, la cual almacena el objeto
secuencial que contiene las imagenes y el arreglo de etiquetado
de las imagenes.

» steps_per_epoc, este pardmetro debe ser un entero e indica la
cantidad de muestras por lote que se utilizaran por iteracion.

Es all, donde se hace uso de la variable step_size_train, definida
anteriormente.

o validation_data, hace referencia al conjunto de imagenes que se
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utilizard para validar el modelo iteracidn tras iteracion. Se utiliza
el generador de imdgenes de validacion que se establecido en
pasos anteriores.

o validation_steps, en relacién con el pardmetro inmediatamente
anterior, establece el nimero de muestras por lote que se
utilizard, al hacer uso de este conjunto de datos de validacién. Es
aqui donde, se implementa la variable step_size_validation.

* epochs, corresponde al nimero de iteraciones que se disponen
para el entrenamiento del modelo. En este caso, se definen un
total de 32 iteraciones. Sin embargo, es poco probable que
se complete esa cantidad de iteraciones, debido a la funcién de
detencion temprana definida.

e callbacks, relacionado con una lista de funciones que se llaman
iterativamente cuando se acaba cada una de las iteraciones,
debido a esto se declara con la lista nombrada callback, la cual
al macena la funciéon de puntos de control del modelo y la
deteccidon temprana del entrenamiento.

Ademas, es relevante exponer que, el proceso de entrenamiento se
estd almacenado en una variable denominada como history, la cual se
utilizard posteriormente en la graficacién de la funcién de pérdida y de
las métricas. Por otra parte, al ejecutar esta linea de cddigo se debe pre-
sentar por consola un resultado similar al que se expone a continuacidn

(ver figura 37).
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Epoch 1/32 49/48 [ ] - 2s 50ms/step - loss: 1.0380 - acc: 0.4265
- val loss: 1.2350 - val acc: 0.3083 Epoch 00001: val loss improved from inf to 1.23499
saving model to /ruta/local/model.h5

Epoch 2/32 49/48 [== I

] - 1s 28ms/step - loss: 0.8274 - acc: 0.6231

- val_loss: 0.8794 - val acc: 0.5833 Epoch 00002: val loss improved from 1.23499 to 0.87940,
saving model to /ruta/local/model.h5

Epoch 3/32 49/48 [ ] - 2s 35ms/step - loss: 0.7095 - acc: 0.7002
- val loss: 0.8365 - wval acc: 0.6444 Epoch 00003: val loss improved from 0.87940 to 0.83650,
saving model to /ruta/local/model.h5

Epoch 20/32 49/48 [ ] - 2s 35ms/step - loss: 0.1712 - acc: 0.9305
- val_loss: 0.3139 - wval_acc: 0.9056 Epoch 00020: val_loss improved from 0.37486 to 0.31392,
saving model to /ruta/local/model.h5

Epoch 21/32 49/48 | ] = 2s 35ms/step - loss: 0.1264 - acc: 0.9515
- val_loss: 0.4031 - val_acc: 0.8417 Epoch 00021: val loss did not improve from 0.31392

Epoch 22/32 49/48 [ ] - 2s 35ms/step - loss: 0.1320 - acc: 0.9459
- val loss: 0.3258 - val acc: 0.8889 Epoch 00022: val loss did not improve from 0.31392

Epoch 23/32 49/48 [ ] - 2s 36ms/step - loss: 0.2885 - acc: 0.8923
- val_loss: 0.3339 - val_acc: 0.9093 Epoch 00023: val_loss did not improve from 0.31392

Epoch 24/32 49/48 [==========

==] 2s 36ms/step loss: 0.1331 acc: 0.9477

- val_loss: 0.3512 - val_acc: 0.8694 Epoch 00024: val loss did not improve from 0.31392

Epoch 25/32 49/48 [ ] - 2s 35ms/step - loss: 0.1202 - acc: 0.9528
- val loss: 0.3973 - val acc: 0.8472

Epoch 00025: val_loss did nct improve from 0.31392
Epoch 00025: early stopping
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Figura 37 Iteraciones de entrenamiento.
Fuente: Autor.

De acuerdo con la figura 37, se pueden observar los siguientes aspectos:

e [teracidn tras iteracion se hace llamada de las funciones de

callback, por ejemplo, cuando se enuncia saving model to /ruta/
local/model.h5 se hace llamado a la funcién de puntos de control
del model, solo cuando disminuye el val_loss, el cual hace referencia
al valor de funcién de pérdida con el conjunto de validacidn.

La funcién de detencién temprana, se ve en accidon cuando en
consola se muestra val_loss improved from y value to x_
value, donde x_value es menor que y_value. Ademads, se ve el uso
del pardmetro patience, dado que, en la iteracion nimero 20 fue
la dltima vez que este valor disminuyd, y durante las siguite cinco
iteraciones no se presenté mejora, por lo tanto, en la iteracién
nimero 25, se detiene el entrenamiento y el Ultimo modelo
guardado fue el de la iteracidn 20.

e Finalmente, se puede observar que, el modelo con el conjunto



61.

62.

63.

64.

65.

66.

67.

Modelo de la Red Neuronal por Convolucidn

de entrenamiento y validacidn, presenta una funcién de pérdida
relativamente cercana a 0 y una probabilidad de precisién por

encima del 0.9.

Lineas 61-67:

plt.

plt

plt.
plt.
plt.
plt.

plt.

plot (history.history['acc'])

.plot (history.history['val acc'])

title('model accuracy')

ylabel ('accuracy')

xlabel ('epoch')

legend(['train', 'test'], loc='upper left')

show ()

Estas lineas de cdédigo tienen como objetivo graficar el registro de la
métrica accuracy para el dataset de entrenamiento y validacidn, iteracidn
a iteracién. Tenga en cuenta que si usted estd utilizando una versién de
Tensorflow inferior a 2.0, debe cambiar la claves del diccionario history,
por ‘acc’y ‘val_acc’ respectivamente . La figura 38, presenta el resultado

de correr estas lineas de codigo.

Accuracy Modelo

Accuracy
o
[}

0.5 1
0.4 1 —— entrenamiento
—— validacion
0.3 1
0 5 10 15 20 25
Iteracion

Figura 38 Precision global del modelo en fase de entrenamiento.
Fuente: Autor.

/5



Redes Neuronales Convolucionales Usando Keras y Acelerando con GPU

Lineas 68-74:

68. plt.plot (history.history['loss'])

69. plt.plot (history.history(['val loss'])

70. plt.title('model loss')

71. plt.ylabel('loss'")

72. plt.xlabel ('epoch')

73. plt.legend(['train', 'test'], loc='upper left')

74. plt.show()

Mediante estas lineas, se puede graficar el registro de la funcién de
pérdida para el dataset de entrenamiento y validacidn, iteracion a itera-
cién. La figura 39, presenta el resultado de ejecutar estas lineas de cédigo.

Funcion de Pérdida Modelo

1.2 1 —— entrenamiento
—— validacién
1.0 A
© 0.8 1
°
=
@ 0.6 1
o
0.4 A
0.2 1
0 5 10 15 20 25
Iteracion

Figura 39 Funcién de pérdida del modelo en fase de entrenamiento.
Fuente: Autor.

