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Introduccion

El crecimiento en el disefio de aplicaciones inalambricas plantea nuevos desafios en
los futuros sistemas de comunicacion; segin Cisco (2017), el trafico de datos moviles
ha crecido 18 veces en los ultimos 5 afos y se espera que el trafico total crezca 49
exabytes por mes en 2021 (Herndndez, Marquez et al., 2017; Herndndez, Pedraza et
al., 2015; Kumar et al., 2016; Tahir et al., 2017; Wang y Liu, 2011). Lo anterior, junto
con el hecho de que las politicas de asignacion actuales son fijas y reguladas por el
Estado (Cruz-Pol et al., 2018), ha generado que el espectro radioeléctrico presente
problemas de escases. Sin embargo, los resultados de estudios realizados demuestran
que ciertas bandas, como las de 50 a 700 MHz, estan siendo subutilizadas, ya que sus
ciclos utiles son practicamente nulos, debido a que, en algunos casos, los tiempos de
utilizacidn espectral son inferiores al 10 % (Forero, 2012), en contraste con otras ban-
das, como las asignadas a la red celular, que actualmente se encuentran saturadas.

La radio cognitiva (CR), definida por la Union Internacional de Telecomunica-
ciones (ITU) como una radio o sistema que detecta y esta al tanto de su entorno y se
puede ajustar de forma dinamica y autbnoma de acuerdo con sus parametros de fun-
cionamiento de radio, plantea como solucion el acceso dindmico al espectro (DSA)
por medio de un uso oportunista e inteligente del espectro de frecuencia. Lo anterior
permite que un usuario no licenciado —usuario de radio cognitiva o usuario secun-
dario (SU)— pueda utilizar un canal de una banda licenciada disponible, pero debera
liberar dicho canal y buscar uno nuevo (también denominado oportunidad espectral,
hueco espectral o espacio blanco) para continuar con su transmision si el usuario licen-
ciado —usuario primario (PU)— llega a ocuparlo, si la calidad del canal ocupado
por el SU se degrada, si el SU interfiere al PU o si la movilidad del SU provoca que
el PU quede fuera del area de cobertura; este mecanismo es denominado movilidad
espectral o handoff espectral (SH) (Ahmed et al., 2016; Akyildiz et al., 2006; Akyildiz et
al., 2008; Ozger y Akan, 2016; Tsiropoulos et al., 2016). Esto le confiere a la CR la
capacidad de proveer un gran ancho de banda (BW) al SU a través de arquitecturas
inalambricas heterogéneas.
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Las redes de radio cognitiva (CRN) imponen retos en la gestion del espectro dis-
ponible debido a su naturaleza fluctuante y a los requerimientos de calidad de servi-
cio (QoS) de varias aplicaciones. Las cuatro principales funciones de la gestion del
espectro son: deteccion de espectro, decision de espectro, comparticion de espectro
y movilidad de espectro, de la cuales conforman el ciclo cognitivo (Akyildiz et al.,
2008; Akyildiz et al., 2009). El ciclo cognitivo inicia con la deteccién del espectro,
cuando los usuarios de radio cognitiva monitorizan el espectro para detectar las
oportunidades espectrales (SO) a fin de no interferir con los PU. En la decision de
espectro, después de que las SO han sido identificadas, los SU deben seleccionar
la més adecuada de acuerdo con sus requerimientos de QoS; para tomar esta deci-
sion, se han desarrollado algoritmos que tienen en cuenta las caracteristicas del canal
de radio y el comportamiento estadistico de los PU, entre otros factores. Debido a
que multiples SU pueden intentar acceder al espectro, la funciéon de comparticion
de espectro proporciona la capacidad de compartir este recurso con multiples SU,
coordinando sus transmisiones para evitar colisiones e interferencias. Finalmente,
la movilidad espectral se da cuando el SU debe dejar el canal de frecuencia que esta
utilizando y continuar su comunicacion en otra SO debido a la llegada de un PU, a
que esta interfiriendo con el PU o a la degradacion de la calidad del canal (Akyildiz
et al., 2009; Tsiropoulos et al., 2016).

La decision del espectro es el nucleo de una CRN, pues, de forma eficiente y sin
causar ningun tipo de interferencia, establece mediante un conjunto de técnicas el
proceso para seleccionar la SO mas adecuada de acuerdo con los requerimientos del
SU y con las condiciones del ambiente de radio. Un incorrecto proceso de toma de
decisiones afecta los parametros de la red, como, por ejemplo, la tasa de cambios de
canal, o handoff espectral; sin embargo, a pesar de su relevancia, no es una funcion
tan explorada como la deteccion de espectro.Problema y motivacién del proyecto de
investigacion

De acuerdo con investigaciones actuales (Ahmed et al., 2016; Akyildiz et al., 2006;
Akyildiz et al., 2008; Akyildiz et al., 2009; Christian et al., 2012; Marinho y Montei-
ro, 2012; Rodriguez-Colina et al., 2011; Tsiropoulos et al., 2016; Wang et al., 2012;
Wang y Wang, 2009), la decisién espectral es la caracteristica clave para habilitar la
transmisiéon continua de datos del SU, ya que a partir de esta se podria reducir el na-
mero de cambios de canal durante la transmisioén de un SU, asi como su latencia, lo
que minimiza la degradacién del canal (Christian et al., 2012). Actualmente existen
varias propuestas de decisién de espectro, pero es importante analizar que la aplica-
cion de un modelo de decision espectral depende en gran medida de las caracteristi-
cas de la red del PU (Akin y Fidler, 2016; Liu y Tewfik, 2014; Rahimian et al., 2014).
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Cuando no se selecciona adecuadamente la SO, es posible que la transmision de
datos deba pausarse, lo que provoca un aumento significativo en el retardo que incide
de forma directa en el nivel de desempeno y QoS de la comunicacién del SU (Akyil-
diz et al., 2009). De acuerdo con lo anterior, encontrar un canal con las caracteristi-
cas requeridas sobre el cual un SU pueda continuar su sesion de transmision de datos
es un asunto apremiante en movilidad espectral (Christian et al., 2012). La seleccién
del canal depende de muchos factores, como su capacidad, su disponibilidad durante
el SH y la probabilidad de que siga libre en el futuro, entre otros. Una pobre seleccion
de canal puede causar multiples SH y degradar, asi, el desempefio de todo el conjun-
to. El enfoque més comun para la seleccion de canal es usar una lista de canales de
respaldo (BCL) (Christian et al., 2012; Pedraza et al., 2016).

Durante la ultima década, las investigaciones en CRN enfocaron sus esfuerzos en
la funcion de deteccion del espectro, razon por la cual existen diversos desarrollos al
respecto en la literatura actual (Al-Amidie et al., 2019; Ali y Hamouda, 2017; Bhow-
mik y Malathi, 2019; Youssef et al., 2018; Zhang et al., 2017). En comparacion con
la deteccion, la decision de espectro (toma de decisiones) ha sido poco estudiada a
pesar de su importancia en el mejoramiento del desempefio de las redes inaldmbricas
(Pinto y Correia, 2018; Rizk et al., 2018; Tripathi et al., 2019), por lo cual, dentro de
las CRN, se requiere proponer metodologias que orienten sus objetivos al proceso de
toma de decisiones.

El componente basico de una decisidén cognitiva esta en funcion del aprendizaje
del ambiente, el razonamiento y la conciencia. Las técnicas de decision deben buscar
maximizar de forma global, o por lo menos local, el uso del espectro y los parametros
de funcionamiento (Tabassam y Suleman, 2012). Los modelos de toma de decision
cuentan con multiples técnicas, algunas deterministicas y otras probabilisticas, y sus
aplicaciones son diversas y abarcan grandes areas de las ciencias. En redes de tele-
comunicaciones, las teorias de toma de decisidon permiten solucionar problemas de
asignacion, pero, como muchas otras areas de la ingenieria, esta se ve limitada por el
sistema de aplicacion. En el caso de las CRN, los modelos desarrollados orientan sus
esfuerzos a solucionar problemas de arquitecturas centralizadas (Deng et al., 2018;
Iftikhar et al., 2019; Salgado, Marquez et al., 2016; Tripathi et al., 2019), por lo que
es necesario identificar modelos que mejoren el proceso de toma de decisiones para
otro tipo de arquitecturas con infraestructura como las descentralizadas.

Las redes centralizadas son arquitecturas con infraestructura que operan bajo un
coordinador central: la informacion observada por cada SU alimenta la base central de
forma que esta pueda tomar decisiones para maximizar los parametros de comunicacion.
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En las CRN, los SU deben tomar decisiones inteligentes en funcion de la varia-
cion del espectro y de las acciones adoptadas por otros SU; bajo esta dinamica, la
probabilidad de que dos 0 mas SU elijan el mismo canal es alta, especialmente cuan-
do el nimero de SU es mayor que el numero de canales disponibles; asi, debido a la
externalidad negativa de la red, cuantos mas SU seleccionen el mismo canal, menor
sera la utilidad que cada SU obtendra y el namero de interferencias por el acceso
simultaneo serda mayor (Abbas et al., 2015). Para modelar la red bajo parametros de
trafico realistas, es necesario tener en cuenta la colaboracion entre SU.

El desafio consiste en realizar el proceso de toma de decisiones para una red de
radio cognitiva descentralizada (DCRN)dotando a los nodos con la capacidad de
aprender del entorno y proponiendo estrategias que les permitan a los SU intercam-
biar informacion de forma cooperativa o competitiva. De acuerdo con cada uno de
los elementos y problemas expuestos, la pregunta de investigacioén planteada para este
libro es: jcomo y en qué medida se puede mejorar el desempeno de las redes de radio
cognitiva descentralizadas con un enfoque colaborativo entre usuarios secundarios?

Objetivos del proyecto de investigacion
El objetivo general de esta investigacion es desarrollar un modelo de decision es-
pectral colaborativo para mejorar el desempefio de las redes de radio cognitiva, por
medio de los siguientes objetivos especificos:

» Adaptar e implementar los algoritmos colaborativos mas relevantes en la literatu-
ra actual con aplicaciéon en redes de radio cognitiva distribuidas.

+ Diseflar un modelo colaborativo para seleccionar la mejor SO en redes de radio
cognitiva.

 Evaluar y validar el modelo propuesto a través de simulaciones con datos de
ocupacion espectral reales y con su posterior confrontacidén con los modelos mas
relevantes.

La validacién del modelo de decision espectral colaborativo propuesto se realizard a
través de simulaciones y de su posterior confrontacioén con otros modelos. Esta simula-
cién integra unicamente las caracteristicas necesarias para evaluar el modelo propuesto.

Modelo de decisidn espectral colaborativo

Este libro propone un modelo de decision espectral colaborativo para la toma de de-
cisiones multicriterio conformado por varios algoritmos hibridos y basado en cuatro
modulos principales que se describiran en capitulos posteriores: 1) mddulo colabora-
tivo para el intercambio de informacion entre SU, 2) médulo de caracterizacion del
PU, 3) modulo de probabilidad de arribo del SU y 4) méddulo de seleccion de la SO
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(figura 1). El modelo propuesto selecciona de forma dinamica e inteligente la mejor
SO con base en los siguientes criterios de decision (DC): probabilidad de disponibili-
dad (AP) del canal, tiempo estimado de disponibilidad (ETA) del canal, relacién de
sefal a interferencia mas ruido (SINR) y BW.

Figura 1. Modelo de decision espectral
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Fuente: elaboracion propia.

Para evaluar el nivel de desempefio de los algoritmos desarrollados, se realiza un ana-
lisis comparativo entre estos y los algoritmos mas relevantes en la literatura actual. A
diferencia de los trabajos relacionados, la evaluacion comparativa se valido a través de
una traza de datos reales de ocupacion espectral capturados en la banda de frecuencia
del sistema global para las comunicaciones moéviles (GSM) (Pedraza et al., 2016) y en
Wi-Fi (Cardenas-Juarez et al., 2016) y que modelan el comportamiento real de los PU
(Chen y Oh, 2016). En la evaluacién de desempefio se tuvieron en cuenta dos tipos de
red: GSM y Wi-Fi; dos clases de aplicaciones: tiempo real (RT) y mejor esfuerzo (BE);
dos niveles de trafico: trafico alto (HT) y trafico bajo (LT), y cinco métricas de eva-
luacién (EM): nimero de handoffs promedio acumulado (AAH), nimero de handoffs
fallidos promedio acumulado (AAFH), ancho de banda promedio (ABW), retardo
promedio acumulado (AAD) y throughput promedio acumulado (AAT).

Metodologia

El desarrollo de esta investigacion se realizd secuencialmente a través de cuatro en-
foques metodoldgicos: el primero, de tipo descriptivo, permitié detallar cada una de
las caracteristicas de las estrategias de interés; el segundo, de tipo analitico, permitid
definir la influencia de cada modelo de interés en el desempefio de la movilidad es-
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pectral; el tercero, de tipo predictivo, busco aplicar soluciones de otras situaciones al
contexto de interés, y el cuarto, finalmente, fue un enfoque experimental que permi-
ti6 la realizacion de pruebas de comprobacion y validez de los desarrollos efectuados
(Hernandez Sampieri et al., 2006).

La metodologia se estructur6 de la siguiente forma: primero, se realiz6 un estudio
del estado del arte que permitié identificar los aspectos mas importantes sobre el
tema de decision espectral en las CRN, asi como sus algoritmos mas relevantes en
la literatura actual. Segundo, con base en este analisis, se disefié una metodologia
para la evaluacion del desempefio de la movilidad en redes méviles de CR. Tercero,
se realizo la captura de datos de ocupacion espectral reales tanto en la banda GSM
como en la banda Wi-Fi, para analizar el comportamiento de dichas bandas y del
PU. Cuarto, se realizd un procesamiento a los datos capturados para construir bases
de datos de informaciéon organizada sobre el comportamiento del PU y sobre las
caracteristicas de los recursos espectrales de las bandas mencionadas; dichas bases de
datos fueron clasificadas por tipo de red (GSM y Wi-Fi) y nivel de trafico (HT y LT).
Quinto, se determinaron los DC para la seleccion de las mejores SO y se calcularon
los valores historicos de estos a partir de la informacion de las bases de datos, con lo
que estas fueron complementadas. Sexto, se seleccionaron y desarrollaron los algo-
ritmos de decision espectral mas relevantes en la literatura actual. Séptimo, se dise-
flaron y desarrollaron varios algoritmos para cada uno de los modulos del modelo de
decisidn espectral colaborativo. Octavo, con base en los resultados del desempefio de
los algoritmos, se construy6 el modelo de decision espectral colaborativo propuesto.
Noveno, con base en el analisis del estado del arte de las CRN, se disefiaron cinco
EM para evaluar el desempefio de los algoritmos propuestos en esta investigacion,
asi como los seleccionados de la literatura actual, y se propusieron ocho escenarios
de evaluacion considerando dos tipos de redes: GSM y Wi-Fi; dos clases de apli-
caciones: RT y BE, y dos niveles de trafico: HT y LT. Décimo, con base en toda la
informacion anterior, se disefio y desarrolld un simulador que permite evaluar cuan-
titativamente el desempefio de los algoritmos, considerando el comportamiento real
del PU. Undécimo, con los resultados obtenidos a partir de los simuladores, se realizo
una evaluacion comparativa del desempefio de los algoritmos en cada una de las EM.
Y duodécimo, segun el analisis comparativo, se realizaron ajustes y modificaciones al
modelo adaptativo multivariable disefiado.

Contribuciones
* Disefio y desarrollo de un modelo de decision espectral colaborativo para mejo-
rar el desempefio de las CRN.
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Evaluacién y validacion de los algoritmos de decision espectral desarrollados,
con datos de ocupaciodn espectral reales capturados en una campana de medicion
realizada en Bogota, Colombia.

Evaluacion y validacion de los algoritmos de SH desarrollados, en dos tipos de
redes: GSM y Wi-Fi.

Evaluacioén y validacion de los algoritmos de SH desarrollados, con dos tipos de
enfoque: RT y BE, de acuerdo con la clase de aplicacién que puede ejecutar el SU.

Evaluacién y validacién de los algoritmos de SH desarrollados, con dos niveles
de trafico de PU: alto y bajo.

Evaluacion y validacion de los algoritmos de SH desarrollados, en ocho escena-
rios diferentes de evaluacion: GSM-RT-LT, GSM-RT-HT, GSM-BE-LT, GSM-
BE-HT, Wi-Fi-RT-LT, Wi-Fi-RT-HT, Wi-Fi-BE-LT y Wi-Fi-BE-HT.

Evaluacion y validacion de los algoritmos de SH desarrollados, bajo cinco EM:
AAH, AAFH, ABW, AAD y AAT.

Determinacién de cuatro DC seleccionados cuidadosamente mediante el méto-
do Delphi modificado, para elegir la mejor SO; todos los algoritmos desarrolla-
dos trabajaron con los mismos cuatro DC, y cada DC fue calculado a partir de
los datos de ocupacion espectral reales.

Disefio y desarrollo de una herramienta de simulacién novedosa para evaluar el
desempeno de algoritmos de decision espectral hibridos. Esta herramienta esta
basada en los datos de ocupacion espectral reales y permite modificar varios pa-
rametros de interés para analizar el desempefo de cada algoritmo bajo diferentes
situaciones; entre estos parametros, se destaca el nivel de colaboracion entre SU,
denominado “Collaborative CRN”.

Organizacion
El libro esta estructurado de la siguiente manera: en el primer capitulo, se realiza

una descripcion de los fundamentos teodricos de la CR, la decisiéon espectral y los

algoritmos de asignacion espectral (SA), y se hace una revision de la literatura actual
sobre modelos de decisidn espectral para CRN; en el segundo, se describe el médulo
de caracterizacion del PU y sus resultados; en el tercero, se presenta el modulo de

probabilidad de arribo del SU y sus resultados; en el cuarto, se describen el médulo
de seleccion de la SO y el médulo colaborativo y se presenta el modelo de decision
espectral colaborativo propuesto; en el quinto, se describe el software desarrollado, v,

finalmente, se presentan las conclusiones.
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Financiamiento

El presente libro es producto de los resultados alcanzados en el proyecto de investi-
gacion “Modelo de decision espectral colaborativo para mejorar el desempefio de las
redes de radio cognitiva”, financiado por el Centro de Investigaciones y Desarrollo
Cientifico de la Universidad Distrital Francisco José de Caldas.

Ec 134



Fundamentos tedricos

Este libro estd enfocado en el area de la radio cognitiva (CR), y por tal razén, el
presente capitulo esta estructurado en seis secciones principales: la primera tiene por
objetivo presentar los fundamentos de la CR; la segunda, mostrar los aspectos tedricos
de la decisidn espectral; la tercera, presentar los algoritmos mas relevantes de la asig-
nacion espectral (SA); la cuarta, presentar una revision de la literatura actual sobre los
modelos de decision espectral para redes de radio cognitiva (CRN); la quinta, mostrar
algunas herramientas de simulacién de handoff espectral (SH), y, finalmente, la sexta,
revisar algunos trabajos relacionados con estos temas.

Radio cognitiva

Actualmente, las redes y aplicaciones inalambricas en gran parte del mundo se han
caracterizado por una politica de asignacién fija del espectro de radiofrecuencia re-
gulada por el Estado. Esta asignacion fija provoca que las frecuencias asignadas a
servicios especificos estén practicamente en desuso y no puedan ser aprovechadas
por los usuarios secundarios (SU), incluso si estos no provocan ninguna interferencia
(Ahmed et al., 2016; Akyildiz et al., 2008; Marquez et al., 2017).

Segun estudios realizados por la Federal Communications Commission (FCC,
2003b), de Estados Unidos, y con base en las variaciones temporales y geograficas, se
ha evidenciado que gran parte del espectro de radiofrecuencia asignado esta siendo
ineficiente e ineficazmente utilizado (Institute of Electrical and Electronics Engi-
neers [[EEE], 2008); de hecho, mediciones actuales muestran que mas del 70 % del
espectro no esta siendo utilizado (Hoven et al., 2005; Pedraza et al., 2016).

Esta utilizacion ineficiente y esporadica del espectro, junto con el incremento en
su demanda, han hecho que se degrade la calidad de servicio (QoS) en varias redes y
aplicaciones inalambricas, como las comunicaciones méviles. Lo anterior ha motiva-
do el desarrollo de investigaciones recientes que han encontrado en el acceso dinami-
co al espectro (DSA) la solucion al problema, y la tecnologia clave que permite mate-
rializar las técnicas de DSA es la CR (Akyildiz et al., 2008; Tsiropoulos et al., 2016).
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El concepto de CR fue creado por Joseph Mitola III, en 2000, como

el punto en el cual las personal digital assistant (PDA) inalambricas y las redes rela-
cionadas son, en términos computacionales, lo suficientemente inteligentes con
respecto a los recursos de radio y las correspondientes comunicaciones de ordena-
dor a ordenador como para detectar las necesidades eventuales de comunicacién
del usuario, como una funcién del contexto de uso, y proporcionarle los recursos
de radio y servicios inalambricos mas adecuados a ese mismo instante. (Mitola
111, 2000, p. 1; traduccion propia)

Sin embargo, varias entidades importantes han dado su punto de vista al respecto.
Segun la FCC (2003a), la CR

es una radio o sistema que detecta su entorno electromagnético de operacion y
puede ajustar de forma dinamica y autonoma sus parametros de operacion de
radio para modificar la operacion del sistema: maximizar el rendimiento, reducir
la interferencia o facilitar la interoperabilidad. (Traduccién propia)

Para la Unidén Internacional de Telecomunicaciones (ITU), la CR es una radio o
sistema que detecta y estd al tanto de su entorno y que se puede ajustar de forma
dinamica y autonoma de acuerdo con sus parametros de funcionamiento de radio.
De acuerdo con el Institute of Electrical and Electronics Engineers (IEEE, 2008), la
CR “es un tipo de radio que puede detectar de forma autdbnoma y razonar sobre su
entorno y adaptarse acorde a este”. Por ultimo, segin la FCC (2003b), la CR es una
radio que “puede cambiar los parametros del transmisor basada en la interaccion con
su entorno” (p. 5).

La CR tiene la capacidad de proveer un gran ancho de banda (BW) a usuarios
moéviles a través de arquitecturas inalambricas heterogéneas, con las que aumenta
significativamente la eficiencia espectral, debido a que permite que SU compartan el
espectro con usuarios primarios (PU), de manera oportunista (Akyildiz et al., 2008),
a partir de las oportunidades espectrales (SO) (figura 2); es decir, permite que los SU
utilicen las porciones del espectro que no estan siendo usadas en un momento dado
(Delgado y Rodriguez, 2016; Ozger y Akan, 2016).

La figura 2 describe el concepto de SO a través de una gréfica en tres dimensiones
cuyos ejes son la potencia, la frecuencia y el tiempo. Cada bloque gris de la figura es
un PU haciendo uso de una porcion del espectro de frecuencia, a un nivel de potencia
y durante un determinado periodo de tiempo; sin embargo, existen porciones del es-
pectro de frecuencia que no son utilizadas durante determinado intervalo de tiempo;
dichos espacios son denominados SO y pueden ser aprovechados por los SU (Ozger
y Akan, 2016).
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Figura 2. Concepto de oportunidad espectral
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Fuente: elaboracion propia a partir de Akyildiz et al. (2009).

Caracteristicas de la radio cognitiva
Las principales caracteristicas de la CR, que le confieren todas las capacidades des-
critas anteriormente, son la capacidad cognitiva y la reconfigurabilidad.

Capacidad cognitiva

La capacidad cognitiva es la tecnologia capaz de capturar la informacién de radiofre-
cuencia de su entorno para identificar los segmentos del espectro que no estan siendo
utilizados, para seleccionar el mejor espectro posible y para definir los parametros
de operacién mas adecuados, con el objetivo de evitar la interferencia entre usuarios
(Pedraza et al., 2016).

Reconfigurabilidad

La reconfigurabilidad es la capacidad de cambiar, de forma dindmica, los diferentes
parametros de operacion relacionados con la transmision o la recepcidn, como la fre-
cuencia, la potencia y la modulacién, con miras a habilitar la radio para ser progra-
mada dindmicamente para transmitir y recibir en una gran variedad de frecuencias,
en funcién del ambiente de radio, asi como a usar diferentes tecnologias de acceso a
la transmision (Pedraza et al., 2016).

Gestion del espectro en radio cognitiva

Para que se pueda hacer uso del espectro de manera oportunista, las CRN trabajan
con un modelo de gestion que se denomina ciclo cognitivo (figura 3). E1l modelo se ca-
racteriza por cumplir cuatro funciones principales: deteccion de espectro, decision de
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espectro, movilidad de espectro y comparticion de espectro. En la etapa de detecciéon
del espectro, los SU monitorean de manera continua el espectro para poder determi-
nar las SO; en la segunda funcion, decision de espectro, los SU deben seleccionar la
SO mas adecuada de acuerdo con sus requerimientos de QoS; en la tercera funcion,
movilidad de espectro, los SU pueden tener que realizar el cambio de su frecuencia
actual para continuar su comunicacion en otro canal, debido a las siguientes causas:
llegada de un PU, interrupcion en la disponibilidad del canal, interferencia al PU,
degradacion de la calidad del canal, variacion del trafico y movimiento del SU; y en
la cuarta y ultima funcion, comparticion de espectro, el ciclo cognitivo proporciona
la capacidad de compartir el recurso espectral con multiples SU, coordinando sus
transmisiones para evitar colisiones e interferencias, debido a que multiples usuarios

de CR pueden intentar acceder al espectro de manera simultanea (Pedraza et al.,
2016; Ramzan et al., 2017).

Figura 3. Ciclo cognitivo
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Fuente: elaboracion propia a partir de Akyildiz et al. (2009).

Deteccién de espectro

La deteccion del espectro es la funcidon encargada de identificar las SO. Los SU mo-
nitorean el espectro y capturan la informacion que permita determinar la disponibili-
dad de los canales. Actualmente, existen varias técnicas para monitorizar el espectro
(figura 4), siendo la deteccion de energia la mas basica (Hernandez, Paez et al., 2017).
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Figura 4. Clasificacion de las técnicas de deteccion de espectro
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Fuente: elaboracion propia a partir de Akyildiz et al. (2009).

Decision de espectro

La decision de espectro o proceso de toma de decisiones determina cual es el mejor
canal de frecuencia entre los disponibles, segtin los requisitos de calidad de servicio
de las aplicaciones (Alias y Ragesh, 2016; Hernandez, Paez et al., 2017; Pedraza et
al., 2016; Ramzan et al., 2017).

Comparticién de espectro

Debido a que multiples SU pueden intentar acceder al espectro, la funcién de com-
particion proporciona la capacidad de compartir este recurso e informacion con
multiples SU, coordinando sus transmisiones para evitar colisiones e interferencias.
Las soluciones existentes para el uso compartido del espectro se pueden clasificar en
funcion de la arquitectura (centralizada o descentralizada, o distribuida), de acuerdo
con el comportamiento del acceso al medio (cooperativo o no cooperativo) y segun
la forma como se accede al medio (superpuesta o subyacente) (Lertsinsrubtavee y
Malouch, 2016; Pedraza et al., 2016).

Movilidad de espectro

La movilidad espectral da lugar al concepto de handoff espectral, mediante el cual el
SU cambia de una SO a otra. Durante un sandoff espectral es inevitable que la comu-
nicacion se rompa temporalmente, y por eso resulta ser un aspecto clave en el desem-
pefio de las CRN. La funcién de decision espectral juega un papel muy importante
para mejorar dicho desempeno, pues determina cuando y donde realizar un handoff
espectral mediante un conjunto de reglas (Hernandez, Paez et al., 2017; Hernandez,

Pedraza y Martinez, 2016; Lopez Sarmiento et al., 2015; Oyewobi y Hancke, 2017).
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Arquitectura de la radio cognitiva
El proceso de toma de decisiones en la CRN se clasifica segin su arquitectura (figura 5).

Figura 5. Arquitectura de una CRN

Arquitectura

|
1 |

Infraestructura Sin infraestructura

|
1 |

Centralizada Descentralizada Distribuida

Fuente: elaboracion propia a partir de Masonta et al. (2013) y Pedraza et al. (2016).

Arquitectura centralizada

En las arquitecturas centralizadas existe un coordinador llamado entidad central (CE)
o estacion base (BS), que es el encargado de coordinar, asignar y tomar las decisiones
de los canales (figura 6a). La BS cumple con la funcién de almacenar y procesar la
informacion entregada por los PU y los SU (Ahmed et al., 2016). La desventaja de
esta arquitectura radica en el hecho de que la destrucciéon del nodo central provoca
una pérdida general del sistema.

En la arquitectura centralizada, la coordinacién de los nodos entre si se mantiene
mediante la difusiéon de mensajes a través de un canal de control comun (CCC) de
coordinacion del espectro, independiente del canal de datos. Cada usuario determina
el canal que puede utilizar para la transmision de datos, de tal manera que se evite
la interferencia. En el caso de que la seleccién de canal no sea suficiente para evitar
la interferencia, se implementa la adaptacion de potencia. Las evaluaciones de estas
alternativas revelan que el CCC mejora el rendimiento entre un 35 y un 160% a tra-
vés tanto de la frecuencia como de la adaptacion de potencia (Akyildiz et al., 2006;
Tsiropoulos et al., 2016).

Arquitectura distribuida

En la arquitectura distribuida las redes forman una malla (figura 6¢), los nodos de
cada subsistema comparten informacién entre si, se pueden mover libremente y no
existe un responsable en la coordinacién global de los usuarios licenciados y no licen-
ciados, lo que permite que este tipo de estrategias tenga una alta aplicacion en redes
en las que no es viable la implementacion de infraestructura (Brik et al., 2005; Cao y
Zheng, 2005; Krishnamurthy et al., 2005; Pedraza et al., 2016; Salgado, Mora et al.,
2016); sin embargo, la desventaja de este modelo es su baja seguridad. Los protocolos
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distribuidos, que no requieren infraestructura, son ampliamente utilizados en redes
inalambricas ad hoc (crahn) (Wang et al., 2016).

En la arquitectura distribuida, la coordinacion entre nodos utiliza una reserva de
canal dinamica distribuida basada en la QoS (D-QDCR). El concepto basico detras
de la D-QDCR es que una BS compite con su interferente BS de acuerdo con los re-
quisitos de QoS de los usuarios para asignar una porcion del espectro. Aqui, de forma
similar al protocolo CCC, los canales de control y datos se separan (Akyildiz et al.,
2006; Tsiropoulos et al., 2016).

Arquitectura descentralizada

Las redes descentralizadas son arquitecturas formadas por un conjunto de redes centra-
lizadas y conectadas por enlaces adicionales que crean una malla, por lo que su estruc-
tura incorpora los atributos de las redes centralizadas y las distribuidas (figura 6b). Las
arquitecturas descentralizadas cuentan con una infraestructura, su implementacion
es sencilla y tienen buenos niveles de seguridad, ausencia de sobrecarga de comuni-
cacion, menor retardo y baja complejidad, entre otras caracteristicas (Darak et al.,
2014). El enfoque descentralizado es una opcién eficiente para redes de gran tamaio,
ademas de que es la mejor alternativa para redes de seguridad publica y para servicios
de redes sociales (Darak et al., 2017).

Figura 6. Arquitecturas de red centralizada (a), descentralizada (b) y distribuida (c)

Fuente: elaboracion propia a partir de Baran (1964) y Pankratev et al. (2019).

Aplicaciones de la radio cognitiva

Con el objetivo de argumentar la relevancia de esta investigacion, se podria mencio-
nar la forma como sus resultados pueden impactar el campo de la informacion y las
comunicaciones en cualquier region de aplicacion, es decir, no solo en Bogota, sino
en toda Colombia y el mundo entero. Un ejemplo muy claro de esto son las redes
mesh, las cuales han emergido como una tecnologia con una muy buena relacién
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costo-beneficio; sin embargo, el incremento en la densidad de la red y el requerimien-
to de un alto throughput por parte de sus aplicaciones han degradado su QoS. Asi, por
un lado, con la CR es posible habilitar el acceso a un mayor segmento del espectro,
y por otro, una red backbone mesh puede incrementar el area de cobertura basada en
puntos de acceso cognitivos (CAP) (Akyildiz et al., 2006).

Asimismo, un desastre natural podria deshabilitar temporalmente o incluso des-
truir la infraestructura de las comunicaciones, por lo que se haria necesario establecer
redes de emergencia, que requieren una gran cantidad de espectro para poder mane-
jar el volumen de trafico de video, voz y datos. Al respecto, la CR tiene la capacidad
de proporcionar dicho espectro sin la necesidad de una gran infraestructura. Es asi
como la seguridad publica y las redes de emergencia también se pueden beneficiar de
las ventajas de la CR (Akyildiz et al., 2006).

Otra de las potenciales aplicaciones de la CR son las redes militares, ya que le
permite a la radio militar escoger arbitrariamente frecuencias, BW, modulaciones
y codificaciones, adaptandose al ambiente de radio variable del campo de batalla
(Akyildiz et al., 2006).

Como conclusion de este apartado, la reconfigurabilidad dindmica de cada uno
de los parametros de operacion en una CRN puede garantizar integridad de la infor-
macion, interoperabilidad, fiabilidad, flexibilidad, redundancia, escalabilidad, segu-
ridad, eficiencia y acceso en todo tiempo y espacio, lo que beneficia significativamen-
te el manejo de la informacién y las comunicaciones en Colombia.

Desafios y futuras investigaciones en radio cognitiva

Los desafios en cuanto a la CR pueden ser varios, debido a que se abarcan temas des-
de la monitorizacidn del espectro hasta la toma de decisiones de movilidad en este,
teniendo en cuenta esquemas de acceso al medio y el tipo de redes en las cuales inte-
ractia la CR. Por lo tanto, en este apartado se describiran brevemente estos desafios.

Monitorizacion del espectro

El proceso de monitorizacion o decision no puede realizarse al tiempo que se envia
la informacién entre SU, por lo que, si se requiere desarrollar acciones de monito-
rizacion, los usuarios deben detener las trasmisiones, lo que afecta la eficiencia del
espectro. Con base en esto, seria deseable desarrollar algoritmos de monitorizacién
que reduzcan el tiempo que toman mientras mejoran la precision en el proceso de
deteccién de SO.
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Espectro compartido

En trabajos realizados sobre CR muchas veces se hacen suposiciones; una de estas es
que los SU conocen de antemano la localizacion y el nivel de potencia de la trasmi-
sion de los PU, lo cual permite realizar los calculos de interferencia facilmente; sin
embargo, esta suposicion no siempre es cierta para algunas CRN (Lertsinsrubtavee
y Malouch, 2016).

Procesos de aprendizaje

Debido a las complejidades inherentes de la CR, seria deseable habilitar, en los dis-
positivos que hagan uso de esta, un proceso de aprendizaje que tenga en cuenta las
decisiones tomadas en el pasado para mejorar tanto su comportamiento dentro de la
red como sus decisiones futuras. El disefio de este tipo de algoritmos representa un
gran desafio, debido a que se debe determinar qué mediciones son necesarias para
desarrollar este proceso de aprendizaje (Delgado y Rodriguez, 2016).

Esquemas de control de acceso al medio

Aunque el grupo de investigacion del estandar IEEE 802.22 esta trabajando en el de-
sarrollo de un protocolo de control de acceso al medio (MAC), otras investigaciones
han desarrollado esquemas que no se adectian al estandar. Por ejemplo, los esquemas
MAC distribuidos para crahn no estan del todo cubiertos.

Decision espectral

Después de realizar la deteccion del espectro, los SU deben decidir cual es la mejor
SO; este proceso debe satisfacer los requerimientos de calidad de servicio y, ade-
mas, debe incluir como criterio de parametrizacion las acciones adoptadas por otros
usuarios (Alias y Ragesh, 2016; Pedraza et al., 2016; Ramzan et al., 2017). Una
inadecuada toma de decisiones afecta los parametros de calidad del servicio: laten-
cia, throughput, confiabilidad, sefalizacion, interferencia, eficiencia energética, BW,
relacion de sefial a interferencia mas ruido (SINR) y tasa de error (Hernandez, Paez
et al., 2017; Hernandez, Pedraza y Martinez, 2016; Lopez Sarmiento et al., 2015;
Oyewobi y Hancke, 2017). De acuerdo con lo anterior, la decisién espectral es una
funcidn clave en las CRN; sin embargo, no ha sido tan investigada en comparacion
con otras funciones del ciclo cognitivo (Akyildiz et al., 2008; Masonta et al., 2013).

La toma de decisiones es un proceso que busca seleccionar la mejor alternativa
espectral entre un conjunto finito de posibilidades, lo que les permite a los SU generar
una secuencia de acciones que conduciran al logro de sus objetivos (Rizk et al., 2018;
Tripathi et al., 2019). Para realizar estructuras de decision, es necesario implementar
modelos con altos desafios: los algoritmos deben ser escalables y eficientes debido
a los altos volumenes de informacioén que se requieren para el entrenamiento y la
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validacion, a la complejidad de las tareas y a los estandares de evaluacion minimos
de cada aplicacién particular (Rizk et al., 2018).

La decision espectral incluye tres funciones principales: caracterizacion del es-
pectro, seleccion del espectro y reconfiguracion. Como se muestra en la figura 7, una
vez que los canales se identifican (utilizando sensores de espectro, bases de datos de
geolocalizacion u otras técnicas), cada banda del espectro es caracterizada (actividad
del PU) a partir de la base de observaciones locales y de la informacién estadistica;
culminada esta etapa, los SU proceden a seleccionar la banda espectral mas apropia-
da, y a partir de la decisién tomada, reconfiguran sus parametros de transmision y
contindan el envio de datos (Lépez Sarmiento, 2017; Masonta et al., 2013).

Figura 7. Marco de decision del espectro
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Fuente: Lopez Sarmiento (2017).

Caracterizacion del espectro

Para determinar la banda espectral mas adecuada, en primer lugar, de acuerdo con
las observaciones de la red, se requiere identificar las caracteristicas de cada una de
las bandas espectrales disponibles, teniendo en cuenta la intensidad de la sefial reci-
bida, la interferencia y el numero de usuarios actuales. Adicionalmente, para realizar
un correcto proceso de toma de decisiones, los SU deben observar la disponibilidad
de espectro heterogéneo (los huecos espectrales), que varia con el tiempo y el espacio.

Ecl44



Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

En general, la caracterizacion del espectro debe incluir tanto las condiciones ac-
tuales del entorno de radiofrecuencia como el modelo de las actividades del PU. La
caracterizacion del entorno de radiofrecuencia es un proceso que implica identifica-
cion del canal, capacidad del canal, retardo de conmutacion del espectro, interferen-
cia del canal, tiempo de retencién del canal (CHT), tasa de error del canal, ubicacién
del abonado y pérdida de trayecto.

La caracterizacion del espectro determina y describe el comportamiento de los
canales, por lo que permite distinguir unos de otros, de acuerdo con su trafico, ocupa-
cion y configuracion. Dentro de las caracteristicas de transmision en un canal, exis-
ten parametros que influyen en su comportamiento y que se deben tener en cuenta a
la hora de seleccionar un canal. Por tal motivo, se deben estudiar estos factores con el
fin de identificar algunos beneficios que permitan obtener una mejora en el desempe-
fio de estas redes. Como ya se dijo, algunas caracteristicas son (Masonta et al., 2013):

* Identificacion del canal.

 Capacidad del canal.

* Retardo de conmutacién del espectro.
* Interferencia del canal.

« CHT.

 Tasa de error del canal.

» Ubicacién del abonado.

Identificacion del canal

La utilizacién del canal por parte del PU es quizas el factor mas importante, ya que
define los espacios y tiempos libres en un canal para ser ocupados por un SU. Esta
ocupacion se realiza de manera aleatoria, debido a que los tiempos de utilizacién no
son deterministicos, sino impredecibles, y varian en diferentes aplicaciones. Esta ac-
tividad de ocupacion del canal puede ser modelada como un proceso estocastico apli-
cando técnicas de inteligencia artificial, como redes neuronales, modelos de Markov
y maquinas de soporte vectorial (SVM) (Wang, Ghosh et al., 2011).

Capacidad del canal

Cada banda del espectro en un sistema de multiplexacion por divisién de frecuencia
ortogonal (OFDM) tiene un BW diferente, el cual esta compuesto por varias subpor-
tadoras que estiman una capacidad normalizada del canal. Las investigaciones, en
general, se han enfocado en estimar la capacidad de BW mediante el estudio de otros
parametros, como el nivel de interferencia, la tasa de error y la propagacion (Lee y
Akyildiz, 2011).
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Se ha demostrado que el método tradicional de estimacion de la capacidad del
canal —utilizando la relacion sefial a ruido (SNR)— conduce a una decision de es-
pectro no 6ptima (Masonta et al., 2013).

Las capacidades de BW de un canal licenciado estan limitadas por la entidad re-
guladora, lo que hace que el SU requiera analizar recursos cuando el BW del PU sea
menor que el requerido por el SU. Al respecto, el BW no es utilizado en el modelo
propuesto en este libro.

Retardo de conmutacién del espectro

Esta caracteristica nace como consecuencia de la intervencion de un PU cuando
el SU esta operando en un canal licenciado; en ese momento, el SU debe detectar
nuevos canales con diferentes frecuencias y conmutar reconfigurando sus parametros
de transmision, pero ese proceso de conmutacion toma un tiempo considerable que
afecta el desempeno de las CRN (3GPP, 2011).

Con el fin de mejorar el rendimiento de retardo en CRN, el desafio que se presen-
ta esta en reducir el retardo de detecciéon del canal, el tiempo que tarda el SU en confi-
gurar sus parametros de transmision y el tiempo que gasta en acceder al nuevo canal.

Interferencia del canal

La interferencia es la mayor consecuencia del proceso de interaccion entre usua-
rios en una red. Al acceder al espectro, un SU puede afectar la sefial al alterar los
servicios del PU; por lo tanto, la interferencia esta definida como la perturbacion
de la senal debido a la coexistencia entre PU y SU en un area de cobertura del PU
(Amir et al., 2011).

Existen diferentes estudios para evitar interferencias entre PU y SU en areas de
cobertura especificas en las que es importante que el SU no transmita mientras exista
presencia de un PU.

Tiempo de retencion del canal

El CHT es importante al momento de modelar el acceso al canal, debido a que es-
tudia los tiempos de activacion y de inactividad de los PU y los SU, ademas de que
permite acceder a canales ranurados regulando y sincronizando este acceso (Akyildiz
et al., 2006).

Inicialmente, se estudian los tiempos de duracién de activacion de los usuarios
y los tiempos en que el canal permanece libre; luego, se definen bloques de tiem-
po de tamanos similares que seran recursos libres para ser utilizados por los SU, y,
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finalmente, se accede al canal que mas se ajuste a las mediciones realizadas, lo que
reduce interferencias en la interaccion (Akyildiz et al., 2006).

Tasa de error del canal

Este factor esta directamente relacionado con el nivel de interferencia, el BW y la
banda de frecuencia disponible, los cuales influyen directamente en la recepcién o
transmision de errores de bit en un canal. Esta tasa de error de bit (BER) es indicada
con la SNR (Matinmikko et al., 2008).

Ubicacién del abonado

El SU, dentro de su funcionamiento y proceso de deteccidén, debe obtener informa-
cion geografica y del ambiente de radiofrecuencia, mediante una funcién del sistema
de posicionamiento global (GPS), para coordinar informacién entre los nodos o ser-
vidores centrales que identifiquen la ubicacion de cada SU y para poder construir un
mapa de actualizacién mundial. Este proceso permitird predecir situaciones futuras
de intervenciones de los PU (Azarfar et al., 2012).

Figura 8. Caracterizacion del ambiente de radio
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Fuente: elaboracion propia a partir de Masonta et al. (2013).

La figura 8 presenta una sintesis de los componentes que debe tener en cuenta un
modelo de decision de espectro para cumplir con el objetivo de acceder a este opor-
tunamente. Aunque disefiar un modelo que evaltie todas las caracteristicas puede
ser robusto, complejo y computacionalmente poco eficaz, si es mision del ingeniero
idear un modelo que utilice las caracteristicas principales y necesarias y que reduzca
su tiempo de ejecucion.

Seleccion del espectro-decision del espectro
La decision del espectro (proceso de toma de decisiones) determina cudl es el mejor
canal de frecuencia entre los disponibles, segun los requisitos de calidad de servicio
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de las aplicaciones. Para esta funcion se han desarrollado algoritmos que tienen
en cuenta las caracteristicas del canal de radio y el comportamiento estadistico de
los PU (Alias y Ragesh, 2016; Hernandez, Paez et al., 2017; Pedraza et al., 2016;
Ramzan et al., 2017).

Reconfiguracion del canal de radio

En las redes inalambricas tradicionales, los terminales de radio estan configurados
estaticamente para operar sobre canales de frecuencia predefinidos con parametros
y caracteristicas preestablecidos del transceptor. Los canales de radio son capaces de
adaptarse rapidamente a los cambios (Masonta et al., 2013).

La tarea de reconfiguracién de la CR requiere una clara comprension de como
interactian los parametros de comunicacion dentro de las diferentes capas de proto-
colo. Sin embargo, aunque estos sistemas pueden emplear técnicas adaptativas para
ajustar diversos parametros de transmision, su arquitectura —basada en hardware—
limita su flexibilidad para adaptarse al entorno externo (Lopez Sarmiento, 2017).

Tipos de enfoque de la decision espectral

Las CRN pueden operar de acuerdo con varios enfoques basicos, cada uno de los
cuales presenta ventajas y desventajas frente a su enfoque opuesto. En esta seccién
se estudiaran el enfoque con infraestructura frente al enfoque ad %oc, el enfoque cen-
tralizado frente al distribuido, el enfoque de asignacion unica frente al multicanal, el
de inclusién de modelos de PU y SU frente al de no inclusion y el de CCC dedicado
frente al dindmico.

Enfoque con infraestructura vs. ad hoc

De acuerdo con la arquitectura de la red, las CRN pueden clasificarse en redes con
infraestructura o en crahn (Ahmed et al., 2016; Akyildiz et al., 2006). Las CRN
basadas en infraestructura tienen una entidad de red central similar a una BS en las
redes celulares 0 a un punto de acceso en las redes inalambricas de area local. Por
otro lado, las crahn no tienen ninguna infraestructura, por lo que un SU se comunica
con otro SU a través de una conexién ad hoc, en bandas espectrales tanto licenciadas
como no licenciadas (Akyildiz et al., 2009).

En las redes con infraestructura, la informacion observada por cada SU alimenta
la base de datos de la entidad central, de forma que esta pueda tomar decisiones
inteligentes a fin de maximizar los parametros de comunicacién, como el through-
put, el BW, la SINR vy el balanceo de carga, entre otras, y eliminar o minimizar la
interferencia hacia los PU (Akyildiz et al., 2009). En el caso de las crahn, los SU son
responsables de tomar sus propias decisiones con base Unicamente en observaciones
locales, lo cual les impide realizar un uso eficiente de los recursos de la red entera.
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Para compensar esta imposibilidad, los SU pueden hacer uso de esquemas de colabo-
raciodn, en los cuales cada SU intercambia su informacion de observacion del espec-
tro local, lo que les permite tener un conocimiento aproximado de la red completa
(Akyildiz et al., 2009).

Enfoque centralizado vs. distribuido

Si las CRN cuentan con infraestructura, pueden operar tanto con un enfoque cen-
tralizado como con uno distribuido. En el enfoque centralizado existe una entidad
central encargada de coordinar las funciones necesarias para la decision y asignacion
del canal de frecuencia durante una decision espectral. Esta entidad central, también
conocida como estacion base central (CBS), cumple ademas con la funcion de almace-
nar y procesar la informacién del ambiente de radio y del espectro recibida por los
SU periddicamente o por demanda (Ahmed et al., 2016; Tragos et al., 2013).

Debido a que la CBS tiene un nivel mucho mas elevado de procesamiento y au-
tonomia energética que los SU, desarrolla también funciones de monitorizacién del
espectro de forma periddica. Esta informacion, junto con la proporcionada por los
SU, actualiza dinamicamente la base de datos central (CDB). La CBS procesa perio-
dicamente la informacion de la CDB y calcula valores estimados de algunos parame-
tros de interés del espectro, como la probabilidad de disponibilidad (AP), la SINR,
el tiempo estimado de disponibilidad (ETA) y el BW de los canales, entre otros, los
cuales permiten tomar decisiones mas acertadas para la SA. Lo anterior libera a los
SU de la carga computacional requerida para ejecutar un algoritmo robusto de SA.

La principal ventaja del enfoque centralizado es la observacién y el conocimiento
global de la red, lo cual permite maximizar el throughput de la red, minimizar la inter-
ferencia entre los SU, obtener una asignacién multicanal justa y, en general, mejorar
el nivel de desempefio de la red (Alnwaimi et al., 2011; Byun et al., 2008). Sin embar-
g0, su mayor desventaja es la cantidad de informacion de sefializacion que se intro-
duce a la red para coordinar los procedimientos de intercambio de informacion entre
la CBS y los SU; ademas, si la CBS llegara a fallar, se perderia el control sobre la SA
y se crearia un desequilibrio y un potencial caos en el sistema (Tragos et al., 2013).

En el enfoque distribuido, por su parte, no existe una CBS responsable de coor-
dinar la SA a los SU. Por tanto, los SU toman decisiones por ellos mismos o de
forma colaborativa, con otros SU vecinos, a través del intercambio de informacién y
medidas dentro de un rango determinado (por ejemplo, 2-3 saltos). Lo anterior hace
que el enfoque distribuido sea mas flexible y eficiente que el enfoque centralizado,
ya que puede adaptarse rapidamente a los posibles cambios o variaciones del am-
biente de radio o de la red, pues solamente tendran que hacer modificaciones e inter-
cambiar informacion los SU del area afectada. Otra ventaja significativa del enfoque
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distribuido es la baja informacién de sefializacion requerida, ya que solo los nodos
vecinos intercambian informacion. Entre las desventajas de este enfoque se encuentra
que las decisiones tomadas no son Optimas en razén de que los nodos solo tienen in-
formacion de sus vecinos y no de la red completa, ademas del hecho de que es posible
que la informacién intercambiada no sea suficiente (Tragos et al., 2013). Asimismo, la
falta de un soporte centralizado no permite obtener informaciéon completa de la topo-
logia de la red, lo que provoca colisiones entre SU e interferencia al PU (Giupponi y
Pérez-Neira, 2008). En conclusién, en lo que respecta a la SA, el enfoque distribuido
puede tomar decisiones adecuadas en casos de baja carga de trafico, pero para los casos
contrarios, el enfoque centralizado toma mejores decisiones (Tragos et al., 2013).

Una solucion hibrida entre el enfoque centralizado y el distribuido es el enfoque
descentralizado (cluster), el cual intenta eliminar las desventajas de cada uno. La red
es dividida en M clusters, cada uno con un enrutador principal (cluster head). Cada SU
envia la informacion de espectro detectada a su correspondiente cluster head, y este
se encarga de combinar la informacién completa y de generar un vector de SA final.
Todos los cluster heads intercambian su respectivo vector, y de esta manera cada uno
conoce el estado general de la red. Con la informacién completa de la red, cada cluster
head decide qué canal de frecuencia asignar y transmite esta informacién a todos los
demas cluster heads de la red. Este enfoque es mas robusto contra fallas, hace un uso
mas eficiente del BW disponible, logra una mejor distribucion de los usuarios —en
clusters—y de la carga en multiples canales y reduce la sobrecarga de informacién de
control, ya que los mensajes se intercambian a nivel del cluster y no de la red completa
(Alsarhan y Agarwal, 2009; Chen et al., 2007; Tragos et al., 2013).

