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Introducción

El crecimiento en el diseño de aplicaciones inalámbricas plantea nuevos desafíos en 
los futuros sistemas de comunicación; según Cisco (2017), el tráfico de datos móviles 
ha crecido 18 veces en los últimos 5 años y se espera que el tráfico total crezca 49 
exabytes por mes en 2021 (Hernández, Márquez et al., 2017; Hernández, Pedraza et 
al., 2015; Kumar et al., 2016; Tahir et al., 2017; Wang y Liu, 2011). Lo anterior, junto 
con el hecho de que las políticas de asignación actuales son fijas y reguladas por el 
Estado (Cruz-Pol et al., 2018), ha generado que el espectro radioeléctrico presente 
problemas de escases. Sin embargo, los resultados de estudios realizados demuestran 
que ciertas bandas, como las de 50 a 700 MHz, están siendo subutilizadas, ya que sus 
ciclos útiles son prácticamente nulos, debido a que, en algunos casos, los tiempos de 
utilización espectral son inferiores al 10 % (Forero, 2012), en contraste con otras ban-
das, como las asignadas a la red celular, que actualmente se encuentran saturadas. 

La radio cognitiva (CR), definida por la Unión Internacional de Telecomunica-
ciones (ITU) como una radio o sistema que detecta y está al tanto de su entorno y se 
puede ajustar de forma dinámica y autónoma de acuerdo con sus parámetros de fun-
cionamiento de radio, plantea como solución el acceso dinámico al espectro (DSA) 
por medio de un uso oportunista e inteligente del espectro de frecuencia. Lo anterior 
permite que un usuario no licenciado —usuario de radio cognitiva o usuario secun-
dario (SU)— pueda utilizar un canal de una banda licenciada disponible, pero deberá 
liberar dicho canal y buscar uno nuevo (también denominado oportunidad espectral, 
hueco espectral o espacio blanco) para continuar con su transmisión si el usuario licen-
ciado —usuario primario (PU)— llega a ocuparlo, si la calidad del canal ocupado 
por el SU se degrada, si el SU interfiere al PU o si la movilidad del SU provoca que 
el PU quede fuera del área de cobertura; este mecanismo es denominado movilidad 
espectral o handoff espectral (SH) (Ahmed et al., 2016; Akyildiz et al., 2006; Akyildiz et 
al., 2008; Ozger y Akan, 2016; Tsiropoulos et al., 2016). Esto le confiere a la CR la 
capacidad de proveer un gran ancho de banda (BW) al SU a través de arquitecturas 
inalámbricas heterogéneas.
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Las redes de radio cognitiva (CRN) imponen retos en la gestión del espectro dis-
ponible debido a su naturaleza fluctuante y a los requerimientos de calidad de servi-
cio (QoS) de varias aplicaciones. Las cuatro principales funciones de la gestión del 
espectro son: detección de espectro, decisión de espectro, compartición de espectro 
y movilidad de espectro, de la cuales conforman el ciclo cognitivo (Akyildiz et al., 
2008; Akyildiz et al., 2009). El ciclo cognitivo inicia con la detección del espectro, 
cuando los usuarios de radio cognitiva monitorizan el espectro para detectar las 
oportunidades espectrales (SO) a fin de no interferir con los PU. En la decisión de 
espectro, después de que las SO han sido identificadas, los SU deben seleccionar 
la más adecuada de acuerdo con sus requerimientos de QoS; para tomar esta deci-
sión, se han desarrollado algoritmos que tienen en cuenta las características del canal 
de radio y el comportamiento estadístico de los PU, entre otros factores. Debido a 
que múltiples SU pueden intentar acceder al espectro, la función de compartición 
de espectro proporciona la capacidad de compartir este recurso con múltiples SU, 
coordinando sus transmisiones para evitar colisiones e interferencias. Finalmente, 
la movilidad espectral se da cuando el SU debe dejar el canal de frecuencia que está 
utilizando y continuar su comunicación en otra SO debido a la llegada de un PU, a 
que está interfiriendo con el PU o a la degradación de la calidad del canal (Akyildiz 
et al., 2009; Tsiropoulos et al., 2016).

La decisión del espectro es el núcleo de una CRN, pues, de forma eficiente y sin 
causar ningún tipo de interferencia, establece mediante un conjunto de técnicas el 
proceso para seleccionar la SO más adecuada de acuerdo con los requerimientos del 
SU y con las condiciones del ambiente de radio. Un incorrecto proceso de toma de 
decisiones afecta los parámetros de la red, como, por ejemplo, la tasa de cambios de 
canal, o handoff espectral; sin embargo, a pesar de su relevancia, no es una función 
tan explorada como la detección de espectro.Problema y motivación del proyecto de 
investigación 

De acuerdo con investigaciones actuales (Ahmed et al., 2016; Akyildiz et al., 2006; 
Akyildiz et al., 2008; Akyildiz et al., 2009; Christian et al., 2012; Marinho y Montei-
ro, 2012; Rodríguez-Colina et al., 2011; Tsiropoulos et al., 2016; Wang et al., 2012; 
Wang y Wang, 2009), la decisión espectral es la característica clave para habilitar la 
transmisión continua de datos del SU, ya que a partir de esta se podría reducir el nú-
mero de cambios de canal durante la transmisión de un SU, así como su latencia, lo 
que minimiza la degradación del canal (Christian et al., 2012). Actualmente existen 
varias propuestas de decisión de espectro, pero es importante analizar que la aplica-
ción de un modelo de decisión espectral depende en gran medida de las característi-
cas de la red del PU (Akin y Fidler, 2016; Liu y Tewfik, 2014; Rahimian et al., 2014).
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Cuando no se selecciona adecuadamente la SO, es posible que la transmisión de 
datos deba pausarse, lo que provoca un aumento significativo en el retardo que incide 
de forma directa en el nivel de desempeño y QoS de la comunicación del SU (Akyil-
diz et al., 2009). De acuerdo con lo anterior, encontrar un canal con las característi-
cas requeridas sobre el cual un SU pueda continuar su sesión de transmisión de datos 
es un asunto apremiante en movilidad espectral (Christian et al., 2012). La selección 
del canal depende de muchos factores, como su capacidad, su disponibilidad durante 
el SH y la probabilidad de que siga libre en el futuro, entre otros. Una pobre selección 
de canal puede causar múltiples SH y degradar, así, el desempeño de todo el conjun-
to. El enfoque más común para la selección de canal es usar una lista de canales de 
respaldo (BCL) (Christian et al., 2012; Pedraza et al., 2016).

Durante la última década, las investigaciones en CRN enfocaron sus esfuerzos en 
la función de detección del espectro, razón por la cual existen diversos desarrollos al 
respecto en la literatura actual (Al-Amidie et al., 2019; Ali y Hamouda, 2017; Bhow-
mik y Malathi, 2019; Youssef  et al., 2018; Zhang et al., 2017). En comparación con 
la detección, la decisión de espectro (toma de decisiones) ha sido poco estudiada a 
pesar de su importancia en el mejoramiento del desempeño de las redes inalámbricas 
(Pinto y Correia, 2018; Rizk et al., 2018; Tripathi et al., 2019), por lo cual, dentro de 
las CRN, se requiere proponer metodologías que orienten sus objetivos al proceso de 
toma de decisiones.

El componente básico de una decisión cognitiva está en función del aprendizaje 
del ambiente, el razonamiento y la conciencia. Las técnicas de decisión deben buscar 
maximizar de forma global, o por lo menos local, el uso del espectro y los parámetros 
de funcionamiento (Tabassam y Suleman, 2012). Los modelos de toma de decisión 
cuentan con múltiples técnicas, algunas determinísticas y otras probabilísticas, y sus 
aplicaciones son diversas y abarcan grandes áreas de las ciencias. En redes de tele-
comunicaciones, las teorías de toma de decisión permiten solucionar problemas de 
asignación, pero, como muchas otras áreas de la ingeniería, esta se ve limitada por el 
sistema de aplicación. En el caso de las CRN, los modelos desarrollados orientan sus 
esfuerzos a solucionar problemas de arquitecturas centralizadas (Deng et al., 2018; 
Iftikhar et al., 2019; Salgado, Márquez et al., 2016; Tripathi et al., 2019), por lo que 
es necesario identificar modelos que mejoren el proceso de toma de decisiones para 
otro tipo de arquitecturas con infraestructura como las descentralizadas.

Las redes centralizadas son arquitecturas con infraestructura que operan bajo un 
coordinador central: la información observada por cada SU alimenta la base central de 
forma que esta pueda tomar decisiones para maximizar los parámetros de comunicación.
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En las CRN, los SU deben tomar decisiones inteligentes en función de la varia-
ción del espectro y de las acciones adoptadas por otros SU; bajo esta dinámica, la 
probabilidad de que dos o más SU elijan el mismo canal es alta, especialmente cuan-
do el número de SU es mayor que el número de canales disponibles; así, debido a la 
externalidad negativa de la red, cuantos más SU seleccionen el mismo canal, menor 
será la utilidad que cada SU obtendrá y el número de interferencias por el acceso 
simultaneo será mayor (Abbas et al., 2015). Para modelar la red bajo parámetros de 
tráfico realistas, es necesario tener en cuenta la colaboración entre SU. 

El desafío consiste en realizar el proceso de toma de decisiones para una red de 
radio cognitiva descentralizada (DCRN)dotando a los nodos con la capacidad de 
aprender del entorno y proponiendo estrategias que les permitan a los SU intercam-
biar información de forma cooperativa o competitiva. De acuerdo con cada uno de 
los elementos y problemas expuestos, la pregunta de investigación planteada para este 
libro es: ¿cómo y en qué medida se puede mejorar el desempeño de las redes de radio 
cognitiva descentralizadas con un enfoque colaborativo entre usuarios secundarios?

Objetivos del proyecto de investigación 
El objetivo general de esta investigación es desarrollar un modelo de decisión es-
pectral colaborativo para mejorar el desempeño de las redes de radio cognitiva, por 
medio de los siguientes objetivos específicos:

•	 Adaptar e implementar los algoritmos colaborativos más relevantes en la literatu-
ra actual con aplicación en redes de radio cognitiva distribuidas.

•	 Diseñar un modelo colaborativo para seleccionar la mejor SO en redes de radio 
cognitiva.

•	 Evaluar y validar el modelo propuesto a través de simulaciones con datos de 
ocupación espectral reales y con su posterior confrontación con los modelos más 
relevantes.

La validación del modelo de decisión espectral colaborativo propuesto se realizará a 
través de simulaciones y de su posterior confrontación con otros modelos. Esta simula-
ción integra únicamente las características necesarias para evaluar el modelo propuesto.

Modelo de decisión espectral colaborativo 
Este libro propone un modelo de decisión espectral colaborativo para la toma de de-
cisiones multicriterio conformado por varios algoritmos híbridos y basado en cuatro 
módulos principales que se describirán en capítulos posteriores: 1) módulo colabora-
tivo para el intercambio de información entre SU, 2) módulo de caracterización del 
PU, 3) módulo de probabilidad de arribo del SU y 4) módulo de selección de la SO 
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(figura 1). El modelo propuesto selecciona de forma dinámica e inteligente la mejor 
SO con base en los siguientes criterios de decisión (DC): probabilidad de disponibili-
dad (AP) del canal, tiempo estimado de disponibilidad (ETA) del canal, relación de 
señal a interferencia más ruido (SINR) y BW. 

Figura 1. Modelo de decisión espectral

Fuente: elaboración propia.

Para evaluar el nivel de desempeño de los algoritmos desarrollados, se realiza un aná-
lisis comparativo entre estos y los algoritmos más relevantes en la literatura actual. A 
diferencia de los trabajos relacionados, la evaluación comparativa se validó a través de 
una traza de datos reales de ocupación espectral capturados en la banda de frecuencia 
del sistema global para las comunicaciones móviles (GSM) (Pedraza et al., 2016) y en 
Wi-Fi (Cardenas-Juarez et al., 2016) y que modelan el comportamiento real de los PU 
(Chen y Oh, 2016). En la evaluación de desempeño se tuvieron en cuenta dos tipos de 
red: GSM y Wi-Fi; dos clases de aplicaciones: tiempo real (RT) y mejor esfuerzo (BE); 
dos niveles de tráfico: tráfico alto (HT) y tráfico bajo (LT), y cinco métricas de eva-
luación (EM): número de handoffs promedio acumulado (AAH), número de handoffs 
fallidos promedio acumulado (AAFH), ancho de banda promedio (ABW), retardo 
promedio acumulado (AAD) y throughput promedio acumulado (AAT).

Metodología 
El desarrollo de esta investigación se realizó secuencialmente a través de cuatro en-
foques metodológicos: el primero, de tipo descriptivo, permitió detallar cada una de 
las características de las estrategias de interés; el segundo, de tipo analítico, permitió 
definir la influencia de cada modelo de interés en el desempeño de la movilidad es-
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pectral; el tercero, de tipo predictivo, buscó aplicar soluciones de otras situaciones al 
contexto de interés, y el cuarto, finalmente, fue un enfoque experimental que permi-
tió la realización de pruebas de comprobación y validez de los desarrollos efectuados 
(Hernández Sampieri et al., 2006).

La metodología se estructuró de la siguiente forma: primero, se realizó un estudio 
del estado del arte que permitió identificar los aspectos más importantes sobre el 
tema de decisión espectral en las CRN, así como sus algoritmos más relevantes en 
la literatura actual. Segundo, con base en este análisis, se diseñó una metodología 
para la evaluación del desempeño de la movilidad en redes móviles de CR. Tercero, 
se realizó la captura de datos de ocupación espectral reales tanto en la banda GSM 
como en la banda Wi-Fi, para analizar el comportamiento de dichas bandas y del 
PU. Cuarto, se realizó un procesamiento a los datos capturados para construir bases 
de datos de información organizada sobre el comportamiento del PU y sobre las 
características de los recursos espectrales de las bandas mencionadas; dichas bases de 
datos fueron clasificadas por tipo de red (GSM y Wi-Fi) y nivel de tráfico (HT y LT). 
Quinto, se determinaron los DC para la selección de las mejores SO y se calcularon 
los valores históricos de estos a partir de la información de las bases de datos, con lo 
que estas fueron complementadas. Sexto, se seleccionaron y desarrollaron los algo-
ritmos de decisión espectral más relevantes en la literatura actual. Séptimo, se dise-
ñaron y desarrollaron varios algoritmos para cada uno de los módulos del modelo de 
decisión espectral colaborativo. Octavo, con base en los resultados del desempeño de 
los algoritmos, se construyó el modelo de decisión espectral colaborativo propuesto. 
Noveno, con base en el análisis del estado del arte de las CRN, se diseñaron cinco 
EM para evaluar el desempeño de los algoritmos propuestos en esta investigación, 
así como los seleccionados de la literatura actual, y se propusieron ocho escenarios 
de evaluación considerando dos tipos de redes: GSM y Wi-Fi; dos clases de apli-
caciones: RT y BE, y dos niveles de tráfico: HT y LT. Décimo, con base en toda la 
información anterior, se diseñó y desarrolló un simulador que permite evaluar cuan-
titativamente el desempeño de los algoritmos, considerando el comportamiento real 
del PU. Undécimo, con los resultados obtenidos a partir de los simuladores, se realizó 
una evaluación comparativa del desempeño de los algoritmos en cada una de las EM. 
Y duodécimo, según el análisis comparativo, se realizaron ajustes y modificaciones al 
modelo adaptativo multivariable diseñado.

Contribuciones 
•	 Diseño y desarrollo de un modelo de decisión espectral colaborativo para mejo-

rar el desempeño de las CRN.
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•	 Evaluación y validación de los algoritmos de decisión espectral desarrollados, 
con datos de ocupación espectral reales capturados en una campaña de medición 
realizada en Bogotá, Colombia. 

•	 Evaluación y validación de los algoritmos de SH desarrollados, en dos tipos de 
redes: GSM y Wi-Fi.

•	 Evaluación y validación de los algoritmos de SH desarrollados, con dos tipos de 
enfoque: RT y BE, de acuerdo con la clase de aplicación que puede ejecutar el SU. 

•	 Evaluación y validación de los algoritmos de SH desarrollados, con dos niveles 
de tráfico de PU: alto y bajo.

•	 Evaluación y validación de los algoritmos de SH desarrollados, en ocho escena-
rios diferentes de evaluación: GSM-RT-LT, GSM-RT-HT, GSM-BE-LT, GSM-
BE-HT, Wi-Fi-RT-LT, Wi-Fi-RT-HT, Wi-Fi-BE-LT y Wi-Fi-BE-HT. 

•	 Evaluación y validación de los algoritmos de SH desarrollados, bajo cinco EM: 
AAH, AAFH, ABW, AAD y AAT.

•	 Determinación de cuatro DC seleccionados cuidadosamente mediante el méto-
do Delphi modificado, para elegir la mejor SO; todos los algoritmos desarrolla-
dos trabajaron con los mismos cuatro DC, y cada DC fue calculado a partir de 
los datos de ocupación espectral reales. 

•	 Diseño y desarrollo de una herramienta de simulación novedosa para evaluar el 
desempeño de algoritmos de decisión espectral híbridos. Esta herramienta está 
basada en los datos de ocupación espectral reales y permite modificar varios pa-
rámetros de interés para analizar el desempeño de cada algoritmo bajo diferentes 
situaciones; entre estos parámetros, se destaca el nivel de colaboración entre SU, 
denominado “Collaborative CRN”. 

Organización 
El libro está estructurado de la siguiente manera: en el primer capítulo, se realiza 
una descripción de los fundamentos teóricos de la CR, la decisión espectral y los 
algoritmos de asignación espectral (SA), y se hace una revisión de la literatura actual 
sobre modelos de decisión espectral para CRN; en el segundo, se describe el módulo 
de caracterización del PU y sus resultados; en el tercero, se presenta el módulo de 
probabilidad de arribo del SU y sus resultados; en el cuarto, se describen el módulo 
de selección de la SO y el módulo colaborativo y se presenta el modelo de decisión 
espectral colaborativo propuesto; en el quinto, se describe el software desarrollado, y, 
finalmente, se presentan las conclusiones.
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gación “Modelo de decisión espectral colaborativo para mejorar el desempeño de las 
redes de radio cognitiva”, financiado por el Centro de Investigaciones y Desarrollo 
Científico de la Universidad Distrital Francisco José de Caldas. 



35

Fundamentos teóricos 

Este libro está enfocado en el área de la radio cognitiva (CR), y por tal razón, el 
presente capítulo está estructurado en seis secciones principales: la primera tiene por 
objetivo presentar los fundamentos de la CR; la segunda, mostrar los aspectos teóricos 
de la decisión espectral; la tercera, presentar los algoritmos más relevantes de la asig-
nación espectral (SA); la cuarta, presentar una revisión de la literatura actual sobre los 
modelos de decisión espectral para redes de radio cognitiva (CRN); la quinta, mostrar 
algunas herramientas de simulación de handoff  espectral (SH), y, finalmente, la sexta, 
revisar algunos trabajos relacionados con estos temas.

Radio cognitiva 
Actualmente, las redes y aplicaciones inalámbricas en gran parte del mundo se han 
caracterizado por una política de asignación fija del espectro de radiofrecuencia re-
gulada por el Estado. Esta asignación fija provoca que las frecuencias asignadas a 
servicios específicos estén prácticamente en desuso y no puedan ser aprovechadas 
por los usuarios secundarios (SU), incluso si estos no provocan ninguna interferencia 
(Ahmed et al., 2016; Akyildiz et al., 2008; Márquez et al., 2017). 

Según estudios realizados por la Federal Communications Commission (FCC, 
2003b), de Estados Unidos, y con base en las variaciones temporales y geográficas, se 
ha evidenciado que gran parte del espectro de radiofrecuencia asignado está siendo 
ineficiente e ineficazmente utilizado (Institute of  Electrical and Electronics Engi-
neers [IEEE], 2008); de hecho, mediciones actuales muestran que más del 70 % del 
espectro no está siendo utilizado (Hoven et al., 2005; Pedraza et al., 2016). 

Esta utilización ineficiente y esporádica del espectro, junto con el incremento en 
su demanda, han hecho que se degrade la calidad de servicio (QoS) en varias redes y 
aplicaciones inalámbricas, como las comunicaciones móviles. Lo anterior ha motiva-
do el desarrollo de investigaciones recientes que han encontrado en el acceso dinámi-
co al espectro (DSA) la solución al problema, y la tecnología clave que permite mate-
rializar las técnicas de DSA es la CR (Akyildiz et al., 2008; Tsiropoulos et al., 2016). 
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El concepto de CR fue creado por Joseph Mitola III, en 2000, como

el punto en el cual las personal digital assistant (PDA) inalámbricas y las redes rela-
cionadas son, en términos computacionales, lo suficientemente inteligentes con 
respecto a los recursos de radio y las correspondientes comunicaciones de ordena-
dor a ordenador como para detectar las necesidades eventuales de comunicación 
del usuario, como una función del contexto de uso, y proporcionarle los recursos 
de radio y servicios inalámbricos más adecuados a ese mismo instante. (Mitola 
III, 2000, p. 1; traducción propia)

Sin embargo, varias entidades importantes han dado su punto de vista al respecto. 
Según la FCC (2003a), la CR

es una radio o sistema que detecta su entorno electromagnético de operación y 
puede ajustar de forma dinámica y autónoma sus parámetros de operación de 
radio para modificar la operación del sistema: maximizar el rendimiento, reducir 
la interferencia o facilitar la interoperabilidad. (Traducción propia)

Para la Unión Internacional de Telecomunicaciones (ITU), la CR es una radio o 
sistema que detecta y está al tanto de su entorno y que se puede ajustar de forma 
dinámica y autónoma de acuerdo con sus parámetros de funcionamiento de radio. 
De acuerdo con el Institute of  Electrical and Electronics Engineers (IEEE, 2008), la 
CR “es un tipo de radio que puede detectar de forma autónoma y razonar sobre su 
entorno y adaptarse acorde a este”. Por último, según la FCC (2003b), la CR es una 
radio que “puede cambiar los parámetros del transmisor basada en la interacción con 
su entorno” (p. 5).

La CR tiene la capacidad de proveer un gran ancho de banda (BW) a usuarios 
móviles a través de arquitecturas inalámbricas heterogéneas, con las que aumenta 
significativamente la eficiencia espectral, debido a que permite que SU compartan el 
espectro con usuarios primarios (PU), de manera oportunista (Akyildiz et al., 2008), 
a partir de las oportunidades espectrales (SO) (figura 2); es decir, permite que los SU 
utilicen las porciones del espectro que no están siendo usadas en un momento dado 
(Delgado y Rodríguez, 2016; Ozger y Akan, 2016).

La figura 2 describe el concepto de SO a través de una gráfica en tres dimensiones 
cuyos ejes son la potencia, la frecuencia y el tiempo. Cada bloque gris de la figura es 
un PU haciendo uso de una porción del espectro de frecuencia, a un nivel de potencia 
y durante un determinado periodo de tiempo; sin embargo, existen porciones del es-
pectro de frecuencia que no son utilizadas durante determinado intervalo de tiempo; 
dichos espacios son denominados SO y pueden ser aprovechados por los SU (Ozger 
y Akan, 2016). 
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Figura 2. Concepto de oportunidad espectral

Potencia

Tiempo

Frecuencia

Espectro en uso

Acceso dinámico 
del espectro

Oportunidad espectral

Fuente: elaboración propia a partir de Akyildiz et al. (2009).

Características de la radio cognitiva 
Las principales características de la CR, que le confieren todas las capacidades des-
critas anteriormente, son la capacidad cognitiva y la reconfigurabilidad.

Capacidad cognitiva 
La capacidad cognitiva es la tecnología capaz de capturar la información de radiofre-
cuencia de su entorno para identificar los segmentos del espectro que no están siendo 
utilizados, para seleccionar el mejor espectro posible y para definir los parámetros 
de operación más adecuados, con el objetivo de evitar la interferencia entre usuarios 
(Pedraza et al., 2016).

Reconfigurabilidad 
La reconfigurabilidad es la capacidad de cambiar, de forma dinámica, los diferentes 
parámetros de operación relacionados con la transmisión o la recepción, como la fre-
cuencia, la potencia y la modulación, con miras a habilitar la radio para ser progra-
mada dinámicamente para transmitir y recibir en una gran variedad de frecuencias, 
en función del ambiente de radio, así como a usar diferentes tecnologías de acceso a 
la transmisión (Pedraza et al., 2016).

Gestión del espectro en radio cognitiva 
Para que se pueda hacer uso del espectro de manera oportunista, las CRN trabajan 
con un modelo de gestión que se denomina ciclo cognitivo (figura 3). El modelo se ca-
racteriza por cumplir cuatro funciones principales: detección de espectro, decisión de 
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espectro, movilidad de espectro y compartición de espectro. En la etapa de detección 
del espectro, los SU monitorean de manera continua el espectro para poder determi-
nar las SO; en la segunda función, decisión de espectro, los SU deben seleccionar la 
SO más adecuada de acuerdo con sus requerimientos de QoS; en la tercera función, 
movilidad de espectro, los SU pueden tener que realizar el cambio de su frecuencia 
actual para continuar su comunicación en otro canal, debido a las siguientes causas: 
llegada de un PU, interrupción en la disponibilidad del canal, interferencia al PU, 
degradación de la calidad del canal, variación del tráfico y movimiento del SU; y en 
la cuarta y última función, compartición de espectro, el ciclo cognitivo proporciona 
la capacidad de compartir el recurso espectral con múltiples SU, coordinando sus 
transmisiones para evitar colisiones e interferencias, debido a que múltiples usuarios 
de CR pueden intentar acceder al espectro de manera simultánea (Pedraza et al., 
2016; Ramzan et al., 2017).

Figura 3. Ciclo cognitivo

Fuente: elaboración propia a partir de Akyildiz et al. (2009).

Detección de espectro 
La detección del espectro es la función encargada de identificar las SO. Los SU mo-
nitorean el espectro y capturan la información que permita determinar la disponibili-
dad de los canales. Actualmente, existen varias técnicas para monitorizar el espectro 
(figura 4), siendo la detección de energía la más básica (Hernández, Páez et al., 2017).
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Figura 4. Clasificación de las técnicas de detección de espectro
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Fuente: elaboración propia a partir de Akyildiz et al. (2009).

Decisión de espectro 
La decisión de espectro o proceso de toma de decisiones determina cuál es el mejor 
canal de frecuencia entre los disponibles, según los requisitos de calidad de servicio 
de las aplicaciones (Alias y Ragesh, 2016; Hernández, Páez et al., 2017; Pedraza et 
al., 2016; Ramzan et al., 2017).

Compartición de espectro 
Debido a que múltiples SU pueden intentar acceder al espectro, la función de com-
partición proporciona la capacidad de compartir este recurso e información con 
múltiples SU, coordinando sus transmisiones para evitar colisiones e interferencias. 
Las soluciones existentes para el uso compartido del espectro se pueden clasificar en 
función de la arquitectura (centralizada o descentralizada, o distribuida), de acuerdo 
con el comportamiento del acceso al medio (cooperativo o no cooperativo) y según 
la forma como se accede al medio (superpuesta o subyacente) (Lertsinsrubtavee y 
Malouch, 2016; Pedraza et al., 2016).

Movilidad de espectro 
La movilidad espectral da lugar al concepto de handoff  espectral, mediante el cual el 
SU cambia de una SO a otra. Durante un handoff espectral es inevitable que la comu-
nicación se rompa temporalmente, y por eso resulta ser un aspecto clave en el desem-
peño de las CRN. La función de decisión espectral juega un papel muy importante 
para mejorar dicho desempeño, pues determina cuándo y dónde realizar un handoff 
espectral mediante un conjunto de reglas (Hernández, Páez et al., 2017; Hernández, 
Pedraza y Martínez, 2016; López Sarmiento et al., 2015; Oyewobi y Hancke, 2017).
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Arquitectura de la radio cognitiva 
El proceso de toma de decisiones en la CRN se clasifica según su arquitectura (figura 5). 

Figura 5. Arquitectura de una CRN

Fuente: elaboración propia a partir de Masonta et al. (2013) y Pedraza et al. (2016).

Arquitectura centralizada 
En las arquitecturas centralizadas existe un coordinador llamado entidad central (CE) 
o estación base (BS), que es el encargado de coordinar, asignar y tomar las decisiones 
de los canales (figura 6a). La BS cumple con la función de almacenar y procesar la 
información entregada por los PU y los SU (Ahmed et al., 2016). La desventaja de 
esta arquitectura radica en el hecho de que la destrucción del nodo central provoca 
una pérdida general del sistema. 

En la arquitectura centralizada, la coordinación de los nodos entre sí se mantiene 
mediante la difusión de mensajes a través de un canal de control común (CCC) de 
coordinación del espectro, independiente del canal de datos. Cada usuario determina 
el canal que puede utilizar para la transmisión de datos, de tal manera que se evite 
la interferencia. En el caso de que la selección de canal no sea suficiente para evitar 
la interferencia, se implementa la adaptación de potencia. Las evaluaciones de estas 
alternativas revelan que el CCC mejora el rendimiento entre un 35 y un 160 % a tra-
vés tanto de la frecuencia como de la adaptación de potencia (Akyildiz et al., 2006; 
Tsiropoulos et al., 2016).

Arquitectura distribuida 
En la arquitectura distribuida las redes forman una malla (figura 6c), los nodos de 
cada subsistema comparten información entre sí, se pueden mover libremente y no 
existe un responsable en la coordinación global de los usuarios licenciados y no licen-
ciados, lo que permite que este tipo de estrategias tenga una alta aplicación en redes 
en las que no es viable la implementación de infraestructura (Brik et al., 2005; Cao y 
Zheng, 2005; Krishnamurthy et al., 2005; Pedraza et al., 2016; Salgado, Mora et al., 
2016); sin embargo, la desventaja de este modelo es su baja seguridad. Los protocolos 
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distribuidos, que no requieren infraestructura, son ampliamente utilizados en redes 
inalámbricas ad hoc (crahn) (Wang et al., 2016).

En la arquitectura distribuida, la coordinación entre nodos utiliza una reserva de 
canal dinámica distribuida basada en la QoS (D-QDCR). El concepto básico detrás 
de la D-QDCR es que una BS compite con su interferente BS de acuerdo con los re-
quisitos de QoS de los usuarios para asignar una porción del espectro. Aquí, de forma 
similar al protocolo CCC, los canales de control y datos se separan (Akyildiz et al., 
2006; Tsiropoulos et al., 2016).

Arquitectura descentralizada 
Las redes descentralizadas son arquitecturas formadas por un conjunto de redes centra-
lizadas y conectadas por enlaces adicionales que crean una malla, por lo que su estruc-
tura incorpora los atributos de las redes centralizadas y las distribuidas (figura 6b). Las 
arquitecturas descentralizadas cuentan con una infraestructura, su implementación 
es sencilla y tienen buenos niveles de seguridad, ausencia de sobrecarga de comuni-
cación, menor retardo y baja complejidad, entre otras características (Darak et al., 
2014). El enfoque descentralizado es una opción eficiente para redes de gran tamaño, 
además de que es la mejor alternativa para redes de seguridad pública y para servicios 
de redes sociales (Darak et al., 2017).

Figura 6. Arquitecturas de red centralizada (a), descentralizada (b) y distribuida (c)

Fuente: elaboración propia a partir de Baran (1964) y Pankratev et al. (2019).

Aplicaciones de la radio cognitiva 
Con el objetivo de argumentar la relevancia de esta investigación, se podría mencio-
nar la forma como sus resultados pueden impactar el campo de la información y las 
comunicaciones en cualquier región de aplicación, es decir, no solo en Bogotá, sino 
en toda Colombia y el mundo entero. Un ejemplo muy claro de esto son las redes 
mesh, las cuales han emergido como una tecnología con una muy buena relación 

(a) (c)(b)a b c
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costo-beneficio; sin embargo, el incremento en la densidad de la red y el requerimien-
to de un alto throughput por parte de sus aplicaciones han degradado su QoS. Así, por 
un lado, con la CR es posible habilitar el acceso a un mayor segmento del espectro, 
y por otro, una red backbone mesh puede incrementar el área de cobertura basada en 
puntos de acceso cognitivos (CAP) (Akyildiz et al., 2006).

Asimismo, un desastre natural podría deshabilitar temporalmente o incluso des-
truir la infraestructura de las comunicaciones, por lo que se haría necesario establecer 
redes de emergencia, que requieren una gran cantidad de espectro para poder mane-
jar el volumen de tráfico de video, voz y datos. Al respecto, la CR tiene la capacidad 
de proporcionar dicho espectro sin la necesidad de una gran infraestructura. Es así 
como la seguridad pública y las redes de emergencia también se pueden beneficiar de 
las ventajas de la CR (Akyildiz et al., 2006).

Otra de las potenciales aplicaciones de la CR son las redes militares, ya que le 
permite a la radio militar escoger arbitrariamente frecuencias, BW, modulaciones 
y codificaciones, adaptándose al ambiente de radio variable del campo de batalla 
(Akyildiz et al., 2006).

Como conclusión de este apartado, la reconfigurabilidad dinámica de cada uno 
de los parámetros de operación en una CRN puede garantizar integridad de la infor-
mación, interoperabilidad, fiabilidad, flexibilidad, redundancia, escalabilidad, segu-
ridad, eficiencia y acceso en todo tiempo y espacio, lo que beneficia significativamen-
te el manejo de la información y las comunicaciones en Colombia.

Desafíos y futuras investigaciones en radio cognitiva 
Los desafíos en cuanto a la CR pueden ser varios, debido a que se abarcan temas des-
de la monitorización del espectro hasta la toma de decisiones de movilidad en este, 
teniendo en cuenta esquemas de acceso al medio y el tipo de redes en las cuales inte-
ractúa la CR. Por lo tanto, en este apartado se describirán brevemente estos desafíos.

Monitorización del espectro 
El proceso de monitorización o decisión no puede realizarse al tiempo que se envía 
la información entre SU, por lo que, si se requiere desarrollar acciones de monito-
rización, los usuarios deben detener las trasmisiones, lo que afecta la eficiencia del 
espectro. Con base en esto, sería deseable desarrollar algoritmos de monitorización 
que reduzcan el tiempo que toman mientras mejoran la precisión en el proceso de 
detección de SO.
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Espectro compartido 
En trabajos realizados sobre CR muchas veces se hacen suposiciones; una de estas es 
que los SU conocen de antemano la localización y el nivel de potencia de la trasmi-
sión de los PU, lo cual permite realizar los cálculos de interferencia fácilmente; sin 
embargo, esta suposición no siempre es cierta para algunas CRN (Lertsinsrubtavee 
y Malouch, 2016).

Procesos de aprendizaje 
Debido a las complejidades inherentes de la CR, sería deseable habilitar, en los dis-
positivos que hagan uso de esta, un proceso de aprendizaje que tenga en cuenta las 
decisiones tomadas en el pasado para mejorar tanto su comportamiento dentro de la 
red como sus decisiones futuras. El diseño de este tipo de algoritmos representa un 
gran desafío, debido a que se debe determinar qué mediciones son necesarias para 
desarrollar este proceso de aprendizaje (Delgado y Rodríguez, 2016).

Esquemas de control de acceso al medio 
Aunque el grupo de investigación del estándar IEEE 802.22 está trabajando en el de-
sarrollo de un protocolo de control de acceso al medio (MAC), otras investigaciones 
han desarrollado esquemas que no se adecúan al estándar. Por ejemplo, los esquemas 
MAC distribuidos para crahn no están del todo cubiertos. 

Decisión espectral 
Después de realizar la detección del espectro, los SU deben decidir cuál es la mejor 
SO; este proceso debe satisfacer los requerimientos de calidad de servicio y, ade-
más, debe incluir como criterio de parametrización las acciones adoptadas por otros 
usuarios (Alias y Ragesh, 2016; Pedraza et al., 2016; Ramzan et al., 2017). Una 
inadecuada toma de decisiones afecta los parámetros de calidad del servicio: laten-
cia, throughput, confiabilidad, señalización, interferencia, eficiencia energética, BW, 
relación de señal a interferencia más ruido (SINR) y tasa de error (Hernández, Páez 
et al., 2017; Hernández, Pedraza y Martínez, 2016; López Sarmiento et al., 2015; 
Oyewobi y Hancke, 2017). De acuerdo con lo anterior, la decisión espectral es una 
función clave en las CRN; sin embargo, no ha sido tan investigada en comparación 
con otras funciones del ciclo cognitivo (Akyildiz et al., 2008; Masonta et al., 2013).

La toma de decisiones es un proceso que busca seleccionar la mejor alternativa 
espectral entre un conjunto finito de posibilidades, lo que les permite a los SU generar 
una secuencia de acciones que conducirán al logro de sus objetivos (Rizk et al., 2018; 
Tripathi et al., 2019). Para realizar estructuras de decisión, es necesario implementar 
modelos con altos desafíos: los algoritmos deben ser escalables y eficientes debido 
a los altos volúmenes de información que se requieren para el entrenamiento y la 
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validación, a la complejidad de las tareas y a los estándares de evaluación mínimos 
de cada aplicación particular (Rizk et al., 2018).

La decisión espectral incluye tres funciones principales: caracterización del es-
pectro, selección del espectro y reconfiguración. Como se muestra en la figura 7, una 
vez que los canales se identifican (utilizando sensores de espectro, bases de datos de 
geolocalización u otras técnicas), cada banda del espectro es caracterizada (actividad 
del PU) a partir de la base de observaciones locales y de la información estadística; 
culminada esta etapa, los SU proceden a seleccionar la banda espectral más apropia-
da, y a partir de la decisión tomada, reconfiguran sus parámetros de transmisión y 
continúan el envío de datos (López Sarmiento, 2017; Masonta et al., 2013). 

Figura 7. Marco de decisión del espectro
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Fuente: López Sarmiento (2017).

Caracterización del espectro 
Para determinar la banda espectral más adecuada, en primer lugar, de acuerdo con 
las observaciones de la red, se requiere identificar las características de cada una de 
las bandas espectrales disponibles, teniendo en cuenta la intensidad de la señal reci-
bida, la interferencia y el número de usuarios actuales. Adicionalmente, para realizar 
un correcto proceso de toma de decisiones, los SU deben observar la disponibilidad 
de espectro heterogéneo (los huecos espectrales), que varía con el tiempo y el espacio.
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En general, la caracterización del espectro debe incluir tanto las condiciones ac-
tuales del entorno de radiofrecuencia como el modelo de las actividades del PU. La 
caracterización del entorno de radiofrecuencia es un proceso que implica identifica-
ción del canal, capacidad del canal, retardo de conmutación del espectro, interferen-
cia del canal, tiempo de retención del canal (CHT), tasa de error del canal, ubicación 
del abonado y pérdida de trayecto.

La caracterización del espectro determina y describe el comportamiento de los 
canales, por lo que permite distinguir unos de otros, de acuerdo con su tráfico, ocupa-
ción y configuración. Dentro de las características de transmisión en un canal, exis-
ten parámetros que influyen en su comportamiento y que se deben tener en cuenta a 
la hora de seleccionar un canal. Por tal motivo, se deben estudiar estos factores con el 
fin de identificar algunos beneficios que permitan obtener una mejora en el desempe-
ño de estas redes. Como ya se dijo, algunas características son (Masonta et al., 2013):

•	 Identificación del canal.

•	 Capacidad del canal.

•	 Retardo de conmutación del espectro.

•	 Interferencia del canal.

•	 CHT.

•	 Tasa de error del canal.

•	 Ubicación del abonado.

Identificación del canal 
La utilización del canal por parte del PU es quizás el factor más importante, ya que 
define los espacios y tiempos libres en un canal para ser ocupados por un SU. Esta 
ocupación se realiza de manera aleatoria, debido a que los tiempos de utilización no 
son determinísticos, sino impredecibles, y varían en diferentes aplicaciones. Esta ac-
tividad de ocupación del canal puede ser modelada como un proceso estocástico apli-
cando técnicas de inteligencia artificial, como redes neuronales, modelos de Markov 
y máquinas de soporte vectorial (SVM) (Wang, Ghosh et al., 2011).