Justo después de obtener un modelo de CNN ya entrenado, es con-
veniente realizar la evaluacion del mismo. Es por esto que, en el siguiente
capitulo se abordara dicho aspecto.
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Capitulo 5

Evaluacién del Modelo

Una de las tareas mds importantes dentro del aprendizaje profundo
es poder determinar si el modelo entrenado realiza un buen trabajo en su
etapa de clasificacién o prediccion de clases. Durante esta etapa, se debe
establecer un protocolo de evaluacidn, en el cual se debe tener definido el
conjunto de datos de prueba y cudles van a ser las métricas que se tomaran
como punto de referencia para determinar el nivel de rendimiento del mo-
delo de la red neuronal por convolucidn. En este capitulo, las métricas que
se trabajardn son: Funcidn Evalute, Curvas de ROC, Accuracy, Precision Sco-
re, Recall Score, Coeficiente de Kappa y la Matriz de confusidn. Lo anterior,
mediante el conjunto de prueba, compuesto por un total de 300 imagenes,

100 por cada clase.

5.1  Cargadel modelo

En el campo del aprendizaje de maquina mds especificamente en el
aprendizaje profundo, donde el entrenamiento de los modelos de redes
neuronales por convolucidn presenta un alto costo computacional, es ne-
cesario poder cargar un modelo que haya sido entrenado previamente. De
esta manera, el modelo de la CNN puede ser utilizo en distintos entornos con
el mismo propdsito, sin la necesidad de entrenarlo de nuevo.
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5.1.1 Procedimiento para cargar el modelo

La siguiente linea de cddigo fuente, se utiliza para cargar un modelo
de unared neuronal por convolucién que haya sido previamente guardado.

75. model loaded = load model ("ruta/local/model.h5")

En esta linea se puede observar que, Keras cuenta con una funcién
propia para realizar la carga de un modelo previamente guardado. Esta es
la funcidn load_model(), la cual recibe por parametro, la direccién donde
estd alojado el modelo y el nombre del archivo, por supuesto, como se ha-
bia mencionado anteriormente este archivo debe tener una extensién. hs.

En este paso, se carga el modelo entrenado anteriormente, con el
propdsito de realizar la evaluacion de distintas métricas utilizando este
modelo. De acuerdo a esto, el modelo cargado se almacena en la variable
model_loaded.

5.2  Funcidén Evaluate

Como se presencid durante la fase de entrenamiento del modelo, dos
valores son calculados iteracidn a iteracidn. Estos valores son: la funcién
de pérdida y el nivel de precisién (accuracy). De acuerdo a esto, la libreria
Keras, brinda las condiciones necesarias para permitir el calculo de estos
dos valores mediante el conjunto de prueba. Lo anterior, mediante la fun-
cion evaluate.

5.2.1 Procedimiento para calcular la funcién evaluate

A continuacidn, se expone las lineas del cddigo fuente, utilizadas
para llevar a cabo el célculo de la funcién evaluate.

76. step size test=test generator.n/test generator.batch size

77. result evaluate = model loaded.evaluate generator (test

generator, step size test,verbose=1)
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Evaluacién del Modelo

Linea 76:

step size test=test generator.n/test generator.batch size

En esta linea se calcula el nimero de muestras por lote que se utiliza-
ran por iteracién. En este caso se realiza mediante el generador de prue-
ba, donde se al invocar el atributo .n, se obtiene la cantidad de imagenes
cargadas y se divide entre el tamafio del lote, mediante el atributo .batch_
size, propio de los generadores.

Linea 77:

result evaluate = model loaded.evaluate generator (generator=test

generator, steps=step_size test,verbose=1)

Finalmente, digitando esta linea se calcula la funcién de pérdida y la
precisidn con el conjunto de datos de prueba. Lo anterior, mediante la fun-
cion evaluate_generator(), la cual recibe lo siguiente pardmetros:

» generator, es el conjunto de datos de prueba que se cargd
mediante el generador de imdgenes de Keras, en este caso se
utiliza la variable test_generator, la cual almacena el objeto
secuencial que contiene las imagenes y el arreglo de etiquetado
de cada imagen.

e steps, es el total de muestras por lote que se estipulan para
generar la evaluacidn del conjunto de datos de prueba.

En este punto, se utiliza la variable step size test, calculada
anteriormente.

 verbose, se utiliza tan solo para definir si el proceso y resultado
de esta funcidn se observaran en pantalla durante la invocacién
de la misma. Al definirlo en 1, esto indica que si se presentaran en
la consola.

Al ejecutar esta linea se obtiene el siguiente resultado (ver figura 40).

300/300 [======================= =======] - 1s 3ms/step

[0.3224358580739467, 0.8833333333333333]

Figura 40 Funcidn Evaluate.
Fuente: Autor.
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En la primera linea la figura 40, se presenta el detalle del proceso dela
funcién evaluate_generator(), procesando un total de 300 imdgenes en 1,
3 segundos. Después, la segunda linea es el resultado de aplicar esta fun-
cién. La primera posicion de esta lista corresponde al valor de la funcién de
pérdida y la segunda posicion al valor de precisién obtenido.

5.3  Curvas de ROC

Una curva ROC (curva de caracteristica operativa del recepto) es una
representacion grafica que muestra el rendimiento de un modelo de clasifi-
cacién en todos los umbrales de clasificacién (Zhou, Hall, & Shapiro, 1997),
(Zou KH, O’Malley AJ, Mauri L., 2007). Esta curva representa dos parame-
tros, de un lado la tasa de verdaderos positivos (TPR), y del otro lado la
tasa de falsos positivos (FPR).

El punto de partida para el andlisis de la curva ROC, es la tabla de con-
tingencia (para validacion de imdgenes), para cada punto de corte. Esta
tabla de contingencia puede entenderse como la matriz de confusidn
(tabla 1) en la clasificacién de imagenes.

Tabla 1 Contingencia o matriz de confusién.
Fuente: Autor.

Predicho /Modelo
Matriz de Confusion
Negativo Positivo
Negativo VN verda.dero FP -
negativo Falso Positivo
Real
Eraafiig FN VP verdadero
Falso Negativo positivo

La tasa de verdaderos positivos (TPR) es sinénimo de exhaustividad y,
por lo tanto, se define en la ecuacidn 5:

r=_ P
VP+FN

Ecuacion 5 Tasa de verdaderos positivos.
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Siendo VP los verdaderos positivos, y FN los falsos negativos. Por su
parte, la tasa de falsos positivos (FPR) es sinénimo de especificidad, y se
define en la ecuacidn 6:

FP

FP+VN

Ecuacion 6 Tasa de falsos positivos.

Siendo FP los falsos positivos, y VN los verdaderos negativos.

Tiendo en cuenta que una curva ROCrepresenta la TPR frente a la FPR
en diferentes umbrales de clasificacién, reducir el umbral de clasificacion
clasifica mds elementos como positivos, por lo que aumentaran tanto los
falsos positivos como los verdaderos positivos. La figura 41 muestra una
curva ROC tipica.

Tasa deVP frente
a FP e un umbral
de decision

Tasa deVP frente a
FP en otro umbral
de decisién

Figura 41 Tasa de VP frente a FP en diferentes umbrales de clasificacion.
Fuente: Ajustado de (Benavides, 2017).

Para calcular los puntos en una curva ROC, se puede evaluar un mo-
delo de regresién logistica muchas veces con diferentes umbrales de cla-
sificacion, pero esto es ineficiente. Por lo que se utiliza el algoritmo AUC
(drea bajo la curva ROQ), el cual es eficiente basado en ordenamiento de
la informacion (ver figura 42). El AUC mide toda el drea bidimensional por
debajo de la curva ROC completa proporciona una medicion agregada del
rendimiento en todos los umbrales de clasificacién posibles de (0,0) a (1,1).
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Tasa de VP

0

0 Tasa de FP 1

Figura 42 AUC (drea bajo la curva ROC).
Fuente: Ajustado de (Benavides, 2017).