Enfoque de asignacion tnica vs. multicanal

El enfoque de asignacién de canal unico, como se hace tradicionalmente, consiste en
la asignacion de una frecuencia central y un BW especifico alrededor de esa frecuen-
cia, lo que implica que los canales sean contiguos en el espectro.

El caso de la asignacion multicanal, por su parte, consiste en la agrupacion de
varios canales disponibles no adyacentes para formar un solo canal. Este enfoque
permite aumentar el BW del SU aprovechando las SO con baja capacidad de canal.
Una de las técnicas que permiten el acceso simultaneo a varios canales de frecuen-
cia es la multiplexacion por division de frecuencia ortogonal discontinua (DOFDM)
(Chen et al., 2008), que posibilita un uso mas eficiente del espectro, ya que aprovecha
los canales que por si solos no son adecuados debido a su restringido BW pero que,
en conjunto con otros canales similares, pueden satisfacer los requerimientos de un
SU. La asignacion multicanal puede incrementar significativamente la capacidad de
la red y la tasa de datos de los SU (Dadallage et al., 2016; Tragos et al., 2013).
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Sin embargo, la asignacion multicanal también tiene limitaciones, debido a que
los transreceptores no pueden agregar canales de frecuencia que se encuentren muy
distanciados entre si; en otras palabras, el span de agregacion no es ilimitado, ya que
generalmente cada transreceptor tiene un span maximo especificado (por ejemplo, de
12MHz). Esto significa que, si dos canales estan separados por mas de 12 MHz, no
pueden unirse en un solo canal; por tanto, los algoritmos de SA deben evitar crear
pequefios canales de frecuencia que posteriormente no puedan agregarse. También es
necesario analizar que la utilizacion de multiples canales por parte de un solo SU no
deje sin SO a otros SU, por lo que el algoritmo de SA deberia manejar alguna métrica
de justicia para estos casos (Tragos et al., 2013).

Enfoque de inclusion de modelos de usuarios rimarios y secundarios vs. no inclusion
De acuerdo con algunos trabajos (Akter et al., 2008; Chen y Oh, 2016; Csurgai-
Horvath y Bit6, 2011; Rahimian et al., 2014; Rodriguez et al., 2015; Wu et al., 2016),
la precision y exactitud en el modelado de la actividad de los PU y los SU es relevante
para lograr un buen desempefio en las CRN, pues permite asignar inteligentemente
cada canal de frecuencia disponible, optimizar el uso del espectro, maximizar los pa-
rametros de comunicacion —la tasa de datos, el BW, la SINR y el balanceo de carga,
entre otros— y eliminar o minimizar la interferencia entre PU y SU. Sin embargo, la
validez de dichos modelos generalmente esta restringida a un determinado tiempo y
lugar para los cuales se disefiaron.

Una estrategia de SH reactiva provoca interferencia temporal con el PU, debido
a que durante el tiempo que tome realizar la movilidad del SU coexistiran los dos en
el mismo recurso espectral. Un buen modelo del PU puede evitar o minimizar esta
interferencia, a través de una estrategia de SH proactiva (Wu et al., 2016). Sin embar-
g0, el problema radica en que dichos modelos estan basados en procesos estocasticos,
que utilizan las observaciones pasadas del canal para predecir la disponibilidad del
espectro futuro, lo que podria llevar a tener que hacer muchas conmutaciones de
canal innecesarias si el modelo de prediccién es imperfecto. Pero no solo el modelo
de actividad del PU es relevante: Akter et al. (2008) proponen un modelo de predic-
cion para la actividad del SU, debido a que en muchas oportunidades multiples SU
compiten por el mismo recurso de espectro, lo que degrada la QoS. A través de la
implementacion de un filtro de Kalman, se logro realizar una significativa estimacion
del nimero de SU en el futuro instantaneo.

Enfoque de canal de control comun dedicado vs. dinamico

El CCC es uno de los requerimientos comunes en la SA en CRN, pues permite la
coordinacion entre SU para la asignacion del canal. El CCC es un canal predefinido
para el intercambio de informacién de sefializacidn, control y espectro entre los SU
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y puede ser global o local, dependiendo del operador de red (Kumar et al., 2016). A
continuacién, se presentan las ventajas y desventajas de tener un CCC dedicado o
dinamico para la asignacion del canal de frecuencia.

En la literatura son mas los trabajos de investigacion que defienden la necesidad
de contar con un CCC dedicado (Ding et al., 2010; Kim et al., 2010; Ma et al., 2007),
enfoque que se puede dividir en dos situaciones: 1) cuando el CCCy el canal de datos
del SU son el mismo y 2) cuando el CCC se encuentra en un canal independiente
del canal de datos del SU (Akyildiz et al., 2009). Cuando el canal de datos del SU y
el CCC son el mismo, su utilizacién se comparte por periodos de tiempo fijos, no es
necesario un transreceptor adicional y no se requiere cambiar la frecuencia para re-
cibir o transmitir los mensajes. Sin embargo, cuando sea necesario realizar un SH, el
CCC desaparecera. Aunque este enfoque proporciona una mayor eficiencia espectral
al utilizar un solo canal de frecuencia, la cantidad de informacién del CCC reduce el
throughput de la transmision de datos del SU (Akyildiz et al., 2009).

Por otro lado, cuando el canal de datos del SU y el CCC son independientes, el
CCC no se ve afectado por la realizacién de un SH; sin embargo, tener dos canales
implica la necesidad de contar con un transreceptor adicional y un incremento en el
retardo. E1 CCC independiente puede ser global, si es el mismo para todos los SU en
una CRN, o local, si es dedicado solamente a una pequefia drea geografica. En am-
bos casos, es necesario contar con un algoritmo de asignacién de CCC que permita
encontrar el canal 6ptimo del area geografica de la CRN (Akyildiz et al., 2009).

Con respecto al enfoque del CCC dinamico, existen muy pocos trabajos (Alma-
saeid y Kamal, 2010; Kondareddy et al., 2008). Este enfoque, aunque hace un uso mas
eficiente del espectro, es vulnerable al problema del nodo escondido, que puede llevar a
un decremento del nivel de conectividad; ademas, una seleccién dinamica de un CCC
puede incrementar el nivel de retardo en la transmision del SU (Tragos et al., 2013).

Criterios de decision espectral

En la SA existen multiples criterios que ayudan a tomar decisiones inteligentes. Sin em-
bargo, cuantos y cuales criterios utilizar depende del objetivo de cada toma de decisio-
nes. Para realizar un analisis objetivo, se analizaron todas las variables que intervienen
durante la toma de decisiones y que pueden afectar el desempefio de la red, a partir del
analisis de cada una de las investigaciones consultadas sobre el tema de decision espec-
tral en CRN (Ahmed et al., 2014; Masonta et al., 2013; Tragos et al., 2013).

Estos criterios proporcionan la informacion necesaria para alimentar los algorit-
mos de toma de decisiones con base en los criterios de evaluacion para la SA a los SU
en las CRN. Ademas, varian de acuerdo con los objetivos de cada esquema de SH.
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Calidad de servicio

La QoS es uno de los criterios mas relevantes en los algoritmos de toma de decision
parala SA alos SU en las CRN, pues permite diferenciar entre aplicaciones sensitivas
al retardo y aplicaciones no sensitivas al retardo; en otras palabras, permite clasificar
las aplicaciones en tiempo real (RT) y mejor esfuerzo (BE). Con esta informacion, se
puede tomar la decision mas adecuada en términos de las SO.

Las aplicaciones que no son sensibles al retardo pueden ser asignadas a SO con
un nivel de disponibilidad intermedio, mientras que las aplicaciones sensibles al re-
tardo pueden ser asignadas a SO con un nivel alto de disponibilidad, a través de
estrategias proactivas que minimicen el valor del retardo global; aqui, el throughput
resulta mas relevante que la BER. Lo anterior permite mejorar la eficiencia espectral.

Calidad del enlace

La calidad del enlace es otro criterio importante que normalmente se refleja a través
de la BER y la SNR, que afectan la QoS de la red. La calidad del enlace se trabaja a
veces como relacion sefal a interferencia (SIR) o como SINR.

Tasa de error de bit

La BER es el namero de bits recibidos que han sido alterados debido al ruido y la
interferencia dividido por el nimero total de bits transmitidos durante un periodo de
tiempo (Ahmed et al., 2014). La BER promedio del canal es un parametro util para
estimar la caracterizacién del ambiente de radio en las CRN (Masonta et al., 2013).
Asimismo, el nivel de BER esta relacionado con el nivel de SNR, lo que causa que
la energia por bit transmitido sea una métrica importante en la estimacion del error
(Matinmikko et al., 2008). Asi, a mayor SNR, menor BER, aunque es importante
tener en cuenta que un mayor nivel de SNR generalmente implica un mayor nivel de
potencia, lo cual causa mayor interferencia al PU. Por tanto, es necesario estimar un
nivel minimo de SNR que garantice cierto nivel de BER pero que no perjudique la
comunicacion (Tragos et al., 2013).

Calidad del enlace de comunicacidn

En CRN, la calidad del enlace de comunicacion puede variar dindmicamente en el
tiempo y el espacio; por ello, es importante para el SU monitorizar y analizar perio-
dicamente la calidad del canal que esta siendo utilizado, por ejemplo, a través de la
SNR. La SNR define la relacion entre la potencia de la sefial y la potencia del ruido.
La calidad del enlace de comunicacion es otro parametro importante que afecta y
refleja la QoS de la red. Usualmente, la fuerza de la sefial recibida (RSS) y la SINR
son consideradas similares, pero la RSS esta mas inclinada a proveer conectividad, y
la SINR, a proveer QoS de la red (Ahmed et al., 2014).
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Probabilidad de disponibilidad del canal

La disponibilidad de canal (AP) es un criterio que busca estimar la probabilidad
de que un canal de frecuencia esté disponible. Algunos trabajos la expresan como
ocupacion de canal, en cuyo caso se busca estimar la probabilidad de que un canal
de frecuencia esté ocupado. Este criterio es muy importante en la SA, ya que puede
determinar las posibilidades de que una SO esté libre para ser utilizada por un SU.
Su valor es proporcional a la media aritmética de las medidas de disponibilidad ob-
tenidas anteriormente por cada canal. Aqui resulta interesante determinar el periodo
de tiempo a partir del cual se debe actualizar el valor promedio de la disponibilidad
por canal. Un analisis de la serie de tiempo para esta variable podria estimar un inter-
valo de confianza para el periodo de tiempo de actualizacion, lo que permite lograr
una mejor eficiencia de energia al no tener que correr el algoritmo de estimacion de
disponibilidad de canal continuamente (Ahmed et al., 2016).

Tiempo estimado de disponibilidad del canal

El ETA es un criterio que busca determinar el valor promedio que un canal de fre-
cuencia permanece disponible para un SU o un PU. A diferencia del criterio de la AP,
en el que se determina la probabilidad de encontrar cierto canal libre, en el criterio de
ETA se estima el tiempo medio durante el cual el canal permanece libre una vez esta
disponible. Estos dos criterios no son sustitutivos, sino complementarios, ya que dos
canales pueden tener la misma probabilidad de disponibilidad pero contar con distri-
buciones de tiempo de disponibilidad distintas. Seleccionar un canal con un tiempo
estimado de disponibilidad alto garantiza un menor nimero de SH. Al respecto, Pla
et al. (2010) proponen un modelo markoviano para determinar la duracion de las SO:
una vez se ha modelado el tiempo ocioso del PU, se aplican técnicas de matriz anali-
tica para determinar la duracién de las SO para ser ocupadas por los SU. La principal
desventaja de esta técnica radica en su complejidad.

Patrén de trafico del usuario primario y el usuario secundario

No hay ninguna garantia de que el canal de frecuencia seleccionado esté disponible
durante toda la comunicacioén, por lo que es beneficioso contar con un modelo que
estime la actividad del PU en la CRN. En algunos trabajos se asume que se puede
conocer el patrén de llegadas del PU, ya que no es aleatorio estadisticamente, debi-
do a que depende del comportamiento humano. De esta forma se pueden estimar
la AP y el ETA (Ahmed et al., 2016; Akyildiz et al., 2009; Christian et al., 2012;
Wu et al., 2016).

Wang et al. (2010) exponen varios trabajos que argumentan que el comporta-
miento de ocupacion de los canales exhibe patrones que pueden ser modelados es-
tadisticamente; sin embargo, diferentes modelos pueden aplicarse a diferentes apli-
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caciones de voz, video o paquetes de datos generales. Varios modelos asumen que la
actividad del PU se puede modelar con interllegadas distribuidas exponencialmente
(Chou et al., 2007; Kim y Shin, 2008; Lee y Akyildiz, 2008). En la investigacion de
Sriram y Whitt (1986), por ejemplo, el patron de trafico se modela como un proceso
de dos estados on-off, nacimiento y muerte, con sus respectivas tasas de nacimiento
y muerte. Por otra parte, otros modelan la actividad del PU a partir del tiempo entre
arribos de paquetes, la longitud de los paquetes y la cantidad de paquetes.

Algunos trabajos se esfuerzan en modelar el comportamiento del PU en bandas
especificas a partir de datos experimentales (Pedraza et al., 2014). Willkomm et al.
(2008) utilizan medidas reales de una red celular para modelar las caracteristicas del
uso del espectro por parte del PU, andlisis que muestra que el modelo de llegadas
exponencialmente distribuidas es adecuado para capturar el tiempo de actividad del
PU en llamadas no inalambricas. En cuanto a las llamadas méviles, dicho modelo
no resulta util, siendo mas efectivo el uso de un modelo de caminata aleatoria, aun
en condiciones de trafico alto. Hernandez et al. (2009), por su parte, validaron el
uso de series de tiempo —como los modelos autorregresivo (AR), de media movil
(MA) y autorregresivo integrado de media moévil (ARIMA)— en el modelamiento y
prediccion de trafico en redes Wi-Fi, y obtuvieron un alto nivel de precisién en el pro-
nostico de rango corto. Li y Zekavat (2008) presentan un trabajo sobre la prediccion
del patron de trafico para CRN.

‘Wei et al. (2006) almacenan en un repositorio la informacion pasada y presente de
interés para una CRN, incluyendo la informacioén de localizacion y trafico del SU y
el PU. Al respecto, es importante validar la informacién almacenada para asegurarse
de que no es obsoleta. Esta coleccidén de datos debe ser estadisticamente analizada y
usada para modelar la actividad del PU en un canal de frecuencia dado (Issariyakul et
al., 2009). De acuerdo con el aprendizaje maquinal, los SU deberian ser habiles para
recordar las lecciones aprendidas en el pasado y para actuar rapidamente en el futuro
(Marinho y Monteiro, 2012). Idealmente, el SU deberia conocer el patron de trafico del
PU vy seleccionar la estrategia de handoff mas adecuada. Asimismo, cuando el patrén
de trafico del PU cambie, el SU deberia observar el cambio y adaptar una estrategia de
handoff segin el nuevo comportamiento (Akyildiz et al., 2009; Christian et al., 2012).
Las estrategias de SH futuras deberian considerar un factor de aprendizaje.

Fecha y hora

La utilizacion del espectro depende del tiempo y del espacio. El criterio de fecha y
hora puede brindar buena informacion para estimar el nivel de trafico y congestion
de la red a partir de las estadisticas de informacion pasada (Hernandez et al., 2009;
Hernandez et al., 2013; Issariyakul et al., 2009; Wei et al., 2006; Zhang et al., 2016).
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Una base de datos con estadisticas pasadas y recientes podria permitir estimar la
disponibilidad y acceso al espectro con cierto nivel de precision. Las series de tiempo
son una herramienta muy util en este contexto (Hernandez et al., 2009).

Geolocalizacién

De acuerdo con la naturaleza de las redes inalambricas, la disponibilidad de espectro
cambia no solamente con el tiempo sino también con la movilidad espacial (Duan
y Li, 2011; Zhang et al., 2016). Conocer la posicion exacta de los SU y los PU es
una ventaja en el momento de tomar decisiones para la SA. Esta informacién puede
mejorar las estrategias para evitar la interferencia al PU y para reducir la tasa de SH,
al determinar una distancia umbral a partir de la cual se deba realizar el cambio de
canal. En zonas rurales, debido a la baja demanda de espectro, es posible utilizar un
BW mas amplio. Este conocimiento puede ser util para futuras predicciones de SO y
para la caracterizacion del ambiente de radiofrecuencia.

Capacidad del canal o ancho de banda disponible

Muchos trabajos se enfocan en parametros como la tasa de datos, el retardo, el nivel
de interferencia, la BER o la tasa de SH, los cuales son relevantes para la eficiencia
espectral; sin embargo, la capacidad de canal es otra variable de interés en la SA, ya
que algunas aplicaciones requieren un BW minimo para mantener sus parametros de
banda (Kumar et al., 2016). En los sistemas de OFDM, cada banda espectral tiene un
BW diferente que consiste en varias subportadoras (Masonta et al., 2013).

Fuerza de la senal recibida

También conocida como indicador de fuerza de la seiial recibida (RSS]) y fuerza relativa
de la sefial recibida (RRSS), la RSS es un factor tradicional e importante para tomar
decisiones de SH. La RSS provee informacién acerca del nivel de potencia que estad
siendo recibido por la antena, el cual decrementa cuando el usuario se aleja del punto
de acceso actual de la red (Ahmed et al., 2014). Este criterio permite determinar el
momento en el que se hace necesario realizar un cambio de canal.

Costo monetario

Las redes que funcionan sobre bandas de espectro licenciadas proveen ciertos servi-
cios a los usuarios a cambio de un costo monetario que depende principalmente del
recurso de BW y del tiempo durante el cual se utilice. Si dos redes proveen la misma
QoS, la red con el costo mas bajo sera la preferida por los SU (Ahmed et al., 2014),
debido a lo cual el valor del costo monetario es una variable de informacion de inte-
rés para el algoritmo de SA.
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Preferencias de usuario

Las preferencias de los usuarios pueden ser definidas con base en la red escogida
entre las disponibles para la ejecucion de las aplicaciones y se pueden definir a partir
de las prioridades asignadas a cada aplicacioén, las cuales pueden ser altas o bajas.
Usualmente, los usuarios prefieren conexiones con alto BW, bajo costo y amplia co-
bertura, entre otras caracteristicas (Ahmed et al., 2014). En la mayoria de los trabajos
que analizan las preferencias de los usuarios, se usan funciones de utilidad que per-
miten describirlas y manipularlas matematicamente para encontrar 6ptimos.

Seguridad de la red

La seguridad es uno de los aspectos mas relevantes en la convergencia de redes, de-
bido a que estas tienen sus propias opciones de seguridad. El proceso de SH requiere
proveer seguridad y privacidad contra intercepciones ilegales o ataques de denega-
cion de servicio (Ahmed et al., 2014).

Técnicas y algoritmos para la asignacion espectral

La SA 'y, por ende, la decision espectral son un aspecto clave en las CRN para reducir
la latencia, incrementar la tasa de datos, aumentar el BW, mejorar la capacidad y
cobertura y optimizar el uso del espectro, garantizando la QoS necesaria para apli-
caciones de RT y BE.

Seleccionar un canal con las caracteristicas requeridas sobre el cual un SU pueda
continuar su sesion de transmisién de datos es un asunto apremiante en las CRIN
(Christian et al., 2012). Una pobre seleccion de canal puede causar multiples SH, lo
que degrada el desempefio de todo el conjunto (Christian et al., 2012; Hernandez,
Salgado et al., 2015; Hernandez-Guillen et al., 2012).

Esta seccidn tiene por objetivo presentar una revision de los algoritmos de SA mas
relevantes en CRN, asi como su clasificaciéon de acuerdo con la literatura actual, a
partir del andlisis de publicaciones recientes de corriente principal con sus respectivas
citas, tratando de proveer un marco referencial completo de la literatura actual sobre
estos algoritmos. Los principales resultados determinan la importancia de una SA
inteligente, teniendo en cuenta la carga de trafico, el comportamiento del usuario, los
niveles de interferencia, la caracterizacion del espectro, el tipo de aplicacién y la ne-
cesidad de contar con multiples canales de frecuencia. Como conclusién, considera-
mos importante disefiar algoritmos adaptativos que permitan hacer un uso eficiente
de las porciones disponibles del espectro licenciado.

Una vez que todas las SO se detectan y se caracterizan, se debe seleccionar la
que mas se acerque a los requerimientos para la transmision, teniendo en cuenta los
requisitos de QoS del usuario (que se deben conocer de antemano) y las caracteristicas
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del espectro. Con base en las necesidades de los usuarios, se puede determinar: la
velocidad de datos, la BER aceptable, el retardo méaximo permitido, el modo de
transmision y el BW para la transmision. Entonces, puede ser elegido el conjunto de
bandas del espectro apropiado, de acuerdo con las reglas de decision y los algoritmos
que evaluan las posibles soluciones. Zheng y Cao (2005) presentan cinco reglas
para asignar espectro que se centran en la equidad y el costo de la comunicacion;
sin embargo, este método asume que todos los canales tienen una capacidad de
rendimiento similar (Akyildiz et al., 2006). Lo ideal es ajustarse a los requerimientos
que imponen las distintas aplicaciones. Kanodia et al. (2004), por su parte, proponen
un protocolo de saltos de canal de frecuencia oportunista para la busqueda de un
canal de mejor calidad basada en la SNR.

Proponemos una clasificacion que agrupa los algoritmos para la seleccion de las
SO en cinco clases: 1) toma de decisiones multicriterio (IMCDM), 2) algoritmos inteli-
gentes, 3) técnicas de aprendizaje, 4) funciones de decision y 5) estadisticos. La figura
9 describe los algoritmos mas relevantes de cada clase de la clasificacién propuesta.

Algoritmo de asignacion aleatoria

El algoritmo de asignacion aleatoria (RA) es la forma mas bésica para la SA y la que
peor desempefio provee, razon por la cual no se encuentra en la clasificacion de la
figura 9; sin embargo, ya que selecciona de forma completamente aleatoria las SO, se
ha convertido en el punto de referencia mas utilizado para contrastar y comparar los
resultados obtenidos con otros algoritmos de SA propuestos en la literatura actual.

Algoritmos de toma de decisiones multicriterio

El problema de SA tiene multiples variables por analizar para seleccionar una sola
SO; por tanto, los algoritmos basados en MCDM son ampliamente usados en este
tipo de problemas, en los que la relacidn entre los criterios de decision (DC) es medi-
da a través de pesos que son ajustados de acuerdo con los requerimientos del disefia-
dor. Al cabo de un cierto niimero de iteraciones, el algoritmo determinara la mejor
solucion (Hernandez et al., 2015a).
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Figura 9. Clasificacion de los algoritmos para la asignacion de espectro

Clasificacion de algoritmos para asignacion de espectro
|
. ¥ v ¥ ¥
MCDM .Algo-rltmos Tecnlcajs c{e Funcu'm_e’s de Estadisticos
inteligentes aprendizaje decision
¥ v ¥ ¥ ¥ ¥
Légica No q Funcién de Redes
SAW
difusa supervisado Supervisado utilidad bayesianas
¥ ¥ ¥ ¥ ¥ ¥
MEW Algoritmos Aprendizaje Redes Funcién de Cadenas de
genéticos por refuerzo neuronales costo Markov
v v ¥ ¥ v
ELECTRE Sis_temas T_eoria de SVM Arbo!e_sl de
multiagentes juegos decision
¥
Colonia
GRA artificial de
abejas
N 2
TOPSIS
VIKOR
AHP
FAHP
FFAHP

Fuente: elaboracion propia.

Simple additive weighting

El algoritmo simple additive weighting (SAW) desarrolla una matriz de decisién con-
formada por criterios y alternativas (SO); para cada interseccion de la matriz, el al-
goritmo asigna un peso de acuerdo con los criterios del disefiador, lo que permite
establecer una calificacion para cada una de las SO evaluadas y obtener, asi, un ran-
king de todas las alternativas. La SO con mayor puntaje sera la seleccionada (Hernan-
dez et al., 2015a; Ramirez Pérez y Ramos Ramos, 2010).

La alternativa Ai esta definida por la ecuacion (1) (Ramirez Pérez y Ramos
Ramos, 2013):
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M
u, = Za)l.rl.’j Viel,..,.N (1),

donde 7, pertenece a la matriz y la suma de los pesos es 1.

Los pasos para desarrollar este algoritmo son: 1) identificar los objetivos y las al-
ternativas, 2) evaluar las alternativas, 3) determinar los pesos de cada combinacion,
4) adicionar los valores agregados segun las preferencias y 5) analizar la sensibilidad
(Hernandez et al., 2015a; Hiibner, 2007; Ramirez Pérez y Ramos Ramos, 2010, 2013).

En Hernandez, Giral y Santa (2015) se utiliza un SAW para seleccionar la mejor
SO en una banda de frecuencia del sistema global para las comunicaciones moviles
(GSM), evaluando la cantidad de handoffs realizados y comparando los resultados
con otros dos algoritmos de SA.

Multiplicative exponent weighting
El MEW, propuesto para SA por Stevens-Navarro y Wong (2006), es otro algoritmo
MCDM muy similar al SAW. La principal diferencia es que en el MEW, en lugar de
suma, hay multiplicacién. En MEW, la calificacion de las SO es determinada por el
producto de los pesos de los DC.

El puntaje S, de la SO 7 es determinado por la ecuacion (2) (Hernandez et al.,
2015a; Hernandez, Giral y Santa, 2015; Hiibner, 2007; Ramirez Pérez y Ramos Ra-
mos, 2010, 2013; Stevens-Navarro, Martinez-Morales et al., 2012; Stevens-Navarro
y Wong, 2006):

Si:Hx;j (2),

JeN
.
donde X, denota el criterio j de la SO 7, w, denota el peso del criterio j y 2w =1
Jj=1
Esnecesario tener en cuenta que, en (2), w esuna potencia positiva para una métrica
de beneficio y negativa para una métrica de costo. Debido a que la normalizacion de

parametros no es requerida (es opcional), el puntaje de la SO asignado por MEW no
tiene una cota superior (Yoon y Hwang, 1995).

En Hernandez et al. (2015b) se utiliza MEW para seleccionar la mejor SO en una
banda de frecuencia de comunicaciones moéviles, evaluando el nivel de throughput y el
BW y comparando los resultados con otros dos algoritmos de SA.
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Electre

El algoritmo electre (elimination and choice expressing the reality), propuesto inicial-
mente por Christian et al. (2012), es un MCDM que realiza comparaciones entre
parejas de alternativas utilizando cada uno de los criterios por separado (Valenta
et al., 2010). En general, electre utiliza un vector de criterios de referencia para
ajustar los valores iniciales de los criterios de las alternativas antes de compararlas.
El valor de cada uno de los criterios en la matriz de decisién se compara con el
correspondiente valor de criterio de referencia Xj’“f. La diferencia entre los dos valo-
res se calcula de acuerdo con la ecuacién (3) (Stevens-Navarro, Martinez-Morales
etal., 2012):

x. —x"9

Ty = i J

y

(3).

Con el objetivo de comparar las alternativas espectrales, se introducen los conceptos
de concordancia y discordancia, que son medidas de satisfaccion e insatisfaccion del
algoritmo cuando una alternativa es comparada con otra. La alternativa con el valor
mas alto de concordancia neta y el valor mas bajo de discordancia neta sera la prefe-
rida (Stevens-Navarro, Martinez-Morales et al., 2012).

Grey relational analysis

El objetivo de este algoritmo [GRA] es establecer las redes candidatas y selec-
cionar las que tengan mas alta puntuacion de acuerdo con unos parametros defi-
nidos. Para lograr esto, se establecen relaciones de Grey entre elementos de dos
series: la primera contiene las mejores cualidades, mientras que la otra contiene
entidades comparativas. Aca es parte importante el coeficiente de Grey, que se
usa para describir las relaciones entre las series calculado a partir del nivel de
similitud y variabilidad. (Stevens-Navarro, Martinez-Morales et al., 2012; véase
también Hernandez et al., 2015b; Hernandez, Giral y Santa, 2015; Hernandez,
Paez et al., 2015; Hiibner, 2007; Ramirez Pérez y Ramos Ramos, 2010, 2013;
Stevens-Navarro y Wong, 2006)

En GRA, primero se genera el vector de referencia Xo, de la matriz X, a través de
la escogencia de los valores minimos, para los costos, y los valores maximos, para
los criterios de beneficios. Después, la secuencia de datos debe ser normalizada
para X de acuerdo con tres situaciones: mas grande el mejor, mas pequefio el me-
jor o nominal el mejor. Luego, se calcula el coeficiente relacional de Grey [segun
la ecuacion (4)]. (Hernandez, Paez et al., 2015)

H : Amin +4/Amax
7(x0 (l)’xj (l)): A (i)+§A (4),
0,j max
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donde

donde el coeficiente { que pertenece [0,1] compensa el efecto de Amax , que gene-
ralmente es 0,5.

Finalmente, se calcula el grado relacional de Grey para cada una de las diferentes
series de datos, como lo describe la ecuacion (5), donde I' (xo , xl.) representa el gra-
do relacional de Grey para las j-ésimas alternativas:

F(xo,xj)=2@y(xo (1), (1)) ©F

donde @, es el peso de la importancia de los i-ésimos criterios.

En Hernandez, Paez et al. (2015) se utiliza GRA para seleccionar la SO en el
enlace ascendente de la banda de frecuencia GSM, evaluando el nivel de bloqueos de
handoff'y comparando los resultados con otros dos algoritmos de SA.

TOPSIS

El desarrollo del algoritmo TOPSIS (technique for order preference by similarity to ideal
solution) se basa en la determinacién de dos componentes: la soluciéon ideal del siste-
ma y la solucién que no puede ser aceptada en ninguna situacion. Para lograrlo, es
necesario comparar los resultados obtenidos para determinar qué solucién es lo mas
cercano posible a la ideal y cual es la mas lejana (la cual no sera aceptada). Dicha
métrica se obtiene a partir de la distancia euclidiana entre los criterios y los pesos
(Hernandez et al., 2015a; Ramirez Pérez y Ramos Ramos, 2010).

El procedimiento del algoritmo TOPSIS esta descrito en Hernandez et al. (2015a)
y Ramirez Pérez y Ramos Ramos (2010, 2013). Inicialmente, se construye la matriz
de decisién X y se normaliza usando el método de raiz cuadrada, como se observa
en la ecuacion (6):

Y AT ERLEAYY O - OyXiy

X=| ¢+ =] : (6),

X Xam O Oy X
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donde w, es el peso asignado al criterio /'y la suma de estos debe ser 1.

Luego, se determina la solucién ideal y la peor solucion, como lo describen las
ecuaciones (7) y (8):

At :{(max;Zier X*)’(minjij[j e X’)} z{;?f,,jfw} ?);
A" ={(min 7, X"),(max 7l € X)) ={7.... 2} (8),
donde /=1, ..., N,y X+y X— son el conjunto de beneficios y costos, respectivamente.

Posteriormente, para cada alternativa, se calcula la distancia euclidiana D, como
se observa en las ecuaciones (9) y (10):

i=1,...,N (9),

(10).

Finalmente, las alternativas son organizadas en orden descendente de acuerdo con el
indice de preferencia dado por la ecuacién (11):
D~
Cl=—"—, i=L...,N. (11).
D; +D;
En Vasquez et al. (2015) se utiliza TOPSIS para seleccionar la mejor SO evaluando
el nivel de interferencia por canal adyacente y el nimero promedio de handoffs reali-

zados; los resultados son comparados con otro algoritmo y sus respectivas versiones
al combinarlos con tres algoritmos de prediccion basados en series de tiempo.

VIKOR

“El método VIKOR [multi-criteria optimization and compromise solution] asume que
cada alternativa es evaluada de acuerdo con cada funcion de criterio, y la clasifi-
cacion puede ser desarrollada a través de la comparacion de las medidas que estén
mas cercanas a la alternativa ideal” (Hernandez, Paez et al., 2015; véase también
Tanino et al., 2003; Vasquez et al., 2015). VIKOR fue desarrollado para lograr la
optimizacion de sistemas complejos con multiples criterios, y por tanto es habil para
determinar el compromiso en una lista de ranking, aun en presencia de criterios en
conflicto, lo que lo hace un algoritmo adecuado para la toma de decisiones en la SA
(Gallardo-Medina et al., 2009).
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El algoritmo VIKOR sigue los pasos descritos en Hernandez et al. (2015b), Her-
nandez, Paez et al. (2015), Ramirez Pérez y Ramos Ramos (2010) y Stevens-Nava-
rro, Martinez-Morales et al. (2012).

Para cada parametro j=1, 2, 3, ..., N, se determina el mejor y peor valor, dados
por las ecuaciones (12) y (13):

F' = {(nlgl/lx x;lie Nb),(rilglivln x;eN, )} (12);
F :{(Iilg};dnxierNb),(rg%x xierNc)} (13),

donde N, , que pertenece a N, es el conjunto de parametros de beneficiosy N_, que
pertenece a N, es el conjunto de parametros de costos.

Luego, se calculan los valores de S Ly Rl. parai=1,2,3, ..., M, como lo descri-
ben las ecuaciones (14) y (15):

B (Ff _Xij)

R, :maxliwi(F;_Xij)} (15),

ieN | (F;_Fj?)

donde w, es la importancia del peso del parametro ;.

Posteriormente, se calculan los valores de Q, para i=1, 2, 3, ..., M, dados por la
ecuacion (16):

S -8 R —-R"
=y — |+ (1-y)| ———— 16),
9 y[S_SJ ( 7)(R_R+) (16)
donde S* =minS;, S"=maxS,, R* =minR;, R" =maxR,,y 0<y<1,
ieM ieM ieM ieM

Dados los valores de Q para todos los 7 pertenecientes a M, se clasifican de mayor
a menor las SO candidatas. Finalmente, la SO seleccionada esta dada por el Q opti-
mo, como lo describe la ecuacion (17):

Ay =arg rllg/[n Q (17).
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En Hernandez, Paez et al. (2015) se utiliza VIKOR para seleccionar la mejor SO en
el enlace ascendente de la banda de frecuencia GSM, evaluando el nivel de bloqueos
de handoff'y comparando los resultados con otros dos algoritmos de SA.

Analytical hierarchical process

AHP se basa en comparaciones sobre la importancia entre los criterios de decision
escogidos para la seleccion de una alternativa, siendo esta importancia una medida
relativa mas que un valor absoluto (Saaty, 1990).

En la metodologia de disefio del algoritmo AHP, el primer paso es definir el pro-
blema, descomponiéndolo a su vez en objetivo, criterios y alternativas: el objetivo es
la decision que se ha de tomar, que para el presente trabajo corresponde a la selec-
cion de la mejor SO; los criterios son los factores que afectan la preferencia de una
alternativa, y las alternativas son todas las SO, de las cuales hay que escoger solo una.
El segundo paso es la construccion de la jerarquia de acuerdo con la definicion del
problema, y el tercer paso es la realizacion de las matrices de juicios, las cuales co-
rresponden a evaluaciones comparativas que definen el nivel de importancia relativa
entre cada combinacion posible de parejas de criterios —ecuacion (18)—.

a, dy ... 4y,
a a e a
21 Ay 2
A=[a;] = " (18),
Y dnxn oot

anl anZ e a

nn

dondei=j;=1, 2, ..., ncorresponde al nimero de criterios.

En el cuarto paso se procede a calcular los pesos normalizados para cada criterio,
como lo describe la ecuacion (19) (Hernandez et al., 2015a):

n (19),
ijl Vi

donde r es el vector de valores propios, #,7%,,...,7, es el valor de los pesos de cada
subcriterio, V; es la media geométrica de la fila 7 y v, es la media geométrica de la
columna j.

Finalmente, en el quinto paso se evalua la validez del algoritmo AHP a través
del indice de consistencia, como se muestra en la ecuacion (20) (Miranda, 2001). De
acuerdo con Saaty (1990), si el indice de consistencia es menor que 0,1, el desarrollo
del algoritmo es satisfactorio.
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v,
"5 (Ing;—In—+
Z.z Vf) (20),
cr=
(n-Dx(n-2)
2

donde CI es el indice de consistencia, 7 es el numero de subcriterios y a; es el valor
del elemento de la fila 7 y la columna j.

En Hernandez et al. (2015a) se utiliza AHP para seleccionar la mejor SO en la banda
de frecuencia GSM, calculando el desempefio del algoritmo con base en cinco métricas
de evaluacion (EM) y comparando los resultados con otros cinco algoritmos de SA.

Algoritmos inteligentes

La inteligencia artificial tiene como objetivo hacer que las maquinas realicen tareas
de una manera similar a un experto. La maquina inteligente percibird la toma de
decisiones vy, asi, maximizara su propia utilidad (Woods, 1986). De esta forma, la
maquina tendra que prever los principales desafios, como la deduccidn, el razona-
miento y la representacion de las problematicas, para finalmente dar solucion a los
problemas como fuente de entradas principales de estudio (Abbas et al., 2015).

En relacion con la CR, los principales retos para las subareas de la inteligencia
artificial son la deteccion de la frecuencia disponible de radio; la calidad del canal de
comunicacion; el reconocimiento, la prediccion y la anticipacion en la toma de deci-
siones, y, por ultimo, pero no menos importante, la decisién sobre la asignacion de re-
cursos para el ajuste de errores de trasmision y recepcion de datos (Abbas et al., 2015).

Légica difusa

La logica difusa esta basada en la teoria de conjuntos difusos, que fue propuesta por
Zadeh (1965). Un conjunto difuso es definido por una funcién de membrecia que
mapea elementos a grados de membrecia dentro de un cierto intervalo, el cual usual-
mente es [0,1]: si el valor es cero, el elemento no pertenece al conjunto; si es uno, per-
tenece completamente al conjunto, y si es una cantidad intermedia, el elemento tiene
cierto grado de pertenencia al conjunto (Patil y Kant, 2014). Los nimeros difusos
triangulares (TFN) son ampliamente usados como funciones de membrecia debido a
su eficiencia computacional.

Los TFN pueden ser denotados como (I,m,u), donde los parametros I, m y u
representan el limite mas bajo, el valor modal y el limite mas alto, respectivamente,
como se observa en la figura 10 y en la ecuacién (21).
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Figura 10. Numero difuso triangular

>
/ m u

Fuente: elaboracion propia a partir de Cho y Lee (2013).

0, x<l1,
N (x=1)/(m-1), 1<x<m,
Hal2)= (u—x)/(u—m), m<x<u, (21).

0, x>u,

La légica difusa es una herramienta particularmente apropiada para tomar decisio-
nes en situaciones en las que las entradas disponibles son, en general, inciertas e
imprecisas o cualitativamente interpretadas. Ademads, también puede transformar
informacion cualitativa y heterogénea en valores de membrecia homogéneos, los
cuales pueden ser procesados a través de un conjunto de reglas de inferencia difusa
apropiadas (Giupponi y Pérez-Neira, 2008).

Lalégica difusa resulta ser una posicion relativa desde el observador principal; sin
embargo, las conclusiones de la técnica estan respaldadas por métricas iniciales que
describen el conjunto de valores admisibles de una muestra. De esta manera, la 16gica
difusa, aunque con una tasa de estudio aleatoria, permite obtener valores diferentes
a los supuestos de verdadero o falso (Gavrilovska et al., 2013).

Asimismo, esta técnica proporciona al sistema razonamiento aproximado me-
diante conjuntos de reglas, y tiene la capacidad de obtener condiciones de incerti-
dumbre mediante la prediccién de consecuencias, ademas de que puede adaptarse a
nuevas situaciones (Abbas et al., 2015; Dadios, 2012; Gavrilovska et al., 2013).

Diferentes investigaciones han aplicado la teoria de logica difusa en la CR para re-
solver los problemas en la asignacion del BW, estudiando de antemano la interferen-
cia y la administracion de la energia como métodos de evaluacion en la correcta SA
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(Abbas et al., 2015; Hernandez, Salgado et al., 2015; Matinmikko et al., 2013). No
obstante, diferentes estudios han detallado tépicos como la inferencia difusa centrali-
zada, que asigna los BW correspondientes a la intensidad de trafico y la prioridad del
servicio. Asi pues, esta ultima detalla como los SU tienen que presentar solicitudes
de BW al administrador primario de la red (Abbas et al., 2015). Del mismo modo, el
administrador analiza el trafico desde la cola y verifica los retardos producidos por la
demora en la trasmision de paquetes. En otras palabras, se determina la latencia para
el acceso a SU (Abbas et al., 2015).

Algoritmos genéticos o evolutivos

Su principal campo de accion se encuentra inmerso en la optimizaciéon y busqueda
de soluciones y estan inspirados en la evolucion genética y la seleccién natural de las
especies (Goldberg y Holland, 1988). Los algoritmos evolutivos hacen parte de las
ciencias de la computacion y su principal enfoque estd determinado en la inteligencia
artificial. Siguiendo la terminologia de la teoria de la evolucién, es comun encontrar
definiciones de los cromosomas y las funciones de aptitud como descriptores de un
algoritmo genético: los cromosomas son representaciones abstractas de las solucio-
nes candidatas, y la funcion de aptitud esta estrechamente relacionada con el objetivo
del algoritmo para los procesos de optimizacién (He et al., 2010).

La ventaja de utilizar algoritmos genéticos para solucionar el problema de opti-
mizacién de la SA en CR es que pueden manejar restricciones y objetivos de forma
arbitraria; por ejemplo, las soluciones ineficientes son simplemente descartadas por
el algoritmo. En Del Ser et al. (2010) se utiliza la técnica de busqueda de armonia
para encontrar la asignacion de canal 6ptima. El algoritmo genético construye un
vector de asignacién de canales (llamados armonias): inicialmente, se realizan com-
binaciones y mutaciones de forma inteligente, y posteriormente, en la evaluacion, se
almacenan las mejores armonias (Tragos et al., 2013).

Sistemas multiagente

Los MAS se consideran una entidad inteligente y consciente del entorno capaz de
actuar habilmente y de generar comunicacion de forma independiente. Los MAS
estan relacionados con el ambiente, los objetivos, otros agentes y las diferentes rela-
ciones entre estas entidades, por lo que son rapidos, confiables y flexibles (Abbas et
al., 2015; Ferber, 1999; Wooldridge, 2009).

Trigui et al. (2012) introdujeron un concepto novedoso para direccionar el
“espectro de transicion” en CR, lo que les permite a los terminales cambiar a una
banda espectral que ofrezca mejores condiciones mediante una negociacién usando
MAS. Por su parte, Mir et al. (2011) usaron MAS para compartir dinamicamente el
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espectro en CR. De acuerdo con sus necesidades, los SU cooperan y se comunican
con los PU para compartir el espectro.

Colonia artificial de abejas

La ABC esta compuesta por tres grupos: “abejas empleadas”, “abejas exploradoras”
y “abejas observadoras”. Su objetivo es determinar la ubicacion de las mejores fuen-
tes de alimento. Para esto, las abejas empleadas buscaran las fuentes de alimento, y
si la cantidad de néctar de la nueva fuente es mayor que la de una anterior, aquellas
memorizaran la nueva posicion y se olvidaran de la anterior. Asi, las abejas emplea-
das son iguales al nimero de fuentes de alimento; las abejas observadoras comparten
la informacién de las fuentes de alimento, y las abejas exploradoras buscan nuevas
fuentes de alimento al abandonar la propia (Ahmed et al., 2016; Tragos et al., 2013).

Segun Cheng y Jiang (2011), el problema de SA se resuelve utilizando el algorit-
mo ABC: la ubicacion de una abeja o espectador representa una posible asignacion
de canal, y la cantidad de néctar es la utilidad que se maximiza.

Técnicas de aprendizaje

El aprendizaje autonomo tiene por objetivo principal el autoaprendizaje computacio-
nal, en el que las técnicas de analisis pueden ser programadas de forma auténoma a
través de la induccién del conocimiento, donde la informacion objeto de estudio esta
disponible a partir de grandes conjuntos de datos dispuestos a ser analizados para la
consecucion objetiva de resultados (Abbas et al., 2015).

Aprendizaje no supervisado

El aprendizaje no supervisado puede ser adecuado para las CR que operen en entor-
nos desconocidos de radiofrecuencia (Jayaweera y Christodoulou, 2011). Para este
caso, los algoritmos de aprendizaje sin supervision autbnoma permiten la explora-
cion de las caracteristicas del entorno y realizan acciones por si mismos, sin tener
ningin conocimiento previo (Jayaweera y Christodoulou, 2011). Sin embargo, si la
CR tiene informacion previa sobre el medio ambiente, puede aprovecharla mediante
el uso de técnicas de aprendizaje supervisado (Bkassiny et al., 2013).

Aprendizaje por refuerzo

El aprendizaje por refuerzo es una técnica que permite a un agente modificar su com-
portamiento mediante la interaccion con su entorno (Sutton y Barto, 1998). Este tipo
de aprendizaje puede ser utilizado por los agentes para aprender de forma auténoma
y sin supervision. En este caso, la tnica fuente de conocimiento es la retroalimenta-
cion que un agente recibe de su entorno después de ejecutar una accion. Dos carac-
teristicas principales caracterizan el aprendizaje por refuerzo: 1) ensayo y error, y 2)
recompensa retardada. En cuanto al ensayo y error, se supone que un agente no tiene
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ningun conocimiento previo sobre el medio ambiente y ejecuta acciones ciegamente
con el fin de explorar el entorno, y la recompensa retardada, por su parte, es la sefial
de realimentacion que un agente recibe del entorno después de la ejecucion de cada
accion (Bkassiny et al., 2013).

El aprendizaje por refuerzo ha sido incorporado en la CR y especificamente en las
telecomunicaciones moviles. En Abbas et al. (2015) se muestra la capacidad de im-
plementar un sistema de errores y recompensas en funcién de cada decision, lo que
optimiza el desempefio en la toma de decisiones para la administracion del espectro
electromagnético.

Teoria de juegos

La teoria de juegos es una herramienta matematica que pretende modelar el com-
portamiento de entidades racionales en un entorno conflictivo (Fudenberg y Tirole,
1991). En las comunicaciones inalambricas, la teoria de juegos se ha aplicado a las
redes de comunicacion de datos para modelar y analizar el encaminamiento y la
asignacion de recursos en entornos competitivos (Bkassiny et al., 2013).

Esta teoria es utilizada como una herramienta en la toma de decisiones donde
varios jugadores se enfrentan a una serie de situaciones en las que deben tomar medi-
das que en la mayoria de los casos pueden afectar los intereses de los otros (Abbas et
al., 2015). Una ventaja clave de la aplicacion de soluciones de teoria de juegos a los
protocolos de CR es la reducciéon de la complejidad de los algoritmos de adaptacion
en grandes redes cognitivas (Bkassiny et al., 2013). En la literatura actual, Ji y Liu
(2007), Nisan et al. (2007) y Zhao et al. (2009) han realizado estudios sobre la aplica-
cion de la teoria de juegos en la CR.

Aprendizaje supervisado

El aprendizaje supervisado se usa cuando los datos de entrenamiento estan etiqueta-
dos, es decir, cuando se conoce informacion a priori acerca del ambiente. Algoritmos
de entrenamiento, como los arboles de decision, las redes neuronales, las maquinas
de soporte vectorial y el razonamiento basado en casos, funcionan bien para esta
situacion, aunque sus fortalezas, limitaciones, desafios y aplicaciones referentes a la
CR difieren (Abbas et al., 2015).

Redes neuronales

Las redes neuronales se asemejan al cerebro en dos aspectos (Haykin, 1998): 1)
el conocimiento es adquirido por la red de su entorno a través de un proceso de
aprendizaje, y 2) las fuerzas de conexién interneuronas, conocidas como pesos si-
ndpticos, se utilizan para almacenar el conocimiento adquirido. Dos de las principa-
les capacidades y ventajas de las redes neuronales es que incluyen el modelado de
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comportamientos no lineales y que cuentan con capacidad de adaptacion ante cam-
bios pequenos, y su principal desventaja es la necesidad de realizar un entrenamiento
bajo diferentes condiciones del entorno (Bkassiny et al., 2013).

Taj y Akil (2011) presentan una metodologia para predecir el comportamiento del
espectro. En su investigacion, la actividad del PU es modelada a través de una serie de
tiempo caotica multivariable que se convierte en una entrada a la red neuronal, y esta
predice la evolucion de la serie de tiempo para decidir si el SU puede ocupar una SO
determinada (Bkassiny et al., 2013).

Maquina de soporte vectorial

Las SVM son el conjunto de algoritmos que tienen la capacidad de aprender bajo
la supervision de un agente de soffware. Su principal modo de operacion se da en
funcién de la regresién y la clasificacion en el aprendizaje. Esta técnica es utilizada
para llegar a margenes de clasificacion en un conjunto de datos, por lo que su prin-
cipal objetivo consiste en establecer un modelo de prediccion en el que una entrada
incierta pueda ser identificada en una categoria u otra (Abbas et al., 2015; Bkassiny et
al., 2013; Dadios, 2012; Del Ser et al., 2010; Ferber, 1999; Fudenberg y Tirole, 1991;
Goldberg y Holland, 1988; Han et al., 2012; He et al., 2010; Ji y Liu, 2007; Matin-
mikko et al., 2013; Mir et al., 2011; Nisan et al., 2007; Sutton y Barto, 1998; Taj y
Akil, 2011; Trigui et al., 2012; Wooldridge, 2009; Zhao et al., 2009).

En Ia literatura actual, Petrova et al. (2010) y Xu y Lu (2006) han realizado estu-
dios sobre la aplicacion de las SVM en la CR.

Funciones de decision

En las redes heterogéneas con facilidades de acceso ubicuo, los procesos de decisién
y seleccidn se hacen mas complejos debido a que las diferentes tecnologias de acceso,
por lo general, ofrecen diferentes caracteristicas. De acuerdo con esto, la SA llega
a ser un problema con multiples parametros que incluyen complejos trade-offs entre
criterios contradictorios. En estos casos resulta util la aplicacion de funciones de be-
neficio o costo (Ahmed et al., 2014).

Funcién de beneficio o utilidad

La funcion de utilidad tiene por objetivo maximizar la satisfaccién del usuario de
acuerdo con ciertos parametros y restricciones. En la SA y la gestiéon de decisio-
nes, la utilidad mide el nivel de satisfaccion del usuario en cuanto a un conjunto
de caracteristicas de una red inalambrica, incluyendo los parametros de recursos
asignados (Ahmed et al., 2014). Ormond et al. (2006), por ejemplo, examinan el
nivel de satisfaccion del usuario mediante el empleo de una funcion de utilidad para
aplicaciones de BE.
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Funcion de costos

La funcidén de costos, a diferencia de la funcién de utilidad, busca minimizar el costo
de ciertos parametros teniendo en cuenta las restricciones del caso. En una SO, el
costo total se calcula mediante la suma de los costos de los parametros de interés,
como la QoS, el BW, el retardo y la AP, entre otros (Ahmed et al., 2014). En Wei et
al. (2008) se presenta una aplicacion de la funcién de costo.