Capacidad del canal 
Cada banda del espectro en un sistema de multiplexación por división de frecuencia 
ortogonal (OFDM) tiene un BW diferente, el cual está compuesto por varias subpor-
tadoras que estiman una capacidad normalizada del canal. Las investigaciones, en 
general, se han enfocado en estimar la capacidad de BW mediante el estudio de otros 
parámetros, como el nivel de interferencia, la tasa de error y la propagación (Lee y 
Akyildiz, 2011).
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Se ha demostrado que el método tradicional de estimación de la capacidad del 
canal —utilizando la relación señal a ruido (SNR)— conduce a una decisión de es-
pectro no óptima (Masonta et al., 2013). 

Las capacidades de BW de un canal licenciado están limitadas por la entidad re-
guladora, lo que hace que el SU requiera analizar recursos cuando el BW del PU sea 
menor que el requerido por el SU. Al respecto, el BW no es utilizado en el modelo 
propuesto en este libro.

Retardo de conmutación del espectro 
Esta característica nace como consecuencia de la intervención de un PU cuando 
el SU está operando en un canal licenciado; en ese momento, el SU debe detectar 
nuevos canales con diferentes frecuencias y conmutar reconfigurando sus parámetros 
de transmisión, pero ese proceso de conmutación toma un tiempo considerable que 
afecta el desempeño de las CRN (3GPP, 2011).

Con el fin de mejorar el rendimiento de retardo en CRN, el desafío que se presen-
ta está en reducir el retardo de detección del canal, el tiempo que tarda el SU en confi-
gurar sus parámetros de transmisión y el tiempo que gasta en acceder al nuevo canal.

Interferencia del canal 
La interferencia es la mayor consecuencia del proceso de interacción entre usua-
rios en una red. Al acceder al espectro, un SU puede afectar la señal al alterar los 
servicios del PU; por lo tanto, la interferencia está definida como la perturbación 
de la señal debido a la coexistencia entre PU y SU en un área de cobertura del PU 
(Amir et al., 2011). 

Existen diferentes estudios para evitar interferencias entre PU y SU en áreas de 
cobertura específicas en las que es importante que el SU no transmita mientras exista 
presencia de un PU.

Tiempo de retención del canal 
El CHT es importante al momento de modelar el acceso al canal, debido a que es-
tudia los tiempos de activación y de inactividad de los PU y los SU, además de que 
permite acceder a canales ranurados regulando y sincronizando este acceso (Akyildiz 
et al., 2006).

Inicialmente, se estudian los tiempos de duración de activación de los usuarios 
y los tiempos en que el canal permanece libre; luego, se definen bloques de tiem-
po de tamaños similares que serán recursos libres para ser utilizados por los SU, y, 
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finalmente, se accede al canal que más se ajuste a las mediciones realizadas, lo que 
reduce interferencias en la interacción (Akyildiz et al., 2006).

Tasa de error del canal 
Este factor está directamente relacionado con el nivel de interferencia, el BW y la 
banda de frecuencia disponible, los cuales influyen directamente en la recepción o 
transmisión de errores de bit en un canal. Esta tasa de error de bit (BER) es indicada 
con la SNR (Matinmikko et al., 2008).

Ubicación del abonado 
El SU, dentro de su funcionamiento y proceso de detección, debe obtener informa-
ción geográfica y del ambiente de radiofrecuencia, mediante una función del sistema 
de posicionamiento global (GPS), para coordinar información entre los nodos o ser-
vidores centrales que identifiquen la ubicación de cada SU y para poder construir un 
mapa de actualización mundial. Este proceso permitirá predecir situaciones futuras 
de intervenciones de los PU (Azarfar et al., 2012). 

Figura 8. Caracterización del ambiente de radio
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Fuente: elaboración propia a partir de Masonta et al. (2013).

La figura 8 presenta una síntesis de los componentes que debe tener en cuenta un 
modelo de decisión de espectro para cumplir con el objetivo de acceder a este opor-
tunamente. Aunque diseñar un modelo que evalúe todas las características puede 
ser robusto, complejo y computacionalmente poco eficaz, sí es misión del ingeniero 
idear un modelo que utilice las características principales y necesarias y que reduzca 
su tiempo de ejecución.

Selección del espectro-decisión del espectro 
La decisión del espectro (proceso de toma de decisiones) determina cuál es el mejor 
canal de frecuencia entre los disponibles, según los requisitos de calidad de servicio 
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de las aplicaciones. Para esta función se han desarrollado algoritmos que tienen 
en cuenta las características del canal de radio y el comportamiento estadístico de 
los PU (Alias y Ragesh, 2016; Hernández, Páez et al., 2017; Pedraza et al., 2016; 
Ramzan et al., 2017). 

Reconfiguración del canal de radio 
En las redes inalámbricas tradicionales, los terminales de radio están configurados 
estáticamente para operar sobre canales de frecuencia predefinidos con parámetros 
y características preestablecidos del transceptor. Los canales de radio son capaces de 
adaptarse rápidamente a los cambios (Masonta et al., 2013).

La tarea de reconfiguración de la CR requiere una clara comprensión de cómo 
interactúan los parámetros de comunicación dentro de las diferentes capas de proto-
colo. Sin embargo, aunque estos sistemas pueden emplear técnicas adaptativas para 
ajustar diversos parámetros de transmisión, su arquitectura —basada en hardware— 
limita su flexibilidad para adaptarse al entorno externo (López Sarmiento, 2017).

Tipos de enfoque de la decisión espectral 
Las CRN pueden operar de acuerdo con varios enfoques básicos, cada uno de los 
cuales presenta ventajas y desventajas frente a su enfoque opuesto. En esta sección 
se estudiarán el enfoque con infraestructura frente al enfoque ad hoc, el enfoque cen-
tralizado frente al distribuido, el enfoque de asignación única frente al multicanal, el 
de inclusión de modelos de PU y SU frente al de no inclusión y el de CCC dedicado 
frente al dinámico.

Enfoque con infraestructura vs. ad hoc 
De acuerdo con la arquitectura de la red, las CRN pueden clasificarse en redes con 
infraestructura o en crahn (Ahmed et al., 2016; Akyildiz et al., 2006). Las CRN 
basadas en infraestructura tienen una entidad de red central similar a una BS en las 
redes celulares o a un punto de acceso en las redes inalámbricas de área local. Por 
otro lado, las crahn no tienen ninguna infraestructura, por lo que un SU se comunica 
con otro SU a través de una conexión ad hoc, en bandas espectrales tanto licenciadas 
como no licenciadas (Akyildiz et al., 2009).

En las redes con infraestructura, la información observada por cada SU alimenta 
la base de datos de la entidad central, de forma que esta pueda tomar decisiones 
inteligentes a fin de maximizar los parámetros de comunicación, como el through-
put, el BW, la SINR y el balanceo de carga, entre otras, y eliminar o minimizar la 
interferencia hacia los PU (Akyildiz et al., 2009). En el caso de las crahn, los SU son 
responsables de tomar sus propias decisiones con base únicamente en observaciones 
locales, lo cual les impide realizar un uso eficiente de los recursos de la red entera. 
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Para compensar esta imposibilidad, los SU pueden hacer uso de esquemas de colabo-
ración, en los cuales cada SU intercambia su información de observación del espec-
tro local, lo que les permite tener un conocimiento aproximado de la red completa 
(Akyildiz et al., 2009). 

Enfoque centralizado vs. distribuido 
Si las CRN cuentan con infraestructura, pueden operar tanto con un enfoque cen-
tralizado como con uno distribuido. En el enfoque centralizado existe una entidad 
central encargada de coordinar las funciones necesarias para la decisión y asignación 
del canal de frecuencia durante una decisión espectral. Esta entidad central, también 
conocida como estación base central (CBS), cumple además con la función de almace-
nar y procesar la información del ambiente de radio y del espectro recibida por los 
SU periódicamente o por demanda (Ahmed et al., 2016; Tragos et al., 2013). 

Debido a que la CBS tiene un nivel mucho más elevado de procesamiento y au-
tonomía energética que los SU, desarrolla también funciones de monitorización del 
espectro de forma periódica. Esta información, junto con la proporcionada por los 
SU, actualiza dinámicamente la base de datos central (CDB). La CBS procesa perió-
dicamente la información de la CDB y calcula valores estimados de algunos paráme-
tros de interés del espectro, como la probabilidad de disponibilidad (AP), la SINR, 
el tiempo estimado de disponibilidad (ETA) y el BW de los canales, entre otros, los 
cuales permiten tomar decisiones más acertadas para la SA. Lo anterior libera a los 
SU de la carga computacional requerida para ejecutar un algoritmo robusto de SA. 

La principal ventaja del enfoque centralizado es la observación y el conocimiento 
global de la red, lo cual permite maximizar el throughput de la red, minimizar la inter-
ferencia entre los SU, obtener una asignación multicanal justa y, en general, mejorar 
el nivel de desempeño de la red (Alnwaimi et al., 2011; Byun et al., 2008). Sin embar-
go, su mayor desventaja es la cantidad de información de señalización que se intro-
duce a la red para coordinar los procedimientos de intercambio de información entre 
la CBS y los SU; además, si la CBS llegara a fallar, se perdería el control sobre la SA 
y se crearía un desequilibrio y un potencial caos en el sistema (Tragos et al., 2013). 

En el enfoque distribuido, por su parte, no existe una CBS responsable de coor-
dinar la SA a los SU. Por tanto, los SU toman decisiones por ellos mismos o de 
forma colaborativa, con otros SU vecinos, a través del intercambio de información y 
medidas dentro de un rango determinado (por ejemplo, 2-3 saltos). Lo anterior hace 
que el enfoque distribuido sea más flexible y eficiente que el enfoque centralizado, 
ya que puede adaptarse rápidamente a los posibles cambios o variaciones del am-
biente de radio o de la red, pues solamente tendrán que hacer modificaciones e inter-
cambiar información los SU del área afectada. Otra ventaja significativa del enfoque 
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distribuido es la baja información de señalización requerida, ya que solo los nodos 
vecinos intercambian información. Entre las desventajas de este enfoque se encuentra 
que las decisiones tomadas no son óptimas en razón de que los nodos solo tienen in-
formación de sus vecinos y no de la red completa, además del hecho de que es posible 
que la información intercambiada no sea suficiente (Tragos et al., 2013). Asimismo, la 
falta de un soporte centralizado no permite obtener información completa de la topo-
logía de la red, lo que provoca colisiones entre SU e interferencia al PU (Giupponi y 
Pérez-Neira, 2008). En conclusión, en lo que respecta a la SA, el enfoque distribuido 
puede tomar decisiones adecuadas en casos de baja carga de tráfico, pero para los casos 
contrarios, el enfoque centralizado toma mejores decisiones (Tragos et al., 2013). 

Una solución híbrida entre el enfoque centralizado y el distribuido es el enfoque 
descentralizado (cluster), el cual intenta eliminar las desventajas de cada uno. La red 
es dividida en M clusters, cada uno con un enrutador principal (cluster head). Cada SU 
envía la información de espectro detectada a su correspondiente cluster head, y este 
se encarga de combinar la información completa y de generar un vector de SA final. 
Todos los cluster heads intercambian su respectivo vector, y de esta manera cada uno 
conoce el estado general de la red. Con la información completa de la red, cada cluster 
head decide qué canal de frecuencia asignar y transmite esta información a todos los 
demás cluster heads de la red. Este enfoque es más robusto contra fallas, hace un uso 
más eficiente del BW disponible, logra una mejor distribución de los usuarios —en 
clusters— y de la carga en múltiples canales y reduce la sobrecarga de información de 
control, ya que los mensajes se intercambian a nivel del clúster y no de la red completa 
(Alsarhan y Agarwal, 2009; Chen et al., 2007; Tragos et al., 2013). 

Enfoque de asignación única vs. multicanal 
El enfoque de asignación de canal único, como se hace tradicionalmente, consiste en 
la asignación de una frecuencia central y un BW específico alrededor de esa frecuen-
cia, lo que implica que los canales sean contiguos en el espectro. 

El caso de la asignación multicanal, por su parte, consiste en la agrupación de 
varios canales disponibles no adyacentes para formar un solo canal. Este enfoque 
permite aumentar el BW del SU aprovechando las SO con baja capacidad de canal. 
Una de las técnicas que permiten el acceso simultáneo a varios canales de frecuen-
cia es la multiplexación por división de frecuencia ortogonal discontinua (DOFDM) 
(Chen et al., 2008), que posibilita un uso más eficiente del espectro, ya que aprovecha 
los canales que por sí solos no son adecuados debido a su restringido BW pero que, 
en conjunto con otros canales similares, pueden satisfacer los requerimientos de un 
SU. La asignación multicanal puede incrementar significativamente la capacidad de 
la red y la tasa de datos de los SU (Dadallage et al., 2016; Tragos et al., 2013).
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Sin embargo, la asignación multicanal también tiene limitaciones, debido a que 
los transreceptores no pueden agregar canales de frecuencia que se encuentren muy 
distanciados entre sí; en otras palabras, el span de agregación no es ilimitado, ya que 
generalmente cada transreceptor tiene un span máximo especificado (por ejemplo, de 
12 MHz). Esto significa que, si dos canales están separados por más de 12 MHz, no 
pueden unirse en un solo canal; por tanto, los algoritmos de SA deben evitar crear 
pequeños canales de frecuencia que posteriormente no puedan agregarse. También es 
necesario analizar que la utilización de múltiples canales por parte de un solo SU no 
deje sin SO a otros SU, por lo que el algoritmo de SA debería manejar alguna métrica 
de justicia para estos casos (Tragos et al., 2013).

Enfoque de inclusión de modelos de usuarios rimarios y secundarios vs. no inclusión 
De acuerdo con algunos trabajos (Akter et al., 2008; Chen y Oh, 2016; Csurgai-
Horváth y Bitó, 2011; Rahimian et al., 2014; Rodriguez et al., 2015; Wu et al., 2016), 
la precisión y exactitud en el modelado de la actividad de los PU y los SU es relevante 
para lograr un buen desempeño en las CRN, pues permite asignar inteligentemente 
cada canal de frecuencia disponible, optimizar el uso del espectro, maximizar los pa-
rámetros de comunicación —la tasa de datos, el BW, la SINR y el balanceo de carga, 
entre otros— y eliminar o minimizar la interferencia entre PU y SU. Sin embargo, la 
validez de dichos modelos generalmente está restringida a un determinado tiempo y 
lugar para los cuales se diseñaron. 

Una estrategia de SH reactiva provoca interferencia temporal con el PU, debido 
a que durante el tiempo que tome realizar la movilidad del SU coexistirán los dos en 
el mismo recurso espectral. Un buen modelo del PU puede evitar o minimizar esta 
interferencia, a través de una estrategia de SH proactiva (Wu et al., 2016). Sin embar-
go, el problema radica en que dichos modelos están basados en procesos estocásticos, 
que utilizan las observaciones pasadas del canal para predecir la disponibilidad del 
espectro futuro, lo que podría llevar a tener que hacer muchas conmutaciones de 
canal innecesarias si el modelo de predicción es imperfecto. Pero no solo el modelo 
de actividad del PU es relevante: Akter et al. (2008) proponen un modelo de predic-
ción para la actividad del SU, debido a que en muchas oportunidades múltiples SU 
compiten por el mismo recurso de espectro, lo que degrada la QoS. A través de la 
implementación de un filtro de Kalman, se logró realizar una significativa estimación 
del número de SU en el futuro instantáneo. 

Enfoque de canal de control común dedicado vs. dinámico 
El CCC es uno de los requerimientos comunes en la SA en CRN, pues permite la 
coordinación entre SU para la asignación del canal. El CCC es un canal predefinido 
para el intercambio de información de señalización, control y espectro entre los SU 
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y puede ser global o local, dependiendo del operador de red (Kumar et al., 2016). A 
continuación, se presentan las ventajas y desventajas de tener un CCC dedicado o 
dinámico para la asignación del canal de frecuencia. 

En la literatura son más los trabajos de investigación que defienden la necesidad 
de contar con un CCC dedicado (Ding et al., 2010; Kim et al., 2010; Ma et al., 2007), 
enfoque que se puede dividir en dos situaciones: 1) cuando el CCC y el canal de datos 
del SU son el mismo y 2) cuando el CCC se encuentra en un canal independiente 
del canal de datos del SU (Akyildiz et al., 2009). Cuando el canal de datos del SU y 
el CCC son el mismo, su utilización se comparte por periodos de tiempo fijos, no es 
necesario un transreceptor adicional y no se requiere cambiar la frecuencia para re-
cibir o transmitir los mensajes. Sin embargo, cuando sea necesario realizar un SH, el 
CCC desaparecerá. Aunque este enfoque proporciona una mayor eficiencia espectral 
al utilizar un solo canal de frecuencia, la cantidad de información del CCC reduce el 
throughput de la transmisión de datos del SU (Akyildiz et al., 2009). 

Por otro lado, cuando el canal de datos del SU y el CCC son independientes, el 
CCC no se ve afectado por la realización de un SH; sin embargo, tener dos canales 
implica la necesidad de contar con un transreceptor adicional y un incremento en el 
retardo. El CCC independiente puede ser global, si es el mismo para todos los SU en 
una CRN, o local, si es dedicado solamente a una pequeña área geográfica. En am-
bos casos, es necesario contar con un algoritmo de asignación de CCC que permita 
encontrar el canal óptimo del área geográfica de la CRN (Akyildiz et al., 2009).

Con respecto al enfoque del CCC dinámico, existen muy pocos trabajos (Alma-
saeid y Kamal, 2010; Kondareddy et al., 2008). Este enfoque, aunque hace un uso más 
eficiente del espectro, es vulnerable al problema del nodo escondido, que puede llevar a 
un decremento del nivel de conectividad; además, una selección dinámica de un CCC 
puede incrementar el nivel de retardo en la transmisión del SU (Tragos et al., 2013).

Criterios de decisión espectral 
En la SA existen múltiples criterios que ayudan a tomar decisiones inteligentes. Sin em-
bargo, cuántos y cuáles criterios utilizar depende del objetivo de cada toma de decisio-
nes. Para realizar un análisis objetivo, se analizaron todas las variables que intervienen 
durante la toma de decisiones y que pueden afectar el desempeño de la red, a partir del 
análisis de cada una de las investigaciones consultadas sobre el tema de decisión espec-
tral en CRN (Ahmed et al., 2014; Masonta et al., 2013; Tragos et al., 2013). 

Estos criterios proporcionan la información necesaria para alimentar los algorit-
mos de toma de decisiones con base en los criterios de evaluación para la SA a los SU 
en las CRN. Además, varían de acuerdo con los objetivos de cada esquema de SH. 
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Calidad de servicio 
La QoS es uno de los criterios más relevantes en los algoritmos de toma de decisión 
para la SA a los SU en las CRN, pues permite diferenciar entre aplicaciones sensitivas 
al retardo y aplicaciones no sensitivas al retardo; en otras palabras, permite clasificar 
las aplicaciones en tiempo real (RT) y mejor esfuerzo (BE). Con esta información, se 
puede tomar la decisión más adecuada en términos de las SO. 

Las aplicaciones que no son sensibles al retardo pueden ser asignadas a SO con 
un nivel de disponibilidad intermedio, mientras que las aplicaciones sensibles al re-
tardo pueden ser asignadas a SO con un nivel alto de disponibilidad, a través de 
estrategias proactivas que minimicen el valor del retardo global; aquí, el throughput 
resulta más relevante que la BER. Lo anterior permite mejorar la eficiencia espectral. 

Calidad del enlace 
La calidad del enlace es otro criterio importante que normalmente se refleja a través 
de la BER y la SNR, que afectan la QoS de la red. La calidad del enlace se trabaja a 
veces como relación señal a interferencia (SIR) o como SINR. 

Tasa de error de bit 
La BER es el número de bits recibidos que han sido alterados debido al ruido y la 
interferencia dividido por el número total de bits transmitidos durante un periodo de 
tiempo (Ahmed et al., 2014). La BER promedio del canal es un parámetro útil para 
estimar la caracterización del ambiente de radio en las CRN (Masonta et al., 2013). 
Asimismo, el nivel de BER está relacionado con el nivel de SNR, lo que causa que 
la energía por bit transmitido sea una métrica importante en la estimación del error 
(Matinmikko et al., 2008). Así, a mayor SNR, menor BER, aunque es importante 
tener en cuenta que un mayor nivel de SNR generalmente implica un mayor nivel de 
potencia, lo cual causa mayor interferencia al PU. Por tanto, es necesario estimar un 
nivel mínimo de SNR que garantice cierto nivel de BER pero que no perjudique la 
comunicación (Tragos et al., 2013). 

Calidad del enlace de comunicación 
En CRN, la calidad del enlace de comunicación puede variar dinámicamente en el 
tiempo y el espacio; por ello, es importante para el SU monitorizar y analizar perió-
dicamente la calidad del canal que está siendo utilizado, por ejemplo, a través de la 
SNR. La SNR define la relación entre la potencia de la señal y la potencia del ruido. 
La calidad del enlace de comunicación es otro parámetro importante que afecta y 
refleja la QoS de la red. Usualmente, la fuerza de la señal recibida (RSS) y la SINR 
son consideradas similares, pero la RSS está más inclinada a proveer conectividad, y 
la SINR, a proveer QoS de la red (Ahmed et al., 2014).
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Probabilidad de disponibilidad del canal 
La disponibilidad de canal (AP) es un criterio que busca estimar la probabilidad 
de que un canal de frecuencia esté disponible. Algunos trabajos la expresan como 
ocupación de canal, en cuyo caso se busca estimar la probabilidad de que un canal 
de frecuencia esté ocupado. Este criterio es muy importante en la SA, ya que puede 
determinar las posibilidades de que una SO esté libre para ser utilizada por un SU. 
Su valor es proporcional a la media aritmética de las medidas de disponibilidad ob-
tenidas anteriormente por cada canal. Aquí resulta interesante determinar el periodo 
de tiempo a partir del cual se debe actualizar el valor promedio de la disponibilidad 
por canal. Un análisis de la serie de tiempo para esta variable podría estimar un inter-
valo de confianza para el periodo de tiempo de actualización, lo que permite lograr 
una mejor eficiencia de energía al no tener que correr el algoritmo de estimación de 
disponibilidad de canal continuamente (Ahmed et al., 2016). 

Tiempo estimado de disponibilidad del canal 
El ETA es un criterio que busca determinar el valor promedio que un canal de fre-
cuencia permanece disponible para un SU o un PU. A diferencia del criterio de la AP, 
en el que se determina la probabilidad de encontrar cierto canal libre, en el criterio de 
ETA se estima el tiempo medio durante el cual el canal permanece libre una vez está 
disponible. Estos dos criterios no son sustitutivos, sino complementarios, ya que dos 
canales pueden tener la misma probabilidad de disponibilidad pero contar con distri-
buciones de tiempo de disponibilidad distintas. Seleccionar un canal con un tiempo 
estimado de disponibilidad alto garantiza un menor número de SH. Al respecto, Pla 
et al. (2010) proponen un modelo markoviano para determinar la duración de las SO: 
una vez se ha modelado el tiempo ocioso del PU, se aplican técnicas de matriz analí-
tica para determinar la duración de las SO para ser ocupadas por los SU. La principal 
desventaja de esta técnica radica en su complejidad. 

Patrón de tráfico del usuario primario y el usuario secundario 
No hay ninguna garantía de que el canal de frecuencia seleccionado esté disponible 
durante toda la comunicación, por lo que es beneficioso contar con un modelo que 
estime la actividad del PU en la CRN. En algunos trabajos se asume que se puede 
conocer el patrón de llegadas del PU, ya que no es aleatorio estadísticamente, debi-
do a que depende del comportamiento humano. De esta forma se pueden estimar 
la AP y el ETA (Ahmed et al., 2016; Akyildiz et al., 2009; Christian et al., 2012; 
Wu et al., 2016). 

Wang et al. (2010) exponen varios trabajos que argumentan que el comporta-
miento de ocupación de los canales exhibe patrones que pueden ser modelados es-
tadísticamente; sin embargo, diferentes modelos pueden aplicarse a diferentes apli-
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caciones de voz, video o paquetes de datos generales. Varios modelos asumen que la 
actividad del PU se puede modelar con interllegadas distribuidas exponencialmente 
(Chou et al., 2007; Kim y Shin, 2008; Lee y Akyildiz, 2008). En la investigación de 
Sriram y Whitt (1986), por ejemplo, el patrón de tráfico se modela como un proceso 
de dos estados on-off, nacimiento y muerte, con sus respectivas tasas de nacimiento 
y muerte. Por otra parte, otros modelan la actividad del PU a partir del tiempo entre 
arribos de paquetes, la longitud de los paquetes y la cantidad de paquetes.

Algunos trabajos se esfuerzan en modelar el comportamiento del PU en bandas 
específicas a partir de datos experimentales (Pedraza et al., 2014). Willkomm et al. 
(2008) utilizan medidas reales de una red celular para modelar las características del 
uso del espectro por parte del PU, análisis que muestra que el modelo de llegadas 
exponencialmente distribuidas es adecuado para capturar el tiempo de actividad del 
PU en llamadas no inalámbricas. En cuanto a las llamadas móviles, dicho modelo 
no resulta útil, siendo más efectivo el uso de un modelo de caminata aleatoria, aun 
en condiciones de tráfico alto. Hernández et al. (2009), por su parte, validaron el 
uso de series de tiempo —como los modelos autorregresivo (AR), de media móvil 
(MA) y autorregresivo integrado de media móvil (arima)— en el modelamiento y 
predicción de tráfico en redes Wi-Fi, y obtuvieron un alto nivel de precisión en el pro-
nóstico de rango corto. Li y Zekavat (2008) presentan un trabajo sobre la predicción 
del patrón de tráfico para CRN. 

Wei et al. (2006) almacenan en un repositorio la información pasada y presente de 
interés para una CRN, incluyendo la información de localización y tráfico del SU y 
el PU. Al respecto, es importante validar la información almacenada para asegurarse 
de que no es obsoleta. Esta colección de datos debe ser estadísticamente analizada y 
usada para modelar la actividad del PU en un canal de frecuencia dado (Issariyakul et 
al., 2009). De acuerdo con el aprendizaje maquinal, los SU deberían ser hábiles para 
recordar las lecciones aprendidas en el pasado y para actuar rápidamente en el futuro 
(Marinho y Monteiro, 2012). Idealmente, el SU debería conocer el patrón de tráfico del 
PU y seleccionar la estrategia de handoff más adecuada. Asimismo, cuando el patrón 
de tráfico del PU cambie, el SU debería observar el cambio y adaptar una estrategia de 
handoff según el nuevo comportamiento (Akyildiz et al., 2009; Christian et al., 2012). 
Las estrategias de SH futuras deberían considerar un factor de aprendizaje. 

Fecha y hora 
La utilización del espectro depende del tiempo y del espacio. El criterio de fecha y 
hora puede brindar buena información para estimar el nivel de tráfico y congestión 
de la red a partir de las estadísticas de información pasada (Hernández et al., 2009; 
Hernández et al., 2013; Issariyakul et al., 2009; Wei et al., 2006; Zhang et al., 2016). 
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Una base de datos con estadísticas pasadas y recientes podría permitir estimar la 
disponibilidad y acceso al espectro con cierto nivel de precisión. Las series de tiempo 
son una herramienta muy útil en este contexto (Hernández et al., 2009).

Geolocalización 
De acuerdo con la naturaleza de las redes inalámbricas, la disponibilidad de espectro 
cambia no solamente con el tiempo sino también con la movilidad espacial (Duan 
y Li, 2011; Zhang et al., 2016). Conocer la posición exacta de los SU y los PU es 
una ventaja en el momento de tomar decisiones para la SA. Esta información puede 
mejorar las estrategias para evitar la interferencia al PU y para reducir la tasa de SH, 
al determinar una distancia umbral a partir de la cual se deba realizar el cambio de 
canal. En zonas rurales, debido a la baja demanda de espectro, es posible utilizar un 
BW más amplio. Este conocimiento puede ser útil para futuras predicciones de SO y 
para la caracterización del ambiente de radiofrecuencia. 

Capacidad del canal o ancho de banda disponible 
Muchos trabajos se enfocan en parámetros como la tasa de datos, el retardo, el nivel 
de interferencia, la BER o la tasa de SH, los cuales son relevantes para la eficiencia 
espectral; sin embargo, la capacidad de canal es otra variable de interés en la SA, ya 
que algunas aplicaciones requieren un BW mínimo para mantener sus parámetros de 
banda (Kumar et al., 2016). En los sistemas de OFDM, cada banda espectral tiene un 
BW diferente que consiste en varias subportadoras (Masonta et al., 2013). 

Fuerza de la señal recibida 
También conocida como indicador de fuerza de la señal recibida (RSSI) y fuerza relativa 
de la señal recibida (RRSS), la RSS es un factor tradicional e importante para tomar 
decisiones de SH. La RSS provee información acerca del nivel de potencia que está 
siendo recibido por la antena, el cual decrementa cuando el usuario se aleja del punto 
de acceso actual de la red (Ahmed et al., 2014). Este criterio permite determinar el 
momento en el que se hace necesario realizar un cambio de canal. 

Costo monetario 
Las redes que funcionan sobre bandas de espectro licenciadas proveen ciertos servi-
cios a los usuarios a cambio de un costo monetario que depende principalmente del 
recurso de BW y del tiempo durante el cual se utilice. Si dos redes proveen la misma 
QoS, la red con el costo más bajo será la preferida por los SU (Ahmed et al., 2014), 
debido a lo cual el valor del costo monetario es una variable de información de inte-
rés para el algoritmo de SA.
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Preferencias de usuario 
Las preferencias de los usuarios pueden ser definidas con base en la red escogida 
entre las disponibles para la ejecución de las aplicaciones y se pueden definir a partir 
de las prioridades asignadas a cada aplicación, las cuales pueden ser altas o bajas. 
Usualmente, los usuarios prefieren conexiones con alto BW, bajo costo y amplia co-
bertura, entre otras características (Ahmed et al., 2014). En la mayoría de los trabajos 
que analizan las preferencias de los usuarios, se usan funciones de utilidad que per-
miten describirlas y manipularlas matemáticamente para encontrar óptimos. 

Seguridad de la red 
La seguridad es uno de los aspectos más relevantes en la convergencia de redes, de-
bido a que estas tienen sus propias opciones de seguridad. El proceso de SH requiere 
proveer seguridad y privacidad contra intercepciones ilegales o ataques de denega-
ción de servicio (Ahmed et al., 2014).

Técnicas y algoritmos para la asignación espectral 
La SA y, por ende, la decisión espectral son un aspecto clave en las CRN para reducir 
la latencia, incrementar la tasa de datos, aumentar el BW, mejorar la capacidad y 
cobertura y optimizar el uso del espectro, garantizando la QoS necesaria para apli-
caciones de RT y BE.

Seleccionar un canal con las características requeridas sobre el cual un SU pueda 
continuar su sesión de transmisión de datos es un asunto apremiante en las CRN 
(Christian et al., 2012). Una pobre selección de canal puede causar múltiples SH, lo 
que degrada el desempeño de todo el conjunto (Christian et al., 2012; Hernández, 
Salgado et al., 2015; Hernandez-Guillen et al., 2012).

Esta sección tiene por objetivo presentar una revisión de los algoritmos de SA más 
relevantes en CRN, así como su clasificación de acuerdo con la literatura actual, a 
partir del análisis de publicaciones recientes de corriente principal con sus respectivas 
citas, tratando de proveer un marco referencial completo de la literatura actual sobre 
estos algoritmos. Los principales resultados determinan la importancia de una SA 
inteligente, teniendo en cuenta la carga de tráfico, el comportamiento del usuario, los 
niveles de interferencia, la caracterización del espectro, el tipo de aplicación y la ne-
cesidad de contar con múltiples canales de frecuencia. Como conclusión, considera-
mos importante diseñar algoritmos adaptativos que permitan hacer un uso eficiente 
de las porciones disponibles del espectro licenciado.

Una vez que todas las SO se detectan y se caracterizan, se debe seleccionar la 
que más se acerque a los requerimientos para la transmisión, teniendo en cuenta los 
requisitos de QoS del usuario (que se deben conocer de antemano) y las características 
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del espectro. Con base en las necesidades de los usuarios, se puede determinar: la 
velocidad de datos, la BER aceptable, el retardo máximo permitido, el modo de 
transmisión y el BW para la transmisión. Entonces, puede ser elegido el conjunto de 
bandas del espectro apropiado, de acuerdo con las reglas de decisión y los algoritmos 
que evalúan las posibles soluciones. Zheng y Cao (2005) presentan cinco reglas 
para asignar espectro que se centran en la equidad y el costo de la comunicación; 
sin embargo, este método asume que todos los canales tienen una capacidad de 
rendimiento similar (Akyildiz et al., 2006). Lo ideal es ajustarse a los requerimientos 
que imponen las distintas aplicaciones. Kanodia et al. (2004), por su parte, proponen 
un protocolo de saltos de canal de frecuencia oportunista para la búsqueda de un 
canal de mejor calidad basada en la SNR. 

Proponemos una clasificación que agrupa los algoritmos para la selección de las 
SO en cinco clases: 1) toma de decisiones multicriterio (MCDM), 2) algoritmos inteli-
gentes, 3) técnicas de aprendizaje, 4) funciones de decisión y 5) estadísticos. La figura 
9 describe los algoritmos más relevantes de cada clase de la clasificación propuesta. 

Algoritmo de asignación aleatoria 
El algoritmo de asignación aleatoria (RA) es la forma más básica para la SA y la que 
peor desempeño provee, razón por la cual no se encuentra en la clasificación de la 
figura 9; sin embargo, ya que selecciona de forma completamente aleatoria las SO, se 
ha convertido en el punto de referencia más utilizado para contrastar y comparar los 
resultados obtenidos con otros algoritmos de SA propuestos en la literatura actual.

Algoritmos de toma de decisiones multicriterio 
El problema de SA tiene múltiples variables por analizar para seleccionar una sola 
SO; por tanto, los algoritmos basados en MCDM son ampliamente usados en este 
tipo de problemas, en los que la relación entre los criterios de decisión (DC) es medi-
da a través de pesos que son ajustados de acuerdo con los requerimientos del diseña-
dor. Al cabo de un cierto número de iteraciones, el algoritmo determinará la mejor 
solución (Hernández et al., 2015a).
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Figura 9. Clasificación de los algoritmos para la asignación de espectro
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Fuente: elaboración propia.

Simple additive weighting 
El algoritmo simple additive weighting (SAW) desarrolla una matriz de decisión con-
formada por criterios y alternativas (SO); para cada intersección de la matriz, el al-
goritmo asigna un peso de acuerdo con los criterios del diseñador, lo que permite 
establecer una calificación para cada una de las SO evaluadas y obtener, así, un ran-
king de todas las alternativas. La SO con mayor puntaje será la seleccionada (Hernán-
dez et al., 2015a; Ramírez Pérez y Ramos Ramos, 2010). 

La alternativa Ai está definida por la ecuación (1) (Ramírez Pérez y Ramos 
Ramos, 2013):
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,
1

1,...,
M

i i i j
j

u r i Nω
=

= ∀ ∈∑ (1),

donde ri,j pertenece a la matriz y la suma de los pesos es 1.

Los pasos para desarrollar este algoritmo son: 1) identificar los objetivos y las al-
ternativas, 2) evaluar las alternativas, 3) determinar los pesos de cada combinación, 
4) adicionar los valores agregados según las preferencias y 5) analizar la sensibilidad 
(Hernández et al., 2015a; Hübner, 2007; Ramírez Pérez y Ramos Ramos, 2010, 2013).

En Hernández, Giral y Santa (2015) se utiliza un SAW para seleccionar la mejor 
SO en una banda de frecuencia del sistema global para las comunicaciones móviles 
(GSM), evaluando la cantidad de handoffs realizados y comparando los resultados 
con otros dos algoritmos de SA. 

Multiplicative exponent weighting 
El MEW, propuesto para SA por Stevens-Navarro y Wong (2006), es otro algoritmo 
MCDM muy similar al SAW. La principal diferencia es que en el MEW, en lugar de 
suma, hay multiplicación. En MEW, la calificación de las SO es determinada por el 
producto de los pesos de los DC.

El puntaje Si de la SO i es determinado por la ecuación (2) (Hernández et al., 
2015a; Hernández, Giral y Santa, 2015; Hübner, 2007; Ramírez Pérez y Ramos Ra-
mos, 2010, 2013; Stevens-Navarro, Martinez-Morales et al., 2012; Stevens-Navarro 
y Wong, 2006):

wj

i ij
j N

S x
∈

= ∏ (2),

donde Xij denota el criterio j de la SO i, wj denota el peso del criterio j y 
1

1
N

j
j

w
=

=∑ .

Es necesario tener en cuenta que, en (2), wj es una potencia positiva para una métrica 
de beneficio y negativa para una métrica de costo. Debido a que la normalización de 
parámetros no es requerida (es opcional), el puntaje de la SO asignado por MEW no 
tiene una cota superior (Yoon y Hwang, 1995). 

En Hernández et al. (2015b) se utiliza MEW para seleccionar la mejor SO en una 
banda de frecuencia de comunicaciones móviles, evaluando el nivel de throughput y el 
BW y comparando los resultados con otros dos algoritmos de SA. 
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Electre 
El algoritmo electre (elimination and choice expressing the reality), propuesto inicial-
mente por Christian et al. (2012), es un MCDM que realiza comparaciones entre 
parejas de alternativas utilizando cada uno de los criterios por separado (Valenta 
et al., 2010). En general, electre utiliza un vector de criterios de referencia para 
ajustar los valores iniciales de los criterios de las alternativas antes de compararlas. 
El valor de cada uno de los criterios en la matriz de decisión se compara con el 
correspondiente valor de criterio de referencia Xj

ref. La diferencia entre los dos valo-
res se calcula de acuerdo con la ecuación (3) (Stevens-Navarro, Martinez-Morales 
et al., 2012):

ref
ij ij jr x x= − (3).

Con el objetivo de comparar las alternativas espectrales, se introducen los conceptos 
de concordancia y discordancia, que son medidas de satisfacción e insatisfacción del 
algoritmo cuando una alternativa es comparada con otra. La alternativa con el valor 
más alto de concordancia neta y el valor más bajo de discordancia neta será la prefe-
rida (Stevens-Navarro, Martinez-Morales et al., 2012).

Grey relational analysis 
El objetivo de este algoritmo [GRA] es establecer las redes candidatas y selec-
cionar las que tengan más alta puntuación de acuerdo con unos parámetros defi-
nidos. Para lograr esto, se establecen relaciones de Grey entre elementos de dos 
series: la primera contiene las mejores cualidades, mientras que la otra contiene 
entidades comparativas. Acá es parte importante el coeficiente de Grey, que se 
usa para describir las relaciones entre las series calculado a partir del nivel de 
similitud y variabilidad. (Stevens-Navarro, Martinez-Morales et al., 2012; véase 
también Hernández et al., 2015b; Hernández, Giral y Santa, 2015; Hernández, 
Páez et al., 2015; Hübner, 2007; Ramírez Pérez y Ramos Ramos, 2010, 2013; 
Stevens-Navarro y Wong, 2006)

En GRA, primero se genera el vector de referencia Xo, de la matriz X, a través de 
la escogencia de los valores mínimos, para los costos, y los valores máximos, para 
los criterios de beneficios. Después, la secuencia de datos debe ser normalizada 
para X de acuerdo con tres situaciones: más grande el mejor, más pequeño el me-
jor o nominal el mejor. Luego, se calcula el coeficiente relacional de Grey [según 
la ecuación (4)]. (Hernández, Páez et al., 2015)

( ) ( )( ) ( )0
0,

, min max
j

j max

x i x i
i

ζγ
ζ∆

+
+ ∆

∆ ∆
= (4),
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donde

( ) ( )0, 0j jx i x i= −∆
,

( ) ( ){ }{ }0min minmin jj N i M
x i x i

∈ ∈
= −∆

y

( ) ( ){ }{ }0max maxmax jj N i M
x i x i

∈ ∈
= −∆

,

donde el coeficiente ζ que pertenece [0,1] compensa el efecto de max∆ , que gene-
ralmente es 0,5.