El AUC es la probabilidad de que el modelo clasifique un ejemplo po-
sitivo aleatorio mas alto que un ejemplo negativo aleatorio, oscila en valor
del o0 al 1. Un modelo cuyas predicciones son un 100% incorrectas tiene un
AUC de 0.0; otro cuyas predicciones son un 100% correctas tiene un AUC de
1.0.En el caso de un AUC de 0,5 es una prueba sin capacidad discriminatoria
diagndstica, de (0.5,0.6) es un test malo, de (0.6,0.75) es un test regular,
de (0.75,0.9) es un test bueno, de (0.9,0.97) es un test muy bueno, y de
(0.97,1) es un test excelente.

El AUC es conveniente por las dos razones Swets y Picket (1982): la
primera es porque es invariable con respecto a la escala ya que mide qué
tan bien se clasifican las predicciones, en lugar de sus valores absolutos. La
segunda razén es porque el AUC es invariable con respecto al umbral de
clasificacidn, es decir que mide la calidad de las predicciones del modelo,
sin tener en cuenta qué umbral de clasificacidn se elige.

Sin embargo, estas dos razones tienen algunas advertencias, que pue-
den limitar la utilidad del AUC en determinados casos. Primero la invaria-
bilidad de escala no siempre es conveniente, que el AUC no muestra los
resultados de probabilidad bien calibrados. Segundo, la invariabilidad del
umbral de clasificacidn no siempre es conveniente, ya que en los casos en
que hay amplias discrepancias en las consecuencias de los falsos negativos
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frente a los falsos positivos, es posible que sea fundamental minimizar un
tipo de error de clasificacion. EI AUC no es una métrica util para este tipo
de optimizacion.

5.3.1 Procedimiento para calcular las curvas de ROC

A continuacion, se presenta el cédigo utilizado para el cdlculo de las
curvas de ROC Macro-promedio y Micro-promedio.

78. y pred prob = model loaded.predict generator (generator=test

generator, steps= step size test)
79. y pred classes = np.argmax(array=y pred prob, axis=l)
80. test labels one hot = to categorical (test generator.classes)
81. fpr = dict()

82. tpr = dict()

83. roc_auc = dict()
84. for i in range(num_classes):
85. fpr[i], tpr[i], _ = roc curve(test labels one hot[:, i],

y pred probl[:, i])
86. roc_auc[i] = auc(fprli], tprli])

87. fpr[“micro”], tpr[“micro”], =roc_curve(test labels one hot.

Ravel (), y pred prob.ravel())
88. roc_auc[“micro”] = auc(fpr[“micro”], tpr[“micro”])

89. all fpr = np.unique (np.concatenate([fpr[i] for i in range

(num_classes)]))
90. mean_tpr = np.zeros_like(all fpr)
91. for i in range (num classes) :
92. mean_tpr += interp(all fpr, fprli], tprli])

93. mean_tpr /= num_classes

94. fpr([“macro”] = all fpr
95. tpr[“macro”] = mean tpr
96. roc_auc[“macro”] = auc(fpr[“macro”], tpr[“macro”])
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Lineas 78-80:

y _pred prob = model loaded.predict generator (generator=test

generator, steps= step size test)
y pred classes = np.argmax (array=y pred prob, axis=1)

test labels categorical= to categorical (test generator.classes)

Estas lineas de cddigo tienen como finalidad obtener las predicciones
realizadas por el modelo a partir del conjunto de datos de prueba. Es im-
portante resaltar que, cada una de las variables declaradas en estas lineas
serdan utilizadas no solo para calcular las curvas de ROC, si no cada una de
las métricas contempladas.

Como primera parte, mediante la funcién predict_generator(), se ge-
neran las predicciones a partir de un conjunto de entradas especificamen-
te un generador de datos. Es decir, por cada imagen evaluada se genera un
arreglo con un nimero de posiciones iguales al numero de clases. En dicho
arreglo, se consolida la probabilidad que tiene esa imagen de ser cada una
de las clases. Donde la posicion donde se acumule la mayor probabilidad
estd directamente relacionada con la clase en la cual el modelo clasificd
esa imagen. Los pardmetros utilizados para esta funcién son los siguiente:

e generator, es el conjunto de datos de prueba que se cargd
previamente mediante el generador de imdgenes de Keras, en
este caso se utiliza la variable test_generator, la cual almacena
el objeto secuencial que contiene las imagenes y el arreglo de
etiquetado de cada imagen.

e steps, es el total de muestras por lote que se estipulan para
generar las predicciones del conjunto de datos de prueba. En
este punto, se utiliza la variable step size test, calculada
anteriormente.

Una vez se han calculado las probabilidades de prediccidn, se procede
a obtener puntualmente la clase predicha por el modelo de la red neuro-
nal por convolucién. Lo anterior, mediante la funcién argmax(), propia de
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la libreria Numpy. Esta funcidn, retorna los indices del elemento maximo
de un arreglo sobre un eje particular. En este caso, devuelve la posicion
del arreglo de prediccién de cada imagen, donde se encuentran la mayor
probabilidad. Para implementar dicha funcion, se utilizaron los siguientes
parametros:

e drray, en este parametro se debe especificar el arreglo al cual
se le va a aplicar la funcién. En este caso se iguala a la variable
y_pred _prob, que tiene el arreglo de probabilidades generado
previamente.

e axis, estipula sobre cual eje se va a obtener el indice donde se
encuentra el maximo valor. Este pardmetro se define en 1, para
aplicar la funcién de manera horizontal.

Por ultimo, haciendo uso de la funcién to_categorical(), propia de
la libreria Keras, se convierten a un formato categdrico las etiquetas de
clase, guardadas en el generador de imagenes de prueba test_generator.

Lineas 81-83:
fpr = dict()
tpr = dict ()

roc_auc = dict()

En estas lineas, se inicializan diccionarios vacios para almacenar la tasa
de falsos positivos, tasa de verdaderos positivos y el drea bajo la curva de
ROC. Las variables destinadas para esto fueron fpr, tpr, roc_auc, respecti-
vamente.

Lineas 84-86:
for i in range(num classes):

fpr[i], tpr[i], _ = roc curve(y true=test labels categoricall:,

i], y score=y pred probl[:, i])

roc_auc[i] = auc(x=fpr[i], y=tpr([i])
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Este ciclo se usa paraiterar en un rango definido por el nimero clases,
en este caso 3. Dentro de este ciclo, se computa la curva de roc y el drea
bajo cada una de las curvas para cada una de las clases. La funcidén roc_cur-
ve() realiza el cdlculo de la curva de roc y recibe los siguientes pardmetros:

e y_true, hace referencia al conjunto de etiquetas binarias {o,1}.
Porlo tanto, son las etiquetas categdricas correctas de las imagenes
de prueba, por esa razdn, se utiliza la variable test labels cate
gorical.

e y score, define los puntajes objetivos, que pueden ser
estimaciones de probabilidad de la clase positiva. Debido a esta
razén, se hace uso de la variable y_pred_prob, la cual contienen
las probabilidades de prediccion de cada una de las imagenes.

Adicionalmente, se calcula el drea bajo la curva de ROC de cada una de
las clases. Lo anterior, mediante la funcién auc(), recibiendo los siguientes
parametros.

e X, debe ser un arreglo que contenga las coordenadas de la curva de
ROC en el eje X. Por lo tanto, se debe utilizar la variable fpr, la cual
contiene la tasa de falsos positivos obtenidos en el cémputo de
la curva de ROC.

e y, serefiere al conjunto de coordenadas de la curva de ROC en el eje
Y. Eneste parametro, se utilizalavariable tpr. Esta variable almacena
la tasa de verdaderos positivos obtenidos en el cdmputo de la
curva de ROC.