Algoritmos estadisticos

Existe otro tipo de técnicas que también se han utilizado para la SA en CRN y que
estan basadas fundamentalmente en conceptos de estadistica y probabilidad: las re-
des bayesianas, las cadenas de Markov y los arboles de decision.

Redes bayesianas

Las redes bayesianas son “modelos probabilisticos graficos” que dependen de la inte-
raccion de diferentes nodos para generar aprendizaje en cada uno de estos; el enfoque
bayesiano es una técnica de aprendizaje probabilistico que provee inferencias exac-
tas y estima modelos de probabilidad completa en los que el conocimiento a priori
o los resultados son usados para construir un modelo actualizado (Bolstad, 2007;
Yonghui, 2010).

Por ejemplo, Jiang et al. (2014) usan un “enfoque cooperativo” para estimar el
estado de un canal, por medio del aprendizaje bayesiano, para resolver el problema
de la deteccidén multicanal.

Cadenas de Markov

Los modelos de Markov son usados para modelar procesos aleatorios que cambian
de un estado a otro en el tiempo y en los que el estado futuro depende del estado
presente; dichos estados son visibles para el observador, en contraste con los modelos
ocultos de Markov (HMM), en los que los estados no son visibles (Fraser, 2008). Es-
tas cadenas generan “secuencias de observaciones” entre transiciones de estado, ya
sea en el tiempo o en el espacio, con probabilidades fijas. El estado actual depende de
los eventos previos, y sus sucesivas estructuras determinan el éxito del proceso. A la
cadena de Markov puede asignarsele un solo paso o puede ser extendida a las proba-
bilidades asociadas a cada una de las transiciones dependientes en multiples eventos
que la preceden (Abbas et al., 2015).

Yifei et al. (2013) usaron la toma de decisiones de Markov para el DSA en CRN.
Ademas, usaron el modelo HMM en un canal inalambrico y predijeron el estado del
canal; las decisiones estuvieron basadas en la sensibilidad espectral, la seleccion de
canal, la modulacion, los esquemas de codificacion y la potencia transmitida. Por
su parte, Pham et al. (2014) utilizaron HMM en el SH para que el SU estudiara el
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comportamiento del PU y pudiera predecir su futuro comportamiento para asegurar
la transmision.

Arboles de decisién

Los arboles de decisién son un modelo que predice el valor de una “clase objetivo”
basada en una diversidad de variables de entrada. En un arbol de decision, cada nodo
tiene un “criterio”, cada “rama” representa el “resultado de una prueba” y cada
“hoja” contiene informacion de la “etiqueta de clase” (Abbas et al., 2015; Ahmed et
al., 2014; Bkassiny et al., 2013; Bolstad, 2007; Cheng y Jiang, 2011; Del Ser et al.,
2010; Ferber, 1999; Fraser, 2008; Fudenberg y Tirole, 1991; Gavrilovska et al., 2013;
Goldberg y Holland, 1988; Han et al., 2012; Haykin, 1998; He et al., 2010; Ji y Liu,
2007; Jiang et al., 2014; Matinmikko et al., 2013; Mir et al., 2011; Nisan et al., 2007;
Ormond et al., 2006; Petrova et al., 2010; Pham et al., 2014; Safavian y Landgrebe,
1991; Sutton y Barto, 1998; Taj y Akil, 2011; Trigui et al., 2012; Wooldridge, 2009;
Xu y Lu, 2006; Yifei et al., 2013; Yonghui, 2010; Zhao et al., 2009).

Analisis comparativo de las técnicas y los algoritmos de handoff
La tabla 1 resume el analisis comparativo de las diferentes técnicas para la SA en
CRN, en términos de fortalezas y limitaciones.

Tabla 1. Analisis comparativo de las técnicas de asignacién espectral

Algoritmo Fortalezas Limitaciones
MCDM Simplicidad, facil implementacién y | No hay una metodologia analitica
respuesta rapida. para estudiar su convergencia.
Decisiones rapidas basadas en Funcionalidad limitada, ya que las
Léeica difusa reglas predefinidas y técnicas de reglas son predefinidas; necesita
& aprendizaje que pueden mejorar la | un gran numero de reglas para
calidad de las decisiones. considerar todos los parametros.
Algoritmos Optimizacion multiobjetivo y Requieren conocimiento previo del
. Eéticos configuracion dinamica con los sistema; el proceso para encontrar
& cambios del entorno. una solucion o6ptima es lento.
Adecuado para problemas con La complejidad y el costo
MAS multiples jugadores; aprendizajey | computacional pueden llegar
cooperacion. a ser altos.
, . Requiere conocimiento previo del
ABC Busqueda de soluciones en paralelo. | . q ko prevy
sistema y una funcién de aptitud.
.. Aprendizaje autbnomo usando . .
Aprendizaje prendizaje aut ., | Necesita reglas de derivacion para
retroalimentacion y autoadaptacion f
por refuerzo . . lograr exactitud.
progresiva en tiempo real.
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Algoritmo Fortalezas Limitaciones
Reduce la complejidad de la . . .
L . . Requiere conocimiento previo de
, adaptacion, brinda soluciones por . , .
Teoria de . s diferentes parametros del sistema y
. medio de multiples agentes y cuenta . .
juegos . que los datos de entrenamiento estén
con enfoque cooperativo y no .
. etiquetados.
cooperativo.
Dependiendo del tamafio de la
Tienen habilidad para adaptarse a | red, el entrenamiento puede ser
Redes los cambios menores, son excelentes | lento; tienen poca capacidad
neuronales para clasificacion y pueden para generalizar; pueden suftir de
identificar nuevos patrones. sobreentrenamiento, y requieren
datos previos.
. . Requiere que los datos de
Capacidad de generalizar; robustez q d P
. entrenamiento estén etiquetados;
contra el ruido de entrada y otros . .
. hay que tener previo conocimiento
SVM casos, y, en comparacion con las . . .
. . | del funcionamiento del sistema, y
redes neuronales, mejor desempefio . .
. se vuelve complejo a medida que el
con poco entrenamiento. .
problema es més grande.
Funciones Permiten encontrar 6ptimos Requieren que todos los parametros
de utilidad y | con multiples parametros y estén modelados con una funcion
costo restricciones. analitica.
Requieren conocimiento previo del
Redes Se basan en modelos . .
. o sistema y presentan complejidad
bayesianas probabilisticos. :
computacional.
Modelos de Se basan en modelos estadisticos, Requieren conocimiento previo del
Markov son facilmente escalables y pueden | sistema y presentan complejidad
predecir con base en la experiencia. | computacional.
Requieren conocimiento previo
Arboles de Simplicidad y toma de decisiones del sistema, pueden sufrir
decision mediante las configuraciones sobreentrenamiento y requieren que
de sus ramas. los datos de entrenamiento estén
etiquetados.

Fuente: elaboracion propia a partir de Bkassiny et al. (2013),
He et al. (2010), Tragos et al. (2013) y Yifei et al. (2013).

Desafios de investigacion en la asignacion espectral

Existen varios temas de investigacion abiertos que necesitan ser estudiados para el de-
sarrollo de la SA; algunos de ellos se mencionan a continuacion (Akyildiz et al., 2006).

Modelo de decisién multivariado
La SNR no es suficiente para caracterizar las bandas espectrales en las CRN, pues
muchos otros parametros de caracterizacion del espectro afectan la calidad. Por lo
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tanto, la manera de combinar estos parametros de caracterizacion del espectro para
el modelo de decision del espectro sigue siendo una cuestion abierta.

Algoritmos adaptativos

Para desarrollar soluciones eficientes en la SA, es necesario desarrollar algoritmos
que logren adaptarse a diversas condiciones y escenarios, con el objetivo de satisfacer
los requisitos de un entorno altamente dinamico. Todos los algoritmos hasta ahora
vistos se centran en un escenario y una red estaticos y en tratar de encontrar una so-
lucion Optima de acuerdo con algunos criterios (Tragos et al., 2013).

Seleccién multicanal

En las CRN se pueden utilizar simultaneamente multiples bandas del espectro para
la transmision, y estas no tienen que ser contiguas para que un SU pueda enviar
paquetes. Esta transmision sobre multiples bandas muestra menos degradacion de
calidad durante el SH que la transmision convencional, sobre una sola banda del
espectro (Akyildiz y Li, 2006). Por ejemplo, si un PU aparece en una banda del es-
pectro en particular, el SU tiene que desalojar solo esa banda y puede mantener la
comunicacion en el resto de las bandas de espectro, por lo cual la degradacion de la
QoS puede ser mitigada (Dadallage et al., 2016).

Adicionalmente, la transmision en multiples bandas del espectro permite un menor
consumo de energia en cada una de estas, y, como resultado, se consigue tener menos
interferencias con los PU en comparacién con la transmisioén en una unica banda del
espectro (Akyildiz y Li, 2006). Por estas razones, el esquema de gestion del espectro
debe tener la capacidad de toma de decision para multiples bandas. Sin embargo, la
forma de determinar el nimero de bandas del espectro y como seleccionar el conjunto
de bandas apropiadas siguen siendo temas de investigacion abiertos en CRN.

Seleccién cooperativa del espectro

El enfoque cooperativo tiene mas ventajas que el enfoque no cooperativo. En la de-
teccidn de espectro cooperativa, el SU vecino comparte su informacién de deteccion
con el objetivo de aprovechar la diversidad espacial. Un desafio en la seleccion de
espectro cooperativa es como combinar la informacion de los usuarios cooperativos
mientras se realiza la transmisién (Masonta et al., 2013).

Seleccidn de espectro en redes heterogéneas

En una determinada CRN puede haber requerimientos de QoS heterogéneos y el es-
pectro disponible puede presentar fluctuaciones y cualidades variables. En las redes de
trafico heterogéneas, un desafio consiste en seleccionar las bandas de frecuencia apro-
piadas para satisfacer los requerimientos de QoS de cada SU (Masonta et al., 2013).

751EC



Cesar Augusto Hernandez Suarez, Danilo Alfonso Lopez Sarmiento y Diego Armando Giral Ramirez

Caracterizacion del arribo de los usuarios primarios

Avances recientes en el area de las comunicaciones inalambricas, como el DSA, pro-
meten la generacién de nuevas metodologias que permitiran resolver algunos de los
principales problemas a los que se enfrentan hoy en dia las tecnologias de acceso
inalambrico (figura 11). Uno de estos avances tiene que ver con la asignacion de la
porcidén del espectro radioeléctrico util (licenciado y no licenciado), que facilita la
conexién de dispositivos con baja probabilidad de errores. En la actualidad, la distri-
bucién de ese rango de frecuencias es controlada por las entidades gubernamentales
de cada pais, donde a cada operador de telecomunicaciones se le asigna de manera
individual y fija un rango de frecuencias en forma de licencias renovables.

La BS de la CRN (figura 12) puede decidir sobre el mejor o los mejores canales
para los SU, teniendo en cuenta la actividad del PU. En este contexto, el éxito en la
seleccion de canales dependera de qué tan confiable es el algoritmo de pronostico
para detectar la presencia/ausencia del usuario licenciado; si el porcentaje de pre-
diccion es alto, el funcionamiento del sistema sera optimo, ya que la probabilidad
de asignar espectro errébneamente serd muy baja y evitara colisiones entre el PU y
los SU; por el contrario, si la estimacién no es acertada, el sistema no funcionara
adecuadamente y la cantidad de interferencias producidas volvera inviable la imple-
mentacion de las redes inalambricas cognitivas.

Figura 11. Etapas que componen las redes de radio cognitiva

Redes de radio cognitiva

Etapas de CR
| I
| | ! ! ! |
I I
\ Sensado de ~ Decisiéonde | _ Movilidadde | _ Comparticion :
X espectro espectro espectro de espectro X
I I

Caracterizacion _| Seleccién de Reconfiguracion
dePU ” canales del radio

Fuente: elaboracion propia.
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Figura 12. Contexto de la caracterizacion en la etapa de
decision espectral en redes de radio cognitiva

Base de datos PU
Caracterizacion espectral
(modelado y prediccién)
PU con asignacién de Uso historico de las
bandas espectrales bandas espectrales
licenciadas GSM
Solicitud de acceso ((( )))

oportunista al espectro

Gestion (seleccién y asignacion)
dinamica del espectro en la BS

Fuente: elaboracion propia.

Dar una solucion adecuada al problema de caracterizacion implica la posibilidad de
aprovechar las habilidades de aprendizaje auténomo de la inteligencia artificial; en
este sentido, la pregunta que se plantea es: ;/la implementacion del modelo de apren-
dizaje LSTM (long short-term memory) como predictor permite mejorar el porcentaje
de acierto para detectar la presencia o ausencia de PU en bandas espectrales?

Las habilidades de aprendizaje —mediante la inclusién de conexiones peephole
(Graves, 2012)—, de almacenamiento de patrones durante el entrenamiento de la red
y de acceso a la informacién por largos periodos de tiempo en las celdas de memoria
de LSTM pueden ser aplicadas al comportamiento cadtico de sefiales PU para estimar
mas acertadamente su patron de aparicion en las bandas espectrales asignadas. Es claro
que, a pesar de la existencia de varias propuestas para la modelizacion de la actividad
del PU, es importante seguir buscando la forma de minimizar el porcentaje de error en
esta prediccion, pues esto redundara, a su vez, en la optimizacién de la fase de toma de
decisiones espectrales en CR; alli se centra el presente capitulo de investigacion.

Caracterizacion del usuario primario con long short-term memory

Realizar predicciones con un alto grado de precision es bastante beneficioso para la
planificacion y control en muchos campos de investigacion y desarrollo, pero dicho
grado de exactitud en las estimaciones trae consigo un alto nivel de dificultad (Sal-
gado, 2014); sin embargo, existen técnicas de prediccion prometedoras y aplicables a
CR, basadas en inteligencia artificial, con capacidad para proporcionar conciencia,
razonamiento y aprendizaje adicional (He et al., 2010), caracteristicas capaces de in-
teractuar entre si y que, por tanto, benefician la capacidad de autonomia de las redes
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de radio cognitiva y elevan su rendimiento con un bajo nivel de dificultad y adecuado
a las necesidades de aprendizaje autonomo de CR, como es el caso de LSTM.

La estimacion futura del estado del canal en las bandas GSM y Wi-Fi (desde la
perspectiva del PU) se abordd para este caso especifico como un problema de pre-
diccion de series binarias, a partir de la conversion de los niveles de potencia (dBm)
—capturados y entregados por el analizador espectral— a valores discretos y utili-
zando un sistema neuronal recurrente basado en deep learning. Inicialmente, se define
el concepto tedrico de LSTM, se describe la forma como se modela la sefial PU de
entrada al sistema y se analiza la estructura en capas de la red LSTM, y posterior-
mente se construye el modelo matematico que explica el sistema LSTM y se describe
la interaccidn existente entre las neuronas de entrada, las celdas de memoria y las
neuronas de salida durante el proceso de entrenamiento o aprendizaje.

LSTM

Las redes neuronales artificiales tradicionales no poseen la capacidad de almacenar
informacion, para lo cual es necesario modificar su topologia creando estructuras
recurrentes que retroalimentan la neurona y permiten el almacenamiento de
informacion; a estas estructuras se las conoce como neuronas recurrentes. La union
de un conjunto de estas neuronas es denominada red neuronal recurrente (RNN) y
permite preservar estados subsecuentes entre diferentes intervalos de tiempo cuyos
parametros son compartidos entre las multiples partes del modelo, lo que permite
una mejor generalizacién (Veeriah et al., 2015). Uno de los problemas de las RNN
consiste en el Jong-term dependency, que plantea la necesidad de no siempre estudiar
todo un historico para desempefiar una tarea actual, lo que implica que estas redes
neuronales solo almacenan la informacién aprendida en el pasado y no estan en
la capacidad de almacenar nueva informacion a corto plazo. Las LSTM pueden
ser explicitamente disefladas para evitar el problema de long-term dependency, es
decir, para que recuerden la informacién por largos periodos de tiempo, pero
también para que aprendan nueva informacion en el presente. Los bloques LSTM
contienen celdas de memoria que permiten recordar un valor por una arbitraria
longitud de tiempo y usarlo cuando sea necesario; ademas, tienen una capa de
olvido que puede borrar el contenido de la memoria cuando no es tutil. Todos los
componentes son construidos para funciones diferenciables y entrenadas durante
el proceso backpropagation (Wang et al., 2015). La estructura de una LSTM puede
ser representada como se muestra en la figura 13, donde la celda de memoria es
simbolizada por la letra C; la capa de olvido, por la letra o; la capa de entrada, por
la letra ¢, y la capa de salida, por la letra s.
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Figura 13. Representacion grafica de las redes neuronales tipo long short-term memory
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Fuente: Yao et al. (2015).

Modelado de la sefial de entrada y las capas del sistema LSTM

La senal de entrada discreta representa la presencia (1) o ausencia (0) de un PU den-
tro de la banda espectral durante un tiempo 7, de acuerdo con la ecuacion (22), y, a
partir de dicha secuencia binaria, el predictor esta entrenado para pronosticar el es-
tado del canal no solo en la siguiente ranura de tiempo, sino en posteriores instantes,
segun el historial de comportamiento del PU en el canal.

T _
X, —[xo,xl,xz,x3,...,xT] (22),

donde (xOT ) es la seflal de entrada discretizada.

Determinar el nimero exacto de neuronas para la solucion del problema es par-
ticularmente dificil. Una red neuronal muy pequefia no puede aprender a solucionar
el problema de forma correcta, pero una red muy grande generard un sobreajuste
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(es dectir, el problema se particulariza, mas no se generaliza) (Kwok y Yeung, 1997);
ademas, se debe considerar que a mayor nimero de capas y neuronas, el tiempo de
entrenamiento se hace mayor y se utiliza una mayor cantidad de recursos. En este
caso particular, ya que se ajusta al problema en cuestion, se utilizo la técnica de opti-
mizacion numérica, basada en la regla de la piramide geométrica, util cuando el nu-
mero de neuronas de la capa de entrada es mayor que el de la capa de salida (Masters,
1993). Debido a que se debe dividir el nimero de neuronas de la capa de entrada #
veces por una potencia de 2 hasta que se obtenga 1, se llega a la ecuacion (23):

1= Z—O & n=[log,(Co)] (23),

donde Co corresponde al numero de neuronas de la capa de entrada y 7 es al nimero
de capas existentes.

De la ecuacién (23) se puede intuir que el nimero de capas crece de forma con-
trolada a medida que aumenta la cantidad de neuronas en la entrada. En razén a que
en el disefio se optd por el desarrollo de una aplicacion de soffware dindmica (cuya
red neuronal LSTM es variable y dependiente de la secuencia de entrada), el numero
total de neuronas (V) que componen una topologia de red se obtiene de la ecuacion
(24):

N = {C—?} (24).
oL 2

Aproximando la serie anterior, se llega a la ecuacién (25):
N~Co(2-2) (25).

Tomando el Co de la ecuacién (25) como un nimero muy grande, se puede suponer
que el namero total de neuronas tiende a:

lim C0(2 —2-"0) =2Co=» (26).

CO—>®0

La ecuacion (26) indica que, a medida que aumenta el nimero de neuronas en la capa
de entrada, el numero total de neuronas corresponde aproximadamente al doble.

Modelo de funcionamiento del sistema LSTM
El modelo LSTM puede considerarse como un aproximador diferenciable de funcio-
nes que usualmente se entrena con el gradiente descendente (Graves, 2012), y aunque
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originalmente se empled una forma truncada del backpropagation through time (BPTT)
para aproximar el gradiente del error (Hochreiter y Schmidhuber, 1997), en la inves-
tigacion se hizo uso del calculo con BPTT sin truncamiento, a partir de lo planteado
por Graves (Graves y Schmidhuber, 2005). El funcionamiento de la red neuronal
LSTM se describe en las ecuaciones (27)-(52), que hacen uso de las notaciones esta-
blecidas en la tabla 2, las cuales son congruentes con Graves (2012).

Tabla 2. Notaciones para el desarrollo del modelo matematico

Bloque de Celda de
t . Input gat Fi t gat tput gat .
Concepto memoria nput gate orget gate Output gate memoria
Subindice ] [ %) w c
t
Entrada X a lt a(tz Cl:} a.S.
Salida b, b, b, b, b, =b},(s.)
Numero de . . .
unidades I No aplica No aplica No aplica C
Funcion de . . . . . . . f (in-cell)
activacion No aplica f sigmoide f sigmoide f sigmoide 1 (sal-cell)

Fuente: elaboracion propia.

Ecuaciones forward pass

Para las tres compuertas de la celda (entrada, olvido y salida), las funciones de propa-
gacion alt, a’g y a; (Graves, 2012) no solo consideran la suma ponderada de las en-
tradas actuales, sino también las salidas en el tiempo inmediatamente anterior de los
bloques en la capa oculta y de los estados de las otras celdas del mismo bloque (salvo
en la compuerta de salida, porque ahi se requiere del estado actual de las celdas). En
este sentido, las ecuaciones (27)-(32) (Graves, 2012) resultan del analisis del bloque
LSTM (figura 14) para cada una de las compuertas y la celda de memoria que con-
forman el modelo. Se debe tener en cuenta, para la interpretacion de las ecuaciones,
que w, hace referencia al peso de la conexidn desde la unidad 7 hasta la unidad j; que
la secuencia de entrada a la red LSTM para la unidad j en el tiempo ¢ se representa
como a}; que la activacion de la unidad j en el tiempo ¢ se indica como 5/ ; que el
subindice ¢ identifica las celdas de memoria; que los pesos de las celdas ¢ para cada
una de las compuertas de entrada, olvido y salida se denotan como W, W, YW, ;
que Sé es el estado de la celda c en el tiempo £; que fes la funcion de activacion de
las compuertas, y que g y / son las funciones de activacion de las celdas de entrada y
salida, respectivamente.
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Input gate:

L H c
t t ot t .11 t-1
a, = Zwi,xi +2thbh +Zw€1sc +6, 27),
i=1 h=1 =1

donde alt es la funcién de propagacion de la compuerta de entrada (/) en el tiempo ¢,
W, es el peso de la conexion de la unidad 7 a la unidad / en el tiempo ¢, x; es el vector
de entrada i para el modulo LSTM en el tiempo ¢, w,, es el peephole weight para la
funcién de activacion / en la compuerta de entrada /, b, corresponde a la salida de
la celda 7 en el tiempo £~ 1, W, es el peephole weight de la celda ¢ para la compuerta de
entrada, sé’l es el estado de la celda c en el tiempo £ —1 y 6, es el sesgo (bias).

b =f(a)) (28),
donde b, representa el médulo de activacién (funcion sigmoide) para alt.

Forget gate:

L H c
ag = Z WX, + Z W/i@b;f] + Z WCQS:] +6, (29),
i=1 h=1 c=1
donde a; es la funcion de propagacion de la compuerta de olvido (@) en el tiempo z.

by = f(a;) (30),

donde b}, es la funcion de activacion de a; en el tiempo ¢ (asimase que @ = ¢).!

Output gate:
L H c
a, =D WX+ Wb+ w57+ 0, (31);
i=1 h=1 c=1
b, =f(a,) (32),

donde a!, es la funcién de propagacion de la compuerta de salida (w) en el tiempo £, y
b;, es la funcién de activacion de la compuerta de salida a!, en el tiempo .

Para describir el comportamiento de la celda, se deben tener en cuenta dos ele-
mentos: el primero es la funcién de propagacién aﬁ,, que depende no solo de las entra-
das actuales, sino de las salidas en el tiempo inmediatamente anterior de los demas

1 La definicion de las variables y sus respectivos subindices se puede obtener de manera similar a la
descripcion hecha para la ecuacion (27), tomando como referencia la tabla 2 y las consideraciones
previas de este item.
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bloques en la capa oculta, y el segundo es el estado de la neurona SZ, que indica si
esta esta conservando la informacion u olvidandola y que depende de la salida de la
forget gate y de la input gate.

Figura 14. Arquitectura LSTM utilizada para la caracterizacion de PU

Output gate

ag tanh bia@l) bl.h(s)
19(ac

Net Input Net Output

Forget gate

g(at)

Fuente: elaboracion propia a partir de Palangi et al. (2016).

La salida de la neurona bC' indicara si se gener6d nuevo aprendizaje o si se conserva
la informacién almacenada. Teniendo claro lo anterior, a partir de lo mostrado en la
figura 14, se concluye que el estado y la salida de la celda estan dados por las ecua-
ciones (33)-(35) (Graves, 2012):

Estado de la neurona:

L H
t_ ¢t t g1
a.= z WieXi + Z thbh (33),
i=1 h=1

donde aé es el vector de entrada para la celda LSTM c en el tiempo ¢, L es el nimero
de unidades del bloque de memoria y H es el nimero de celdas en las capas ocultas
de la red.

s'=hls" +bg (aé ) (34),
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donde g es la respuesta a la salida de la funcion tangh.

Salida de la neurona:
bl =b.h(s!) (35),

donde 7 es la funcion de activacion para la salida de la celda de memoria.

Ecuaciones backward pass

Para obtener las ecuaciones backward pass, se hace uso del método BPTT (Graves,
2012), que implica la utilizacion de la regla de la cadena para calcular las derivadas
de los errores a la salida de los componentes de un bloque LSTM. Definiendo las sa-
lidas input gate, output gate y forget gate como 5;, estas pueden ser representadas como
se describe en la ecuacion (36):

OF
5=
J aall‘

JELD,wy (36),

donde 5;. , en este caso, hace referencia a la variacion del error E en funcion del estado
del bloque de memoria 7 en el tiempo ¢ (a; ).

Ademas, definiendo la salida de la celda (Eé) y el estado de la celda (Sz, ), se tienen
las ecuaciones (37) y (38):

. OE
€ =—r (37),
ob°
donde bf es la salida de la celda de memoria en el tiempo r=¢£.
, OE
€ = P (38).

Definiendo E —en las ecuaciones (37) y (38)— como la funcion de pérdida (error)
y partiendo del hecho de que se desea establecer como varia el error al hacer modi-
ficaciones en los pesos, a partir de la regla de la cadena —ecuaciodn (39)— se tiene:

OF _OF 0a, _, OF
ow, Oa, 0w, 0,

i

(39),

donde b, es la salida del bloque de memoria.
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. . o .
De la ecuacién (39) es claro que el objetivo es calcular 2, PETO, teniendo en

cuenta que para el caso de LSTM existen cuatro tipos de g, " la output gate (aE ),
las cells (OE ), la forget gate ( ) y la input gate ( )— estas se pueden definir como se
muestra en las ecuaciones (40) (43) (Graves, 2012)

OE OE 0Ob. 0b,,  0b, ~~ OE 0D,
—Z 3

(40),
aw 8[)’ ab' 8a  oa' i ab’ ab’
donde B%E es la derivada parcial del error E para la compuerta de entrada.
OE OFE Gsé @)
da. 0Os. da. ’
oF OE 0b! 6b’ 8bfa OE ob!
Z T P ey (42),
da, T Ob. Ob, 8a® 6a® o Ob. Ob,,
donde ’BTE es la derivada parcial del error E para la compuerta de olvido.
OF GOE 6s 81)’ ﬁb’ ~ OF 6s @)

da! S os' ob' da' oal S os' ob!

donde % es la derivada parcial del error E para la input gate.

Teniendo en cuenta que la sumatoria se hace sobre ¢, pues el modelo se desarrolla
en un unico bloque (que posee C celdas en su interior), al calcular las derivadas res-
pectivas se encuentran las descripciones matematicas mostradas en la ecuacion (44)
(Graves, 2012).

aSé _ t Os" s abé B .
ob! =s(a) GbZ =5 b, =h(s)
ob, (4t aé t 1 ob, ot
aaz =f (a@) 622 :b/g (ac) aall’ =f (al) (44).
o
oa. _f( W)
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A partir del analisis matematico aplicado, se llega a las ecuaciones backward pass
—ecuaciones (45)-(48)— (Graves, 2012):

Output gate:

o, = oOF =f’(a;)ieéh(sé) (45),

donde 5; es la variacion del error para la compuerta de entrada (en dicho bloque de
memoria), y de manera analoga aplica para 56’, o t@ y 5[ en las ecuaciones (46)-(48):

Cell:

oF

Si=—=ebg (aé) (46).
Forget gate:
Oy = 8[? =f '(afD)chsé"l (47).
aaCIJ c=1
Input gate:
OE . <
5 Za_a,’zf (a;);e;g(a;) (48).

B . o t t
Notese que las ecuaciones (45)-(48) dependen de los términos €, y €, por lo que es
necesario determinar la forma como el error se afecta al hacer cambios tanto en las
salidas de las celdas como en sus estados.

En este caso, es necesario tener presente que el error es una funcién cuyas varia-
bles son las K salidas generadas por los H bloques de la capa oculta; es mas, para un
bloque fijo, la salida resultante en un tiempo ¢ afectara a las K unidades de la capa de
salida (en el instante #) y a la proxima entrada de cada uno de los H bloques en la capa
oculta. Por lo anterior, ect puede ser definida a partir de la ecuacion (49):

K t H t+1
. _OE _ 3 OF da! .S OE oa! o

Ec t t t t+1 t
ob' S odl ob'  Soa ob'

y la salida de la celda queda como se describe en la ecuacion (50):
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H
€ = Z aE; Wy Za—EW (50),
k

t+1 "ch
o oa i oa,

1+l
Oa,

%_W =w
donde b Y T T

Finalmente, se debe analizar qué sucede con el error si se generan cambios en los
estados de la celda. Si el estado de la celda es ¢ y el tiempo es ¢, Sé indica si se mo-
difico o no la informacion almacenada en ese momento; por lo tanto, sé es un valor
que afecta la entrada de todas las gates, el proximo estado de la celda y, claramente, la
salida de la propia celda; matematicamente, esto es —ecuacion (51)—:

o _OFE _OE ob! , OF s L OE oa" , OE oa}” L OF oal,
* os' ob os. os't os'  oa” os'  oal' os'  oal, Os!

(51),

donde el estado de la celda queda como se muestra en la ecuacién (52) —valores
concordantes con lo mostrado por Graves (2012)—:

b, os'™! da’" oay’ oa;
€= —+el —— 45" 45—t 2 (52).
0s,, 0s., Os.. 0s,, 0s,,

Caracterizacion del usuario primario con un modelo neurodifuso: Anfis-grid-FCM

Modelo de funcionamiento del sistema Anfis

Una de las arquitecturas Anfis (adaptive neuro fuzzy inference system) probadas esta for-
mada por las funciones de pertenencia descritas e interconectadas como lo mues-
tra la figura 15, dando lugar a reglas con producto T-norma (77,) e inferencia tipo
Takagi-Sugeno aplicadas a un comportamiento continuo de la sefial que identifica
el PU. Esta arquitectura se compone de tres entradas (no se muestran las sefales de
retroalimentacion), una salida y cinco capas, y su modelado se basa en la propuesta
de Jang —ecuaciones (35) y (44)— (Siddique y Adeli, 2013).

Capa 1. Cada nodo es adaptativo y representado matematicamente por las fun-
ciones de las ecuaciones (53) y (54):

0,,=9D,(X,);Vi=1,2,3 (53);

0, =9E,(X,);Vi=12,3 (54),

donde O, esla salida del nodo 7 (que especifica el grado al que el .x, dado satisface el
cuantificador D,y E, ), X, corresponde a la entrada del sistema, y D,y E, son las eti-
quetas lingtiisticas asociadas a la funcion de membresia ¢ dada por la ecuacién (55).
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Figura 15. Estructura Anfis para la caracterizacién de PU

Layer 1 Layer2 Layer3 Layer4 Layer 5

gl

&l
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%

8l

Output

[ ]

el

8l

el

gl

8l

Fuente: Siddique y Adeli (2013).

—(X-a)®

9(Xa.b)=e ¥ (55),

donde a representa el centro de la funcion gaussiana y b determina su ancho.

Capa 2. En este nivel, la fuerza de disparo de cada regla es calculada. La fuerza
de disparo se refiere a la aplicacion de la T-norma: operaciéon computacional cuyo
objetivo es calcular la afirmacion lingiiistica y en reglas del tipo “si X, es D,y X, es
D2 = Yes Cl”, donde X'y Y hacen referencia a las variables del antecedente, y F,
a las del consecuente (Zapata Mufioz y Anzola Rojas, 2016). Matematicamente, la
salida esta dada por la ecuacion (56):

0,,=W,=9D,(X,)*9E (X,);Vi=12,3 (56),

i i

donde O, representa el valor de salida de la capa 2 y w, hace referencia al grado en
que se satisface la parte antecedente de una regla difusa.

Capa 3. En esta capa se obtiene el promedio de las salidas del nivel anterior y se
generan los pesos normalizados (N en la figura 15), con el fin de establecer la rela-
cion entre la fuerza de una regla en particular y la suma de las fuerzas de todas las
demas reglas, para asi conocer “qué tanto se cumple” una regla respecto a las demas
—ecuacioén (57)—:
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0, =W, =t = i
5 =2 ZQZW, W, + W, + W, + W, + W, + W, + W, + W, +W, (57),
1

donde Wl representa las fuerzas de disparo normalizadas de las reglas y W, es la salida
de la capa anterior.

Capa 4. Aqui se determinan los parametros del consecuente, donde la funcion de
cada nodo pertenece a una combinacién de la salida de la capa 3 y a una ecuacién
lineal simple tipo Takagi-Sugeno —ecuacion (58)—:

04,1 = W/*f, = 03,i :WI(Sin +TX, +Zi) (58),

donde el factor £, se relaciona con las reglas difusas; S, T,y Z, son el conjunto de
parametros del consecuente de las reglas “if... then”, y donde estas reglas son del tipo
ecuacion (59):

If X,=D, and X, =E, Then f,=SX,+TX,+Z, (59).

Capa 5. Corresponde a la salida o respuesta y esta dada como la sumatoria de todas
las sefales entrantes (salida de la capa 4). Matematicamente, puede ser representada
como la ecuacion (60):

s :
Os,i:YzZ = : (60),

donde O, corresponde a la salida o respuesta del sistema.

Si se establece que los valores de los parametros de la premisa son fijos (Keller et
al., 2016; Samui, 2015), el Anfis puede ser escrito como una combinacién lineal de
los parametros del consecuente —ecuaciones (61) y (62)—:

w,

W.
2 fz+

h+ -
- 1
w + w, w + w, w + w,

W W, W. W W,
5 7 s + 9

5 6
TR R e TG

05,i

W,
fit St : s
W, +W, wHw, W+ w, W +w,

O,, =W,(S,D,+ TE, + Z,)+ W, (8,D, + T,E, + Z,) + W, (8,D, + T,E, + Z,) +...
W, (8,D, +T,E, + Z,)+ W, (S;D, + T.E, + Z,) + Wy (S;D, + T,E, + Z;) +...  (62).
W,(S,D,+ T,E, + Z, )+ W, (S,D, + T,E, + Z, )+ W, (S,D, + T,E, + Z,)
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Modelo Anfis-grid-FCM

El Anfis fue introducido por Jang en 1993 (Jang, 1993) y se puede afirmar que es un
tipo de red neuronal que es funcionalmente igual a un modelo de inferencia Takagi-
Sugeno. Anfis es un modelo hibrido inteligente que combina las ventajas de la logica
difusa con las de las redes neuronales artificiales. Especificamente, utiliza la técni-
ca de las redes neuronales para actualizar los parametros del modelo de inferencia
Takagi-Sugeno y tiene la capacidad de aprender de la etapa de entrenamiento; por
tal razon, las soluciones encontradas en un sistema de inferencia difusa (FIS) pueden
describirse en términos lingiisticos (Abdulshahed et al., 2015).

Anfis-grid es un paradigma que combina Anfis con el método de particiones grid
para generar el conjunto de reglas del sistema neurodifuso. Dicho particionamiento
consiste en dividir el subespacio de datos en subespacios rectangulares utilizando
particiones paralelas al eje; estos subespacios estan basados en un numero prede-
finido de funciones de membresia, lo que indica que Anfis-grid divide las variables
de entrada en varios conjuntos difusos. Cuando se emplea esta técnica de particion
de cuadricula, el conjunto de reglas cubre todo el espacio de entrada mediante el
uso de todas las combinaciones posibles de los conjuntos difusos de entrada. La
principal limitacion de este método es que el numero de reglas puede aumentar de-
pendiendo de la cantidad de datos de entrada, por lo que Anfis-grid es adecuada solo
para casos con un pequefio numero de variables de entrada. En esta técnica, los pa-
rametros difusos se calculan utilizando el concepto de minimos cuadrados en concor-
dancia con el tipo de particiéon y las funciones de membresia (Mingzhen et al., 2007).

El Anfis basado en fuzzy c-means (FCM) es un tipo o método de aprendizaje no
supervisado de agrupacién que permite que una pieza de datos pertenezca a dos o
mas agrupaciones y es ampliamente utilizado para el reconocimiento de patrones
y para prediccion. Especificamente, este modelo genera un FIS usando FCM me-
diante la extraccion de un conjunto de reglas que modela el comportamiento de los
datos. La funcidn requiere conjuntos separados de datos de entrada y salida como
argumentos que alimentan el algoritmo. FCM divide una coleccion de 7 vectores x,
(donde 7 = 1,2,..., n) en grupos difusos y determina un centro de claster para cada
grupo, de modo que la funcién objetivo de la medida de disimilitud se reduce [3] y
hace que la prediccion sea mas confiable.

Red neuronal artificial de perceptron multicapa

La MLP es un tipo de red neuronal conformada por una o mas capas de neuronas en
la que los datos que alimentan el sistema se envian a la capa de entrada; pueden exis-
tir una o mas capas ocultas que proporcionan niveles de abstraccion y una capa visi-
ble o de salida. La capacidad predictiva de este tipo de redes neuronales artificiales
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(ANN) proviene de su estructura jerarquica o de varias capas. Las MLP son adecua-
das para resolver problemas de prediccidn, de clasificacion y de regresion en los que
las entradas tienen asignada una entrada o etiqueta. Para el caso de un perceptrén
simple, este genera una region de decision que clasifica un conjunto de puntos me-
diante la separacion de estos. La region de decisidon divide el espacio en dos mitades
determinadas por un hiperplano definido por los pesos sinapticos obtenidos durante
el proceso de entrenamiento. Los pesos sindpticos son calculados por el algoritmo
de correccion del error, que calcula la diferencia entre el valor obtenido después del
entrenamiento y el valor esperado, y la multiplica por la pendiente del hiperplano
actualizando la region de decision en cada ejemplo de entrenamiento. Un conjunto
de perceptrones simples genera un perceptron multicapa que permite dividir la regidon
en mas de dos mitades, lo que genera un hiperplano a trozos capaz de clasificar varios
puntos linealmente independientes (Florez-Lopez y Fernandez Fernandez, 2008).

Caracterizacion del arribo de los usuarios secundarios

La generacion de esquemas Optimos de procesamiento de solicitudes hechas por SU
en la etapa de seleccion de bandas espectrales es uno de los desafios de la CR, ya que
ello incide directamente en el tiempo que le lleva a la BS seleccionar y asignar un canal
para que, de manera oportunista, los SU realicen el envio de sus datos a través de la red
inalambrica. Por ello es importante generar estrategias que permitan reducir la varia-
ble tiempo de procesamiento y, de esta manera, mejorar el rendimiento del sistema. Este
apartado del libro plantea la generacion de un modelo para predecir el arribo de SU a
una BS, teniendo en cuenta los criterios y el tipo de calidad de servicio (RT o BE), con
el fin de que el canal se pueda reservar de manera anticipada para la transmision de
los datos. El modelo desarrollado, llamado estrategia proactiva de arribo de usuarios secun-
darios, demuestra que es posible optimizar el rendimiento de la CR, ya que el tiempo
que tardaria la estacion central en asignar un canal seria menor que si se utilizara una
estrategia de asignacion de bandas espectrales convencional (llamada estrategia reactiva).

Ademas, se presenta el desarrollo de un algoritmo que predice la llegada de un SU
——con requerimientos de tipo de servicio (BE o RT) y de BW determinados— a una
BS en una red cognitiva basada en infraestructura por medio de redes neuronales.
El algoritmo utiliza una técnica de construccion de forma dinamica, aprovechando
la topologia piramidal geométrica, y entrena una MLPNN basada en el histérico de
llegada de SU para estimar las solicitudes futuras; esto permite gestionar mas rapida-
mente la informacion en la BS para la seleccion del mejor o los mejores canales en
CRN, ya que anticipa la llegada de los SU.

En el contexto de la seleccion de espectro en redes inalambricas de CR centrali-
zadas, como la que se muestra en la figura 16, la gran mayoria de autores (Do et al.,
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2013; Kasbekar y Sarkar, 2010; Wang, Wang et al., 2011) han inclinado sus modelos a
la utilizacidn de estrategias reactivas, pero con un gran inconveniente, debido al tiempo
que se consume en la busqueda y seleccion de la frecuencia libre mas 6ptima para la
transmision de los datos de los SU (variable critica dentro de los sistemas de telecomu-
nicaciones). La implementacién de un modelo en el que la identificacién del canal se
hace milisegundos antes de la llegada del usuario cognitivo, a partir de la prediccion
del arribo del SU, permite disminuir los tiempos de asignacion, lo que mejora la etapa
de decision de espectro (Sarmiento et al., 2016). En este sentido, para la descripcion y
evaluacion del modelo, primero se elabora una estrategia de arribo reactivo de los SU;
luego, se hace la presentacion del modelo (estrategia proactiva), y finalmente se valida
mostrando que su desempeiio, desde el punto de vista del tiempo de procesamiento en
la BS, es mas optimo debido a que se estima el arribo futuro de los SU.

Figura 16. Red de radio cognitiva basada en infraestructura

((g7)

Usuario secundario Usuario secundario

Fuente: elaboracion propia.

Estimacion del arribo del usuario secundario:
modelo reactivo y modelo proactivo

Modelo del sistema para el caso reactivo
El diagrama de bloques del modelado de la estrategia reactiva de SU incluy6 lo mos-
trado en la figura 17.

Tomando como referencia a Akter et al. (2008), se parte de la consideraciéon de
un sistema de Markov de dos estados (on-off ), con el fin de determinar el nimero
de SU que arriban a la CRN, y, con base en la teoria de colas, se genera un sistema de
ecuaciones para establecer la probabilidad de los estados definidos, como se mues-
tra en la ecuacion (63).
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P, (t)=P(Z(t))=n (63),

donde P es la funcion de probabilidad, Z, (1) es el estado del s-ésimo SU en el tiempo

ty el sistema de ecuaciones diferenciales esta dado por las ecuaciones (64)-(66) (Akter

et al., 2008), las cuales representan de forma general las probabilidades de estado que

se pueden encontrar en relacién con la cantidad de SU en el sistema: ausencia de SU:
dPn(1)

[‘”’%;(’)]; existencia de n SU: [T]’ y nimero maximo de SU: ["PT(’)J en la red cognitiva.

Figura 17. Sistema de arribo reactivo de usuarios secundarios a la estacion base

. Determinacion del Determinacién del numero
Arribo de SU alaBSen ., s
un tiempo At > numero de SU que —> de SU que solicitan QoS
arriban a la BS tipo BEy RT

Fuente: elaboracion propia.

o® _ yp ()= NAP (1) (64);
dt ' ’
% =(N, —n+1) AP, () +(n+ VP, (1)~ (nu, +(N, ~n)A) P, () (65);
dby (1)
L= AR (0= NPy (1) (66)

donde H_ esla tasa de distribucion del tiempo de servicio del SU, ls define el proce-
so de llegada de los SU, n es la cantidad de SU en el tiempo ¢y N_ es el nimero maximo
de nodos en el intervalo 7= At.

Tomando como referencia y adaptando la idea de Akter (2008) al modelo reactivo,
primero se determinard el nimero esperado de nodos cognitivos en un At, para luego
obtener el numero de SU RT y BE que llegaran o arribaran a la BS en dicho instante.
Para ello, tomaremos E[ Z,(¢)] como el nimero de SU en un tiempo ¢ —ecuacion
(67)— (Akter et al., 2008):

E[Z.(1)]= ZnPM (@) (67).

Al calcular la derivada, y por la linealidad de este operador, se obtiene la ecuacion
(68) (Akter et al., 2008):
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OIS0 Bl Npg N g, (2, 1) S0P, 0 = N2~ (24 ) ELZO] (68,

n=0 n=0

donde M _ es la matriz de estados de los SUy N = (0, 1, 2, ... N,) corresponde a la
matriz transpuesta.

Asumiendo que las mediciones se hacen cada instante de tiempo 7, ¢t = mt
—ecuacion (69)— se considera como condicién inicial para la m-ésima prediccion
(Akter et al., 2008):

E[Z((m-DD)]=Z,(m~1) (69),
donde se asume que las mediciones se realizan en un instante de tiempo discreto m T
enelquem=1, 2,3, ... para un valor dado de T.
Al resolver la ecuacion anterior, se obtiene la ecuacion (70) (Akter et al., 2008):

_ N A _
Z(m) =7 (m—1De T(/HA)_}_ % [1—e T(A+at)
((m)=2Z(m-1) /1=+HY[ J (70).

Determinado el numero de SU qué arribaran a la BS (Z, (m)), alas L + 1 agrupacio-
nes de solicitudes RT y BE se les puede asignar la distribucion de probabilidad dada
por la ecuacion (71):

P{R(t)=m|R(t) =n} (71),

donde P(R(t) = n) es la probabilidad general de que en el tiempo ¢ lleguen m solicitu-
des R(?); particularizando lo anterior para el caso reactivo, se tendria lo mostrado en
la ecuacidn (72) (Akter et al., 2008):

z
P(R(t)=n) = 22{ m < sn(t)> (72).

Ya que Z(7) es el nimero de usuarios cognitivos que llegaran a la BS, y debido a que, de
estos, 7 son solicitudes con criterios RT, los demas serian solicitudes con criterios BE.

Modelo del sistema para el caso proactivo

La metodologia seguida para calcular la probabilidad de arribo de SU con criterios
de QoS se observa en la figura 18. Partiendo de la existencia de una base de datos,
considérese (como en el caso reactivo) que L es el nimero de nodos que arribaran
a la BS en un intervalo de tiempo Af; en tal sentido, para predecir o estimar el tipo
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de servicio que solicitara el siguiente SU, primero se determinara cuantas combina-
ciones son posibles con L usuarios, donde R de ellos solicitan QoS para RT y los B
restantes (B = L— R) requieren criterios de servicio para BE. Notese que L=B + R,
y que se cumple una y solo una de las relaciones B>R,B = Ro B < R. Cualquiera
que sea la secuencia de L solicitudes, siempre puede asociarse con un elemento del
grupo de permutaciones SL. Obsérvese que R puede tomar cualquier valor entre 0y L
(0 < R < L); asi se obtendran L+ 1 agrupaciones posibles, donde el proceso de alter-
nar los dos tipos de solicitudes se puede asociar con la imbricacién. Por ello, fijado un
numero de solicitudes RT, jcuadntas posibles combinaciones de RT y BE hay? Para
dar respuesta a esta pregunta, es necesario fijarse en que, al realizar la imbricacion, se
mantiene el orden relativo de los grupos, por lo que basta simplemente con calcular
de cuantas maneras se pueden elegir R posiciones entre las L posibles.

Figura 18. Sistema de arribo proactivo de usuarios secundarios a la estacion base

Base de datos de SU con Determinacion de la
criterios de QoS g agrupacion de SU (RTy BE)

|

Determinacion (mediante
prediccion) del tipo de servicio
requerido (RT o BE)

Célculo del porcentaje de acier-
to en la prediccion

A

Fuente: elaboracion propia

Asi, para un R preestablecido, es posible encontrar [,ﬁ] organizaciones posibles, y en-
tonces, la probable llegada de un requerimiento (calculo de la probabilidad) puede
presentarse con un elemento {0,1}" = {0,1}*{0,1}*...*{0,1} ; de esta manera, se restringe el
sistema a 2" combinaciones posibles de dos grupos de solicitudes de QoS en lugar de
L! (ntmero de elementos del conjunto S,). Es de resaltar que para L >3 es vélida la
desigualdad 2" < L!, por lo que esta restriccién implica una reduccion considerable de
calculos. Asociando probabilidades, las agrupaciones hechas hacia la mitad tienen mas
probabilidad de ocurrir, razon por la cual se asigna a la divisién hecha (posicion R) la
probabilidad representada en la ecuacién (73):

1 /L
S\ R (73).

Si se trata de asignar probabilidades a la combinacién R=0 y R=L, la respuesta es
obvia —véase la ecuacion (11)—, pero si se considera que 2< R< L -1, una posible
opcidn es asignar una distribucién uniforme con el fin de que cada combinacién de
solicitudes tenga una probabilidad de /LQ, y asi todas las posibles reordenaciones (salvo
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la identidad) tienen probabilidad %L. Ademas, es claro que, por imbricacidn, se obtiene
una permutacion P(7)y que la probabilidad asociada a la permutacion 7 € S, esta
dada por la ecuacion (74):

P(ﬂ)zﬂP(x[);P(xi)e(O,l]; i=12,..., L (74).

Si se compara P(7) con el de la probabilidad uniforme u(7)= 1/, entonces para
cada 7 € S, se puede determinar qué tan predecible sera la llegada de los SU con sus
solicitudes de RT o BE —ecuacién (75)—.

5=2 3 P -ulm)| (7).

mes;,

El factor % de la ecuacioén (75) permite normalizar el valor de 0 (0 < & <1). Se tiene
0 =0siysolosi P(r)=u(z)paratodo 7 € S,. Si § es muy cercano a 1, la solicitud
del proximo SU es predecible en un alto porcentaje, y si & es un valor muy pequeiio,
la prediccion puede ser erronea.

L
Para el caso en el que R sea fijo, se tendra [ RJ combinaciones posibles, lo que
indica que el orden de llegada de los SU y, por ende, de las solicitudes de QoS es
independiente entre si.

Modelo MLPNN para la estimacion del arribo del usuario secundario

Representacidn del histérico de un usuario secundario

Se define {x(i ). (i )} como una pareja de coordenadas en R"”, siendo x(i) la repre-
sentacion en sistema binario de una unidad de tiempo en un espacio R"; n es el na-
mero de digitos en la representacién binaria, y ¥( i) en un espacio R®, donde el primer
componente corresponde a la solicitud o no de un servicio tipo BE; el segundo, a la
solicitud de un servicio tipo RT, y el tercero, al BW requerido en KHz. Un ejemplo
de esta representacién se da en la ecuacion (76):

{x(1). y(1} ={[000]. (000}

[0 0o o0 | [00 0
[0 0 1] [0 1 20]
[0 1 0] | [0 1 20]
01 1 [1 0 43]
[[1 0 0]] 1 0 44] (76).
[ 0 1] | [1 0 45]
[1 1 0] | [0 1 48]
1 1 1] | [0 1 45]
Inputs x(i) W
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Esta primera aproximacion de representacion de SU con sus respectivas caracteristi-
cas considera la topologia de red neuronal sin tomar en consideracion la naturaleza
de los datos que se pretende caracterizar. Debido a que las funciones de transferencia
entre cada capa de la red neuronal estan dadas por una funcion tipo sigmoide, el
rango de los datos oscilara entre 0 y 1. Esto no se considera un problema para el do-
minio de los datos que se pretende caracterizar excepto para el caso de R*, cuyo tercer
componente tiene dominio en los numeros naturales (y que corresponde al BW). De
esta forma, se plantea separar el conjunto de datos (mostrado anteriormente) en dos
grupos y utilizar dos redes neuronales. La primera red se especializa en la caracteri-
zacion del conjunto de datos y (i )l, representados como se describe en la ecuacion
(76), v que sigue los siguientes criterios de disefio:

+ Elnumero de neuronas en la capa de entrada corresponde a la dimension R" de x(i).