Finalmente, se calcula el grado relacional de Grey para cada una de las diferentes 
series de datos, como lo describe la ecuación (5), donde ( ),  o ix xΓ  representa el gra-
do relacional de Grey para las j-ésimas alternativas:

( ) ( ) ( )( )0 0
1

, ,
M

j i j
i

x x x i x iω γ
=

Γ = ∑ (5),

donde ω i es el peso de la importancia de los i-ésimos criterios.

En Hernández, Páez et al. (2015) se utiliza GRA para seleccionar la SO en el 
enlace ascendente de la banda de frecuencia GSM, evaluando el nivel de bloqueos de 
handoff y comparando los resultados con otros dos algoritmos de SA. 

Topsis 
El desarrollo del algoritmo topsis (technique for order preference by similarity to ideal 
solution) se basa en la determinación de dos componentes: la solución ideal del siste-
ma y la solución que no puede ser aceptada en ninguna situación. Para lograrlo, es 
necesario comparar los resultados obtenidos para determinar qué solución es lo más 
cercano posible a la ideal y cuál es la más lejana (la cual no será aceptada). Dicha 
métrica se obtiene a partir de la distancia euclidiana entre los criterios y los pesos 
(Hernández et al., 2015a; Ramírez Pérez y Ramos Ramos, 2010).

El procedimiento del algoritmo topsis está descrito en Hernández et al. (2015a) 
y Ramírez Pérez y Ramos Ramos (2010, 2013). Inicialmente, se construye la matriz 
de decisión X y se normaliza usando el método de raíz cuadrada, como se observa 
en la ecuación (6): 

11 1 1 11 1

1 1 1

M M M

N NM N M NM

X
χ χ ω χ ω χ

χ χ ω χ ω χ

   
   = =   
   
   

   
 



     

   
 

(6),
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donde ω i es el peso asignado al criterio i y la suma de estos debe ser 1. 

Luego, se determina la solución ideal y la peor solución, como lo describen las 
ecuaciones (7) y (8): 

( ) ( ){ } { }ij ij 1 MA max |j X , min |j  X , ,χ χ χ χ+ + − + += ∈ ∈ = …    (7);

( ) ( ){ } { }ij ij 1 MA min |j X , max |j  X  , ,χ χ χ χ− + − − −= ∈ ∈ = …    (8),

donde i = 1, …, N, y X+ y X− son el conjunto de beneficios y costos, respectivamente. 

Posteriormente, para cada alternativa, se calcula la distancia euclidiana D, como 
se observa en las ecuaciones (9) y (10): 

( )
M 2

i ij j
j 1

D         i 1, , Nχ χ+ +

=

= − = …∑   (9);

( )
M 2

i ij j
j 1

D         i 1, , Nχ χ− −

=

= − = …∑  

(10).

Finalmente, las alternativas son organizadas en orden descendente de acuerdo con el 
índice de preferencia dado por la ecuación (11):

i
i

i i

DC ,     i 1, , N.
D D

−
+

+ −= = …
+

(11).

En Vásquez et al. (2015) se utiliza topsis para seleccionar la mejor SO evaluando 
el nivel de interferencia por canal adyacente y el número promedio de handoffs reali-
zados; los resultados son comparados con otro algoritmo y sus respectivas versiones 
al combinarlos con tres algoritmos de predicción basados en series de tiempo. 

Vikor 
“El método vikor [multi-criteria optimization and compromise solution] asume que 
cada alternativa es evaluada de acuerdo con cada función de criterio, y la clasifi-
cación puede ser desarrollada a través de la comparación de las medidas que estén 
más cercanas a la alternativa ideal” (Hernández, Páez et al., 2015; véase también 
Tanino et al., 2003; Vásquez et al., 2015). Vikor fue desarrollado para lograr la 
optimización de sistemas complejos con múltiples criterios, y por tanto es hábil para 
determinar el compromiso en una lista de ranking, aun en presencia de criterios en 
conflicto, lo que lo hace un algoritmo adecuado para la toma de decisiones en la SA 
(Gallardo-Medina et al., 2009).
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El algoritmo vikor sigue los pasos descritos en Hernández et al. (2015b), Her-
nández, Páez et al. (2015), Ramírez Pérez y Ramos Ramos (2010) y Stevens-Nava-
rro, Martinez-Morales et al. (2012).

Para cada parámetro j = 1, 2, 3, …, N, se determina el mejor y peor valor, dados 
por las ecuaciones (12) y (13):

( ) ( ){ }j ij b ij ci Mi M
F max x |j N , min x |j N+

∈∈
= ∈ ∈ (12);

( ) ( ){ }j ij b ij ci M i M
F min x |j N , max x |j N−

∈ ∈
= ∈ ∈ (13),

donde bN , que pertenece a N, es el conjunto de parámetros de beneficios y cN , que 
pertenece a N, es el conjunto de parámetros de costos.

Luego, se calculan los valores de iS  y iR  para i = 1, 2, 3, …, M, como lo descri-
ben las ecuaciones (14) y (15):

( )
( )

j ij
i j

j N j j

F x
S w

F F

+

+ −
∈

−
=

−∑ (14);

( )
( )

j ij
i ji N

j j

F x
R max w

F F

+

+ −∈

 −
 =

−  
(15),

donde 
jW  es la importancia del peso del parámetro j.

Posteriormente, se calculan los valores de Qi para i = 1, 2, 3, …, M, dados por la 
ecuación (16):

( )1i i
i

S S R RQ
S S R R

γ γ
+ +

− + − +

   − −
= + −   − −   

(16),

dónde i ii M i M
S min S ,   S max S+ −

∈ ∈
= = , i ii M i M

R min R ,   R max R+ −

∈ ∈
= = , y 0   1γ≤ ≤ .

Dados los valores de Q para todos los i pertenecientes a M, se clasifican de mayor 
a menor las SO candidatas. Finalmente, la SO seleccionada está dada por el Q ópti-
mo, como lo describe la ecuación (17):

* *
VIK ii M

A arg min Q
∈

= (17).
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En Hernández, Páez et al. (2015) se utiliza vikor para seleccionar la mejor SO en 
el enlace ascendente de la banda de frecuencia GSM, evaluando el nivel de bloqueos 
de handoff y comparando los resultados con otros dos algoritmos de SA. 

Analytical hierarchical process 
AHP se basa en comparaciones sobre la importancia entre los criterios de decisión 
escogidos para la selección de una alternativa, siendo esta importancia una medida 
relativa más que un valor absoluto (Saaty, 1990).

En la metodología de diseño del algoritmo AHP, el primer paso es definir el pro-
blema, descomponiéndolo a su vez en objetivo, criterios y alternativas: el objetivo es 
la decisión que se ha de tomar, que para el presente trabajo corresponde a la selec-
ción de la mejor SO; los criterios son los factores que afectan la preferencia de una 
alternativa, y las alternativas son todas las SO, de las cuales hay que escoger solo una. 
El segundo paso es la construcción de la jerarquía de acuerdo con la definición del 
problema, y el tercer paso es la realización de las matrices de juicios, las cuales co-
rresponden a evaluaciones comparativas que definen el nivel de importancia relativa 
entre cada combinación posible de parejas de criterios —ecuación (18)—. 

11 12 1

21 22 2

1 2

n

n
ij nxn

n n nn

a a a
a a a

A a

a a a

 
 
  = =   
 
  





   



(18),

donde i = j = 1, 2, …, n corresponde al número de criterios.

En el cuarto paso se procede a calcular los pesos normalizados para cada criterio, 
como lo describe la ecuación (19) (Hernández et al., 2015a):

 

r r r r con r v

v
n i

i

j

n
j

=   =

=∑
1 2

1

, , ....., (19),

donde r es el vector de valores propios, 1 2, ,..., nr r r  es el valor de los pesos de cada 
subcriterio, iV  es la media geométrica de la fila i y jV  es la media geométrica de la 
columna j.

Finalmente, en el quinto paso se evalúa la validez del algoritmo AHP a través 
del índice de consistencia, como se muestra en la ecuación (20) (Miranda, 2001). De 
acuerdo con Saaty (1990), si el índice de consistencia es menor que 0,1, el desarrollo 
del algoritmo es satisfactorio. 
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(20),

donde CI es el índice de consistencia, n es el número de subcriterios y ija  es el valor 
del elemento de la fila i y la columna j.

En Hernández et al. (2015a) se utiliza AHP para seleccionar la mejor SO en la banda 
de frecuencia GSM, calculando el desempeño del algoritmo con base en cinco métricas 
de evaluación (EM) y comparando los resultados con otros cinco algoritmos de SA. 

Algoritmos inteligentes 
La inteligencia artificial tiene como objetivo hacer que las máquinas realicen tareas 
de una manera similar a un experto. La máquina inteligente percibirá la toma de 
decisiones y, así, maximizará su propia utilidad (Woods, 1986). De esta forma, la 
máquina tendrá que prever los principales desafíos, como la deducción, el razona-
miento y la representación de las problemáticas, para finalmente dar solución a los 
problemas como fuente de entradas principales de estudio (Abbas et al., 2015).

En relación con la CR, los principales retos para las subáreas de la inteligencia 
artificial son la detección de la frecuencia disponible de radio; la calidad del canal de 
comunicación; el reconocimiento, la predicción y la anticipación en la toma de deci-
siones, y, por último, pero no menos importante, la decisión sobre la asignación de re-
cursos para el ajuste de errores de trasmisión y recepción de datos (Abbas et al., 2015).

Lógica difusa 
La lógica difusa está basada en la teoría de conjuntos difusos, que fue propuesta por 
Zadeh (1965). Un conjunto difuso es definido por una función de membrecía que 
mapea elementos a grados de membrecía dentro de un cierto intervalo, el cual usual-
mente es [0,1]: si el valor es cero, el elemento no pertenece al conjunto; si es uno, per-
tenece completamente al conjunto, y si es una cantidad intermedia, el elemento tiene 
cierto grado de pertenencia al conjunto (Patil y Kant, 2014). Los números difusos 
triangulares (TFN) son ampliamente usados como funciones de membrecía debido a 
su eficiencia computacional. 

Los TFN pueden ser denotados como (l,m,u), donde los parámetros l, m y u 
representan el límite más bajo, el valor modal y el límite más alto, respectivamente, 
como se observa en la figura 10 y en la ecuación (21).
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Figura 10. Número difuso triangular
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Fuente: elaboración propia a partir de Cho y Lee (2013).
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La lógica difusa es una herramienta particularmente apropiada para tomar decisio-
nes en situaciones en las que las entradas disponibles son, en general, inciertas e 
imprecisas o cualitativamente interpretadas. Además, también puede transformar 
información cualitativa y heterogénea en valores de membrecía homogéneos, los 
cuales pueden ser procesados a través de un conjunto de reglas de inferencia difusa 
apropiadas (Giupponi y Pérez-Neira, 2008).

La lógica difusa resulta ser una posición relativa desde el observador principal; sin 
embargo, las conclusiones de la técnica están respaldadas por métricas iniciales que 
describen el conjunto de valores admisibles de una muestra. De esta manera, la lógica 
difusa, aunque con una tasa de estudio aleatoria, permite obtener valores diferentes 
a los supuestos de verdadero o falso (Gavrilovska et al., 2013). 

Asimismo, esta técnica proporciona al sistema razonamiento aproximado me-
diante conjuntos de reglas, y tiene la capacidad de obtener condiciones de incerti-
dumbre mediante la predicción de consecuencias, además de que puede adaptarse a 
nuevas situaciones (Abbas et al., 2015; Dadios, 2012; Gavrilovska et al., 2013).

Diferentes investigaciones han aplicado la teoría de lógica difusa en la CR para re-
solver los problemas en la asignación del BW, estudiando de antemano la interferen-
cia y la administración de la energía como métodos de evaluación en la correcta SA 
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(Abbas et al., 2015; Hernández, Salgado et al., 2015; Matinmikko et al., 2013). No 
obstante, diferentes estudios han detallado tópicos como la inferencia difusa centrali-
zada, que asigna los BW correspondientes a la intensidad de tráfico y la prioridad del 
servicio. Así pues, esta última detalla cómo los SU tienen que presentar solicitudes 
de BW al administrador primario de la red (Abbas et al., 2015). Del mismo modo, el 
administrador analiza el tráfico desde la cola y verifica los retardos producidos por la 
demora en la trasmisión de paquetes. En otras palabras, se determina la latencia para 
el acceso a SU (Abbas et al., 2015).

Algoritmos genéticos o evolutivos 
Su principal campo de acción se encuentra inmerso en la optimización y búsqueda 
de soluciones y están inspirados en la evolución genética y la selección natural de las 
especies (Goldberg y Holland, 1988). Los algoritmos evolutivos hacen parte de las 
ciencias de la computación y su principal enfoque está determinado en la inteligencia 
artificial. Siguiendo la terminología de la teoría de la evolución, es común encontrar 
definiciones de los cromosomas y las funciones de aptitud como descriptores de un 
algoritmo genético: los cromosomas son representaciones abstractas de las solucio-
nes candidatas, y la función de aptitud está estrechamente relacionada con el objetivo 
del algoritmo para los procesos de optimización (He et al., 2010).

La ventaja de utilizar algoritmos genéticos para solucionar el problema de opti-
mización de la SA en CR es que pueden manejar restricciones y objetivos de forma 
arbitraria; por ejemplo, las soluciones ineficientes son simplemente descartadas por 
el algoritmo. En Del Ser et al. (2010) se utiliza la técnica de búsqueda de armonía 
para encontrar la asignación de canal óptima. El algoritmo genético construye un 
vector de asignación de canales (llamados armonías): inicialmente, se realizan com-
binaciones y mutaciones de forma inteligente, y posteriormente, en la evaluación, se 
almacenan las mejores armonías (Tragos et al., 2013).

Sistemas multiagente 
Los MAS se consideran una entidad inteligente y consciente del entorno capaz de 
actuar hábilmente y de generar comunicación de forma independiente. Los MAS 
están relacionados con el ambiente, los objetivos, otros agentes y las diferentes rela-
ciones entre estas entidades, por lo que son rápidos, confiables y flexibles (Abbas et 
al., 2015; Ferber, 1999; Wooldridge, 2009).

Trigui et al. (2012) introdujeron un concepto novedoso para direccionar el 
“espectro de transición” en CR, lo que les permite a los terminales cambiar a una 
banda espectral que ofrezca mejores condiciones mediante una negociación usando 
MAS. Por su parte, Mir et al. (2011) usaron MAS para compartir dinámicamente el 
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espectro en CR. De acuerdo con sus necesidades, los SU cooperan y se comunican 
con los PU para compartir el espectro.

Colonia artificial de abejas 
La ABC está compuesta por tres grupos: “abejas empleadas”, “abejas exploradoras” 
y “abejas observadoras”. Su objetivo es determinar la ubicación de las mejores fuen-
tes de alimento. Para esto, las abejas empleadas buscarán las fuentes de alimento, y 
si la cantidad de néctar de la nueva fuente es mayor que la de una anterior, aquellas 
memorizarán la nueva posición y se olvidarán de la anterior. Así, las abejas emplea-
das son iguales al número de fuentes de alimento; las abejas observadoras comparten 
la información de las fuentes de alimento, y las abejas exploradoras buscan nuevas 
fuentes de alimento al abandonar la propia (Ahmed et al., 2016; Tragos et al., 2013).

Según Cheng y Jiang (2011), el problema de SA se resuelve utilizando el algorit-
mo ABC: la ubicación de una abeja o espectador representa una posible asignación 
de canal, y la cantidad de néctar es la utilidad que se maximiza.

Técnicas de aprendizaje 
El aprendizaje autónomo tiene por objetivo principal el autoaprendizaje computacio-
nal, en el que las técnicas de análisis pueden ser programadas de forma autónoma a 
través de la inducción del conocimiento, donde la información objeto de estudio está 
disponible a partir de grandes conjuntos de datos dispuestos a ser analizados para la 
consecución objetiva de resultados (Abbas et al., 2015).

Aprendizaje no supervisado 
El aprendizaje no supervisado puede ser adecuado para las CR que operen en entor-
nos desconocidos de radiofrecuencia (Jayaweera y Christodoulou, 2011). Para este 
caso, los algoritmos de aprendizaje sin supervisión autónoma permiten la explora-
ción de las características del entorno y realizan acciones por sí mismos, sin tener 
ningún conocimiento previo (Jayaweera y Christodoulou, 2011). Sin embargo, si la 
CR tiene información previa sobre el medio ambiente, puede aprovecharla mediante 
el uso de técnicas de aprendizaje supervisado (Bkassiny et al., 2013).

Aprendizaje por refuerzo 
El aprendizaje por refuerzo es una técnica que permite a un agente modificar su com-
portamiento mediante la interacción con su entorno (Sutton y Barto, 1998). Este tipo 
de aprendizaje puede ser utilizado por los agentes para aprender de forma autónoma 
y sin supervisión. En este caso, la única fuente de conocimiento es la retroalimenta-
ción que un agente recibe de su entorno después de ejecutar una acción. Dos carac-
terísticas principales caracterizan el aprendizaje por refuerzo: 1) ensayo y error, y 2) 
recompensa retardada. En cuanto al ensayo y error, se supone que un agente no tiene 
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ningún conocimiento previo sobre el medio ambiente y ejecuta acciones ciegamente 
con el fin de explorar el entorno, y la recompensa retardada, por su parte, es la señal 
de realimentación que un agente recibe del entorno después de la ejecución de cada 
acción (Bkassiny et al., 2013).

El aprendizaje por refuerzo ha sido incorporado en la CR y específicamente en las 
telecomunicaciones móviles. En Abbas et al. (2015) se muestra la capacidad de im-
plementar un sistema de errores y recompensas en función de cada decisión, lo que 
optimiza el desempeño en la toma de decisiones para la administración del espectro 
electromagnético.

Teoría de juegos 
La teoría de juegos es una herramienta matemática que pretende modelar el com-
portamiento de entidades racionales en un entorno conflictivo (Fudenberg y Tirole, 
1991). En las comunicaciones inalámbricas, la teoría de juegos se ha aplicado a las 
redes de comunicación de datos para modelar y analizar el encaminamiento y la 
asignación de recursos en entornos competitivos (Bkassiny et al., 2013).

Esta teoría es utilizada como una herramienta en la toma de decisiones donde 
varios jugadores se enfrentan a una serie de situaciones en las que deben tomar medi-
das que en la mayoría de los casos pueden afectar los intereses de los otros (Abbas et 
al., 2015). Una ventaja clave de la aplicación de soluciones de teoría de juegos a los 
protocolos de CR es la reducción de la complejidad de los algoritmos de adaptación 
en grandes redes cognitivas (Bkassiny et al., 2013). En la literatura actual, Ji y Liu 
(2007), Nisan et al. (2007) y Zhao et al. (2009) han realizado estudios sobre la aplica-
ción de la teoría de juegos en la CR.

Aprendizaje supervisado 
El aprendizaje supervisado se usa cuando los datos de entrenamiento están etiqueta-
dos, es decir, cuando se conoce información a priori acerca del ambiente. Algoritmos 
de entrenamiento, como los árboles de decisión, las redes neuronales, las máquinas 
de soporte vectorial y el razonamiento basado en casos, funcionan bien para esta 
situación, aunque sus fortalezas, limitaciones, desafíos y aplicaciones referentes a la 
CR difieren (Abbas et al., 2015).

Redes neuronales 
Las redes neuronales se asemejan al cerebro en dos aspectos (Haykin, 1998): 1) 
el conocimiento es adquirido por la red de su entorno a través de un proceso de 
aprendizaje, y 2) las fuerzas de conexión interneuronas, conocidas como pesos si-
nápticos, se utilizan para almacenar el conocimiento adquirido. Dos de las principa-
les capacidades y ventajas de las redes neuronales es que incluyen el modelado de 
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comportamientos no lineales y que cuentan con capacidad de adaptación ante cam-
bios pequeños, y su principal desventaja es la necesidad de realizar un entrenamiento 
bajo diferentes condiciones del entorno (Bkassiny et al., 2013).

Taj y Akil (2011) presentan una metodología para predecir el comportamiento del 
espectro. En su investigación, la actividad del PU es modelada a través de una serie de 
tiempo caótica multivariable que se convierte en una entrada a la red neuronal, y esta 
predice la evolución de la serie de tiempo para decidir si el SU puede ocupar una SO 
determinada (Bkassiny et al., 2013).

Máquina de soporte vectorial 
Las SVM son el conjunto de algoritmos que tienen la capacidad de aprender bajo 
la supervisión de un agente de software. Su principal modo de operación se da en 
función de la regresión y la clasificación en el aprendizaje. Esta técnica es utilizada 
para llegar a márgenes de clasificación en un conjunto de datos, por lo que su prin-
cipal objetivo consiste en establecer un modelo de predicción en el que una entrada 
incierta pueda ser identificada en una categoría u otra (Abbas et al., 2015; Bkassiny et 
al., 2013; Dadios, 2012; Del Ser et al., 2010; Ferber, 1999; Fudenberg y Tirole, 1991; 
Goldberg y Holland, 1988; Han et al., 2012; He et al., 2010; Ji y Liu, 2007; Matin-
mikko et al., 2013; Mir et al., 2011; Nisan et al., 2007; Sutton y Barto, 1998; Taj y 
Akil, 2011; Trigui et al., 2012; Wooldridge, 2009; Zhao et al., 2009).

En la literatura actual, Petrova et al. (2010) y Xu y Lu (2006) han realizado estu-
dios sobre la aplicación de las SVM en la CR.

Funciones de decisión 
En las redes heterogéneas con facilidades de acceso ubicuo, los procesos de decisión 
y selección se hacen más complejos debido a que las diferentes tecnologías de acceso, 
por lo general, ofrecen diferentes características. De acuerdo con esto, la SA llega 
a ser un problema con múltiples parámetros que incluyen complejos trade-offs entre 
criterios contradictorios. En estos casos resulta útil la aplicación de funciones de be-
neficio o costo (Ahmed et al., 2014).

Función de beneficio o utilidad 
La función de utilidad tiene por objetivo maximizar la satisfacción del usuario de 
acuerdo con ciertos parámetros y restricciones. En la SA y la gestión de decisio-
nes, la utilidad mide el nivel de satisfacción del usuario en cuanto a un conjunto 
de características de una red inalámbrica, incluyendo los parámetros de recursos 
asignados (Ahmed et al., 2014). Ormond et al. (2006), por ejemplo, examinan el 
nivel de satisfacción del usuario mediante el empleo de una función de utilidad para 
aplicaciones de BE.
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Función de costos 
La función de costos, a diferencia de la función de utilidad, busca minimizar el costo 
de ciertos parámetros teniendo en cuenta las restricciones del caso. En una SO, el 
costo total se calcula mediante la suma de los costos de los parámetros de interés, 
como la QoS, el BW, el retardo y la AP, entre otros (Ahmed et al., 2014). En Wei et 
al. (2008) se presenta una aplicación de la función de costo.

Algoritmos estadísticos 
Existe otro tipo de técnicas que también se han utilizado para la SA en CRN y que 
están basadas fundamentalmente en conceptos de estadística y probabilidad: las re-
des bayesianas, las cadenas de Markov y los árboles de decisión. 

Redes bayesianas 
Las redes bayesianas son “modelos probabilísticos gráficos” que dependen de la inte-
racción de diferentes nodos para generar aprendizaje en cada uno de estos; el enfoque 
bayesiano es una técnica de aprendizaje probabilístico que provee inferencias exac-
tas y estima modelos de probabilidad completa en los que el conocimiento a priori 
o los resultados son usados para construir un modelo actualizado (Bolstad, 2007; 
Yonghui, 2010).

Por ejemplo, Jiang et al. (2014) usan un “enfoque cooperativo” para estimar el 
estado de un canal, por medio del aprendizaje bayesiano, para resolver el problema 
de la detección multicanal.

Cadenas de Markov 
Los modelos de Markov son usados para modelar procesos aleatorios que cambian 
de un estado a otro en el tiempo y en los que el estado futuro depende del estado 
presente; dichos estados son visibles para el observador, en contraste con los modelos 
ocultos de Markov (HMM), en los que los estados no son visibles (Fraser, 2008). Es-
tas cadenas generan “secuencias de observaciones” entre transiciones de estado, ya 
sea en el tiempo o en el espacio, con probabilidades fijas. El estado actual depende de 
los eventos previos, y sus sucesivas estructuras determinan el éxito del proceso. A la 
cadena de Markov puede asignársele un solo paso o puede ser extendida a las proba-
bilidades asociadas a cada una de las transiciones dependientes en múltiples eventos 
que la preceden (Abbas et al., 2015).

Yifei et al. (2013) usaron la toma de decisiones de Markov para el DSA en CRN. 
Además, usaron el modelo HMM en un canal inalámbrico y predijeron el estado del 
canal; las decisiones estuvieron basadas en la sensibilidad espectral, la selección de 
canal, la modulación, los esquemas de codificación y la potencia transmitida. Por 
su parte, Pham et al. (2014) utilizaron HMM en el SH para que el SU estudiara el 
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comportamiento del PU y pudiera predecir su futuro comportamiento para asegurar 
la transmisión. 

Árboles de decisión 
Los árboles de decisión son un modelo que predice el valor de una “clase objetivo” 
basada en una diversidad de variables de entrada. En un árbol de decisión, cada nodo 
tiene un “criterio”, cada “rama” representa el “resultado de una prueba” y cada 
“hoja” contiene información de la “etiqueta de clase” (Abbas et al., 2015; Ahmed et 
al., 2014; Bkassiny et al., 2013; Bolstad, 2007; Cheng y Jiang, 2011; Del Ser et al., 
2010; Ferber, 1999; Fraser, 2008; Fudenberg y Tirole, 1991; Gavrilovska et al., 2013; 
Goldberg y Holland, 1988; Han et al., 2012; Haykin, 1998; He et al., 2010; Ji y Liu, 
2007; Jiang et al., 2014; Matinmikko et al., 2013; Mir et al., 2011; Nisan et al., 2007; 
Ormond et al., 2006; Petrova et al., 2010; Pham et al., 2014; Safavian y Landgrebe, 
1991; Sutton y Barto, 1998; Taj y Akil, 2011; Trigui et al., 2012; Wooldridge, 2009; 
Xu y Lu, 2006; Yifei et al., 2013; Yonghui, 2010; Zhao et al., 2009).

Análisis comparativo de las técnicas y los algoritmos de handoff 
La tabla 1 resume el análisis comparativo de las diferentes técnicas para la SA en 
CRN, en términos de fortalezas y limitaciones. 

Tabla 1. Análisis comparativo de las técnicas de asignación espectral

Algoritmo Fortalezas Limitaciones

MCDM
Simplicidad, fácil implementación y 
respuesta rápida.

No hay una metodología analítica 
para estudiar su convergencia.

Lógica difusa

Decisiones rápidas basadas en 
reglas predefinidas y técnicas de 
aprendizaje que pueden mejorar la 
calidad de las decisiones.

Funcionalidad limitada, ya que las 
reglas son predefinidas; necesita 
un gran número de reglas para 
considerar todos los parámetros.

Algoritmos 
genéticos

Optimización multiobjetivo y 
configuración dinámica con los 
cambios del entorno.

Requieren conocimiento previo del 
sistema; el proceso para encontrar 
una solución óptima es lento.

MAS
Adecuado para problemas con 
múltiples jugadores; aprendizaje y 
cooperación.

La complejidad y el costo 
computacional pueden llegar  
a ser altos.

ABC Búsqueda de soluciones en paralelo.
Requiere conocimiento previo del 
sistema y una función de aptitud.

Aprendizaje 
por refuerzo

Aprendizaje autónomo usando 
retroalimentación y autoadaptación 
progresiva en tiempo real.

Necesita reglas de derivación para 
lograr exactitud.
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Algoritmo Fortalezas Limitaciones

Teoría de 
juegos

Reduce la complejidad de la 
adaptación, brinda soluciones por 
medio de múltiples agentes y cuenta 
con enfoque cooperativo y no 
cooperativo.

Requiere conocimiento previo de 
diferentes parámetros del sistema y 
que los datos de entrenamiento estén 
etiquetados.

Redes 
neuronales

Tienen habilidad para adaptarse a 
los cambios menores, son excelentes 
para clasificación y pueden 
identificar nuevos patrones.

Dependiendo del tamaño de la 
red, el entrenamiento puede ser 
lento; tienen poca capacidad 
para generalizar; pueden sufrir de 
sobreentrenamiento, y requieren 
datos previos.

SVM

Capacidad de generalizar; robustez 
contra el ruido de entrada y otros 
casos, y, en comparación con las 
redes neuronales, mejor desempeño 
con poco entrenamiento.

Requiere que los datos de 
entrenamiento estén etiquetados; 
hay que tener previo conocimiento 
del funcionamiento del sistema, y 
se vuelve complejo a medida que el 
problema es más grande.

Funciones 
de utilidad y 
costo

Permiten encontrar óptimos 
con múltiples parámetros y 
restricciones.

Requieren que todos los parámetros 
estén modelados con una función 
analítica.

Redes 
bayesianas

Se basan en modelos 
probabilísticos.

Requieren conocimiento previo del 
sistema y presentan complejidad 
computacional.

Modelos de 
Markov

Se basan en modelos estadísticos, 
son fácilmente escalables y pueden 
predecir con base en la experiencia.

Requieren conocimiento previo del 
sistema y presentan complejidad 
computacional.

Árboles de 
decisión

Simplicidad y toma de decisiones 
mediante las configuraciones  
de sus ramas.

Requieren conocimiento previo 
del sistema, pueden sufrir 
sobreentrenamiento y requieren que 
los datos de entrenamiento estén 
etiquetados.

Fuente: elaboración propia a partir de Bkassiny et al. (2013),  
He et al. (2010), Tragos et al. (2013) y Yifei et al. (2013).

Desafíos de investigación en la asignación espectral 
Existen varios temas de investigación abiertos que necesitan ser estudiados para el de-
sarrollo de la SA; algunos de ellos se mencionan a continuación (Akyildiz et al., 2006).

Modelo de decisión multivariado 
La SNR no es suficiente para caracterizar las bandas espectrales en las CRN, pues 
muchos otros parámetros de caracterización del espectro afectan la calidad. Por lo 
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tanto, la manera de combinar estos parámetros de caracterización del espectro para 
el modelo de decisión del espectro sigue siendo una cuestión abierta. 

Algoritmos adaptativos 
Para desarrollar soluciones eficientes en la SA, es necesario desarrollar algoritmos 
que logren adaptarse a diversas condiciones y escenarios, con el objetivo de satisfacer 
los requisitos de un entorno altamente dinámico. Todos los algoritmos hasta ahora 
vistos se centran en un escenario y una red estáticos y en tratar de encontrar una so-
lución óptima de acuerdo con algunos criterios (Tragos et al., 2013).

Selección multicanal 
En las CRN se pueden utilizar simultáneamente múltiples bandas del espectro para 
la transmisión, y estas no tienen que ser contiguas para que un SU pueda enviar 
paquetes. Esta transmisión sobre múltiples bandas muestra menos degradación de 
calidad durante el SH que la transmisión convencional, sobre una sola banda del 
espectro (Akyildiz y Li, 2006). Por ejemplo, si un PU aparece en una banda del es-
pectro en particular, el SU tiene que desalojar solo esa banda y puede mantener la 
comunicación en el resto de las bandas de espectro, por lo cual la degradación de la 
QoS puede ser mitigada (Dadallage et al., 2016).

Adicionalmente, la transmisión en múltiples bandas del espectro permite un menor 
consumo de energía en cada una de estas, y, como resultado, se consigue tener menos 
interferencias con los PU en comparación con la transmisión en una única banda del 
espectro (Akyildiz y Li, 2006). Por estas razones, el esquema de gestión del espectro 
debe tener la capacidad de toma de decisión para múltiples bandas. Sin embargo, la 
forma de determinar el número de bandas del espectro y cómo seleccionar el conjunto 
de bandas apropiadas siguen siendo temas de investigación abiertos en CRN.

Selección cooperativa del espectro 
El enfoque cooperativo tiene más ventajas que el enfoque no cooperativo. En la de-
tección de espectro cooperativa, el SU vecino comparte su información de detección 
con el objetivo de aprovechar la diversidad espacial. Un desafío en la selección de 
espectro cooperativa es cómo combinar la información de los usuarios cooperativos 
mientras se realiza la transmisión (Masonta et al., 2013).

Selección de espectro en redes heterogéneas 
En una determinada CRN puede haber requerimientos de QoS heterogéneos y el es-
pectro disponible puede presentar fluctuaciones y cualidades variables. En las redes de 
tráfico heterogéneas, un desafío consiste en seleccionar las bandas de frecuencia apro-
piadas para satisfacer los requerimientos de QoS de cada SU (Masonta et al., 2013).
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Caracterización del arribo de los usuarios primarios 
Avances recientes en el área de las comunicaciones inalámbricas, como el DSA, pro-
meten la generación de nuevas metodologías que permitirán resolver algunos de los 
principales problemas a los que se enfrentan hoy en día las tecnologías de acceso 
inalámbrico (figura 11). Uno de estos avances tiene que ver con la asignación de la 
porción del espectro radioeléctrico útil (licenciado y no licenciado), que facilita la 
conexión de dispositivos con baja probabilidad de errores. En la actualidad, la distri-
bución de ese rango de frecuencias es controlada por las entidades gubernamentales 
de cada país, donde a cada operador de telecomunicaciones se le asigna de manera 
individual y fija un rango de frecuencias en forma de licencias renovables. 

La BS de la CRN (figura 12) puede decidir sobre el mejor o los mejores canales 
para los SU, teniendo en cuenta la actividad del PU. En este contexto, el éxito en la 
selección de canales dependerá de qué tan confiable es el algoritmo de pronóstico 
para detectar la presencia/ausencia del usuario licenciado; si el porcentaje de pre-
dicción es alto, el funcionamiento del sistema será óptimo, ya que la probabilidad 
de asignar espectro erróneamente será muy baja y evitará colisiones entre el PU y 
los SU; por el contrario, si la estimación no es acertada, el sistema no funcionará 
adecuadamente y la cantidad de interferencias producidas volverá inviable la imple-
mentación de las redes inalámbricas cognitivas.

Figura 11. Etapas que componen las redes de radio cognitiva

Sensado de 
espectro

Decisión de 
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Fuente: elaboración propia.
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Figura 12. Contexto de la caracterización en la etapa de 
decisión espectral en redes de radio cognitiva
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Fuente: elaboración propia.

Dar una solución adecuada al problema de caracterización implica la posibilidad de 
aprovechar las habilidades de aprendizaje autónomo de la inteligencia artificial; en 
este sentido, la pregunta que se plantea es: ¿la implementación del modelo de apren-
dizaje LSTM (long short-term memory) como predictor permite mejorar el porcentaje 
de acierto para detectar la presencia o ausencia de PU en bandas espectrales? 

Las habilidades de aprendizaje —mediante la inclusión de conexiones peephole 
(Graves, 2012)—, de almacenamiento de patrones durante el entrenamiento de la red 
y de acceso a la información por largos periodos de tiempo en las celdas de memoria 
de LSTM pueden ser aplicadas al comportamiento caótico de señales PU para estimar 
más acertadamente su patrón de aparición en las bandas espectrales asignadas. Es claro 
que, a pesar de la existencia de varias propuestas para la modelización de la actividad 
del PU, es importante seguir buscando la forma de minimizar el porcentaje de error en 
esta predicción, pues esto redundará, a su vez, en la optimización de la fase de toma de 
decisiones espectrales en CR; allí se centra el presente capítulo de investigación. 

Caracterización del usuario primario con long short-term memory 
Realizar predicciones con un alto grado de precisión es bastante beneficioso para la 
planificación y control en muchos campos de investigación y desarrollo, pero dicho 
grado de exactitud en las estimaciones trae consigo un alto nivel de dificultad (Sal-
gado, 2014); sin embargo, existen técnicas de predicción prometedoras y aplicables a 
CR, basadas en inteligencia artificial, con capacidad para proporcionar conciencia, 
razonamiento y aprendizaje adicional (He et al., 2010), características capaces de in-
teractuar entre sí y que, por tanto, benefician la capacidad de autonomía de las redes 
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de radio cognitiva y elevan su rendimiento con un bajo nivel de dificultad y adecuado 
a las necesidades de aprendizaje autónomo de CR, como es el caso de LSTM.

La estimación futura del estado del canal en las bandas GSM y Wi-Fi (desde la 
perspectiva del PU) se abordó para este caso específico como un problema de pre-
dicción de series binarias, a partir de la conversión de los niveles de potencia (dBm) 
—capturados y entregados por el analizador espectral— a valores discretos y utili-
zando un sistema neuronal recurrente basado en deep learning. Inicialmente, se define 
el concepto teórico de LSTM, se describe la forma como se modela la señal PU de 
entrada al sistema y se analiza la estructura en capas de la red LSTM, y posterior-
mente se construye el modelo matemático que explica el sistema LSTM y se describe 
la interacción existente entre las neuronas de entrada, las celdas de memoria y las 
neuronas de salida durante el proceso de entrenamiento o aprendizaje. 

LSTM 
Las redes neuronales artificiales tradicionales no poseen la capacidad de almacenar 
información, para lo cual es necesario modificar su topología creando estructuras 
recurrentes que retroalimentan la neurona y permiten el almacenamiento de 
información; a estas estructuras se las conoce como neuronas recurrentes. La unión 
de un conjunto de estas neuronas es denominada red neuronal recurrente (RNN) y 
permite preservar estados subsecuentes entre diferentes intervalos de tiempo cuyos 
parámetros son compartidos entre las múltiples partes del modelo, lo que permite 
una mejor generalización (Veeriah et al., 2015). Uno de los problemas de las RNN 
consiste en el long-term dependency, que plantea la necesidad de no siempre estudiar 
todo un histórico para desempeñar una tarea actual, lo que implica que estas redes 
neuronales solo almacenan la información aprendida en el pasado y no están en 
la capacidad de almacenar nueva información a corto plazo. Las LSTM pueden 
ser explícitamente diseñadas para evitar el problema de long-term dependency, es 
decir, para que recuerden la información por largos periodos de tiempo, pero 
también para que aprendan nueva información en el presente. Los bloques LSTM 
contienen celdas de memoria que permiten recordar un valor por una arbitraria 
longitud de tiempo y usarlo cuando sea necesario; además, tienen una capa de 
olvido que puede borrar el contenido de la memoria cuando no es útil. Todos los 
componentes son construidos para funciones diferenciables y entrenadas durante 
el proceso backpropagation (Wang et al., 2015). La estructura de una LSTM puede 
ser representada como se muestra en la figura 13, donde la celda de memoria es 
simbolizada por la letra C; la capa de olvido, por la letra o; la capa de entrada, por 
la letra e, y la capa de salida, por la letra s.
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Figura 13. Representación gráfica de las redes neuronales tipo long short-term memory
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Fuente: Yao et al. (2015).

Modelado de la señal de entrada y las capas del sistema LSTM 
La señal de entrada discreta representa la presencia (1) o ausencia (0) de un PU den-
tro de la banda espectral durante un tiempo T, de acuerdo con la ecuación (22), y, a 
partir de dicha secuencia binaria, el predictor está entrenado para pronosticar el es-
tado del canal no solo en la siguiente ranura de tiempo, sino en posteriores instantes, 
según el historial de comportamiento del PU en el canal.

   
X x x x x xT

T0 0 1 2 3= [ ], , , ,..., (22),

donde ( )0
Tx  es la señal de entrada discretizada.