Linea 87:
fpr[“micro”], tpr[“micro”], =roc curve(y true=test labels one hot.
ravel (), y score=y pred prob.ravel())
roc_auc[“micro”] = auc(fpr[“micro”], tpr[“micro”])

En estas lineas se crea una nueva clave para los diccionarios de datos
creados anteriormente denominada ‘micro’. Lo que se pretende con esto,
es almacenar los valores asociados a la micro-promedio curva de ROC y
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posteriormente, calcular el drea bajo de esta. De igual manera que en las
lineas 84-86, se utilizan las funciones roc_curve() y auc(). Sin embargo, se
presenta una variacion, en los argumentos de la funcién roc_curve(), dado
que se utilizan las mismas variables, pero, se les aplica la funcién propia
de la libreria Numpy ravel(), la cual convierte un arreglo n-dimensional a
un arreglo unidimensional. Lo anterior, con el objetivo de tomar los datos
asociados a las etiquetas correctas y de prediccidn, para procesarlas como
un gran conjunto de valores.

Lineas 89-90:

all fpr = np.unique (np.concatenate ([fpr[i] for i in range (num_

classes)]))

mean_tpr = np.zeros_like(all fpr)

Con estas lineas de cddigo se da inicio al proceso de cdlculo de la ma-
cro-promedio curva de ROC. Como primera parte, mediante la funcién con-
catenate() de Numpy, se concatenan los valores de tasa de falsos positivos
de cada clase, previamente almacenados en la variable fpr. Posteriormen-
te, se obtienen los valores unicos del arreglo resultante del proceso de
concatenacion, lo anterior, mediante la funcién unique(), también de Num-
py. Esto se consolida en la variable all_fpr. Adicionalmente, se crea un arre-
glo lleno de ceros nombrado como mean_tpr, de las mismas dimensiones
que all_fpr, para esto se hace uso de la funcién zeros_like(), pasando por
parametro la variable all_fpr.

Lineas 91-93:
for i in range(num_classes):
mean_ tpr += interp(x=all fpr, xp=fpr[i], fp=tpr[i])

mean tpr /= num classes

En este ciclo se llena el arreglo mean_tpr, mediante una suma acumu-
lativa. Los valores que se suman acumulativamente, son el resultado de
interpolar toda la tasa de falsos positivos, la tasa de falsos positivos por
clase y la tasa de verdaderos positivos por clase. Este proceso se realiza
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mediante la funcién interp() propia de la libreria Scipy. Dicha funcién reci-
be los siguientes parametros:

* X, son las coordenadas X consolidadas en un arreglo, en las que
evaluar los valores interpolados. Para este caso, se debe utilizar
la variable all_fpr.

* Xp, corresponde a la primera secuencia de numeros flotantes
0 coordenadas del eje X, las cuales seran elementos
fundamentales en el proceso de interpolacién. Como esta
actividad se realiza en un ciclo con iteraciones igual al niumero
de clases, se utiliza la variable fpr, siendo indexada por la
iteracién actual.

* fp, hacer referencia a la segunda secuencia de nimero
flotantes o coordenadas en el eje Y, utilizadas en la tarea de
interpolacion. Como esta actividad se realiza en un ciclo con
iteraciones igual al ndmero de clases, se utiliza la variable tpr,
siendo indexada por la iteraciéon actual.

Finalmente, se calcula el promedio de la tasa de verdaderos positivos,
dividendo cada uno de los valores alojados en el arreglo mean_tpr sobre

el nidmero de clases.

Lineas 94-96:

fpr[“macro”] = all fpr
tpr[“macro”] = mean tpr
roc_auc[“macro”] = auc(fpr[“macro”], tpr[“macro”])

Por ultimo, se crean las claves “macro” en los diccionarios fpry tpr,
almacenando las variables all_fpry mean_tprrespectivamente. Una vez se
ha realizado esta tarea, se computa el area bajo la curva de la macro-pro-
medio de la curva de ROC mediante la funcién auc() y se guarda su resulta-
do enla clave “macro” del diccionario roc_auc.
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5.3.2 Procedimiento para graficar las curvas de ROC

Las siguientes lineas de cédigo fuente, tienen como objetivo realizar

una representacion grafica de los valores obtenidos en el procedimiento
llevado a cabo para calcular las curvas de ROC.

97.

98.

99.

plt.figure (1)

plt.plot ((fpr[“micro”]), (tpr[“micro”]),label="micro-average
ROC curve (area = {0:0.2f})’’’.format (roc_auc[“micro”]),color=

‘deeppink’, linestyle=’:’, linewidth=4)

plt.plot (fpr[“macro”], tpr[“macro”],label='macro-average ROC
curve (area = {0:0.2f})’’’.format (roc_auc[“macro”]),color=

‘navy’, linestyle=’:’, linewidth=4)
colors = cycle([‘aqua’, ‘darkorange’, ‘cornflowerblue’])
for i, color in zip(range (num classes), colors):

plt.plot (fpr[il, tpr[i], color=color, 1lw=2,label=’ROC
curve of class {0} (area = {1:0.2f})"’’ .format (i,

roc_aucl[i]))
plt.plot ([0, 1], [0, 1], ‘k=', 1lw=2)
plt.x1im([0.0, 1.07])
plt.ylim([0.0, 1.05])
plt.xlabel (‘False Positive Rate’)
plt.ylabel (‘True Positive Rate’)
plt.title(‘Curve ROC General DataSetOriginal')
plt.legend(loc="lower right")

plt.show ()

Al ejecutar estas lineas, se puede obtener un resultado similar

al de la figura 43.
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Curvas de ROC

Tasa de Verdaderos Positivos

04 = = micro-promedio curva de ROC (area = 0.95)
] = = macro-promedio curva de ROC (4rea = 0.95)

0.2 P Curvas de ROC de la clase 0 (area = 0.95)

’/’ —— Curvas de ROC de la clase 1 (drea= 0.95)

»* —— Curvas de ROC de la clase 2 (area = 0.95)

-
0-0 1 T T T T
0.0 0.2 04 0.6 0.8 1.0

Tasa de Falsos Positivos

Figura 43 Curvas de ROC del modelo entrenado.
Fuente: Autor.

La figura 43, presenta las Curvas de ROC macro-promedio, micro-pro-
medio con su respectivo valor de drea bajo la curva, que en este caso es
0.95 para cada una. Esto indica que presenta en promedio un 0.95 de pro-
babilidad de acierto en su fase de clasificacion. Adicionalmente, se presen-
tas las curvas de ROC para cada una de las clases, donde la clase 0 hace
referencia a Avidn, la clase 1a Barco y la clase 2 a Estadio.

Por otro lado, Lin, Alvarez y Ruiz (2002) definen las siguientes relacio-
nes: accuracy, precision, y recall.

5.4  Accuracy Score

Se calcula dividiendo el nimero total de pixeles correctamente clasi-
ficados por el nimero total de pixeles de referencia y expresandolo como
porcentaje (ecuacion 7).

Exactitud glabal = E

TPR

Ecuacién 7 Exactitud global.
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Donde, TPC es el total de pixeles correctamente clasificados y TPR:
corresponde al total de pixeles de referencia.

5.4.1 Procedimiento para calcular el valor de accuracy

Las siguientes lineas de cddigo muestran la forma de calcular la
métrica denominada Accuracy.