* El nimero de neuronas en la capa de salida corresponde a la dimensién R’ de
y (i ), y cada una de las neuronas estara especializada en modelar una caracteristica
del SU.

» El numero de neuronas en las capas ocultas se obtiene siguiendo la topologia
piramidal geométrica.

La segunda red neuronal se especializa en la caracterizacion del conjunto de datos
y(i)’, representados en la ecuacién (77), con los siguientes criterios:
« Elnumero de neuronas en la capa de entrada corresponde a la dimension R” de x(i).
* El numero de neuronas en la capa de salida corresponde a la dimension R’ de

\2 , . .
y(z) , ¥ cada una de las neuronas estara especializada en modelar una carac-
teristica del SU.

* El nimero de neuronas en las capas ocultas se obtiene siguiendo la topologia
piramidal geométrica.

[o 00 | [00]
oo 1] | [0 1]
o 10 | [0 1]
[0 1 1] n o]
1 oo | [ o] (77
1o 1] | [ o
1 10 | [0 1]
111 | [0 1
——
Inputs x(i) Outputs y(i)'
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[0 0 0] [0]
[0 0 1] [20]
o1 o | [
[0 1 1] [43]
oo | [*
1 o 1] [43]
1 1 0] [48]
1 1 1] [ii]’

Modelo matematico del sistema neuronal
Para el desarrollo del funcionamiento de la red neuronal se considera el conjunto de

(78).

ejemplos mostrado en la ecuacion (77). Siguiendo los lineamientos planteados para

la construccion de la red neuronal propuesta, se obtiene un sistema de 3 capas con 3

neuronas en la capa de entrada, 2 en la capa oculta y 2 en la capa de salida (figura 19).

Figura 19. Representacion de la MLPNN para el conjunto de datos de la ecuacion (77)

Entrada_1

Entrada_1

Entrada_1

Capa de entrada

Capas ocultas

Capa de salida

(1)
11

(1)
12

(1)

A X/

Salida_1

>

&

>

Salida_2

>

A
QD
N3

Fuente: elaboracion propia.

>

Ademas, se definen las siguientes variables: m: nimero de capas de la red neuronal;

0: matriz de pesos de control, que mapea (genera una asociacion) desde una capa i

hasta una capa i+ 1, y 4: unidad de activacién en la capa 7.

El procedimiento para el calculo de la salida de la red neuronal se define como se

muestra en la ecuacion (79); este es llamado algoritmo de propagacion hacia adelante y
fue elaborado a partir de Du y Swamy (2013):
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A(i) _ g(g(i—l)TA(i—l)) (79),

® es la salida de la capa que se desea calcular,
A"V corresponde a la salida de la capa anterior, i =1,2,3, ..., m, A = x ygesla
funcion sigmoide.

donde T es la operacion transpuesta, A

Considerando de forma general la matriz de pesos de control #'*) = 49,.;’ , donde (9;.’
identifica el peso para la conexion existente entre la neurona 7 (de la capa d) y la neu-
rona j (de la capa d + 1), se procede a calcular la transicion desde la capa de entrada
hasta la capa oculta —ecuaciones (80) y (81)—:

) (1)
0 0
M _{ pM (1)
0 - 621 022 (80),
) )
031 632
donde 0" es la matriz de pesos de control de la capa 1.
X
AV = X = X, (81),
X3

donde A% corresponde a la salida de la capa 1 del sistema.

Asi, la transicion ocurrida desde la capa de entrada hasta la capa de salida estaria
dada por lo descrito en la ecuacion (82):

() (1) (1)
g(xlgll +X,0, +x30; )

4% = (82),

(1) (1) (1)
g(x1012 +X,0,) +x30;, )

donde A(z) corresponde a la salida o respuesta de la capa oculta, g es la funcion sigmoide
y x(i) es la representacion de una unidad de tiempo en R".

Por simplicidad, se definen las siguientes variables para la matriz A _ecuacion

(83)—:
(2)
a
A® :{ 1(2)} (83).
a,

Al calcular la transicion desde la capa oculta hasta la capa de salida (A(S)), tomando
como referencia la matriz de pesos de control 6 _ecuacion (84)—, se obtiene la
ecuacion (85):
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(2) (2)
(2) 011 912

Loy e o
donde 8% es la matriz de pesos de control de la capa oculta.
(2) (2)
o | € (aen +a,0), )
A= (2) (2) (5
g(a1‘912 +a,0) )

donde la variable a, cumple con la condicion de la ecuacion (83). Astimase que en
este caso a@l(f ) es equivalente a alﬁl(f )

Trabajos relacionados

En esta seccion se presenta un estado del arte de trabajos recientes acerca de algo-
ritmos para la toma de decisiones de SH en CRN. Al respecto, no se identificaron
trabajos que relacionen todos los enfoques descritos en la presente propuesta, como
la toma de decisiones, los modelos colaborativos y las arquitecturas descentralizadas;
sin embargo, se encuentran investigaciones relevantes con enfoques independientes o
con combinaciones de dos de ellos.

A continuacion se describen las tres publicaciones en el area de redes de radio
cognitiva descentralizadas (DCRN) que tienen mayor relacion con la presente inves-
tigacion. Estas publicaciones estan enfocadas en el analisis de la calidad de servicio,
el esquema de aprendizaje y el acceso al espectro dindmico, y utilizan estrategias
como la teoria de colas, las cadenas de Markov y los filtros digitales, entre otras:

Xenakis et al. (2014), en su articulo “Multi-parameter performance analysis for
decentralized cognitive radio networks”, realizan un analisis del impacto de la activi-
dad del PU y el SU, del desvanecimiento de canales y de las colas de longitud finita
en el rendimiento de las DCRN. Realizan, ademas, un analisis de teoria de colas y
derivan varias medidas de rendimiento en relacion con la pérdida de paquetes, asi
como el rendimiento, la eficiencia espectral y la distribucion de retardo de paquetes.
Los resultados cuantifican el impacto de los parametros y las variables en el rendimiento
del sistema y ponen de relieve las principales ventajas y desventajas del rendimiento en
las DCRN.

Darak et al. (2015), en su articulo “Low complexity and efficient dynamic spec-
trum learning and tunable bandwidth access for heterogeneous decentralized cog-
nitive radio networks”, proponen un esquema de aprendizaje y acceso al espectro
dindmico de baja complejidad y eficiencia para DCRN y para redes heterogéneas de
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proxima generacion; este esquema consiste en una transformacion de frecuencia de
segundo orden, una técnica de interpolacion basada en un filtro digital variable y una
politica de toma de decisiones sintonizable. Los resultados de la simulacién verifican
la superioridad del esquema propuesto sobre los esquemas existentes.

Amjad et al. (2016), en su articulo “Coexistence in heterogeneous spectrum
through distributed correlated equilibrium in cognitive radio networks”, analizan
multiples técnicas de cadenas de Markov para estudiar fendmenos de desigualdad
en escenarios heterogéneos de CRN coexistentes; ademas, proponen una solucion
descentralizada que no limita la capacidad de hardware de un dispositivo de CR e
introducen una capa MAC (control de acceso al medio) para la coexistencia (CCR-
MAC). Los resultados obtenidos muestran que el CCR-MAC propuesto mejora la
ventaja competitiva y la equidad sin limitaciones de hardware.

Por otra parte, se describen a continuacion las dos publicaciones que trabajan en
conjunto los enfoques de toma de decisiones y arquitecturas descentralizadas y que,
a su vez, tienen una fuerte similitud con la presente investigacion:

Darak et al. (2017), en su articulo “Decision making policy for RF energy harves-
ting enabled cognitive radios in decentralized wireless networks”, proponen una nue-
va politica de toma de decisiones (DMP) para DCRN basada en el acceso oportunis-
ta al espectro con capacidad de recoleccion de energia por radiofrecuencia (RFEH).
La DMP propuesta consta de tres subunidades: un algoritmo de muestreo basado en
un enfoque bayesiano, un esquema de acceso basado en el algoritmo de muestreo
de Thompson y un esquema de seleccion de modo. Los resultados de la simulacion
muestran que la politica propuesta ofrece una mejora del 10-35% en el rendimiento
de la DCRN y una reduccion del 40-90 % en el numero de conmutaciones de subban-
das en comparacion con las DMP existentes.

Hasegawa et al. (2014), en su articulo “Optimization for centralized and decen-
tralized cognitive radio networks”, analizan y proponen algoritmos de optimizacion
para la toma de decisiones en redes inalambricas cognitivas heterogéneas. Para las
DCRN, proponen como estrategia una red neuronal Hopfield-Tank, y la validan
mediante un conjunto de simulaciones para, finalmente, implementarla en un siste-
ma cognitivo experimental.

A continuacién, asimismo, se describen las cinco publicaciones que trabajan en
conjunto los enfoques de toma de decisiones y las CRN y que, a su vez, tienen una
fuerte similitud con la presente investigacion:
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Tripathi et al. (2019), en su articulo “Analysis and comparison of different fuzzy
inference systems used in decision making for secondary users in cognitive radio
network”, implementan un sistema basado en légica difusa con un conjunto de
parametros de entrada y salida para la toma de decisiones de los SU, a través de un
analisis comparativo entre el Sugeno fuzzy inference system'y el Mamdani fuzzy inference
system. El trabajo concluye con una lista de ventajas y desventajas para cada una de
las técnicas, y se obtiene una correlacion mayor de 0,95 entre Sugeno y Mamdani;
por lo tanto, la seleccidon entre las estrategias depende de los requisitos de aplicacion,
pero, desde una perspectiva computacional, Sugeno presenta una mayor eficiencia
que Mamdani para mas de 100 reglas.

Kaur et al. (2018), en su articulo “PSO based multiobjective optimization for pa-
rameter adaptation in CR based [0Ts”, estudian las caracteristicas de adaptacion de
las CRN al internet de las cosas. Para cumplir con los objetivos de potencia minima
de transmision, tasa minima de error y el maximo throughput, los autores proponen
un moédulo de toma de decisiones basado en optimizacion multiobjetivo a partir de
enjambres de particulas (PSO). Los resultados son comparados con un algoritmo
genético con codificacion real (RCGA). Para servicios de e-mail, voz y video, el pro-
medio de fitness en PSO es de 0,8614, 0,7327 y 0,8597, respectivamente, en compara-
cion con los 0,8121, 0,5975 y 0,7183 obtenidos para RCGA. Asi, se demuestra que
el modulo de decision cognitiva basado en PSO supera la implementacion basada en
RCGA en todos los escenarios en términos de valor de la funcion de fitness y de los
valores 6ptimos de las métricas de decision.

Lietal. (2016), en su articulo “Optimization spectrum decision parameters in CR
using autonomously search algorithm”, introducen el concepto de bioinspiracién y su
aplicacion en la toma de decisiones. Se propone un algoritmo de busqueda auténo-
mo (ASA) basado en la evolucién de la poblacion, la reproduccion, la seleccion y la
mutacion. El modelo propuesto es comparado con un algoritmo de optimizacién por
PSO y con un algoritmo genérico (AG). Los resultados experimentales muestran que
ASA satisface la demanda de comunicacion y tiene un buen rendimiento, ademas de
que puede optimizar adaptablemente los parametros de transmision de acuerdo con
las condiciones del canal y el tipo de cambio en el servicio al cliente, lo que le permite
obtener un mejor esquema de decision de parametros.

Pinto y Correia (2018), en su articulo “Analysis of machine learning algorithms
for spectrum decision in cognitive radios”, presentan un analisis de los algoritmos de
machine learning para el desarrollo de CRN en /ardwarereal. Para esto, implementaron,
en dos escenarios distintos, tres métodos para la decision del espectro: ANN, bosques
aleatorios (RnF) y HMM. Los resultados muestran que HMM obtuvo la mejor tasa
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media de entrega en los dos escenarios evaluados. En el patron de trafico alto, HMM
fue un 4% mejor que ANN y un 16 % mejor que RnF; en el patron medio, fue un
5,9% mejor que ANN y un 9,7% mejor que RnF, y en el patron bajo, fue un 5,7%
mejor que ANN y un 3% mejor que RnF.

Joda y Zorzi (2015), en su articulo “Decentralized heuristic access policy design
for two cognitive secondary users under a primary Type-I HARQ process”, propo-
nen politicas de acceso heuristico descentralizadas para dos SU cognitivos. Debido
a la falta de una unidad central, el problema se modela como un proceso de decision
descentralizado parcialmente observable de Markov (DEC-POMDP), pero, por la
complejidad del modelo, se disefiaron las politicas de acceso, que aprovechan la re-
dundancia introducida por el protocolo Hibrido-ARQ tipo I. Los resultados mues-
tran que las politicas heuristicas disefiadas aumentan el rendimiento, la flexibilidad y
la robustez frente a los cambios de canal. Como trabajo futuro, los autores resaltan la
importancia de implementar escenarios multiusuario.

Finalmente, se describen las dos publicaciones que trabajan en conjunto los en-
foques de toma de decisiones y colaboracion entre SU y que, a su vez, tienen una
fuerte similitud con la presente investigacion. En estas investigaciones se utilizan
técnicas heuristicas y metaheuristicas y estrategias probabilisticas basadas en cadenas
de Markov:

Rizk et al. (2018), en su articulo “Decision making in multiagent systems: A sur-
vey”, realizan una revision de los modelos cooperativos mas relevantes para la toma
de decisiones en MAS. Asi, presentan modelos basados en procesos de decision de
Markov, teoria de juegos, teoria de grafos e inteligencia de enjambres, y las diferen-
tes técnicas son analizadas segun su criterio de optimalidad y su aplicaciéon. Entre
las aplicaciones mas destacadas, se incluyen diferentes sistemas cognitivos, como
redes de telecomunicaciones, sistemas eléctricos, sistemas de transporte, equipos de
busqueda y rescate, transporte de objetos, exploracién y mapeo. Finalmente, el docu-
mento resalta los avances y los retos para los proximos afios, la necesidad de incluir
en el proceso de toma de decisiones los avances en big data e internet de las cosas y
la necesidad de desarrollar normas de evaluacion que permitan la comparaciéon y
faciliten su validacion.

Roy et al. (2017), en su articulo “Optimized secondary user selection for quality
of service enhancement of two-tier multi-user cognitive radio network: A game theo-
retic approach”, utilizan la teoria de juegos para estudiar el conflicto y la cooperacién
entre dos niveles de SU. El analisis comparativo muestra que con esta teoria la proba-
bilidad de bloqueo, caida y saturacion de canales se reduce en un 81 %, un 79% y un
84 %, respectivamente, y la probabilidad de aceptacién aumenta un 91 %.
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A partir de las anteriores investigaciones, se evidencia que aun no hay estudios
que relacionen en conjunto los tres enfoques principales del presente libro —la de-
cision de espectro, el ambiente colaborativo y la arquitectura descentralizada— vy,
ademas, que los orienten hacia las redes de radio cognitiva, lo cual representa el
principal aporte de este trabajo. Adicionalmente, el hecho de trabajar con datos
de ocupacion espectral reales, obtenidos a partir de una campafia de medicion,
le da a esta investigacion un mayor valor agregado y diferenciador con respecto a
las publicaciones descritas anteriormente, dado que en estas se trabaja con datos
espectrales aleatorios.

Algunas de las propuestas de investigacion en el modelaje o estimacion de la acti-
vidad de PU se encuentran descritas o desarrolladas en Bkassiny et al. (2013); Biitiin
et al. (2010); Lopez Sarmiento et al. (2015); Melian-Gutiérrez et al. (2013); Mishra
et al. (2012); Pattanayak et al. (2013); Tumuluru et al. (2010); Uyanik et al. (2012);
Wang, Ghosh et al. (2011); Xing, Jing, Cheng et al. (2013), y Yarkan y Arslan (2007).
Un resumen de las técnicas aplicadas se muestra en la figura 20.

Figura 20. Resumen de algunas de las metodologias utilizadas en la caracterizacion del PU

Caracterizacion de PU

|
| | | |

Basadas en Basadas en Basadas en Metodologias
aprendizaje teoria de colas series de tiempo adicionales
Redes Modelos Basadas en

| R —— M/G/1 > . > o
bayesianas autorregresivos estadisticas
Perceptron Procesos de First-difference Modelos de
multicapa Bernoulli filter clustering Poisson

SVM Modelos ocultos Basadas en

de Markov datos medidos

Fuente: elaboracion propia.

Tomando como referencia los resultados encontrados en los trabajos referenciados,
se encuentra que los algoritmos basados en teoria de colas y las metodologias adi-
cionales no logran, en la mayoria de los casos, encontrar variaciones temporales de
corto plazo en la sefial que representa el PU, lo que genera colisiones o interferencias
entre los nodos cognitivos y licenciados, y los basados en series temporales, por su
parte, requieren de un hardware robusto para ser implementados (ya que su comple-
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jidad computacional es alta), y esto dificulta su utilizaciéon en areas geograficas de
dificil acceso, debido al importante consumo de energia de la red cognitiva. Si bien
es cierto que se han desarrollado algunas propuestas basadas en aprendizaje autono-
mo, es importante considerar el desarrollo o aplicaciéon de metodologias similares,
como la basada en Anfis o LSTM (Graves et al., 2013), con el objetivo de determinar
si es posible disminuir el porcentaje de error en la generacion de predicciones para
el comportamiento cadtico de los PU, con lo que se lograria que los modelos fueran
mas confiables.

Un criterio importante que influye en la seleccién de las bandas tiene que ver con
la manera como la BS procesa las solicitudes de los SU (figura 21). En la estrategia
reactiva —método convencional utilizado en el estado del arte (Lopez Sarmiento et
al., 2015)—, la negociacioén de las caracteristicas que rige el envio de datos se procesa
después del arribo de la solicitud. En contraste, en la estrategia proactiva —metodolo-
gia propuesta—, la seleccion y asignacion del canal se decide con anterioridad a la lle-
gada del SU, mediante una reserva del recurso; la desventaja de esta estrategia es que
depende del nivel de acierto del modelo que se use para la estimacién de la llegada
del SU para una aplicacion especifica (BE o RT): si el calculo de la probabilidad de
arribo o prediccion no es bueno, la cantidad de aciertos sera muy baja y la eficiencia
sera insuficiente.

Figura 21. Estrategias de ejecucion de las solicitudes de SU

Procesamiento de las
solicitudes en la BS

| |

Estrategia Estrategia
reactiva proactiva

Fuente: elaboracion propia a partir de Lopez Sarmiento et al. (2015).
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Caracterizacion de los
usuarios primarios

En este capitulo se presentan el desarrollo y los resultados de los modelos de caracte-
rizacion de usuarios primarios (PU) utilizados en la investigacion: LSTM (long short-
term memory), SVM (maquinas de soporte vectorial), Anfis-grid-FCM y MLPNN, los
cuales se introdujeron en el capitulo anterior.

Caracterizacion del usuario primario con long short-term memory

El diagrama de flujo para el entrenamiento del modelo LSTM (figura 22) comienza
su proceso inicializando de forma aleatoria cada neurona con valores que oscilan
entre —1 y 1; seguidamente, se toma cada ejemplo de entrenamiento y se compara la
salida con la salida esperada: si la respuesta entregada no corresponde a la deseada,
el algoritmo calcula el error entre las dos salidas y corrige los pesos tanto de las com-
puertas (input, output y forget) como de la celda, a través de la aplicacién de pondera-
ciones y haciendo uso de funciones tangenciales y sigmoideas, hasta culminar con
todos los ejemplos de entrenamiento, y de esta forma aproxima la salida del modelo
a la esperada (mediante la disminucién del error).

Figura 22. Diagrama de flujo para el entrenamiento de LSTM

Corregir la pon-
deracién de la
No red LSTM

;Lasalidaesla
esperada?

Inicio

Inicializar los Obtener la salida de la red
pesos de cada neuronal con el ejemplo
neurona de entrenamiento
Leer los
ejemplos de (Eselfinde la Fin

entrenamiento lista? Si

Fuente: elaboracion propia.
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Parte del pseudocodigo del algoritmo LSTM implementado es el siguiente:

Data: la existencia de un arreglo Wo, Wf, Wiy Wc que representa la red neuronal.
Result: red neuronal entrenada con los datos de los ejemplos de entrenamiento.
forgetLayer = Wf.size() //Se obtiene el tamafio del arreglo que representa la red neuronal;
for i = 0; i < neurons; i++ do

WHIli] = random(-1,1); //Se inicializa cada capa de la red neuronal.

Wi[i] = random(-1,1);

Wcli] = random(-1,1);

Woli] = random(-1,1);
end

bf = 0.5 //Aproximacién de la salida obtenida para cada capa;

bc=0.5;
bi=0.5;
bo =0.5;

inputs = readInputs() //Se leen los ejemplos de entrada;
outputs = readOutputs() //Se leen los ejemplos de salida;
size = inputs.size() //Se obtiene el tamaifio de los ejemplos;

fori=0;1<size;i++ do

sumf = 0;
sumi = 0;
sumc = 0;
sumo = 0;

for j = 0; j < neurons; j++ do
sumf = sumf + W{[j]*inputs[i][j] //Se calcula la salida para cada ejemplo en cada capa;
sumi = sumi + Wi[j]*inputs[i][j];
sumc = sumc + Wc[j]*inputs|[i][j];
sumo = sumo + Wo[j]*inputs[i][j];
end
ft = sigmoide(sumf + bf) //Se realizan las aproximaciones para cada
salida de la red;
it = sigmoide(sumi + bi);
dct = tanh(sumc + bc);
ct = ft + it*dct;
ot = sigmoide(sumo + bo);
output = ot*tanh(ct) //Se calcula la salida de la red neuronal,

if output != outputs[i] then
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error = outputs[i] - output;

for j = 0; j < neurons; j++ do
Wo[j] = Wolj] + inputs][i][j]*e //Se recorre cada neurona y se corrige su pondera-
cion respecto al error calculado;

end

bo = 0.5 + error //Se corrige el desplazamiento;

end

Evaluacion y analisis de resultados

Para evaluar el desempeio del algoritmo, la red LSTM fue sometida a dos casos de
prueba: en el primero de ellos, se analizo el desempefio del sistema de modelamiento
y prediccién cuando la sefial de entrada al sistema LSTM se genera computacional-
mente para diferentes patrones de comportamiento dificiles de encontrar en las redes
inalambricas convencionales; en el segundo caso, se estudio el pronostico entregado
por el algoritmo para secuencias de datos reales capturadas en las bandas GSM-850
y Wi-Fi, partiendo de la premisa de que el 70% de los datos utilizados se usa en la
etapa de entrenamiento de la red LSTM, y el 30 % restante, para validacion (estima-
cion de la prediccion).

Captura y procesamiento de la informacion espectral

En primera instancia, se procedio a determinar la aplicacion de red inalambrica sobre
la que se queria evaluar la técnica basada en deep learning (Hochreiter y Schmidhu-
ber, 1997): se seleccionaron, como objetivo principal, las comunicaciones celulares
(GSM) y de acceso a internet (Wi-Fi), y en segunda instancia, se escogio la técnica
de deteccion de espectro: se selecciono la deteccion de energia por su facil implemen-
tacion y sus bajos requerimientos (Hernandez, Salgado et al., 2015).

Para el procesamiento de la informacion espectral, se parte del hecho de que las
medidas fueron tomadas cada 290 milisegundos en las bandas Wi-Fi (2,4-2,48 GHz)
y GSM (uplink 824-849 MHz) en términos de potencia de transmisién (dBm); con el
fin de facilitar el reconocimiento de patrones, se representaron los niveles de potencia
en sistema binario a partir de la definicién establecida en la ecuacién (86):

0, six<a

f(x)= { (86),

I, six>a

donde a toma los valores de -89 dBm para el caso GSM, y —88 dBm para Wi-Fi.
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En la figura 23 se aprecia el procedimiento para convertir las trazas de datos es-
pectrales en sefiales discretas; cabe destacar que para el desarrollo de las pruebas se
contd con una base de datos de 6,79 GB de informacién sobre trazas de trafico GSM,
y de 9,63 GB para trazas Wi-Fi.

Figura 23. Diagrama de flujo para discretizacién de datos espectrales

Inicio
Lista de datos en el Obtener el maximo entre el
registro de niveles de conjunto de usuarios primarios
potencia que ocupan el mismo canal

¢Es mayor

Terminar
al umbral?

Guardar el resultado
en una nueva lista

Fuente: elaboracion propia.

Evaluacidn y validacion del algoritmo LSTM
El rendimiento del algoritmo propuesto es puesto a prueba para un comportamiento
del PU con secuencias de datos simulados y reales (trazas GSM y Wi-Fi):

Primer grupo de casos de prueba. Se crearon, de manera simulada, patrones de
comportamiento (de multiples tamafios) a partir de lo sugerido en Saleem y Rehmani
(2014) y de acuerdo con la tabla 3.

Tabla 3. Casos de prueba para trazas de trafico del usuario
primario generadas mediante simulacion

Identificador Caso de prueba Descripcion
o Corresponde a un histdrico cuyas unidades de tiempo
CP1 i%2===0 -,
pares presentan una ocupacion del canal.
Corresponde a un histdrico cuyas unidades de tiempo
CP2 1%5!===0 que no sean multiplos de 5 presentan una ocupacion
del canal.
Corresponde a un histdrico cuyas unidades de tiempo
CP3 i%3 === que sean multiplos de 3 presentan una ocupacion
del canal.
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Identificador Caso de prueba Descripcion
o) Corresponde a un histdrico cuyas unidades de tiempo
1%3 ===0and e .
CP4 . o que sean multiplos de 3 y 2 presentan una ocupacion
i%2===0
del canal.
CPs Aleatorio Corresponde a un h1§tor1co en el que aleatoriamente
se genera la ocupacion del canal.

Fuente: elaboracion propia.

A manera de descripcion cualitativa, se presentan los resultados arrojados por el

algoritmo LSTM al modelar y estimar el comportamiento futuro del usuario licencia-

do (para el caso CP1) cuando se presenta una fluctuacion alta de presencia y ausencia

en el canal licenciado (Saleem y Rehmani, 2014). La secuencia binaria que simula el

uso del canal esta formada por 77 datos; la figura 24 muestra la secuencia para los pri-
meros 17 valores, distribuidos como 10101010101010101, donde la presencia del PU
se representa con 1, y la ausencia, con 0. La aplicacion genera de manera adaptativa

la estructura de red LSTM mas adecuada para la secuencia de entrada (figura 25).

La etapa de aprendizaje (entrenamiento-modelamiento) se muestra en la figura

26, y se concluye que la red LSTM fue capaz de determinar en un 100 % el patron que

sigue la secuencia de uso del canal.

Figura 24. Representacion del comportamiento historico para 77 muestras
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Fuente: elaboracion propia.
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Figura 25. Topologia de la red neuronal

Fuente: elaboracion propia.

Figura 26. Resultados de la etapa de entrenamiento (fase de aprendizaje de la red)
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Fuente: elaboracion propia.

De la estimacion futura (proyeccion de la prediccidn) entregada por la red neuronal
se puede destacar que el nivel de acierto entre la sefal original (secuencia morada) y
la proyectada por el sistema (lineas azules) es del 100 %, lo que indica que el error de
prediccion es del 0%, es decir, que el sistema neuronal es muy eficiente para el caso
evaluado (figura 27).
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Figura 27. Resultados de la prediccion
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Fuente: elaboracion propia.

Histdrico de salida
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Los resultados cuantitativos para los diferentes casos planteados en la tabla 3 se pre-
sentan en la tabla 4.

Las métricas de evaluacion de desempefio se refieren a valores promedio, pues
se crearon histéricos de multiples tamafios (17, 35, 77, 157 y 200 datos binarios)
aplicando diez pruebas para cada caso, debido a que se pueden obtener diferentes
soluciones por cada ejecucion del algoritmo.

Tabla 4. Desempefio de la red LSTM en la caracterizacion de usuarios primarios

LSTM

Caso de | Porcentaje de error de | Porcentaje de error de | Numero de Tiempo de
prueba validacion promedio prediccion promedio iteraciones procesamiento (ms)

CP1 0,0875830 0 1352 54,8

CP2 0,0936039 20,0465950 1422 75,6

CP3 0,8194522 28,9938556 5030 549,1

CP4 0,7566375 15,8806964 3757 820,4

CP5 0,7981350 37,4858167 17.402 6758,6

Fuente: elaboracion propia.
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Tabla 5. Desempeio de la red MLPNN en la caracterizacion de usuarios primarios

MLPNN

Caso de Porcentaje de error de | Porcentaje de error de | Numero de Tiempo de
prueba validacion promedio prediccion promedio | iteraciones procesamiento (ms)

CP1 0,049945930 0 1594 78,9

CP2 0,068684850 24,9820789 4314 2441

CP3 0,105482774 37,6014337 5491 517,2

CP4 0,882621500 20,8151562 4702 943,1

CP5 0,504369700 52,6732207 5139 2263,5

Fuente: elaboracion propia.

La validacion del algoritmo LSTM se hizo evaluando las mismas métricas bajo idén-
ticas consideraciones, pero haciendo uso de una red neuronal tipo perceptrén multi-
capa piramidal (tabla 5), y posteriormente se comparo con Anfis (tablas 6 y 7).

Del analisis de las tablas 4 y 5 se observa que el error de prediccién promedio en
LSTM varia entre el 0 y el 37,48 %, lo que ubica el nivel de prondstico por encima
del 62,50% en el peor de los casos (CP5), porcentaje que ademas es superior al en-
contrado con MLPNN (47,33 %). Esto indica que LSTM logr6 generalizar el com-
portamiento de los diferentes patrones presentados y logro predecir adecuadamente
el comportamiento del PU en cualquier instante de tiempo ¢ mientras el PU siga
teniendo el mismo comportamiento. Otra caracteristica importante es que, a pesar de
que LSTM posee en su estructura mas neuronas que MLPNN, en los casos CP1-CP4
requirié de menos iteraciones, lo que demuestra que la complejidad en la estructura
LSTM permite abstraer el patréon de comportamiento de la sefial PU a un menor
costo computacional cuando la matriz usada como historico es de longitud pequeiia.
Finalmente, el error de validacion promedio corresponde a un valor muy pequefio
para ambos tipos de red neuronal, condicion que garantiza poder llegar a modelar la
red de manera Optima.

Segundo grupo de casos de prueba. Para demostrar la viabilidad del algoritmo
propuesto con trazas de trafico reales tipo GSM y Wi-Fi, se definio la métrica lla-
mada indice de ocupacion (lo) —ecuacion (87)— para dividir el nivel de uso de las
bandas espectrales en indice de ocupacion alto, indice de ocupacion medio e indice
de ocupacion bajo, con lo que se logro una apreciacién mas objetiva y detallada.

n

D i(x) 7
Jo=="—100% ’
n
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donde #(x) corresponde a los flujos de datos discretizados y # es el numero de elemen-
tos en #(x). Las salidas obtenidas se resumen en las tablas 6 y 7, teniendo en cuenta,
primero, que para alimentar el sistema se usd un tamafo de traza de 20.00 datos para
cada una de las tres bandas de frecuencia seleccionadas (de acuerdo con su indice de
ocupacion), y segundo, que se aplicaron diez pruebas para cada caso.

La evaluacién de las métricas en cada caso sugiere que el tiempo de procesamien-
to es superior en LSTM, debido al mayor tamafio de las trazas y a que este tipo de
red recurrente utiliza celdas de memoria para almacenar informacién de patrones
encontrados que podrian ser reutilizados mas adelante. Esta capacidad de almace-
namiento y olvido de patrones afecta directamente la variable “error de validacion”,
que es mucho mejor en LSTM que en MLPNN.

Se puede observar que el “error de entrenamiento” es menor en LSTM, lo que
se sustenta en su mayor capacidad para el reconocimiento de patrones gracias a la
utilizacién de las compuertas de olvido, entrada y salida y a la celda de memoria.

Desde el punto de vista del porcentaje de acierto, con LSTM los valores oscilan
entre el 97,09 % (para un Jo bajo) y el 77,14% (para un Io alto) en sistemas GSM, y
entre el 87,25% (para un lo bajo) y el 63,82% (para un Jo alto) en Wi-Fi, por lo que
LSTM es mas eficiente que MLPNN; no obstante, es importante destacar que esta
mayor eficiencia lleva consigo una mayor necesidad de requerimientos en el /ard-
ware, factor que no es relevante si el sistema de prediccion se implementa en CRN
con topologia centralizada.

Al examinar los porcentajes de acierto en las predicciones de aparicién/no apa-
ricion de PU en las bandas espectrales (figura 28), para los indices de ocupacién
definidos en las tablas 6 y 7, y tomando como referencia los algoritmos que mejor
rendimiento presentaron, se deduce que con LSTM se obtiene un promedio de éxito
en la prediccion del 87,34% en GSM y del 76,30 % en Wi-Fi, en tanto que con Anfis
se logrd una eficiencia del 86,68 % en GSM y del 72,62 % en Wi-Fi.

También se puede observar una tendencia lineal decreciente y con mayor pen-
diente en los pronosticos a medida que la ocupaciodn espectral aumenta, debido a una
mayor intermitencia aleatoria en el uso del espectro, asi como un mejor desempefio
en la caracterizacién de PU (para las tres metodologias: LSTM, MLPNN y Anfis) en
la banda espectral GSM, debido probablemente a la naturaleza mas caotica presen-
tada en los flujos Wi-Fi.
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Figura 28. Porcentaje de acierto en la prediccion para LSTM y Anfis
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Fuente: elaboracion propia.

Discusion

Dentro del area de la inteligencia artificial, las redes neuronales han tenido una am-
plia aplicacién en series temporales dada su capacidad de prediccion sobre unidades
de tiempo desconocidas y debido a su capacidad de ser entrenadas por medio de
ejemplos para abstraer un comportamiento, a diferencia de otras técnicas de inteli-
gencia artificial que lo obtienen de un experto mediante la representacion de varia-
bles relevantes para la solucion del problema.

Una de las metodologias de aprendizaje supervisado mas usadas en la caracteri-
zacion de PU son las redes neuronales multicapa, pues con estas se puede llegar a ob-
tener una mejora en la eficiencia de hasta el 60% en la prediccion, segiin concluyen
Adeel et al. (2014) (aunque en las pruebas realizadas por ellos se alcanzaron porcen-
tajes mas altos); sin embargo, recientemente se ha venido proponiendo la utilizacion
de técnicas basadas en deep learning por su alto nivel de abstraccion (Kalkan, 2018)
para la solucién de multiples problemas, lo que representa una razén de peso para
proponer su utilizacion en radio cognitiva (CR) (Gers y Schmidhuber, 2001; Palangi
et al., 2016; Sun et al., 2016; Sundermeyer et al., 2015).

Del analisis realizado se evidencia que, si bien LSTM presenta mayor capacidad
de prediccion, aun posee un error importante en la estimacion para aquellos casos
en los que el comportamiento de los PU es cadtico; sin embargo, obtener un error
cercano a cero es una tarea dificil debido a la naturaleza de las sefiales, condicion que
puede sustentarse desde el punto de vista de la entropia. En la ecuacion (88) (Abram-
son, 1981), cuando la entropia es 1, existe una probabilidad de ocupacion de la banda
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espectral del 50% en cualquier instante de tiempo, lo que genera un nivel de incerti-
dumbre alto en el momento de realizar estimaciones de ocupacion del canal; situa-
cion contraria se presenta cuando su valor tiende a cero (condicion mas favorable).

< 1
E = Zp(xi)* log,| — (88),
i=0 p

Xi

donde p (xl.) corresponde a la probabilidad de aparicion del caracter x, y 7 es el ni-
mero de caracteres.

Al calcular, por ejemplo, el valor de la entropia en GSM con LSTM, se encuen-
tra que, para los indices de ocupacion alto, medio y bajo, se obtienen valores de
0,7317737, 0,5529701 y 0,1979427, respectivamente, en coherencia con los errores
de prediccion de la tabla 3. Por otra parte, los histéricos de datos arrojan indicios de
como sera el comportamiento de los PU, mas no garantizan que realmente se repita;
sin embargo, el hecho de tener un indicio del posible comportamiento del PU le per-
mite a la BS de una red cognitiva estar preparada para tomar acciones sobre la posible
asignacién de una banda frecuencial a un SU.

Un indicador adicional que permite verificar cual es el mejor modelo entre los
algoritmos LSTM, MLPNN vy Anfis es el coeficiente de correlacion (obtenido del
promedio de los valores de la variable o) de las tablas 6 y 7 y la figura 29: su valor
cercano a 1, en el caso de LSTM, permite concluir que ese es el mejor modelo de los
tres evaluados.

Un aporte final de la aplicacion desarrollada (para el algoritmo LSTM) es su
capacidad de crear automaticamente la estructura neuronal segin el tamafo de la
traza que se pretenda caracterizar; esto representa un acierto ya que no se requieren
esfuerzos adicionales en la construccion de la topologia al modificar el comporta-
miento de los datos de entrada, como si sucede, por ejemplo, en Adeel et al. (2014) y
en Winston et al. (2013).
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Figura 29. Coeficiente de correlacién en la etapa de entrenamiento (modelamiento)
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Fuente: elaboracion propia.

Caracterizacion del usuario primario con un
modelo neurodifuso: Anfis-grid-FCM

Procesamiento de la informacion espectral
Para la captura de los datos se seleccionaron, como objetivo principal, las comu-

Anfis

nicaciones celulares (GSM), y con el fin de realizar un mejor aprovechamiento de

la informacion, se procedié a obtener el promedio de los niveles de potencia que

existian en cada banda (tabla 8) para construir o generar la sefal analdgica final, que

representaria el comportamiento del PU en cada espectro.

Tabla 8. Nivel de potencia final, que representa la presencia o ausencia de un usuario primario

Medicion Banda 1 Banda 2 Banda 3 Promedio
1 -95,5933 -96,7638 —-104,8880 —99,0817
2 88,8808 -93,1084 —93,4447 -91,8113
3 -93,3937 —94,1699 -105,4508 -97,6715
4 ~105,4927 -104,0746 -93,5037 ~101,0237
5 -90,3791 —95,7670 —97,9036 —94,6832
6 -109,0864 —94,5978 -106,2340 -103,3061
7 —-89,1763 —95,6988 -90,5302 -91,8017

Fuente:

elaboracién propia.
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Una vez obtenida la muestra o sefial para caracterizar, el algoritmo normaliza los
datos para minimizar su variacién ubicandolos en el intervalo de a 1 (figura 30).

Figura 30. Muestra de niveles de potencia del usuario primario normalizados
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Fuente: elaboracion propia.

Antes de realizar el entrenamiento de la red Anfis, se implementa un filtro de media
movil para suavizar las fluctuaciones de alta frecuencia o eliminar tendencias que se

puedan considerar como ruido (figura 31).

Figura 31. Comparacion entre la sefial normalizada (superior) y la filtrada (inferior)
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Fuente: elaboracion propia.
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Dicho filtro (y,), representado en la ecuacion (89), procesa el dato actual a partir de
la consideracion de las cuatro muestras anteriores .

1 1 1 1 1
Yr=y Y + e + 17 + 20 + 7 Ve (89),

1 . . .,
donde las constantes a, = 7 son los coeficientes del filtro de realimentacién.

Funcionamiento del algoritmo

Las funciones de pertenencia de la capa 1, para el entrenamiento del modelo Anfis
en el software Matlab, son como las mostradas en la figura 32, donde se tienen como
entradas los universos y(k— 1), y(k—2) y y(k— 3), cada uno de ellos con dos conjuntos
sigmoidales (mfl, mf2), ademds de un universo de salida (U(k)), con los conjuntos
lineales mf1, mf2, mf3, mf4, mf5 y mf6.

Figura 32. Sistema Anfis basado en el modelo Sugeno

Anfis
(Sugeno)

Fuente: elaboracion propia.

La estructura FIS (fuzzy inference system), encargada de especificar los parametros del
sistema para el aprendizaje del Anfis dentro de las simulaciones realizadas, surgié de
la integracion de los métodos Anfis-grid y Anfis-FCM, como se muestra en el diagra-
ma de bloques del algoritmo de prediccién de la figura 33.

El sistema propuesto inicia con la obtencion de los datos de los canales; luego,
genera una sola columna de datos que representa el promedio de los niveles de
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potencia para cada banda espectral; seguidamente, halla el maximo y el minimo
de los valores de dicha columna y procede a realizar el normalizado de la sefal
y a aplicar el filtrado descrito en la ecuacién (89), y por ultimo, une los datos de
entrada y salida (figura 33) en un arreglo de dos columnas en el que las entradas (Y)
son divididas en 6 subgrupos, y las salidas (U), en 4 subgrupos, de acuerdo con las
ecuaciones (90) y (91).

Y ={y(k=1),y(k=2), y(k =3)} (90),

donde Y representa las muestras anteriores (y(k—n)) de la sefial a estimar.
U = {u(k=1),u(k=2),u(k=3), ..., u(k-6)} (91),

donde U representa el universo de salida para los conjuntos lineales.

Luego, se genera una buisqueda secuencial a fin de crear tres grupos de datos (para
no saturar con demasiada informacion el Anfis) de acuerdo con la forma dada en las
ecuaciones (92)-(94):

Grupo 1 = y(k =1), y(k=2), y(k -3) (92);
Grupo 2 = y(k—=1), y(k=2), y(k -3) (93);
Grupo 3 =u(k-2), ...,u(k—6) (94).

Adicionalmente, el algoritmo genera una busqueda exhaustiva con el fin de deter-
minar posibles patrones de aprendizaje que pudieran servir en la etapa de entrena-
miento y aprendizaje del modelo. A partir de los datos recibidos en el paso anterior,
se entrena y prueba el modelo, ajustando el numero de funciones de pertenencia en
Anfis-grid y la cantidad de clusteres en Anfis-FCM, hasta encontrar el menor error
posible entre la salida deseada y la entregada por el algoritmo. La particidn grid divi-
de el espacio de datos en subespacios rectangulares con particiones paralelas basadas
en el namero y tipo predefinido de funciones de membresia (MF) (Abdulshahed et
al., 2015), que son obtenidas con el método de estimacion de minimos cuadrados.

Cuando se disefian o construyen las reglas difusas o fuzzy, los parametros del con-
secuente en la MF (que son de salida lineal) se establecen como ceros; por lo tanto, es
necesario identificar y perfeccionar estas variables utilizando Anfis (Abdulshahed et
al., 2015), lo que genera el concepto Anfis-grid (Abonyi et al., 1999; Kennedy et al.,
2003). La aplicacion mas amplia para las grid partition en los FIS tiene el inconvenien-
te de que el numero de reglas difusas aumenta exponencialmente cuando el numero
de variables de entrada aumenta (Neshat et al., 2011).
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Figura 33. Diagrama de bloques del algoritmo de prediccion de
usuarios primarios con Anfis-grid y Anfis-FCM
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Fuente: elaboracion propia.
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Anfis-FCM basa su funcionamiento en fiuzzy c-means (FCM), que es una técnica
de clusterizacion de informacion en la que cada uno de los datos pertenece a un clus-
ter que es especificado mediante un grado de pertenencia (Valero Verdu y Senabre
Blanes, 2013); este algoritmo fue planteado por Dunn en 1973 (Dunn, 1973). FCM
es el modo difuso del algoritmo K-means y no considera limites definidos entre los
clusteres (Jain, 2010; Velmurugan, 2014), lo que supone una ventaja, ya que puede
asignar MF parciales a diferentes grupos del conjunto universal de clusteres en lugar
de a un solo grupo (Abdulshahed et al., 2015). FCM esté basado en la minimizacién
de la funcion objetivo de la ecuacién (95) (Fauzi bin Othman y Yau, 2007):

2
; 1€m<oo (95),

N
Jo =221 ||x,. -G

i=1 j-1

donde m es cualquier numero real mayor a 1, £; es el grado de membresia de x, en
el cluster j, x, es el i-ésimo término de los datos medidos, Ces el j-ésimo término del
clastery ”xi - Cj.” es cualquier norma que exprese la similitud entre los datos medidos
y el centro.

La divisién difusa se realiza a través de una optimizacion iterativa de la funcion
objetivo mostrada en la ecuacion (95), tomando como referencia la funcién de mem-
bresia 4; y los centros del cluster C en cada dimensién —ecuaciones (96) y (97)—.
Cabe destacar que esta iteracion en el algoritmo converge cuando el valor de J, (que
es la funcién objetivo) corresponde con lo establecido en la ecuacion (95) (Fauzi bin
Othman y Yau, 2007):

1
- 2

[ -c |y (96),
;( xi_Ck J

donde 4 representa la funcion de membresia, C, es el i-ésimo término del cluster y
I<m<oo,

Hy =

N
m s
2
— _i=l

C = (97),
DH
i-1

J

donde C, es el valor del j-ésimo cluster y x, es el valor del j-ésimo dato medido.
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Evaluacion y analisis de resultados

Validacion del modelo Anfis

La validacion del sistema Anfis propuesto se realizé haciendo uso del soffware Mat-
lab con un patron de datos de 1000 muestras, de las cuales el 50% se uso en la
etapa de entrenamiento, y el otro 50%, en la fase de validacion (estimacién de la
prediccion) para un canal espectral en la banda uplink GSM. En la fase de apren-
dizaje Anfis, los parametros del antecedente y los del consecuente son entrenados
con el algoritmo backpropagation, obteniendo la diferencia entre la sumatoria de los
puntos a partir de los datos de entrada y la sumatoria de los puntos a partir de los
datos entregados por el Anfis, y propagando el error desde las salidas hacia las en-
tradas para ajustar las variables y disminuir el valor del error. La figura 34 muestra
la comparacion entre la secuencia usada para el entrenamiento y la calculada por
el modelo; se observa que la etapa de entrenamiento es bastante acertada ya que es
capaz de seguir el comportamiento caotico del PU en el canal, incluso para varia-
ciones pequeias de la sefial.

Para determinar qué tan adecuado es el proceso de acierto en el entrenamiento,
se utiliza la raiz del error cuadratico medio (RMSE) de la ecuacion (98); esta métrica
determina el desajuste entre el modelo y el comportamiento real de la sefial (Salcedo,
2006; Soto et al., 2010), y representara un mejor comportamiento cuando su valor
sea mas cercano a cero.

Figura 34. Entrenamiento del usuario primario en un
canal GSM (modelado) con Anfis-grid-FCM
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Fuente: elaboracion propia.
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(98),

donde d, hace referencia al patrén de entrenamiento real dado, O, corresponde a la
respuesta entregada por el modelo Anfis y # es la cantidad de datos.

El valor 6ptimo encontrado para la variable RMSE (que corresponde al de la figu-
ra 34) fue de 0,0042639, utilizando una funcién de activacion tipo “gbellmf”, con un
error que varia entre —0,01 y +0,15, parametro que indica una diferencia y variacion
minima entre los datos de entrenamiento deseados y los obtenidos por el algoritmo,
lo que permite inferir que el sistema es un buen estimador para describir y pronosticar
sefnales de PU continuas en bandas GSM.

La etapa de validacion se aprecia en la parte superior de figura 35, donde se
compara la secuencia de verificacién que se desea alcanzar para 500 muestras con la
calculada por Anfis-grid-FCM: se obtuvo un valor RMSE de 0,004451.

Figura 35. Validacion del modelo Anfis-grid-FCM estimando una prediccion
futura de comportamiento del usuario primario para 500 datos
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Fuente: elaboracion propia.

Al analizar la dispersion para los primeros 20 datos de entrenamiento, se encuentra
que es de aproximadamente 0,001, y para los tltimos 20 datos de validacién es de
0,0033, valor que, aunque un poco mas elevado, permite concluir que la prediccion
estimada es muy cercana a los datos de prueba; esta condicion puede ser corroborada
por la cercania mostrada entre los puntos de las graficas de dispersion ubicadas en la
parte inferior de la figura 35.
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Evaluacion de desemperio del algoritmo Anfis-grid-FCM

Se valida el sistema propuesto al compararlo con la técnica LSTM para las métricas
de juicio RMSE, precision en la prediccion, coeficiente de correlacion y tiempo de
computo. La respuesta del algoritmo LSTM para el mismo comportamiento de en-
trada del PU durante el entrenamiento y la validacion es la obtenida en las figuras 36
y 37 y en la tabla 9.

Figura 36. Entrenamiento del comportamiento del usuario
primario en un canal GSM (modelado) con LSTM
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Fuente: elaboracion propia.

Tabla 9. Resultados encontrados con LSTM

s Etapa de entrenamiento Etapa de validacion
Métrica . s ey
(modelamiento) (prediccion)
RMSE 0,0058962 0,0056982
Variacion del error -0,019y +0,018 -0,0185y +0,015
Dispersion de los datos 0,010 0,018

Fuente: elaboracion propia.

El analisis de las salidas entregadas por Anfis y LSTM parte de los resultados alma-
cenados en las bases de datos de entrenamiento y prueba que estan resumidos en la
tabla 10. Puede observarse que los valores de entrenamiento son mejores que los de
prueba, a excepcion de la métrica que identifica el tiempo necesario para la ejecucion
de los modelos, que es menor en la etapa de prueba, debido a que el grado de ajuste
de parametros para disminuir el error entre la salida deseada y la entregada por los
algoritmos es aplicado en la fase de aprendizaje.
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Figura 37. Validacion del sistema LSTM estimando una prediccién
futura de comportamiento del usuario primario para 50 datos
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Fuente: elaboracion propia.

Tabla 10. Resultados estadisticos de los sistemas Anfis y LSTM

. ., Datos de entrenamiento | Datos de validacion
Métrica de evaluacion
Anfis LSTM Anfis LSTM
RMSE 0,0042639 0,0044510 0,0058962 0,0056982
Porcentaje de precision en la prediccion 93,67 72,88 93,94 72,17
Coeficiente de correlacion 0,94 0,71 0,91 0,68
Costo computacional (s) 32,97 17,54 3,22 1,31

Fuente: elaboracion propia.

Si bien es cierto que el tiempo necesario para el entrenamiento y prueba en Anfis
representa un 52,086 % mas que en LSTM, la exactitud en la prediccién del estado
de ocupacién del canal es mucho mas acertada en Anfis-grid-FCM, con un valor del
93,94%, lo que implica una menor probabilidad de colisiones entre el PU y el po-
sible nodo cognitivo candidato a utilizar el espectro licenciado disponible. También
se debe notar que el comportamiento de la variable precision en la prediccion presenta
un desempefio ligeramente mejor en el entrenamiento al compararse con los valores
encontrados en la fase de prueba, pero se destaca, igualmente que ni Anfis-grid-FCM
ni LSTM son capaces de reducir a cero el error en el aprendizaje.