Determinar el número exacto de neuronas para la solución del problema es par-
ticularmente difícil. Una red neuronal muy pequeña no puede aprender a solucionar 
el problema de forma correcta, pero una red muy grande generará un sobreajuste 



80

Cesar Augusto Hernández Suarez, Danilo Alfonso López Sarmiento y Diego Armando Giral Ramírez

(es decir, el problema se particulariza, mas no se generaliza) (Kwok y Yeung, 1997); 
además, se debe considerar que a mayor número de capas y neuronas, el tiempo de 
entrenamiento se hace mayor y se utiliza una mayor cantidad de recursos. En este 
caso particular, ya que se ajusta al problema en cuestión, se utilizó la técnica de opti-
mización numérica, basada en la regla de la pirámide geométrica, útil cuando el nú-
mero de neuronas de la capa de entrada es mayor que el de la capa de salida (Masters, 
1993). Debido a que se debe dividir el número de neuronas de la capa de entrada n 
veces por una potencia de 2 hasta que se obtenga 1, se llega a la ecuación (23):

[ ]21 log ( )
2n
co n Co= ⇔ = (23),

donde Co corresponde al número de neuronas de la capa de entrada y n es al número 
de capas existentes. 

De la ecuación (23) se puede intuir que el número de capas crece de forma con-
trolada a medida que aumenta la cantidad de neuronas en la entrada. En razón a que 
en el diseño se optó por el desarrollo de una aplicación de software dinámica (cuya 
red neuronal LSTM es variable y dependiente de la secuencia de entrada), el número 
total de neuronas (N) que componen una topología de red se obtiene de la ecuación 
(24): 

0 2

co

i
i

CoN
=

 =   
∑ (24).

Aproximando la serie anterior, se llega a la ecuación (25):

( )0Co 2 2 CN −≈ − (25).

Tomando el Co de la ecuación (25) como un número muy grande, se puede suponer 
que el número total de neuronas tiende a: 

( )lim Co 2 2 2co

co
Co−

→∞
− = = ∞ (26).

La ecuación (26) indica que, a medida que aumenta el número de neuronas en la capa 
de entrada, el número total de neuronas corresponde aproximadamente al doble.

Modelo de funcionamiento del sistema LSTM 
El modelo LSTM puede considerarse como un aproximador diferenciable de funcio-
nes que usualmente se entrena con el gradiente descendente (Graves, 2012), y aunque 
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originalmente se empleó una forma truncada del backpropagation through time (BPTT) 
para aproximar el gradiente del error (Hochreiter y Schmidhuber, 1997), en la inves-
tigación se hizo uso del cálculo con BPTT sin truncamiento, a partir de lo planteado 
por Graves (Graves y Schmidhuber, 2005). El funcionamiento de la red neuronal 
LSTM se describe en las ecuaciones (27)-(52), que hacen uso de las notaciones esta-
blecidas en la tabla 2, las cuales son congruentes con Graves (2012).

Tabla 2. Notaciones para el desarrollo del modelo matemático

Concepto
Bloque de 
memoria

Input gate Forget gate Output gate
Celda de 
memoria

Subíndice i l ∅ w c

Entrada ix t
la ta∅

t
wa ,t t

c ca s

Salida ib t
lb tb∅

t
wb ( )  t t t

c w cb b s=

Número de 
unidades

I No aplica No aplica No aplica C 

Función de 
activación

No aplica f  sigmoide f  sigmoide f  sigmoide
f  (in-cell)  
h (sal-cell)

Fuente: elaboración propia.

Ecuaciones forward pass 
Para las tres compuertas de la celda (entrada, olvido y salida), las funciones de propa-
gación 

t
la , 

ta∅  y t
wa  (Graves, 2012) no solo consideran la suma ponderada de las en-

tradas actuales, sino también las salidas en el tiempo inmediatamente anterior de los 
bloques en la capa oculta y de los estados de las otras celdas del mismo bloque (salvo 
en la compuerta de salida, porque ahí se requiere del estado actual de las celdas). En 
este sentido, las ecuaciones (27)-(32) (Graves, 2012) resultan del análisis del bloque 
LSTM (figura 14) para cada una de las compuertas y la celda de memoria que con-
forman el modelo. Se debe tener en cuenta, para la interpretación de las ecuaciones, 
que wij hace referencia al peso de la conexión desde la unidad i hasta la unidad j; que 
la secuencia de entrada a la red LSTM para la unidad j en el tiempo t se representa 
como t

ja ; que la activación de la unidad j en el tiempo t se indica como t
jb ; que el 

subíndice c identifica las celdas de memoria; que los pesos de las celdas c para cada 
una de las compuertas de entrada, olvido y salida se denotan como ,  y cl c cww w wφ ; 
que t

cs  es el estado de la celda c en el tiempo t; que f es la función de activación de 
las compuertas, y que g y h son las funciones de activación de las celdas de entrada y 
salida, respectivamente. 
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Input gate:

1 1

1 1 1

L H c
t t t t t t
l il i hl h cl c l

i h c
a w x w b w s θ− −

= = =

= + + +∑ ∑ ∑ (27),

donde t
la  es la función de propagación de la compuerta de entrada (l) en el tiempo t, 

t
ilw  es el peso de la conexión de la unidad i a la unidad l en el tiempo t, t

ix  es el vector 
de entrada i para el modulo LSTM en el tiempo t, t

hlw  es el peephole weight para la 
función de activación h en la compuerta de entrada l, 1t

hb −  corresponde a la salida de 
la celda h en el tiempo t – 1, clw  es el peephole weight de la celda c para la compuerta de 
entrada, 1t

cs −  es el estado de la celda c en el tiempo t – 1 y lθ  es el sesgo (bias).

( )t t
l lb f a= (28),

donde t
lb  representa el módulo de activación (función sigmoide) para t

la .

Forget gate:

1 1

1 1 1

L H c
t t t t t t

i i h h c c
i h c

a w x w b w s θ− −
∅ ∅ ∅ ∅ ∅

= = =

= + + +∑ ∑ ∑ (29),

donde taφ  es la función de propagación de la compuerta de olvido (φ) en el tiempo t. 

( )t tb f aφΦ = (30),

donde tbΦ es la función de activación de taφ  en el tiempo t (asúmase que φΦ = ).1

Output gate:

1 1

1 1 1

L H c
t t t t t t
w iw i hw h cw c w

i h c
a w x w b w s θ− −

= = =

= + + +∑ ∑ ∑ (31);

( )t t
w wb f a= (32),

donde t
wa  es la función de propagación de la compuerta de salida (w) en el tiempo t, y 

t
wb  es la función de activación de la compuerta de salida t

wa  en el tiempo t. 

Para describir el comportamiento de la celda, se deben tener en cuenta dos ele-
mentos: el primero es la función de propagación t

ca , que depende no solo de las entra-
das actuales, sino de las salidas en el tiempo inmediatamente anterior de los demás 

1	 La definición de las variables y sus respectivos subíndices se puede obtener de manera similar a la 
descripción hecha para la ecuación (27), tomando como referencia la tabla 2 y las consideraciones 
previas de este ítem.
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bloques en la capa oculta, y el segundo es el estado de la neurona t
cs , que indica si 

esta está conservando la información u olvidándola y que depende de la salida de la 
forget gate y de la input gate.

Figura 14. Arquitectura LSTM utilizada para la caracterización de PU 
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Fuente: elaboración propia a partir de Palangi et al. (2016).

La salida de la neurona t
cb  indicará si se generó nuevo aprendizaje o si se conserva 

la información almacenada. Teniendo claro lo anterior, a partir de lo mostrado en la 
figura 14, se concluye que el estado y la salida de la celda están dados por las ecua-
ciones (33)-(35) (Graves, 2012):

Estado de la neurona: 

1

1 1

L H
t t t t t
c ic i hc h

i h
a w x w b −

= =

= +∑ ∑ (33),

donde t
ca  es el vector de entrada para la celda LSTM c en el tiempo t, L es el número 

de unidades del bloque de memoria y H es el número de celdas en las capas ocultas 
de la red.

( )1t t t t t
c c l cs b s b g a−

∅= + (34),
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donde g es la respuesta a la salida de la función tangh.

Salida de la neurona:

( ) ( )
!

! !
t t t
c w c

nb b h s
r n r

=
− (35),

donde h es la función de activación para la salida de la celda de memoria.

Ecuaciones backward pass 
Para obtener las ecuaciones backward pass, se hace uso del método BPTT (Graves, 
2012), que implica la utilización de la regla de la cadena para calcular las derivadas 
de los errores a la salida de los componentes de un bloque LSTM. Definiendo las sa-
lidas input gate, output gate y forget gate como t

jδ , estas pueden ser representadas como 
se describe en la ecuación (36):

, { , , }t
j t

i

E j l w
a

δ ∂
= ∈ ∅

∂
(36),

donde , { , , }t
j t

i

E j l w
a

δ ∂
= ∈ ∅

∂
, en este caso, hace referencia a la variación del error E en función del estado 

del bloque de memoria i en el tiempo t ( t
ia ).

Además, definiendo la salida de la celda ( t
c

c

E
bξ

∂
=

∂
 ) y el estado de la celda (

t
cs ), se tienen 

las ecuaciones (37) y (38): 

t
c

c

E
bξ

∂
=

∂
 (37),

donde cbξ es la salida de la celda de memoria en el tiempo t =ξ .

t
s t

c

E
s

∂
=

∂
 (38).

Definiendo E —en las ecuaciones (37) y (38)— como la función de pérdida (error) 
y partiendo del hecho de que se desea establecer cómo varía el error al hacer modi-
ficaciones en los pesos, a partir de la regla de la cadena —ecuación (39)— se tiene:

j
i

ij i ij i

aE E Eb
w a w a

∂∂ ∂ ∂
= =

∂ ∂ ∂ ∂
(39),

donde ib  es la salida del bloque de memoria.
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De la ecuación (39) es claro que el objetivo es calcular 
j

E
a

∂
∂ , pero, teniendo en 

cuenta que para el caso de LSTM existen cuatro tipos de a, —la output gate (
t
w

E
a

∂
∂

), 
las cells ( t

c

E
a

∂
∂

), la forget gate ( t

E
a∅

∂
∂

) y la input gate ( t
l

E
a

∂
∂

)—, estas se pueden definir como se 
muestra en las ecuaciones (40)-(43) (Graves, 2012):

1 1

t t t tc c
c w w c

t t t t t t t
c cw c w w w c w

E E b b b E b
a b b a a b b= =

∂ ∂ ∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ (40),

donde t
w

E
a

∂
∂  es la derivada parcial del error E para la compuerta de entrada. 

t
c

t t t
c c c

E E s
a s a

∂ ∂ ∂
=

∂ ∂ ∂
(41),

donde t
c

E
a

∂
∂

 es la derivada parcial del error E para la celda de memoria. 

1 1

t t t tc c
c c

t t t t t t t
c cc c

E E b b b E b
a b b a a b b

∅ ∅

= =∅ ∅ ∅ ∅ ∅

∂ ∂ ∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ (42),

donde 
t

E
a∅

∂
∂

 es la derivada parcial del error E para la compuerta de olvido. 

1 1

t t t tc c
c l l c

t t t t t t t
c cl c l l l c l

E E s b b E s
a s b a a s b= =

∂ ∂ ∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ (43),

donde 
l
t

E
a

∂
∂  es la derivada parcial del error E para la input gate. 

Teniendo en cuenta que la sumatoria se hace sobre c, pues el modelo se desarrolla 
en un único bloque (que posee c celdas en su interior), al calcular las derivadas res-
pectivas se encuentran las descripciones matemáticas mostradas en la ecuación (44) 
(Graves, 2012).

( )
t

tc
ct

l

s g a
b

∂
=

∂
1

t
t
ct

s s
b

δ

δ

−∂
=

∂
( )

w

t
tc
ct

b h s
b

∂
=

∂

(44).( )0
t

t
t

b f a
aδ

′
∅

∂
=

∂
( )

t
t tc
l ct

c

s b g a
a

′∂
=

∂
( )

t
tl
lt

l

b f a
a

′∂
=

∂

( )
t

tiv
wt

w

b f a
a

′∂
=

∂
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A partir del análisis matemático aplicado, se llega a las ecuaciones backward pass       
—ecuaciones (45)-(48)— (Graves, 2012):

Output gate:

( ) ( )
1

c
t t t t
w w c ct

cw

E f a h s
a

δ ′

=

∂
= =

∂ ∑ (45),

donde t
wδ  es la variación del error para la compuerta de entrada (en dicho bloque de 

memoria), y de manera análoga aplica para t
cδ , t

∅δ  y t
lδ  en las ecuaciones (46)-(48):

Cell:

( )t t t t
c s l ct

c

E b g a
a

δ ′∂
= =

∂
 (46).

Forget gate: 

( ) 1

1

c
t t t t

s ct
c

E f a s
a

δ ′ −
Φ Φ

=Φ

∂
= =

∂ ∑ (47).

Input gate:

( ) ( )
1

c
t t t t
l l s ct

cl

E f a g a
a

δ ′

=

∂
= =

∂ ∑ (48).

Nótese que las ecuaciones (45)-(48) dependen de los términos 
1

1
1 1

t tK H
t k h
c t t t t t

k hc k c h c

E E a E a
b a b a b

+

+
= =

∂ ∂ ∂ ∂ ∂
= = +

∂ ∂ ∂ ∂ ∂∑ ∑  y 
1 1 1 1

1 1 1 1
t t t t t

t t t t t tc c c iv
s c s l wt t t t t

c c c c c

b s a a a
s s s s s

δδ δ δ
+ + + +

+ + + +
∅

∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂
  , por lo que es 

necesario determinar la forma como el error se afecta al hacer cambios tanto en las 
salidas de las celdas como en sus estados.

En este caso, es necesario tener presente que el error es una función cuyas varia-
bles son las K salidas generadas por los H bloques de la capa oculta; es más, para un 
bloque fijo, la salida resultante en un tiempo t afectará a las K unidades de la capa de 
salida (en el instante t) y a la próxima entrada de cada uno de los H bloques en la capa 
oculta. Por lo anterior, 

1

1
1 1

t tK H
t k h
c t t t t t

k hc k c h c

E E a E a
b a b a b

+

+
= =

∂ ∂ ∂ ∂ ∂
= = +

∂ ∂ ∂ ∂ ∂∑ ∑  puede ser definida a partir de la ecuación (49):

1

1
1 1

t tK H
t k h
c t t t t t

k hc k c h c

E E a E a
b a b a b

+

+
= =

∂ ∂ ∂ ∂ ∂
= = +

∂ ∂ ∂ ∂ ∂∑ ∑ (49),

y la salida de la celda queda como se describe en la ecuación (50):
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1
1 1

K H
t
c ck cht t

k hk h

E Ew w
a a +

= =

∂ ∂
= +

∂ ∂∑ ∑ (50),

donde 
t
k

ckt
c

a w
b

∂
=

∂  y 
1t

h
cht

c

a w
b

+∂
=

∂ .

Finalmente, se debe analizar qué sucede con el error si se generan cambios en los 
estados de la celda. Si el estado de la celda es c y el tiempo es t, t

cs  indica si se mo-
dificó o no la información almacenada en ese momento; por lo tanto, t

cs  es un valor 
que afecta la entrada de todas las gates, el próximo estado de la celda y, claramente, la 
salida de la propia celda; matemáticamente, esto es —ecuación (51)—:

1 1 1
0 iv

1 1 1

t t t t t
t c c l
s t t t t t t t t t t t

c c c c c l c c w c

E E b E s E a E a E a
s b s s s a s a s a sδ

+ + +

+ + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (51),

donde el estado de la celda queda como se muestra en la ecuación (52) —valores 
concordantes con lo mostrado por Graves (2012)—:

1 1 1 1
1 1 1 1

t t t t t
t t t t t tc c c iv
s c s l wt t t t t

c c c c c

b s a a a
s s s s s

δδ δ δ
+ + + +

+ + + +
∅

∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂
   (52).

Caracterización del usuario primario con un modelo neurodifuso: Anfis-grid-FCM 

Modelo de funcionamiento del sistema Anfis 
Una de las arquitecturas Anfis (adaptive neuro fuzzy inference system) probadas está for-
mada por las funciones de pertenencia descritas e interconectadas como lo mues-
tra la figura 15, dando lugar a reglas con producto T-norma ( nπ ) e inferencia tipo 
Takagi-Sugeno aplicadas a un comportamiento continuo de la señal que identifica 
el PU. Esta arquitectura se compone de tres entradas (no se muestran las señales de 
retroalimentación), una salida y cinco capas, y su modelado se basa en la propuesta 
de Jang —ecuaciones (35) y (44)— (Siddique y Adeli, 2013).

Capa 1. Cada nodo es adaptativo y representado matemáticamente por las fun-
ciones de las ecuaciones (53) y (54):

( )1, 1 ; 1,2,3i iO D X iϑ= ∀ = (53);

( )1, 2 ; 1,2,3i iO E X iϑ= ∀ = (54),

donde 1, iO  es la salida del nodo i (que especifica el grado al que el iX  dado satisface el 
cuantificador iD  y iE  ), iX  corresponde a la entrada del sistema, y iD  y iE  son las eti-
quetas lingüísticas asociadas a la función de membresía ϑ  dada por la ecuación (55).
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Figura 15. Estructura Anfis para la caracterización de PU
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Fuente: Siddique y Adeli (2013).

2

2
( )
2*( )( ; , )

X a
bX a b eϑ

− −

= (55),

donde a representa el centro de la función gaussiana y b determina su ancho. 

Capa 2. En este nivel, la fuerza de disparo de cada regla es calculada. La fuerza 
de disparo se refiere a la aplicación de la T-norma: operación computacional cuyo 
objetivo es calcular la afirmación lingüística y en reglas del tipo “si 1X  es 1D  y 2X  es 

2D  ⇰ Y es 1C ”, donde X y Y hacen referencia a las variables del antecedente, y F, 
a las del consecuente (Zapata Muñoz y Anzola Rojas, 2016). Matemáticamente, la 
salida está dada por la ecuación (56):

( ) ( )2,1 1 2* ; 1,2,3i i iO W D X E X iϑ ϑ= = ∀ = (56),

donde 2,1O  representa el valor de salida de la capa 2 y iw  hace referencia al grado en 
que se satisface la parte antecedente de una regla difusa. 

Capa 3. En esta capa se obtiene el promedio de las salidas del nivel anterior y se 
generan los pesos normalizados (N en la figura 15), con el fin de establecer la rela-
ción entre la fuerza de una regla en particular y la suma de las fuerzas de todas las 
demás reglas, para así conocer “qué tanto se cumple” una regla respecto a las demás 
—ecuación (57)—:
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3, 2 9
1 2 3 4 5 6 7 8 9

1

i i
i

i

W WO W
W W W W W W W W WW

= = =
+ + + +++ + +∑ (57),

donde iW  representa las fuerzas de disparo normalizadas de las reglas y iW  es la salida 
de la capa anterior.

Capa 4. Aquí se determinan los parámetros del consecuente, donde la función de 
cada nodo pertenece a una combinación de la salida de la capa 3 y a una ecuación 
lineal simple tipo Takagi-Sugeno —ecuación (58)—:

O W f O W S X T X Zi 1 i i 1 i i i4 3 1 2, ,*= = = + +( ) (58),

donde el factor fi  se relaciona con las reglas difusas; Si,  Ti y Z1 son el conjunto de 
parámetros del consecuente de las reglas “if… then”, y donde estas reglas son del tipo 
ecuación (59):

1 2 1 2 and      i i i i i iIf X D X E Then f S X T X Z= = = + + (59).

Capa 5. Corresponde a la salida o respuesta y está dada como la sumatoria de todas 
las señales entrantes (salida de la capa 4). Matemáticamente, puede ser representada 
como la ecuación (60):

O Y W f
W f

W
i 1

i
i

i i

5

9
1

9

2
1

2, *= = =∑
∑

∑
(60),

donde O5,i corresponde a la salida o respuesta del sistema.

Si se establece que los valores de los parámetros de la premisa son fijos (Keller et 
al., 2016; Samui, 2015), el Anfis puede ser escrito como una combinación lineal de 
los parámetros del consecuente —ecuaciones (61) y (62)—:

1 2 3 4 5 6 7 9
5, 1 2 3 4 5 6 7 8 9

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

s
i

w w w W w w w w wO f f f f f f f f f
w w w w w w W W W W W w w w w w w w

= + + + + +
+ + + + + + + +

+ +
+ (61);

( ) ( ) ( )
( ( ) ( )
( ) ( ) ( )

5, 1 1 1 1 2 1 2 2 1 2 2 2 3 3 1 3 2 3

4 4 1 4 2 4 5 5 1 5 2 5 6 6 1 6 2 6

7 1 7 2 7 8 1 8 2 8 9 9 1 9 2 97 8

...

         ) ...

         

iO W S D T E Z W S D T E Z W S D T E Z

W S D T E Z W S D T E Z W S D T E Z

W S D T E Z W S D T E Z W S D T E Z

= + + + + + + + + +

+ + + + + + + + +

+ + + + + + + +

(62).
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Modelo Anfis-grid-FCM 
El Anfis fue introducido por Jang en 1993 (Jang, 1993) y se puede afirmar que es un 
tipo de red neuronal que es funcionalmente igual a un modelo de inferencia Takagi-
Sugeno. Anfis es un modelo híbrido inteligente que combina las ventajas de la lógica 
difusa con las de las redes neuronales artificiales. Específicamente, utiliza la técni-
ca de las redes neuronales para actualizar los parámetros del modelo de inferencia 
Takagi-Sugeno y tiene la capacidad de aprender de la etapa de entrenamiento; por 
tal razón, las soluciones encontradas en un sistema de inferencia difusa (FIS) pueden 
describirse en términos lingüísticos (Abdulshahed et al., 2015). 

Anfis-grid es un paradigma que combina Anfis con el método de particiones grid 
para generar el conjunto de reglas del sistema neurodifuso. Dicho particionamiento 
consiste en dividir el subespacio de datos en subespacios rectangulares utilizando 
particiones paralelas al eje; estos subespacios están basados en un número prede-
finido de funciones de membresía, lo que indica que Anfis-grid divide las variables 
de entrada en varios conjuntos difusos. Cuando se emplea esta técnica de partición 
de cuadrícula, el conjunto de reglas cubre todo el espacio de entrada mediante el 
uso de todas las combinaciones posibles de los conjuntos difusos de entrada. La 
principal limitación de este método es que el número de reglas puede aumentar de-
pendiendo de la cantidad de datos de entrada, por lo que Anfis-grid es adecuada solo 
para casos con un pequeño número de variables de entrada. En esta técnica, los pa-
rámetros difusos se calculan utilizando el concepto de mínimos cuadrados en concor-
dancia con el tipo de partición y las funciones de membresía (Mingzhen et al., 2007).

El Anfis basado en fuzzy c-means (FCM) es un tipo o método de aprendizaje no 
supervisado de agrupación que permite que una pieza de datos pertenezca a dos o 
más agrupaciones y es ampliamente utilizado para el reconocimiento de patrones 
y para predicción. Específicamente, este modelo genera un FIS usando FCM me-
diante la extracción de un conjunto de reglas que modela el comportamiento de los 
datos. La función requiere conjuntos separados de datos de entrada y salida como 
argumentos que alimentan el algoritmo. FCM divide una colección de n vectores x1 
(donde i = 1,2,…, n) en grupos difusos y determina un centro de clúster para cada 
grupo, de modo que la función objetivo de la medida de disimilitud se reduce [3] y 
hace que la predicción sea más confiable.

Red neuronal artificial de perceptrón multicapa 
La MLP es un tipo de red neuronal conformada por una o más capas de neuronas en 
la que los datos que alimentan el sistema se envían a la capa de entrada; pueden exis-
tir una o más capas ocultas que proporcionan niveles de abstracción y una capa visi-
ble o de salida. La capacidad predictiva de este tipo de redes neuronales artificiales 
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(ANN) proviene de su estructura jerárquica o de varias capas. Las MLP son adecua-
das para resolver problemas de predicción, de clasificación y de regresión en los que 
las entradas tienen asignada una entrada o etiqueta. Para el caso de un perceptrón 
simple, este genera una región de decisión que clasifica un conjunto de puntos me-
diante la separación de estos. La región de decisión divide el espacio en dos mitades 
determinadas por un hiperplano definido por los pesos sinápticos obtenidos durante 
el proceso de entrenamiento. Los pesos sinápticos son calculados por el algoritmo 
de corrección del error, que calcula la diferencia entre el valor obtenido después del 
entrenamiento y el valor esperado, y la multiplica por la pendiente del hiperplano 
actualizando la región de decisión en cada ejemplo de entrenamiento. Un conjunto 
de perceptrones simples genera un perceptrón multicapa que permite dividir la región 
en más de dos mitades, lo que genera un hiperplano a trozos capaz de clasificar varios 
puntos linealmente independientes (Flórez-López y Fernández Fernández, 2008).

Caracterización del arribo de los usuarios secundarios 
La generación de esquemas óptimos de procesamiento de solicitudes hechas por SU 
en la etapa de selección de bandas espectrales es uno de los desafíos de la CR, ya que 
ello incide directamente en el tiempo que le lleva a la BS seleccionar y asignar un canal 
para que, de manera oportunista, los SU realicen el envío de sus datos a través de la red 
inalámbrica. Por ello es importante generar estrategias que permitan reducir la varia-
ble tiempo de procesamiento y, de esta manera, mejorar el rendimiento del sistema. Este 
apartado del libro plantea la generación de un modelo para predecir el arribo de SU a 
una BS, teniendo en cuenta los criterios y el tipo de calidad de servicio (RT o BE), con 
el fin de que el canal se pueda reservar de manera anticipada para la transmisión de 
los datos. El modelo desarrollado, llamado estrategia proactiva de arribo de usuarios secun-
darios, demuestra que es posible optimizar el rendimiento de la CR, ya que el tiempo 
que tardaría la estación central en asignar un canal sería menor que si se utilizara una 
estrategia de asignación de bandas espectrales convencional (llamada estrategia reactiva).

Además, se presenta el desarrollo de un algoritmo que predice la llegada de un SU 
—con requerimientos de tipo de servicio (BE o RT) y de BW determinados— a una 
BS en una red cognitiva basada en infraestructura por medio de redes neuronales. 
El algoritmo utiliza una técnica de construcción de forma dinámica, aprovechando 
la topología piramidal geométrica, y entrena una MLPNN basada en el histórico de 
llegada de SU para estimar las solicitudes futuras; esto permite gestionar más rápida-
mente la información en la BS para la selección del mejor o los mejores canales en 
CRN, ya que anticipa la llegada de los SU. 

En el contexto de la selección de espectro en redes inalámbricas de CR centrali-
zadas, como la que se muestra en la figura 16, la gran mayoría de autores (Do et al., 
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2013; Kasbekar y Sarkar, 2010; Wang, Wang et al., 2011) han inclinado sus modelos a 
la utilización de estrategias reactivas, pero con un gran inconveniente, debido al tiempo 
que se consume en la búsqueda y selección de la frecuencia libre más óptima para la 
transmisión de los datos de los SU (variable crítica dentro de los sistemas de telecomu-
nicaciones). La implementación de un modelo en el que la identificación del canal se 
hace milisegundos antes de la llegada del usuario cognitivo, a partir de la predicción 
del arribo del SU, permite disminuir los tiempos de asignación, lo que mejora la etapa 
de decisión de espectro (Sarmiento et al., 2016). En este sentido, para la descripción y 
evaluación del modelo, primero se elabora una estrategia de arribo reactivo de los SU; 
luego, se hace la presentación del modelo (estrategia proactiva), y finalmente se valida 
mostrando que su desempeño, desde el punto de vista del tiempo de procesamiento en 
la BS, es más óptimo debido a que se estima el arribo futuro de los SU.

Figura 16. Red de radio cognitiva basada en infraestructura

Usuario secundario

Usuario secundario

Usuario secundario

Usuario secundario

Fuente: elaboración propia.

Estimación del arribo del usuario secundario: 
modelo reactivo y modelo proactivo 

Modelo del sistema para el caso reactivo 
El diagrama de bloques del modelado de la estrategia reactiva de SU incluyó lo mos-
trado en la figura 17. 

Tomando como referencia a Akter et al. (2008), se parte de la consideración de 
un sistema de Markov de dos estados (on-off  ), con el fin de determinar el número 
de SU que arriban a la CRN, y, con base en la teoría de colas, se genera un sistema de 
ecuaciones para establecer la probabilidad de los estados definidos, como se mues-
tra en la ecuación (63).
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( ), ( ) ( )s n sP t P Z t n= = (63),

donde P es la función de probabilidad, ( )sZ t  es el estado del s-ésimo SU en el tiempo 
t y el sistema de ecuaciones diferenciales está dado por las ecuaciones (64)-(66) (Akter 
et al., 2008), las cuales representan de forma general las probabilidades de estado que 
se pueden encontrar en relación con la cantidad de SU en el sistema: ausencia de SU: 

( ),0sdP t
dt

 
 
 

; existencia de n SU: ( )sdP n t
dt

 
 
 

, y número máximo de SU: ( ), ss NdP t
dt

 
  
 

 en la red cognitiva.

Figura 17. Sistema de arribo reactivo de usuarios secundarios a la estación base

Determinación del número 
de SU que solicitan QoS 

tipo BE y RT

Determinación del 
número de SU que 

arriban a la BS

Arribo de SU a la BS en 
un tiempo t

Fuente: elaboración propia.
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( )
( ) ( )s

s s s s s
dP t

P t N P t
dt

µ λ= − (64);

( ) ( )( ), 1 , 1 ,
( ) 1 ( ) ( 1) ( ) ( )s

s s s n s s n s s s s n
dP n t N n P t n P t n N n P t

dt
λ µ µ λ− += − + + + − + − (65);

, 1 ,

( )
( ) ( )ssN

s s N s s s N

dP t
P t N P t

dt
λ µ−= − (66),

donde sµ  es la tasa de distribución del tiempo de servicio del SU, sλ  define el proce-
so de llegada de los SU, n es la cantidad de SU en el tiempo t y sN  es el número máximo 
de nodos en el intervalo T= t∆ . 

Tomando como referencia y adaptando la idea de Akter (2008) al modelo reactivo, 
primero se determinará el número esperado de nodos cognitivos en un t∆ , para luego 
obtener el número de SU RT y BE que llegarán o arribarán a la BS en dicho instante. 
Para ello, tomaremos ( )sE Z t    como el número de SU en un tiempo t —ecuación 
(67)— (Akter et al., 2008):

[ ] ,
0

( ) ( )
sN

s s n
n

E Z t nP t
=

= ∑ (67).

Al calcular la derivada, y por la linealidad de este operador, se obtiene la ecuación 
(68) (Akter et al., 2008):
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[ ] ( ) ( ) [ ],
,

0 0

( )( )
( ) ( )

s sN N
s ns

s s s s s s s n s s s s s
n n

dP tdE Z t
n NM P N nP t N E Z t

dt dt
λ λ µ λ λ µ

= =

= = − + = − +=∑ ∑ (68),

donde sM  es la matriz de estados de los SU y N = (0, 1, 2, ... Ns ) corresponde a la 
matriz transpuesta.

Asumiendo que las mediciones se hacen cada instante de tiempo T, t = mt               
—ecuación (69)— se considera como condición inicial para la m-ésima predicción 
(Akter et al., 2008):

[ ](( 1) ) ( 1)s sE Z m T Z m− = − (69),

donde se asume que las mediciones se realizan en un instante de tiempo discreto mT 
en el que m = 1, 2, 3, … para un valor dado de T.

Al resolver la ecuación anterior, se obtiene la ecuación (70) (Akter et al., 2008):

( ) ( )( ) ( 1) 1s s s sT Ts s
s s

s s

NZ m Z m e eλ µ λ µλ
λ µ

− + − + = − + − +
(70).

Determinado el número de SU qué arribarán a la BS ( ( )sZ m ), a las L + 1 agrupacio-
nes de solicitudes RT y BE se les puede asignar la distribución de probabilidad dada 
por la ecuación (71):

{ ( ) | ( ) }P R t m R t n= = (71),

donde ( )( )P R t n=  es la probabilidad general de que en el tiempo t lleguen m solicitu-
des R(t); particularizando lo anterior para el caso reactivo, se tendría lo mostrado en 
la ecuación (72) (Akter et al., 2008):

( )

( )1( ( ) )
2 s t

s
Z

Z
n

t
P R t n= = (72).

Ya que Zs(t) es el número de usuarios cognitivos que llegarán a la BS, y debido a que, de 
estos, n son solicitudes con criterios RT, los demás serían solicitudes con criterios BE. 

Modelo del sistema para el caso proactivo 
La metodología seguida para calcular la probabilidad de arribo de SU con criterios 
de QoS se observa en la figura 18. Partiendo de la existencia de una base de datos, 
considérese (como en el caso reactivo) que L es el número de nodos que arribarán 
a la BS en un intervalo de tiempo t∆ ; en tal sentido, para predecir o estimar el tipo 
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de servicio que solicitará el siguiente SU, primero se determinará cuántas combina-
ciones son posibles con L usuarios, donde R de ellos solicitan QoS para RT y los B 
restantes (   B L R= − ) requieren criterios de servicio para BE. Nótese que   L B R= + , 
y que se cumple una y solo una de las relaciones ,     B R B R o B R>  =   < . Cualquiera 
que sea la secuencia de L solicitudes, siempre puede asociarse con un elemento del 
grupo de permutaciones SL. Obsérvese que R puede tomar cualquier valor entre 0 y L 
(0    R L≤ ≤ ); así se obtendrán L + 1 agrupaciones posibles, donde el proceso de alter-
nar los dos tipos de solicitudes se puede asociar con la imbricación. Por ello, fijado un 
número  de solicitudes RT, ¿cuántas posibles combinaciones de RT y BE hay? Para 
dar respuesta a esta pregunta, es necesario fijarse en que, al realizar la imbricación, se 
mantiene el orden relativo de los grupos, por lo que basta simplemente con calcular 
de cuántas maneras se pueden elegir R posiciones entre las L posibles. 

Figura 18. Sistema de arribo proactivo de usuarios secundarios a la estación base

Cálculo del porcentaje de acier-
to en la predicción

Determinación de la                    
agrupación de SU (RT y BE)

Determinación (mediante            
predicción) del tipo de servicio 

requerido (RT o BE)

Base de datos de SU con 
criterios de QoS

Fuente: elaboración propia

Así, para un R preestablecido, es posible encontrar L
R

 
 
 

 organizaciones posibles, y en-
tonces, la probable llegada de un requerimiento (cálculo de la probabilidad) puede 
presentarse con un elemento { } { } { } { }0,1  0,1 * 0,1 * .* 0,1 L = …{ } { } { } { }0,1  0,1 * 0,1 * .* 0,1 L = … ; de esta manera, se restringe el 
sistema a 2L combinaciones posibles de dos grupos de solicitudes de QoS en lugar de 

!L   (número de elementos del conjunto LS ). Es de resaltar que para 3L >  es válida la 
desigualdad 2 !L L< , por lo que esta restricción implica una reducción considerable de 
cálculos. Asociando probabilidades, las agrupaciones hechas hacia la mitad tienen más 
probabilidad de ocurrir, razón por la cual se asigna a la división hecha (posición R) la 
probabilidad representada en la ecuación (73):

1
2L

L
R (73).

Si se trata de asignar probabilidades a la combinación R =0 y R = L, la respuesta es 
obvia —véase la ecuación (11)—, pero si se considera que 2 1R L≤ ≤ − , una posible 
opción es asignar una distribución uniforme con el fin de que cada combinación de 
solicitudes tenga una probabilidad de 

1
L
R
, y así todas las posibles reordenaciones (salvo 
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la identidad) tienen probabilidad 1
2L. Además, es claro que, por imbricación, se obtiene 

una permutación ( )P π  y que la probabilidad asociada a la permutación LSπ ∈  está 
dada por la ecuación (74):

( ) ( )( ) ; (0,1]; 1,2, ,i iP P x P x i Lπ π= ∈ = …
 ( ) ( )( ) ; (0,1]; 1,2, ,i iP P x P x i Lπ π= ∈ = …

 ( ) ( )( ) ; (0,1]; 1,2, ,i iP P x P x i Lπ π= ∈ = … (74).

Si se compara ( )P π  con el de la probabilidad uniforme ( ) 1
!u Lπ = , entonces para 

cada LSπ ∈  se puede determinar qué tan predecible será la llegada de los SU con sus 
solicitudes de RT o BE —ecuación (75)—. 

1 | ( ) ( ) |
2

LS
P u

π

δ π π
∈

= −∑ (75).

El factor 1
2  de la ecuación (75) permite normalizar el valor de δ  ( 0 1δ≤ ≤ ). Se tiene 

0δ =  si y solo si ( ) ( )P uπ π=  para todo LSπ ∈ . Si δ  es muy cercano a 1, la solicitud 
del próximo SU es predecible en un alto porcentaje, y si δ  es un valor muy pequeño, 
la predicción puede ser errónea. 

Para el caso en el que R sea fijo, se tendrá 
L
R

 
 
  combinaciones posibles, lo que 

indica que el orden de llegada de los SU y, por ende, de las solicitudes de QoS es 
independiente entre sí. 

Modelo MLPNN para la estimación del arribo del usuario secundario 

Representación del histórico de un usuario secundario 
Se define ( ) ( ){ },x i y i  como una pareja de coordenadas en *3nR , siendo ( )x i  la repre-
sentación en sistema binario de una unidad de tiempo en un espacio *3nR ; n es el nú-
mero de dígitos en la representación binaria, y ( ) y i  en un espacio 3R , donde el primer 
componente corresponde a la solicitud o no de un servicio tipo BE; el segundo, a la 
solicitud de un servicio tipo RT, y el tercero, al BW requerido en KHz. Un ejemplo 
de esta representación se da en la ecuación (76):

( ) ( ){ } [ ] [ ]{ }x 1 ,  y 1 0 0 0 , 0 0 0=

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

 ( ) ( )

0 0 0 [0 0 0]
0 0 1 [0 1 20]
0 1 0 [0 1 20]
0 1 1 [1 0 43]

      
1 0 0 [1 0 44]
1 0 1 [1 0 45]
1 1 0 [0 1 48]
1 1 1 [0 1 45]

Outputs y iInputs x i

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





(76).
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Esta primera aproximación de representación de SU con sus respectivas característi-
cas considera la topología de red neuronal sin tomar en consideración la naturaleza 
de los datos que se pretende caracterizar. Debido a que las funciones de transferencia 
entre cada capa de la red neuronal están dadas por una función tipo sigmoide, el 
rango de los datos oscilará entre 0 y 1. Esto no se considera un problema para el do-
minio de los datos que se pretende caracterizar excepto para el caso de 3R , cuyo tercer 
componente tiene dominio en los números naturales (y que corresponde al BW). De 
esta forma, se plantea separar el conjunto de datos (mostrado anteriormente) en dos 
grupos y utilizar dos redes neuronales. La primera red se especializa en la caracteri-
zación del conjunto de datos ( )1y i , representados como se describe en la ecuación 
(76), y que sigue los siguientes criterios de diseño:

•	 El número de neuronas en la capa de entrada corresponde a la dimensión *3nR  de ( )x i .

•	 El número de neuronas en la capa de salida corresponde a la dimensión R2 de 

( )y i , y cada una de las neuronas estará especializada en modelar una característica 
del SU.

•	 El número de neuronas en las capas ocultas se obtiene siguiendo la topología 
piramidal geométrica.

La segunda red neuronal se especializa en la caracterización del conjunto de datos 

( )2y i , representados en la ecuación (77), con los siguientes criterios:

•	 El número de neuronas en la capa de entrada corresponde a la dimensión *3nR  de ( )x i . 

•	 El número de neuronas en la capa de salida corresponde a la dimensión R1 de 
( )2y i , y cada una de las neuronas estará especializada en modelar una carac-

terística del SU. 

•	 El número de neuronas en las capas ocultas se obtiene siguiendo la topología 
piramidal geométrica.