111. accuracy=accuracy_score (y true=test generator.classes,y pred=

y_pred _classes)

112. print ('Accuracy: $f' % accuracy)

En estas lineas, se acude a la funcién accuracy score(), propia de la
libreria sckit-learn. Esta funcidn se utiliza para calcular el valor de accuracy
y recibe los siguientes parametros.

e y true, este parametro indica las etiquetas correctas del conjunto
de imdgenes de prueba. Es decir, lo que deberia obtener el modelo en la
clasificacién de cada una de las imagenes. En este caso, se utiliza el atribu-
to .clasess, del generator de imdagenes de prueba. Este atributo contiene
las etiquetas en su respectivo orden de las imagenes de test cargadas pre-
viamente.

* y pred, hace referencia al conjunto de predicciones realizadas por
el modelo, haciendo uso de las imagenes de prueba. Para esta situacion, se
utiliza la variable y_pred_classes, la cual como se ha mencionado anterior-
mente contiene las clases predichas por el modelo de la red neuronal por
convolucion.

Por ultimo, se manda a imprimir el resultado por consola, asi como lo
muestra la figura 44.

| Accuracy: 0.790000

Figura 44 Métrica de Accuracy (Precisién global).
Fuente: Autor.
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5.5  Precision Score

La precision intenta responder la pregunta ;Qué proporcion de iden-
tificaciones positivas fue correcta?, se define en la ecuacién 8. Un modelo
que no produce falsos positivos tiene una precision de 1.0.

VP

Precision = ———
VP+ FP

Ecuacion 8 Precision.
Donde VP son los verdaderos positivos y FP son los falsos positivos.

De manera similar, la exhaustividad intenta responder la pregunta
(Qué proporcidn de positivos reales se identificé correctamente?, y se de-
fine por la ecuacién 9:

VP

Exhaustividad = ——
VP+ FN

Ecuacién 9 Exhaustividad

Donde VP son los verdaderos positivos, FN son los falsos negativos.
5.5.1 Procedimiento para calcular el Precision Score

Las siguientes lineas de cédigo muestran la forma de calcular la métri-
ca denominada Precision score.

113. precision=precision_score(y true=test generator.classes,

y pred=y pred classes, average='micro')

114. print ('Precision:', precision)
En estas lineas, se acude a la funcién precision_score(), propia de la

libreria sckit-learn. Esta funcidn se utiliza para calcular el valor de precisién
y recibe los siguientes parametros.
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e y true, este parametro indica las etiquetas correctas del conjunto
de imdagenes de prueba. Es decir, lo que deberia obtener el
modelo en la clasificacién de cada una de las imagenes.
En este caso, se utiliza el atributo .clasess, del generator de
imagenes de prueba. Este atributo contiene las etiquetas en
surespectivo orden de las imagenes de test cargadas previamente.

 y pred, hace referencia al conjunto de predicciones realizadas por
el modelo, haciendo uso de las imagenes de prueba. Para esta
situacion, se utiliza la variable y_pred_classes, la cual como se ha
mencionado anteriormente contiene las clases predichas por el
modelo de la red neuronal por convolucidn.

* average, al ser un problema multiclase, es decir mas de una clase,
se hace necesario especificar este pardmetro. Para le cdlculo de
esta métrica, se selecciona la opcidn ‘micro’, ya que permite realizar
un cdlculo global contando el total de verdaderos positivos, falsos
negativos y falsos positivos.

Por ultimo, se manda a imprimir el resultado por consola,asi como lo
muestra la figura 45.

Precision: 0.790113

Figura 45 Métrica Precision Score.
Fuente: Autor.

5.6 Recall Score

El recall score es intuitivamente la capacidad del clasificador para en-
contrar todas las muestras positivas. El mejor valor es 1y el peor valor es o.
Se calcula segun la ecuacidn 10.

P

Recall = ——
TP+ FN

Ecuacion 10 Recall

Donde TP es el nimero de verdaderos positivos y FN el nimero de
falsos negativos.
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5.6.1 Procedimiento para calcular el Recall Score

Las siguientes lineas de cddigo muestran la forma de calcular la métri-
ca denominada Recall score.

115. recall = recall score(y_true=test generator.classes, y pred=

y _pred classes, average = 'micro')

116. print('Recall: $f' % recall)

Estas lineas tienen como objetivo, obtener el valor de Recall. Lo an-
terior, mediante la funcién recall_score(), propia de la libreria Scikit-learn.
Esta funcién recibe los siguientes parametros.

e y_true, este pardmetro indica las etiquetas correctas del conjunto
de imagenes de prueba. Es decir, lo que deberia obtener el modelo
en la clasificacion de cada una de las imagenes. En este caso, se
utiliza el atributo .clasess, del generator de imagenes de prueba.
Este atributo contiene las etiquetas en su respectivo orden de las
imagenes de test cargadas previamente.

* y pred, hace referencia al conjunto de predicciones realizadas por
el modelo, haciendo uso de las imagenes de prueba. Para esta
situacién, se utiliza la variable y _pred classes, la cual como se ha
mencionado anteriormente contiene las clases predichas por el
modelo de la red neuronal por convolucidn.

* average, al ser un problema multiclase, es decir mas de unaclase, se
hace necesario especificar este parametro. Para le calculo de esta
métrica se selecciona la opcién ‘micro’, ya que permite realizar un
calculo global contando el total de verdaderos positivos, falsos
negativos y falsos positivos.

Por ultimo, se manda a imprimir el resultado por consola (ver figura 46).

Recall: 0.790000 |

Figura 46 Métrica Recall Score.
Fuente: Autor.
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5.7 F1Score

F1-Score (también llamado Valor-F o Medida-F en espafol) (Lewis y
Gale, 1994) combina las medidas de precisién y exhaustividad para devol-
ver una medida de calidad mas general del modelo. Se calcula como la me-
dia armdnica de las métricas mencionadas (ecuacion 11):

Fi—score= 2 = P
1 1 P FP+FN

+
precision  exhaustividad 2

Ecuacion 11 F1 - Score.

El valor del F1-Score varia entre o (peor valor posible) y 1 (mejor
valor posible).

Concejero (2004) concluye que las curvas ROC empiricas son una he-
rramienta potente, y que, con el esquema de contraste de hipdtesis esta-
disticas sin supuestos de partida en cuanto a la forma de las distribuciones,
son una metodologia a la vez sencilla y potente que ha visto reflejadas es-
tas caracteristicas en la enorme cantidad de estudios que la utilizan.

5.7.1 Procedimiento para calcular F1 Score

Las siguientes lineas de cédigo muestran la forma de calcular la métri-
ca denominada F1 score.

117. f1 = f1 score(y true=test generator.classes,y pred=y pred

classes,average= 'micro')

118. print('Fl score: $f' % f1)

En estas lineas, se hace uso de la funcién f1_score(), propia de
la libreria Scikit-learn. Esta funcién se utiliza para calcular el valor de esta
métrica y recibe los siguientes parametros.

e y true, este parametro indica las etiquetas correctas del conjunto
deimagenesdeprueba. Esdecir, loque deberiaobtenerelmodeloen
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la clasificacion de cada una de las imagenes. En este caso, se utiliza
el atributo .clasess, del generator de imagenes de prueba. Este
atributo contiene las etiquetas en su respectivo orden de las
imagenes de test cargadas previamente.

o y pred, hace referencia al conjunto de predicciones realizadas
por el modelo, haciendo uso de las imagenes de prueba. Para esta
situacion, se utiliza la variable y_pred_classes, la cual como se ha
mencionado anteriormente contiene las clases predichas por el
modelo de la red neuronal por convolucidn.