Tomando como referencia las métricas RMSE y el coeficiente de correlacion,
se concluye que tienen una tendencia similar, pero ligeramente mejor en Anfis, lo
que indica que, desde el punto de vista de la obtencion de mejores pronosticos, es la
opcidén mas adecuada.
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En sintesis, al comparar los resultados de forma global, se llega a la conclusion de
que el método Anfis-grid-FCM es mas adecuado que LSTM (para este caso particu-
lar) si dentro del sistema de radio cognitiva no es tolerable la existencia de posibles
colisiones entre los PU y los SU cuando coexistan simultaneamente dentro de la red
inalambrica; no obstante, la gran ventaja de LSTM es que la robustez del hardware
necesaria para la implementacion seria mucho menor que la requerida por Anfis.

Caracterizacion del usuario primario con SVM

En este apartado se exponen los resultados obtenidos al usar dos clasificadores
basados en SVM para realizar la caracterizacion en redes Wi-Fi a partir de la
emisiéon/no emision de datos en el canal 6 (banda de 2,437 GHz). La figura 38
muestra las actividades de aplicacion realizadas para caracterizar el uso o no del
espectro. Inicialmente, se genera una serie temporal a partir de los datos de emi-
sion de una red Wi-Fi, para lo cual se usa el programa Acrylic, que devuelve una
lista de datos con la fecha, la hora, el minuto y el segundo de emision o uso del
canal por parte del PU (informacién conocida a partir de ahora como timestamp)
y su longitud; con estos datos, se implementa un mddulo para cargar el fichero
generado con Acrylic (punto 1). Seguidamente, se crea otro modulo para convertir
la informacién en una serie temporal que representa la emisién/no emision para
cada slot de tiempo (punto 2). Esta serie temporal se asume como el resultado en
un entorno real de una radio cognitiva monitorizada, y sobre ella, que representa
los valores de emision (presencia/ausencia) del PU, se integran dos SVM: uno,
generado con la foolbox de Matlab (SVM Matlab, desde ahora llamado SVM-I)
(punto 3), y otro, de codigo libre (LibSVM, desde ahora llamado SVM-2) (punto 7)
(Chang y Lin, 2013).
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Figura 38. Diagrama de bloques del sistema de caracterizacién con SVM
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Fuente: elaboracion propia.

Primero, se integra el SVM-1 (punto 3) y se evaltia el comportamiento para estimar el
uso del canal variando multiples caracteristicas del sistema: el numero de iteraciones
(punto 4), el tipo de kernel (punto 5), las condiciones KKT (Karush-Kuhn-Tucker)
(punto 6) (Krogstad, 2012), las caracteristicas de los datos capturados a través del uso
del PCA (principal component analysis) (punto 9), las unidades de medida de la serie
temporal (punto 10) y la longitud y el nimero de ejemplos (punto 11).

Posteriormente, se utiliza el SVM-2 (punto 7) evaluando su nivel de prediccién a
través del uso de PCA (punto 9) y variando las unidades de medida de la serie tempo-
ral (punto 10) y la longitud y el nimero de ejemplos (punto 11); también se ha imple-
mentado la posibilidad de variar los porcentajes de probabilidad (punto 8), parametro
con el cual se pretende que el predictor devuelva valores cercanos a 1 cuando el ulti-
mo instante de tiempo monitorizado es de emision, y cercanos a 0 cuando es de no
emision, independientemente de la lejania del instante en que se prediga la sefial real.

Consideraciones previas de los SVM como clasificadores en radio cognitiva

Los SVM son algoritmos de aprendizaje supervisado que requieren un entrenamien-
to (fase de modelamiento de los PU) con un conjunto de ejemplos antes de que se
puedan aplicar para clasificar muestras (prediccion de PU). Cada ejemplo tiene unas
caracteristicas muy bien definidas (en el caso de los PU, corresponden a los valores
de emisién en los tiempos anteriores a la prediccion) y un valor que define la clase,
en este caso binario (1, si hay presencia del PU, y 0, si no la hay). La clase es la que
se predice a partir de las caracteristicas. Las caracteristicas suelen ser distintas medi-
ciones o valores que definen el ejemplo. En la fase de aprendizaje (modelamiento) se
introducen las caracteristicas (valores anteriores de presencia o ausencia de los PU) y
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la clase (el estado actual de emision o no emisién), y el SVM busca una solucion para
diferenciar los ejemplos segun su clase. En la fase de test (comprobacion del indice
de acierto de la prediccion) se introducen las caracteristicas de distintos ejemplos en
el SVM ya entrenado, y el clasificador devuelve una clase (1 o 0). Para cada ejemplo,
esta clase que devuelve el clasificador se compara con el dato real para comprobar
el indice de acierto. Una vez se consiguen resultados de test satisfactorios, se puede
utilizar el SVM para clasificar ejemplos (predecir los PU).

Los SVM tienen como principal propiedad la creacion de un hiperplano o con-
junto de hiperplanos de dimensionalidad mayor a la que ofrecen los ejemplos de
entrada, y de este modo la posibilidad de separacidn de clases aumenta radicalmente.
Los SVM se encargan de buscar el hiperplano con mayor distancia entre los ejemplos
de una clase y otra. La manera mas adecuada de realizar la separacion es mediante
una linea recta, un plano recto o un hiperplano N-dimensional. A veces, un algorit-
mo SVM debe tratar con mas de dos variables —curvas no lineales de separacién—,
casos en los que los conjuntos de datos no pueden ser completamente separados en
mas de dos categorias. Las funciones kernel ofrecen una solucién a este problema,
proyectando la informacién a un espacio de caracteristicas de mayor dimensién, y
especifican coémo se crean estos espacios de dimensionalidad mayor a partir de las
dimensiones originales. Normalmente, los SVM se utilizan para problemas de regre-
sion y de clasificacion, pero rara vez para prediccion de series temporales. Para aplicar
SVM a la caracterizaciéon de radios cognitivas, que se muestran como una serie discre-
ta, se extrae una serie temporal de # timestamps, cada uno de los cuales representa emi-
sion (1) o no emision (0). Los primeros n—1 timestamps se utilizan como caracteristicas
del ejemplo, y el timestamp n (que es la clase), como el valor que se predice.

Diagrama secuencial del SYM-1

El primer algoritmo utilizado se soporta en el existente en las librerias propias de
Matlab. La figura 39 presenta el diagrama de flujo resumido de cémo implemen-
tarlo y aplicarlo para la prediccion de futuros patrones de comportamiento. Prime-
ro, se define un conjunto de ejemplos (punto 1) para representar las series temporales
que definen los valores de emisién y no emisién de un PU para un intervalo de tiem-
po determinado y pasado. El conjunto de estos ejemplos caracteriza al PU usando el
formato que requiere SVM.
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Figura 39. Diagrama de flujo del primer algoritmo SVM-1

1. Definicion de n ejemplos X,
cada uno vinculado a una
clasificacion real y

l

2. Definicion de la funcion kernel k

l

2. Definicién de max_iter

6. Optimizacion de ai, si, b

l

14.i=i+1 f«—

15. Modelo SVM encontrado

5. Error, no converge

No

13. Quedan ejemplos
12. Prediccién = real
7. Para cada ejemplo

8. c=Yak(s.x)+b 10. Prediccion =0

11. Prediccion = 1

Fuente: elaboracion propia a partir de Matlab.

Seguidamente, se define la funcion kernel (punto 2); en caso de un kernel lineal, & es
el producto escalar. El médulo SVM usa un método de optimizacion para identificar
los vectores de soporte s, los pesos a, y el bias b. Estos valores no representan nada
propio en CR, sino que son propios del clasificador SVM y ayudan a generar dos
conjuntos diferenciables de datos: uno para emisién y otro para no emision. Esta
optimizacion se repite si no se hallan valores validos hasta un maximo de iteraciones
(max_iter) definido externamente a la aplicacién del software desarrollado (punto 3).
Por cada iteracion, se debe hacer lo siguiente (punto 4):

* Calcular los vectores de soporte s, 1os pesos a, y el bias b.
* Para cada ejemplo x de los creados en el punto 1 (punto 7):

* Se calcula la prediccion con la ecuacion (99) (punto 8):

c=Y ak(s,x)+b (99).

1 Cabe destacar que cada una de las variables de la ecuacion fue previamente definida en este mismo capitulo.
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» Se obtiene la clase de la prediccion analizando el valor ¢ (punto 9): si ¢ es
positivo o cero, la clase es 0 (punto 10), y si ¢ es negativo, la prediccion es 1
(punto 11).

» El algoritmo comprueba la prediccion con la clasificacion real del ejemplo
(punto 12): si coinciden, se pasa al siguiente ejemplo (punto 13), y si no, se
suma 1 al numero de iteraciones (punto 14) y se vuelve al punto 4.

En caso de no quedar ejemplos o de haberlos clasificado todos correctamente (lo que
es lo mismo), el modulo devuelve un modelo SVM (punto 15). Si se supera el maxi-
mo de iteraciones internas del mdédulo SVM, este devuelve un error indicando que
no ha convergido el algoritmo, es decir, que no se ha encontrado un clasificador apto
para este problema (punto 5). Para caracterizar CR, se define x como la caracteristica
de cada ejemplo. Se buscan los valores s, a, y b de forma que se consiga un valor ¢
negativo para todos los ejemplos de clase 1 y un valor ¢ positivo para todos los ejem-
plos de clase 0. Posteriormente, con s, a,y b definidos, al aplicar la funciéon anterior
a un ejemplo, el valor ¢ define si el PU se encuentra o no en el canal. Si ¢ es positivo
o cero, la prediccion es “no emision”, y si ¢ es negativo, la prediccion es “emision”.

Diagrama secuencial del SVM-2

El segundo algoritmo, modificado para modelar y predecir el uso del canal, esta
basado en Chang y Lin (2013). En la figura 40 se muestra el diagrama de flujo del
algoritmo usado, donde se observa que primero se define un conjunto de # ejemplos
que representan series temporales que definen los valores de emision y no emision
para un intervalo de tiempo determinado. De este modo, cada una de las muestras
se interpreta como ausencia/no ausencia del PU en un intervalo de tiempo pasado
en la banda de frecuencia. Cada serie temporal consta de / valores de emision (1 si
hay emision y —1 si no la hay), los cuales deben corresponder con cada x,. La clase
de dicho ejemplo es representado por y, que es el valor de presencia o ausencia en el
instante de tiempo /+ 1 (punto 1). Es importante aclarar que x;, € R",i=1,..., [; es de-
cir, para el caso del PU, x, € {1,—1}) (punto 2) y y, € {1,-1},i=1, ..., [ (punto 3). En
el punto 4 se declara el tipo de kernel que utilizara el algoritmo LibSVM; cada kernel
establece el modo como se van a separar los conjuntos segun su clase y. Las opciones
son lineal, polindémico, sigmoidal y funcién de base radial. En este caso, se eligié un
kernel lineal, que esta dado por el producto escalar, ya que se concluy6 (a partir de
pruebas) que era el que mejor respuesta entregaba en el modelamiento de PU y el que
menor costo computacional tenia. Matematicamente —ecuacién (100)—, el SVM-2
intenta resolver el problema de optimizacién relacionado por medio de la construc-
cion de un hiperplano de separacion en la SVM que minimice el valor de las sumas
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de las desviaciones (&;) en los errores de entrenamiento y maximice el margen para
los vectores correctamente clasificados en la caracterizacion de los PU (punto 5).

min

w,b.s

1

%wTw+czgi (100),
i=1

donde

5;'2 0;i=1,..,c>0,

sujeto a:

yl.(wTk(x,.)+b) >21l-g

donde w™es una matriz que define los vectores de soporte, ¢ es el parametro de re-
gularizacion, k(xl.) es la funcion kernel y b es el bias. Estas variables generan dos
conjuntos diferenciables de datos: uno para emision y otro para no emisiéon. Como la
matriz w puede tener una alta dimensionalidad, antes de resolver la ecuacion, esta debe
ser simplificada mediante una transformacion matematica (Meerschaert, 2013) que se
aplica para estos casos, es decir, para simplificar problemas de optimizacion de alta
dimensionalidad. La simplificacion se da en la ecuacion (101) (punto 6 de la figura 40):

.1
mmagocT Qo —e’ (101),

sujeto a:

yTocz(),OS(ZSC

y =0

0 << C,

donde e es un vector de longitud # de ‘unos’; Q es una matriz [ x / tal que
0,=yy,K (x,.x j) y K (x,.xj) =k(x, )T k(x j) (punto 7); Q, representa la relacion de simi-
litud entre dos ejemplos, teniendo en cuenta su clase o valor de prediccion, y K (X,-X_,-)
representa la relacion de similitud entre dos ejemplos. Se resuelven las condiciones
para calcular ¢, la matriz de pesos, que define la importancia de cada una de las
caracteristicas.
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Figura 40. Diagrama secuencial del segundo SVM propuesto para usuarios primarios

1. Definicion de n ejemplos X, cada uno
vinculado a una clasificacion real y

]

2.X; eR",i:l,...,l(en PU x, e{l,—l})

l

5 oy ef{l-lhi=1...1

|

4. Se define la funcion k
) 1, L
5. min,,, oW wHe e,
i=l
sujeto a:

yl(w"k(xl)+b)zl—a;

|

6. mina%ochoc—eToc ,
7. 9= y,yjK(x,xj) y K(x,xj) = k(x‘_)Tk(Xj) ] sujetoa:
Yy e=0,0ca<C
y =0
8 w= iy, o, k(x,)

9. sgn(wrk(x)er):sgn(iy, o, K(x,,x)er]
i=1

Fuente: elaboracion propia a partir de Chang y Lin (2013).
La ecuacién (102) calcula los vectores soporte para obtener el valor 6ptimo de w:
!
w= Zyi oC, k(xl.) (102),

i=1

donde k (xi) es el kernel aplicado sobre las caracteristicas x, de los ejemplos, y, es
la clase real del ejemplo (1 0 —1) y «, es el vector de pesos calculado en el punto 6.
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Por ultimo, la funcién de decision para saber si un ejemplo tendrd emision en el
futuro es la mostrada en la ecuacion (103):

/
sgn(WTk(x)+b) :sgn(Zyi oC; K(xi,x)+bj (103),

i=1
donde sgn hace referencia a la funcién signo.

Cabe destacar nuevamente que en la caracterizacion de PU se define x, como
las caracteristicas de cada ejemplo (permitiendo solo los valores 1 o —1), € y, como
la clase, siendo 1 para emision y —1 para no emision. La ecuaciéon (103) calcula, en
funcion de los datos introducidos, si el PU guarda mas similitudes con los ejemplos
que emiten en el futuro o con los que no emiten, y de este modo predice si hay o no
presencia del PU. En sintesis, para caracterizar PU, se utilizan los valores w (vectores
de soporte), o, (vector de pesos) y b (bias), calculados en el proceso descrito, para
posteriormente usar la funcién de decision con el fin de predecir el uso o no del canal.

Metodologia de prueba de las SVM y procesamiento

de los datos de entrada a los algoritmos

La metodologia utilizada para evaluar y analizar el nivel de caracterizacidon de cada
SVM se basé en el desarrollo de una aplicacion de software sobre Matlab que incluyd
los cuatro principales médulos mostrados en la figura 41.

* Cargar fichero Acrylic: este modulo carga un fichero Acrylic en formato CSV y
extrae para cada paquete su tiempo de inicio y su duracién.

* Transformar la serie temporal.

* Modelar y estimar los PU con SVM: incluye generar los casos de entrenamiento,
entrenar la SVM y crear los casos de test, predecir la serie temporal y devolver los
casos de test reales, la prediccion y el porcentaje de acierto.

Generar la grafica: en esta, el espacio bidimensional representa, en el eje de la
variable independiente, el tiempo de prediccion en milisegundos, siendo el 0 el
primer instante estimado. Cuanto mas aumenta el valor x, mas lejana es la pre-
diccion.
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Figura 41. Metodologia seguida para estimar la ausencia o presencia de usuarios primarios

Inicio Fin

| 1

4. Generar gréfica (mostrar
resultados de la caracterizacion)

| 1

2. Transformar a serie 3. Modelay estimar
temporal PU con SVYM

1. Cargar fichero Acrylic

Fuente: elaboracion propia.

Una vez capturados los datos de ocupacidn espectral, se procedio a realizar un pre-
procesamiento de estos, con el objetivo de que fueran interpretados de manera co-
rrecta por las SVM. Esta etapa incluy6 los puntos 1y 2 de la figura 41. En la figura
42 se representa el diagrama de flujo del mddulo encargado de extraer los datos del
fichero generado por Acrylic y de convertirlos a milisegundos (punto 1).

El punto 2 de la figura 42 es una accion que llama a la biblioteca externa, csvimport
(Sadanandan, 2011). Esta libreria lee archivos CSV y permite convertirlos en formato
Matlab; no obstante, para que se amolde a la funcionalidad esperada, se le ha realiza-
do una modificacion que permite eliminar todas las comillas extraidas del CSV para
permitir compatibilidad con los ficheros de salida del analizador de protocolos para
distintas versiones del Acrylic.

Las fases 5-7 dan la posibilidad de elegir una duracion fija en milisegundos (cual-
quier valor entre 0 y 500) de todos los estados del PU extraidos. Si el valor es 0, no
se modifican las duraciones de las capturas, y su valor queda como aparece en el
fichero original; si se elige un valor entre 1 y 500, la duracion de todos los paquetes
se cambiara al valor definido.

Para valores erréneos se volvera a solicitar un valor entre 0 y 500 ms. Se ha de-
finido 1 ms como valor minimo debido a que es el valor mas bajo que permite el
sistema de datos usado, y 500 ms como valor maximo con el fin de limitar el tiempo
de procesamiento exigido al realizar el entrenamiento de la SVM.

Obtenidos los datos, se transforman las capturas (figura 43) obtenidas mediante
Acrylic a un formato valido que permita modelar y predecir, mediante SVM, una
serie temporal de presencia/ausencia de PU en la banda de frecuencia seleccionada.
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Figura 42. Diagrama de flujo del modulo encargado de
extraer los datos del archivo capturado en Acrylic

Inicio

|

1. Pedir nombre de fichero Acrylic

|

Fin <

i

2. Convertir archivos

7.Cambiar la longitud de todos
los datos

|

3. Extraer tiempo de inicio
y duracién

|

4. Convertir a milisengundos
Acrylic

6. Longitud > 0

1

5. Solicitar longitud en
milisegundos Acrylic

Fuente: elaboracion propia.

Figura 43. Procesamiento de las secuencias a series temporales

Inicio

|

1. Pedir longitud slot
Acrylic

|

2. Calcular tamano serie
temporal

|

3. Crear serie temporal
con todos los valores a 0
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Estimacion de usuarios primarios con SVM
El modelamiento y prediccion de PU en la red Wi-Fi incluy6 la secuencia de pasos
del diagrama de bloques de la figura 44.

Inicialmente, es necesario definir la longitud de los slots de ejemplos para el en-
trenamiento y test de las SVM (punto 1). Se decidié que este valor fuera un niimero
entre 10 y 2000, en razon de que el tiempo ideal en el que hay cambios entre emision
y no emision es de 1 s. Independientemente del segundo que se escoja en una serie
temporal extraida con el analizador, suele haber un alto porcentaje de tiempos de emi-
sién y no emision; sin embargo, si se toman tiempos mas pequefios, como 100 ms, por
ejemplo, existe un muy alto porcentaje de probabilidad de que el fragmento escogido
sea solo emisidn o solo no emisién, lo cual no aporta informacién relevante.

Figura 44. Secuencia de pasos para modelar y predecir usuarios primarios con SVM

Inicio Fin

| I

6. Calcular valores de test con

1. Pedir longitud de ejemplos

SVM entrenado
2. Pedir numero de ejemplos 5. Entrenar SYM

de entrenamiento y tes

| i

3. Crear ejemplos de
entrenamiento y test

> 4, Calcular PCA

Fuente: elaboracion propia.

Seguidamente, se debid escoger el numero de ejemplos de entrenamiento (muestras
para modelar el PU) y test (nimero de predicciones que se realizaran), cuyo valor
maximo fue de 1000, ya que elevar dicho valor implicaria tiempos de ejecucioén ex-
tremadamente altos (punto 2). Del punto 3 se extraen tantos ejemplos como se desee
de una longitud definida sobre la serie temporal capturada de Acrylic. En el punto
4, el calculo del PCA permite reducir la dimensionalidad de un conjunto de datos,
mediante el hallazgo de las caracteristicas que afectan su variabilidad, a través de una
transformacion lineal que incluye tanto la construccion de una matriz de covarianzas
(Cov(X)) como la extraccién de autovectores y autovalores, como se detalla en la
figura 45 (Powell y Lehe, s.f.).
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Figura 45. Compresion del volumen de datos para procesar en
la etapa de entrenamiento y estimacion del canal

Se definen n ejemplos X, cada
uno vinculado a una Ta=XPa
clasificacion real

Se realiza la transformacién
(reduccién de dimensionalidad
de los ejemplos)

Se calcula la matriz de
covarianza

Se extraen
autovectores y
autovalores
X'X

Cov(X) = ; CoV(X)Pa = paPa
n-

Fuente: elaboracion propia.

La reduccion de dimensionalidad aplicada sobre los ejemplos de series temporales
de los PU hace que se tenga la misma informaciéon en menos volumen de datos, lo
cual podria acelerar el proceso de caracterizacion y prediccion de PU con SVM. Las
etapas 5y 6 de la figura 44 corresponden al modelamiento del uso historico del canal
(entrenamiento de la SVM) y al calculo de la prediccién o estimacién futura de uso
de la banda espectral por parte del usuario licenciado.

Las variables que definen los bloques de la figura 45 son: X: una matriz (n * m);
X :la caracteristica j del ejemplo #; 7: el nimero de ejemplos; 7': la matriz n */, que
representa las proyecciones de X en 4, y la cantidad de varianza capturada (u,) es el
valor propio asociado a P, (que determina la relacion existente entre las variables).

La figura 46 expone de forma general el diagrama de flujo para crear los ejemplos
que se modelan y predicen. Se puede sintetizar que, en funcion del numero y la lon-
gitud de los ejemplos, se comprueba si se puede usar el concepto de ventana deslizante
para la seleccion de la subserie temporal. Si /+(1*(n—1) > L, se puede usar la ventana
deslizante, donde / es la longitud de los ejemplos, 7 es el numero de ejemplosy L es la
longitud de la serie temporal. En caso de que no se pueda utilizar, se usara el método
aleatorio automaticamente para generar los ejemplos. Si se puede usar la ventana
deslizante, se debe determinar qué método de seleccion de inicio de la subserie tem-
poral para cada ejemplo se quiere usar. En caso de seleccionar la ventana deslizante,
se calculan los posibles offsets que se pueden utilizar en funcion de la longitud de los
ejemplos, el namero de ejemplos y la longitud de la serie temporal, especificando un
offset entre 1y el maximo calculado por la aplicacién.
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Figura 46. Diagrama de flujo de creacion de los ejemplos para
modelar y estimar el uso del canal de un usuario primario

Inicio

1. ;Usar ventana No 5.Busqueda de ejemplos
deslizante? O aleatoria

2. jAleatoria o ven- 7. Calcular el inicio del ejemplo

6. {Mas ejemplos?

tana deslizante? Aleatoria
Ventana
3. Pedir desplazamiento de la 4. Busqueda de ejemplos por 8. Ahadir serie temporal
ventana ventana ejemplo

Fuente: elaboracion propia.

Analisis de resultados del nivel de prediccion con los algoritmos SYM-1y SVM-2
Como se menciono anteriormente, los datos de Acrylic se transforman, en principio,
a una serie temporal a partir de la aplicacién desarrollada en Matlab (Petter, 2013),
usando como unidad de tiempo los milisegundos. Cada paquete dura en transmitirse
tantos milisegundos como su longitud en bytes o un nimero fijo de milisegundos.
Como ejemplo de visualizacion, en la figura 47 se ve una serie temporal extraida del
fichero usando como tiempo de emision de paquetes su longitud. En azul se observan
los momentos en los que el PU hace presencia en el canal, mientras que las zonas
en blanco muestran los tiempos de no emision o de desperdicio del BW disponible
en el canal. La longitud total de la serie temporal es de 600.296 unidades de tiempo.

Figura 47. Comportamiento de un usuario primario en términos de emisién/no
emision para una canal en la banda Wi-Fi entregada por Acrylic

Presencia/ausencia del PU

0 1 2 3 4 5 6
Tiempo (ms)

Fuente: elaboracion propia.
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SVM-1

Una vez entrenada la SVM, se llego a la conclusion de que no convergia. Que no con-
verja la SVM quiere decir que no llega a encontrar ninguna combinacion de vectores
de soporte s, pesos a,y bias b que cumpla con el costo especificado y que, por tanto,
encuentre un patréon que represente acertadamente el PU. Con el fin de mejorar el
nivel de modelamiento de los PU, se probaron varias soluciones:

* Modificar la longitud de los ejemplos (de 10 a 2000) y el nimero de ejemplos
(de 1000 a 100.000) para obtener mas informacion de la forma de actuar del PU.

» Incrementar el nimero maximo de iteraciones de entrenamiento (de 15.000 a
mas de 2.000.000), lo que dispara el tiempo de ejecucion del algoritmo.

* Cambiar el kernel del algoritmo de lineal (que busca un hiperplano lineal para
separar los dos conjuntos de ejemplos) a polinomico de grado tres como hiper-
plano.

» Transformar las condiciones de KKT (Krogstad, 2012), que son necesarias y
suficientes para que la solucion de un problema de programacién matematica
(caracterizacion de PU) sea 6ptima. En el caso de la SVM implementada en Mat-
lab, estas condiciones se aplicaron sobre el lagrangiano —ecuacién (104)— para
calcular el hiperplano de maxima separacion.

L(x,A) = f(x)+Zﬁ’g,igi(x)+z/lh,ihi(x) (104),

donde f(x) es el kernel para optimizar, g, (x) es un vector de restricciones del tipo
g(x)<0, &,(x) es un vector de restricciones del tipo 4(x)=0, la primera sumatoria
varia de acuerdo con =1, ..., k£, y la segunda, para los valores de j=I, ..., m. Los vec-
tores ﬁg]- y i,,j corresponden a los multiplicadores de Lagrange. Las condiciones KKT
utilizadas por la SVM son las que se muestran en la ecuacion (105):

V L(x,4)=0
ﬂ'g,igi(x) = OVZ

g(x)<0 (105).
h(x)=0

2,20
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Al modificar el margen de error de las condiciones KKT, se estd permitiendo un
margen de error en la ubicacion del posible patron de comportamiento del PU, lo que
implica que el modelamiento se amolde menos a los datos reales:

» Se modifico el indice de violacidn de las condiciones KKT, que especifica la frac-
cion del namero de variables que se permite no cumplir: 0 implica que se han de
cumplir todas las condiciones, y 1, que se puede no cumplir ninguna.

 Para encontrar el hiperplano, la SVM permite dos metodologias: la primera es la
sequential minimal optimization (SMO), que basa su funcionamiento en los multi-
plicadores de Lagrange, y la segunda es el quadratic programming (QP), que es un
sistema de optimizacion incluido en la licencia Optimization Toolbox™,

SYM-2

Se prob¢ la realizacion del modelamiento del PU, para después realizar una predic-
cion con el maximo numero de ejemplos (100.000) y su maxima longitud (2000), de
acuerdo con la aplicacién desarrollada. La duracion del entrenamiento fue de 2956
segundos y se obtuvo un resultado satisfactorio. Posteriormente, se experimento cal-
cular, para 1000 ejemplos, la prediccion en el instante / + 1 (lo que corresponde a una
estimacion de rango corto), y el resultado de acierto fue del 100 %:

Prediccion SVM 1 de 1
Accuracy = 100% (1000/1000) (classification)

Elapsed time is 12,3648261 seconds

En la figura 48 se encuentra graficamente el ejemplo de prediccidon anterior (partien-
do del hecho de que el modelamiento tuvo un 100% de acierto). Se debe mencionar
también que, como la serie temporal predicha consta de un unico valor, en vez de
aparecer una linea, aparece un unico punto. Ademas, la serie temporal real de envio
de datos, que normalmente se muestra con una sefial azul, al tratarse del mismo valor
que la prediccidn, no aparece en este caso, pues la prediccidon en rojo se encuentra
exactamente sobre el valor real. El eje de la variable independiente representa el tiem-
po de prediccion en milisegundos, siendo el 1 el primer y Gnico tiempo de prediccion
(el instante / + 1), y el eje de la variable dependiente, por su parte, identifica los valo-
res de envio y no envio del PU.
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Figura 48. Comparacion entre el comportamiento real y la prediccion para
el usuario primario en el canal evaluado sin la utilizacién de PCA
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Tiempo (ms)

Fuente: elaboracion propia.

En la matriz de clasificacion (tabla 11) se compilan los resultados para 1000 ejemplos
de prediccion (I + 1); las filas de la matriz representan los valores de estimacion del
modelo, mientras que las columnas indican los valores reales. La matriz de clasifica-
cion se cre6 ordenando todos los casos en categorias: si el valor de prediccion coinci-
de con el valor real y si el valor de prediccion es correcto o incorrecto. Para este caso,
en 487 ejemplos hubo emision real, y todos ellos fueron predichos como emision,
mientras que en 513 ejemplos hubo no emisidén real, y el clasificador los estimé como
no emision. Al no haber clasificado erroneamente ninguno de los casos, la prediccion
tuvo un acierto del 100 %.

Tabla 11. Matriz de clasificacién para 1000 ejemplos

Prediccion\Emision real 1 (emision real) 0 (no emisidn real)
1 (emision predicha) 487 0
0 (no emisioén predicha) 0 513

Fuente: elaboracion propia.

Al anterior proceso se le incluyé PCA buscando reducir el tiempo de entrenamiento
del sistema SVM. Calcular los componentes PCA con el maximo ntimero de ejem-
plos (100.000) y su maxima longitud (2000) tard6 211 segundos. Hay que tener en
cuenta que, antes de generar el modelamiento, se elimin6 la media de los valores y se
calcularon sus respectivos componentes PCA. La duracion del entrenamiento fue de
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3958 segundos o de 66 segundos. Posteriormente se calculd, para 1000 ejemplos, la
prediccion en el instante /+ 1, y el resultado de acierto fue del 100 %:

Prediccion SVM 1 de 1

Accuracy = 100% (1000/1000) (classification)

Elapsed time is 11,493758 seconds

La matriz de clasificacion (tabla 12) indica que en 356 ejemplos hubo emision real,
y todos fueron predichos como existencia del PU en el canal, mientras que en 644
ejemplos hubo no emisién real, y el clasificador los catalog6 como no emisién. Al no
haber clasificado erréneamente ninguno de los casos, la prediccion tuvo un acierto
del 100%.

Tabla 12. Matriz de clasificacion para 1000 ejemplos usando PCA

Prediccion\Emision real 1 (emision real) 0 (no emision real)
1 (emision predicha) 356 0
0 (no emision predicha) 0 644

Fuente: elaboracion propia.

Al concluir que el porcentaje de acierto era del 100 %, se intent6 detectar los instan-
tes temporales / + 1000, para lo cual se calcul6 el instante /+ 1; después, se usé esta
prediccion para calcular el instante / + 2, y asi, sucesivamente, hasta / + x. El proceso
de entrenamiento o caracterizacion para este caso fue exactamente igual que para las
pruebas realizadas antes. Para una x = 1000, el resultado de la predicciéon tuvo un
éxito de cerca del 50% tanto sin PCA como con PCA (tablas 13 y 14).

Para la prediccion sin PCA, en 518 ejemplos hubo presencia real del PU: 289 de
ellos fueron predichos correctamente, como emision, y 229 fueron clasificados inco-
rrectamente, como no emision. Asimismo, en 482 ejemplos hubo no emision real:
el clasificador clasificé 263 equivocadamente, como emision, y 219 correctamente,
como no emision. En resumen, 492 casos fueron clasificados incorrectamente y 508
correctamente, por lo que se obtuvo un acierto del 50,8 %:

Prediccién SVM 1000 de 1000

Accuracy = 50,8 % (508/1000) (classification)

Elapsed time is 15,095385 seconds
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Tabla 13. Matriz de clasificacién para 1000 ejemplos con estimacién sin PCA

Prediccion\Emision real 1 (emision real) 0 (no emision real)
1 (emisién predicha) 289 263
0 (no emision predicha) 229 219

Fuente: elaboracion propia.

Por su parte, para la prediccion con PCA, en 513 ejemplos hubo emision real: 270
de ellos fueron predichos correctamente, como emision, y 243 fueron clasificados in-
correctamente, como no emision. Asimismo, en 487 ejemplos hubo no emisién real:
el clasificador clasificd 242 equivocadamente, como emision, y 245 correctamente,
como no emision. Asi, 485 casos fueron clasificados incorrectamente y 515 correcta-
mente, lo que arroja un acierto del 51,5 %:

Prediccién SVM 100de 1000

Accuracy = 51,5% (515/1000) (classification)

Elapsed time is 16,175938 seconds

Tabla 14. Matriz de clasificacién para 1000 ejemplos con estimacion / + 1000 con PCA

Prediccion\Emision real 1 (emision real) 0 (no emision real)
1 (emisién predicha) 270 242
0 (no emision predicha) 243 245

Fuente: elaboracion propia.

Para cada uno de los casos entrenados y estimados, los porcentajes se acercan siem-
pre al 50 %, debido a que es la probabilidad de que se tenga emisiéon o no. Basica-
mente, el clasificador caracteriza la sefial del PU esperando que esta se mantenga
eternamente en 1, si empezo siendo 1, o en 0, si empezo siendo 0, como se eviden-
cia en la figura 49, donde la sefial predicha (color rojo) se mantiene en no emisioén
toda la prediccion, mientras que la real (color azul) evidencia la no presencia del
PU hasta pasado el milisegundo 700 y retorna al estado de no emision a partir de
los 965 ms.
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Figura 49. Comparacion entre la actividad real del usuario
primario y la estimada por la SVM-2 con PCA
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Fuente: elaboracion propia.

Finalmente, se probd, en la fase de prediccion, extraer en porcentajes la probabilidad
de que cada ejemplo se encuentre en una clase u otra; es decir, lo que se pretendid
fue obtener un porcentaje de probabilidad en la emision, en lugar de una indicacion
de la presencia o ausencia; de esta forma, en vez de estimar 1 o 0, se predijo un valor
x entre 0 y 1, donde x es la probabilidad de emisién en el instante a predecir y 1—x
es la probabilidad de no emision. Asi, se entreno el algoritmo para que devolviera
porcentajes. Para una prediccion de x = 1000 ms en el futuro, el resultado fue cercano
a un 50% de éxito sin PCA y a un 50% de éxito con PCA.

Cuando se usan porcentajes, hay una probabilidad de que la sefial cambie de
0 a 1 y viceversa, pero la probabilidad es aproximadamente de un 0,15%, y la po-
sibilidad de volver al valor original en el instante siguiente es muy elevada, por lo
que, en la mayoria de los casos, la sefial se mantiene en su valor original; lo anterior
se evidencia en la figura 50, donde se observa que en un tiempo determinado la
prediccion intenta cambiar a un nivel alto (sobre el timestamp 850), pero, debido
al historial previo, se rectifica rapidamente y vuelve al nivel bajo, lo que confirma
que intentar caracterizar la actividad de PU mediante SVM es ineficiente cuando
se discretiza la senal.
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Figura 50. Comparacion entre la actividad real del usuario primario y
la estimada por la SVM-2 segun porcentajes de probabilidad
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Fuente: elaboracion propia.

Discusion

Los modelos presentados han pretendido generar una nueva propuesta para la carac-
terizacion (modelamiento + estimacion) de PU, para un canal en la banda espectral
‘Wi-Fi, con base en el uso del algoritmo de aprendizaje supervisado SVM.

Los resultados encontrados a partir del uso de la SVM-1 no han logrado repre-
sentar la dinamica de comportamiento del PU, ya que el algoritmo ha sido incapaz
de converger, lo que indica que no llegd a encontrar una solucion al problema, y eso
impidi6 entrar en la fase de prediccion.

Por esta razon, se evalud un segundo algoritmo, el SVM-2, que consigui6 repro-
ducir la dinamica esperada y logro entregar resultados fiables para el primer times-
tamp de estimacion futura; no obstante, cuando se estimaron timestamps consecutivos
para una misma serie temporal, el algoritmo siempre predijo en funcién del dltimo
instante de tiempo registrado: si habia presencia del PU, siempre predecia su presen-
cia, y si el canal estaba libre, predecia su ausencia. A partir de los planteamientos
y analisis expuestos, y segun la experiencia adquirida a lo largo de la investigacion
desarrollada, se infiere que el uso de técnicas de inteligencia artificial para el mode-
lamiento y estimacién de PU en redes cognitivas (con topologias de red centralizada)
podria ser un gran acierto dada la capacidad de aprendizaje autbnomo que poseen,
siempre y cuando se usen metodologias como las redes bayesianas dinamicas o las
redes neuronales (Xing, Jing, Huo et al., 2013); no obstante, como trabajo futuro, se
plantea la posibilidad de usar SVM pero con sefiales continuas.
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Caracterizacion de los
usuarios secundarios

En este capitulo se presenta el diseno, desarrollo, desempefio y resultados de los
modelos seleccionados para la caracterizacién del arribo de los usuarios secundarios.

Modelos reactivo y proactivo
A continuacidn, se presenta el desarrollo y los resultados alcanzados con los mode-
los reactivo y proactivo para la caracterizacién del arribo de los usuarios secundarios.

Evaluacion de desempefio en el procesamiento de solicitudes

de acceso a canales en la estacion base

El tiempo de procesamiento de una solicitud se puede estimar a través de la ecua-
cion (106):

t =t +t +x(m, (106),
donde ¢ , €s el tiempo de arribo del #-ésimo usuario secundario (SU), ¢ 4 €s el tiempo

de procesamiento del servicio solicitado, ¢ es el tiempo de asignacion del canal y
x(m) es la funcién caracteristica definida por la ecuacién (107):

1 para el modelo reactivo
x(m) = . (107).
0 para el modelo proactivo
Ademas, se tiene la ecuacién (108):
t=t-N, 'y t,=t-N, (108),

donde , €s el tiempo que tarda el nodo central en hacer una operacion, N . es el ni-
mero de operaciones para la asignacion del canal y N 4 €s el numero de operaciones
que se requieren para procesar la solicitud.
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Figura 51. Evaluacién del nivel de estimacion del arribo de usuarios
secundarios a la estacion base con el modelo proactivo
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Fuente: elaboracion propia.

El ¢, se puede calcular a partir de la funcion de distribucion dada por la ecuacion (109):

t :Lln S (109)
A, \p(x=n) ’

donde 4,, es el parametro de la distribucion usada. Por lo tanto, se llega a que ¢, que-
da determinada por la ecuacion (110):

1 1

s

De la anterior relacién se concluye que la tnica diferencia entre el modelo reactivo y
el proactivo es el término ¢ N, el cual es un valor no negativo que permite afirmar la
desigualdad mostrada en la ecuacion (111):

t(reactive) > t( proactive) (111).

Modelo MLPNN para la estimacion del arribo del usuario secundario
En la presente seccion se describe el modelo MLPNN para la estimacién del arribo del SU.

Diagrama de flujo del algoritmo de aprendizaje

El diagrama de flujo se observa en la figura 52. Ademas, un fragmento del cdédigo
de la MLPNN para la optimizacion de la red neuronal se muestra a continuacion.
La secuencia que se muestra supone la existencia de dos arreglos, Thetal y Theta2,
correspondientes a las matrices de pesos ponderados de la red neuronal. El algoritmo
toma los ejemplos de entrenamiento hasta encontrar los valores 6ptimos de Thetal y
Theta2 que minimizan el error obtenido (figura 52).
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Parte del cédigo del algoritmo MLPNN es el siguiente:

delta_accum_1=zeros (size (Thetal));
delta_accum_2=zeros (size (Theta2));

for t=1:m do

a_l1=X(t,:);

z_2=a_1 * Thetal’;

a_2=[1 sigmoide (z_2)];

z_3=a_2 * Theta2’;

a_3= sigmoide (z_3);

y_i=zeros (1,K);

y_i(y(®)=1;

delta_3=a_3-y_i;

delta_2=delta_3 * Theta2 .* sigmoideGradient ([1 z_2)];
delta_( )=delta_( )+delta_2 (2:end)' *a_1;

—Naccum_1

delta_accum_2=delta_accum_2+delta_3' *a_2;

accum_1

end;
Thetal_grand= delta_accum_1 / m
Theta2_grand= delta_accum_2 / m

Figura 52. Diagrama de entrenamiento del sistema MLPNN

Inicio
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Fuente: elaboracion propia.
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Entrenamiento de la red neuronal

Durante este proceso se determina el valor de las matrices de pesos de control uti-
lizando el algoritmo de propagacion hacia atras (backpropagation), que incluye los
siguientes lineamientos dentro de su algoritmo:

* Inicializar de forma aleatoria los pesos de las matrices con numeros entre —1 y 1.

» Implementar el algoritmo de propagacién hacia adelante para obtener 4™ para
cualquier x(7).

 Calcular el costo J(0) a partir de la ecuacion (112) (Hsieh, 2009), con el fin de
obtener la diferencia entre los valores esperados y los obtenidos; el objetivo es
hacer que su valor se aproxime lo mas cerca posible a 0.

J(6) = —i*zz( (o) *log (A1), + (1= y(x)) *log((4”) ) (112),

x=0 x=0
donde J(@) es la funcién costo para redes neuronales; m es el nimero de ejem-
plos de entrenamiento; # es el nimero de caracteristicas; y(x) es el vector objeti-
vO; AY = h(&) x(i); x es el valor estimado para la entrada m y la caracteristica #;
h(0)=g(6,+6x +0,x,): 0 son los parametros del vector que se aplican a la regresion
lineal, y g es la funcién sigmoide.

« Calcular las derivadas parciales de “?), intentando con ello minimizar el error al

maximo —ecuacion (113) (Hsieh, 2009)—:

dJ(6)
do;

k _ pk
6, =0, -« (113),
donde o es la taza de aprendizaje del gradiente descendente, 6;, son los pesos de la
hipotesis (parametros del vector que se van ajustando para minimizar el error en la
estimacion) y los subindices #f representan el numero de la caracteristica aplicado a
la regresion lineal.

Software de prediccion de arribo de usuarios secundarios

Para determinar la habilidad y precision del algoritmo MLPNN para calcular la pro-
babilidad de arribo del siguiente SU a la estacién base (BS), con criterios de calidad
de servicio (QoS) tipo mejor esfuerzo (BE) o tiempo real (RT) y de ancho de banda
(BW), se desarrollé una aplicaciéon software. En la figura 53 se muestra la fase de
creacion del historico de solicitudes BE, RT y BW (en la figura se visualiza el com-
portamiento pasado con solicitudes BE y RT tinicamente).

En la figura 54 se muestra una captura de la segunda fase del soffware, en la que se
crean las dos redes neuronales MLPNN para un determinado SU: la primera de ellas
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esta especializada en estimar el BW que probablemente va a solicitar el SU, y la segun-

da esta entrenada para predecir la probabilidad de que se solicite un servicio BE o RT.

La figura 55, por su parte, representa graficamente la etapa de entrenamiento o

aprendizaje de las redes neuronales. Por cuestiones de orden, en la figura solo se mues-

tra el modelamiento para el comportamiento historico en las solicitudes tipo BE, don-
de es claro que la MLPNN logra establecer el patron (pasado) solicitado por el SU.

La ultima fase del algoritmo corresponde a la prediccidn, la cual estimara el 30 %
futuro de los datos histéricos y los comparara con el comportamiento real (figura 56).

Figura 53. Software de prediccion de arribo de usuarios secundarios (generacion del histérico)
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Fuente: elaboracion propia.

Figura 54. Etapa de creacion de las MLPNN especializadas
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Figura 55. Fase de entrenamiento de la red neuronal
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Fuente: elaboracion propia.

Figura 56. Fase de prediccion de la red neuronal (con calculo
de probabilidad de una solicitud de QoS)
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Fuente: elaboracion propia.

Evaluacion de resultados

Con el fin de verificar la propuesta desarrollada, se generaron tres casos de prueba
haciendo uso de las distribuciones exponencial, poisson y uniforme. Los resultados
cuantitativos durante la fase de entrenamiento para 200 ejemplos se muestran en las
tablas 15, 17y 19, y las respuestas en la estimacion de las solicitudes de BE, RT y BW
se observan en las tablas 16, 18 y 20.
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Tabla 15. Resultados del entrenamiento para el caso de prueba de distribucion exponencial

Métrica 1.2 MLPNN (BW) 2. MLPNN (BE y RT)
Iteraciones 500.000 500.000
Error de entrenamiento 0,13705 0,04018
Tiempo (ms) 350.856 261.833
Error de validacion 0,00027 0,00027
Porcentaje de cantidad de aciertos 62 99

Fuente: elaboracion propia.

Tabla 16. Resultados de la prediccion para el caso de prueba de distribucion exponencial

Métrica 1. MLPNN (BW) 2. MLPNN (BE y RT)
Entropia cruzada 0,43791 4,70093
MSE 0,05005 No aplica
Error binario No aplica 0,47761
Porcentaje de cantidad de aciertos 48 72

Fuente: elaboracion propia.

Tabla 17. Resultados del entrenamiento para el caso de prueba de distribucion poisson

Métrica 1.2 MLPNN (BW) 2. MLPNN (BE y RT)
Iteraciones 500.000 500.000
Error de entrenamiento 0,37262 0,17537
Tiempo (ms) 333.243 307.682
Error de validacién 0,00205 0,00205
Porcentaje de cantidad de aciertos 11 95

Fuente: elaboracion propia.

Tabla 18. Resultados de la prediccion para el caso de prueba de distribucion poisson

Métrica 1. MLPNN (BW) 2.2 MLPNN (BE y RT)
Entropia cruzada 0,44064 0,47060
MSE 0,00767 No aplica
Error binario No aplica 0,18750
Porcentaje de cantidad de aciertos 5 91

Fuente: elaboracion propia.
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Tabla 19. Resultados del entrenamiento para el caso de prueba de distribucion uniforme

Métrica 1.2 MLPNN (BW) 2. MLPNN (BE y RT)
Iteraciones 500.000 500.000
Error de entrenamiento 0,54275 0,29872
Tiempo (ms) 354.977 357.718
Error de validacién 0,00205 0,02485
Porcentaje de cantidad de aciertos 3 93

Fuente: elaboracion propia.

Tabla 20. Resultados de la prediccién para el caso de prueba de distribucion uniforme

Métrica 1.2 MLPNN (BW) 2. MLPNN (BE y RT)
Entropia cruzada 0,90017 4,70093
MSE 0,10927 No aplica
Error binario No aplica 0,89655
Porcentaje de cantidad de aciertos 2 55

Fuente: elaboracion propia.

Los resultados encontrados sugieren que el porcentaje de acierto en la prediccion de
solicitud de BW por parte del SU es bajo.

Es importante recalcar que esta métrica evalua que en cualquier instante de tiem-
po el valor esperado sea igual al valor obtenido, sin ninguna tolerancia de error. En
este sentido, por ejemplo, para la distribucién exponencial (figura 57) se observa que
la red neuronal identificé el patrén, razén por la cual el MSE (que para este caso
muestra la diferencia entre los valores esperados y minimos) es muy pequefio, del
orden de las centésimas.

Otra caracteristica del comportamiento del sistema a partir de la respuesta entre-
gada en los casos de prueba es que logro identificar patrones para las distribuciones
exponencial y poisson; sin embargo, para el caso de la distribucion uniforme, al no
presentar un patrén en sus datos historicos, no fue posible modelar ni predecir su
comportamiento.
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Figura 57. Distribucion exponencial predicha para la variable ancho de banda
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Modelo de decision
espectral colaborativo

En la introduccion se realizd una primera descripcion del modelo de decision es-
pectral colaborativo, que esta conformado por cuatro modulos fundamentales: 1)
modulo colaborativo (intercambio de informacién entre usuarios secundarios [SU]);
2) modulo de caracterizacion del usuario primario (PU); 3) modulo de probabilidad
de arribo del SU, y 4) médulo de seleccidon de la oportunidad espectral (SO); en el
capitulo 1, a su vez, se realizé la descripcion de los fundamentos tedricos relevantes
para esta investigacion; en el capitulo 2 se presentd el modulo de caracterizacion del
PU, y en el capitulo 3 se describié del modulo de probabilidad de arribo del SU. De
acuerdo con lo anterior, en este capitulo se presentan el modulo colaborativo (inter-
cambio de informacion entre SU) y el modulo de seleccion de la SO.

Debido a que la informacion de ocupacion espectral tiene un papel relevante en
esta investigacion, primero se describira la metodologia que se llevo a cabo para cap-
turar, organizar y procesar los datos experimentales de ocupacion espectral; luego,
se presentara el médulo colaborativo; posteriormente, se describira el médulo de se-
leccién de la SO, junto con los resultados obtenidos, y, finalmente, se presentara el
modelo de decision espectral colaborativo definitivo, a partir de los resultados alcan-
zados en cada uno de los cuatro modulos que lo conforman.

Con el objetivo de facilitar la comprension y organizacion de este libro, la des-
cripcion del soffware desarrollado se dejo como un capitulo independiente posterior
al actual.

Seleccion del software y los equipos

Para desarrollar la presente investigacién se utilizaron los siguientes recursos: un sis-
tema de monitorizacion del espectro (tabla 21), en este caso el analizador MS2721B
de Anritsu, para realizar la captura de los datos de potencia espectral en las bandas
GSM y Wi-Fi; multiples bases de datos electronicas para realizar la revision literaria
sobre handoff espectral (SH) para redes de radio cognitiva (CRN); el soffware Matlab
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para desarrollar el simulador y los correspondientes algoritmos de decision espectral;
un computador de escritorio (tabla 22) para realizar el procesamiento de la infor-
macion, el disefio del modelo, el desarrollo de la experimentacion, el analisis de los
resultados y la documentacién de toda la investigacion, y, finalmente, un cluster para
desarrollar el algoritmo y ejecutar las pruebas de entrenamiento y prediccion (tabla 23).

Tabla 21. Especificaciones de los equipos para la monitorizacion del espectro

. Especificaciones
Equipo . .
Rango de frecuencia Referencia
Antena tipo discono 25 MHz-6 GHz Super-M Ultra Base
Cable de banda ancha DC-18 GHz CBL-6FT-SMNM+
Amplificador de bajo ruido 20 MHz-8 GHz ZX60-8008E-S+
Analizador de espectro 9 KHz-7,1 GHz MS2721B Anritsu

Fuente: elaboracion propia.

Tabla 22. Especificaciones del equipo de computo

Caracteristica Valor de referencia
Procesador AMD FX 9590 de 8 nucleos y 4,71 GHz
Memoria RAM DDR3 de 16 GB
Disco de estado sélido Kingston SV300S37A de 240 GB
Tarjeta de video AMD Radeon R7 200
Tarjeta de red 10/100/1000 mbps
Monitor LG IPS Full HD
Sistema operativo Windows 7 de 64 bits

Fuente: elaboracion propia.