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

1 ( )  ( )

0 0 0 [0 0]
0 0 1 [0 1]
0 1 0 [0 1]
0 1 1 [1 0]

      
1 0 0 [1 0]
1 0 1 [1 0]
1 1 0 [0 1]
1 1 1 [0 1]

Inputs x i Outputs y i

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





(77);
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[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]


2 ( )
 ( )

00 0 0
200 0 1
200 1 0
430 1 1

      441 0 0
451 0 1
481 1 0
451 1 1

Outputs y i
Inputs x i

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


(78).

Modelo matemático del sistema neuronal 
Para el desarrollo del funcionamiento de la red neuronal se considera el conjunto de 
ejemplos mostrado en la ecuación (77). Siguiendo los lineamientos planteados para 
la construcción de la red neuronal propuesta, se obtiene un sistema de 3 capas con 3 
neuronas en la capa de entrada, 2 en la capa oculta y 2 en la capa de salida (figura 19).

Figura 19. Representación de la MLPNN para el conjunto de datos de la ecuación (77)

(2)a1

(2)a2

(1)
Θ11

(2)
Θ11

(2)
Θ12

(2)
Θ21

(2)
Θ22

(1)
Θ12

(1)
Θ21

(1)
Θ22

(1)
Θ31

(1)
Θ32

(3)a1

(3)a2

X1

X2

X3

Entrada_1

Entrada_1

Entrada_1

Salida_1

Salida_2

Capa de entrada Capas ocultas Capa de salida

Fuente: elaboración propia.

Además, se definen las siguientes variables: m: número de capas de la red neuronal; 
θ : matriz de pesos de control, que mapea (genera una asociación) desde una capa i 
hasta una capa i + 1, y A: unidad de activación en la capa i.

El procedimiento para el cálculo de la salida de la red neuronal se define como se 
muestra en la ecuación (79); este es llamado algoritmo de propagación hacia adelante y 
fue elaborado a partir de Du y Swamy (2013):
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( )( ) ( 1) ( 1)i i T iA g Aθ − −= (79),

donde T es la operación transpuesta, ( )iA  es la salida de la capa que se desea calcular, 

( )( ) ( 1) ( 1)i i T iA g Aθ − −=  corresponde a la salida de la capa anterior, 1,  2,  3,  ,  i m= … , ( )iA X=  y g es la 
función sigmoide.

Considerando de forma general la matriz de pesos de control ( )d d
ijθ θ= , donde ( )d d

ijθ θ=   
identifica el peso para la conexión existente entre la neurona i (de la capa d) y la neu-
rona j (de la capa d + 1), se procede a calcular la transición desde la capa de entrada 
hasta la capa oculta —ecuaciones (80) y (81)—:

(1) (1)
11 12

(1) (1) (1)
21 22
(1) (1)
31 32

θ θ
θ θ θ

θ θ

 
 =  
  

donde ( )1θ  es la matriz de pesos de control de la capa 1.

(80),

1
(1)

2

3

x
A X x

x

 
 = =  
  

(81),

donde ( )iA  corresponde a la salida de la capa 1 del sistema.

Así, la transición ocurrida desde la capa de entrada hasta la capa de salida estaría 
dada por lo descrito en la ecuación (82):

( )
( )

(1) (1) (1)
1 11 2 21 3 31(2)

(1) (1) (1)
1 12 2 22 3 32

g x x x
A

g x x x

θ θ θ

θ θ θ

 + +
 =
 + + 

(82),

donde 
( )2A  corresponde a la salida o respuesta de la capa oculta, g es la función sigmoide 

y ( )x i  es la representación de una unidad de tiempo en *3nR .

Por simplicidad, se definen las siguientes variables para la matriz ( )2A  —ecuación 
(83)—:

(2)
(2) 1

(2)
2

a
A

a
 

=  
 

(83).

Al calcular la transición desde la capa oculta hasta la capa de salida ( ( )3A ), tomando 
como referencia la matriz de pesos de control ( )2θ  —ecuación (84)—, se obtiene la 
ecuación (85):
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(2) (2)
(2) 11 12

(2) (2)
21 22

θ θ
θ

θ θ
 

=  
 

(84),

donde ( )2θ  es la matriz de pesos de control de la capa oculta.

( )
( )

(2) (2)
11 2 21(3)

(2) (2)
1 12 2 22

g a a
A

g a a

θ θ

θ θ

 +
 =
 + 

(85),

donde la variable an cumple con la condición de la ecuación (83). Asúmase que en 
este caso ( )2

11aθ  es equivalente a ( )2
1 11a θ .

Trabajos relacionados 
En esta sección se presenta un estado del arte de trabajos recientes acerca de algo-
ritmos para la toma de decisiones de SH en CRN. Al respecto, no se identificaron 
trabajos que relacionen todos los enfoques descritos en la presente propuesta, como 
la toma de decisiones, los modelos colaborativos y las arquitecturas descentralizadas; 
sin embargo, se encuentran investigaciones relevantes con enfoques independientes o 
con combinaciones de dos de ellos.

A continuación se describen las tres publicaciones en el área de redes de radio 
cognitiva descentralizadas (DCRN) que tienen mayor relación con la presente inves-
tigación. Estas publicaciones están enfocadas en el análisis de la calidad de servicio, 
el esquema de aprendizaje y el acceso al espectro dinámico, y utilizan estrategias 
como la teoría de colas, las cadenas de Markov y los filtros digitales, entre otras:

Xenakis et al. (2014), en su artículo “Multi-parameter performance analysis for 
decentralized cognitive radio networks”, realizan un análisis del impacto de la activi-
dad del PU y el SU, del desvanecimiento de canales y de las colas de longitud finita 
en el rendimiento de las DCRN. Realizan, además, un análisis de teoría de colas y 
derivan varias medidas de rendimiento en relación con la pérdida de paquetes, así 
como el rendimiento, la eficiencia espectral y la distribución de retardo de paquetes. 
Los resultados cuantifican el impacto de los parámetros y las variables en el rendimiento 
del sistema y ponen de relieve las principales ventajas y desventajas del rendimiento en 
las DCRN.

Darak et al. (2015), en su artículo “Low complexity and efficient dynamic spec-
trum learning and tunable bandwidth access for heterogeneous decentralized cog-
nitive radio networks”, proponen un esquema de aprendizaje y acceso al espectro 
dinámico de baja complejidad y eficiencia para DCRN y para redes heterogéneas de 
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próxima generación; este esquema consiste en una transformación de frecuencia de 
segundo orden, una técnica de interpolación basada en un filtro digital variable y una 
política de toma de decisiones sintonizable. Los resultados de la simulación verifican 
la superioridad del esquema propuesto sobre los esquemas existentes. 

Amjad et al. (2016), en su artículo “Coexistence in heterogeneous spectrum 
through distributed correlated equilibrium in cognitive radio networks”, analizan 
múltiples técnicas de cadenas de Markov para estudiar fenómenos de desigualdad 
en escenarios heterogéneos de CRN coexistentes; además, proponen una solución 
descentralizada que no limita la capacidad de hardware de un dispositivo de CR e 
introducen una capa MAC (control de acceso al medio) para la coexistencia (CCR-
MAC). Los resultados obtenidos muestran que el CCR-MAC propuesto mejora la 
ventaja competitiva y la equidad sin limitaciones de hardware.

Por otra parte, se describen a continuación las dos publicaciones que trabajan en 
conjunto los enfoques de toma de decisiones y arquitecturas descentralizadas y que, 
a su vez, tienen una fuerte similitud con la presente investigación:

Darak et al. (2017), en su artículo “Decision making policy for RF energy harves-
ting enabled cognitive radios in decentralized wireless networks”, proponen una nue-
va política de toma de decisiones (DMP) para DCRN basada en el acceso oportunis-
ta al espectro con capacidad de recolección de energía por radiofrecuencia (RFEH). 
La DMP propuesta consta de tres subunidades: un algoritmo de muestreo basado en 
un enfoque bayesiano, un esquema de acceso basado en el algoritmo de muestreo 
de Thompson y un esquema de selección de modo. Los resultados de la simulación 
muestran que la política propuesta ofrece una mejora del 10-35 % en el rendimiento 
de la DCRN y una reducción del 40-90 % en el número de conmutaciones de subban-
das en comparación con las DMP existentes.

Hasegawa et al. (2014), en su artículo “Optimization for centralized and decen-
tralized cognitive radio networks”, analizan y proponen algoritmos de optimización 
para la toma de decisiones en redes inalámbricas cognitivas heterogéneas. Para las 
DCRN, proponen como estrategia una red neuronal Hopfield-Tank, y la validan 
mediante un conjunto de simulaciones para, finalmente, implementarla en un siste-
ma cognitivo experimental. 

A continuación, asimismo, se describen las cinco publicaciones que trabajan en 
conjunto los enfoques de toma de decisiones y las CRN y que, a su vez, tienen una 
fuerte similitud con la presente investigación:
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Tripathi et al. (2019), en su artículo “Analysis and comparison of  different fuzzy 
inference systems used in decision making for secondary users in cognitive radio 
network”, implementan un sistema basado en lógica difusa con un conjunto de 
parámetros de entrada y salida para la toma de decisiones de los SU, a través de un 
análisis comparativo entre el Sugeno fuzzy inference system y el Mamdani fuzzy inference 
system. El trabajo concluye con una lista de ventajas y desventajas para cada una de 
las técnicas, y se obtiene una correlación mayor de 0,95 entre Sugeno y Mamdani; 
por lo tanto, la selección entre las estrategias depende de los requisitos de aplicación, 
pero, desde una perspectiva computacional, Sugeno presenta una mayor eficiencia 
que Mamdani para más de 100 reglas.

Kaur et al. (2018), en su artículo “PSO based multiobjective optimization for pa-
rameter adaptation in CR based IoTs”, estudian las características de adaptación de 
las CRN al internet de las cosas. Para cumplir con los objetivos de potencia mínima 
de transmisión, tasa mínima de error y el máximo throughput, los autores proponen 
un módulo de toma de decisiones basado en optimización multiobjetivo a partir de 
enjambres de partículas (PSO). Los resultados son comparados con un algoritmo 
genético con codificación real (RCGA). Para servicios de e-mail, voz y video, el pro-
medio de fitness en PSO es de 0,8614, 0,7327 y 0,8597, respectivamente, en compara-
ción con los 0,8121, 0,5975 y 0,7183 obtenidos para RCGA. Así, se demuestra que 
el módulo de decisión cognitiva basado en PSO supera la implementación basada en 
RCGA en todos los escenarios en términos de valor de la función de fitness y de los 
valores óptimos de las métricas de decisión.

Li et al. (2016), en su artículo “Optimization spectrum decision parameters in CR 
using autonomously search algorithm”, introducen el concepto de bioinspiración y su 
aplicación en la toma de decisiones. Se propone un algoritmo de búsqueda autóno-
mo (ASA) basado en la evolución de la población, la reproducción, la selección y la 
mutación. El modelo propuesto es comparado con un algoritmo de optimización por 
PSO y con un algoritmo genérico (AG). Los resultados experimentales muestran que 
ASA satisface la demanda de comunicación y tiene un buen rendimiento, además de 
que puede optimizar adaptablemente los parámetros de transmisión de acuerdo con 
las condiciones del canal y el tipo de cambio en el servicio al cliente, lo que le permite 
obtener un mejor esquema de decisión de parámetros.

Pinto y Correia (2018), en su artículo “Analysis of  machine learning algorithms 
for spectrum decision in cognitive radios”, presentan un análisis de los algoritmos de 
machine learning para el desarrollo de CRN en hardware real. Para esto, implementaron, 
en dos escenarios distintos, tres métodos para la decisión del espectro: ANN, bosques 
aleatorios (RnF) y HMM. Los resultados muestran que HMM obtuvo la mejor tasa 
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media de entrega en los dos escenarios evaluados. En el patrón de tráfico alto, HMM 
fue un 4 % mejor que ANN y un 16 % mejor que RnF; en el patrón medio, fue un 
5,9 % mejor que ANN y un 9,7 % mejor que RnF, y en el patrón bajo, fue un 5,7 % 
mejor que ANN y un 3 % mejor que RnF. 

Joda y Zorzi (2015), en su artículo “Decentralized heuristic access policy design 
for two cognitive secondary users under a primary Type-I HARQ process”, propo-
nen políticas de acceso heurístico descentralizadas para dos SU cognitivos. Debido 
a la falta de una unidad central, el problema se modela como un proceso de decisión 
descentralizado parcialmente observable de Markov (DEC-POMDP), pero, por la 
complejidad del modelo, se diseñaron las políticas de acceso, que aprovechan la re-
dundancia introducida por el protocolo Híbrido-ARQ tipo I. Los resultados mues-
tran que las políticas heurísticas diseñadas aumentan el rendimiento, la flexibilidad y 
la robustez frente a los cambios de canal. Como trabajo futuro, los autores resaltan la 
importancia de implementar escenarios multiusuario.

Finalmente, se describen las dos publicaciones que trabajan en conjunto los en-
foques de toma de decisiones y colaboración entre SU y que, a su vez, tienen una 
fuerte similitud con la presente investigación. En estas investigaciones se utilizan 
técnicas heurísticas y metaheurísticas y estrategias probabilísticas basadas en cadenas 
de Markov:

Rizk et al. (2018), en su artículo “Decision making in multiagent systems: A sur-
vey”, realizan una revisión de los modelos cooperativos más relevantes para la toma 
de decisiones en MAS. Así, presentan modelos basados en procesos de decisión de 
Markov, teoría de juegos, teoría de grafos e inteligencia de enjambres, y las diferen-
tes técnicas son analizadas según su criterio de optimalidad y su aplicación. Entre 
las aplicaciones más destacadas, se incluyen diferentes sistemas cognitivos, como 
redes de telecomunicaciones, sistemas eléctricos, sistemas de transporte, equipos de 
búsqueda y rescate, transporte de objetos, exploración y mapeo. Finalmente, el docu-
mento resalta los avances y los retos para los próximos años, la necesidad de incluir 
en el proceso de toma de decisiones los avances en big data e internet de las cosas y 
la necesidad de desarrollar normas de evaluación que permitan la comparación y 
faciliten su validación. 

Roy et al. (2017), en su artículo “Optimized secondary user selection for quality 
of  service enhancement of  two-tier multi-user cognitive radio network: A game theo-
retic approach”, utilizan la teoría de juegos para estudiar el conflicto y la cooperación 
entre dos niveles de SU. El análisis comparativo muestra que con esta teoría la proba-
bilidad de bloqueo, caída y saturación de canales se reduce en un 81 %, un 79 % y un 
84 %, respectivamente, y la probabilidad de aceptación aumenta un 91 %.
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A partir de las anteriores investigaciones, se evidencia que aún no hay estudios 
que relacionen en conjunto los tres enfoques principales del presente libro —la de-
cisión de espectro, el ambiente colaborativo y la arquitectura descentralizada— y, 
además, que los orienten hacia las redes de radio cognitiva, lo cual representa el 
principal aporte de este trabajo. Adicionalmente, el hecho de trabajar con datos 
de ocupación espectral reales, obtenidos a partir de una campaña de medición, 
le da a esta investigación un mayor valor agregado y diferenciador con respecto a 
las publicaciones descritas anteriormente, dado que en estas se trabaja con datos 
espectrales aleatorios. 

Algunas de las propuestas de investigación en el modelaje o estimación de la acti-
vidad de PU se encuentran descritas o desarrolladas en Bkassiny et al. (2013); Bütün 
et al. (2010); López Sarmiento et al. (2015); Melián-Gutiérrez et al. (2013); Mishra 
et al. (2012); Pattanayak et al. (2013); Tumuluru et al. (2010); Uyanik et al. (2012); 
Wang, Ghosh et al. (2011); Xing, Jing, Cheng et al. (2013), y Yarkan y Arslan (2007). 
Un resumen de las técnicas aplicadas se muestra en la figura 20. 

Figura 20. Resumen de algunas de las metodologías utilizadas en la caracterización del PU
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Fuente: elaboración propia.

Tomando como referencia los resultados encontrados en los trabajos referenciados, 
se encuentra que los algoritmos basados en teoría de colas y las metodologías adi-
cionales no logran, en la mayoría de los casos, encontrar variaciones temporales de 
corto plazo en la señal que representa el PU, lo que genera colisiones o interferencias 
entre los nodos cognitivos y licenciados, y los basados en series temporales, por su 
parte, requieren de un hardware robusto para ser implementados (ya que su comple-
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jidad computacional es alta), y esto dificulta su utilización en áreas geográficas de 
difícil acceso, debido al importante consumo de energía de la red cognitiva. Si bien 
es cierto que se han desarrollado algunas propuestas basadas en aprendizaje autóno-
mo, es importante considerar el desarrollo o aplicación de metodologías similares, 
como la basada en Anfis o LSTM (Graves et al., 2013), con el objetivo de determinar 
si es posible disminuir el porcentaje de error en la generación de predicciones para 
el comportamiento caótico de los PU, con lo que se lograría que los modelos fueran 
más confiables.

Un criterio importante que influye en la selección de las bandas tiene que ver con 
la manera como la BS procesa las solicitudes de los SU (figura 21). En la estrategia 
reactiva —método convencional utilizado en el estado del arte (López Sarmiento et 
al., 2015)—, la negociación de las características que rige el envío de datos se procesa 
después del arribo de la solicitud. En contraste, en la estrategia proactiva —metodolo-
gía propuesta—, la selección y asignación del canal se decide con anterioridad a la lle-
gada del SU, mediante una reserva del recurso; la desventaja de esta estrategia es que 
depende del nivel de acierto del modelo que se use para la estimación de la llegada 
del SU para una aplicación específica (BE o RT): si el cálculo de la probabilidad de 
arribo o predicción no es bueno, la cantidad de aciertos será muy baja y la eficiencia 
será insuficiente.

Figura 21. Estrategias de ejecución de las solicitudes de SU

Procesamiento de las 
solicitudes en la BS

Estrategia                           
reactiva

Estrategia                           
proactiva

Fuente: elaboración propia a partir de López Sarmiento et al. (2015).
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Caracterización de los  
usuarios primarios 

En este capítulo se presentan el desarrollo y los resultados de los modelos de caracte-
rización de usuarios primarios (PU) utilizados en la investigación: LSTM (long short-
term memory), SVM (máquinas de soporte vectorial), Anfis-grid-FCM y MLPNN, los 
cuales se introdujeron en el capítulo anterior. 

Caracterización del usuario primario con long short-term memory 
El diagrama de flujo para el entrenamiento del modelo LSTM (figura 22) comienza 
su proceso inicializando de forma aleatoria cada neurona con valores que oscilan 
entre –1 y 1; seguidamente, se toma cada ejemplo de entrenamiento y se compara la 
salida con la salida esperada: si la respuesta entregada no corresponde a la deseada, 
el algoritmo calcula el error entre las dos salidas y corrige los pesos tanto de las com-
puertas (input, output y forget) como de la celda, a través de la aplicación de pondera-
ciones y haciendo uso de funciones tangenciales y sigmoideas, hasta culminar con 
todos los ejemplos de entrenamiento, y de esta forma aproxima la salida del modelo 
a la esperada (mediante la disminución del error). 

Figura 22. Diagrama de flujo para el entrenamiento de LSTM

Inicializar los 
pesos de cada 

neurona

Obtener la salida de la red 
neuronal con el  ejemplo 

de entrenamiento

Corregir la pon-
deración de la 

red LSTM

Leer los              
ejemplos de 

entrenamiento

Inicio

Fin

¿La salida es la 
esperada?

lista?

No

NoSí

Sí

Fuente: elaboración propia.
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Parte del pseudocódigo del algoritmo LSTM implementado es el siguiente:

Data: la existencia de un arreglo Wo, Wf, Wi y Wc que representa la red neuronal.

Result: red neuronal entrenada con los datos de los ejemplos de entrenamiento.

forgetLayer = Wf.size() //Se obtiene el tamaño del arreglo que representa la red neuronal;

for i = 0; i < neurons; i++ do

Wf[i] = random(–1,1); //Se inicializa cada capa de la red neuronal. 

Wi[i] = random(–1,1);

Wc[i] = random(–1,1);

Wo[i] = random(–1,1);

end

bf  = 0.5 //Aproximación de la salida obtenida para cada capa;

bc = 0.5;

bi = 0.5;

bo = 0.5;

inputs = readInputs() //Se leen los ejemplos de entrada;

outputs = readOutputs() //Se leen los ejemplos de salida;

size = inputs.size() //Se obtiene el tamaño de los ejemplos;

for i = 0; i < size; i++ do

sumf = 0;

sumi = 0;

sumc = 0;

sumo = 0;

for j = 0; j < neurons; j++ do

sumf = sumf + Wf[j]*inputs[i][j] //Se calcula la salida para cada ejemplo en cada capa;

sumi = sumi + Wi[j]*inputs[i][j];

sumc = sumc + Wc[j]*inputs[i][j];

sumo = sumo + Wo[j]*inputs[i][j];

end

ft = sigmoide(sumf + bf) //Se realizan las aproximaciones para cada

salida de la red;

it = sigmoide(sumi + bi);

dct = tanh(sumc + bc);

ct = ft + it*dct;

ot = sigmoide(sumo + bo);

output = ot*tanh(ct) //Se calcula la salida de la red neuronal;

if output != outputs[i] then
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error = outputs[i] - output;

for j = 0; j < neurons; j++ do

Wo[j] = Wo[j] + inputs[i][j]*e //Se recorre cada neurona y se corrige su pondera-
ción respecto al error calculado;

end

bo = 0.5 + error //Se corrige el desplazamiento;

end

Evaluación y análisis de resultados 
Para evaluar el desempeño del algoritmo, la red LSTM fue sometida a dos casos de 
prueba: en el primero de ellos, se analizó el desempeño del sistema de modelamiento 
y predicción cuando la señal de entrada al sistema LSTM se genera computacional-
mente para diferentes patrones de comportamiento difíciles de encontrar en las redes 
inalámbricas convencionales; en el segundo caso, se estudió el pronóstico entregado 
por el algoritmo para secuencias de datos reales capturadas en las bandas GSM-850 
y Wi-Fi, partiendo de la premisa de que el 70 % de los datos utilizados se usa en la 
etapa de entrenamiento de la red LSTM, y el 30 % restante, para validación (estima-
ción de la predicción). 

Captura y procesamiento de la información espectral 
En primera instancia, se procedió a determinar la aplicación de red inalámbrica sobre 
la que se quería evaluar la técnica basada en deep learning (Hochreiter y Schmidhu-
ber, 1997): se seleccionaron, como objetivo principal, las comunicaciones celulares 
(GSM) y de acceso a internet (Wi-Fi), y en segunda instancia, se escogió la técnica 
de detección de espectro: se seleccionó la detección de energía por su fácil implemen-
tación y sus bajos requerimientos (Hernández, Salgado et al., 2015).

Para el procesamiento de la información espectral, se parte del hecho de que las 
medidas fueron tomadas cada 290 milisegundos en las bandas Wi-Fi (2,4-2,48 GHz) 
y GSM (uplink 824-849 MHz) en términos de potencia de transmisión (dBm); con el 
fin de facilitar el reconocimiento de patrones, se representaron los niveles de potencia 
en sistema binario a partir de la definición establecida en la ecuación (86):

0,  si 
( )

1,  si 
x a

f x
x a

≤
=  >

(86),

donde a toma los valores de –89 dBm para el caso GSM, y –88 dBm para Wi-Fi.



110

Cesar Augusto Hernández Suarez, Danilo Alfonso López Sarmiento y Diego Armando Giral Ramírez

En la figura 23 se aprecia el procedimiento para convertir las trazas de datos es-
pectrales en señales discretas; cabe destacar que para el desarrollo de las pruebas se 
contó con una base de datos de 6,79 GB de información sobre trazas de tráfico GSM, 
y de 9,63 GB para trazas Wi-Fi.

Figura 23. Diagrama de flujo para discretización de datos espectrales
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Inicio
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que ocupan el mismo canal

01

¿Es mayor            
al umbral?

No

Sí

Sí No

Fuente: elaboración propia.

Evaluación y validación del algoritmo LSTM 
El rendimiento del algoritmo propuesto es puesto a prueba para un comportamiento 
del PU con secuencias de datos simulados y reales (trazas GSM y Wi-Fi):

Primer grupo de casos de prueba. Se crearon, de manera simulada, patrones de 
comportamiento (de múltiples tamaños) a partir de lo sugerido en Saleem y Rehmani 
(2014) y de acuerdo con la tabla 3. 

Tabla 3. Casos de prueba para trazas de tráfico del usuario 
primario generadas mediante simulación

Identificador Caso de prueba Descripción

CP1 i % 2 === 0
Corresponde a un histórico cuyas unidades de tiempo 
pares presentan una ocupación del canal.

CP2 i % 5! === 0
Corresponde a un histórico cuyas unidades de tiempo 
que no sean múltiplos de 5 presentan una ocupación 
del canal.

CP3 i % 3 === 0
Corresponde a un histórico cuyas unidades de tiempo 
que sean múltiplos de 3 presentan una ocupación  
del canal.
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Identificador Caso de prueba Descripción

CP4
i % 3 === 0 and  
i % 2 === 0

Corresponde a un histórico cuyas unidades de tiempo 
que sean múltiplos de 3 y 2 presentan una ocupación 
del canal.

CP5 Aleatorio
Corresponde a un histórico en el que aleatoriamente 
se genera la ocupación del canal.

Fuente: elaboración propia.

A manera de descripción cualitativa, se presentan los resultados arrojados por el 
algoritmo LSTM al modelar y estimar el comportamiento futuro del usuario licencia-
do (para el caso CP1) cuando se presenta una fluctuación alta de presencia y ausencia 
en el canal licenciado (Saleem y Rehmani, 2014). La secuencia binaria que simula el 
uso del canal está formada por 77 datos; la figura 24 muestra la secuencia para los pri-
meros 17 valores, distribuidos como 10101010101010101, donde la presencia del PU 
se representa con 1, y la ausencia, con 0. La aplicación genera de manera adaptativa 
la estructura de red LSTM más adecuada para la secuencia de entrada (figura 25).

La etapa de aprendizaje (entrenamiento-modelamiento) se muestra en la figura 
26, y se concluye que la red LSTM fue capaz de determinar en un 100 % el patrón que 
sigue la secuencia de uso del canal.

Figura 24. Representación del comportamiento histórico para 77 muestras
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Fuente: elaboración propia.
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Figura 25. Topología de la red neuronal
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Fuente: elaboración propia.

Figura 26. Resultados de la etapa de entrenamiento (fase de aprendizaje de la red)
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Fuente: elaboración propia.

De la estimación futura (proyección de la predicción) entregada por la red neuronal 
se puede destacar que el nivel de acierto entre la señal original (secuencia morada) y 
la proyectada por el sistema (líneas azules) es del 100 %, lo que indica que el error de 
predicción es del 0 %, es decir, que el sistema neuronal es muy eficiente para el caso 
evaluado (figura 27). 
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Figura 27. Resultados de la predicción
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Fuente: elaboración propia.

Los resultados cuantitativos para los diferentes casos planteados en la tabla 3 se pre-
sentan en la tabla 4.

Las métricas de evaluación de desempeño se refieren a valores promedio, pues 
se crearon históricos de múltiples tamaños (17, 35, 77, 157 y 200 datos binarios) 
aplicando diez pruebas para cada caso, debido a que se pueden obtener diferentes 
soluciones por cada ejecución del algoritmo. 

Tabla 4. Desempeño de la red LSTM en la caracterización de usuarios primarios

LSTM

Caso de 
prueba

Porcentaje de error de 
validación promedio

Porcentaje de error de 
predicción promedio

Número de 
iteraciones

Tiempo de 
procesamiento (ms)

CP1 0,0875830 0 1352 54,8 

CP2 0,0936039 20,0465950 1422 75,6

CP3 0,8194522 28,9938556 5030 549,1

CP4 0,7566375 15,8806964 3757 820,4

CP5 0,7981350 37,4858167 17.402 6758,6

Fuente: elaboración propia.
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Tabla 5. Desempeño de la red MLPNN en la caracterización de usuarios primarios

MLPNN

Caso de 
prueba

Porcentaje de error de 
validación promedio

Porcentaje de error de 
predicción promedio

Número de 
iteraciones

Tiempo de 
procesamiento (ms)

CP1 0,049945930 0 1594 78,9

CP2 0,068684850 24,9820789 4314 244,1

CP3 0,105482774 37,6014337 5491 517,2

CP4 0,882621500 20,8151562 4702 943,1

CP5 0,504369700 52,6732207 5139 2263,5

Fuente: elaboración propia.

La validación del algoritmo LSTM se hizo evaluando las mismas métricas bajo idén-
ticas consideraciones, pero haciendo uso de una red neuronal tipo perceptrón multi-
capa piramidal (tabla 5), y posteriormente se comparó con Anfis (tablas 6 y 7).

Del análisis de las tablas 4 y 5 se observa que el error de predicción promedio en 
LSTM varía entre el 0 y el 37,48 %, lo que ubica el nivel de pronóstico por encima 
del 62,50 % en el peor de los casos (CP5), porcentaje que además es superior al en-
contrado con MLPNN (47,33 %). Esto indica que LSTM logró generalizar el com-
portamiento de los diferentes patrones presentados y logró predecir adecuadamente  
el comportamiento del PU en cualquier instante de tiempo t mientras el PU siga 
teniendo el mismo comportamiento. Otra característica importante es que, a pesar de 
que LSTM posee en su estructura más neuronas que MLPNN, en los casos CP1-CP4 
requirió de menos iteraciones, lo que demuestra que la complejidad en la estructura 
LSTM permite abstraer el patrón de comportamiento de la señal PU a un menor 
costo computacional cuando la matriz usada como histórico es de longitud pequeña. 
Finalmente, el error de validación promedio corresponde a un valor muy pequeño 
para ambos tipos de red neuronal, condición que garantiza poder llegar a modelar la 
red de manera óptima. 

Segundo grupo de casos de prueba. Para demostrar la viabilidad del algoritmo 
propuesto con trazas de tráfico reales tipo GSM y Wi-Fi, se definió la métrica lla-
mada índice de ocupación (Io) —ecuación (87)— para dividir el nivel de uso de las 
bandas espectrales en índice de ocupación alto, índice de ocupación medio e índice 
de ocupación bajo, con lo que se logró una apreciación más objetiva y detallada. 

0
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x
t x
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donde t(x) corresponde a los flujos de datos discretizados y n es el número de elemen-
tos en t(x). Las salidas obtenidas se resumen en las tablas 6 y 7, teniendo en cuenta, 
primero, que para alimentar el sistema se usó un tamaño de traza de 20.00 datos para 
cada una de las tres bandas de frecuencia seleccionadas (de acuerdo con su índice de 
ocupación), y segundo, que se aplicaron diez pruebas para cada caso. 

La evaluación de las métricas en cada caso sugiere que el tiempo de procesamien-
to es superior en LSTM, debido al mayor tamaño de las trazas y a que este tipo de 
red recurrente utiliza celdas de memoria para almacenar información de patrones 
encontrados que podrían ser reutilizados más adelante. Esta capacidad de almace-
namiento y olvido de patrones afecta directamente la variable “error de validación”, 
que es mucho mejor en LSTM que en MLPNN.

Se puede observar que el “error de entrenamiento” es menor en LSTM, lo que 
se sustenta en su mayor capacidad para el reconocimiento de patrones gracias a la 
utilización de las compuertas de olvido, entrada y salida y a la celda de memoria.

Desde el punto de vista del porcentaje de acierto, con LSTM los valores oscilan 
entre el 97,09 % (para un Io bajo) y el 77,14 % (para un Io alto) en sistemas GSM, y 
entre el 87,25 % (para un Io bajo) y el 63,82 % (para un Io alto) en Wi-Fi, por lo que 
LSTM es más eficiente que MLPNN; no obstante, es importante destacar que esta 
mayor eficiencia lleva consigo una mayor necesidad de requerimientos en el hard-
ware, factor que no es relevante si el sistema de predicción se implementa en CRN 
con topología centralizada.

Al examinar los porcentajes de acierto en las predicciones de aparición/no apa-
rición de PU en las bandas espectrales (figura 28), para los índices de ocupación 
definidos en las tablas 6 y 7, y tomando como referencia los algoritmos que mejor 
rendimiento presentaron, se deduce que con LSTM se obtiene un promedio de éxito 
en la predicción del 87,34 % en GSM y del 76,30 % en Wi-Fi, en tanto que con Anfis 
se logró una eficiencia del 86,68 % en GSM y del 72,62 % en Wi-Fi. 

También se puede observar una tendencia lineal decreciente y con mayor pen-
diente en los pronósticos a medida que la ocupación espectral aumenta, debido a una 
mayor intermitencia aleatoria en el uso del espectro, así como un mejor desempeño 
en la caracterización de PU (para las tres metodologías: LSTM, MLPNN y Anfis) en 
la banda espectral GSM, debido probablemente a la naturaleza más caótica presen-
tada en los flujos Wi-Fi. 
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Figura 28. Porcentaje de acierto en la predicción para LSTM y Anfis
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Fuente: elaboración propia.

Discusión 
Dentro del área de la inteligencia artificial, las redes neuronales han tenido una am-
plia aplicación en series temporales dada su capacidad de predicción sobre unidades 
de tiempo desconocidas y debido a su capacidad de ser entrenadas por medio de 
ejemplos para abstraer un comportamiento, a diferencia de otras técnicas de inteli-
gencia artificial que lo obtienen de un experto mediante la representación de varia-
bles relevantes para la solución del problema.

Una de las metodologías de aprendizaje supervisado más usadas en la caracteri-
zación de PU son las redes neuronales multicapa, pues con estas se puede llegar a ob-
tener una mejora en la eficiencia de hasta el 60 % en la predicción, según concluyen 
Adeel et al. (2014) (aunque en las pruebas realizadas por ellos se alcanzaron porcen-
tajes más altos); sin embargo, recientemente se ha venido proponiendo la utilización 
de técnicas basadas en deep learning por su alto nivel de abstracción (Kalkan, 2018) 
para la solución de múltiples problemas, lo que representa una razón de peso para 
proponer su utilización en radio cognitiva (CR) (Gers y Schmidhuber, 2001; Palangi 
et al., 2016; Sun et al., 2016; Sundermeyer et al., 2015).

Del análisis realizado se evidencia que, si bien LSTM presenta mayor capacidad 
de predicción, aún posee un error importante en la estimación para aquellos casos 
en los que el comportamiento de los PU es caótico; sin embargo, obtener un error 
cercano a cero es una tarea difícil debido a la naturaleza de las señales, condición que 
puede sustentarse desde el punto de vista de la entropía. En la ecuación (88) (Abram-
son, 1981), cuando la entropía es 1, existe una probabilidad de ocupación de la banda 
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espectral del 50 % en cualquier instante de tiempo, lo que genera un nivel de incerti-
dumbre alto en el momento de realizar estimaciones de ocupación del canal; situa-
ción contraria se presenta cuando su valor tiende a cero (condición más favorable).

( ) 2
0

1* log
i

n

s i
i x

E p x
p=

 
=   

 
∑ (88),

donde ( )ip x  corresponde a la probabilidad de aparición del caracter xi y n es el nú-
mero de caracteres. 

Al calcular, por ejemplo, el valor de la entropía en GSM con LSTM, se encuen-
tra que, para los índices de ocupación alto, medio y bajo, se obtienen valores de 
0,7317737, 0,5529701 y 0,1979427, respectivamente, en coherencia con los errores 
de predicción de la tabla 3. Por otra parte, los históricos de datos arrojan indicios de 
cómo será el comportamiento de los PU, mas no garantizan que realmente se repita; 
sin embargo, el hecho de tener un indicio del posible comportamiento del PU le per-
mite a la BS de una red cognitiva estar preparada para tomar acciones sobre la posible 
asignación de una banda frecuencial a un SU.

Un indicador adicional que permite verificar cuál es el mejor modelo entre los 
algoritmos LSTM, MLPNN y Anfis es el coeficiente de correlación (obtenido del 
promedio de los valores de la variable Io) de las tablas 6 y 7 y la figura 29: su valor 
cercano a 1, en el caso de LSTM, permite concluir que ese es el mejor modelo de los 
tres evaluados. 

Un aporte final de la aplicación desarrollada (para el algoritmo LSTM) es su 
capacidad de crear automáticamente la estructura neuronal según el tamaño de la 
traza que se pretenda caracterizar; esto representa un acierto ya que no se requieren 
esfuerzos adicionales en la construcción de la topología al modificar el comporta-
miento de los datos de entrada, como sí sucede, por ejemplo, en Adeel et al. (2014) y 
en Winston et al. (2013).
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Figura 29. Coeficiente de correlación en la etapa de entrenamiento (modelamiento)

0,00

0,20

0,40

0,60

0,80

1,00

0,74 0,74

0,85

0,70

0,60
0,65

LSTM MLPNN An�s

GSM

Wi-Fi

Fuente: elaboración propia.

Caracterización del usuario primario con un 
modelo neurodifuso: Anfis-grid-FCM 

Procesamiento de la información espectral 
Para la captura de los datos se seleccionaron, como objetivo principal, las comu-
nicaciones celulares (GSM), y con el fin de realizar un mejor aprovechamiento de 
la información, se procedió a obtener el promedio de los niveles de potencia que 
existían en cada banda (tabla 8) para construir o generar la señal analógica final, que 
representaría el comportamiento del PU en cada espectro.

Tabla 8. Nivel de potencia final, que representa la presencia o ausencia de un usuario primario

Medición Banda 1 Banda 2 Banda 3 Promedio

1 –95,5933 –96,7638 –104,8880 –99,0817

2 –88,8808 –93,1084 –93,4447 –91,8113

3 –93,3937 –94,1699 –105,4508 –97,6715

4 –105,4927 –104,0746 –93,5037 –101,0237

5 –90,3791 –95,7670 –97,9036 –94,6832

6 –109,0864 –94,5978 –106,2340 –103,3061

7 –89,1763 –95,6988 –90,5302 –91,8017

Fuente: elaboración propia.



120

Cesar Augusto Hernández Suarez, Danilo Alfonso López Sarmiento y Diego Armando Giral Ramírez

Una vez obtenida la muestra o señal para caracterizar, el algoritmo normaliza los 
datos para minimizar su variación ubicándolos en el intervalo de a 1 (figura 30).

Figura 30. Muestra de niveles de potencia del usuario primario normalizados
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Fuente: elaboración propia.

Antes de realizar el entrenamiento de la red Anfis, se implementa un filtro de media 
móvil para suavizar las fluctuaciones de alta frecuencia o eliminar tendencias que se 
puedan considerar como ruido (figura 31). 

Figura 31. Comparación entre la señal normalizada (superior) y la filtrada (inferior)
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Fuente: elaboración propia.
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Dicho filtro ( yT) , representado en la ecuación (89), procesa el dato actual a partir de 
la consideración de las cuatro muestras anteriores .

1 2 3 4
1 1 1 1 1
4 4 4 4 4T t t t t ty y y y y y− − − −= + + + + (89),

donde las constantes 
1 
4na = 
1 
4na =   son los coeficientes del filtro de realimentación. 

Funcionamiento del algoritmo 
Las funciones de pertenencia de la capa 1, para el entrenamiento del modelo Anfis 
en el software Matlab, son como las mostradas en la figura 32, donde se tienen como 
entradas los universos y(k – 1), y(k – 2) y y(k – 3), cada uno de ellos con dos conjuntos 
sigmoidales (mf1, mf2), además de un universo de salida ( ( )U k ), con los conjuntos 
lineales mf1, mf2, mf3, mf4, mf5 y mf6. 

Figura 32. Sistema Anfis basado en el modelo Sugeno
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Fuente: elaboración propia.

La estructura FIS (fuzzy inference system), encargada de especificar los parámetros del 
sistema para el aprendizaje del Anfis dentro de las simulaciones realizadas, surgió de 
la integración de los métodos Anfis-grid y Anfis-FCM, como se muestra en el diagra-
ma de bloques del algoritmo de predicción de la figura 33.