* average, al ser un problema multiclase, es decir mds de una clase,
se hace necesario especificar este parametro. Para el cdlculo de esta
métrica, se selecciona la opcién ‘micro’, ya que permite realizar un
calculo global contando el total de verdaderos positivos, falsos
negativos y falsos positivos.

Finalmente, se manda a imprimir el resultado por consola, asi como lo
muestra la figura 47.

|F1 score: 0.788318

Figura 47 Métrica F1 Score.
Fuente: Autor.

5.8  Coeficiente de Kappa

El indice de Kappa, un instrumento disefiado por Cohen que ajusta el
efecto del azar en la proporcién de la concordancia observada. La estima-
cion por el indice de Kappa sigue la ecuacion:

«_B-P
I-F,

Ecuacion 12 Coeficiente de Kappa.

Donde Po es la proporciéon de concordancia observada, Pe es la pro-
porcidn de concordancia esperada por azar y 1 - Pe, representa el acuerdo
0 concordancia maxima posible no debida al azar. Entonces, el numera-
dor del coeficiente Kappa expresa la proporcidn del acuerdo observado
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menos el esperado, en tanto que el denominador es la diferencia entre
un total acuerdo y la proporcién esperada por azar (J. Wang, Y. Yang and
B. Xia, 2019). En conclusidn, el Kappa corrige el acuerdo sélo por azar, en
tanto es la proporcién del acuerdo observado que excede la proporcion
por azar. Si este valor es igual a 1, estariamos frente a una situacién en
que la concordancia es perfecta (100% de acuerdo o total acuerdo) y, por
tanto, la proporcidn por azar es cero; cuando el valor es o, hay total
desacuerdo y entonces la proporcidon esperada por azar se hace igual
a la proporcién observada.

(Landis y Koch, 1977) propusieron una interpretacién cualitativa del
indice de Kappa utilizada clasicamente en la que la fuerza de concordancia
se califica como:

* Pobre o débil para valores menores a 0,40,

e Moderada, para valores de entre 0,41y 0,60,

* Buena, entre 0,61y 0,80, y

* Muy buena para valores superiores hasta 1. (Altman, 1991)

5.8.1 Procedimiento para calcular el coeficiente de Kappa

Las siguientes lineas de cédigo muestran la forma de calcular la métri-
ca denominada Coeficiente de Kappa.

119. kappa=cohen kappa score (yl=test generator.classes, y2=y pred

_classes)

o

120. print ('Cohens kappa: %$f' $ kappa)

Con el propdsito de obtener el coeficiente de Kappa, se implementala
funcién cohen_kappa_score(), la cual hace parte de la libreria Scikit-learn.
Dicha funcidn utiliza los siguientes parametros.

* y1, es el conjunto de etiquetas, las cuales van a ser el punto de
comparacion de otro conjunto de etiquetas. Para este caso, nuestro
conjunto de etiquetas referente son las clases del generador de
prueba, obteniéndolas a partir del atributo . classes de la variable
test_generator.

97



Redes Neuronales Convolucionales Usando Keras y Acelerando con GPU

* y2,hacereferenciaal segundo conjunto de etiquetas, es decir, el que
se quiere comparar frente a los datos de referencia. De acuerdo alo
anterior, este pardmetro se iguala al arreglo que contiene las
predicciones realizadas por el modelo, por lo tanto, invocamos la
variable y_pred_classes.

Al ejecutar estas lineas de cdédigo, se deberia presentar un resultado
similar al presentado en la figura 48.

| Cohens Kappa: 0.685000

Figura 48 Métrica Coeficiente de Kappa.
Fuente: Autor.

5.9  Matriz de Confusién

El contenido de una matriz de confusién es un conjunto de valores
que contabilizan el grado de semejanza entre observaciones emparejadas:
un conjunto de datos bajo control (CDC) y un conjunto de datos de refe-
rencia (CDR), para los que se ha establecido una clasificacién. Usualmente
el CDR es la verdad terreno, es decir, la realidad, y suele conocerse por
medio de un muestreo. La matriz de confusién puede construirse a partir
de pixeles, agrupaciones de pixeles o cualquier tipo de objeto geografico
(p-ej.poligonos). Con independencia de su tipologia, los elementos del CDC
se comparan con sus homadlogos en el CDR.

Se trata de una matriz cuadrada de dimensién M"M (filas * columnas),
donde M denota el nimero de clases en consideracion. Las clases del CDR
las denominamos (clases referencia) Ip Y las clases del CDC las denomina-
mos (clases producto) G, Cada uno de los M2 elementos de la matriz los
denominamos celdas de la matriz. Las celdas de la diagonal de la matriz de
confusidn contienen las cantidades correspondientes a los items bien clasi-
ficados (coincide una G, con su correspondiente I ). Estas celdas las deno-
minamos C_(celdas coincidencia). Las celdas de fuera de la diagonal contie-
nen las cantidades correspondientes a las confusiones, los errores debidos
alas omisiones y comisiones. Estas celdas las denominamos C. (celdas error
o no coincidencia). Como se puede ver en la tabla 2, seccién 5.3.

98



Evaluacién del Modelo

5.9.1 Procedimiento para calcular la matriz de confusién

A continuacidn, se presenta el cédigo fuente para computar los valo-
res de la matriz de confusidn.

121. matrix=confusion matrix(y true=test generator.classes,y pred=

y_pred _classes)

122. print (matrix)

En estas lineas, se hace uso de la funcién confusién_matrix(), de la
libreria Scikit-learn. Esta funcidn se utiliza para calcular el valor de esta mé-
trica y recibe los siguientes parametros.

* y_true, este parametro indica las etiquetas correctas del conjunto
de imagenes de prueba. Es decir, lo que deberia obtener el modelo
en la clasificacidon de cada una de las imagenes. En este caso, se
utiliza el atributo .clasess, del generator de imagenes de prueba.
Este atributo contiene las etiquetas en su respectivo orden de las
imagenes de test cargadas previamente.

o y pred, hace referencia al conjunto de predicciones realizadas por
el modelo, haciendo uso de las imagenes de prueba. Para esta
situacién, se utiliza la variable y _pred classes, la cual como se ha
mencionado anteriormente contiene las clases predichas por el
modelo de la red neuronal por convolucidn.

Al ejecutar estas lineas de cddigo, se presentaria un resultado por
consola como el siguiente (ver figura 49).

([ 87 10 3]
[ 4 81 15]
[ 16 15 ©69]]

Figura 49 Métrica Matriz de Confusion.
Fuente: Autor.
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5.9.2 Procedimiento para graficar la matriz de confusién

Las siguientes lineas de cddigo, tiene como objetivo presentar de for-
ma agradable y grafica la matriz de confusidn.
123. cmap = plt.get cmap('Blues')
124. plt.figure(figsize=(8, 6))
125. plt.imshow (matrix, interpolation='nearest', cmap=cmap)
126. plt.title("Confusion Matrix")
127. plt.colorbar()
128. target names = ['avidén', 'barco', 'estadio']
128. tick marks = np.arange(len(target names))
129. plt.xticks(tick marks, target names, rotation=45)
130. plt.yticks(tick marks, target names)
131. thresh = matrix.max() / 1.5
132. matrix.max() / 2

133. for i, j in itertools.product (range (matrix.shape[0]), range

(matrix.shape[l])):

134. plt.text(j, i, "{:,}".format (matrix[i, j]), horizont
alalignment="center",color="white" if matrix[i, j] >
thresh else "black")

135. plt.tight layout()
136. plt.ylabel ('Etiqueta Verdadera')
137. plt.xlabel ('Etiqueta predicha ')

138. plt.show()

Al ejecutar estas lineas, se obtiene un resultado similar al presentado
a continuacién (ver figura 50).
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Matriz de Confucién
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Figura 50 Resultado grdfico Matriz de Confusién.
Fuente: Autor.