Tabla 23. Especificaciones del claster

Caracteristica Descripcion

Equipo Maquina virtual KVM-Bios Openstack Foundation, 2015.1
Servidor Dell R900

Intel® Xeon® CPU E7450 (2,40 GHz, 24 cores)

DDR2 de 64 GB

1000 GB EXT4

Ubuntu Server 14.04.04 con entorno de escritorio XFCE4

Marca

Cantidad de procesadores
Memoria RAM

Sistema de almacenamiento

Sistema operativo

Fuente: Hernandez, Salgado et al. (2015).
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Tipo de red

Para realizar un analisis comparativo mas completo, se decidi6 evaluar y validar el
desempefio de cada algoritmo de decision espectral en dos redes diferentes: GSM y
Wi-Fi. La razén para escoger la banda GSM fue la alta demanda de telefonia celular
y la baja calidad de servicio (QoS) (Pedraza et al., 2016), y en el caso de la banda
Wi-Fi, la razén de su escogencia obedecio al interés de analizar el desempefio de los
algoritmos en un ambiente mas estocastico y a la viabilidad de su posible utilizacién
por parte de SU de telefonia moévil (Cardenas-Juarez et al., 2016).

Captura y procesamiento de los datos de ocupacion espectral

Este apartado describe el procedimiento realizado para obtener la informacion de
ocupacion espectral, la cantidad de informacién almacenada y su posterior procesa-
miento como insumo de la herramienta de simulacion. El analisis se presenta para la
red GSM, pero para Wi-Fi se sigui6é una metodologia similar.

La figura 58 describe la configuracion de los equipos para realizar el proceso de
medicion de la ocupacién espectral en las bandas GSM (824 MHz-874 MHz) y Wi-
Fi (2,4 GHz-2,5 GHz); las especificaciones de los equipos utilizados se muestran en
la tabla 21, y la configuracién de los parametros técnicos del analizador de espectro
para la banda GSM se puede observar en la tabla 24.

Figura 58. Configuracién experimental para medir la ocupacion espectral

Antena MP
Super-M Ultra Base

25 MHz-6 GHz
8 dBmp

CBL - 6FT SMNM + (DC - 18 GHz)

r (oo
7/ oD J\/\/—
| m— | m—
Amplificador de bajo ruido Analizador de espectro
Ganancia: 8-11,5 dB 9 KHz-7,1 GHz
Figura de ruido: 4-4,5 dB
20-8000 MHz

Fuente: elaboracion propia.
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Tabla 24. Configuracion de los pardmetros técnicos del analizador de espectro para GSM

Parametro Valor
Banda de frecuencia 824 MHz-874 MHz
Sistema de comunicacion Movil
Tecnologia de comunicacion GSM

Técnica de deteccion

Deteccion de energia

Tiempo de captura Un mes
Tiempo de barrido 290 ms
Resolucion de BW (RBW) 100 KHz
Span 50 MHz
Puntos por span (PPS) 500

Fuente: elaboracion propia.

Los rangos de medicién de las bandas se basaron en aspectos como el tiempo de
barrido, la resolucion de ancho de banda (RBW) y el span, con el fin de garantizar
una adecuada medida en funcion del piso de ruido y el BW [ancho de banda] del
canal de la tecnologia a medir. (Pedraza et al., 2016)

La técnica de deteccion utilizada fue la de energia, debido a su factibilidad de im-
plementacion. Ademas, la campafa de medicion se realizd durante un mes, desde
mayo hasta junio de 2018. Una explicacion mas detallada de la configuracion de
los parametros técnicos del analizador de espectro se puede consultar en Pedraza
et al. (2016).

El valor del span corresponde al rango de frecuencia que esta siendo analizado, en
este caso, 50 MHz (824 MHz-874 MHz), y los PPS determinan el nimero de canales
de frecuencia (divisién uniforme de una porcién del espectro) para los cuales el ana-
lizador de espectro midio el correspondiente nivel de potencia durante cada barrido.
De acuerdo con lo anterior, el analizador de espectro entregd, en cada barrido, la
informacion del valor de potencia medido en dBm correspondiente a 500 canales de
frecuencia (potenciales SO), con un BW de 100 KHz (50 MHz/ 500) cada uno.

El niimero de barridos que realiza el analizador de espectro depende del tiempo
de barrido (290 ms) y de la duracion de la campafia de medicidon (un mes). De acuer-
do con el tiempo de barrido, se tienen aproximadamente 3,448 barridos por segundo;
por tanto, el numero total de barridos realizados en un mes es: 8.937.216 (barridos/
mes) = 3,448 (barridos/segundo) x 60 (segundos/minuto) X 60 (minutos/hora) X 24
(horas/dia) x 30 (dias/mes), y el nimero total de datos de potencia es: 4.468.608.000
(datos de potencia del canal/mes)=8.937.216 (barridos/mes) X 500 (datos de poten-
cia del canal/barrido).
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A partir de la informacién anterior, se construyd una matriz de potencia de
8.937.216 x 500, que contiene el valor de potencia de cada uno de los 500 canales (com-
prendidos entre 824 MHz y 874 MHz) para 8.937.216 instantes de tiempo (TS) (cada
TS equivale a 290 ms); sin embargo, debido a la gran cantidad de filas, dicha matriz
tuvo que segmentarse en 240 matrices de 37.238 X 500 para poder trabajar con ella.

Nivel de trafico

Hasta el momento, se cuenta con una matriz de valores de potencia de cada uno de
los 500 canales (con BW de 100 KHz, comprendidos entre 824 MHz y 8§74 MHz)
para cada uno de los 8.937.216 TS (correspondientes a un mes continuo de tiempo,
teniendo en cuenta que cada TS es igual a 290 ms), a la cual denominaremos matriz
de potencias (PM). Con el objetivo de analizar el desempefio de los algoritmos de de-
cisién espectral de acuerdo con el nivel de trafico en la red, se decidi6 extraer de la
PM tres trazas de informacion (submatrices) que representaran el comportamiento
del espectro cuando la red tuviera un nivel de trafico bajo (LT), trafico medio (MT)
y trafico alto (HT); estas nuevas matrices se denominaron PM de LT (PM-LT), PM
de MT (PM-MT) y PM de HT (PM-HT), respectivamente. Cada una de estas tres
matrices tiene un tamano de 14.483 X 500, donde las 500 columnas representan cada
uno de los canales medidos, y las 14.483 filas representan los TS consecutivos en los
cuales se realiz6 la medicion. Los 14.483 TS de cada matriz se segmentaron en dos
partes: una, con 12.414 TS, que corresponden a una subtraza de 60 minutos, deno-
minada entrenamiento (TR), y otra, con 2069 TS, que corresponden a una subtraza de
10 minutos, denominada evaluacién (EV). La matriz de TR contiene la informacién
histérica (dltimos 60 minutos) de ocupacion espectral que conocen los algoritmos
de SH, mientras que la matriz de EV contiene la informacion futura (10 minutos) de
ocupacion espectral que no conocen los algoritmos de SH y que solo es manipulada
por la herramienta de simulacidn para realizar la correspondiente evaluacion y vali-
dacion de cada algoritmo de SH.

De acuerdo con esta explicacion, se tienen finalmente seis matrices de potencias
por cada tipo de red (GSM y Wi-Fi): PM-LT-TR, PM-LT-EV, PM-MT-TR, PM-MT-
EV, PM-HT-TR y PM-HT-EV; sin embargo, solo es necesario encontrar las tres ma-
trices de EV, ya que cada matriz de TR corresponde a los 60 minutos anteriores de la
respectiva matriz de EV. Para encontrar las tres matrices de EV, se realizd un analisis
estadistico de la ocupacion espectral capturada, para lo cual fue necesario conocer
la disponibilidad de cada canal en cada TS, por lo que el primer paso fue obtener la
matriz de disponibilidad (AM) a partir de la PM.

Para obtener la AM a partir de la potencia de cada canal, se calculé un umbral
de decision; los canales con potencias menores al valor del umbral de decision se
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clasificaron como disponibles, y dicho estado se represent6 en la AM con un ‘1’ 16gico,
y en el caso contrario, los canales fueron clasificados como ocupados, y su estado se
denotd con un ‘0’ légico. El valor de la potencia del umbral de decision se calculo
a partir la ecuacion (114) con una probabilidad de falsa alarma del 1% (Pedraza et
al., 2016). Otro método para determinar el valor del umbral de decisiéon es tomar
un nivel de guarda de 5 dBm por encima del piso de ruido promedio del analizador
de espectro, con el objetivo de minimizar posibles falsas alarmas. El piso de ruido
promedio se determiné con la ubicacion de una impedancia de 50 Q a la entrada del
analizador de espectro, con un nivel de atenuacién de 0 dB, con deteccion de raiz
media cuadratica (RMS) y con un largo periodo de medicién (Pedraza et al., 2016).
La tabla 25 muestra los valores del piso de ruido promedio y del umbral de decision
para las dos metodologias.

F(m,ij
p 2 (114).

Tabla 25. Umbral de decision para la deteccion de usuarios primarios

Banda de frecuencia Piso de ruido Umbral de decision Umbral de decision:
promedio (piso de ruido: +5 dBm) ecuacion (114)
GSM (824 MHz-874 MHz) —113 dBm —-108 dBm -109 dBm
Wi-Fi (2,4 GHz-2,5 GHz) —111 dBm -106 dBm —-108 dBm

Fuente: elaboracion propia.

Con la AM ya construida, se procedid a realizar un analisis estadistico de la ocu-
pacién espectral en el tiempo de acuerdo con el nimero promedio de PU activos
simultaneamente; esto consistio en calcular el porcentaje de canales ocupados por
cada TS. Luego, se disefié un algoritmo que contara el numero de TS con ocupacion
mayor al 80 % dentro de una ventana moévil de 10 minutos (2069 TS) y que promedia-
ra los porcentajes de ocupacion de cada TS incluido dentro de la ventana. Dicha ven-
tana se desplazd por el total de filas de la AM para analizar todas las combinaciones
posibles. Los resultados evidenciaron que el peor caso corresponde a una ocupacion
promedio de la ventana del 48 %, y en el mejor caso, del 18 %, valores que correspon-
den a las ventanas que describen las matrices de EV para HT y LT, respectivamente.
Para el caso de MT, se tomo el valor medio entre 48 y 18 y se buscd una ventana que
se ajustara a este valor. Los valores de ocupacion espectral promedio encontrados se
explican en gran parte debido a que los primeros 25 MHz de la banda de 824 MHz
a 874 MHz corresponden al enlace ascendente GSM. Estos valores también eviden-
cian la oportunidad de hacer un uso mas eficiente del espectro en dicha banda.
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Con los resultados anteriores, se determinaron las matrices de potencia: PM-LT-
TR, PM-LT-EV, PM-MT-TR, PM-MT-EV, PM-HT-TR y PM-HT-EV, y a partir de
estas se construyeron las matrices de disponibilidad: AM-LT-TR, AM-LT-EV, AM-
MT-TR, AM-MT-EV, AM-HT-TR y AM-HT-EV; sin embargo, debido a la extension
de los resultados obtenidos, se decidid excluir las matrices de potencia y disponi-
bilidad correspondientes a MT, por lo que de aqui en adelante solo se mencionan
los niveles de LT y HT, asi como las matrices de potencia (PM-LT-TR, PM-LT-EV,
PM-HT-TR y PM-HT-EV) y las matrices de disponibilidad (AM-LT-TR, AM-LT-
EV, AM-HT-TR y AM-HT-EV), tanto para GSM como para Wi-Fi.

Mddulo colaborativo: intercambio de informacion

entre usuarios secundarios

Una de las principales novedades de esta investigacion es el hecho de contemplar
la caracteristica de colaboraciéon entre SU para determinar la mejor SO. Como se
menciono en la introduccion y en el capitulo 1, la mayor parte de los trabajos de
investigacion en radio cognitiva (CR) se fundamentan en una red centralizada, en la
que toda la informacion estd organizada en un solo lugar y cuyo acceso resulta mas
facil y beneficioso para la toma de decisiones; sin embargo, aunque su observacion
y conocimiento global es una ventaja, para sistemas a gran escala y aplicaciones en
redes de seguridad publica no es la mejor opcion, pues el aumento en los costos de
medicion, la complejidad del sistema, la cantidad de informacion que debe controlar
y el desequilibrio y potencial caos si la estacion base (BS) llegara a fallar (vulnerabili-
dad) la convierten en una arquitectura no factible para todas las estructuras de CRN
(Pankratev et al., 2019). En el caso de las redes distribuidas, como las redes moviles
ad hoc, 0 manet (mobile ad-hoc network), se caracterizan por su alta movilidad, su au-
tonomia y su adaptacion e independencia, y sus aplicaciones se encuentran en esce-
narios que involucran vehiculos terrestres (VANET), vehiculos aéreos no tripulados
(Bujari et al., 2018), vigilancia urbana y misiones de busqueda o rescate (Dhamodha-
ravadhani, 2015). Sin embargo, la falta de infraestructura, la topologia dinamica, la
implementacion rapida y los entornos hostiles de aplicacién hacen que la manet sea
vulnerable a una amplia gama de ataques de seguridad (Abass et al., 2017; Kongsi-
riwattana y Gardner-Stephen, 2017; Vasudeva y Sood, 2018); ademas, el consumo
de energia y el retardo son altos (Kongsiriwattana y Gardner-Stephen, 2017), y el
BW es bajo, asi como su rendimiento, por las frecuentes fallas de enlace (Dhamo-
dharavadhani, 2015; Goswami, 2017). Esta problematica puede ser solucionada si
se distribuye la responsabilidad de la informacién en diferentes puntos de control,
criterio base de las redes de radio cognitiva descentralizadas (DCRN). Ahora, debido
a que en las DCRN no se centralizan la informacion y la gestion de la red, resulta
realmente importante el concepto de colaboracion entre SU para la toma de decisiones.
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De acuerdo con lo anterior, la presente investigacion implement6 y adapto la
colaboracion al modelo de decisidn espectral propuesto, a través de un moédulo de
intercambio de informacion entre SU, que se describe a continuacion.

Inicialmente, cada SU almacena informacion de su entorno radioeléctrico, y para
hacerlo, se plantean cuatro diferentes alternativas: guardar toda la informacion posi-
ble, guardar solo los tltimos £ datos de informacién, guardar el promedio de toda la
informacion posible o guardar solo el promedio de los ultimos %4 datos de informa-
cion. Con el objetivo de optimizar el uso de la bateria del SU, se descartaron la pri-
mera y tercera alternativas, dejando solo las opciones de guardar los tltimos % datos
de informacion o su promedio; para tomar la decision sobre cual de estas estrategias
seleccionar para el modelo de decision espectral colaborativo, se implementaron las
dos para saber cual generaba menor nimero de handoffs espectrales al transmitir la
misma cantidad de informacién durante 9 minutos y a partir del mismo algoritmo de
toma de decisiones.

Los resultados mostraron que, para £ mayores de 180, los ultimos £ datos resultan
ser una mejor opcion con una diferencia del 29 %, mientras que, para valores de #
menores de 180, el promedio tiene mejores resultados con una diferencia del 32 %.
De acuerdo con lo anterior, se decidié seleccionar la alternativa del promedio, ade-
mas porque esta trae consigo informacion de varios periodos anteriores a &, lo que
representa un valor agregado.

Modulo de seleccion de la oportunidad espectral

En esta seccidn se describe el médulo de seleccion de la SO. Primero, se presenta
la metodologia de evaluacion planteada; segundo, se mencionan los algoritmos
de decisidn espectral seleccionados; tercero, se describen los criterios de decision
(DCQ) utilizados en cada uno de los algoritmos de decision espectral seleccionados;
cuarto, se describe el algoritmo fuzzy AHP (FAHP, algoritmo multivariable difuso),
a partir del cual se determinaron los pesos de cada uno de los DC; quinto, se pre-
senta el algoritmo FFAHP, y sexto, se describen las métricas de evaluacion (EM)
con las cuales se realizo la comparacion entre cada algoritmo de decisidon espectral
seleccionado. Los resultados de la evaluacion se presentan en la siguiente seccion,
debido a su volumen.

Metodologia de evaluacion

Con base en el analisis de la informacién obtenida a través de la revision de la litera-
tura sobre SH para CRN, se disefidé una metodologia para la evaluacion del desempe-
fio de la movilidad en redes méviles de CR.
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Esta evaluacion consistidé en un analisis comparativo del desempefio de los al-
goritmos de decision espectral mas relevantes para CRN en la literatura actual. La
evaluacion del desempefio se realizd para cinco EM: numero de Aandoffs promedio
acumulado (AAH), namero de Aandoffs fallidos promedio acumulado (AAFH), BW
promedio (ABW), retardo promedio acumulado (AAD) y throughput promedio acu-
mulado (AAT), en ocho escenarios diferentes: GSM-RT-LT, GSM-RT-HT, GSM-
BE-LT, GSM-BE-HT, Wi-Fi-RT-LT, Wi-Fi-RT-HT, Wi-Fi-BE-LT y Wi-Fi-BE-HT,
producto de la combinacion de tres parametros de interés: el tipo de red (GSM y Wi-
Fi), el nivel de trafico (trafico bajo [LT] y trafico alto [HT]) y la clase de aplicacién
(tiempo real [RT] y mejor esfuerzo [BE]).

Para obtener la informacién de evaluacion de cada algoritmo en las cinco EM,
para los ocho escenarios descritos, se desarrolld una herramienta de simulacion no-
vedosa que reconstruye progresivamente el comportamiento de la ocupacion del es-
pectro a partir del uso de trazas de datos experimentales capturadas en las bandas
GSM y Wi-Fi. Esto permite considerar, dentro de la simulacion, una aproximacion
al comportamiento real del PU y, por ende, obtener una validacion mas exacta del
desempefio real de cada algoritmo. Los datos de ocupacion espectral corresponden
a un mes de observacion y fueron capturados en la ciudad de Bogota, Colombia
(Pedraza et al., 2016).

Si un SU desea realizar una transmisién durante ¢ minutos, la herramienta de
simulacién desarrollada realiza el siguiente procedimiento:

1. Actualiza el valor de los DC con base en la informacién anterior al TS actual,
denominado T, en el cual el SU solicita el recurso espectral.

2.Realiza un ranking de clasificacion de las SO con base en el puntaje obtenido por
cada una, de acuerdo con la metodologia del algoritmo de decision espectral que
se esté evaluando.

3.Selecciona la SO que ocupe el primer lugar en el ranking para asignarsela al SU
e iniciar su transmision.

4.En este momento, denominado T, se verifica en la base de datos (traza de datos
capturados y procesados) si la SO seleccionada se encuentra disponible: si es asi,
se aumenta en uno la EM AAH y se procede al quinto paso; de lo contrario, se
aumenta en uno la EM AAFH, se selecciona la SO que ocupe el siguiente lugar
en el ranking y se retorna al cuarto paso.

5.La herramienta de simulacién verifica en cada TS, a través de la base de datos, si
la SO que esta siendo utilizada por el SU continua disponible.
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6.En el momento T, que la SO seleccionada sea requerida por un PU, es decir,
cuando la SO ya no se encuentra disponible segun la base de datos, si At =T, — T,
es menor de 60 segundos, entonces se selecciona la siguiente SO en el ranking y
se retorna al cuarto paso; en caso contrario, se actualiza T, con el valor de tiempo
actual y se retorna al primer paso.

7.S1 durante { segundos no se encuentra un canal disponible, la comunicacion se
da por perdida.

El procedimiento anterior se repite hasta que se completen los ¢ minutos de trans-
mision del SU o hasta que la comunicacion se dé por perdida. En caso de que el SU
complete su comunicacion, la herramienta de simulacién calcula el valor promedio
de las cinco EM por cada minuto de los ¢ minutos de transmision del SU. La base
de datos suministra unicamente la informacion espectral correspondiente al TS que
se esté ejecutando en la simulacion, y para no afectar la validacion, los valores de los
DC se construyen progresivamente a partir de la informacion espectral anterior al TS
actual. Esta simulacion se ejecuta de forma independiente para cada algoritmo de
decision espectral y para cada uno de los ocho escenarios.

Seleccion de los algoritmos de handoff espectral

A partir de una revision de la literatura actual sobre el tema de SH para CRN, se selec-
cionaron los algoritmos de decision espectral. Para realizar esta seleccion, se tuvieron
en cuenta no solo los resultados del algoritmo, sino también su fundamentacion ma-
tematica y una metodologia clara que permitiera su reproduccion. Ademas, debido
a que la seleccion de una SO involucra multiples variables, los métodos MCDM son
una herramienta matematica adecuada para modelar el proceso de SH y, por tanto,
han sido los mas ampliamente utilizados en los trabajos de investigacién sobre SH
(Lahby et al., 2011; Stevens-Navarro et al., 2008; Yang y Jung-ShyrWu, 2008; Yang
y Tseng, 2013; Zapata et al., 2012). Los algoritmos de SH seleccionados fueron: SAW
(Hernandez, Giral y Santa, 2015; Zhang, 2004), TOPSIS (Vasquez et al., 2015; Zhang,
2004), VIKOR (Hernandez, Paez et al., 2015; Stevens-Navarro, Gallardo-Medina et
al., 2012) y FFAHP (Hernandez, Pedraza y Rodriguez-Colina, 2016), que ha demos-
trado ser una alternativa eficaz para la evaluacion y seleccion de SO.

Para cada uno de los algoritmos de SH seleccionados se desarrollaron dos versio-
nes: una, con enfoque en aplicaciones RT, y otra, con enfoque en aplicaciones BE;
por ejemplo, para el caso de SAW, se tiene SAW-RT y SAW-BE.

Dado que los algoritmos SAW, TOPSIS y VIKOR se explicaron en el capitulo 1,
aca unicamente se describiran el algoritmo FFAHP vy, adicionalmente, el FAHP, a
partir del cual se calcularon los pesos de cada DC.
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Criterios de decision

Ahora, cada algoritmo de decision espectral seleccionado (SAW, TOPSIS, VIKOR
y FFAHP) depende de los DC que se seleccionen y de sus correspondientes valores.
Para esta investigacion, se seleccionaron cuatro DC: probabilidad de disponibilidad
(AP) del canal, tiempo estimado de disponibilidad (ETA) del canal, relacion de sefial
a interferencia mas ruido (SINR) y BW, debido a que era posible determinar sus va-
lores a partir de los datos de ocupacién espectral experimentales. También se decidid
que cada uno de los cuatro algoritmos de decision espectral trabajara con los mismos
cuatro DC.

La variable AP corresponde al analisis del ciclo de trabajo normalizado de cada
una de las 500 potenciales SO. Por tanto, el resultado de AP es un vector de 1x 500,
donde cada elemento es equivalente al promedio de la correspondiente columna de
la matriz AM-LT-TR o AM-HT-TR, segun el nivel de trafico.

La variable ETA corresponde al tiempo de disponibilidad promedio de cada ca-
nal. Primero, se calculan todos los periodos de tiempo que cada canal estuvo dispo-
nible de forma continua, y luego se toma el promedio de dichos periodos para cada
canal. Por tanto, el resultado del ETA también es un vector de 1 x 500 para la matriz
AM-LT-TR o AM-HT-TR, segun el nivel de trafico.

La variable SINR corresponde al promedio de la diferencia entre la potencia de
la sefial y el piso de ruido promedio. Primero, para cada elemento de la matriz AM-
LT-TR diferente de cero, se realiza la diferencia entre el elemento que tiene la misma
posicion en la matriz PM-LT-TR y el valor promedio del piso de ruido, y el resultado
de la diferencia se almacena en la misma posicion de una matriz temporal denomi-
nada matriz SINR-LT-TR. Segundo, se calcula el valor promedio de cada columna
de la matriz SINR-LT-TR, por lo que el resultado de SINR también es un vector de
1 x500. Por dltimo, se realiza el mismo procedimiento con la matriz AM-HT-TR,
segun el nivel de trafico.

La variable BW, por su parte, corresponde al BW promedio de cada canal; sin em-
bargo, debido a que son canales, todos tienen el mismo BW, equivalente a 100 KHz,
por lo que el promedio serd siempre el mismo, lo que le resta importancia a esta
variable. No obstante, con el objetivo de que la variable BW tuviera incidencia en
el ranking de cada SO, se decidié tomar, para cada potencial SO, el BW agregado de
hasta cuatro canales adyacentes, tanto a la izquierda como a la derecha, siempre y
cuando estuvieran disponibles de forma consecutiva para formar un solo canal.

En la banda GSM, todos los canales tienen un BW de 200 KHz; sin embargo, debi-
do a los parametros técnicos configurados en el analizador de espectro, la campana
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de medicién arrojo datos de ocupacién espectral para segmentos de frecuencia con
un BW fijo de 100 KHz. Al respecto, a pesar de que se podria haber realizado el
promedio del nivel de potencia para cada dos segmentos, a fin de obtener el valor
correspondiente a cada canal GSM, se decidi6 trabajar con el BW de 100 KHz para
realizar un uso oportunista mas eficiente del espectro disponible.

Una vez calculados los valores de los DC, se procedi6 a realizar su normalizacién
para que los puntajes que definian la posicion de las SO en el ranking siempre fueran
los justos, tanto en la clase de aplicacién RT como en la BE. La normalizacion de los
valores para los cuatro DC consistio en ajustar su rango de escala de 0 a 100, para
lo cual se multiplicaron todos los valores de un mismo DC por un factor de escala
equivalente a 100 dividido por el valor mas alto del DC correspondiente.

Algoritmo multivariable difuso

El algoritmo AHP (analytical hierarchical process) para la toma de decisiones basada
en multiples criterios, tanto cuantitativos como cualitativos, ha demostrado ser una
alternativa eficaz para la seleccion del canal objetivo (Kibria et al., 2005; Lahby et
al., 2011; Rodriguez-Colina et al., 2011; Song y Jamalipour, 2005; Stevens-Navarro
et al., 2008; Stevens-Navarro, Martinez-Morales et al., 2012). El algoritmo AHP se
basa en juicios subjetivos, a través de comparaciones de la importancia entre criterios
usados para la seleccion de una alternativa, por lo que es mas una medida relativa
que un valor absoluto (Saaty, 1990).

Sin embargo, el método AHP propuesto en Saaty (1990) tiene las siguientes limi-
taciones: 1) trabaja con una escala de juicios muy desbalanceada, 2) no maneja in-
formacion con incertidumbre y ambigiiedad asociada a la asignacion de un niimero
a cada evaluacion, 3) su ranking es bastante impreciso y 4) la subjetividad del juicio,
la seleccion y la preferencia de quienes toman las decisiones tienen gran influencia
en los resultados; sin embargo, estas limitaciones se pueden corregir a través de la
integracion de la légica difusa en el algoritmo AHP, lo que mejora el manejo de la
subjetividad y la incertidumbre en la informacién y en las evaluaciones de criterios; al
anadirle la logica difusa al AHP, se obtiene el algoritmo multivariable difuso (FAHP)
(Mehbodniya et al., 2012; Patil y Kant, 2014; Zapata et al., 2012).

Aunque el método FAHP tenga en esencia la misma metodologia del algoritmo
AHP, la logica difusa ayuda a tratar la subjetividad y la incertidumbre en las eva-
luaciones de criterios, ya que, mediante un proceso matematico, permite utilizar un
rango en la respuesta en lugar de un numero puntual (Cortés, 2011).
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El algoritmo FAHP propuesto, adaptado a la CR, se desarroll6 a través de cuatro
pasos: 1) definicién del problema, 2) construccion de la jerarquia, 3) construccién de
la matriz de juicios y 4) calculo de los pesos normalizados.

Definicion del problema

El problema puede ser dividido en cuatro niveles jerarquicos: objetivo, criterios, sub-
criterios y alternativas: el objetivo es la seleccidén de la mejor SO en una CRN; los
criterios y subcriterios son los factores que afectan la preferencia de una alternativa,
y las alternativas son todas las SO presentes en la banda de frecuencia seleccionada.

El procedimiento para determinar los criterios y subcriterios fue realizado a través
de una modificacion del método Delphi (Green et al., 2007), que es relativamente
simple de implementar y que ha sido adoptado para diversas aplicaciones, como
pronésticos, estimaciones y problemas de toma de decisiones (Green et al., 2007). El
método consiste generalmente en un panel de expertos que responden cuestionarios
en dos o mas rondas. Después de cada ronda, un moderador provee un resumen
anonimo de los juicios y razones de cada experto en la ronda previa. Para esta inves-
tigacion, los DC para el algoritmo FAHP fueron propuestos inicialmente a partir de
todos los parametros reportados en la literatura actual sobre SH para CRN, y final-
mente fueron seleccionados con una modificaciéon del método Delphi propuesta en
Hernandez, Salgado et al. (2015). La contribucion al método Delphi es el concepto
de experto en si mismo, definido como el profesional inmerso en la administracion
y operacion de red, asi como la propuesta del método Delphi modificado, la cual
consiste en considerar dos entradas en lugar de una para cada ronda. Para la primera
ronda y las siguientes, se consideraron dos entradas: la decision de un Consejo de
Administradores de Red (CAR), compuesto por nueve expertos seleccionados alea-
toriamente, y el ranking del impacto de las variables (RIV) que influyen en el proceso de
SH y que estan reportadas en la literatura.

La segunda ronda del método Delphi implementado consider6 las trece variables
seleccionadas durante la primera ronda del proceso y el RIV actualizado. El CAR
determiné cuales de las trece variables eran significativas, si debian adicionarse nue-
vas o si se debia modificar o descartar algunas, lo cual se combiné con las estadisticas
del RIV y se actualiz6. En caso de presentarse desacuerdo entre miembros del CAR,
se desarrolla un analisis global combinado con las estadisticas del RIV, y luego, un
segundo conjunto de variables es propuesto para la tercera ronda, con el mismo pro-
cedimiento. Este proceso se repite iterativamente hasta alcanzar un consenso general
por parte del CAR combinado con las estadisticas del RIV. En el método Delphi pro-
puesto, si el consenso no se da antes de la quinta ronda, la decision final es tomada
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con base en las estadisticas finales del RIV. Para este caso, el consenso se logrd en la
tercera ronda, en la cual se descartaron ocho variables.

Después de tres rondas del método Delphi modificado, cinco variables fueron
seleccionadas por la combinacion del CAR vy las estadisticas del RIV. Estas fueron:
clase de servicio del SU (RT y BE), AP, ETA, SINR y BW. El siguiente paso fue or-
ganizar los DC en criterios y subcriterios para el objetivo de seleccionar la mejor SO
para el SU. Se considerd que la variable clase de servicio es mas general que las otras,
por lo que se decidio seleccionarla como criterio, clasificandola como RT y BE, y se
consideraron las otras cuatro variables como subcriterios de la clase de servicio. Asi,
en esta investigacion, el criterio clase de servicio es determinado por la aplicacién del
SU, y se considera que el objetivo es el mismo para RT y BE (seleccionar la mejor
SO); sin embargo, la importancia (ponderacién) de cada subcriterio es diferente y
corresponde al enfoque de las aplicaciones RT y BE.

Los cuatro subcriterios fueron medidos y calculados a partir de datos experimen-
tales de ocupacion espectral capturados en las bandas GSM y Wi-Fi.

Estructura jerarquica
La estructura jerarquica del algoritmo FAHP se construyo6 con base en el objetivo, los
criterios, los subcriterios y las alternativas seleccionadas (figura 59).

Matrices de juicio

De acuerdo con el método AHP, una vez disefiada la jerarquia, se construyen las
matrices de juicios, las cuales corresponden a las evaluaciones comparativas que de-
finen el nivel de importancia relativa entre cada combinacion posible de parejas de
criterios, subcriterios y alternativas, de forma independiente. Sin embargo, debido a
que solo se tienen dos unicos criterios —RT y BE, los cuales son mutuamente exclu-
yentes, cada uno con los mismos cuatro subcriterios—, no tiene sentido realizar una
matriz de juicios para este nivel. En el caso de las alternativas, debido a que las SO
modifican sus caracteristicas (subcriterios) dinamicamente en el tiempo, tampoco
tendria sentido realizar una matriz de juicios a este nivel, por lo que se decidi6 que el
algoritmo FAHP evaluara dinamicamente el conjunto de alternativas.
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Figura 59. Estructura propuesta para el algoritmo FAHP

Objetivo

Criterios

Subcriterios

Alternativas

Seleccionar la mejor
oportunidad espectral

I

v

V

Alta sensibilidad al retardo ’

Baja sensibilidad al retardo

Oportunidad
espectral

Fuente: elaboracion propia.

De acuerdo con Biiyiikozkan et al. (2004),

las personas encargadas de la toma de decisiones usualmente se sienten mejor
presentando sus juicios como un intervalo en vez de dar un valor puntual y fijo.
Esto se debe a que €, ella o ellos son incapaces de explicar sus preferencias, dada
la naturaleza difusa de los procesos de comparacién humana. (pp. 260-261; tra-
duccion propia)

Por ello, se decidi6 trabajar con una escala de TFN (nameros difusos triangulares),

presentados en la tabla 26 y la figura 60. La escala de importancia difusa se obtuvo

de la conversién de la escala de importancia fundamental de nueve niveles a numeros

difusos presentada por Biytkozkan et al. (2004).

Tabla 26. TFN y TFN reciproco para la escala de importancia de FAHP

Nomenclatura Escala de importancia TFN TFN reciproco
EI Igualmente importante (1/2,1,3/2) 2/3,1,2)
MI Moderadamente mas importante (1,3/2,2) (1/2,2/3,1)
SI Fuertemente mas importante (3/72,2,5/2) (2/5,1/2,2/3)
VSI Muy fuertemente mas importante 2,5/2,3) (1/3,2/5,1/2)
XI Extremadamente mas importante (5/2,3,7/2) 2/7,1/3,2/5)

Fuente: elaboracion propia a partir de Biytikozkan et al. (2004); Biytikozkan y Cifci (2012);
Choudhary y Shankar (2012); Cortés (2011); Giupponi y Pérez-Neira (2008); Kaya y Kah-
raman (2010); Mehbodniya et al. (2012); Patil y Kant (2014), y Zadeh (1965).
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Figura 60. TFN para la escala de importancia de FAHP
= || === DMAI| === FMA| === MFMA| = AMAI

1 Py Py ® Py Py

0 L < >  J
0/1 1/2 1Al 3/2 2/1 5/2 31 7/2

Fuente: elaboracion propia.

Una matriz de juicios de # criterios o subcriterios esta descrita por la ecuacion (115):

all a12 tee aln
a a e a
21 2
A=[a;] = ’ (115),
Y dnxn DoortL

anl an2 e a

nn

dondei=j;=1,2, ..., n,ynesel nimero de criterios o subcriterios.

Para el caso del algoritmo FAHP, las matrices de juicios que contienen los TFN
representan las comparaciones por parejas entre subcriterios (Mehbodniya et al.,
2012), como lo describe la ecuacion (116):

_(0-5:131-5) (Lysmyy,uyy) oo (L, my,,u,,)
(L, my,,uy) (0.5,1,1.5) - (1,,,m,,,u,,)

‘/’i(aij)nxn = (116)>
| Lsmysty) (o) - (0.5,11.5) |
N[ T G (111
donde \4; )= | 4;; = li‘ami'aui' =7
e (3= [6.] =) =[]

Los elementos de la diagonal de cada matriz corresponden a la igualdad, a razon
de que compara la importancia entre los mismos subcriterios. La mitad diagonal
superior de cada matriz describe la importancia relativa del subcriterio de la primera
columna con respecto al subcriterio de la primera fila.
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Con base en la escala de importancia difusa presentada en la tabla 26 y la figura
60, y a partir el método Delphi modificado, se determiné el nivel de importancia
relativa de cada par de subcriterios y se construyeron las matrices de juicios para los
subcriterios. La matriz de juicios preliminar se construyd con los resultados de la
primera ronda del método Delphi modificado. Ademas, los resultados de la primera
ronda fueron usados en la segunda tanto para el enfoque RT como para el BE. El pro-
ceso de decision se repite hasta que los resultados convergen; estos son presentados
en las matrices de juicio para los subcriterios con el enfoque de RT (tabla 27) y para
los subcriterios con el enfoque de BE (tabla 28).

Tabla 27. Matriz de juicios para los subcriterios de tiempo real

Subcriterio AP ETA SINR BW
AP (1/2,1,3/2) (1,3/2,2) (3/2,2,5/2) (3/2,2,5/2)
EI MI SI SI
1/2,2/3, 1 1/2,1,3/2 3/2,2,5/2 3/2,2,5/2
ETA ( ) ( ) ( ) ( )
1/MI EI SI SI
(2/5,1/2,2/3) (2/5,1/2,2/3) (1/2,1,3/2) (1,3/2,2)
SINR
1/S1 1/SI EI MI
BW (2/5,1/2,2/3) (2/5,1/2,2/3) (1/2,2/3, 1) (1/2,1,3/2)
1/S1 1/S1 1/MI EI

Fuente: elaboracion propia.

Tabla 28. Matriz de juicios para los subcriterios de mejor esfuerzo

Subcriterio AP ETA SINR BW
AP (1/2,1,3/2) (1,3/2,2) (1/3,2/5,1/2) (1/3,2/5,1/2)
EI MI 1/VSI 1/VSI
ETA (1/2,2/3,1) (1/2,1,3/2) (2/5,1/2,2/3) (2/5,1/2,2/3)
1/MI EI 1/S1 1/8I
(2,5/2,3) (3/2,2,5/2) (1/2,1,3/2) (3/2,2,5/2)
SINR VSI SI EI SI
BW (2,5/2,3) (3/2,2,5/2) (2/5,1/2,2/3) (1/2,1,3/2)
VSI SI 1/81 EI

Fuente: elaboracion propia.

Las aplicaciones RT y BE tienen diferentes enfoques: para RT, los subcriterios con
mas alta prioridad son los que reducen el retardo, como AP y ETA, y para BE, los
subcriterios con mas alta prioridad son los que incrementan la tasa de datos, como
BW y SINR.
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Calculo de los pesos normalizados

Con las matrices de juicios definidas, se procedi6 a calcular los pesos normalizados
para cada subcriterio, con base en el modelo propuesto por Mehbodniya et al. (2012).
Estos resultados estan basados en el analisis difuso extendido presentado en Chang
(1996), como se describe a continuacion.

El valor del i-ésimo objeto del analisis extendido es definido como se muestra en
la ecuacion (117):

-1

S = a.. a.. (117),

donde Zj:l a, = (Zj’:l lfj’zjzl mi/’ijl ”z‘/) .

La matriz inversa de la ecuacion (117) se calcula a partir de la ecuacion (118):

(118).

-1
{ L } _ 1 1 1
ij - n n 4 n n s n n
== Zi:lzj':luif Zi:lzj':l m; Zizlzj‘:ll[f
El grado de posibilidad de que un numero difuso convexo sea mas grande que %
numeros difusos convexos esta dado por la ecuacion (119):

V(§=8)=v[(§=5)A(528,)..(§=5) |=min{r(§=$)} (119),

donde el grado de posibilidad de que S, > 5‘2 y 52 > 5‘1 esta dado por las ecuaciones
(120) y (121), respectivamente:

1 m 2 m,
V(~1 2 ~2): 0 122”1 (120);
L= , otherwise

(m] _ul)_(mz_lz)

1 m, = m,
V(Sz 2 ~1) = 0 Iy 2u, (121).
b—u , otherwise

(my —u,)=(m, —1,)
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Ahora, asumiendo que d, = min{V(51 >S, )} , el vector de pesos es w' = (dl', dy,...,d )
Finalmente, después de la normalizacion, el vector de pesos no difuso esta dado
por la ecuacion (122):

d d d

— 1 n
Zi:l di Zi:] di i=1 df
A partir del procedimiento anterior, se muestran los resultados del vector de pesos

correspondiente al criterio RT (tabla 29) y del vector correspondiente al criterio BE
(tabla 30).

W=(d,dy,..d)" (122).

Tabla 29. Pesos normalizados de los subcriterios de tiempo real

Subcriterio RT AP ETA SINR BW
Pesos normalizados 0,3593 0,2966 0,1970 0,1471
Fuente: elaboracion propia.
Tabla 30. Pesos normalizados de los subcriterios de mejor esfuerzo
Subcriterio BE AP ETA SINR BW
Pesos normalizados 0,1607 0,1523 0,3949 0,2921

Fuente: elaboracion propia.

Los pesos normalizados describen el grado de importancia relativa de cada subcriterio
para la seleccion del canal de respaldo segin el criterio de RT o BE. Por ejemplo, en el
caso de que un SU requiera un canal de respaldo para una aplicacion de TR, la seleccion
de dicho canal dependera en un 36% de la AP del canal, en un 30% del ETA del canal,
en un 20% de la SINR del canal y en un 14% del BW del canal, aproximadamente.

Los pesos descritos en las tablas 29 y 30 se utilizan para configurar cada uno de
los cuatro algoritmos de decisidn espectral a evaluar comparativamente.

Algoritmo multivariable difuso realimentado

En el algoritmo FFAHP, el puntaje de cada SO es calculado a partir de los pesos ob-
tenidos con FAHP, usando la ecuacién (123) para el enfoque RT y la ecuacion (124)
para el enfoque BE. La SO con el puntaje mas alto es la SO objetivo; la SO con el
segundo puntaje mas alto es la SO de respaldo, y las siguientes son SO candidatas en
orden de mayor a menor puntaje.
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Score, RT = APx0,3593+ ETAx0,2966+ SINR x0,1970+ BW x0,1471 (123);

Score; _ BE=APx0,1607+ ETAx0,1523+ SINRx0,3949 + BW x0,2921 (124),

donde Score i es el puntaje asignado a la SO 7 para la aplicacion RT y Score j es el
puntaje asignado a la SO j para la aplicacion BE.

El algoritmo FFAHP propuesto tiene por objetivo incrementar la precision en la
seleccion de la SO. Para lograr esto, FFAHP realimenta la informacién de las evalua-
ciones de las SO realizadas anteriormente. Asi, la seleccién de la SO se realiza con base
en la evaluacion de la informacion actual del espectro y en las evaluaciones pasadas.

Inicialmente, el proceso de deteccion de espectro captura la informacion de fre-
cuencia, potencia y tiempo. La cantidad de datos capturados dependera de los para-
metros de RBW, span y tiempo de barrido, configurados en el analizador de espectro
(Pedraza et al., 2016); los datos capturados son almacenados en una base de datos.
Periodicamente, la unidad de procesamiento de informacion calcula el valor de los
DC —AP, ETA, SINR y BW— y los normaliza sobre una base de 100. El algoritmo
FAHP recibe los valores actualizados de cada DC y procede a evaluar cada SO. Si la
aplicacion es de RT, utiliza la ecuacion (123), y si es de BE, utiliza la ecuacion (124).
El rango del puntaje de evaluacién puede estar entre 0 y 100, siendo 100 el mejor
puntaje posible. La figura 61 ilustra el disefio del algoritmo FFAHP.

Figura 61. Esquema del algoritmo FFAHP propuesto
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Fuente: elaboracion propia.
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En esta parte del proceso se tiene un ranking de cada una de las SO con base tnica-
mente en la informacion actual de los DC; sin embargo, la SO con la mejor evaluacion
hasta el momento puede no ser la seleccionada finalmente, debido a que este valor
de evaluacion se pondera con las evaluaciones realizadas en el pasado. El proceso de
realimentacion recibe las evaluaciones actuales (PS) de cada SO y las pondera con el
valor de la ultima evaluacion reciente (LS) y con el promedio de las evaluaciones (AS)
realizadas en la ultima hora. Esta ponderacion da como resultado el ranking definitivo
de las SO. El procedimiento anterior se describe en la ecuacion (125):

Final_Scorei,,: axPS+pxLS+(1-a—-p)x AS (125),

donde ay B € [0,1] y Final_Score, ,; €8 el valor de la evaluacion final dela SO 7 0.

La SO con la mejor evaluacion final es la seleccionada para realizar la transmision
de los datos del SU. Posteriormente, el bloque de realimentacion transfiere el valor
de PS a LS y actualiza el valor de AS de acuerdo con el nuevo valor de LS. Sila SO
seleccionada finalmente se encuentra ocupada, el algoritmo FFAHP sobrescribe el
valor de LS en cero para la respectiva SO.

Para determinar los valores de a y f3, se realizd un analisis experimental autorre-
gresivo con diferentes combinaciones de estas variables para un conjunto de datos
predeterminado. Se tomaron los valores de o y  para los cuales la precisioén en la
seleccion de la SO fue mas alta. Dichos valores corresponden a a=0,60 y 3=0,35,
con una precision experimental del 87 %.

Métricas de evaluacion

Para evaluar el desempeino de los algoritmos de decisidon espectral, se determinaron
cinco EM, que se describen en la tabla 31, donde se presenta su sigla, nombre, des-
cripcién y tipo de EM; este ultimo hace referencia a si la métrica es de beneficio (es
mejor si es mayor) o costo (es mejor si es menor). La palabra promedio en las EM
hace referencia a que los resultados de estas corresponden al promedio de los valores
arrojados por varios experimentos realizados.

Tabla 31. Métricas de evaluacion utilizadas para los algoritmos FAHP y FFAHP

Sigla Nombre Descripcion Tipo de EM
. Es el namero total de handoffs

AAH Numerq de handoffs realizados durante los 9 minutos de la Costo

promedio acumulado .,
transmision del SU.

Numero de handoffs Es el namero de handoffs que el SU no

AAFH fallidos promedio pudo materializar porque encontr6 las Costo
acumulado respectivas SO objetivo ocupadas.
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Sigla Nombre Descripcién Tipo de EM
Es el BW promedio utilizado por

ABW Ancho de banda promedio | el SU durante los 9 minutos de la Beneficio
transmision.

Es el tiempo promedio total

AAD Retardo promedio expenmel.lt.a'do por el SU dure.inte Costo
acumulado la transmision de una determinada
cantidad de informacion.
Throuehout promedio Es la tasa de datos efectiva transmitida
AAT 8HpUl p por el SU durante los 9 minutos de la Beneficio
acumulado

transmision.

Fuente: elaboracion propia.

Con el objetivo de facilitar el andlisis comparativo de cada algoritmo, se calcularon
los valores relativos (en porcentaje) de cada EM. Para las métricas de tipo beneficio, se
calcul6 el valor relativo (Rel) del algoritmo 7 a partir del valor absoluto (A4bs) y del va-
lor maximo (Max) de la EM, como se describe en la ecuacion (126), y para las métricas
de tipo costo, se calculo el valor relativo (Rel) del algoritmo 7 a partir del valor absoluto
(A4bs) y del valor minimo (Min) de la EM, como se describe en la ecuacion (127).

Abs

X =L —%100% (126);
Max
XMin

Xl.Rel = WXIOO% (127)

1

Para el calculo de los puntajes globales, se ponderd segun la ecuacion (128), en el
caso de los algoritmos hibridos, y como lo describe la ecuacion (129), en el caso del
algoritmo predictivo.

PG, = 0,225 x AAH,+ 0,025 x AAFH, + 0,25 x (ABW, + AAD, + AAT) (128);
PG, = 0,02 x AAFH + 0,18 x AAPH + 0,2 x (AAH + AATH, + AAEH, + AAUH) (129).

Evaluacion de los algoritmos de decision espectral

Debido a la gran cantidad de informacion obtenida a través de las simulaciones reali-
zadas, y con el objetivo de no combinar demasiadas curvas que luego fueran dificiles
de leer, se decidi6é mostrar el desempefio de cada algoritmo individualmente en todas
sus situaciones posibles, es decir, para los cinco diferentes niveles de cooperacion
entre SU (10%, 20%, 50%, 80% y 100%), con una traza de HT y LT, con enfoque
RT y BE, en las redes GSM y Wi-Fi y para las cinco EM. Lo anterior da un total de 8
figuras por cada escenario (GSM-RT-LT, GSM-RT-HT, GSM-BE-LT, GSM-BE-HT,
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Wi-Fi-RT-LT, Wi-Fi-RT-HT, Wi-Fi-BE-LT y Wi-Fi-BE-HT), producto de la combi-
nacién de los tres parametros de interés —tipo de red (GSM y Wi-F1i), nivel de trafico
(LT y HT) y clase de aplicacion (RT y BE)—, para cada algoritmo por cada EM, y en
cada una de ellas, los cinco niveles de cooperacion, para un gran total de 160 figuras
que fueron agrupadas por algoritmo y tipo de red para sintetizarlas en 40 figuras, que
se describen a continuacion.

Las figuras 62-101 describen las EM AAH, AAFH, ABW, AAD y AAT que se
presentan en cada algoritmo de SH durante una transmision de 9 minutos, para 5
diferentes niveles de cooperacion entre SU (10%, 20%, 50%, 80% y 100%), con
una traza de HT y LT, con enfoque RT y BE y en las redes GSM y Wi-Fi, mientras
que las tablas 32-51, por su parte, muestran los correspondientes porcentajes compa-
rativos de desempefo para cada algoritmo en las EM AAH, AAFH, ABW, AAD y
AAT, para los 5 diferentes niveles de cooperacion entre SU (10 %, 20%, 50%, 80% y
100%), con una traza de HT y LT, con enfoque RT y BE y en las redes GSM y Wi-Fi.
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Handoffs totales promedio acumulado

Figura 62. AAH en GSM para el algoritmo FFAHP
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Fuente: elaboracion propia.
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Figura 63. AAH en Wi-Fi para el algoritmo FFAHP
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Fuente: elaboracion propia.
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Figura 64. AAH en GSM para el algoritmo SAW
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Figura 65. AAH en Wi-Fi para el algoritmo SAW
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Figura 66. AAH en GSM para el algoritmo TOPSIS
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Figura 67. AAH en Wi-Fi para el algoritmo TOPSIS
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Fuente: elaboracion propia.
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Figura 68. AAH en GSM para el algoritmo VIKOR
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Fuente: elaboracion propia.
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Figura 69. AAH en Wi-Fi para el algoritmo VIKOR
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Fuente: elaboracion propia.

189 1EC



Cesar Augusto Hernandez Suarez, Danilo Alfonso Lopez Sarmiento y Diego Armando Giral Ramirez

Tabla 32. Valores relativos de AAH para FFAHP

= = = =
= = = = S 5 = =
[ 1 3] =

= 2 0§ & £ &8 5 35 3

m 1 1 Dl ov v Dl

E = 2 z z o o o o

] o S} &} s B B =
SuU10 SU10 100 100 63,29 100 96,50 97,58 96,19
SU20 SU20 100 99,32 61,60 99,83 100 98,85 96,01
SU50 SU50 99,32 100 61,44 96,32 100 95,68 94,27
SU80 SU80 100 96,55 59,32 100 100 95,99 95,03
SU100 SU100 100 98,56 59,31 97,56 100 94,92 92,87

Fuente: elaboracion propia.
Tabla 33. Valores relativos de AAH para SAW

& 2] =) &

2 3 z z = . = =

: & & & § & & &

s = = = = o & & &

» 72} [72) [72) o= o - o

o} 0 0 C} = B B =
SuU10 96,22 100 65,20 64,26 100 96,28 82,82 89,47
SU20 98,86 100 63,37 62,45 100 94,56 84,76 88,39
SU50 100 100 62,50 61,37 100 95,19 88,50 88,50
SU80 100 100 62,50 61,59 100 95,00 88,44 89,45
sU100 100 93,90 59,00 59,23 100 95,24 87,95 87,80

Fuente: elaboracion propia.
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Tabla 34. Valores relativos de AAH para TOPSIS

) ) ] 2] H =
« E - T Z 3 5 = 5
= : ! Ea) )
e 2 E & E B2 B2
2 % 2 2 = o o o o

&} 0 o } s B B =

SuU10 95,83 100 78,63 76,99 80,86 100 75,09 94,66

SU20 100 99,44 75,97 74,06 100 97,85 84,67 91,49

SU50 100 100 75,97 74,06 100 96,68 88,45 91,08

SU80 100 100 79,28 73,64 100 96,68 89,81 91,51

sU100 100 99,39 75,93 69,20 100 96,33 90,03 92,48

Fuente: elaboracion propia.