El sistema propuesto inicia con la obtención de los datos de los canales; luego, 
genera una sola columna de datos que representa el promedio de los niveles de 
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potencia para cada banda espectral; seguidamente, halla el máximo y el mínimo 
de los valores de dicha columna y procede a realizar el normalizado de la señal 
y a aplicar el filtrado descrito en la ecuación (89), y por último, une los datos de 
entrada y salida (figura 33) en un arreglo de dos columnas en el que las entradas (Y) 
son divididas en 6 subgrupos, y las salidas (U), en 4 subgrupos, de acuerdo con las 
ecuaciones (90) y (91).

{ ( 1), ( 2), ( 3)}Y y k y k y k= − − − (90),

donde Y representa las muestras anteriores ( ( )y k n− ) de la señal a estimar.

{ ( 1), ( 2), ( 3), , ( 6)}U u k u k u k u k= − − − … − { ( 1), ( 2), ( 3), , ( 6)}U u k u k u k u k= − − − … − { ( 1), ( 2), ( 3), , ( 6)}U u k u k u k u k= − − − … − (91),

donde U representa el universo de salida para los conjuntos lineales.

Luego, se genera una búsqueda secuencial a fin de crear tres grupos de datos (para 
no saturar con demasiada información el Anfis) de acuerdo con la forma dada en las 
ecuaciones (92)-(94):

Grupo 1  1 ( 1), ( 2), ( 3)Grupo y k y k y k= − − − (92);

Grupo 2  2 ( 1), ( 2), ( 3)Grupo y k y k y k= − − − (93);

Grupo 3  3 ( 2), , ( 6)Grupo u k u k= − … −  3 ( 2), , ( 6)Grupo u k u k= − … − (94).

Adicionalmente, el algoritmo genera una búsqueda exhaustiva con el fin de deter-
minar posibles patrones de aprendizaje que pudieran servir en la etapa de entrena-
miento y aprendizaje del modelo. A partir de los datos recibidos en el paso anterior, 
se entrena y prueba el modelo, ajustando el número de funciones de pertenencia en 
Anfis-grid y la cantidad de clústeres en Anfis-FCM, hasta encontrar el menor error 
posible entre la salida deseada y la entregada por el algoritmo. La partición grid divi-
de el espacio de datos en subespacios rectangulares con particiones paralelas basadas 
en el número y tipo predefinido de funciones de membresía (MF) (Abdulshahed et 
al., 2015), que son obtenidas con el método de estimación de mínimos cuadrados.

Cuando se diseñan o construyen las reglas difusas o fuzzy, los parámetros del con-
secuente en la MF (que son de salida lineal) se establecen como ceros; por lo tanto, es 
necesario identificar y perfeccionar estas variables utilizando Anfis (Abdulshahed et 
al., 2015), lo que genera el concepto Anfis-grid (Abonyi et al., 1999; Kennedy et al., 
2003). La aplicación más amplia para las grid partition en los FIS tiene el inconvenien-
te de que el número de reglas difusas aumenta exponencialmente cuando el número 
de variables de entrada aumenta (Neshat et al., 2011).
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Figura 33. Diagrama de bloques del algoritmo de predicción de 
usuarios primarios con Anfis-grid y Anfis-FCM
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Fuente: elaboración propia.
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Anfis-FCM basa su funcionamiento en fuzzy c-means (FCM), que es una técnica 
de clusterización de información en la que cada uno de los datos pertenece a un clús-
ter que es especificado mediante un grado de pertenencia (Valero Verdú y Senabre 
Blanes, 2013); este algoritmo fue planteado por Dunn en 1973 (Dunn, 1973). FCM 
es el modo difuso del algoritmo K-means y no considera límites definidos entre los 
clústeres (Jain, 2010; Velmurugan, 2014), lo que supone una ventaja, ya que puede 
asignar MF parciales a diferentes grupos del conjunto universal de clústeres en lugar 
de a un solo grupo (Abdulshahed et al., 2015). FCM está basado en la minimización 
de la función objetivo de la ecuación (95) (Fauzi bin Othman y Yau, 2007):

2

1 1

; 1
N c

m
m ij i j

i j
J x C mµ

= −

= − ≤ ≤ ∞∑∑ (95),

donde m es cualquier número real mayor a 1, ijµ  es el grado de membresía de xi en 
el clúster j, xi es el i-ésimo término de los datos medidos, Cj es el j-ésimo término del 
clúster y � i jx C− � es cualquier norma que exprese la similitud entre los datos medidos 
y el centro. 

La división difusa se realiza a través de una optimización iterativa de la función 
objetivo mostrada en la ecuación (95), tomando como referencia la función de mem-
bresía ijµ  y los centros del clúster Cj en cada dimensión —ecuaciones (96) y (97)—. 
Cabe destacar que esta iteración en el algoritmo converge cuando el valor de Jm (que 
es la función objetivo) corresponde con lo establecido en la ecuación (95) (Fauzi bin 
Othman y Yau, 2007):
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donde ijµ  representa la función de membresía, Ck es el i-ésimo término del clúster y 
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donde Cj es el valor del j-ésimo clúster y xj es el valor del j-ésimo dato medido.
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Evaluación y análisis de resultados 

Validación del modelo Anfis 
La validación del sistema Anfis propuesto se realizó haciendo uso del software Mat-
lab con un patrón de datos de 1000 muestras, de las cuales el 50 % se usó en la 
etapa de entrenamiento, y el otro 50 %, en la fase de validación (estimación de la 
predicción) para un canal espectral en la banda uplink GSM. En la fase de apren-
dizaje Anfis, los parámetros del antecedente y los del consecuente son entrenados 
con el algoritmo backpropagation, obteniendo la diferencia entre la sumatoria de los 
puntos a partir de los datos de entrada y la sumatoria de los puntos a partir de los 
datos entregados por el Anfis, y propagando el error desde las salidas hacia las en-
tradas para ajustar las variables y disminuir el valor del error. La figura 34 muestra 
la comparación entre la secuencia usada para el entrenamiento y la calculada por 
el modelo; se observa que la etapa de entrenamiento es bastante acertada ya que es 
capaz de seguir el comportamiento caótico del PU en el canal, incluso para varia-
ciones pequeñas de la señal.

Para determinar qué tan adecuado es el proceso de acierto en el entrenamiento, 
se utiliza la raíz del error cuadrático medio (RMSE) de la ecuación (98); esta métrica 
determina el desajuste entre el modelo y el comportamiento real de la señal (Salcedo, 
2006; Soto et al., 2010), y representará un mejor comportamiento cuando su valor 
sea más cercano a cero.

Figura 34. Entrenamiento del usuario primario en un 
canal GSM (modelado) con Anfis-grid-FCM
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∑ (98),

donde di hace referencia al patrón de entrenamiento real dado, Oi corresponde a la 
respuesta entregada por el modelo Anfis y n es la cantidad de datos.

El valor óptimo encontrado para la variable RMSE (que corresponde al de la figu-
ra 34) fue de 0,0042639, utilizando una función de activación tipo “gbellmf ”, con un 
error que varía entre –0,01 y +0,15, parámetro que indica una diferencia y variación 
mínima entre los datos de entrenamiento deseados y los obtenidos por el algoritmo, 
lo que permite inferir que el sistema es un buen estimador para describir y pronosticar 
señales de PU continuas en bandas GSM.

La etapa de validación se aprecia en la parte superior de figura 35, donde se 
compara la secuencia de verificación que se desea alcanzar para 500 muestras con la 
calculada por Anfis-grid-FCM: se obtuvo un valor RMSE de 0,004451. 

Figura 35. Validación del modelo Anfis-grid-FCM estimando una predicción 
futura de comportamiento del usuario primario para 500 datos
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Fuente: elaboración propia.

Al analizar la dispersión para los primeros 20 datos de entrenamiento, se encuentra 
que es de aproximadamente 0,001, y para los últimos 20 datos de validación es de 
0,0033, valor que, aunque un poco más elevado, permite concluir que la predicción 
estimada es muy cercana a los datos de prueba; esta condición puede ser corroborada 
por la cercanía mostrada entre los puntos de las gráficas de dispersión ubicadas en la 
parte inferior de la figura 35. 
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Evaluación de desempeño del algoritmo Anfis-grid-FCM 
Se valida el sistema propuesto al compararlo con la técnica LSTM para las métricas 
de juicio RMSE, precisión en la predicción, coeficiente de correlación y tiempo de 
cómputo. La respuesta del algoritmo LSTM para el mismo comportamiento de en-
trada del PU durante el entrenamiento y la validación es la obtenida en las figuras 36 
y 37 y en la tabla 9.

Figura 36. Entrenamiento del comportamiento del usuario 
primario en un canal GSM (modelado) con LSTM
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Fuente: elaboración propia.

Tabla 9. Resultados encontrados con LSTM

Métrica
Etapa de entrenamiento 

(modelamiento)
Etapa de validación 

(predicción)

RMSE 0,0058962 0,0056982

Variación del error –0,019 y +0,018 –0,0185 y +0,015

Dispersión de los datos 0,010 0,018

Fuente: elaboración propia.

El análisis de las salidas entregadas por Anfis y LSTM parte de los resultados alma-
cenados en las bases de datos de entrenamiento y prueba que están resumidos en la 
tabla 10. Puede observarse que los valores de entrenamiento son mejores que los de 
prueba, a excepción de la métrica que identifica el tiempo necesario para la ejecución 
de los modelos, que es menor en la etapa de prueba, debido a que el grado de ajuste 
de parámetros para disminuir el error entre la salida deseada y la entregada por los 
algoritmos es aplicado en la fase de aprendizaje. 
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Figura 37. Validación del sistema LSTM estimando una predicción 
futura de comportamiento del usuario primario para 50 datos
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Fuente: elaboración propia.

Tabla 10. Resultados estadísticos de los sistemas Anfis y LSTM

Métrica de evaluación
Datos de entrenamiento Datos de validación

Anfis LSTM Anfis LSTM

RMSE 0,0042639 0,0044510 0,0058962 0,0056982

Porcentaje de precisión en la predicción 93,67 72,88 93,94 72,17

Coeficiente de correlación 0,94 0,71 0,91 0,68

Costo computacional (s) 32,97 17,54 3,22 1,31

Fuente: elaboración propia.

Si bien es cierto que el tiempo necesario para el entrenamiento y prueba en Anfis 
representa un 52,086 % más que en LSTM, la exactitud en la predicción del estado 
de ocupación del canal es mucho más acertada en Anfis-grid-FCM, con un valor del 
93,94 %, lo que implica una menor probabilidad de colisiones entre el PU y el po-
sible nodo cognitivo candidato a utilizar el espectro licenciado disponible. También 
se debe notar que el comportamiento de la variable precisión en la predicción presenta 
un desempeño ligeramente mejor en el entrenamiento al compararse con los valores 
encontrados en la fase de prueba, pero se destaca, igualmente que ni Anfis-grid-FCM 
ni LSTM son capaces de reducir a cero el error en el aprendizaje.

Tomando como referencia las métricas RMSE y el coeficiente de correlación, 
se concluye que tienen una tendencia similar, pero ligeramente mejor en Anfis, lo 
que indica que, desde el punto de vista de la obtención de mejores pronósticos, es la 
opción más adecuada.
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En síntesis, al comparar los resultados de forma global, se llega a la conclusión de 
que el método Anfis-grid-FCM es más adecuado que LSTM (para este caso particu-
lar) si dentro del sistema de radio cognitiva no es tolerable la existencia de posibles 
colisiones entre los PU y los SU cuando coexistan simultáneamente dentro de la red 
inalámbrica; no obstante, la gran ventaja de LSTM es que la robustez del hardware 
necesaria para la implementación sería mucho menor que la requerida por Anfis.

Caracterización del usuario primario con SVM 
En este apartado se exponen los resultados obtenidos al usar dos clasificadores 
basados en SVM para realizar la caracterización en redes Wi-Fi a partir de la 
emisión/no emisión de datos en el canal 6 (banda de 2,437 GHz). La figura 38 
muestra las actividades de aplicación realizadas para caracterizar el uso o no del 
espectro. Inicialmente, se genera una serie temporal a partir de los datos de emi-
sión de una red Wi-Fi, para lo cual se usa el programa Acrylic, que devuelve una 
lista de datos con la fecha, la hora, el minuto y el segundo de emisión o uso del 
canal por parte del PU (información conocida a partir de ahora como timestamp) 
y su longitud; con estos datos, se implementa un módulo para cargar el fichero 
generado con Acrylic (punto 1). Seguidamente, se crea otro módulo para convertir 
la información en una serie temporal que representa la emisión/no emisión para 
cada slot de tiempo (punto 2). Esta serie temporal se asume como el resultado en 
un entorno real de una radio cognitiva monitorizada, y sobre ella, que representa 
los valores de emisión (presencia/ausencia) del PU, se integran dos SVM: uno, 
generado con la toolbox de Matlab (SVM Matlab, desde ahora llamado SVM-1) 
(punto 3), y otro, de código libre (LibSVM, desde ahora llamado SVM-2) (punto 7) 
(Chang y Lin, 2013). 
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Figura 38. Diagrama de bloques del sistema de caracterización con SVM

2. Transformar a serie temporal los datos WS

3. Implementar el SVM-1 

5. Cambiar el tipo de kernel

6. Cambiar las condiciones KKT

7. Implementar el SVM-2

9. Implementar el PCA

10. Cambiar las unidades de la serie temporal

4. Cambiar el máximo de iteraciones

11. Cambiar la longitud y el número de 
ejemplos

Fuente: elaboración propia.

Primero, se integra el SVM-1 (punto 3) y se evalúa el comportamiento para estimar el 
uso del canal variando múltiples características del sistema: el número de iteraciones 
(punto 4), el tipo de kernel (punto 5), las condiciones KKT (Karush-Kuhn-Tucker) 
(punto 6) (Krogstad, 2012), las características de los datos capturados a través del uso 
del PCA (principal component analysis) (punto 9), las unidades de medida de la serie 
temporal (punto 10) y la longitud y el número de ejemplos (punto 11).

Posteriormente, se utiliza el SVM-2 (punto 7) evaluando su nivel de predicción a 
través del uso de PCA (punto 9) y variando las unidades de medida de la serie tempo-
ral (punto 10) y la longitud y el número de ejemplos (punto 11); también se ha imple-
mentado la posibilidad de variar los porcentajes de probabilidad (punto 8), parámetro 
con el cual se pretende que el predictor devuelva valores cercanos a 1 cuando el últi-
mo instante de tiempo monitorizado es de emisión, y cercanos a 0 cuando es de no 
emisión, independientemente de la lejanía del instante en que se prediga la señal real.

Consideraciones previas de los SVM como clasificadores en radio cognitiva 
Los SVM son algoritmos de aprendizaje supervisado que requieren un entrenamien-
to (fase de modelamiento de los PU) con un conjunto de ejemplos antes de que se 
puedan aplicar para clasificar muestras (predicción de PU). Cada ejemplo tiene unas 
características muy bien definidas (en el caso de los PU, corresponden a los valores 
de emisión en los tiempos anteriores a la predicción) y un valor que define la clase, 
en este caso binario (1, si hay presencia del PU, y 0, si no la hay). La clase es la que 
se predice a partir de las características. Las características suelen ser distintas medi-
ciones o valores que definen el ejemplo. En la fase de aprendizaje (modelamiento) se 
introducen las características (valores anteriores de presencia o ausencia de los PU) y 
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la clase (el estado actual de emisión o no emisión), y el SVM busca una solución para 
diferenciar los ejemplos según su clase. En la fase de test (comprobación del índice 
de acierto de la predicción) se introducen las características de distintos ejemplos en 
el SVM ya entrenado, y el clasificador devuelve una clase (1 o 0). Para cada ejemplo, 
esta clase que devuelve el clasificador se compara con el dato real para comprobar 
el índice de acierto. Una vez se consiguen resultados de test satisfactorios, se puede 
utilizar el SVM para clasificar ejemplos (predecir los PU).

Los SVM tienen como principal propiedad la creación de un hiperplano o con-
junto de hiperplanos de dimensionalidad mayor a la que ofrecen los ejemplos de 
entrada, y de este modo la posibilidad de separación de clases aumenta radicalmente. 
Los SVM se encargan de buscar el hiperplano con mayor distancia entre los ejemplos 
de una clase y otra. La manera más adecuada de realizar la separación es mediante 
una línea recta, un plano recto o un hiperplano N-dimensional. A veces, un algorit-
mo SVM debe tratar con más de dos variables —curvas no lineales de separación—, 
casos en los que los conjuntos de datos no pueden ser completamente separados en 
más de dos categorías. Las funciones kernel ofrecen una solución a este problema, 
proyectando la información a un espacio de características de mayor dimensión, y 
especifican cómo se crean estos espacios de dimensionalidad mayor a partir de las 
dimensiones originales. Normalmente, los SVM se utilizan para problemas de regre-
sión y de clasificación, pero rara vez para predicción de series temporales. Para aplicar 
SVM a la caracterización de radios cognitivas, que se muestran como una serie discre-
ta, se extrae una serie temporal de n timestamps, cada uno de los cuales representa emi-
sión (1) o no emisión (0). Los primeros n – 1 timestamps se utilizan como características 
del ejemplo, y el timestamp n (que es la clase), como el valor que se predice.

Diagrama secuencial del SVM-1 
El primer algoritmo utilizado se soporta en el existente en las librerías propias de 
Matlab. La figura 39 presenta el diagrama de flujo resumido de cómo implemen-
tarlo y aplicarlo para la predicción de futuros patrones de comportamiento. Prime-
ro, se define un conjunto de ejemplos  (punto 1) para representar las series temporales 
que definen los valores de emisión y no emisión de un PU para un intervalo de tiem-
po determinado y pasado. El conjunto de estos ejemplos caracteriza al PU usando el 
formato que requiere SVM.
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Figura 39. Diagrama de flujo del primer algoritmo SVM-1
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2. De�nición de la función kernel k

2. De�nición de max_iter

Fuente: elaboración propia a partir de Matlab.

Seguidamente, se define la función kernel (punto 2); en caso de un kernel lineal, k es 
el producto escalar. El módulo SVM usa un método de optimización para identificar 
los vectores de soporte si, los pesos ai y el bias b. Estos valores no representan nada 
propio en CR, sino que son propios del clasificador SVM y ayudan a generar dos 
conjuntos diferenciables de datos: uno para emisión y otro para no emisión. Esta 
optimización se repite si no se hallan valores válidos hasta un máximo de iteraciones 
(max_iter) definido externamente a la aplicación del software desarrollado (punto 3). 
Por cada iteración, se debe hacer lo siguiente (punto 4):

•	 Calcular los vectores de soporte si, los pesos ai y el bias b.

•	 Para cada ejemplo x de los creados en el punto 1 (punto 7):

•	 Se calcula la predicción con la ecuación (99) (punto 8):

			   ( ),i i
i

c a k s x b= +∑ 				        (99).1

1	 Cabe destacar que cada una de las variables de la ecuación fue previamente definida en este mismo capítulo.
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•	 Se obtiene la clase de la predicción analizando el valor c (punto 9): si c es 
positivo o cero, la clase es 0 (punto 10), y si c es negativo, la predicción es 1 
(punto 11).

•	 El algoritmo comprueba la predicción con la clasificación real del ejemplo 
(punto 12): si coinciden, se pasa al siguiente ejemplo (punto 13), y si no, se 
suma 1 al número de iteraciones (punto 14) y se vuelve al punto 4.

En caso de no quedar ejemplos o de haberlos clasificado todos correctamente (lo que 
es lo mismo), el módulo devuelve un modelo SVM (punto 15). Si se supera el máxi-
mo de iteraciones internas del módulo SVM, este devuelve un error indicando que 
no ha convergido el algoritmo, es decir, que no se ha encontrado un clasificador apto 
para este problema (punto 5). Para caracterizar CR, se define x como la característica 
de cada ejemplo. Se buscan los valores si, ai y b de forma que se consiga un valor c 
negativo para todos los ejemplos de clase 1 y un valor c positivo para todos los ejem-
plos de clase 0. Posteriormente, con si, ai y b definidos, al aplicar la función anterior 
a un ejemplo, el valor c define si el PU se encuentra o no en el canal. Si c es positivo 
o cero, la predicción es “no emisión”, y si c es negativo, la predicción es “emisión”.

Diagrama secuencial del SVM-2 
El segundo algoritmo, modificado para modelar y predecir el uso del canal, está 
basado en Chang y Lin (2013). En la figura 40 se muestra el diagrama de flujo del 
algoritmo usado, donde se observa que primero se define un conjunto de n ejemplos 
que representan series temporales que definen los valores de emisión y no emisión 
para un intervalo de tiempo determinado. De este modo, cada una de las muestras 
se interpreta como ausencia/no ausencia del PU en un intervalo de tiempo pasado 
en la banda de frecuencia. Cada serie temporal consta de l valores de emisión (1 si 
hay emisión y –1 si no la hay), los cuales deben corresponder con cada xi. La clase 
de dicho ejemplo es representado por yi, que es el valor de presencia o ausencia en el 
instante de tiempo l + 1 (punto 1). Es importante aclarar que  , 1, ,  n

ix R i l∈ = … ; es de-
cir, para el caso del PU, { }1, 1ix ∈ − ) (punto 2) y { } 1, 1 , 1,  ,  iy i l∈ − = …  (punto 3). En 
el punto 4 se declara el tipo de kernel que utilizará el algoritmo LibSVM; cada kernel 
establece el modo como se van a separar los conjuntos según su clase y. Las opciones 
son lineal, polinómico, sigmoidal y función de base radial. En este caso, se eligió un 
kernel lineal, que está dado por el producto escalar, ya que se concluyó (a partir de 
pruebas) que era el que mejor respuesta entregaba en el modelamiento de PU y el que 
menor costo computacional tenía. Matemáticamente —ecuación (100)—, el SVM-2 
intenta resolver el problema de optimización relacionado por medio de la construc-
ción de un hiperplano de separación en la SVM que minimice el valor de las sumas 
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de las desviaciones ( )iε  en los errores de entrenamiento y maximice el margen para 
los vectores correctamente clasificados en la caracterización de los PU (punto 5).

, ,
1

1min
2

l
T

w b s i
i

w c ε
=

+ ∑w (100),

donde

0, 1, , ; 0i i l cε ≥ = … > 0; i = 1, ...l, c > 0 ,

sujeto a: 

( )( ) 1T
i i iy w k x b ε+ ≥ −

,

dónde wT es una matriz que define los vectores de soporte, c es el parámetro de re-
gularización, ( )ik x  es la función kernel y b es el bias. Estas variables generan dos 
conjuntos diferenciables de datos: uno para emisión y otro para no emisión. Como la 
matriz w puede tener una alta dimensionalidad, antes de resolver la ecuación, esta debe 
ser simplificada mediante una transformación matemática (Meerschaert, 2013) que se 
aplica para estos casos, es decir, para simplificar problemas de optimización de alta 
dimensionalidad. La simplificación se da en la ecuación (101) (punto 6 de la figura 40):

1min
2

T TQ eα ∝ ∝ − ∝ (101),

sujeto a:

0,0Ty Cα∝= ≤ ≤

0Ty ∝=

0 C≤∝≤ ,

donde e es un vector de longitud n de ‘unos’; Q es una matriz l x l tal que 

( )ij i j i jQ y y K x x≡  y ( ) ( ) ( )T
i j i jK x x k x k x≡  (punto 7); ( )ij i j i jQ y y K x x≡ representa la relación de simi-

litud entre dos ejemplos, teniendo en cuenta su clase o valor de predicción, y ( )i jK x x  
representa la relación de similitud entre dos ejemplos. Se resuelven las condiciones 
para calcular 0 C≤∝≤, la matriz de pesos, que define la importancia de cada una de las 
características. 
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Figura 40. Diagrama secuencial del segundo SVM propuesto para usuarios primarios
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  1min
2

T TQ eα ∝ ∝ − ∝

 0,0Ty Cα∝= ≤ ≤
 0Ty ∝=

 
( )

1

l

i i i
i

w y k x
=

= ∝∑

 
( ) ( )

1

sgn ( ) sgn ,
l

T
i i i

i
w k x b y K x x b

=

 + = ∝ + 
 
∑

 ( ) ( ) ( ) ( )  y  T
ij i j i j i j i jQ y y K x x K x x k x k x≡ ≡

 {1, 1}, 1, ,iy i l∈ − = …

 ( ), 1, ,  en  PU  {1, 1}n
i ix R i l x∈ = … ∈ −

Fuente: elaboración propia a partir de Chang y Lin (2013).

La ecuación (102) calcula los vectores soporte para obtener el valor óptimo de w:

( )
1

l

i i i
i

w y k x
=

= ∝∑ (102),

donde ( )
1

l

i i i
i

w y k x
=

= ∝∑  es el kernel aplicado sobre las características xi de los ejemplos, yi es 
la clase real del ejemplo (1 o –1) y 0,0Ty Cα∝= ≤ ≤

i es el vector de pesos calculado en el punto 6.



136

Cesar Augusto Hernández Suarez, Danilo Alfonso López Sarmiento y Diego Armando Giral Ramírez

Por último, la función de decisión para saber si un ejemplo tendrá emisión en el 
futuro es la mostrada en la ecuación (103):

( ) ( )
1

sgn ( ) sgn ,
l

T
i i i

i
w k x b y K x x b

=

 + = ∝ + 
 
∑ (103),

donde sgn hace referencia a la función signo.

Cabe destacar nuevamente que en la caracterización de PU se define xi como 
las características de cada ejemplo (permitiendo solo los valores 1 o –1), e yi, como 
la clase, siendo 1 para emisión y –1 para no emisión. La ecuación (103) calcula, en 
función de los datos introducidos, si el PU guarda más similitudes con los ejemplos 
que emiten en el futuro o con los que no emiten, y de este modo predice si hay o no 
presencia del PU. En síntesis, para caracterizar PU, se utilizan los valores w (vectores 
de soporte), 0,0Ty Cα∝= ≤ ≤i (vector de pesos) y b (bias), calculados en el proceso descrito, para 
posteriormente usar la función de decisión con el fin de predecir el uso o no del canal.

Metodología de prueba de las SVM y procesamiento 
de los datos de entrada a los algoritmos 
La metodología utilizada para evaluar y analizar el nivel de caracterización de cada 
SVM se basó en el desarrollo de una aplicación de software sobre Matlab que incluyó 
los cuatro principales módulos mostrados en la figura 41.

•	 Cargar fichero Acrylic: este módulo carga un fichero Acrylic en formato CSV y 
extrae para cada paquete su tiempo de inicio y su duración.

•	 Transformar la serie temporal.

•	 Modelar y estimar los PU con SVM: incluye generar los casos de entrenamiento, 
entrenar la SVM y crear los casos de test, predecir la serie temporal y devolver los 
casos de test reales, la predicción y el porcentaje de acierto.

•	 Generar la gráfica: en esta, el espacio bidimensional representa, en el eje de la 
variable independiente, el tiempo de predicción en milisegundos, siendo el 0 el 
primer instante estimado. Cuanto más aumenta el valor x, más lejana es la pre-
dicción.
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Figura 41. Metodología seguida para estimar la ausencia o presencia de usuarios primarios

2. Transformar a serie                  
temporal

Inicio

resultados de la caracterización)

3. Modela y estimar                    
PU con SVM

Fin

Fuente: elaboración propia.

Una vez capturados los datos de ocupación espectral, se procedió a realizar un pre-
procesamiento de estos, con el objetivo de que fueran interpretados de manera co-
rrecta por las SVM. Esta etapa incluyó los puntos 1 y 2 de la figura 41. En la figura 
42 se representa el diagrama de flujo del módulo encargado de extraer los datos del 
fichero generado por Acrylic y de convertirlos a milisegundos (punto 1).

El punto 2 de la figura 42 es una acción que llama a la biblioteca externa, csvimport 
(Sadanandan, 2011). Esta librería lee archivos CSV y permite convertirlos en formato 
Matlab; no obstante, para que se amolde a la funcionalidad esperada, se le ha realiza-
do una modificación que permite eliminar todas las comillas extraídas del CSV para 
permitir compatibilidad con los ficheros de salida del analizador de protocolos para 
distintas versiones del Acrylic.

Las fases 5-7 dan la posibilidad de elegir una duración fija en milisegundos (cual-
quier valor entre 0 y 500) de todos los estados del PU extraídos. Si el valor es 0, no 
se modifican las duraciones de las capturas, y su valor queda como aparece en el 
fichero original; si se elige un valor entre 1 y 500, la duración de todos los paquetes 
se cambiará al valor definido. 

Para valores erróneos se volverá a solicitar un valor entre 0 y 500 ms. Se ha de-
finido 1 ms como valor mínimo debido a que es el valor más bajo que permite el 
sistema de datos usado, y 500 ms como valor máximo con el fin de limitar el tiempo 
de procesamiento exigido al realizar el entrenamiento de la SVM. 

Obtenidos los datos, se transforman las capturas (figura 43) obtenidas mediante 
Acrylic a un formato válido que permita modelar y predecir, mediante SVM, una 
serie temporal de presencia/ausencia de PU en la banda de frecuencia seleccionada. 
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Figura 42. Diagrama de flujo del módulo encargado de 
extraer los datos del archivo capturado en Acrylic
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Fuente: elaboración propia.

Figura 43. Procesamiento de las secuencias a series temporales
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Fuente: elaboración propia.
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Estimación de usuarios primarios con SVM 
El modelamiento y predicción de PU en la red Wi-Fi incluyó la secuencia de pasos 
del diagrama de bloques de la figura 44.

Inicialmente, es necesario definir la longitud de los slots de ejemplos para el en-
trenamiento y test de las SVM (punto 1). Se decidió que este valor fuera un número 
entre 10 y 2000, en razón de que el tiempo ideal en el que hay cambios entre emisión 
y no emisión es de 1 s. Independientemente del segundo que se escoja en una serie 
temporal extraída con el analizador, suele haber un alto porcentaje de tiempos de emi-
sión y no emisión; sin embargo, si se toman tiempos más pequeños, como 100 ms, por 
ejemplo, existe un muy alto porcentaje de probabilidad de que el fragmento escogido 
sea solo emisión o solo no emisión, lo cual no aporta información relevante.

Figura 44. Secuencia de pasos para modelar y predecir usuarios primarios con SVM

1. Pedir longitud de ejemplos

2. Pedir número de ejemplos 
de entrenamiento y tes

Inicio

6. Calcular valores de test con 
SVM entrenado

5. Entrenar SVM

Fin

3. Crear ejemplos de                     
entrenamiento y test 4. Calcular PCA

Fuente: elaboración propia.

Seguidamente, se debió escoger el número de ejemplos de entrenamiento (muestras 
para modelar el PU) y test (número de predicciones que se realizarán), cuyo valor 
máximo fue de 1000, ya que elevar dicho valor implicaría tiempos de ejecución ex-
tremadamente altos (punto 2). Del punto 3 se extraen tantos ejemplos como se desee 
de una longitud definida sobre la serie temporal capturada de Acrylic. En el punto 
4, el cálculo del PCA permite reducir la dimensionalidad de un conjunto de datos, 
mediante el hallazgo de las características que afectan su variabilidad, a través de una 
transformación lineal que incluye tanto la construcción de una matriz de covarianzas 
(Cov (X)) como la extracción de autovectores y autovalores, como se detalla en la 
figura 45 (Powell y Lehe, s. f.).
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Figura 45. Compresión del volumen de datos para procesar en 
la etapa de entrenamiento y estimación del canal
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Fuente: elaboración propia.

La reducción de dimensionalidad aplicada sobre los ejemplos de series temporales 
de los PU hace que se tenga la misma información en menos volumen de datos, lo 
cual podría acelerar el proceso de caracterización y predicción de PU con SVM. Las 
etapas 5 y 6 de la figura 44 corresponden al modelamiento del uso histórico del canal 
(entrenamiento de la SVM) y al cálculo de la predicción o estimación futura de uso 
de la banda espectral por parte del usuario licenciado.

Las variables que definen los bloques de la figura 45 son: X: una matriz (n * m); 
Xi,j: la característica j del ejemplo i; n: el número de ejemplos; Ta: la matriz n * l, que 
representa las proyecciones de X en aµ , y la cantidad de varianza capturada ( aµ ) es el 
valor propio asociado a Pa (que determina la relación existente entre las variables). 

La figura 46 expone de forma general el diagrama de flujo para crear los ejemplos 
que se modelan y predicen. Se puede sintetizar que, en función del número y la lon-
gitud de los ejemplos, se comprueba si se puede usar el concepto de ventana deslizante 
para la selección de la subserie temporal. Si ( )(1* 1   l n L+ − > , se puede usar la ventana 
deslizante, donde l es la longitud de los ejemplos, n es el número de ejemplos y L es la 
longitud de la serie temporal. En caso de que no se pueda utilizar, se usará el método 
aleatorio automáticamente para generar los ejemplos. Si se puede usar la ventana 
deslizante, se debe determinar qué método de selección de inicio de la subserie tem-
poral para cada ejemplo se quiere usar. En caso de seleccionar la ventana deslizante, 
se calculan los posibles offsets que se pueden utilizar en función de la longitud de los 
ejemplos, el número de ejemplos y la longitud de la serie temporal, especificando un 
offset entre 1 y el máximo calculado por la aplicación. 



141

Modelo de decisión espectral colaborativo para mejorar el desempeño de las redes de radio cognitiva

Figura 46. Diagrama de flujo de creación de los ejemplos para 
modelar y estimar el uso del canal de un usuario primario

3. Pedir desplazamiento de la 
ventana

4. Búsqueda de ejemplos por 
ventana

8. Añadir serie temporal             
ejemplo

7. Calcular el inicio del ejemplo

5. Búsqueda de ejemplos            
aleatoria

Inicio

2. ¿Aleatoria o ven-
tana deslizante?

No
No

Sí

Sí

Ventana

Aleatoria

1. ¿Usar ventana 
deslizante?

6. ¿Más ejemplos?

Fin

Fuente: elaboración propia.

Análisis de resultados del nivel de predicción con los algoritmos SVM-1 y SVM-2 
Como se mencionó anteriormente, los datos de Acrylic se transforman, en principio, 
a una serie temporal a partir de la aplicación desarrollada en Matlab (Petter, 2013), 
usando como unidad de tiempo los milisegundos. Cada paquete dura en transmitirse 
tantos milisegundos como su longitud en bytes o un número fijo de milisegundos. 
Como ejemplo de visualización, en la figura 47 se ve una serie temporal extraída del 
fichero usando como tiempo de emisión de paquetes su longitud. En azul se observan 
los momentos en los que el PU hace presencia en el canal, mientras que las zonas 
en blanco muestran los tiempos de no emisión o de desperdicio del BW disponible 
en el canal. La longitud total de la serie temporal es de 600.296 unidades de tiempo. 

Figura 47. Comportamiento de un usuario primario en términos de emisión/no 
 emisión para una canal en la banda Wi-Fi entregada por Acrylic
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Fuente: elaboración propia.
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SVM-1 
Una vez entrenada la SVM, se llegó a la conclusión de que no convergía. Que no con-
verja la SVM quiere decir que no llega a encontrar ninguna combinación de vectores 
de soporte si, pesos ai y bias b que cumpla con el costo especificado y que, por tanto, 
encuentre un patrón que represente acertadamente el PU. Con el fin de mejorar el 
nivel de modelamiento de los PU, se probaron varias soluciones:

•	 Modificar la longitud de los ejemplos (de 10 a 2000) y el número de ejemplos 
(de 1000 a 100.000) para obtener más información de la forma de actuar del PU. 

•	 Incrementar el número máximo de iteraciones de entrenamiento (de 15.000 a 
más de 2.000.000), lo que dispara el tiempo de ejecución del algoritmo.

•	 Cambiar el kernel del algoritmo de lineal (que busca un hiperplano lineal para 
separar los dos conjuntos de ejemplos) a polinómico de grado tres como hiper-
plano. 

•	 Transformar las  condiciones de KKT (Krogstad, 2012), que son necesarias y 
suficientes para que la solución de un problema de programación matemática 
(caracterización de PU) sea óptima. En el caso de la SVM implementada en Mat-
lab, estas condiciones se aplicaron sobre el lagrangiano —ecuación (104)— para 
calcular el hiperplano de máxima separación. 

, ,( , ) ( ) ( ) ( )g i i h i iL x f x g x h xλ λ λ= + +∑ ∑ (104),

donde ( )f x  es el kernel para optimizar, ( ) ig x  es un vector de restricciones del tipo 

( ) 0g x ≤ , ( ) ih x  es un vector de restricciones del tipo ( ) 0h x = , la primera sumatoria 
varía de acuerdo con i=l, ..., k , y la segunda, para los valores de j=l, ..., m. Los vec-
tores gjλ  y hjλ  corresponden a los multiplicadores de Lagrange. Las condiciones KKT 
utilizadas por la SVM son las que se muestran en la ecuación (105):

( , ) 0xL x λ∇ =

, ( ) 0g i ig x iλ = ∀
( ) 0g x ≤
( ) 0h x =

, 0g iλ ≥

(105).
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Al modificar el margen de error de las condiciones KKT, se está permitiendo un 
margen de error en la ubicación del posible patrón de comportamiento del PU, lo que 
implica que el modelamiento se amolde menos a los datos reales: 

•	 Se modificó el índice de violación de las condiciones KKT, que especifica la frac-
ción del número de variables que se permite no cumplir: 0 implica que se han de 
cumplir todas las condiciones, y 1, que se puede no cumplir ninguna. 

•	 Para encontrar el hiperplano, la SVM permite dos metodologías: la primera es la 
sequential minimal optimization (SMO), que basa su funcionamiento en los multi-
plicadores de Lagrange, y la segunda es el quadratic programming (QP), que es un 
sistema de optimización incluido en la licencia Optimization Toolbox™. 

SVM-2 
Se probó la realización del modelamiento del PU, para después realizar una predic-
ción con el máximo número de ejemplos (100.000) y su máxima longitud (2000), de 
acuerdo con la aplicación desarrollada. La duración del entrenamiento fue de 2956 
segundos y se obtuvo un resultado satisfactorio. Posteriormente, se experimentó cal-
cular, para 1000 ejemplos, la predicción en el instante l + 1 (lo que corresponde a una 
estimación de rango corto), y el resultado de acierto fue del 100 %:

Predicción SVM 1 de 1

Accuracy = 100 % (1000/1000) (classification)

Elapsed time is 12,3648261 seconds

En la figura 48 se encuentra gráficamente el ejemplo de predicción anterior (partien-
do del hecho de que el modelamiento tuvo un 100 % de acierto). Se debe mencionar 
también que, como la serie temporal predicha consta de un único valor, en vez de 
aparecer una línea, aparece un único punto. Además, la serie temporal real de envío 
de datos, que normalmente se muestra con una señal azul, al tratarse del mismo valor 
que la predicción, no aparece en este caso, pues la predicción en rojo se encuentra 
exactamente sobre el valor real. El eje de la variable independiente representa el tiem-
po de predicción en milisegundos, siendo el 1 el primer y único tiempo de predicción 
(el instante l + 1), y el eje de la variable dependiente, por su parte, identifica los valo-
res de envío y no envío del PU.
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Figura 48. Comparación entre el comportamiento real y la predicción para 
el usuario primario en el canal evaluado sin la utilización de PCA
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Fuente: elaboración propia.

En la matriz de clasificación (tabla 11) se compilan los resultados para 1000 ejemplos 
de predicción (l + 1); las filas de la matriz representan los valores de estimación del 
modelo, mientras que las columnas indican los valores reales. La matriz de clasifica-
ción se creó ordenando todos los casos en categorías: si el valor de predicción coinci-
de con el valor real y si el valor de predicción es correcto o incorrecto. Para este caso, 
en 487 ejemplos hubo emisión real, y todos ellos fueron predichos como emisión, 
mientras que en 513 ejemplos hubo no emisión real, y el clasificador los estimó como 
no emisión. Al no haber clasificado erróneamente ninguno de los casos, la predicción 
tuvo un acierto del 100 %.

Tabla 11. Matriz de clasificación para 1000 ejemplos

Predicción\Emisión real 1 (emisión real) 0 (no emisión real)

1 (emisión predicha) 487 0

0 (no emisión predicha) 0 513

Fuente: elaboración propia.