Con este capitulo, se finaliza el proceso de codificacion dispuesto en
este libro. A continuacion se presentan lo resultados obtenidos durante el
desarrollo de esta investigacion y su respectivo analisis.
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Capitulo 6

Resultados y Andlisis

En esta seccidn se presentan y analizan los resultados de la evaluacién
y comparacion de los tiempos de entrenamiento del modelo implemen-
tado en los capitulos anteriores frente a modelos tipicos pre-entrenados
como: MobileNet, MobileNetV2, ResNet50 y VGG16. La evaluacidn se rea-
liza tanto en CPU como en GPU para medir el Speed-up de cada modelo y
entre modelos.

Este capitulo tiene la siguiente estructura. Primero, se presentan las
caracteristicas del entorno de prueba donde se llevd a cabo el entrena-
miento de los distintos modelos. Luego, se presenta una comparacion de
tiempos general entre todos los modelos de redes neuronales por convo-
lucién. Por ultimo, se exponen resultados especificos por cada uno de los
modelos, presentando los tiempos obtenidos iteracidn a iteracion.

6.1  Entorno de prueba

La figura 51, presenta las caracteristicas mas relevantes del entorno
donde se realizd el entrenamiento de los modelos. Dentro de estos aspec-
tos, se encuentra el uso de un computador con sistema operativo Win-
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dows10. Adicionalmente, este computador cuenta con una tarjeta grafi-
cadora GeForce GTX 1070, un procesador Intel(R) Core(TM) |9 de octava
generacion y 16GB de memoria RAM. A partir de los anterior, se puede
argumentar que tanto para el procesamiento en CPU y GPU, se cuentan
con excelentes caracteristicas, cerrando la posibilidad ventajas en algunos
de los dos casos.

Tarjeta Graficadora
GeForce GTX 1070

o Wi
INAOW.

e do S Procesador

Intel(R) Core(TM) 19-8950HK

Memoria RAM
16GB

Figura 51 Entorno de prueba.
Fuente: Autor.

6.2 Resultado General

Esta subseccidn presenta una comparaciéon general cada de uno de
los modelos, sin discriminar el nimero total de iteraciones de entrena-
miento, tan solo tomando en cuenta el tiempo total de entrenamiento. La
tabla 2, presenta los modelos, su tiempo de ejecucidon en CPU y en GPU, y
la aceleracién obtenida al dividir el tiempo de CPU sobre el tiempo de GPU.

Tabla 2 Tiempo de ejecucion general.
Fuente: Autor.

Modelo Tiempo en CPU (s) | Tiempo en GPU (s) Aceleracion
Implementado 308,01 46,16 6,67x
MobileNet 337,82 24,28 13,91x
MobileNetV2 442,8 33,72 13,13x
ResNet50 1122,4 57,13 19,65x
VGG16 1029,4 45,60 22,57x
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Adicionalmente, la figura 52, expone graficamente los datos consoli-
dados enla tabla 2.

Tiempo de entranamiento

1122.4
CPU 1029.4
1000 { ™= GPU
800 A
o
8 600 A
5
2 4428
1007 30801 337.82
200 A
46.16 24.28 33.72 57.13 45.6
0 | =

_p—
Implementado MobileNet MobileNetV2 ResNet50 VGG16
Modelos

Figura 52 Comparacion general de tiempos de entrenamiento de todos los modelos de CNN.
Fuente: Autor.

6.3 Resultados especificos

Esta subseccion exhibe los tiempos de entrenamiento para cada una
de las iteraciones requeridas por cada modelo utilizado. Estos datos, se
consolidan en una tabla y posterior se presentan de una manera grafica.

6.3.1 Modelo Implementado
Para el modelo implementado, como se presentd en el Capitulo 4
apartado 4.3, el entrenamiento del modelo tomd un total de 20 iteracio-

nes. Es por esto, que la tabla 3, presenta el tiempo de ejecucion de cada
iteracidén al realizar el entrenamiento en CPU y GPU.
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Tabla 3 Tiempo de entrenamiento por iteraciones Modelo Implementado.
Fuente: Autor.

Dispositivo Dispositivo
No. Iteracién | CPU | GPU | No. Iteracién | CPU | GPU
1 133425 11 15.30 | 2.36
2 1531|128 |12 16.32 | 2.35
3 1531235 |13 1530 | 2.35
4 1531235 | 14 1531235
5 1530235 |15 1530 | 2.37
6 1531237 |16 15.31 | 2.37
7 1632235 |17 16.31 | 2.36
8 1632235 | 18 1531235
9 1531235 |19 1531235
10 1531235 |20 1531 | 2.35

Tiempo (s) Tiempo (s)

Ademas de esto, la figura 53, expone el tiempo de entrenamiento
acumulado iteracidn tras iteracidon del modelo implementado.

Tiempo de entranamiento
300 { — CPU
— GPU
250 1
200 1

150 1

Tiempo(S)

100 1

50 1

12 3 4 5 6 7 8 91011 121314 1516 17 18 19 20
Iteraciones

Figura 53 Tiempo de entrenamiento iteracion a iteracién del modelo Implementado.
Fuente: Autor.
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6.3.2 Modelos Pre-entrenados

En esta seccidn, se presenta la comparacion de cuatro modelos de
CNN tipicos los cuales presentan una arquitectura robusta. Lo anterior,
con el propdsito de observar al comportamiento del entrenamiento en
CPU y CPU. Dado que la estructura de los modelos de redes neuronales
convolucionales, es uno de los factores que puede incidir en el tiempo de
entrenamiento.

Adicionalmente, para el entrenamiento de estos modelos solo se uti-
lizaron 8 iteraciones, ya que, de acuerdo con (Sarkar, D., Bali, R., & Ghosh,
T., 2018) al entrenar estos modelos no se requiere un gran nimero de ite-
raciones, convirtiéndose en una ventaja de la transferencia de aprendizaje.
A continuacién de presentan cada uno de los modelos.

6.3.2.1 MobileNet
La tabla 4, expone el tiempo de entrenamiento utilizado en cada una
de las iteraciones para el modelo MobileNet.

Tabla 4 Tiempo de entrenamiento por iteraciones MobileNet.
Fuente: Autor.

Iteraciones
Dispositive | 1 2 3 4 5 6 7 8
CPU 4490 |41,85 |41,85 |41,84 |41,85 |41,84 |41,85 |41,84
GPU 7,13 2,45 2,45 2,45 2,45 2,45 2,45 2,45
Tiempo (s)

De igual manera, la figura 54, presenta el tiempo de entrenamiento
acumulado iteracidn tras iteracidon del modelo MobileNet.
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Figura 54 Tiempo de entrenamiento iteracion a iteracion de MobileNet.
Fuente: Autor.

6.3.2.2 MobileNetV2

La tabla 5, presenta el tiempo de entrenamiento utilizado en cada una
de las iteraciones para el modelo MobileNetV2.

Tabla 5 Tiempo de entrenamiento por iteraciones MobileNetV2.
Fuente: Autor.