Tabla 35. Valores relativos de AAH para VIKOR
] & H )
" 5 5 2 = 5 5 5 -
[ 1 m = [
% a & = & 0 e i =
2 z Z = o o o o
] o o O = B B =

SU10 93,75 100 70,31 75,95 100 95,84 91,14 84,21

SU20 98,35 100 69,92 75,85 100 97,77 90,49 90,06

SU50 100 100 69,53 75,42 100 98,11 91,20 90,62

SU80 100 100 69,41 75,32 100 98,10 91,48 91,19

SU100 100 97,16 67,59 73,39 100 98,41 90,00 90,58

Fuente: elaboracion propia.
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Handoffs fallidos promedio acumulado

Figura 70. AAFH en GSM para el algoritmo FFAHP
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Fuente: elaboracion propia.
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Figura 71. AAFH en Wi-Fi para el algoritmo FFAHP
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Figura 72. AAFH en GSM para el algoritmo SAW
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Fuente: elaboracion propia.
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Figura 73. AAFH en Wi-Fi para el algoritmo SAW
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Fuente: elaboracion propia.
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Figura 74. AAFH en GSM para el algoritmo TOPSIS
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 75. AAFH en Wi-Fi para el algoritmo TOPSIS
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Handoffs fallidos Handoffs fallidos Handoffs fallidos

Handoffs fallidos

Figura 76. AAFH en GSM para el algoritmo VIKOR
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 77. AAFH en Wi-Fi para el algoritmo VIKOR
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Tabla 36. Valores relativos de AAFH para FFAHP

= = B =
= 5 = = o : = =
: . = >

= & g  E £ B £ & 3

p’_' 1 1 E Bl v Bl

&} O 0 } = = B =
SU10 100 75,00 50,00 20,45 100 84,35 88,99 84,35
SU20 100 60,00 33,33 13,64 100 88,35 87,50 89,22
SU50 100 75,00 35,29 13,64 100 91,67 88,00 92,63
SU80 100 75,00 35,29 13,95 100 84,04 79,80 85,87
SU100 100 71,43 31,25 12,50 100 95,18 82,29 90,80

Fuente: elaboracion propia.
Tabla 37. Valores relativos de AAFH para SAW

= = =

5 = z z 5 a = =

Z g = 2 z % z 3 %

< = = = = R R = &

7] w1 W 7] o o i o

] o o ] = B B =
SU10 100 40,00 20,69 20,69 100 86,90 52,90 61,34
SU20 100 85,71 20,69 20,69 100 90,12 63,48 65,77
SUS50 100 100 21,43 20,69 100 90,00 66,06 65,45
SU80 100 100 21,43 21,43 100 88,00 61,68 60,00
SU100 100 100 29,41 29,41 100 88,00 62,86 61,68

Fuente: elaboracion propia.
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Tabla 38. Valores relativos de AAFH para TOPSIS

= = = =
“ = 5 = = 5 5 = =
= [ [ 1 m = m [
e | &8 £ & E = | & 3 ¢4
& = 2 z z o o o =
) O S ] s B B =
SuU10 100 61,54 33,33 18,60 40,65 100 44,44 81,97
SU20 83,33 100 21,74 11,63 97,85 100 65,94 88,35
SU50 66,67 100 17,39 9,30 98,91 100 87,50 90,10
SU80 66,67 100 28,57 9,30 100 100 88,12 89,00
SU100 50,00 100 27,27 8,82 100 96,63 90,53 88,66
Fuente: elaboracion propia.
Tabla 39. Valores relativos de AAFH para VIKOR
[ [ = =
. 5 5| 5 | 5§ 5 5 8 =
‘- = 2 B &
2 2 2 = o o o o
o} o S} o 5 B B =
SU10 75,00 100 47,37 21,43 91,21 100 81,37 61,48
SU20 60,00 100 35,29 14,63 88,37 100 76,00 69,72
SU50 66,67 100 35,29 14,63 86,90 100 73,74 70,19
SU80 55,56 100 29,41 12,50 86,90 100 73,74 73,74
SU100 50,00 100 23,53 12,90 88,89 100 74,23 72,73

Fuente: elaboracion propia.

201 |E2




Cesar Augusto Hernandez Suarez, Danilo Alfonso Lopez Sarmiento y Diego Armando Giral Ramirez

Ancho de banda promedio

Figura 78. ABW en GSM para el algoritmo FFAHP
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 79. ABW en Wi-Fi para el algoritmo FFAHP
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Fuente: elaboracion propia.
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Figura 80. ABW en GSM para el algoritmo SAW
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 81. ABW en Wi-Fi para el algoritmo SAW
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Fuente: elaboracion propia.
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Figura 82. ABW en GSM para el algoritmo TOPSIS
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 83. ABW en Wi-Fi para el algoritmo TOPSIS
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Fuente: elaboracion propia.
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Figura 84. ABW en GSM para el algoritmo VIKOR
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 85. ABW en Wi-Fi para el algoritmo VIKOR
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Fuente: elaboracion propia.
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Tabla 40. Valores relativos de ABW para FFAHP

= = = )
= 5 g 8 5 5 &8 &
1 ] m H

= & & & g & & & &z

> > - = s K = & &

(7] (7] 7] 7] o o —~ o

<) O <} <} 3 B S B
SuU10 100 96,68 91,21 77,62 100 99,23 98,72 97,96
SU20 100 99,09 91,41 77,58 100 98,69 98,14 97,40
SU50 100 99,13 91,25 77,38 100 98,94 98,58 97,64
SUS0 100 99,11 91,24 77,38 100 98,42 97,38 98,15
SU100 100 99,05 91,15 77,41 100 99,74 97,81 98,55

Fuente: elaboracion propia.

Tabla 41. Valores relativos de ABW para SAW

s | s | E | E | 5|85 | %8| 8§
: & f £ 5| 8 |8 &%
G = = = = & a = B
8 & & & S ES S ES
SU10 100 93,81 87,52 87,47 100 99,25 94,90 98,21
SU20 99,50 100 86,92 86,83 100 98,50 96,04 97,13
SU50 98,16 100 85,72 85,64 100 98,01 96,49 97,71
SU80 100 100 85,74 85,66 100 99,62 97,39 97,59
SU100 99,91 100 86,10 92,47 100 99,13 97,38 97,26

Fuente: elaboracion propia.
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Tabla 42. Valores relativos de ABW para TOPSIS

B = = E E
e | S 3 | F FE 5 4 B =
= = : . = = =
z 2 % 2 2 = % 2 %
2 = 2 2 z o o o o

| o o &} = B B =
SsuU10 100 93,95 83,89 81,25 93,46 100 92,76 97,14
SU20 100 99,69 84,07 81,07 99,86 100 97,38 99,81
SU50 100 99,20 83,43 80,45 99,82 99,89 99,54 100
SU80 100 99,99 89,02 79,59 98,56 99,04 100 98,69
SU100 100 99,77 89,17 84,53 98,70 99,28 100 99,43
Fuente: elaboracion propia.
Tabla 43. Valores relativos de ABW para VIKOR
& 2] H &
» 5 5 2 = - 5 3 =
1 ] m H
g 2 = 5 z : 2 i z
g = = = = e K & &
7¢] [72] [72) [72] Rl R o o
&} O S ] = = B B

SuU10 100 99,74 93,37 81,26 100 99,56 99,82 94,76

SU20 99,99 100 93,80 80,48 99,18 100 98,54 97,87

SU50 100 99,85 92,95 79,79 99,32 100 99,03 98,93

SU80 100 99,77 93,62 79,71 99,07 100 99,49 98,48

sU100 100 99,52 93,33 84,72 99,82 100 98,75 97,91

Fuente: elaboracion propia.
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Retardo promedio acumulado
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Figura 86. AAD en GSM para el algoritmo FFAHP
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Figura 87. AAD en Wi-Fi para el algoritmo FFAHP
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Figura 88. AAD en GSM para el algoritmo SAW
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 89. AAD en Wi-Fi para el algoritmo SAW
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Fuente: elaboracion propia.
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Figura 90. AAD en GSM para el algoritmo TOPSIS
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 91. AAD en Wi-Fi para el algoritmo TOPSIS
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Figura 92. AAD en GSM para el algoritmo VIKOR
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 93. AAD en Wi-Fi para el algoritmo VIKOR
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Tabla 44. Valores relativos de AAD para FFAHP

s [ s [ g[8 |s5]sg]8g]s
= 8 5 B g B B2
e & = 3 3 o 5 : g

&} o o o = = S =
SU10 100 99,33 72,41 73,44 100 97,88 98,44 97,03
SU20 100 99,92 71,55 72,73 98,97 100 98,40 96,30
SU50 99,59 100 71,33 72,43 95,69 100 95,98 93,90
SU80 100 98,02 69,95 71,01 98,95 100 96,77 94,78
SU100 100 99,04 69,88 70,16 97,34 100 95,90 93,66

Fuente: elaboracion propia.
Tabla 45. Valores relativos de AAD para SAW

= 5 8§ % 5§ & f

= 8 |k 2 5 | B E 5K

@ = = = = & a = B

& 8 & & = 5 5 =
SU10 98,02 100 74,23 73,41 100 97,12 86,99 92,80
SU20 98,97 100 72,20 71,41 100 95,32 87,80 91,35
SU50 100 100 71,41 70,53 100 95,97 91,43 91,49
SU80 100 100 71,41 70,60 100 95,87 91,58 92,61
SU100 100 96,54 68,61 69,87 100 96,15 91,07 91,27

Fuente: elaboracion propia.
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Tabla 46. Valores relativos de AAD para TOPSIS

= = = = E E
« E 5 T = 3 5 = 5
et 1 ] m
Z 3 = 2 2 = = 2 z
& : : o o oL o
g = Z z = o 5 5 o
&} 0 0 o = B S =
SuU10 98,09 100 83,02 82,95 89,01 100 81,16 96,15
SU20 100 98,60 80,10 79,79 100 97,73 87,75 92,27
SU50 100 99,76 80,06 79,75 100 96,94 89,79 92,31
SU80 100 99,85 83,04 79,70 100 96,57 90,70 92,30
SU100 100 98,85 80,39 76,59 100 96,71 91,03 93,51
Fuente: elaboracion propia.
Tabla 47. Valores relativos de AAD para VIKOR
= e = = = =
= | 3| =% | E | 2 | F | 2 | B | =
c | 8 & B E | B 2 | & | K
S = = > = - & i &
7¢] [72] [72) [72] Rl R o o
&} o 0 O = B S =
SuU10 95,99 100 71,78 81,19 100 95,45 92,08 87,02
SU20 99,99 100 77,88 81,12 100 97,07 91,86 91,96
SU50 100 99,07 76,88 80,09 100 97,34 92,58 92,30
SU80 100 99,43 77,03 79,99 100 97,25 92,72 92,31
sU100 100 97,50 75,63 78,95 100 97,67 91,41 92,03

Fuente: elaboracion propia.
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Throughput promedio acumulado

Ec 1222
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Throughput (Kbps)

Figura 94. AAT en GSM para el algoritmo FFAHP
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 95. AAT en Wi-Fi para el algoritmo FFAHP
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Fuente: elaboracion propia.
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Figura 96. AAT en GSM para el algoritmo SAW
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 97. AAT en Wi-Fi para el algoritmo SAW
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Fuente: elaboracion propia.
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Figura 98. AAT en GSM para el algoritmo TOPSIS

3400 T
- - -
3200 > ~ . —
— - ~
8 3000
) -
4
o 2800 -
=3
a
-g 2600 [~
>
’9 2400 —
<
[ @ User 10
[=User 20
2200 .ui:; 50
A (amUser 80
2000 | I I | I I I | l==Userioo]
0 1 2 3 4 5 6 7 9
Tiempo de transmision del SU (minutos)
a. GSM-RT-HT
3800 T = T T T
L L LTI g I
3600 [ —f‘;; -i = EES —“"1‘-‘*’&’1'":”' -
_-—--—-—-.:“."’ ) Eeg
. 3400 T L v DR
a o el
o 4
=3
= 4
=4
a
= 4
=)
>
3 4
e
<
[ @ User 10
[=User 20
@ User 50
[amUser 80
| | | | | | [==User 100
1 2 3 4 5 6 7 9
Tiempo de transmisién del SU (minutos)
b. GSM-RT-LT
3500 T T T
R — = =
o———
-._._‘5.: - 2 -_¢§~\
~— So
— N e
2 g e e i
O 3000 - -
£3
=
=4
aQ
<
=)
3 20
e
<
= @eUser 10
[v=User 20
@ User 50
[amUser 80
2000 I I | I I I | l==Userioo]
0 1 2 3 4 5 6 7 9
Tiempo de transmisién del SU (minutos)
c. GSM-BE-HT
3800
= 'f'~ I
3700 - T — 4

Throughput (Kbps)

@ User 10
= User 20
@ User 50
umUser 80

[==User 100

1 2 3 4 5 6 7
Tiempo de transmision del SU (minutos)
d. GSM-BE-LT

Fuente: elaboracion propia.
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 99. AAT en Wi-Fi para el algoritmo TOPSIS

4800 T
a0 T T 4
~
4400 > -
/- — ~ -
4200 |- .-_I"H."u. .“__ -I—-—- - — J
P .-- ks " k) # i B e e
Rl =l ¢
3800 —
3600 —
3400 -~ User 10
v User 20
32004 @ User 50
umm User 80
2000 | | | | | | | | |=User100
0 1 2 3 4 5 6 7 8 9
Tiempo de transmisién del SU (minutos)
a. Wi-Fi RTHT
4300
4200 9&.‘.'&.-.4
4100 [—
4000 —
3900 b S
o ‘\. . _ -
3800 (- S - -
3700, /',‘
o e ) Bt = e s g [@=User 10
(mUser 20
3600 — @ User 50
(e User 80
500 4 | | | | | | [==User 100
1 2 3 4 5 6 7 8 9
Tiempo de transmision del SU (minutos)
b. Wi-Fi RT LT
5000 T
4500
4000
3500
3000
2500
2000
@ User 10
v=User 20
1500 @ User 50
4 (il User 80
1000 | I I | I I I | l=Userioo |
1 2 3 4 5 6 7 8 9
Tiempo de transmisién del SU (minutos)
c. Wi-Fi BEHT
4500 T T T T
it et M e e D
4000 | e w_mw-‘.&l’\‘-‘hw‘-&ﬂ [
_—
3500 b
3000 (—
2500 (—
2000 (—
e User 10
[wmUser 20
1500 .U:E;SO
p e User 80
1000 Y | | | | | | | [=User100
0 1 2 3 4 5 6 7 8 9
Tiempo de transmision del SU (minutos)
d. Wi-Fi BE LT

Fuente: elaboracion propia.
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Figura 100. AAT en GSM para el algoritmo VIKOR
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Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Figura 101. AAT en Wi-Fi para el algoritmo VIKOR
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Fuente: elaboracion propia.
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Tabla 48. Valores relativos de AAT para FFAHP

= | 5 | 5 | 5| 8| 8| &8 |E&
= §  § | & & & | 8 & &
<] [¢] 1) <] 3 B = B
SU10 100 97,25 88,44 77,42 100 99,74 98,53 98,24
SU20 100 99,13 88,14 77,11 100 99,75 98,22 96,81
SU50 100 99,33 88,21 77,10 99,18 100 97,65 96,38
SU80 100 99,31 88,20 77,10 100 99,17 96,61 96,70
SU100 100 99,23 87,97 76,94 99,39 100 96,98 96,23

Fuente: elaboracion propia.

Tabla 49. Valores relativos de AAT para SAW

s 5 | E | E |85 85| E | E
: & 5 & g 8 B 2 9z
v = = = = o o & &
8 & & 8 = & & =
SU10 100 97,08 86,58 86,37 100 98,06 91,53 95,33
SU20 99,67 100 85,84 85,62 100 97,55 93,15 94,45
SUS50 99,56 100 85,12 84,88 100 97,67 94,82 95,33
SU80 100 100 85,13 84,89 100 98,01 94,42 94,98
SU100 99,73 100 85,27 88,84 100 98,40 95,20 95,02

Fuente: elaboracion propia.

Tabla 50. Valores relativos de AAT para TOPSIS

" = = = = = = = 2
< B E &8 & & | & & &
<} O <] O = B 2 =
SU10 100 97,03 84,04 81,06 95,51 100 90,68 96,65
SU20 100 99,30 83,38 80,22 100 99,15 93,92 96,63
SU50 100 99,84 83,39 80,23 100 99,06 96,02 96,67
SU80 100 99,99 86,70 79,77 100 98,97 97,14 96,98
SU100 100 99,85 86,97 82,41 100 99,08 97,12 97,40

Fuente: elaboracion propia.
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Tabla 51. Valores relativos de AAT para VIKOR

) ) 5] 3] = =
o = = = = 2 5 = T
S o > = > 0 % k =
= p > = s 2 2 o &
|7¢] [7¢] [72) [72] o o o o
<] G} 15} <} B B S B
SU10 99,69 100 90,67 81,08 100 99,04 96,89 92,46
SU20 100 99,97 90,82 80,55 100 99,07 96,73 95,82
SU50 100 99,81 90,32 80,08 100 99,40 96,68 96,44
SU80 100 99,83 90,61 80,02 99,74 100 97,28 96,01
SU100 100 99,44 90,25 82,52 100 98,92 96,31 95,61

Evaluacion comparativa

Fuente: elaboracion propia.

En las tablas 52-56 se presentan los porcentajes comparativos del desempefio de cada

algoritmo por nivel de colaboracion para cada EM, respectivamente. Lo anterior,

con el objetivo de analizar el nivel de dependencia y aporte, que representa la cola-

boracidn, y, de acuerdo con esto, seleccionar los niveles de colaboracion mas intere-

santes. En las tablas 57-61 se presentan los porcentajes comparativos del desempefio

de cada algoritmo en cada uno de los ocho escenarios disefiados para dos niveles de

colaboracion (10% y 100%). Finalmente, en la tabla 62 se presentan los porcentajes

comparativos globales del desempefio de cada algoritmo por EM, tanto para la red
GSM como para Wi-Fi.

Tabla 52. Evaluaciéon comparativa por nivel de colaboracion para AAH

= = = = = = = =

: & F 2 : & B & ¢

s | g : & E | 2
FFAHP-SU10 91,33 92,67 91,14 99,56 89,11 89,17 95,01 95,71
SAW-SU10 74,05 78,09 79,12 81,23 94,90 94,75 85,88 94,81
TOPSIS-SU10 71,35 75,54 92,31 94,14 70,31 90,18 71,34 91,92
VIKOR-SU10 71,35 77,22 84,38 94,94 93,75 93,18 93,35 88,16
FFAHP-SU20 93,84 94,56 91,14 99,56 89,70 93,18 97,04 96,33
SAW-SU20 78,29 80,35 79,12 81,23 97,12 95,24 89,94 95,87
TOPSIS-SU20 77,40 78,09 92,70 94,14 91,37 92,72 84,53 93,34
VIKOR-SU20 75,27 77,65 84,38 95,34 94,57 95,89 93,50 95,11
FFAHP-SU50 93,84 95,86 91,53 99,56 90,30 97,22 98,01 98,69
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= = = = = o = 2

: i 2§ 3 & 3
SAW-SU50 80,59 81,76 79,41 81,23 97,47 96,22 94,25 96,33
TOPSIS-SUS50 77,40 78,53 92,70 94,14 92,78 93,02 89,67 94,37
VIKOR-SUS50 76,97 78,09 84,38 95,34 94,74 96,39 94,40 95,87
FFAHP-SUS0 97,86 95,86 91,53 100 94,08 97,56 98,66 99,83
SAW-SUS0 80,59 81,76 79,41 81,52 98,00 96,55 94,70 97,89
TOPSIS-SU80 77,84 78,98 97,30 94,14 92,78 93,02 91,05 94,81
VIKOR-SUS80 77,40 78,53 84,71 95,74 94,90 96,55 94,86 96,63
FFAHP-SU100 100 100 93,51 100 94,08 100 100 100
SAW-SU100 88,96 84,76 82,76 86,54 100 98,77 96,09 98,05
TOPSIS-SU100 83,54 84,24 100 94,94 93,43 93,33 91,90 96,48
VIKOR-SU100 80,12 78,98 85,38 96,57 96,77 98,77 95,16 97,89

Nota: la comparacion de esta tabla se debe realizar solo verticalmente.

Fuente: elaboracion propia.

Tabla 53. Evaluacion comparativa por nivel de colaboracion para AAFH

= =

= : 5 = 5 5 F =
] 1] m

g & > E > & Z 5 >

= = p = & 2 2 2

[77) [72) 172) [72) o o= - o~

O O o G} S B S B

FFAHP-SU10 55,56 25,00 61,11 38,64 68,04 62,61 87,16 75,65

SAW-SU10 83,33 20,00 37,93 58,62 90,41 85,71 68,84 73,11

TOPSIS-SU10 62,50 23,08 45,83 39,53 26,83 72,00 42,22 71,31

VIKOR-SU10 41,67 33,33 57,89 40,48 72,53 86,75 93,14 64,44

FFAHP-SU20 83,33 30,00 61,11 38,64 72,53 69,90 91,35 85,29

SAW-SU20 83,33 42,86 37,93 58,62 90,41 88,89 82,61 78,38
TOPSIS-SU20 83,33 60,00 47,83 39,53 70,97 79,12 68,84 84,47
VIKOR-SU20 50 50,00 64,71 41,46 76,74 94,74 95,00 79,82
FFAHP-SU50 83,33 37,50 64,71 38,64 75,00 75,00 95,00 91,58
SAW-SUS50 83,33 50,00 39,29 58,62 91,67 90,00 87,16 79,09

TOPSIS-SUS50 83,33 75,00 47,83 39,53 71,74 79,12 91,35 86,14

VIKOR-SU50 55,56 50,00 64,71 41,46 78,57 98,63 95,96 83,65

FFAHP-SU80 83,33 37,50 64,71 39,53 83,54 76,60 95,96 94,57

SAW-SUS80 83,33 50,00 39,29 60,71 100 96,00 88,79 79,09
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5| 5 | E | E| 5|85 | E | E
2 £ 5 4§ & 3 ¢
= = ' & 22 i =
TOPSIS-SU80 83,33 75,00 78,57 39,53 74,16 80,90 94,06 87,00
VIKOR-SUS80 55,56 60,00 64,71 42,50 78,57 98,63 95,96 87,88
FFAHP-SU100 100 42,86 68,75 42,50 83,54 86,75 98,96 100
SAW-SU100 100 60,00 64,71 100 100 96,00 90,48 81,31
TOPSIS-SU100 | 83,33 100 100 50,00 76,74 80,90 100 89,69
VIKOR-SU100 | 62,50 75,00 64,71 54,84 81,48 100 97,94 87,88
Nota: la comparacion de esta tabla se debe realizar solo verticalmente.
Fuente: elaboracion propia.
Tabla 54. Evaluacion comparativa por nivel de colaboracion para ABW
s 5| B E | 5§ /5 E | B
Z = E & &% B B B Z
= = 2 & 2 2
288 &8 £ £ |F|s
FFAHP-SU10 99,50 97,12 99,56 84,99 96,43 95,90 96,61 96,69
SAW-SU10 96,09 91,00 92,25 92,48 96,72 96,21 93,15 97,22
TOPSIS-SU10 95,00 | 90,11 | 87,42 | 84,93 | 89,29 | 9575 | 89,94 | 94,99
VIKOR-SU10 95,10 95,76 97,41 85,03 96,52 96,30 97,78 93,61
FFAHP-SU20 99,57 99,61 99,85 85,00 97,36 96,29 96,96 97,05
SAW-SU20 96,32 97,73 92,30 92,49 97,91 96,66 95,43 97,34
TOPSIS-SU20 95,21 95,83 87,81 84,93 95,54 95,89 94,55 97,74
VIKOR-SU20 96,07 97,01 98,87 85,09 97,04 98,06 97,85 98,02
FFAHP-SUS0 99,86 99,95 99,97 85,03 97,43 96,61 97,48 97,37
SAW-SUS50 96,39 99,14 92,34 92,53 98,78 97,03 96,74 98,80
TOPSIS-SUS0 95,96 96,11 87,84 84,96 95,66 95,94 96,81 98,09
VIKOR-SUS50 97,05 97,83 98,96 85,20 97,37 98,25 98,52 99,26
FFAHP-SU80 99,89 99,95 99,98 85,05 98,63 97,29 97,48 99,08
SAW-SUS80 98,19 99,14 92,36 92,56 99,09 98,93 97,94 98,98
TOPSIS-SU80 97,03 97,95 94,76 84,98 96,21 96,89 99,07 98,61
VIKOR-SUS80 97,18 97,89 99,81 85,23 97,92 99,05 99,79 99,63
FFAHP-SU100 100 100 100 85,18 98,74 98,70 98,01 99,60
SAW-SU100 98,19 99,22 92,83 100 100 99,35 98,83 99,55
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= 5 = £ = = = =

: 4 03 30§ 8 £ 7 ¢

P p= ' 2 & i 2
TOPSIS-SU100 97,32 98,03 95,20 90,52 96,38 97,16 99,11 99,38
VIKOR-SU100 97,50 97,96 99,82 90,89 99,60 100 100 100

Nota: la comparacion de esta tabla se debe realizar solo verticalmente.

Fuente: elaboracion propia.

Tabla 55. Evaluacion comparativa por nivel de colaboracién para AAD

AAD
GSM BE-LT
GSM RT-LT
GSM BE-HT
GSM RT-HT
Wi-Fi BE-LT
Wi-Fi RT-LT

Wi-Fi BE-HT
Wi-Fi RT-HT

FFAHP-SU10 95,16 95,44 96,97 99,61 91,74 91,64 96,10 96,98

SAW-SU10 81,72 | 84,18 | 87,08 | 8724 | 9572 | 9486 | 88,60 | 96,78

TOPSIS-SU10 79,45 81,79 94,63 95,76 79,85 91,54 77,47 93,98

VIKOR-SU10 79,82 83,96 91,02 96,22 95,88 93,39 93,95 90,91

FFAHP-SU20 96,31 97,16 96,97 99,84 91,90 94,75 97,22 97,42

SAW-SU20 84,84 86,56 87,10 87,25 97,79 95,12 91,36 97,33

TOPSIS-SU20 84,20 83,83 94,91 95,76 93,55 93,30 87,35 94,04

VIKOR-SU20 83,38 84,21 91,40 96,43 96,23 95,32 94,06 96,41

FFAHP-SU50 96,32 97,65 97,08 99,85 92,14 98,26 98,34 98,52

SAW-SUS50 86,80 87,65 87,23 87,26 97,95 95,92 95,29 97,64

TOPSIS-SUS0 84,25 84,87 94,92 95,77 94,69 93,68 90,48 95,24

VIKOR-SUS50 84,48 84,51 91,41 96,44 96,32 95,67 94,89 96,87

FFAHP-SUS80 98,66 97,65 97,12 99,87 95,38 98,36 99,24 99,53

SAW-SUS80 86,80 87,65 87,23 87,36 98,17 96,03 95,65 99,05

TOPSIS-SU80 84,32 85,01 98,53 95,78 95,06 93,68 91,75 95,60

VIKOR-SU80 84,66 85,00 91,78 96,53 96,67 95,94 95,37 97,23

FFAHP-SU100 100 100 98,34 100 95,39 100 100 100

SAW-SU100 91,87 89,55 88,70 91,48 100 98,12 96,91 99,44

TOPSIS-SU100 | 88,39 88,22 100 96,50 95,16 93,91 92,17 96,95

VIKOR-SU100 | 86,49 85,15 92,05 97,33 98,22 97,90 95,53 98,49

Nota: la comparacion de esta tabla se debe realizar solo verticalmente.

Fuente: elaboracion propia.
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Tabla 56. Evaluacion comparativa por nivel de colaboracion para AAT

= 5 E | E | 5 8 & E
B~ =
FFAHP-SU10 99,19 97,21 99,73 88,76 95,35 95,99 97,79 98,25
SAW-SU10 95,43 93,36 93,93 95,26 98,18 97,17 93,52 98,17
TOPSIS-SU10 94,17 92,08 89,96 88,22 90,51 95,65 89,44 96,07
VIKOR-SU10 94,13 95,15 97,32 88,49 97,28 97,24 98,10 94,33
FFAHP-SU20 99,65 99,55 99,85 88,81 96,15 96,80 98,29 97,62
SAW-SU20 95,97 97,03 93,96 95,28 98,61 97,10 95,60 97,68
TOPSIS-SU20 95,15 95,21 90,18 88,22 96,27 96,34 94,10 97,57
VIKOR-SU20 95,11 95,82 98,19 88,55 97,67 97,67 98,33 98,16
FFAHP-SU50 99,68 99,77 99,95 88,82 96,27 97,96 98,64 98,11
SAW-SU50 96,71 97,88 93,99 95,29 98,77 97,37 97,47 98,76
TOPSIS-SU50 95,15 95,73 90,19 88,23 96,39 96,37 96,33 97,73
VIKOR-SU50 95,73 96,28 98,28 88,59 97,94 98,26 98,54 99,06
FFAHP-SU80 99,70 99,77 99,96 88,85 98,38 98,47 98,92 99,78
SAW-SU80 97,13 97,88 94,00 95,30 99,95 98,88 98,22 99,57
TOPSIS-SU80 95,72 96,44 94,33 88,25 96,89 96,79 97,96 98,55
VIKOR-SU80 95,82 96,39 98,69 88,61 98,20 99,38 99,69 99,15
FFAHP-SU100 100 100 100 88,92 98,47 100 100 100
SAW-SU100 97,13 98,15 94,41 100 100 99,32 99,08 99,66
TOPSIS-SU100 | 95,87 96,46 94,78 91,31 97,07 97,08 98,12 99,17
VIKOR-SU100 | 96,21 96,41 98,70 91,76 99,63 99,47 99,87 99,91
Nota: la comparacion de esta tabla se debe realizar solo verticalmente.
Fuente: elaboracion propia.
Tabla 57. Evaluacion comparativa por escenario con
colaboraciéon de 10% y 100 % para AAH

=l e | 8|8 8| | & E

% B @ S E B 7 &

& 3 8 B < S 5 =

= = > = = >
GSM-BE-LT 91,33 74,05 71,35 71,35 100 88,96 83,54 80,12
GSM-RT-LT 92,67 78,09 75,54 77,22 100 84,76 84,24 78,98
GSM-BE-HT 91,14 79,12 92,31 84,38 93,51 82,76 100 85,38
GSM-RT-HT 99,56 81,23 94,14 94,94 100 86,54 94,94 96,57
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VIKOR-SU10
TOPSIS-SU100
VIKOR-SU100

AAH
FFAHP-SU10
SAW-SU10
TOPSIS-SU10
FFAHP-SU100
SAW-SU100

Wi-Fi-BE-LT 89,11 94,90 70,31 93,75 94,08 100 93,43 96,77

Wi-Fi-RT-LT 89,17 94,75 90,18 93,18 100 98,77 93,33 98,77

Wi-Fi-BE-HT 95,01 85,88 71,34 93,35 100 96,09 91,90 95,16

Wi-Fi-RT-HT 95,71 94,81 91,92 88,16 100 98,05 96,48 97,89

GSM-LT 92,00 | 76,07 | 73,445 | 74,285 | 100 86,86 | 83,89 | 79,55
GSM-HT 9535 | 80,175 | 93,225 | 89,66 | 96,755 | 84,65 | 9747 | 90,975
GSM-BE 91,235 | 76,585 | 81,83 | 77,865 | 96,755 | 8586 | 91,77 | 82,95
GSM-RT 96,115 | 79,66 | 84,84 | 86,08 100 8565 | 89,59 | 87,775
Wi-Fi-LT 89,14 | 94,825 | 80,245 | 93465 | 97,04 | 99,385 | 9338 | 97,77
Wi-Fi-HT 9536 | 90,345 | 81,63 | 90,755 | 100 97,07 | 94,19 | 96,525
Wi-Fi-BE 92,06 | 90,39 | 70,825 | 93,55 | 97,04 | 98,045 | 92,665 | 95,965
Wi-Fi-RT 92,44 | 94,78 | 91,05 | 90,67 100 98,41 | 94,905 | 98,33
Score GSM 93,675 | 78,122 | 83,335 | 81,972 | 98377 | 85,755 | 90,68 | 85262
Score Wi-Fi 92,25 | 92,585 | 80,937 | 92,11 | 9852 | 98,227 | 93,785 | 97,147

Nota: la comparacion de esta tabla se debe realizar solo horizontalmente.

Fuente: elaboracion propia.

Tabla 58. Evaluacion comparativa por escenario con
colaboracion de 10% y 100% para AAFH

S - 2 S ] o S g
= — =) ham —
i 2 = 2 2 2 5 2 2
2 = N & & & % & 0
b B 7 o 2 3 g
: 2 &8 & £ % & ¢
R = = @ B
GSM-BE-LT | 5556 | 8333 | 62,50 | 41,67 100 100 8333 | 62,50

GSM-RT-LT 25,00 20,00 23,08 33,33 42,86 60,00 100 75,00

GSM-BE-HT 61,11 37,93 45,83 57,89 68,75 64,71 100 64,71

GSM-RT-HT 38,64 58,62 39,53 40,48 42,50 100 50,00 54,84

Wi-Fi-BE-LT 68,04 90,41 26,83 72,53 83,54 100 76,74 81,48

Wi-Fi-RT-LT 62,61 85,71 72,00 86,75 86,75 96,00 80,90 100

Wi-Fi-BE-HT 87,16 68,84 42,22 93,14 98,96 90,48 100 97,94

Wi-Fi-RT-HT 75,65 73,11 71,31 64,44 100 81,31 89,69 87,88

GSM-LT 40,28 51,665 42,79 37,50 71,43 80,00 91,665 68,75

GSM-HT 49,875 | 48,275 42,68 49,185 | 55,625 | 82,355 75,00 59,775
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GSM-BE 58,335 60,63 54,165 49,78 84,375 | 82,355 | 91,665 | 63,605
GSM-RT 31,82 39,31 31,305 | 36,905 42,68 80,00 75,00 64,92
Wi-Fi-LT 65,325 88,06 49,415 79,64 85,145 98,00 78,82 90,74
Wi-Fi-HT 81,405 | 70,975 | 56,765 78,79 99,48 85,895 | 94,845 92,91
Wi-Fi-BE 77,60 79,625 | 34,525 | 82,835 91,25 95,24 88,37 89,71
Wi-Fi-RT 69,13 79,41 71,655 | 75,595 | 93,375 | 88,655 | 85,295 93,94
Score GSM 45,077 49,97 42,735 | 43,342 | 63,527 | 81,177 | 83,332 | 64,262
Score Wi-Fi 73,365 | 79,517 53,09 79,215 | 92,312 | 91,947 | 86,832 | 91,825
Nota: la comparacién de esta tabla se debe realizar solo horizontalmente.
Fuente: elaboracion propia.
Tabla 59. Evaluacion comparativa por escenario con
colaboracion de 10% y 100 % para ABW
= < £ & & s & &
= 2 2z 2 2 5|3 32
2 = 2z & & £ £ B
) 3 ?5 z = b 8 E
= = > = =
GSM-BE-LT 99,50 96,09 95,00 95,10 100 98,19 97,32 97,50
GSM-RT-LT 97,12 91,00 90,11 95,76 100 99,22 98,03 97,96
GSM-BE-HT 99,56 92,25 87,42 97,41 100 92,83 95,20 99,82
GSM-RT-HT 84,99 92,48 84,93 85,03 85,18 100 90,52 90,89
Wi-Fi-BE-LT 96,43 96,72 89,29 96,52 98,74 100 96,38 99,60
Wi-Fi-RT-LT 95,90 96,21 95,75 96,30 98,70 99,35 97,16 100
Wi-Fi-BE-HT | 96,61 93,15 89,94 97,78 98,01 98,83 99,11 100
Wi-Fi-RT-HT | 96,69 97,22 94,99 93,61 99,60 99,55 99,38 100
GSM-LT 98,31 93,545 | 92,555 95,43 100 98,705 | 97,675 97,73
GSM-HT 92,275 | 92,365 | 86,175 91,22 92,59 96,415 92,86 95,355
GSM-BE 99,53 94,17 91,21 96,255 100 95,51 96,26 98,66
GSM-RT 91,055 91,74 87,52 90,395 92,59 99,61 94,275 | 94,425
Wi-Fi-LT 96,165 | 96,465 92,52 96,41 98,72 99,675 96,77 99,80
Wi-Fi-HT 96,65 95,185 | 92,465 | 95,695 | 98,805 99,19 99,245 100
Wi-Fi-BE 96,52 94,935 | 89,615 97,15 98,375 | 99,415 | 97,745 99,80
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Wi-Fi-RT 96,295 96,715 95,37 94,955 99,15 99,45 98,27 100
Score GSM 95,292 92,955 89,365 93,325 96,295 97,56 95,267 96,542
Score Wi-Fi 96,407 95,825 92,492 96,052 98,762 99,432 98,007 99,90

Nota: la comparacion de esta tabla se debe realizar solo horizontalmente.

Fuente: elaboracion propia.

Tabla 60. Evaluacion comparativa por escenario con
colaboracion de 10% y 100 % para AAD
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GSM-BE-LT | 9516 | 81,72 | 79,45 | 79,82 100 91,87 | 88,39 | 86,49

GSM-RT-LT 95,44 84,18 81,79 83,96 100 89,55 88,22 85,15

GSM-BE-HT 96,97 87,08 94,63 91,02 98,34 88,70 100 92,05

GSM-RT-HT 99,61 87,24 95,76 96,22 100 91,48 96,50 97,33

Wi-Fi-BE-LT 91,74 95,72 79,85 95,88 95,39 100 95,16 98,22

Wi-Fi-RT-LT 91,64 94,86 91,54 93,39 100 98,12 93,91 97,90

Wi-Fi-BE-HT 96,10 88,60 77,47 93,95 100 96,91 92,17 95,53

Wi-Fi-RT-HT | 96,98 | 96,78 | 93,98 | 90,91 100 99,44 | 9695 | 98,49
GSM-LT 9530 | 82,95 | 80,62 | 81,89 100 90,71 | 88,305 | 85,82
GSM-HT 98,29 | 87,16 | 95195 | 93,62 | 99,17 | 90,09 | 9825 | 94,69
GSM-BE 96,065 | 84,40 | 87,04 | 8542 | 99,17 | 90,285 | 94,195 | 89,27
GSM-RT 97,525 | 85,71 | 88,775 | 90,09 100 | 90,515 | 92,36 | 91,24
Wi-Fi-LT 91,69 | 9529 | 85695 | 94,635 | 97,695 | 99,06 | 94,535 | 98,06
Wi-Fi-HT 96,54 | 92,69 | 85725 | 92,43 100 | 98,175 | 9456 | 97,01
Wi-Fi-BE 9392 | 92,16 | 78,66 | 94,915 | 97,695 | 98,455 | 93,665 | 96,875
Wi-Fi-RT 9431 | 958 | 92,76 | 92,15 100 98,78 | 9543 | 98,195
Score GSM 96,795 | 85,055 | 87,907 | 87,755 | 99,585 | 90,40 | 93277 | 90,255
Score Wi-Fi 94,115 | 93,99 | 8571 | 93,532 | 98,847 | 98,617 | 94,547 | 97,535

Nota: la comparacion de esta tabla se debe realizar solo horizontalmente.

Fuente: elaboracion propia.
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Tabla 61. Evaluacion comparativa por escenario con colaboracioén
de 10% y 100% para AAT

= = £ = & g E E
. % 5 % 2 2 5 2 7
2 g2 g8 | & | %8| g | =
E 2 17 o B' @A o)
B 3 & = X ) X
[ = > = @ = >
GSM-BE-LT 99,19 95,43 94,17 94,13 100 97,13 95,87 96,21
GSM-RT-LT 97,21 93,36 92,08 95,15 100 98,15 96,46 96,41
GSM-BE-HT 99,73 93,93 89,96 97,32 100 94,41 94,78 98,70
GSM-RT-HT 88,76 95,26 88,22 88,49 88,92 100 91,31 91,76
Wi-Fi-BE-LT 95,35 98,18 90,51 97,28 98,47 100 97,07 99,63
Wi-Fi-RT-LT 95,99 97,17 95,65 97,24 100 99,32 97,08 99,47
Wi-Fi-BE-HT 97,79 93,52 89,44 98,10 100 99,08 98,12 99,87
Wi-Fi-RT-HT 98,25 98,17 96,07 94,33 100 99,66 99,17 99,91
GSM-LT 98,20 94,395 | 93,125 94,64 100 97,64 96,165 96,31
GSM-HT 94,245 | 94,595 89,09 92,905 94,46 97,205 | 93,045 95,23
GSM-BE 99,46 94,68 92,065 | 95,725 100 95,77 95,325 | 97,455
GSM-RT 92,985 94,31 90,15 91,82 94,46 99,075 | 93,885 | 94,085
Wi-Fi-LT 95,67 97,675 93,08 97,26 99,235 99,66 97,075 99,55
Wi-Fi-HT 98,02 95,845 | 92,755 | 96,215 100 99,37 98,645 99,89
Wi-Fi-BE 96,57 95,85 89,975 97,69 99,235 99,54 97,595 99,75
Wi-Fi-RT 97,12 97,67 95,86 95,785 100 99,49 98,125 99,69
Score GSM 96,222 | 94,495 | 91,107 | 93,772 97,23 97,422 | 94,605 95,77
Score Wi-Fi 96,845 96,76 92917 | 96,737 | 99,617 | 99,515 97,86 99,72
Nota: la comparacion de esta tabla se debe realizar solo horizontalmente.
Fuente: elaboracion propia.
Tabla 62. Evaluacion comparativa global por EM
2 = 2 2 2 5 2 2
2 0 UIJ E m‘ Q n VI) M|
2 = s | 2 & s 7 8
< % £ | B -
E e | F|E| 4| g8
AAH-GSM 93,675 | 78,122 | 83,335 | 81,972 | 98,377 | 85,755 | 90,68 | 85,262
AAFH-GSM 45,077 | 49,97 | 42,735 | 43,342 | 63,527 | 81,177 | 83,332 | 64,262
ABW-GSM 95,292 | 92,955 | 89,365 | 93,325 | 96,295 | 97,56 | 95,267 | 96,542
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AAD-GSM 96,795 85,055 87,907 | 87,755 99,585 90,40 93,277 | 90,255
AAT-GSM 96,222 | 94,495 91,107 | 93,772 97,23 97,422 | 94,605 95,77
AAH-Wi-Fi 92,25 92,585 80,937 92,11 98,52 98,227 | 93,785 97,147
AAFH-Wi-Fi 73,365 79,517 53,09 79,215 92,312 | 91,947 | 86,832 | 91,825
ABW-Wi-Fi 96,407 | 95,825 92,492 | 96,052 | 98,762 | 99,432 | 98,007 99,90
AAD-Wi-Fi 94,115 | 93,99 | 8571 | 93,532 | 98,847 | 98,617 | 94,547 | 97,535
AAT-Wi-Fi 96,845 | 96,76 | 92,917 | 96,737 | 99,617 | 99,515 | 97,86 | 99,72
Score GSM global | 85,412 | 80,119 78,89 80,033 91,003 90,463 | 91,432 | 86,418
Score Wi-Fi global | 90,596 | 91,735 81,029 | 91,529 | 97,612 | 97,548 | 94,206 | 97,225

Fuente: elaboracion propia.

Discusidn

Durante el desarrollo de la fase de evaluacidn y validacion de los algoritmos seleccio-
nados, se incluyeron varios parametros de evaluacion (o EM) que, aunque permiten
realizar una evaluacion comparativa mas robusta e interesante, también hacen mas
dificil la tarea de presentar dicha informacién. Debido a lo anterior, la primera parte
de la evaluacién comparativa (tablas 52-56) se enfoco en contrastar el desempefio de
la colaboracion entre SU, para seleccionar los dos niveles mas interesantes y descar-
tar los otros tres, 1o que redujo el nimero de combinaciones que se presentarian en las
tablas de comparacién. Es importante tener en cuenta que, para las tablas 52-56, la
comparacion solo se debe realizar verticalmente, ya que no aporta mucho el analisis
de un mismo algoritmo en diferentes escenarios, pues resulta 16gico suponer que el
desempefio de cada métrica serd mejor en una traza LT que en una HT, dado que la
primera presenta un mayor numero de SO; siguiendo la misma logica, el desempefio
también sera mejor en una red GSM que en una Wi-Fi, ya que la segunda resulta ser
mucho mas caotica que la primera.

De los resultados obtenidos en las tablas 52-56, se puede observar que, si bien se
evidencia una mejoria en el desempefio de cada algoritmo al aumentar el nivel de
colaboracion, esta mejoria no resulta ser mayor al 10% en la mayoria de los casos.
Por tanto, un andlisis interesante seria evaluar comparativamente cada algoritmo en
todos los escenarios, teniendo en cuenta los niveles de mayor y menor colaboracion,
es decir, el 10% y el 100 %.
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De los resultados obtenidos en las tablas 57-61 se puede realizar un analisis del
desempeno de cada algoritmo (incluyendo sus dos niveles de colaboracion, 10% y
100 %), en cada uno de los ochos escenarios disenados, para cada EM. En este caso,
la evaluacidon comparativa si se realiza horizontalmente para poder comparar los
algoritmos en los diferentes escenarios.

Con respecto a AAH, se observa que FFAHP-SU100 tiene el mejor desempefio en
GSM, en el cual domina en tres de los cuatro escenarios, pues solo TOPSIS-SU100,
en BE-HT, logra relegarlo al segundo lugar, por una diferencia del 6,5%; en Wi-Fi
sucede algo similar: el mejor desempefio lo tiene FFAHP-SU100, y solo SAW, en BE-
LT, logra relegarlo al cuarto lugar, con una diferencia del 6 %.

Con respecto a AAFH, se observa que SAW (en BE-LT y RT-HT) y TOPSIS (en
BE-HT y RT-LT) comparten el mejor desempeio en la red GSM, mientras que en
la red Wi-Fi no hay un algoritmo que domine en mas de un escenario. Analizando
los valores promedio, el mejor desempefio lo alcanza el algoritmo FFAHP-SU100,
seguido muy de cerca por SAW y VIKOR, respectivamente.

Con respecto a ABW, se observa que nuevamente FFAHP-SU100 domina en tres
de los cuatro escenarios de GSM, y solo SAW, en RT-HT, logra relegarlo al quinto
lugar, con una diferencia del 15 %, lo que hace que, en promedio, los dos algoritmos
tengan el mismo desempefio; en el caso de la red Wi-Fi, VIKOR lidera el desempefio
en tres escenarios, seguido muy de cerca por SAW, que en promedio tiene el mismo
desempefio que VIKOR.

Con respecto a AAD, se observa que nuevamente FFAHP-SU100 domina en tres
de los cuatro escenarios de GSM, y solo VIKOR, en BE-HT, logra relegarlo al segundo
lugar, con una diferencia del 1,7 %; sin embargo, en promedio, FFAHP supera amplia-
mente a VIKOR. En el caso de Wi-Fi, FFAHP-SU100 repite el liderato en el desempe-
fio de tres escenarios, y solo SAW, en BE-LT, logra relegarlo al quinto lugar, con una
diferencia del 1,6 %; sin embargo, en promedio, los dos comparten el primer lugar.

Con respecto a AAT, se repite la historia: FFAHP-SU100 domina en tres de los
cuatro escenarios de GSM, y solo SAW, en RT-HT, logra relegarlo al tercer lugar, con
una diferencia de tan solo 1,5%; sin embargo, en promedio, ambos ocupan el primer
lugar. Para el caso de Wi-Fi, FFAHP-SU100 repite el liderato en el desempefio de tres
escenarios, y solo SAW, en BE-LT, logra relegarlo al tercer lugar, con una diferencia del
1,5%; sin embargo, en promedio, los dos comparten el primer lugar junto con VIKOR.

Finalmente, los resultados obtenidos en la tabla 62 resumen el desempefio global
de cada algoritmo (incluyendo sus dos niveles de colaboracion, 10% y 100 %), en el
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nivel de EM, tanto para la red GSM como para la red Wi-Fi; se observa que el mejor
desempefio de la mayor parte de las EM tanto en GSM como en Wi-Fi se lo reparten
los algoritmos FFAHP y SAW; solo en el caso de AAFH-GSM, el mejor desempefio
lo tiene TOPSIS, seguido de cerca por SAW, y en ABW-Wi-Fiy AAT-Wi-Fi, VIKOR
comparte el primer lugar con SAW y FFAHP.

Cuando se realiza un analisis por tipo de escenario, no se evidencia un algoritmo
que domine ampliamente, ya sea en todos los escenarios de trafico alto, en todos los
escenarios de trafico bajo o en todos los escenarios con enfoque de RT o BE, por lo
que es necesario realizar una ponderacion para encontrar los algoritmos que mejor
se desempefian en cada red. De acuerdo con la tabla 62, en la red GSM, si sacamos
de la ecuacion a AAFH (lo cual no afecta significativamente, ya que el nimero de
handoffs fallidos es significativamente menor al nimero de Aandoffs totales), el algo-
ritmo que domina ampliamente y en solitario es FFAHP. Para el caso de la red Wi-
Fi, tanto FFAHP como SAW presentan un desempefio similar. Sin embargo, con el
objetivo de minimizar la complejidad del modelo, para el caso de Wi-Fi se selecciona
unicamente a FFAHP.

Abhora, la pregunta es si se selecciona FFAHP-SU100 (FFAHP con un porcentaje
de colaboracién del 100%) o FFAHP-SU10 (FFAHP con un porcentaje de colabo-
racion del 10%). Analizando nuevamente la tabla 62, se observa que, si dejamos por
fuera la EM AAFH, en el caso de GSM, FFAHP-SU100 tiene un desempefio del
97,87%, y FFAHP-SU10, del 95,50%, una diferencia de apenas el 2% en el desem-
pefio, pero del 90% en colaboracion, lo que hace que FFAHP-SU10 sea una mejor
alternativa. Haciendo un analisis similar en Wi-Fi, FFAHP-SU100 tiene un desem-
peno del 98,94 %, mientras que FFAHP-SU10, del 94,90 %, una diferencia de apenas
el 4% en el desempeno, pero del 90% en colaboracidn, lo que hace, nuevamente, que
FFAHP-10 sea una mejor alternativa.