Al anterior proceso se le incluyó PCA buscando reducir el tiempo de entrenamiento 
del sistema SVM. Calcular los componentes PCA con el máximo número de ejem-
plos (100.000) y su máxima longitud (2000) tardó 211 segundos. Hay que tener en 
cuenta que, antes de generar el modelamiento, se eliminó la media de los valores y se 
calcularon sus respectivos componentes PCA. La duración del entrenamiento fue de 
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3958 segundos o de 66 segundos. Posteriormente se calculó, para 1000 ejemplos, la 
predicción en el instante l + 1, y el resultado de acierto fue del 100 %: 

Predicción SVM 1 de 1

Accuracy = 100 % (1000/1000) (classification)

Elapsed time is 11,493758 seconds

La matriz de clasificación (tabla 12) indica que en 356 ejemplos hubo emisión real, 
y todos fueron predichos como existencia del PU en el canal, mientras que en 644 
ejemplos hubo no emisión real, y el clasificador los catalogó como no emisión. Al no 
haber clasificado erróneamente ninguno de los casos, la predicción tuvo un acierto 
del 100 %.

Tabla 12. Matriz de clasificación para 1000 ejemplos usando PCA

Predicción\Emisión real 1 (emisión real) 0 (no emisión real)

1 (emisión predicha) 356 0

0 (no emisión predicha) 0 644

Fuente: elaboración propia.

Al concluir que el porcentaje de acierto era del 100 %, se intentó detectar los instan-
tes temporales l + 1000, para lo cual se calculó el instante l + 1; después, se usó esta 
predicción para calcular el instante l + 2, y así, sucesivamente, hasta l + x. El proceso 
de entrenamiento o caracterización para este caso fue exactamente igual que para las 
pruebas realizadas antes. Para una x = 1000, el resultado de la predicción tuvo un 
éxito de cerca del 50 % tanto sin PCA como con PCA (tablas 13 y 14).

Para la predicción sin PCA, en 518 ejemplos hubo presencia real del PU: 289 de 
ellos fueron predichos correctamente, como emisión, y 229 fueron clasificados inco-
rrectamente, como no emisión. Asimismo, en 482 ejemplos hubo no emisión real: 
el clasificador clasificó 263 equivocadamente, como emisión, y 219 correctamente, 
como no emisión. En resumen, 492 casos fueron clasificados incorrectamente y 508 
correctamente, por lo que se obtuvo un acierto del 50,8 %: 

Predicción SVM 1000 de 1000

Accuracy = 50,8 % (508/1000) (classification)

Elapsed time is 15,095385 seconds
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Tabla 13. Matriz de clasificación para 1000 ejemplos con estimación sin PCA

Predicción\Emisión real 1 (emisión real) 0 (no emisión real)

1 (emisión predicha) 289 263

0 (no emisión predicha) 229 219

Fuente: elaboración propia.

Por su parte, para la predicción con PCA, en 513 ejemplos hubo emisión real: 270 
de ellos fueron predichos correctamente, como emisión, y 243 fueron clasificados in-
correctamente, como no emisión. Asimismo, en 487 ejemplos hubo no emisión real: 
el clasificador clasificó 242 equivocadamente, como emisión, y 245 correctamente, 
como no emisión. Así, 485 casos fueron clasificados incorrectamente y 515 correcta-
mente, lo que arroja un acierto del 51,5 %: 

Predicción SVM 100de 1000

Accuracy = 51,5 % (515/1000) (classification)

Elapsed time is 16,175938 seconds

Tabla 14. Matriz de clasificación para 1000 ejemplos con estimación l + 1000 con PCA

Predicción\Emisión real 1 (emisión real) 0 (no emisión real)

1 (emisión predicha) 270 242

0 (no emisión predicha) 243 245

Fuente: elaboración propia.

Para cada uno de los casos entrenados y estimados, los porcentajes se acercan siem-
pre al 50 %, debido a que es la probabilidad de que se tenga emisión o no. Básica-
mente, el clasificador caracteriza la señal del PU esperando que esta se mantenga 
eternamente en 1, si empezó siendo 1, o en 0, si empezó siendo 0, como se eviden-
cia en la figura 49, donde la señal predicha (color rojo) se mantiene en no emisión 
toda la predicción, mientras que la real (color azul) evidencia la no presencia del 
PU hasta pasado el milisegundo 700 y retorna al estado de no emisión a partir de 
los 965 ms.
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Figura 49. Comparación entre la actividad real del usuario 
primario y la estimada por la SVM-2 con PCA
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Fuente: elaboración propia.

Finalmente, se probó, en la fase de predicción, extraer en porcentajes la probabilidad 
de que cada ejemplo se encuentre en una clase u otra; es decir, lo que se pretendió 
fue obtener un porcentaje de probabilidad en la emisión, en lugar de una indicación 
de la presencia o ausencia; de esta forma, en vez de estimar 1 o 0, se predijo un valor 
x entre 0 y 1, donde x es la probabilidad de emisión en el instante a predecir y 1 – x 
es la probabilidad de no emisión. Así, se entrenó el algoritmo para que devolviera 
porcentajes. Para una predicción de x = 1000 ms en el futuro, el resultado fue cercano 
a un 50 % de éxito sin PCA y a un 50 % de éxito con PCA.

Cuando se usan porcentajes, hay una probabilidad de que la señal cambie de 
0 a 1 y viceversa, pero la probabilidad es aproximadamente de un 0,15 %, y la po-
sibilidad de volver al valor original en el instante siguiente es muy elevada, por lo 
que, en la mayoría de los casos, la señal se mantiene en su valor original; lo anterior 
se evidencia en la figura 50, donde se observa que en un tiempo determinado la 
predicción intenta cambiar a un nivel alto (sobre el timestamp 850), pero, debido 
al historial previo, se rectifica rápidamente y vuelve al nivel bajo, lo que confirma 
que intentar caracterizar la actividad de PU mediante SVM es ineficiente cuando 
se discretiza la señal.
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Figura 50. Comparación entre la actividad real del usuario primario y 
la estimada por la SVM-2 según porcentajes de probabilidad
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Fuente: elaboración propia.

Discusión 
Los modelos presentados han pretendido generar una nueva propuesta para la carac-
terización (modelamiento + estimación) de PU, para un canal en la banda espectral 
Wi-Fi, con base en el uso del algoritmo de aprendizaje supervisado SVM. 

Los resultados encontrados a partir del uso de la SVM-1 no han logrado repre-
sentar la dinámica de comportamiento del PU, ya que el algoritmo ha sido incapaz 
de converger, lo que indica que no llegó a encontrar una solución al problema, y eso 
impidió entrar en la fase de predicción.

Por esta razón, se evaluó un segundo algoritmo, el SVM-2, que consiguió repro-
ducir la dinámica esperada y logró entregar resultados fiables para el primer times-
tamp de estimación futura; no obstante, cuando se estimaron  timestamps consecutivos 
para una misma serie temporal, el algoritmo siempre predijo en función del último 
instante de tiempo registrado: si había presencia del PU, siempre predecía su presen-
cia, y si el canal estaba libre, predecía su ausencia. A partir de los planteamientos 
y análisis expuestos, y según la experiencia adquirida a lo largo de la investigación 
desarrollada, se infiere que el uso de técnicas de inteligencia artificial para el mode-
lamiento y estimación de PU en redes cognitivas (con topologías de red centralizada) 
podría ser un gran acierto dada la capacidad de aprendizaje autónomo que poseen, 
siempre y cuando se usen metodologías como las redes bayesianas dinámicas o las 
redes neuronales (Xing, Jing, Huo et al., 2013); no obstante, como trabajo futuro, se 
plantea la posibilidad de usar SVM pero con señales continuas. 
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Caracterización de los 
usuarios secundarios 

En este capítulo se presenta el diseño, desarrollo, desempeño y resultados de los 
modelos seleccionados para la caracterización del arribo de los usuarios secundarios. 

Modelos reactivo y proactivo 
A continuación, se presenta el desarrollo y los resultados alcanzados con los mode-
los reactivo y proactivo para la caracterización del arribo de los usuarios secundarios. 

Evaluación de desempeño en el procesamiento de solicitudes 
de acceso a canales en la estación base 
El tiempo de procesamiento de una solicitud se puede estimar a través de la ecua-
ción (106):

( )m a c dt t t x m t= + + (106),

donde ( )m a c dt t t x m t= + + es el tiempo de arribo del n-ésimo usuario secundario (SU), ( )m a c dt t t x m t= + +  es el tiempo 
de procesamiento del servicio solicitado, tc es el tiempo de asignación del canal y 

( )m a c dt t t x m t= + +  es la función característica definida por la ecuación (107):

1  para el modelo reactivo
( )

0  para el modelo proactivo
x m 

= 


(107).

Además, se tiene la ecuación (108):

yc o c d o dt t N t t N= ⋅ = ⋅ (108),

donde yc o c d o dt t N t t N= ⋅ = ⋅ es el tiempo que tarda el nodo central en hacer una operación, yc o c d o dt t N t t N= ⋅ = ⋅ es el nú-
mero de operaciones para la asignación del canal y yc o c d o dt t N t t N= ⋅ = ⋅  es el número de operaciones 
que se requieren para procesar la solicitud.
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Figura 51. Evaluación del nivel de estimación del arribo de usuarios 
secundarios a la estación base con el modelo proactivo
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Fuente: elaboración propia.

El ta se puede calcular a partir de la función de distribución dada por la ecuación (109):

1 1ln
( )a

su

t
p x nλ

 
=  = 

(109),

donde suλ  es el parámetro de la distribución usada. Por lo tanto, se llega a que tm que-
da determinada por la ecuación (110):

( )1 1ln ( )
( )m o c d

s

t t N x m N
P x nλ

 
= + + = 

(110).

De la anterior relación se concluye que la única diferencia entre el modelo reactivo y 
el proactivo es el término toNd, el cual es un valor no negativo que permite afirmar la 
desigualdad mostrada en la ecuación (111): 

( ) ( )t reactive t proactive> (111).

Modelo MLPNN para la estimación del arribo del usuario secundario 
En la presente sección se describe el modelo MLPNN para la estimación del arribo del SU.

Diagrama de flujo del algoritmo de aprendizaje 
El diagrama de flujo se observa en la figura 52. Además, un fragmento del código 
de la MLPNN para la optimización de la red neuronal se muestra a continuación. 
La secuencia que se muestra supone la existencia de dos arreglos, Theta1 y Theta2, 
correspondientes a las matrices de pesos ponderados de la red neuronal. El algoritmo 
toma los ejemplos de entrenamiento hasta encontrar los valores óptimos de Theta1 y 
Theta2 que minimizan el error obtenido (figura 52).
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Parte del código del algoritmo MLPNN es el siguiente:

delta_accum_1=zeros (size (Theta1)); 

delta_accum_2=zeros (size (Theta2)); 

for t=1:m do

a_1=X(t,: );

z_2=a_1 * Theta1’;

a_2=[1 sigmoide (z_2)];

z_3=a_2 * Theta2’;

a_3= sigmoide (z_3);

y_i=zeros (1,K);

y_i(y(t))=1;

delta_3=a_3-y_i;

delta_2=delta_3 * Theta2 .* sigmoideGradient ([1 z_2)];

delta_(
accum_1

 )=delta_(
accum_1

 )+delta_2 (2:end)' *a_1;

delta_accum_2=delta_accum_2+delta_3' *a_2;

end;

Theta1_grand= delta_accum_1 / m

Theta2_grand= delta_accum_2 / m

Figura 52. Diagrama de entrenamiento del sistema MLPNN
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Fuente: elaboración propia.
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Entrenamiento de la red neuronal 
Durante este proceso se determina el valor de las matrices de pesos de control uti-
lizando el algoritmo de propagación hacia atrás (backpropagation), que incluye los 
siguientes lineamientos dentro de su algoritmo:

•	 Inicializar de forma aleatoria los pesos de las matrices con números entre –1 y 1.

•	 Implementar el algoritmo de propagación hacia adelante para obtener Am para 
cualquier x(i).

•	 Calcular el costo ( ) ( )( )(( ( ) ( )

0 0

1( ) * ( ) * log (1 ( )) * log
m n

x x

m n
x x

J y x A y x A
m

θ
= =

= − + −∑∑ a partir de la ecuación (112) (Hsieh, 2009), con el fin de 
obtener la diferencia entre los valores esperados y los obtenidos; el objetivo es 
hacer que su valor se aproxime lo más cerca posible a 0.

( ) ( )( )(( ( ) ( )

0 0

1( ) * ( ) * log (1 ( )) * log
m n

x x

m n
x x

J y x A y x A
m

θ
= =

= − + −∑∑ (112),

donde ( ) ( )( )(( ( ) ( )

0 0

1( ) * ( ) * log (1 ( )) * log
m n

x x

m n
x x

J y x A y x A
m

θ
= =

= − + −∑∑ es la función costo para redes neuronales; m es el número de ejem-
plos de entrenamiento; n es el número de características; y(x) es el vector objeti-
vo; ( ) ( ) ( )x iA h xθ= ; ( ) ( ) ( )x iA h xθ=  es el valor estimado para la entrada m y la característica n; 

( ) ( )0 1 1 2 2h g x xθ θ θ θ= + + ; ( ) ( )( )(( ( ) ( )

0 0

1( ) * ( ) * log (1 ( )) * log
m n

x x

m n
x x

J y x A y x A
m

θ
= =

= − + −∑∑ son los parámetros del vector que se aplican a la regresión 
lineal, y g es la función sigmoide.

•	 Calcular las derivadas parciales de ( )
k
ij

dJ
d

θ
θ , intentando con ello minimizar el error al 

máximo —ecuación (113) (Hsieh, 2009)—:
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ij

dJ
d

θθ θ α
θ

= − (113),

donde α es la taza de aprendizaje del gradiente descendente, ( )k k
ij ij k

ij

dJ
d

θθ θ α
θ

= − son los pesos de la 
hipótesis (parámetros del vector que se van ajustando para minimizar el error en la 
estimación) y los subíndices ij representan el número de la característica aplicado a 
la regresión lineal.

Software de predicción de arribo de usuarios secundarios 
Para determinar la habilidad y precisión del algoritmo MLPNN para calcular la pro-
babilidad de arribo del siguiente SU a la estación base (BS), con criterios de calidad 
de servicio (QoS) tipo mejor esfuerzo (BE) o tiempo real (RT) y de ancho de banda 
(BW), se desarrolló una aplicación software. En la figura 53 se muestra la fase de 
creación del histórico de solicitudes BE, RT y BW (en la figura se visualiza el com-
portamiento pasado con solicitudes BE y RT únicamente).

En la figura 54 se muestra una captura de la segunda fase del software, en la que se 
crean las dos redes neuronales MLPNN para un determinado SU: la primera de ellas 
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está especializada en estimar el BW que probablemente va a solicitar el SU, y la segun-
da está entrenada para predecir la probabilidad de que se solicite un servicio BE o RT.

La figura 55, por su parte, representa gráficamente la etapa de entrenamiento o 
aprendizaje de las redes neuronales. Por cuestiones de orden, en la figura solo se mues-
tra el modelamiento para el comportamiento histórico en las solicitudes tipo BE, don-
de es claro que la MLPNN logra establecer el patrón (pasado) solicitado por el SU.

La última fase del algoritmo corresponde a la predicción, la cual estimará el 30 % 
futuro de los datos históricos y los comparará con el comportamiento real (figura 56).

Figura 53. Software de predicción de arribo de usuarios secundarios (generación del histórico)
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Figura 54. Etapa de creación de las MLPNN especializadas
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Figura 55. Fase de entrenamiento de la red neuronal
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Figura 56. Fase de predicción de la red neuronal (con cálculo 
de probabilidad de una solicitud de QoS)

0.0

O
cu

pa
ci

ón

Mejor Esfuerzo NN 

1.0

0.5

1.5

Tiempo Real NN

Ancho de Banda (kHz) NN

157 u 163 u 169 u 175 u 181 u

Ancho de Banda (kHz)

Mejor Esfuerzo

Tiempo Real

133 u 143 u 153 u 163 u 173 u 183 u

Unidad de Tiempo

Probabilidad de llegada en una unidad
de Tiempo

Probabilidad 10

10

%Error Binario

Entropía Cruzada

Validación para Red Neuronal Tipo de 
Servicio

0.37276130283

0.28070175438596

MSE

Entropía Cruzada

Validación para Red Neuronal Ancho 
de Banda (kHz)

0.47118398013

8.555754013719342e-7

Predecir ?

Calcular

Fuente: elaboración propia.

Evaluación de resultados 
Con el fin de verificar la propuesta desarrollada, se generaron tres casos de prueba 
haciendo uso de las distribuciones exponencial, poisson y uniforme. Los resultados 
cuantitativos durante la fase de entrenamiento para 200 ejemplos se muestran en las 
tablas 15, 17 y 19, y las respuestas en la estimación de las solicitudes de BE, RT y BW 
se observan en las tablas 16, 18 y 20. 
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Tabla 15. Resultados del entrenamiento para el caso de prueba de distribución exponencial

Métrica 1.a MLPNN (BW) 2.a MLPNN (BE y RT)

Iteraciones 500.000 500.000

Error de entrenamiento 0,13705 0,04018

Tiempo (ms) 350.856 261.833

Error de validación 0,00027 0,00027

Porcentaje de cantidad de aciertos 62 99

Fuente: elaboración propia.

Tabla 16. Resultados de la predicción para el caso de prueba de distribución exponencial

Métrica 1.a MLPNN (BW) 2.a MLPNN (BE y RT)

Entropía cruzada 0,43791 4,70093

MSE 0,05005 No aplica

Error binario No aplica 0,47761

Porcentaje de cantidad de aciertos 48 72

Fuente: elaboración propia.

Tabla 17. Resultados del entrenamiento para el caso de prueba de distribución poisson

Métrica 1.a MLPNN (BW) 2.a MLPNN (BE y RT)

Iteraciones 500.000 500.000

Error de entrenamiento 0,37262 0,17537

Tiempo (ms) 333.243 307.682

Error de validación 0,00205 0,00205

Porcentaje de cantidad de aciertos 11 95

Fuente: elaboración propia.

Tabla 18. Resultados de la predicción para el caso de prueba de distribución poisson

Métrica 1.a MLPNN (BW) 2.a MLPNN (BE y RT)

Entropía cruzada 0,44064 0,47060

MSE 0,00767 No aplica

Error binario No aplica 0,18750

Porcentaje de cantidad de aciertos 5 91

Fuente: elaboración propia.
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Tabla 19. Resultados del entrenamiento para el caso de prueba de distribución uniforme

Métrica 1.a MLPNN (BW) 2.a MLPNN (BE y RT)

Iteraciones 500.000 500.000

Error de entrenamiento 0,54275 0,29872

Tiempo (ms) 354.977 357.718

Error de validación 0,00205 0,02485

Porcentaje de cantidad de aciertos 3 93

Fuente: elaboración propia.

Tabla 20. Resultados de la predicción para el caso de prueba de distribución uniforme

Métrica 1.a MLPNN (BW) 2.a MLPNN (BE y RT)

Entropía cruzada 0,90017 4,70093

MSE 0,10927 No aplica

Error binario No aplica 0,89655

Porcentaje de cantidad de aciertos 2 55

Fuente: elaboración propia.

Los resultados encontrados sugieren que el porcentaje de acierto en la predicción de 
solicitud de BW por parte del SU es bajo.

Es importante recalcar que esta métrica evalúa que en cualquier instante de tiem-
po el valor esperado sea igual al valor obtenido, sin ninguna tolerancia de error. En 
este sentido, por ejemplo, para la distribución exponencial (figura 57) se observa que 
la red neuronal identificó el patrón, razón por la cual el MSE (que para este caso 
muestra la diferencia entre los valores esperados y mínimos) es muy pequeño, del 
orden de las centésimas.

Otra característica del comportamiento del sistema a partir de la respuesta entre-
gada en los casos de prueba es que logró identificar patrones para las distribuciones 
exponencial y poisson; sin embargo, para el caso de la distribución uniforme, al no 
presentar un patrón en sus datos históricos, no fue posible modelar ni predecir su 
comportamiento. 
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Figura 57. Distribución exponencial predicha para la variable ancho de banda
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Modelo de decisión  
espectral colaborativo 

En la introducción se realizó una primera descripción del modelo de decisión es-
pectral colaborativo, que está conformado por cuatro módulos fundamentales: 1) 
módulo colaborativo (intercambio de información entre usuarios secundarios [SU]); 
2) módulo de caracterización del usuario primario (PU); 3) módulo de probabilidad 
de arribo del SU, y 4) módulo de selección de la oportunidad espectral (SO); en el 
capítulo 1, a su vez, se realizó la descripción de los fundamentos teóricos relevantes 
para esta investigación; en el capítulo 2 se presentó el módulo de caracterización del 
PU, y en el capítulo 3 se describió del módulo de probabilidad de arribo del SU. De 
acuerdo con lo anterior, en este capítulo se presentan el módulo colaborativo (inter-
cambio de información entre SU) y el módulo de selección de la SO. 

Debido a que la información de ocupación espectral tiene un papel relevante en 
esta investigación, primero se describirá la metodología que se llevó a cabo para cap-
turar, organizar y procesar los datos experimentales de ocupación espectral; luego, 
se presentará el módulo colaborativo; posteriormente, se describirá el módulo de se-
lección de la SO, junto con los resultados obtenidos, y, finalmente, se presentará el 
modelo de decisión espectral colaborativo definitivo, a partir de los resultados alcan-
zados en cada uno de los cuatro módulos que lo conforman. 

Con el objetivo de facilitar la comprensión y organización de este libro, la des-
cripción del software desarrollado se dejó como un capítulo independiente posterior 
al actual. 

Selección del software y los equipos 
Para desarrollar la presente investigación se utilizaron los siguientes recursos: un sis-
tema de monitorización del espectro (tabla 21), en este caso el analizador MS2721B 
de Anritsu, para realizar la captura de los datos de potencia espectral en las bandas 
GSM y Wi-Fi; múltiples bases de datos electrónicas para realizar la revisión literaria 
sobre handoff espectral (SH) para redes de radio cognitiva (CRN); el software Matlab 
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para desarrollar el simulador y los correspondientes algoritmos de decisión espectral; 
un computador de escritorio (tabla 22) para realizar el procesamiento de la infor-
mación, el diseño del modelo, el desarrollo de la experimentación, el análisis de los 
resultados y la documentación de toda la investigación, y, finalmente, un clúster para 
desarrollar el algoritmo y ejecutar las pruebas de entrenamiento y predicción (tabla 23).

Tabla 21. Especificaciones de los equipos para la monitorización del espectro

Equipo
Especificaciones

Rango de frecuencia Referencia

Antena tipo discono 25 MHz-6 GHz Super-M Ultra Base 

Cable de banda ancha DC-18 GHz CBL-6FT-SMNM+

Amplificador de bajo ruido 20 MHz-8 GHz ZX60-8008E-S+

Analizador de espectro 9 KHz-7,1 GHz MS2721B Anritsu

Fuente: elaboración propia.

Tabla 22. Especificaciones del equipo de cómputo

Característica Valor de referencia

Procesador AMD FX 9590 de 8 núcleos y 4,71 GHz

Memoria RAM DDR3 de 16 GB

Disco de estado sólido Kingston SV300S37A de 240 GB

Tarjeta de video AMD Radeon R7 200

Tarjeta de red 10/100/1000 mbps

Monitor LG IPS Full HD

Sistema operativo Windows 7 de 64 bits

Fuente: elaboración propia.

Tabla 23. Especificaciones del clúster

Característica Descripción

Equipo Máquina virtual KVM-Bios Openstack Foundation, 2015.1

Marca Servidor Dell R900

Cantidad de procesadores Intel® Xeon® CPU E7450 (2,40 GHz, 24 cores)

Memoria RAM DDR2 de 64 GB

Sistema de almacenamiento 1000 GB EXT4

Sistema operativo Ubuntu Server 14.04.04 con entorno de escritorio XFCE4

Fuente: Hernández, Salgado et al. (2015).
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Tipo de red 
Para realizar un análisis comparativo más completo, se decidió evaluar y validar el 
desempeño de cada algoritmo de decisión espectral en dos redes diferentes: GSM y 
Wi-Fi. La razón para escoger la banda GSM fue la alta demanda de telefonía celular 
y la baja calidad de servicio (QoS) (Pedraza et al., 2016), y en el caso de la banda 
Wi-Fi, la razón de su escogencia obedeció al interés de analizar el desempeño de los 
algoritmos en un ambiente más estocástico y a la viabilidad de su posible utilización 
por parte de SU de telefonía móvil (Cardenas-Juarez et al., 2016).

Captura y procesamiento de los datos de ocupación espectral 
Este apartado describe el procedimiento realizado para obtener la información de 
ocupación espectral, la cantidad de información almacenada y su posterior procesa-
miento como insumo de la herramienta de simulación. El análisis se presenta para la 
red GSM, pero para Wi-Fi se siguió una metodología similar. 

La figura 58 describe la configuración de los equipos para realizar el proceso de 
medición de la ocupación espectral en las bandas GSM (824 MHz-874 MHz) y Wi-
Fi (2,4 GHz-2,5 GHz); las especificaciones de los equipos utilizados se muestran en 
la tabla 21, y la configuración de los parámetros técnicos del analizador de espectro 
para la banda GSM se puede observar en la tabla 24. 

Figura 58. Configuración experimental para medir la ocupación espectral 
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Fuente: elaboración propia.



162

Cesar Augusto Hernández Suarez, Danilo Alfonso López Sarmiento y Diego Armando Giral Ramírez

Tabla 24. Configuración de los parámetros técnicos del analizador de espectro para GSM

Parámetro Valor

Banda de frecuencia 824 MHz-874 MHz

Sistema de comunicación Móvil

Tecnología de comunicación GSM

Técnica de detección Detección de energía

Tiempo de captura Un mes

Tiempo de barrido 290 ms

Resolución de BW (RBW) 100 KHz

Span 50 MHz

Puntos por span (PPS) 500

Fuente: elaboración propia.

Los rangos de medición de las bandas se basaron en aspectos como el tiempo de 
barrido, la resolución de ancho de banda (RBW) y el span, con el fin de garantizar 
una adecuada medida en función del piso de ruido y el BW [ancho de banda] del 
canal de la tecnología a medir. (Pedraza et al., 2016)

La técnica de detección utilizada fue la de energía, debido a su factibilidad de im-
plementación. Además, la campaña de medición se realizó durante un mes, desde 
mayo hasta junio de 2018. Una explicación más detallada de la configuración de 
los parámetros técnicos del analizador de espectro se puede consultar en Pedraza 
et al. (2016).

El valor del span corresponde al rango de frecuencia que está siendo analizado, en 
este caso, 50 MHz (824 MHz-874 MHz), y los PPS determinan el número de canales 
de frecuencia (división uniforme de una porción del espectro) para los cuales el ana-
lizador de espectro midió el correspondiente nivel de potencia durante cada barrido. 
De acuerdo con lo anterior, el analizador de espectro entregó, en cada barrido, la 
información del valor de potencia medido en dBm correspondiente a 500 canales de 
frecuencia (potenciales SO), con un BW de 100 KHz (50 MHz / 500) cada uno. 

El número de barridos que realiza el analizador de espectro depende del tiempo 
de barrido (290 ms) y de la duración de la campaña de medición (un mes). De acuer-
do con el tiempo de barrido, se tienen aproximadamente 3,448 barridos por segundo; 
por tanto, el número total de barridos realizados en un mes es: 8.937.216 (barridos/
mes) = 3,448 (barridos/segundo) × 60 (segundos/minuto) × 60 (minutos/hora) × 24 
(horas/día) × 30 (días/mes), y el número total de datos de potencia es: 4.468.608.000 
(datos de potencia del canal/mes) = 8.937.216 (barridos/mes) × 500 (datos de poten-
cia del canal/barrido).
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A partir de la información anterior, se construyó una matriz de potencia de 
8.937.216 × 500, que contiene el valor de potencia de cada uno de los 500 canales (com-
prendidos entre 824 MHz y 874 MHz) para 8.937.216 instantes de tiempo (TS) (cada 
TS equivale a 290 ms); sin embargo, debido a la gran cantidad de filas, dicha matriz 
tuvo que segmentarse en 240 matrices de 37.238 × 500 para poder trabajar con ella.

Nivel de tráfico 
Hasta el momento, se cuenta con una matriz de valores de potencia de cada uno de 
los 500 canales (con BW de 100 KHz, comprendidos entre 824 MHz y 874 MHz) 
para cada uno de los 8.937.216 TS (correspondientes a un mes continuo de tiempo, 
teniendo en cuenta que cada TS es igual a 290 ms), a la cual denominaremos matriz 
de potencias (PM). Con el objetivo de analizar el desempeño de los algoritmos de de-
cisión espectral de acuerdo con el nivel de tráfico en la red, se decidió extraer de la 
PM tres trazas de información (submatrices) que representaran el comportamiento 
del espectro cuando la red tuviera un nivel de tráfico bajo (LT), tráfico medio (MT) 
y tráfico alto (HT); estas nuevas matrices se denominaron PM de LT (PM-LT), PM 
de MT (PM-MT) y PM de HT (PM-HT), respectivamente. Cada una de estas tres 
matrices tiene un tamaño de 14.483 × 500, donde las 500 columnas representan cada 
uno de los canales medidos, y las 14.483 filas representan los TS consecutivos en los 
cuales se realizó la medición. Los 14.483 TS de cada matriz se segmentaron en dos 
partes: una, con 12.414 TS, que corresponden a una subtraza de 60 minutos, deno-
minada entrenamiento (TR), y otra, con 2069 TS, que corresponden a una subtraza de 
10 minutos, denominada evaluación (EV). La matriz de TR contiene la información 
histórica (últimos 60 minutos) de ocupación espectral que conocen los algoritmos 
de SH, mientras que la matriz de EV contiene la información futura (10 minutos) de 
ocupación espectral que no conocen los algoritmos de SH y que solo es manipulada 
por la herramienta de simulación para realizar la correspondiente evaluación y vali-
dación de cada algoritmo de SH. 

De acuerdo con esta explicación, se tienen finalmente seis matrices de potencias 
por cada tipo de red (GSM y Wi-Fi): PM-LT-TR, PM-LT-EV, PM-MT-TR, PM-MT-
EV, PM-HT-TR y PM-HT-EV; sin embargo, solo es necesario encontrar las tres ma-
trices de EV, ya que cada matriz de TR corresponde a los 60 minutos anteriores de la 
respectiva matriz de EV. Para encontrar las tres matrices de EV, se realizó un análisis 
estadístico de la ocupación espectral capturada, para lo cual fue necesario conocer 
la disponibilidad de cada canal en cada TS, por lo que el primer paso fue obtener la 
matriz de disponibilidad (AM) a partir de la PM. 

Para obtener la AM a partir de la potencia de cada canal, se calculó un umbral 
de decisión; los canales con potencias menores al valor del umbral de decisión se 
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clasificaron como disponibles, y dicho estado se representó en la AM con un ‘1’ lógico, 
y en el caso contrario, los canales fueron clasificados como ocupados, y su estado se 
denotó con un ‘0’ lógico. El valor de la potencia del umbral de decisión se calculó 
a partir la ecuación (114) con una probabilidad de falsa alarma del 1 % (Pedraza et 
al., 2016). Otro método para determinar el valor del umbral de decisión es tomar 
un nivel de guarda de 5 dBm por encima del piso de ruido promedio del analizador 
de espectro, con el objetivo de minimizar posibles falsas alarmas. El piso de ruido 
promedio se determinó con la ubicación de una impedancia de 50 Ω a la entrada del 
analizador de espectro, con un nivel de atenuación de 0 dB, con detección de raíz 
media cuadrática (RMS) y con un largo periodo de medición (Pedraza et al., 2016). 
La tabla 25 muestra los valores del piso de ruido promedio y del umbral de decisión 
para las dos metodologías.

( )

,
2

fa

m
P

m

λ Γ 
 =
Γ

(114).

Tabla 25. Umbral de decisión para la detección de usuarios primarios

Banda de frecuencia
Piso de ruido 

promedio
Umbral de decisión

(piso de ruido: +5 dBm)
Umbral de decisión:

ecuación (114)

GSM (824 MHz-874 MHz) –113 dBm –108 dBm –109 dBm

Wi-Fi (2,4 GHz-2,5 GHz) –111 dBm –106 dBm –108 dBm

Fuente: elaboración propia.

Con la AM ya construida, se procedió a realizar un análisis estadístico de la ocu-
pación espectral en el tiempo de acuerdo con el número promedio de PU activos 
simultáneamente; esto consistió en calcular el porcentaje de canales ocupados por 
cada TS. Luego, se diseñó un algoritmo que contara el número de TS con ocupación 
mayor al 80 % dentro de una ventana móvil de 10 minutos (2069 TS) y que promedia-
ra los porcentajes de ocupación de cada TS incluido dentro de la ventana. Dicha ven-
tana se desplazó por el total de filas de la AM para analizar todas las combinaciones 
posibles. Los resultados evidenciaron que el peor caso corresponde a una ocupación 
promedio de la ventana del 48 %, y en el mejor caso, del 18 %, valores que correspon-
den a las ventanas que describen las matrices de EV para HT y LT, respectivamente. 
Para el caso de MT, se tomó el valor medio entre 48 y 18 y se buscó una ventana que 
se ajustara a este valor. Los valores de ocupación espectral promedio encontrados se 
explican en gran parte debido a que los primeros 25 MHz de la banda de 824 MHz 
a 874 MHz corresponden al enlace ascendente GSM. Estos valores también eviden-
cian la oportunidad de hacer un uso más eficiente del espectro en dicha banda.
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Con los resultados anteriores, se determinaron las matrices de potencia: PM-LT-
TR, PM-LT-EV, PM-MT-TR, PM-MT-EV, PM-HT-TR y PM-HT-EV, y a partir de 
estas se construyeron las matrices de disponibilidad: AM-LT-TR, AM-LT-EV, AM-
MT-TR, AM-MT-EV, AM-HT-TR y AM-HT-EV; sin embargo, debido a la extensión 
de los resultados obtenidos, se decidió excluir las matrices de potencia y disponi-
bilidad correspondientes a MT, por lo que de aquí en adelante solo se mencionan 
los niveles de LT y HT, así como las matrices de potencia (PM-LT-TR, PM-LT-EV, 
PM-HT-TR y PM-HT-EV) y las matrices de disponibilidad (AM-LT-TR, AM-LT-
EV, AM-HT-TR y AM-HT-EV), tanto para GSM como para Wi-Fi.

Módulo colaborativo: intercambio de información 
entre usuarios secundarios 
Una de las principales novedades de esta investigación es el hecho de contemplar 
la característica de colaboración entre SU para determinar la mejor SO. Como se 
mencionó en la introducción y en el capítulo 1, la mayor parte de los trabajos de 
investigación en radio cognitiva (CR) se fundamentan en una red centralizada, en la 
que toda la información está organizada en un solo lugar y cuyo acceso resulta más 
fácil y beneficioso para la toma de decisiones; sin embargo, aunque su observación 
y conocimiento global es una ventaja, para sistemas a gran escala y aplicaciones en 
redes de seguridad pública no es la mejor opción, pues el aumento en los costos de 
medición, la complejidad del sistema, la cantidad de información que debe controlar 
y el desequilibrio y potencial caos si la estación base (BS) llegara a fallar (vulnerabili-
dad) la convierten en una arquitectura no factible para todas las estructuras de CRN 
(Pankratev et al., 2019). En el caso de las redes distribuidas, como las redes móviles 
ad hoc, o manet (mobile ad-hoc network), se caracterizan por su alta movilidad, su au-
tonomía y su adaptación e independencia, y sus aplicaciones se encuentran en esce-
narios que involucran vehículos terrestres (vanet), vehículos aéreos no tripulados 
(Bujari et al., 2018), vigilancia urbana y misiones de búsqueda o rescate (Dhamodha-
ravadhani, 2015). Sin embargo, la falta de infraestructura, la topología dinámica, la 
implementación rápida y los entornos hostiles de aplicación hacen que la manet sea 
vulnerable a una amplia gama de ataques de seguridad (Abass et al., 2017; Kongsi-
riwattana y Gardner-Stephen, 2017; Vasudeva y Sood, 2018); además, el consumo 
de energía y el retardo son altos (Kongsiriwattana y Gardner-Stephen, 2017), y el 
BW es bajo, así como su rendimiento, por las frecuentes fallas de enlace (Dhamo-
dharavadhani, 2015; Goswami, 2017). Esta problemática puede ser solucionada si 
se distribuye la responsabilidad de la información en diferentes puntos de control, 
criterio base de las redes de radio cognitiva descentralizadas (DCRN). Ahora, debido 
a que en las DCRN no se centralizan la información y la gestión de la red, resulta 
realmente importante el concepto de colaboración entre SU para la toma de decisiones. 
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De acuerdo con lo anterior, la presente investigación implementó y adaptó la 
colaboración al modelo de decisión espectral propuesto, a través de un módulo de 
intercambio de información entre SU, que se describe a continuación. 

Inicialmente, cada SU almacena información de su entorno radioeléctrico, y para 
hacerlo, se plantean cuatro diferentes alternativas: guardar toda la información posi-
ble, guardar solo los últimos k datos de información, guardar el promedio de toda la 
información posible o guardar solo el promedio de los últimos k datos de informa-
ción. Con el objetivo de optimizar el uso de la batería del SU, se descartaron la pri-
mera y tercera alternativas, dejando solo las opciones de guardar los últimos k datos 
de información o su promedio; para tomar la decisión sobre cuál de estas estrategias 
seleccionar para el modelo de decisión espectral colaborativo, se implementaron las 
dos para saber cuál generaba menor número de handoffs espectrales al transmitir la 
misma cantidad de información durante 9 minutos y a partir del mismo algoritmo de 
toma de decisiones. 

Los resultados mostraron que, para k mayores de 180, los últimos k datos resultan 
ser una mejor opción con una diferencia del 29 %, mientras que, para valores de k 
menores de 180, el promedio tiene mejores resultados con una diferencia del 32 %. 
De acuerdo con lo anterior, se decidió seleccionar la alternativa del promedio, ade-
más porque esta trae consigo información de varios periodos anteriores a k, lo que 
representa un valor agregado. 

Módulo de selección de la oportunidad espectral 
En esta sección se describe el módulo de selección de la SO. Primero, se presenta 
la metodología de evaluación planteada; segundo, se mencionan los algoritmos 
de decisión espectral seleccionados; tercero, se describen los criterios de decisión 
(DC) utilizados en cada uno de los algoritmos de decisión espectral seleccionados; 
cuarto, se describe el algoritmo fuzzy AHP (FAHP, algoritmo multivariable difuso), 
a partir del cual se determinaron los pesos de cada uno de los DC; quinto, se pre-
senta el algoritmo FFAHP, y sexto, se describen las métricas de evaluación (EM) 
con las cuales se realizó la comparación entre cada algoritmo de decisión espectral 
seleccionado. Los resultados de la evaluación se presentan en la siguiente sección, 
debido a su volumen. 

Metodología de evaluación 
Con base en el análisis de la información obtenida a través de la revisión de la litera-
tura sobre SH para CRN, se diseñó una metodología para la evaluación del desempe-
ño de la movilidad en redes móviles de CR.
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Esta evaluación consistió en un análisis comparativo del desempeño de los al-
goritmos de decisión espectral más relevantes para CRN en la literatura actual. La 
evaluación del desempeño se realizó para cinco EM: número de handoffs promedio 
acumulado (AAH), número de handoffs fallidos promedio acumulado (AAFH), BW 
promedio (ABW), retardo promedio acumulado (AAD) y throughput promedio acu-
mulado (AAT), en ocho escenarios diferentes: GSM-RT-LT, GSM-RT-HT, GSM-
BE-LT, GSM-BE-HT, Wi-Fi-RT-LT, Wi-Fi-RT-HT, Wi-Fi-BE-LT y Wi-Fi-BE-HT, 
producto de la combinación de tres parámetros de interés: el tipo de red (GSM y Wi-
Fi), el nivel de tráfico (tráfico bajo [LT] y tráfico alto [HT]) y la clase de aplicación 
(tiempo real [RT] y mejor esfuerzo [BE]).