Iteraciones
Dispositivo | 1 2 3 4 5 6 7 8
CPU 60,1 56,1 55,1 55,1 55,1 54,1 54,1 53,1
GPU 8,17 3,65 3,65 3,65 3,65 3,65 3,65 3,65
Tiempo (s)

Asimismo, la figura 55, expone el tiempo de entrenamiento acumula-
do iteracidn tras iteracion del modelo MobileNetV2.
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Figura 55 Tiempo de entrenamiento iteracion a iteracion de MobileNetV2.
Fuente: Autor.

6.3.2.3 ResNet50

La tabla 6, presenta los tiempos de entrenamiento utilizado en cada
una de las iteraciones para el modelo MobileNetV2.

Tabla 6 Tiempo de entrenamiento por iteraciones ResNet5o0.
Fuente: Autor.

Iteraciones
Dispositive | 1 2 3 4 5 6 7 8
CPU 143,3 139,3 140,3 140,3 139,3 137,3 140,3 142,3
GPU 14,28 6,12 6,12 6,12 6,12 6,12 6,12 6,12
Tiempo (s)

También, la figura 56, exhibe el tiempo de entrenamiento acumulado
iteracidn tras iteracién del modelo ResNet5o0.
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Figura 56 Tiempo de entrenamiento iteracion a iteracién de ResNet5o0.
Fuente:Autor.

6.3.2.4 VGG16

La tabla 7, expone los tiempos de entrenamiento utilizado en cada
una de las iteraciones para el modelo VGG16.

Tabla 7 Tiempo de entrenamiento por iteraciones VGG16.
Fuente: Autor.

Iteraciones
Dispositivo | 1 2 3 4 5 6 7 8
CPU 129,3 123,3 125,3 131,3 128,3 131,3 129,3 131,3
GPU 8,154 5,93 5,94 4,91 5,93 4,91 4,91 4,92
Tiempo (s)

Ademas, la figura 57, presenta el tiempo de entrenamiento acumula-
do iteracidn tras iteracién del modelo VGG16.
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Figura 57 Tiempo de entrenamiento iteracion a iteracion de VGG16.
Fuente: Autor.

6.4 Andlisis

Los resultados obtenidos en cuanto al factor de aceleracion general
(speed-up) para cada uno de los modelos evaluados evidencian que las
plataformas many-threads y en este caso especifico las GPUs, representan
una solucién real y eficiente a la intensividad del proceso de entrenamien-
to de las técnicas de aprendizaje profundo, como lo son las redes neuro-
nales convolucionales. El factor de aceleracién oscilé entre 6,67x (para el
modelo implementado) y 22,57x (para el modelo VGG16) lo que representa
que en el peor de los casos el tiempo de entrenamiento se reduce en un
85% y en el mejor de los casos se reduce casi un 96%. Los modelos que pre-
sentaron mejor factor de aceleracién fueron precisamente aquellos mo-
delos que requieren mayor tiempo de entrenamiento, ResNet50 pasé de
emplear 1122,4 segundos sobre CPU a solo tomar 57,13 segundos cuando
se realizé sobre GPU y VGG16 pasd de emplear 1029,4 segundos sobre CPU
a 45,6 segundos cuando se realizd sobre GPU.

Los resultados de la evaluacion discriminados por época evidencian
un patrén en el factor de aceleracion muy similar en todos los modelos
medidos: la primera época de entrenamiento presenta el menor factor de
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aceleraciéon, mientras que las siguientes épocas presentan un mejor fac-
tor de aceleracion que se mantiene relativamente estable época a época.
Donde mas se evidencia esa diferencia entre la primera época y el resto,
es en el modelo MobileNet el cual presenta un factor de aceleracién de
6,3x para la primera época de entrenamiento y un valor cercano a 17,08x
para el resto de épocas. Los modelos MobilNet en sus dos versiones y el
modelo ResNet50 presentan una particularidad, y es que los tiempos de
entrenamiento sobre GPU para las épocas diferentes a la primera se man-
tienen totalmente estables, a pesar de que los tiempos sobre CPU para
las mismas épocas varian levemente. En el caso de MobilNet los tiempos
de entrenamiento para todas las épocas diferentes a la primera fueron de
2,45 segundos, para la segunda version de este modelo los tiempos para
esas épocas fueron iguales a 3,65 segundos y para el modelo ResNet50
fueron de 6,12 segundos.
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Conclusiones

El aprendizaje profundo fundamenta sus buenos niveles de precisién
en tareas de prediccidn o de clasificacién en la capacidad de identificacidn
y extraccién automatica de rasgos mediante un proceso de abstraccidon
jerdrquica e iterativa basada en operaciones tales como la convoluciény el
agrupamiento en las redes neuronales convolucionales; operaciones que
aunque su complejidad es media o baja, durante el entrenamiento se con-
vierten en un reto computacional debido a dos factores: su aplicacién se
basa en un barrido a través de todos los elementos de cada dato de entra-
day el tamafio de los conjuntos de datos de entrenamiento normalmente
tienen un volumen categorizado como big data debido a que el éxito del
proceso de entrenamiento depende en gran medida del tamafio del con-
junto de datos. El analisis comparativo de los resultados de la evaluacion
de los tiempos de entrenamiento tanto del modelo implementado como
de los modelos tipicos sobre los dos tipos de plataforma, multi-core (CPU)
y many-thread (GPU) evidencié que la computacién paralela sobre GPU
representa una solucidn eficiente y al reto computacional que implica el
entrenamiento de modelos de aprendizaje profundo tales como las redes
neuronales convolucionales. Los resultados a niveles de speed-up obte-
nidos en este libro represetan un marco de referencia de desempefio en
cuanto a recursos computacionales muy util en el proceso de compara-
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ciény seleccidon de modelos de redes neuronales convolucionales tanto de
forma global como de forma detallada por iteraciones.

Mediante el desarrollo de la solucién del caso de estudio afrontado en
este libro se pudo evidenciar que el proceso de disefio, implementacion,
entrenamiento y evaluacién de modelos de redes neuronales convolucio-
nales se puede llevar a cabo de forma agil y facil utilizando una API de alto
nivel como lo es Keras. Esta APl ofrece las utilidades necesarias para acon-
dicionar y/o aumentar conjuntos de datos de entrenamiento y de prueba,
para construir modelos con las principales funciones y operaciones que
involucran las diferentes capas de una red neuronal convolucional, para
compilar y entrenar modelos tanto en CPU como en GPU con una configu-
racion muy sencilla, para evaluar y analizar el desempefio de los modelos
generados.
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Vivimos en una era gobernada por datos, donde la intui-
cién y el azar se han visto rezagados ante predicciones
que soportan tanto decisiones cotidianas como
grandes politicas gubernamentales. Una era
donde la nueva riqueza se encuentra en los

datos y en los métodos que permiten hacer

un uso eficiente de éstos. En los ultimos anos,

los métodos de procesamiento de datos que
mayor precision han presentado en tareas predicti-
vas han sido aquellos basados en aprendizaje profundo,
como por ejemplo las redes neuronales convolucionales.
Este tipo de métodos representan un reto tanto por su alta
exigencia de recurso computacional como por su compleji-
dad de diseno e implementacion.

Tomando como motivacion lo anterior, en este libro el lector
encontrard una guia prdctica para la implementacién, entre-
namiento y validacion de redes neuronales convolucionales
usando Keras y acelerando con GPU. La guia se desarrolla
mediante un caso de estudio tipico enmarcado en las clasifi-
caciones de imagenes satelitales. Adicionalmente la evalua-
cion del modelo implementado incluye la comparacion a
nivel de speed-up con los modelos de redes neuronales
pre-entenados mas comunes: MobileNet, MobileNetV2, Res-
Net50 y VGG16.
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