Modelo de decision espectral colaborativo definitivo

La figura 102 describe el modelo de decision espectral colaborativo, de acuerdo con
los resultados alcanzados en cada médulo evaluado. El modelo esta conformado por
cuatro modulos fundamentales: 1) modulo colaborativo (intercambio de informacion
entre SU); 2) mddulo de caracterizacion del PU; 3) moédulo de probabilidad de arribo
del SU, y 4) médulo de seleccion de la SO.

La funcién de cada moédulo es realizada por el algoritmo que mejor desempefio
evidencid en la correspondiente evaluacion de cada médulo. Los algoritmos selec-
cionados fueron: para el modulo colaborativo, el intercambio de informacién se dio
a través del algoritmo de promedios; para el modulo de caracterizacion del PU, el
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algoritmo LSTM; para el modulo de probabilidad de arribo del SU, el algoritmo
MLPNN, y para el modulo de seleccion de canal, el algoritmo FFAHP-SU10.

Figura 102. Modelo de decision espectral colaborativo definitivo
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Moédulo de probabilidad
de arribo del SU: MLPNN

Fuente: elaboracion propia.
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Herramienta de simulacion

La herramienta de simulacion propuesta fue desarrollada en Matlab y esta disefiada
para permitirle al usuario trabajar en un ambiente amigable y parametrizable segiin
las pruebas que se requiera realizar. Esta herramienta esta basada en datos de ocu-
pacion espectral reales capturados en las bandas de frecuencia GSM y Wi-Fi, a fin
de incorporar el comportamiento real del usuario primario (PU) en la evaluacién
del desempeno del algoritmo de handoff espectral (SH) seleccionado. La herramienta
propuesta permite seleccionar entre 16 posibles algoritmos de SH, enfocados a aplica-
ciones de tiempo real (RT) o mejor esfuerzo (BE), y también es posible modificarlos
o incluso proponer uno propio. Ademas, permite configurar parametros de interés
como el porcentaje de cooperacioén entre usuarios secundarios (SU), el tiempo de
transmision del SU y el tipo de modulacion, entre otros. La seleccidon de frecuencia se
toma a partir de los cuatro criterios de decision (DC): probabilidad de disponibilidad
(AP) del canal, tiempo estimado de disponibilidad (ETA) del canal, relacién de sefial
a interferencia mas ruido (SINR) y ancho de banda (BW). La evaluacion del desem-
pefo de los algoritmos de SH se realiza a partir de las cinco métricas de evaluacion
(EM): AAH, AAFH, ABW, AAD y AAT.

Descripcion general

Detras del entorno grafico, el programa esta conformado por 69 funciones, cada
una de la cuales es parametrizada con diferentes valores de entrada y depende de
la técnica o modelo seleccionado; un diagrama de bloques general se presenta en la
figura 103.

La descripcion de cada una de las variables de entrada y salida se realiza en la
figura 104; este esquema permite identificar el flujo de datos entre cada uno de los
bloques, desde la base de datos hasta los elementos de salida: figuras y matrices. Los
bloques de color azul hacen referencia a los méddulos que requieren de la parame-
trizacion del usuario en la ventana grafica del software; los de color rojo, a procesos
intermedios, y los de color negro, a entradas y salidas.
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Figura 103. Diagrama de bloques: descripcion general

Optional Model Model Core

Prediction >
Figure

Database [—3»| C > Initial Average Model
Parameters
Data Export

Spetral Decision Ranking  |—

—

Y

Fuente: elaboracion propia.

Base de datos

El programa funciona a partir de tres matrices de datos de potencia: high, medium 'y
low (traffic level), y para dos tipos de tecnologia: GSM y Wi-Fi (load database), cada
una con seis bases de datos. Los datos son valores reales tomados en Bogota, Colom-
bia, en un periodo de una semana, incluyendo sabado y domingo. La cantidad de
datos capturados para cada una de las tecnologias se muestra en la tabla 63.

Tabla 63. Datos capturados

i Datos capturados
Tecnologia :
Filas Columnas Datos totales
GSM 1.145.700 551 631.280.700
Wi-Fi 2.490.000 461 1.147.890.000

Fuente: elaboracion propia.

La figura 105 presenta las variables de entrada para la base datos; el usuario debe
seleccionar entre dos posibles tecnologias, GSM o Wi-Fi, y puede especificar el tipo
de trafico, aunque este ajuste no se requiere como criterio inicial.
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Maddulo colaborativo

Este moédulo permite segmentar la matriz de potencia segin el numero de usuarios
(figura 106), y a partir de este nimero se puede analizar el efecto de reducir los
usuarios, ya que, ademas de la division, el modulo cuenta con la posibilidad de selec-
cionar qué porcentaje del total de usuarios estara involucrado en las respectivas simu-
laciones. Para caracterizar este modulo, se requieren seis variables de ajuste: el tipo
de tecnologia, el tipo de trafico, el nimero de usuarios en los cuales se va a dividir la
matriz de potencia, el porcentaje de usuarios involucrado en la simulacion, el tipo de
segmentacion (aleatoria o continua, segin el porcentaje de usuarios) y, finalmente, si
la division se realiza por filas o por columnas.

Como elementos de salida, se obtienen la matriz de potencia segmentada y dos
parametros de visualizacién que permiten identificar el nimero total de usuarios y la
cantidad de estos que sera parte de la simulacion.

Figura 106. Estructura colaborativa

GSM .
Power Matrix Power Matrix

"l Segmentation

| Segmentation |_> Collaborative
| Division |—>
| User percentage |—>
| Number of user |—> W

Fuente: elaboracion propia.

Y

La figura 107 muestra, a la izquierda, la matriz de potencia segmentada para 100
usuarios si el porcentaje de usuarios que se quiere analizar es del 50%: la zona en
color negro representa el numero de usuarios que son parte de la simulacién, mien-
tras que la zona en color blanco representa informacion desconocida; asimismo, a la
derecha, se tiene el mismo numero de usuarios, pero ahora el porcentaje se reduce
al 40% vy se seleccionan de forma aleatoria, es decir, solo 40 usuarios seran parte de
la simulacion, y debido a su seleccidn aleatoria, se obtienen secciones desconocidas
no continuas.
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Figura 107. Matriz de potencia segmentada

Fuente: elaboracion propia.

Modelos disponibles
Los usuarios del simulador tienen disponibles 14 tipos de modelos: 5 modelos para
prediccion y 9 modelos para el analisis de movilidad espectral (figura 108).

Estructura general de los modelos

Sibien los modelos son independientes, requieren de parametros en comun, especifi-
camente de la matriz de disponibilidad, por lo que, previo a la estructuracion del mo-
delo, se necesitan dos modulos adicionales: el que realiza la conversion de la matriz
de potencia a la de disponibilidad y el que determina los promedios de los criterios
para el analisis multicriterio (figura 109).
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Figura 108. Modelos disponibles para prediccion y movilidad espectral
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Fuente: elaboracion propia.

Figura 109. Descripcion general de las entradas de los modelos

Model Core
Availability
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Threshold Model
—>| Bandwidth
ixe [ 10 |
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Fuente: elaboracion propia.

Pardmetros iniciales
Para establecer los parametros iniciales de las respectivas simulaciones, el soffware cuenta
con cuatro variables de entrada que deben ser parametrizadas por el usuario (tabla 64).
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Tabla 64. Descripcion de los parametros de entrada iniciales

Parametro Descripcion
Threshold Umbral de d,ec1.51on para determinar si una oportunidad espec-
tral (SO) esta disponible.
Noise floor Piso de ruido promedio.
BW fixed Ancho de banda fijo para cada canal de frecuencia.
Multichannels Numero maximo de canales adyacentes disponibles que se

pueden agrupar para formar un solo canal.

Fuente: elaboracion propia.

Disponibilidad
El software transforma los datos de potencia que estan en un rango entre 40y —147 a
valores binarios, segun la restriccion dada por el valor de threshold —ecuacion (130)—:

1 If Power>Threshold
Available = (130),
0 If Power<Threshold

donde 1 representa una frecuencia disponible, y 0, una frecuencia no disponible. El
resultado obtenido equivale a la matriz de disponibilidad y es la matriz de entrada
para los diferentes modelos.

SINR

A partir del noise floory de la matriz de potencia segmentada, se determina la relacion
de sefial a interferencia mas ruido (SINR) y se realiza la resta entre la matriz de da-
tos de potencia de entrada y la variable noise floor ajustada por el usuario —ecuacion
(131)—:

SINR =[ Power]— Noise Floor (131).

Bandwidth
Para determinar la matriz de ancho de banda (bandwidth), se utilizan la matriz de
disponibilidad previamente obtenida y los parametros de BW fixed y multichannels
—ecuaciédn (132)—:

Bandwidth = BWfixed - (Count + Availability) (132),

donde el valor de BW fijo es parametrizado por el usuario en la ventana principal del
software.
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Average
El modulo average determina los vectores de AP, ETA, PSINR y ABW (tabla 65),
utilizados para realizar el analisis multicriterio de seleccidén de canales disponibles.

Tabla 65. Vectores para el analisis multicriterio

Sigla Promedio Descripcion

Promedio de cada una de las columnas de la

AP Probabilidad de disponibilidad matriz de disponibilidad

Promedio de ‘unos’ consecutivos de la matriz de

ETA Tiempo medio de disponibilidad disponibilidad

PSINR Promedio de SINR Promed}o de cada columna de la matriz de
SINR, sin tener en cuenta los ceros

Promedio de cada una de las columnas de la

ABW Promedio de ancho de banda matriz de ancho de banda

Fuente: elaboracion propia.

El tamafio de cada uno de los vectores es de 1 x 7, donde n corresponde a la cantidad
de columnas de la matriz de potencia.

Ranking

El ranking es un médulo que utiliza analisis multicriterio para asignarles una puntua-
cion a los diferentes canales; el objetivo es que, a partir de los vectores AP, ETA, PSINR
y ABW, se puedan establecer los canales con mayor probabilidad de SO. Para obtener
esta puntuacion, el médulo requiere diferentes algoritmos multicriterio. La figura 110
presenta las variables de entrada necesarias para la parametrizacion de este modulo.

Figura 110. Variable de entrada del modulo ranking
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Fuente: elaboracion propia.
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Cada técnica multicriterio corresponde a los diferentes algoritmos de handoff models,
que el usuario puede seleccionar para cada simulacion, cada uno programado de
acuerdo con el estado del arte realizado sobre este tema. En total, el mddulo esta
formado por 14 técnicas de toma de decisiéon multicriterio (MCDM) para el analisis
de movilidad espectral y por 4 técnicas MCDM para prediccion (figura 111).

Figura 111. Algoritmos de handoff models
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Fuente: elaboracion propia.

Cada uno de los handoff models requiere de la asignacion de un vector de columna
de pesos de tamafio 1 x4, que corresponde a los pesos (puntuacion) que se les quiera
asignar a los vectores de AP, ETA, PSINR y ABW; estos pesos pueden ser ajustados
por el usuario, excepto en el modelo random, que genera, de manera aleatoria, el vec-
tor de puntuaciones. En general, los pesos son multiplicados matricialmente por los
vectores de decision —ecuacion (133)—:

[Weights Vector] ,x[P],

lx

[Weights Vecmr]]H =Weo Wi Wosne  Weal

D, PD,, (133).
TED,, - TED,,

[P]4xn - PSINR“ PSINR;,n
PWA4,1 PWA4,n
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Descripcion de modelos

Cada uno de los modelos requiere como minimo de la matriz de disponibilidad y de
la puntuacion entregada por el mddulo ranking; el nimero de parametros adicionales
requeridos depende del tipo de estrategia a implementar, por lo que, a continuacion,
se realiza una descripcién de las estrategias, los algoritmos de toma de decision mul-
ticriterio, algunas técnicas para la prediccion (aunque no se usaron todas) y el modelo
para la movilidad espectral.

Técnicas de decision multicriterio: FFAHP, SAW, TOPSIS y VIKOR

La movilidad espectral se realiza a través de un algoritmo de busqueda que puede ser
parametrizado a través de 16 algoritmos del spectral decision model, dentro de los cua-
les se encuentran los algoritmos seleccionados: FFAHP, SAW, TOPSIS y VIKOR. El
algoritmo es el encargado de realizar los saltos de columna (frecuencias) en la matriz
de disponibilidad segtn el vector de posiciones entregado por el modulo ranking; de
esta forma, el algoritmo realiza saltos hasta encontrar un valor de ‘uno’ equivalente a
una frecuencia disponible. Al realizar los saltos de columna, si el algoritmo encuentra
un ‘uno’, automaticamente realiza un nuevo salto, pero esta vez a la siguiente fila de
la matriz de disponibilidad.

Modelo propuesto

La figura 112 presenta el diagrama de bloques del modelo propuesto. Los primeros
dos bloques corresponden a la informacion de cada uno de los canales y a la corres-
pondiente segmentacion de las matrices de potencia y disponibilidad segin el numero
de usuarios. El area rectangular central corresponde al modelo propuesto, que esta
formado por un bloque con los 16 algoritmos del spectral decision model; un segundo
bloque de ranking, encargado de asignar la puntuacién a cada canal, y, finalmente, el
bloque que realiza el analisis de movilidad espectral de acuerdo con la puntuacion

asignada.
Figura 112. Etapas de los algoritmos para movilidad espectral
Input Models
Spectral occupation
training database
¢ Spectral Decision
Collaborative SDecAtléao\rgscmismn Channel Ranking Searé:;ﬁf!‘lab\e |——> Model output

Fuente: elaboracion propia.

ES 1254



Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Datos de entrada

La figura 113 presenta el diagrama de bloques de los parametros de entrada. La in-
formacion pertenece a las variables de salida del mddulo average, al ajuste del modulo
ranking y a los parametros de tiempo, rango y modulacion.

La variable de entrada time representa un instante de tiempo y la condiciéon de
parada del algoritmo de busqueda; es decir, el algoritmo realiza saltos de fila hasta
completar el tiempo establecido.

Ademas de la condicién de parada time, el modelo de movilidad tiene una variable
de entrada llamada criteria time, que establece un criterio de tiempo para el cual el
algoritmo de busqueda saltara de acuerdo con el vector de fila de posiciones calcu-
lado inicialmente: si el tiempo de parada time es mayor que el criteria time, cuando el
algoritmo de busqueda se encuentre en el instante de tiempo ¢ = criteria time, el vector
de posiciones se actualizara calculando nuevamente los promedios para el mismo
spectral decision model, pero, en este caso, para un numero definido de filas de la matriz
de disponibilidad, SINR y BW; la cantidad de filas es parametrizable por la entrada
time range; las filas seleccionadas corresponden a las tltimas filas utilizadas antes de la
condicion de criteria time. Esta condicion permanecera hasta que se cumpla el tiempo
de simulacién, por lo que, si el tiempo de parada time es mayor que 7 X criteria time, el
vector de posiciones se actualizara 7 veces.

Figura 113. Datos de entrada y salida: movilidad espectral
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Fuente: elaboracion propia.
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Modelos de movilidad espectral

Los modelos de movilidad espectral corresponden a los diferentes algoritmos del
spectral decision model que el usuario puede seleccionar y dependen de la concatena-
cion de los vectores de AP, ETA, PSINR y ABW.

Cada uno de los 16 algoritmos del spectral decision model requiere de la asignacion
de un vector de columna de pesos o puntuaciones de tamafio 1 x4, que corresponde
a la variable de entrada weights de la figura 114; estos pesos pueden ser ajustados por
el usuario para cada uno de los diferentes modelos, excepto en el modelo random, que
genera, de manera aleatoria, el vector de puntuaciones.

El diagrama de bloques que se muestra en la figura 114 se aplica de forma gene-
ral para cada una de las estrategias disponibles; la informacion de entrada equivale
a los pesos, al modelo seleccionado y a los vectores AP, ETA, PSINR y ABW. La
salida del bloque entrega dos vectores: el primero se denomina Score y contiene la
puntuacion asignada a cada canal, y el segundo es el ranking, que contiene, de forma
descendente, los canales segin la puntuacion obtenida.

Figura 114. Variables de entrada y salida del ranking de
decision espectral para movilidad espectral
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Decision
ETA Model
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Fuente: elaboracion propia.

Evaluacion de movilidad espectral

La evaluacion de movilidad espectral se realiza a través de la matriz de entrenamiento y
validacion. Los resultados corresponden a las figuras 62-101 (handoffs, handoffs fallidos,
BW, retardo y throughput). Ademas, los saltos de columna, los saltos de fila, el tiempo, la
disponibilidad y el valor de BW correspondiente a la posicion de cada salto son almace-
nados en un vector y retroalimentados en una tabla de Excel. La figura 115 muestra el
diagrama con los parametros de salida de la evaluacion de la movilidad espectral.
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Figura 115. Parametros de salida de la evaluacion de la movilidad espectral
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Fuente: elaboracion propia.

Técnica de prediccion con cadenas de Markov

Las cadenas de Markov son una técnica estocastica que se basa en el andlisis de la
dinamica interna del sistema; estas simulan la prediccion del estado actual en un
tiempo determinado a partir de los estados anteriores. Asimismo, son un proceso
aleatorio que cuenta con la propiedad de que, dado el valor actual del proceso Xz, los
valores futuros Xs para s > ¢ son independientes de los valores pasados Xu para u < t.

Modelo propuesto

El algoritmo elaborado para la evaluacion de handoff espectral utilizando cadenas
de Markov esta divido en cinco etapas (figura 116). La primera etapa corresponde
a la seleccion de los datos de entrada; en la segunda, con el objetivo de reducir los
canales de estudio para mejorar los tiempos de simulacién, se realiza una seleccion
de canales para la matriz de entrada con dos algoritmos de seleccion; en la tercera
etapa, se realiza la construccion de la matriz de probabilidades de transicion; en la
cuarta, se evaltia la matriz de transicion, y, finalmente, en la quinta, se procesan los
resultados de la evaluaciéon y se muestran de forma grafica los indicadores relevantes.
La descripcién de cada etapa se realiza, a partir de los algoritmos implementados,
por estructura, y la programacién se desarrolla utilizando funciones.

Datos de entrada y seleccién de canales

La figura 117 presenta el diagrama de bloques de la primera y segunda etapa. Con
respecto a la primera etapa, la informacién de entrada pertenece a las variables de sa-
lida del modulo average y al ajuste del modulo ranking; adicionalmente, el usuario del
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software debe parametrizar el tiempo, el nimero de canales que se va a utilizar y un por-
centaje de relacion para establecer cudndo una prediccion es considerada como buena.

En la segunda etapa, el mddulo debe seleccionar los canales (columnas) de estu-
dio; la cantidad de canales es un parametro conocido, ya que corresponde al valor
ajustado en channels number, sin embargo, se requiere establecer como y cudles canales
seleccionar, y para esto se utilizan dos técnicas: la primera utiliza el ranking FFAHP, y
la segunda hace una seleccion aleatoria basada en un modelo de distribuciéon normal.

Figura 116. Etapas del algoritmo de la cadena de Markov
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Fuente: elaboracion propia.

Figura 117. Datos de entrada y salida: cadenas de Markov
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Probabilidad de estado

La figura 118 muestra el diagrama de bloques para la tercera etapa, cuyo objetivo es
determinar la matriz de probabilidades de transicion; los datos de entrada correspon-
den a la matriz de entrenamiento, al numero de canales y a un vector de estados, el
cual indica los estados presentes de la matriz de entrenamiento.

Figura 118. Matriz de transicion: cadenas de Markov
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Fuente: elaboracion propia.

La matriz de transicién de entrenamiento determina las probabilidades de estado
actual y futuro que son necesarias para la implementacién de las cadenas, y las pro-
babilidades de la matriz de entrenamiento seran utilizadas en la matriz de validacion
para cuantificar los sandoffs espectrales. La cadena de Markov establece como reque-
rimiento conocer el estado actual y futuro del sistema; al respecto, un estado futuro
se define como time steps + 1.

La técnica utilizada para los estados actuales esta orientada a modelar cada time
step mediante un nimero entero positivo; para obtener este modelamiento, se repre-
senta cada fila de la matriz de disponibilidad de entrenamiento como un numero bina-
rio, donde cada bit corresponde a un canal, y posteriormente se realiza la conversion
de base 2 a base 10.

Para los estados futuros se realiza un barrido de la matriz de entrenamiento segun
el conjunto de estados actuales obtenidos; luego, se determinan los estados de mayor
y menor ocurrencia evaluando todos los canales del time step futuro, y posteriormente
se normalizan los resultados.

Evaluacién de handoffs espectrales

La figura 119 muestra el diagrama de bloques para la cuarta etapa, cuyo proposito es
analizar los handoffs espectrales evaluando las probabilidades de transicion sobre la
matriz de validacidn; la informacién que se requiere para la evaluacion es la matriz
de validacion de la segunda etapa y la probabilidad de transicion de la tercera etapa.
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Los resultados se cuantifican a la salida de la evaluacién a partir de la construc-
cion de las figuras 62-101 (handoffs, handoffs fallidos, BW, retardo y throughput); ade-
mas, se entregan indicadores asociados a las predicciones exactas, buenas, regulares
y malas (tabla 66).

Figura 119. Algoritmo de evaluacion: cadena de Markov

Bandwidth
Handoffs

>| Fioures
Validation .
Matrix -
Evaluation
Algorithm
(Markov Chain)
Transition _
Probabilities - »| Predictions

Fuente: elaboracion propia.

Las figuras de salidas se construyen utilizando el soffware Spectrum Mobility Analyti-
cal Tool; los indicadores son valores porcentuales entregados en la evaluacion del
algoritmo (tabla 66).

Tabla 66. Indicadores de prediccion

Indicador Caracteristica

Se define como la condicién en la que la prediccion del futuro

Prediccion exacta
es 100% acertada.

Se define como la condicién en la que la prediccion del futuro tiene un

Prediccion buena acierto mayor al 70% y menor al 100 %.

Se define como la condicién en la que la prediccion del futuro tiene un

Prediccion regular acierto mayor al 30% y menor al 70 %.

Se define como la condicién en la que la prediccion del futuro tiene un

Prediccion mala .
acierto menor al 30%.

Fuente: elaboracion propia.

Técnica de prediccidn con algoritmos genéticos

Los algoritmos genéticos son modelos de optimizacién inspirados en el proceso de
genética y evolucion; un modelo simple estd integrado por una poblacion inicial de in-
dividuos y un conjunto de operaciones que interactiian sobre la poblacion para obtener
nuevas generaciones de individuos.
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La poblacion estd constituida por un conjunto de individuos representado me-
diante un equivalente en numero binario: a la representacion binaria se le llama
cromosoma, y a cada bit dentro del cromosoma se le llama gen. En general, un algo-
ritmo genético se caracteriza mediante cinco definiciones o equivalentes genéticos,
descritos en la tabla 67 y representados graficamente para una poblacion especifica
en la figura 120.

Tabla 67. Equivalentes genéticos

Parametro

o: Descripcion
genetico
Alelo Cada uno de los estados distintos que puede presentar un gen en una misma posicion.
Gen Es el valor de un alelo dentro de un arreglo.

Cromosoma Es una coleccion de genes en forma de arreglo.

Posicion Es el lugar que ocupa un gen dentro del cromosoma.

indice Es la posicion que tiene el individuo dentro de la poblacion.

Fuente: elaboracion propia.

Figura 120. Equivalentes genéticos para una poblacion especifica
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Fuente: elaboracion propia.

El modelo genético establece una poblacion inicial aleatoria, que es verificada por
una funcién de transicion (matriz de transicion); el objetivo es asegurar que la pobla-
cion tenga valores coherentes; la seleccion, cruce y mutacion construye la poblacion
final, equivalente a los datos de entrenamiento. El nimero de generaciones (iteracio-
nes) se ajusta bajo parametros de rendimiento, como tiempos de simulacion; es una
variable que se parametriza con criterio de prueba y error. La figura 121 presenta el
diagrama de flujo del algoritmo genético.
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Figura 121. Diagrama de flujo del algoritmo genético
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Fuente: elaboracion propia.

En la figura 122 se presenta el diagrama de bloques del modelo: los bloques de
occupation y processing estan asociados a la base de datos de ocupacién espectral
y al respectivo procesamiento que permite definir la matriz de disponibilidad
para cada uno de los canales; el algoritmo propuesto esta conformado por cinco
subbloques.

El modelo propuesto corresponde a los bloques delimitados por el cuadrado con
linea discontinua, formado por cinco algoritmos: los bloques selection algorithm'y chan-
nel selection permiten seleccionar los canales (nimero de columnas) a partir de dos
técnicas: la estrategia multivariable difusa realimentada (FFAHP) o una seleccion
aleatoria; la variable de parametrizacion es el numero de canales (entre 10 y 460). Los
bloques initial population, population operators y final population, por su parte, realizan la
construccion de la matriz de entrenamiento a partir de algoritmos genéticos: primero,
se establece una poblacidn inicial aleatoria que tiene una descripcion binaria ajustada
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segun el numero de canales, y luego se realizan las operaciones: seleccion directa,
cruce y mutacion (tasas de mutacion pequefias) para obtener la poblacion final, equi-
valente a los datos de entrenamiento.

Figura 122. Etapas del algoritmo: algoritmos genéticos
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Fuente: elaboracion propia.

Datos de entrada y seleccién de canales

La figura 123 presenta el diagrama de bloques de los parametros de entrada. La
informacion pertenece a las variables de salida del modulo average y al ajuste del
modulo ranking; adicionalmente, el usuario del soffware debe parametrizar el tiempo,
el numero de canales que se va a utilizar, un porcentaje de relacidon para establecer
cuando una prediccion es considerada como buena, el nimero de generaciones que
se quieren analizar y el porcentaje de mutaciones.

Asi como en el modelo de cadenas de Markov, este selecciona los canales (colum-
nas) de estudio; la cantidad de canales es un parametro conocido, ya que corresponde
al valor ajustado en channels number; sin embargo, se requiere establecer como y cuales
canales seleccionar, y para esto se utilizan dos técnicas: la primera utiliza el ranking
FFAHP, y la segunda hace una seleccion aleatoria basada en un modelo de distribu-
cién normal.

Evaluacién de handoffs espectrales

La evaluacion de los handoffs espectrales se realiza a través de la matriz de entrenamien-
to y validacion. Los resultados corresponden a las figuras 62-101 (handoffs, handoffs fa-
llidos, BW, retardo y throughput). Aunque no hacen parte de la evaluacion, se entregan
datos del algoritmo genético: nimero de generaciones, poblacion inicial y porcentaje
de mutacion, entre otros. La figura 124 muestra el diagrama de evaluacion.

263 |ES



Cesar Augusto Hernandez Suarez, Danilo Alfonso Lopez Sarmiento y Diego Armando Giral Ramirez

Figura 123. Datos de entrada y salida: algoritmos genéticos
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Fuente: elaboracion propia.

Figura 124. Algoritmo de evaluacion: algoritmos genéticos
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Fuente: elaboracion propia.

Técnica de prediccion con clasificador bayesiano ingenuo

Una de las principales consideraciones para la seleccion de modelos de prediccion es
que se tienen multiples caracteristicas o criterios que pueden mejorar la prediccion.
Esto se explica porque la formacion del modelo de prediccion puede tener en cuenta
informacién o criterios como la AP y el ETA.
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Una estructura basada en el clasificador bayesiano ingenuo asume que la presen-
cia de una caracteristica en particular no se relaciona de ninguna manera con la pre-
sencia de cualquier otra caracteristica, incluso si una de estas caracteristicas depende
de la otra.

Modelo propuesto

El modelo propuesto toma como variable de entrada una matriz de entrenamiento
de ocupacion espectral. Antes de ser usada en el proceso de entrenamiento del pre-
dictor, la informacion espectral pasa por el bloque de procesamiento de informacion
espectral, el cual convierte los datos en series dicotdmicas en las que un ‘0’ representa
ocupacion del canal, y un ‘1’, disponibilidad de canal. Con este procesamiento de la
informacion, se entrena el algoritmo bayesiano ingenuo.

La figura 125 presenta el diagrama de bloques del modelo de prediccidén propues-
to. El primer bloque es la entrada del spectral information processing, que tiene la tarea
de definir la ocupacion o disponibilidad de cada uno de los canales, de acuerdo con la
ecuacion de probabilidad de falsa alarma. El 4area rectangular corresponde al modelo
propuesto, que consta de dos algoritmos: 1) naive bayes algorithm (algoritmo bayesiano
ingenuo) y 2) channel allocation prediction. Para calcular los pardmetros de costo y gra-
diente que ajustan el predictor, la primera funcién utiliza como variables de entrena-
miento el vector PSINR, ETA y la matriz de disponibilidad, y el segundo algoritmo
asigna la ocupacioén de canal mediante la asignacion de ‘1’ y ‘0’, lo cual genera, como
variable de salida, una matriz de prediccion de disponibilidad de BW.

Figura 125. Etapas del algoritmo bayesiano ingenuo
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Fuente: elaboracion propia.

Datos de entrada

La figura 126 presenta el diagrama de bloques de los parametros de entrada. La
informacion pertenece a las variables de salida del médulo average y al ajuste del
moédulo ranking; adicionalmente, el usuario del software debe parametrizar el tiempo,
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la relacién porcentual para establecer los criterios de prediccion y el tiempo de reen-
trenamiento.

Como se ve en la figura 126, el médulo bayesiano ingenuo permite calcular el ciclo
util, para lo cual solo se requiere ajustar el tiempo.

Figura 126. Datos de entrada y salida: algoritmo bayesiano ingenuo
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Fuente: elaboracion propia.

Predictor de ocupacién espectral

El algoritmo utiliza las probabilidades generadas a través del algoritmo bayesiano in-
genuo para predecir la disponibilidad de cada canal durante el tiempo de simulacion
(para la prediccidn, se deben procesar todos los canales disponibles).

Las variables AP y ETA se consideran las probabilidades de ocupacién/disponibi-
lidad del canal. Durante el proceso, se construyen dos nuevas matrices que, junto con
la funcion de prediccion, clasifican cada fila (time step) en ocupada o disponible. Estas
probabilidades se asignan a una matriz llamada disponibilidad prediccion, donde los
estados del canal estan definidos por ‘1’ (disponible) y ‘0’ (ocupado). Una vez que se
ha creado la matriz de prediccion, es posible comparar la precision de la prediccion
durante el tiempo de transmision.

EC 1266



Modelo de decision espectral colaborativo para mejorar el desempefio de las redes de radio cognitiva

Evaluacién de handoffs espectrales

La evaluacion de los handoffs espectrales se realiza a través de la matriz de entrena-
miento y validacion. Adicionalmente, este modelo cuenta con métricas adicionales
asociadas a la calidad de las predicciones realizadas. Por lo tanto, para el analisis
de handoffs espectrales, los resultados corresponden a las figuras 62-101 (handoffs,
handoffs fallidos, BW, retardo y throughput); para el analisis de prediccion, utiliza el
numero de handoffs anticipados, perfectos, fallidos y la interferencia. Para el analisis
de ciclo util, el simulador entrega los resultados de acuerdo con el ajuste del tiempo.
La figura 127 muestra el diagrama de evaluacion.

Figura 127. Algoritmo de evaluacion del clasificador bayesiano ingenuo
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Fuente: elaboracion propia.

Técnicas de prediccion de regresion logistica
La regresion logistica tiene como principal ventaja el hecho de que se pueden usar
diversas variables explicativas de manera simultanea. Esta caracteristica permite co-
nocer el impacto de las variables explicativas sobre la variable respuesta. Si se llegase a
examinar las variables explicativas de forma independiente, ignorando la covarianza
entre las variables, se podria caer en confusion.
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Modelo propuesto

El modelo propuesto toma como variable de entrada una matriz de entrenamiento
de ocupacion espectral. Antes de ser usada en el proceso de entrenamiento del pre-
dictor, la informacion espectral pasa por el bloque de procesamiento de informacion
espectral, el cual convierte los datos en series dicotomicas en las que un ‘0’ representa
ocupacion del canal, y un ‘1’, disponibilidad de canal. Con este procesamiento de la
informacion, se entrena el algoritmo de regresion logistica.

La figura 128 presenta el diagrama de bloques del modelo de prediccion propuesto.
El primer bloque es la entrada del spectral information processing, que tiene la tarea de
definir la ocupacién o disponibilidad de cada uno de los canales, de acuerdo con la
ecuacion de probabilidad de falsa alarma. El area rectangular central corresponde al
modelo propuesto, que consta de dos algoritmos: 1) logistic regression algorithm (logarit-
mo de regresion logistica) y 2) channel allocation prediction. Para calcular los parametros
de costo y gradiente que ajustan el predictor, la primera funcién utiliza como variables
de entrenamiento el vector PSINR, ETA y la matriz de disponibilidad, y el segundo al-
goritmo asigna la ocupacion de canal mediante la asignacion de ‘1’ y ‘0’, lo cual genera,
como variable de salida, una matriz de prediccion de disponibilidad de BW.

Figura 128. Etapas del algoritmo de regresion logistica

Input Models

Spectral occupation
training database

Proposed Algorithm

Y
Spectral information | Logistic Regression | Channel allocation | BW availability
processing Algorithm 4 prediction 7| prediction matrix

A

Fuente: elaboracion propia.

Datos de entrada

La figura 129 presenta el diagrama de bloques de los parametros de entrada. La
informacion pertenece a las variables de salida del médulo average y al ajuste del
moédulo ranking; adicionalmente, el usuario del soffware debe parametrizar el tiempo,
la relacion porcentual para establecer los criterios de prediccion y el tiempo de reen-
trenamiento.

Como se ve en la figura 129, el médulo de regresion logistica permite calcular el
ciclo util, para lo cual solo se requiere ajustar el tiempo.
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Figura 129. Datos de entrada y salida del algoritmo de regresion logistica
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Fuente: elaboracion propia.

Predictor de ocupacion espectral

El objetivo del algoritmo es utilizar una matriz dicotdbmica de entrenamiento para
implementar una funcién 4:X = Y tal que /(x) sea un predictor eficaz de ocupacién
espectral respecto a los valores Y. La figura 130 muestra el proceso de entrenamiento
del algoritmo.

Evaluacion de handoffs espectrales

La evaluacién de los handoffs espectrales se realiza a través de la matriz de entrena-
miento y validacion. Adicionalmente, este modelo cuenta con métricas adicionales
asociadas a la calidad de las predicciones realizadas. Por lo tanto, para el analisis
de handoffs espectrales, los resultados corresponden a las figuras 62-101 (handoffs,
handoffs fallidos, BW, retardo y throughput); para el analisis de prediccion, utiliza el
numero de handoffs anticipados, perfectos, fallidos y la interferencia, y para el analisis
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de ciclo util, el simulador entrega los resultados de acuerdo con el ajuste del tiempo.
La figura 131 muestra el diagrama de evaluacion.

Figura 130. Proceso de entrenamiento del algoritmo de regresion logistica
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Fuente: elaboracion propia.

Figura 131. Algoritmo de evaluacion de la regresion logistica
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Fuente: elaboracion propia.
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Técnica de prediccion por series de tiempo

El objetivo del modelo de transferencia proactiva pura es hacer predicciones que
definan el comportamiento de los PU y dar herramientas al sistema para reaccionar
antes de que ocurra el evento de interferencia. Los modelos estocasticos generan
nuevos datos a partir de registros histéricos mediante el ajuste de valores para dife-
rentes retardos de varianza basados en un coeficiente de correlacién en serie. Existen
modelos de series temporales basados en autorregresivas (AR), promedios moviles
(MA), promedios moviles autorregresivos (ARMA), promedios moviles integrados
autorregresivos (ARIMA) y modelo estacionario de autorregresion integrado con
media moévil (SARIMA).

El algoritmo propuesto se muestra en el diagrama de bloques de la figura 132:
el modulo load data toma la informacion de la disponibilidad; el médulo de ranking
contiene los métodos SAW, AHP, FFAHP y random para clasificar los canales que
tienen mayores oportunidades espectrales, y el prediction module toma la informacion
del canal seleccionado y aplica regresiones AR, MA, ARMA, arima y sarima para
predecir la llegada del PU al canal seleccionado.

Figura 132. Etapas del algoritmo por series de tiempo
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Fuente: elaboracion propia.

Datos de entrada

La figura 133 presenta el diagrama de bloques de los parametros de entrada. La infor-
macioén pertenece a las variables de salida del mddulo average y al ajuste del modulo
ranking y el modelo de serie temporal.
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Figura 133. Datos de entrada y salida del algoritmo por series de tiempo
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Fuente: elaboracion propia.

Evaluacién de handoffs espectrales
La evaluacion de los handoffs espectrales se realiza a través de la matriz de entrena-
miento, validacion y prediccion, y los resultados corresponden a las figuras 62-101

(handoffs, handoffs fallidos, BW, retardo y throughput). La figura 134 muestra el diagra-
ma de evaluacion.
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Figura 134. Algoritmo de evaluacion del algoritmo por series de tiempo
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Fuente: elaboracion propia.

Movilidad espectral

La movilidad espectral se realiza a través de un algoritmo de busqueda encargado
de realizar saltos de columna (frecuencias) en la matriz de disponibilidad segtn el
vector de posiciones entregado por el mddulo ranking; de esta forma, el algoritmo
realiza saltos hasta encontrar un valor de ‘uno’ equivalente a una frecuencia dispo-
nible, y cada salto de columna es almacenado en un vector que sera retroalimentado
en forma de tabla para el usuario al final de la simulacion. Al realizar los saltos de
columna, si el algoritmo encuentra un ‘uno’, automaticamente realiza un nuevo sal-
to, pero esta vez a la siguiente fila de la matriz de disponibilidad; cada fila representa
un instante de tiempo y la condicion de parada del algoritmo de busqueda, que es
definida por el usuario en la variable time del entorno grafico; es decir, el algoritmo
realiza saltos de fila hasta completar el tiempo establecido; asi como los saltos de co-
lumna, los saltos de fila, el tiempo y la disponibilidad son almacenados en un vector
y retroalimentados en la misma tabla del vector de saltos de columna.

Ademas de la condicién de parada time, el modelo de movilidad tiene una variable
de entrada llamada criteria time, que establece un criterio de tiempo para el cual el
algoritmo de busqueda saltara de acuerdo con el vector de fila de posiciones calcu-
lado inicialmente: si el tiempo de parada time es mayor que el criteria time, cuando el
algoritmo de busqueda se encuentre en el instante de tiempo ¢ = criteria time, el vector
de posiciones se actualizara calculando nuevamente los promedios para el mismo
handoff model, pero, en este caso, para un numero definido de filas de la matriz de
disponibilidad, SINR y BW; la cantidad de filas es parametrizable por el usuario me-
diante la variable time range del entorno grafico; las filas seleccionadas corresponden
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a las ultimas filas utilizadas antes de la condicién de criteria time. Esta condicién per-
manecera hasta que se cumpla el tiempo de simulacién, por lo que, si el tiempo de
parada time es mayor que 7 X criteria time, el vector de posiciones se actualizara # veces.

El diagrama presentado en la figura 135 muestra el flujo de datos de entrada y
salida.

Figura 135. Datos de entrada y salida: movilidad espectral
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Fuente: elaboracion propia.

Funciones Data_Export y Figure

Cuando se cumple la condicién de parada, la herramienta propuesta exporta los re-
sultados en dos diferentes formatos: .xls (Excel) y .mat (Matlab). En la tabla 68 se
muestran los archivos exportados y el tipo de archivo, de acuerdo con lo seleccionado
por el usuario en la funcién Data_Export.

Tabla 68. Formatos de los archivos exportados

Archivo Formato de exportacion
Results Documento en Excel (.xls)
Database Documento en Matlab (.mat)
Ranking Documento en Matlab (.mat)

Fuente: elaboracion propia.
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Los archivos de Matlab (.mat) contienen informacién referente a los resultados obte-
nidos en cada una de las funciones del algoritmo, y el archivo de Excel (.xls) contiene
los saltos de columna, los saltos de fila, el tiempo, la disponibilidad y el valor de BW
correspondiente a la posicion de cada salto.

Finalmente, ademas de estos archivos, el programa genera cinco figuras que se ob-
tienen a partir de la ultima funcion: figure. Para las figuras, se crean dos tipos de archi-
vos: el primero, en formato .png, y el segundo es un archivo .fig editable en Matlab.

Tanto las figuras (.png y .fig) como los archivos exportados (.mat y .xlIs) se guar-
dan en la ruta seleccionada por el usuario (project name and project location).

Herramienta de simulacion de handoff espectral desarrollada

La figura 136 muestra el entorno principal de la herramienta de simulacion denomi-
nada Collaborative CRN. Este soffware se desarrollo utilizando el entorno App Desig-
ner, de Matlab, y estd disefiado para permitirle al usuario trabajar bajo un ambiente
amigable y parametrizable segun las pruebas que se requiera realizar; el software esta
divido en ocho secciones: 1) project name and project location, 2) collaborative, 3) traffic
level, 4) parameters, 5) prediction, 6) spectral mobility, T) close and update y 8) run.

Figura 136. Interfaz de usuario del software Collaborative CRN
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Fuente: elaboracion propia.
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Conclusiones

A partir de los resultados encontrados en la investigacion, el médulo de caracteriza-
cion del usuario primario (PU) en funcién de los datos de entrada, utilizando redes
neuronales recurrentes, y que esta basado en deep learning (como es el caso de LSTM),
debe ser considerado como una opcién real y valida en la busqueda de nuevas me-
todologias que permitan minimizar el error de modelamiento y predicciéon en la es-
timacién de uso de bandas espectrales por parte de PU, pues con ello se mejora el
desemperfio de la etapa de decision espectral en redes inalambricas de radio cognitiva
(CR). Esta apreciacion se sustenta al validar los resultados obtenidos con LSTM fren-
te a otras técnicas de redes neuronales, como MLPNN.

Un aspecto relevante de la investigacion (contrario a lo planteado en la mayo-
ria de las propuestas del estado del arte) es que el funcionamiento del algoritmo de
caracterizacion LSTM fue probado con fuentes de trafico reales (GSM y Wi-Fi) y
contrastado con las técnicas de aprendizaje MLPNN y Anfis, y se alcanzaron por-
centajes en la prediccidén que oscilan entre el 63,82 % y el 97,09 %, valores superiores
a los entregados por MLPNN (ubicados entre el 51,86% y el 95,59%) y Anfis (que
oscilan entre el 55,86 % y el 96,30 %), lo que prueba que la implementacién de LSTM
en sistemas inalambricos reales es prometedora.

La inclusion en el Anfis de funciones de membresia basadas en grid partition y
c-means clustering mejora la capacidad de modelamiento y pronostico de uso del canal.
Los resultados de la simulacién permiten afirmar que el sistema propuesto tiene un
mayor porcentaje de acierto en la prediccién del comportamiento cadtico de PU en
CR que otros paradigmas como el basado en deep learning, llamado LSTM; no obstan-
te, la integracion de Anfis-grid y Anfis-FCM tiene un costo computacional agregado
en tiempo de aprendizaje y en ejecucion de la aplicacion.

Después de realizar distintas y variadas pruebas sobre SVM (maquinas de soporte
vectorial), no se ha podido llegar a un resultado ttil con este sistema. La razon por la
que SVM no es practica para caracterizar y predecir PU en CR es que requiere muchos

277 |E2



Cesar Augusto Hernandez Suarez, Danilo Alfonso Lopez Sarmiento y Diego Armando Giral Ramirez

ejemplos y la prediccion que hace es fija, es decir, no tiene en cuenta distribuciones
(que es probablemente lo que mejor encaja para describir una CR). No obstante,
aunque la prediccion sea fija, las SVM usadas permiten extraer las probabilidades de
que el ejemplo aplicado sea de la clase 1 o de la clase 0; aun asi, los valores obtenidos
siempre fueron mayores de 0,995 para una de las dos clases, ya sea emisién 0 no
emision. Es por ello que SVM-2 (conocida formalmente como LibSVM) es capaz
de predecir como se va a comportar el PU, pero de un modo equivocado, ya que, si
el sistema esta emitiendo en los ultimos instantes grabados, la SVM detecta como
prediccion que esa radio estara emitiendo infinitamente. Lo mismo pasa si el estado
para predecir estd en no emision: al final del ejemplo, la predicciéon que ofrece el
algoritmo es que el PU estard sin emision de modo permanente.

Con respecto al médulo de probabilidad de arribo de un usuario secundario (SU),
a partir del modelamiento matematico, se demuestra que, para la variable tiempo de
procesamiento en la estacion base (BS), el tiempo que tarda el sistema reactivo en asignar
un canal a un SU es mayor que el requerido por un sistema proactivo, condicion que
favorece u optimiza el rendimiento en la etapa de toma de decisiones en CR.

Adicionalmente, los resultados muestran que el sistema es mas eficiente cuando
la MLPNN puede llegar a establecer un patrén en la secuencia histérica; de lo contra-
rio, el porcentaje de acierto en la estimacion de la siguiente solicitud por parte de un
SU puede ser muy baja para la variable ancho de banda (BW), lo que vuelve inviable su
implementacion debido a que los canales reservados por la BS podrian no reunir las
caracteristicas que realmente requieran los usuarios cognitivos.

De acuerdo con los resultados alcanzados en el moédulo de seleccion de oportuni-
dades espectrales (SO), se puede concluir que no hay un algoritmo que se desempefie
de forma excelente en todas las métricas de evaluacion (ME) y para todos los escena-
rios de simulacion (tipo de red, clase de aplicacion y nivel de trafico). Cada algorit-
mo se puede desempefiar de forma satisfactoria en determinadas ME y para ciertos
escenarios, por lo que una propuesta interesante es el disefio de un médulo adapta-
tivo multivariable de seleccion espectral que permita cambiar su comportamiento de
acuerdo con los requerimientos de la aplicacion que se esté desarrollando durante
la comunicacion del SU. A pesar de lo anterior, el algoritmo que mejor desempefio
evidencio en promedio fue FFAHP, seguido por SAW, lo que permite corroborar la
importancia de incorporar la realimentacién y el aprendizaje en los algoritmos para
la seleccion de espectro.

Con respecto al médulo de colaboracidn, se pudo evidenciar que el nivel de cola-
boracion entre SU es directamente proporcional al desempeno del algoritmo; sin em-
bargo, la tasa de mejoria no es significativamente alta: de acuerdo con los resultados,
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un incremento en el nivel de colaboracion entre SU del 1000% (al pasar del 10% al
100%) tan solo logra una mejoria en el desempefio del algoritmo del 10%, aproxima-
damente. El analisis de los resultados también mostrd que el algoritmo con el mejor
desempefio en el momento de intercambiar informacién entre SU es el método del pro-
medio, el cual permite guardar de forma indirecta el historico de la informacién anterior.

El modelo de decision espectral colaborativo propuesto y desarrollado en esta
investigacion es una herramienta para la toma de decisiones que permite aprovechar
efectivamente las SO en redes de radio cognitiva (CRN). Dicho modelo esta con-
formado por cuatro médulos: 1) modulo colaborativo (intercambio de informacién
entre SU); 2) moédulo de caracterizacion del PU; 3) mddulo de probabilidad de arribo
del SU, y 4) modulo de seleccion de la SO. La funcién de cada modulo es realizada
por el algoritmo que mejor desempefio evidencio en la correspondiente evaluacion
de cada modulo. Los algoritmos seleccionados fueron: para el modulo colaborativo,
el intercambio de informacion se dio a través del algoritmo de promedios; para el
modulo de caracterizacion del PU, el algoritmo LSTM; para el modulo de probabili-
dad de arribo del SU, el algoritmo MLPNN, y para el médulo de seleccion de canal,
el algoritmo FFAHP-SU10. El modelo propuesto selecciona de forma dindmica e
inteligente la mejor SO con base en los criterios de decision (DC): probabilidad de
disponibilidad (AP) del canal, tiempo estimado de disponibilidad (ETA) del canal,
relacion de sefial a interferencia mas ruido (SINR) y BW, que fueron seleccionados
cuidadosamente a través del método Delphi modificado. La validacién del desempe-
fio del modelo propuesto se realizd a través de datos reales de ocupacion espectral
capturados en experimentos realizados en las bandas de frecuencia GSM y Wi-Fi.
Sin embargo, la aplicacién del algoritmo también se puede extender a otras ban-
das de frecuencia siempre que se cuente con la informacion estadistica necesaria y
suficiente.

Contribuciones de la investigacion
* Disefio y desarrollo de un modelo de decision espectral colaborativo para mejo-
rar el desempefio de las CRN.

» Evaluacion y validacion de los algoritmos de decision espectral desarrollados,
con datos de ocupacion espectral reales capturados en una campafia de medicion
realizada en la ciudad de Bogota, Colombia.

 Evaluacion y validacion de los algoritmos de Aandoff espectral (SH) desarrolla-
dos, en dos tipos de redes: GSM y Wi-Fi.
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 Evaluacion y validaciéon de los algoritmos de SH desarrollados, con dos tipos
de enfoque: tiempo real (RT) y mejor esfuerzo (BE), de acuerdo con la clase de
aplicacioén que puede ejecutar el SU.

* Evaluacion y validacién de los algoritmos de SH desarrollados, con dos niveles
de trafico de PU: alto (HT) y bajo (LT).

 Evaluacion y validacion de los algoritmos de SH desarrollados, en ocho diferen-
tes escenarios de evaluaciéon: GSM-RT-LT, GSM-RT-HT, GSM-BE-LT, GSM-
BE-HT, Wi-Fi-RT-LT, Wi-Fi-RT-HT, Wi-Fi-BE-LT y Wi-Fi-BE-HT.

» Evaluacion y validacion de los algoritmos de SH desarrollados, bajo cinco EM:
AAH, AAFH, ABW, AAD y AAT.

* Determinacion de cuatro DC seleccionados cuidadosamente mediante el méto-
do Delphi modificado, para elegir la mejor SO; todos los algoritmos desarrolla-
dos trabajaron con los mismos cuatro DC, y cada DC fue calculado a partir de
los datos de ocupacion espectral reales.

* Disefio y desarrollo de Collaborative CRN, una herramienta de simulacion no-
vedosa para evaluar el desempefio de algoritmos de decision espectral hibridos;
esta basada en los datos de ocupacidn espectral reales y permite modificar varios
parametros de interés para analizar el comportamiento del desempefio de cada
algoritmo bajo diferentes situaciones; entre estos parametros se destaca el nivel
de colaboracion entre SU.

Investigacion futura

Para un trabajo futuro, se proponen tres directrices: la primera consiste en realizarle
una modificacion al algoritmo FFAHP para que pueda autoconfigurar los pesos de
los DC con base en las estadisticas historicas recientes de estos; la segunda consiste
en realizar una evaluacién y validacién con algoritmos de aprendizaje autonomo
mas relevantes en la literatura actual, como las SVM (maquinas de soporte vectorial),
para realizar procesos de clasificacion, y el aprendizaje por refuerzo, para desarrollar
la parte de adaptaciodn, y la tercera directriz consiste en realizar una evaluacion y
validacion con equipos de CR que emulen una CRN en lugar de simulaciones, aun
con datos de ocupaciodn espectral reales.
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