Para obtener la información de evaluación de cada algoritmo en las cinco EM, 
para los ocho escenarios descritos, se desarrolló una herramienta de simulación no-
vedosa que reconstruye progresivamente el comportamiento de la ocupación del es-
pectro a partir del uso de trazas de datos experimentales capturadas en las bandas 
GSM y Wi-Fi. Esto permite considerar, dentro de la simulación, una aproximación 
al comportamiento real del PU y, por ende, obtener una validación más exacta del 
desempeño real de cada algoritmo. Los datos de ocupación espectral corresponden 
a un mes de observación y fueron capturados en la ciudad de Bogotá, Colombia 
(Pedraza et al., 2016).

Si un SU desea realizar una transmisión durante φ minutos, la herramienta de 
simulación desarrollada realiza el siguiente procedimiento: 

1.	Actualiza el valor de los DC con base en la información anterior al TS actual, 
denominado τ

0
, en el cual el SU solicita el recurso espectral.

2.	Realiza un ranking de clasificación de las SO con base en el puntaje obtenido por 
cada una, de acuerdo con la metodología del algoritmo de decisión espectral que 
se esté evaluando.

3.	Selecciona la SO que ocupe el primer lugar en el ranking para asignársela al SU 
e iniciar su transmisión. 

4.	En este momento, denominado τ
1
, se verifica en la base de datos (traza de datos 

capturados y procesados) si la SO seleccionada se encuentra disponible: si es así, 
se aumenta en uno la EM AAH y se procede al quinto paso; de lo contrario, se 
aumenta en uno la EM AAFH, se selecciona la SO que ocupe el siguiente lugar 
en el ranking y se retorna al cuarto paso.

5.	La herramienta de simulación verifica en cada TS, a través de la base de datos, si 
la SO que está siendo utilizada por el SU continúa disponible. 
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6.	En el momento τ
k
 que la SO seleccionada sea requerida por un PU, es decir, 

cuando la SO ya no se encuentra disponible según la base de datos, si Δτ = τ
k
 – τ

1
 

es menor de 60 segundos, entonces se selecciona la siguiente SO en el ranking y 
se retorna al cuarto paso; en caso contrario, se actualiza τ0 con el valor de tiempo 
actual y se retorna al primer paso. 

7.	Si durante ζ segundos no se encuentra un canal disponible, la comunicación se 
da por perdida. 

El procedimiento anterior se repite hasta que se completen los φ minutos de trans-
misión del SU o hasta que la comunicación se dé por perdida. En caso de que el SU 
complete su comunicación, la herramienta de simulación calcula el valor promedio 
de las cinco EM por cada minuto de los φ minutos de transmisión del SU. La base 
de datos suministra únicamente la información espectral correspondiente al TS que 
se esté ejecutando en la simulación, y para no afectar la validación, los valores de los 
DC se construyen progresivamente a partir de la información espectral anterior al TS 
actual. Esta simulación se ejecuta de forma independiente para cada algoritmo de 
decisión espectral y para cada uno de los ocho escenarios. 

Selección de los algoritmos de handoff espectral 
A partir de una revisión de la literatura actual sobre el tema de SH para CRN, se selec-
cionaron los algoritmos de decisión espectral. Para realizar esta selección, se tuvieron 
en cuenta no solo los resultados del algoritmo, sino también su fundamentación ma-
temática y una metodología clara que permitiera su reproducción. Además, debido 
a que la selección de una SO involucra múltiples variables, los métodos MCDM son 
una herramienta matemática adecuada para modelar el proceso de SH y, por tanto, 
han sido los más ampliamente utilizados en los trabajos de investigación sobre SH 
(Lahby et al., 2011; Stevens-Navarro et al., 2008; Yang y Jung-ShyrWu, 2008; Yang 
y Tseng, 2013; Zapata et al., 2012). Los algoritmos de SH seleccionados fueron: SAW 
(Hernández, Giral y Santa, 2015; Zhang, 2004), topsis (Vásquez et al., 2015; Zhang, 
2004), vikor (Hernández, Páez et al., 2015; Stevens-Navarro, Gallardo-Medina et 
al., 2012) y FFAHP (Hernández, Pedraza y Rodríguez-Colina, 2016), que ha demos-
trado ser una alternativa eficaz para la evaluación y selección de SO. 

Para cada uno de los algoritmos de SH seleccionados se desarrollaron dos versio-
nes: una, con enfoque en aplicaciones RT, y otra, con enfoque en aplicaciones BE; 
por ejemplo, para el caso de SAW, se tiene SAW-RT y SAW-BE. 

Dado que los algoritmos SAW, topsis y vikor se explicaron en el capítulo 1, 
acá únicamente se describirán el algoritmo FFAHP y, adicionalmente, el FAHP, a 
partir del cual se calcularon los pesos de cada DC. 
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Criterios de decisión 
Ahora, cada algoritmo de decisión espectral seleccionado (SAW, topsis, vikor 
y FFAHP) depende de los DC que se seleccionen y de sus correspondientes valores. 
Para esta investigación, se seleccionaron cuatro DC: probabilidad de disponibilidad 
(AP) del canal, tiempo estimado de disponibilidad (ETA) del canal, relación de señal 
a interferencia más ruido (SINR) y BW, debido a que era posible determinar sus va-
lores a partir de los datos de ocupación espectral experimentales. También se decidió 
que cada uno de los cuatro algoritmos de decisión espectral trabajara con los mismos 
cuatro DC. 

La variable AP corresponde al análisis del ciclo de trabajo normalizado de cada 
una de las 500 potenciales SO. Por tanto, el resultado de AP es un vector de 1 × 500, 
donde cada elemento es equivalente al promedio de la correspondiente columna de 
la matriz AM-LT-TR o AM-HT-TR, según el nivel de tráfico.

La variable ETA corresponde al tiempo de disponibilidad promedio de cada ca-
nal. Primero, se calculan todos los periodos de tiempo que cada canal estuvo dispo-
nible de forma continua, y luego se toma el promedio de dichos periodos para cada 
canal. Por tanto, el resultado del ETA también es un vector de 1 × 500 para la matriz 
AM-LT-TR o AM-HT-TR, según el nivel de tráfico.

La variable SINR corresponde al promedio de la diferencia entre la potencia de 
la señal y el piso de ruido promedio. Primero, para cada elemento de la matriz AM-
LT-TR diferente de cero, se realiza la diferencia entre el elemento que tiene la misma 
posición en la matriz PM-LT-TR y el valor promedio del piso de ruido, y el resultado 
de la diferencia se almacena en la misma posición de una matriz temporal denomi-
nada matriz SINR-LT-TR. Segundo, se calcula el valor promedio de cada columna 
de la matriz SINR-LT-TR, por lo que el resultado de SINR también es un vector de 
1 × 500. Por último, se realiza el mismo procedimiento con la matriz AM-HT-TR, 
según el nivel de tráfico.

La variable BW, por su parte, corresponde al BW promedio de cada canal; sin em-
bargo, debido a que son canales, todos tienen el mismo BW, equivalente a 100 KHz, 
por lo que el promedio será siempre el mismo, lo que le resta importancia a esta 
variable. No obstante, con el objetivo de que la variable BW tuviera incidencia en 
el ranking de cada SO, se decidió tomar, para cada potencial SO, el BW agregado de 
hasta cuatro canales adyacentes, tanto a la izquierda como a la derecha, siempre y 
cuando estuvieran disponibles de forma consecutiva para formar un solo canal.

En la banda GSM, todos los canales tienen un BW de 200 KHz; sin embargo, debi-
do a los parámetros técnicos configurados en el analizador de espectro, la campaña 
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de medición arrojó datos de ocupación espectral para segmentos de frecuencia con 
un BW fijo de 100 KHz. Al respecto, a pesar de que se podría haber realizado el 
promedio del nivel de potencia para cada dos segmentos, a fin de obtener el valor 
correspondiente a cada canal GSM, se decidió trabajar con el BW de 100 KHz para 
realizar un uso oportunista más eficiente del espectro disponible. 

Una vez calculados los valores de los DC, se procedió a realizar su normalización 
para que los puntajes que definían la posición de las SO en el ranking siempre fueran 
los justos, tanto en la clase de aplicación RT como en la BE. La normalización de los 
valores para los cuatro DC consistió en ajustar su rango de escala de 0 a 100, para 
lo cual se multiplicaron todos los valores de un mismo DC por un factor de escala 
equivalente a 100 dividido por el valor más alto del DC correspondiente.

Algoritmo multivariable difuso 
El algoritmo AHP (analytical hierarchical process) para la toma de decisiones basada 
en múltiples criterios, tanto cuantitativos como cualitativos, ha demostrado ser una 
alternativa eficaz para la selección del canal objetivo (Kibria et al., 2005; Lahby et 
al., 2011; Rodríguez-Colina et al., 2011; Song y Jamalipour, 2005; Stevens-Navarro 
et al., 2008; Stevens-Navarro, Martinez-Morales et al., 2012). El algoritmo AHP se 
basa en juicios subjetivos, a través de comparaciones de la importancia entre criterios 
usados para la selección de una alternativa, por lo que es más una medida relativa 
que un valor absoluto (Saaty, 1990).

Sin embargo, el método AHP propuesto en Saaty (1990) tiene las siguientes limi-
taciones: 1) trabaja con una escala de juicios muy desbalanceada, 2) no maneja in-
formación con incertidumbre y ambigüedad asociada a la asignación de un número 
a cada evaluación, 3) su ranking es bastante impreciso y 4) la subjetividad del juicio, 
la selección y la preferencia de quienes toman las decisiones tienen gran influencia 
en los resultados; sin embargo, estas limitaciones se pueden corregir a través de la 
integración de la lógica difusa en el algoritmo AHP, lo que mejora el manejo de la 
subjetividad y la incertidumbre en la información y en las evaluaciones de criterios; al 
añadirle la lógica difusa al AHP, se obtiene el algoritmo multivariable difuso (FAHP) 
(Mehbodniya et al., 2012; Patil y Kant, 2014; Zapata et al., 2012).

Aunque el método FAHP tenga en esencia la misma metodología del algoritmo 
AHP, la lógica difusa ayuda a tratar la subjetividad y la incertidumbre en las eva-
luaciones de criterios, ya que, mediante un proceso matemático, permite utilizar un 
rango en la respuesta en lugar de un número puntual (Cortés, 2011).
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El algoritmo FAHP propuesto, adaptado a la CR, se desarrolló a través de cuatro 
pasos: 1) definición del problema, 2) construcción de la jerarquía, 3) construcción de 
la matriz de juicios y 4) cálculo de los pesos normalizados. 

Definición del problema 
El problema puede ser dividido en cuatro niveles jerárquicos: objetivo, criterios, sub-
criterios y alternativas: el objetivo es la selección de la mejor SO en una CRN; los 
criterios y subcriterios son los factores que afectan la preferencia de una alternativa, 
y las alternativas son todas las SO presentes en la banda de frecuencia seleccionada. 

El procedimiento para determinar los criterios y subcriterios fue realizado a través 
de una modificación del método Delphi (Green et al., 2007), que es relativamente 
simple de implementar y que ha sido adoptado para diversas aplicaciones, como 
pronósticos, estimaciones y problemas de toma de decisiones (Green et al., 2007). El 
método consiste generalmente en un panel de expertos que responden cuestionarios 
en dos o más rondas. Después de cada ronda, un moderador provee un resumen 
anónimo de los juicios y razones de cada experto en la ronda previa. Para esta inves-
tigación, los DC para el algoritmo FAHP fueron propuestos inicialmente a partir de 
todos los parámetros reportados en la literatura actual sobre SH para CRN, y final-
mente fueron seleccionados con una modificación del método Delphi propuesta en 
Hernández, Salgado et al. (2015). La contribución al método Delphi es el concepto 
de experto en sí mismo, definido como el profesional inmerso en la administración 
y operación de red, así como la propuesta del método Delphi modificado, la cual 
consiste en considerar dos entradas en lugar de una para cada ronda. Para la primera 
ronda y las siguientes, se consideraron dos entradas: la decisión de un Consejo de 
Administradores de Red (CAR), compuesto por nueve expertos seleccionados alea-
toriamente, y el ranking del impacto de las variables (RIV) que influyen en el proceso de 
SH y que están reportadas en la literatura. 

La segunda ronda del método Delphi implementado consideró las trece variables 
seleccionadas durante la primera ronda del proceso y el RIV actualizado. El CAR 
determinó cuáles de las trece variables eran significativas, si debían adicionarse nue-
vas o si se debía modificar o descartar algunas, lo cual se combinó con las estadísticas 
del RIV y se actualizó. En caso de presentarse desacuerdo entre miembros del CAR, 
se desarrolla un análisis global combinado con las estadísticas del RIV, y luego, un 
segundo conjunto de variables es propuesto para la tercera ronda, con el mismo pro-
cedimiento. Este proceso se repite iterativamente hasta alcanzar un consenso general 
por parte del CAR combinado con las estadísticas del RIV. En el método Delphi pro-
puesto, si el consenso no se da antes de la quinta ronda, la decisión final es tomada 
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con base en las estadísticas finales del RIV. Para este caso, el consenso se logró en la 
tercera ronda, en la cual se descartaron ocho variables. 

Después de tres rondas del método Delphi modificado, cinco variables fueron 
seleccionadas por la combinación del CAR y las estadísticas del RIV. Estas fueron: 
clase de servicio del SU (RT y BE), AP, ETA, SINR y BW. El siguiente paso fue or-
ganizar los DC en criterios y subcriterios para el objetivo de seleccionar la mejor SO 
para el SU. Se consideró que la variable clase de servicio es más general que las otras, 
por lo que se decidió seleccionarla como criterio, clasificándola como RT y BE, y se 
consideraron las otras cuatro variables como subcriterios de la clase de servicio. Así, 
en esta investigación, el criterio clase de servicio es determinado por la aplicación del 
SU, y se considera que el objetivo es el mismo para RT y BE (seleccionar la mejor 
SO); sin embargo, la importancia (ponderación) de cada subcriterio es diferente y 
corresponde al enfoque de las aplicaciones RT y BE. 

Los cuatro subcriterios fueron medidos y calculados a partir de datos experimen-
tales de ocupación espectral capturados en las bandas GSM y Wi-Fi. 

Estructura jerárquica 
La estructura jerárquica del algoritmo FAHP se construyó con base en el objetivo, los 
criterios, los subcriterios y las alternativas seleccionadas (figura 59). 

Matrices de juicio 
De acuerdo con el método AHP, una vez diseñada la jerarquía, se construyen las 
matrices de juicios, las cuales corresponden a las evaluaciones comparativas que de-
finen el nivel de importancia relativa entre cada combinación posible de parejas de 
criterios, subcriterios y alternativas, de forma independiente. Sin embargo, debido a 
que solo se tienen dos únicos criterios —RT y BE, los cuales son mutuamente exclu-
yentes, cada uno con los mismos cuatro subcriterios—, no tiene sentido realizar una 
matriz de juicios para este nivel. En el caso de las alternativas, debido a que las SO 
modifican sus características (subcriterios) dinámicamente en el tiempo, tampoco 
tendría sentido realizar una matriz de juicios a este nivel, por lo que se decidió que el 
algoritmo FAHP evaluara dinámicamente el conjunto de alternativas. 
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Figura 59. Estructura propuesta para el algoritmo FAHP
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Seleccionar la mejor
oportunidad espectral
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ETA SINR BW

Fuente: elaboración propia.

De acuerdo con Büyüközkan et al. (2004), 

las personas encargadas de la toma de decisiones usualmente se sienten mejor 
presentando sus juicios como un intervalo en vez de dar un valor puntual y fijo. 
Esto se debe a que él, ella o ellos son incapaces de explicar sus preferencias, dada 
la naturaleza difusa de los procesos de comparación humana. (pp. 260-261; tra-
ducción propia)

Por ello, se decidió trabajar con una escala de TFN (números difusos triangulares), 
presentados en la tabla 26 y la figura 60. La escala de importancia difusa se obtuvo 
de la conversión de la escala de importancia fundamental de nueve niveles a números 
difusos presentada por Büyüközkan et al. (2004). 

Tabla 26. TFN y TFN recíproco para la escala de importancia de FAHP 

Nomenclatura Escala de importancia TFN TFN recíproco

EI Igualmente importante (1/2, 1, 3/2) (2/3, 1, 2)

MI Moderadamente más importante (1, 3/2, 2) (1/2, 2/3, 1)

SI Fuertemente más importante (3/2, 2, 5/2) (2/5, 1/2, 2/3)

VSI Muy fuertemente más importante (2, 5/2, 3) (1/3, 2/5, 1/2)

XI Extremadamente más importante (5/2, 3, 7/2) (2/7, 1/3, 2/5)

Fuente: elaboración propia a partir de Büyüközkan et al. (2004); Büyüközkan y Çifçi (2012); 
Choudhary y Shankar (2012); Cortés (2011); Giupponi y Pérez-Neira (2008); Kaya y Kah-

raman (2010); Mehbodniya et al. (2012); Patil y Kant (2014), y Zadeh (1965).
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Figura 60. TFN para la escala de importancia de FAHP
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Fuente: elaboración propia.

Una matriz de juicios de n criterios o subcriterios está descrita por la ecuación (115):
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(115),

donde i = j = 1, 2, …, n, y n es el número de criterios o subcriterios.

Para el caso del algoritmo FAHP, las matrices de juicios que contienen los TFN 
representan las comparaciones por parejas entre subcriterios (Mehbodniya et al., 
2012), como lo describe la ecuación (116): 
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




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(116),

donde ( ) ( ) 11 1 1 1 , ,  , ,ij ij ij ij ij
ij ij ij

a a l m u
u m l

−−  
 = = =     

 
  .

Los elementos de la diagonal de cada matriz corresponden a la igualdad, a razón 
de que compara la importancia entre los mismos subcriterios. La mitad diagonal 
superior de cada matriz describe la importancia relativa del subcriterio de la primera 
columna con respecto al subcriterio de la primera fila. 
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Con base en la escala de importancia difusa presentada en la tabla 26 y la figura 
60, y a partir el método Delphi modificado, se determinó el nivel de importancia 
relativa de cada par de subcriterios y se construyeron las matrices de juicios para los 
subcriterios. La matriz de juicios preliminar se construyó con los resultados de la 
primera ronda del método Delphi modificado. Además, los resultados de la primera 
ronda fueron usados en la segunda tanto para el enfoque RT como para el BE. El pro-
ceso de decisión se repite hasta que los resultados convergen; estos son presentados 
en las matrices de juicio para los subcriterios con el enfoque de RT (tabla 27) y para 
los subcriterios con el enfoque de BE (tabla 28).

Tabla 27. Matriz de juicios para los subcriterios de tiempo real

Subcriterio AP ETA SINR BW

AP
(1/2, 1, 3/2)

EI

(1, 3/2, 2)

MI

(3/2, 2, 5/2)

SI

(3/2, 2, 5/2)

SI

ETA
(1/2, 2/3, 1)

1/MI

(1/2, 1, 3/2)

EI

(3/2, 2, 5/2)

SI

(3/2, 2, 5/2)

SI

SINR
(2/5, 1/2, 2/3)

1/SI

(2/5, 1/2, 2/3)

1/SI

(1/2, 1, 3/2)

EI

(1, 3/2, 2)

MI

BW
(2/5, 1/2, 2/3)

1/SI

(2/5, 1/2, 2/3)

1/SI

(1/2, 2/3, 1)

1/MI

(1/2, 1, 3/2)

EI

Fuente: elaboración propia.

Tabla 28. Matriz de juicios para los subcriterios de mejor esfuerzo

Subcriterio AP ETA SINR BW

AP
(1/2, 1, 3/2)

EI
(1, 3/2, 2)

MI
(1/3, 2/5, 1/2)

1/VSI
(1/3, 2/5, 1/2)

1/VSI

ETA
(1/2, 2/3, 1)

1/MI
(1/2, 1, 3/2)

EI
(2/5, 1/2, 2/3)

1/SI
(2/5, 1/2, 2/3)

1/SI

SINR
(2, 5/2, 3)

VSI
(3/2, 2, 5/2)

SI
(1/2, 1, 3/2)

EI
(3/2, 2, 5/2)

SI

BW
(2, 5/2, 3)

VSI
(3/2, 2, 5/2)

SI
(2/5, 1/2, 2/3)

1/SI
(1/2, 1, 3/2)

EI

Fuente: elaboración propia.

Las aplicaciones RT y BE tienen diferentes enfoques: para RT, los subcriterios con 
más alta prioridad son los que reducen el retardo, como AP y ETA, y para BE, los 
subcriterios con más alta prioridad son los que incrementan la tasa de datos, como 
BW y SINR. 
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Cálculo de los pesos normalizados 
Con las matrices de juicios definidas, se procedió a calcular los pesos normalizados 
para cada subcriterio, con base en el modelo propuesto por Mehbodniya et al. (2012). 
Estos resultados están basados en el análisis difuso extendido presentado en Chang 
(1996), como se describe a continuación.

El valor del i-ésimo objeto del análisis extendido es definido como se muestra en 
la ecuación (117):

1

1 1 1

n n n

i ij ij
j i j

S a a
−

= = =

 
=  

 
∑ ∑∑

 
(117),

donde  ( )1 1 1 1
, ,n n n n

ij ij ij ijj j j j
a l m u

= = = =
=∑ ∑ ∑ ∑ .

La matriz inversa de la ecuación (117) se calcula a partir de la ecuación (118):

1

1 1
1 1 1 1 1 1

1 1 1, ,
n n

ij n n n n n n
i j ij ij iji j i j i j

a
u m l

−

= =
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    =      
∑∑

∑ ∑ ∑ ∑ ∑ ∑
 (118).

El grado de posibilidad de que un número difuso convexo sea más grande que k 
números difusos convexos está dado por la ecuación (119):

{ }1 2( ) ( ) ( )...( ) min ( )i k iV S S V S S S S S S V S S ≥ = ≥ ∧ ≥ ≥ = ≥ 
         

 { }1 2( ) ( ) ( )...( ) min ( )i k iV S S V S S S S S S V S S ≥ = ≥ ∧ ≥ ≥ = ≥ 
          (119),

donde el grado de posibilidad de que 1 2S S≥   y 2 1S S≥   está dado por las ecuaciones 
(120) y (121), respectivamente:

1 2

1 2 2 1

2 1

1 1 2 2

1

( ) 0

,
( ) ( )

m m

V S S l u
l u otherwise

m u m l

 
≥ 

  ≥ = ≥ 
 − 
 − − −  

  (120);

2 1

2 1 1 2

2 1

2 2 1 1

1

( ) 0

,
( ) ( )

m m

V S S l u
l u otherwise

m u m l

 
≥ 

  ≥ = ≥ 
 − 
 − − −  

  (121).



177

Modelo de decisión espectral colaborativo para mejorar el desempeño de las redes de radio cognitiva

Ahora, asumiendo que ( ){ }'
1 1 2d min V S S= ≥  , el vector de pesos es ( )' ' '

1 2,  ,  ,  nw d d d= …′ .

Finalmente, después de la normalización, el vector de pesos no difuso está dado 
por la ecuación (122):

'' '
1 2

1 2 ' ' '
1 1 1

( , ,..., ) , ,...,T n
n n n n

i i ii i i
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(122).

A partir del procedimiento anterior, se muestran los resultados del vector de pesos 
correspondiente al criterio RT (tabla 29) y del vector correspondiente al criterio BE 
(tabla 30). 

Tabla 29. Pesos normalizados de los subcriterios de tiempo real

Subcriterio RT AP ETA SINR BW

Pesos normalizados 0,3593 0,2966 0,1970 0,1471

Fuente: elaboración propia.

Tabla 30. Pesos normalizados de los subcriterios de mejor esfuerzo

Subcriterio BE AP ETA SINR BW

Pesos normalizados 0,1607 0,1523 0,3949 0,2921

Fuente: elaboración propia.

Los pesos normalizados describen el grado de importancia relativa de cada subcriterio 
para la selección del canal de respaldo según el criterio de RT o BE. Por ejemplo, en el 
caso de que un SU requiera un canal de respaldo para una aplicación de TR, la selección 
de dicho canal dependerá en un 36 % de la AP del canal, en un 30 % del ETA del canal, 
en un 20 % de la SINR del canal y en un 14 % del BW del canal, aproximadamente. 

Los pesos descritos en las tablas 29 y 30 se utilizan para configurar cada uno de 
los cuatro algoritmos de decisión espectral a evaluar comparativamente. 

Algoritmo multivariable difuso realimentado 
En el algoritmo FFAHP, el puntaje de cada SO es calculado a partir de los pesos ob-
tenidos con FAHP, usando la ecuación (123) para el enfoque RT y la ecuación (124) 
para el enfoque BE. La SO con el puntaje más alto es la SO objetivo; la SO con el 
segundo puntaje más alto es la SO de respaldo, y las siguientes son SO candidatas en 
orden de mayor a menor puntaje. 
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_ 0,3593 0,2966 0,1970 0,1471iScore RT AP ETA SINR BW= × + × + × + × _ 0,3593 0,2966 0,1970 0,1471iScore RT AP ETA SINR BW= × + × + × + × (123);

_ 0,1607 0,1523 0,3949 0, 2921jScore BE AP ETA SINR BW= × + × + × + × _ 0,1607 0,1523 0,3949 0, 2921jScore BE AP ETA SINR BW= × + × + × + × (124),

donde Score i es el puntaje asignado a la SO i para la aplicación RT y Score j es el 
puntaje asignado a la SO j para la aplicación BE.

El algoritmo FFAHP propuesto tiene por objetivo incrementar la precisión en la 
selección de la SO. Para lograr esto, FFAHP realimenta la información de las evalua-
ciones de las SO realizadas anteriormente. Así, la selección de la SO se realiza con base 
en la evaluación de la información actual del espectro y en las evaluaciones pasadas.

Inicialmente, el proceso de detección de espectro captura la información de fre-
cuencia, potencia y tiempo. La cantidad de datos capturados dependerá de los pará-
metros de RBW, span y tiempo de barrido, configurados en el analizador de espectro 
(Pedraza et al., 2016); los datos capturados son almacenados en una base de datos. 
Periódicamente, la unidad de procesamiento de información calcula el valor de los 
DC —AP, ETA, SINR y BW— y los normaliza sobre una base de 100. El algoritmo 
FAHP recibe los valores actualizados de cada DC y procede a evaluar cada SO. Si la 
aplicación es de RT, utiliza la ecuación (123), y si es de BE, utiliza la ecuación (124). 
El rango del puntaje de evaluación puede estar entre 0 y 100, siendo 100 el mejor 
puntaje posible. La figura 61 ilustra el diseño del algoritmo FFAHP. 

Figura 61. Esquema del algoritmo FFAHP propuesto

Algoritmo 
FAHP

Pr
oc

es
am

ie
nt

o 
de

 
in

fo
rm

ac
ió

n

Último 
ranking

Ranking 
promedio

Detección de 
espectro

Canal 
objetivo

Transmisor 
SU

PU

Base de datos
del ranking

Realimentación

AP

ETA

Ranking actual Mejor canal

SINR

BW

Ambiente 
de Radio

Ambiente 
de radio

Base de 

SU

datos

Fuente: elaboración propia.
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En esta parte del proceso se tiene un ranking de cada una de las SO con base única-
mente en la información actual de los DC; sin embargo, la SO con la mejor evaluación 
hasta el momento puede no ser la seleccionada finalmente, debido a que este valor 
de evaluación se pondera con las evaluaciones realizadas en el pasado. El proceso de 
realimentación recibe las evaluaciones actuales (PS) de cada SO y las pondera con el 
valor de la última evaluación reciente (LS) y con el promedio de las evaluaciones (AS) 
realizadas en la última hora. Esta ponderación da como resultado el ranking definitivo 
de las SO. El procedimiento anterior se describe en la ecuación (125):

/_ (1 )i jFinal Score PS LS ASα β α β= × + × + − − × (125),

donde α y β ϵ [0,1] y Final_Scorei/j es el valor de la evaluación final de la SO i o j. 

La SO con la mejor evaluación final es la seleccionada para realizar la transmisión 
de los datos del SU. Posteriormente, el bloque de realimentación transfiere el valor 
de PS a LS y actualiza el valor de AS de acuerdo con el nuevo valor de LS. Si la SO 
seleccionada finalmente se encuentra ocupada, el algoritmo FFAHP sobrescribe el 
valor de LS en cero para la respectiva SO. 

Para determinar los valores de α y β, se realizó un análisis experimental autorre-
gresivo con diferentes combinaciones de estas variables para un conjunto de datos 
predeterminado. Se tomaron los valores de α y β para los cuales la precisión en la 
selección de la SO fue más alta. Dichos valores corresponden a α = 0,60 y β = 0,35, 
con una precisión experimental del 87 %. 

Métricas de evaluación 
Para evaluar el desempeño de los algoritmos de decisión espectral, se determinaron 
cinco EM, que se describen en la tabla 31, donde se presenta su sigla, nombre, des-
cripción y tipo de EM; este último hace referencia a si la métrica es de beneficio (es 
mejor si es mayor) o costo (es mejor si es menor). La palabra promedio en las EM 
hace referencia a que los resultados de estas corresponden al promedio de los valores 
arrojados por varios experimentos realizados.

Tabla 31. Métricas de evaluación utilizadas para los algoritmos FAHP y FFAHP

Sigla Nombre Descripción Tipo de EM

AAH
Número de handoffs 
promedio acumulado

Es el número total de handoffs 
realizados durante los 9 minutos de la 
transmisión del SU.

Costo

AAFH
Número de handoffs 
fallidos promedio 
acumulado

Es el número de handoffs que el SU no 
pudo materializar porque encontró las 
respectivas SO objetivo ocupadas.

Costo
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Sigla Nombre Descripción Tipo de EM

ABW Ancho de banda promedio
Es el BW promedio utilizado por 
el SU durante los 9 minutos de la 
transmisión. 

Beneficio

AAD
Retardo promedio 
acumulado

Es el tiempo promedio total 
experimentado por el SU durante 
la transmisión de una determinada 
cantidad de información.

Costo

AAT
Throughput promedio 
acumulado

Es la tasa de datos efectiva transmitida 
por el SU durante los 9 minutos de la 
transmisión. 

Beneficio

Fuente: elaboración propia.

Con el objetivo de facilitar el análisis comparativo de cada algoritmo, se calcularon 
los valores relativos (en porcentaje) de cada EM. Para las métricas de tipo beneficio, se 
calculó el valor relativo (Rel) del algoritmo i a partir del valor absoluto (Abs) y del va-
lor máximo (Max) de la EM, como se describe en la ecuación (126), y para las métricas 
de tipo costo, se calculó el valor relativo (Rel) del algoritmo i a partir del valor absoluto 
(Abs) y del valor mínimo (Min) de la EM, como se describe en la ecuación (127).

e 100%
Abs

i
Abs
Max

R l
i

X
X

X ×= (126);

e 100%
Min
i
Ab

R

i

l
i sX X

X
×= (127).

Para el cálculo de los puntajes globales, se ponderó según la ecuación (128), en el 
caso de los algoritmos híbridos, y como lo describe la ecuación (129), en el caso del 
algoritmo predictivo. 

PGi = 0,225 x AAHi + 0,025 x AAFHi + 0,25 x (ABWi + AADi + AATi) (128);

PGi = 0,02 x AAFHi + 0,18 x AAPHi + 0,2 x (AAHi + AAIHi + AAEHi + AAUHi) (129).

Evaluación de los algoritmos de decisión espectral 
Debido a la gran cantidad de información obtenida a través de las simulaciones reali-
zadas, y con el objetivo de no combinar demasiadas curvas que luego fueran difíciles 
de leer, se decidió mostrar el desempeño de cada algoritmo individualmente en todas 
sus situaciones posibles, es decir, para los cinco diferentes niveles de cooperación 
entre SU (10 %, 20 %, 50 %, 80 % y 100 %), con una traza de HT y LT, con enfoque 
RT y BE, en las redes GSM y Wi-Fi y para las cinco EM. Lo anterior da un total de 8 
figuras por cada escenario (GSM-RT-LT, GSM-RT-HT, GSM-BE-LT, GSM-BE-HT, 
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Wi-Fi-RT-LT, Wi-Fi-RT-HT, Wi-Fi-BE-LT y Wi-Fi-BE-HT), producto de la combi-
nación de los tres parámetros de interés —tipo de red (GSM y Wi-Fi), nivel de tráfico 
(LT y HT) y clase de aplicación (RT y BE)—, para cada algoritmo por cada EM, y en 
cada una de ellas, los cinco niveles de cooperación, para un gran total de 160 figuras 
que fueron agrupadas por algoritmo y tipo de red para sintetizarlas en 40 figuras, que 
se describen a continuación. 

Las figuras 62-101 describen las EM AAH, AAFH, ABW, AAD y AAT que se 
presentan en cada algoritmo de SH durante una transmisión de 9 minutos, para 5 
diferentes niveles de cooperación entre SU (10 %, 20 %, 50 %, 80 % y 100 %), con 
una traza de HT y LT, con enfoque RT y BE y en las redes GSM y Wi-Fi, mientras 
que las tablas 32-51, por su parte, muestran los correspondientes porcentajes compa-
rativos de desempeño para cada algoritmo en las EM AAH, AAFH, ABW, AAD y 
AAT, para los 5 diferentes niveles de cooperación entre SU (10 %, 20 %, 50 %, 80 % y 
100 %), con una traza de HT y LT, con enfoque RT y BE y en las redes GSM y Wi-Fi.
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Handoffs totales promedio acumulado 

Figura 62. AAH en GSM para el algoritmo FFAHP
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Fuente: elaboración propia.
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Figura 63. AAH en Wi-Fi para el algoritmo FFAHP
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Fuente: elaboración propia.
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Figura 64. AAH en GSM para el algoritmo SAW
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Fuente: elaboración propia.
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Figura 65. AAH en Wi-Fi para el algoritmo SAW

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700
User 10
User 20
User 50
User 80
User 100

a. Wi-Fi RT HT

Tiempo de transmisión del SU (minutos)

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600
User 10
User 20
User 50
User 80
User 100

b. Wi-Fi RT LT

Tiempo de transmisión del SU (minutos)

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700
User 10
User 20
User 50
User 80
User 100

c. Wi-Fi BE HT

Tiempo de transmisión del SU (minutos)

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600
User 10
User 20
User 50
User 80
User 100

d. Wi-Fi BE LT

Tiempo de transmisión del SU (minutos)

Fuente: elaboración propia.
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Figura 66. AAH en GSM para el algoritmo topsis
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Figura 67. AAH en Wi-Fi para el algoritmo topsis
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Figura 68. AAH en GSM para el algoritmo vikor
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Figura 69. AAH en Wi-Fi para el algoritmo vikor
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Tabla 32. Valores relativos de AAH para FFAHP 
F
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R
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SU10 SU10 100 100 63,29 100 96,50 97,58 96,19

SU20 SU20 100 99,32 61,60 99,83 100 98,85 96,01

SU50 SU50 99,32 100 61,44 96,32 100 95,68 94,27

SU80 SU80 100 96,55 59,32 100 100 95,99 95,03

SU100 SU100 100 98,56 59,31 97,56 100 94,92 92,87

Fuente: elaboración propia.

Tabla 33. Valores relativos de AAH para SAW
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SU10 96,22 100 65,20 64,26 100 96,28 82,82 89,47

SU20 98,86 100 63,37 62,45 100 94,56 84,76 88,39

SU50 100 100 62,50 61,37 100 95,19 88,50 88,50

SU80 100 100 62,50 61,59 100 95,00 88,44 89,45

SU100 100 93,90 59,00 59,23 100 95,24 87,95 87,80

Fuente: elaboración propia.



191

Modelo de decisión espectral colaborativo para mejorar el desempeño de las redes de radio cognitiva

Tabla 34. Valores relativos de AAH para topsis 
T
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SU10 95,83 100 78,63 76,99 80,86 100 75,09 94,66

SU20 100 99,44 75,97 74,06 100 97,85 84,67 91,49

SU50 100 100 75,97 74,06 100 96,68 88,45 91,08

SU80 100 100 79,28 73,64 100 96,68 89,81 91,51

SU100 100 99,39 75,93 69,20 100 96,33 90,03 92,48

Fuente: elaboración propia.

Tabla 35. Valores relativos de AAH para vikor 

V
IK

O
R

G
SM

-B
E

-L
T

G
SM

-R
T

-L
T

G
SM

-B
E

-H
T

G
SM

-R
T

-H
T

W
i-

F
i-

B
E

-L
T

W
i-

F
i-

R
T

-L
T

W
i-

F
i-

B
E

-H
T

W
i-

F
i-

R
T

-H
T

SU10 93,75 100 70,31 75,95 100 95,84 91,14 84,21

SU20 98,35 100 69,92 75,85 100 97,77 90,49 90,06

SU50 100 100 69,53 75,42 100 98,11 91,20 90,62

SU80 100 100 69,41 75,32 100 98,10 91,48 91,19

SU100 100 97,16 67,59 73,39 100 98,41 90,00 90,58

Fuente: elaboración propia.



192

Cesar Augusto Hernández Suarez, Danilo Alfonso López Sarmiento y Diego Armando Giral Ramírez

Handoffs fallidos promedio acumulado 

Figura 70. AAFH en GSM para el algoritmo FFAHP
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Fuente: elaboración propia.
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Figura 71. AAFH en Wi-Fi para el algoritmo FFAHP
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Fuente: elaboración propia.
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 Figura 72. AAFH en GSM para el algoritmo SAW
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Fuente: elaboración propia.
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Figura 73. AAFH en Wi-Fi para el algoritmo SAW
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Fuente: elaboración propia.
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Figura 74. AAFH en GSM para el algoritmo topsis
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Fuente: elaboración propia.
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Figura 75. AAFH en Wi-Fi para el algoritmo topsis
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Fuente: elaboración propia.
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Figura 76. AAFH en GSM para el algoritmo vikor
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Fuente: elaboración propia.
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Figura 77. AAFH en Wi-Fi para el algoritmo vikor
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Tabla 36. Valores relativos de AAFH para FFAHP 
F
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SU10 100 75,00 50,00 20,45 100 84,35 88,99 84,35

SU20 100 60,00 33,33 13,64 100 88,35 87,50 89,22

SU50 100 75,00 35,29 13,64 100 91,67 88,00 92,63

SU80 100 75,00 35,29 13,95 100 84,04 79,80 85,87

SU100 100 71,43 31,25 12,50 100 95,18 82,29 90,80

Fuente: elaboración propia.

Tabla 37. Valores relativos de AAFH para SAW 

SA
W

G
SM

-B
E

-L
T

G
SM

-R
T

-L
T

G
SM

-B
E

-H
T

G
SM

-R
T

-H
T

W
i-

F
i-

B
E

-L
T

W
i-

F
i-

R
T

-L
T

W
i-

F
i-

B
E

-H
T

W
i-

F
i-

R
T

-H
T

SU10 100 40,00 20,69 20,69 100 86,90 52,90 61,34

SU20 100 85,71 20,69 20,69 100 90,12 63,48 65,77

SU50 100 100 21,43 20,69 100 90,00 66,06 65,45

SU80 100 100 21,43 21,43 100 88,00 61,68 60,00

SU100 100 100 29,41 29,41 100 88,00 62,86 61,68

Fuente: elaboración propia.
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Tabla 38. Valores relativos de AAFH para topsis
T
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SU10 100 61,54 33,33 18,60 40,65 100 44,44 81,97

SU20 83,33 100 21,74 11,63 97,85 100 65,94 88,35

SU50 66,67 100 17,39 9,30 98,91 100 87,50 90,10

SU80 66,67 100 28,57 9,30 100 100 88,12 89,00

SU100 50,00 100 27,27 8,82 100 96,63 90,53 88,66

Fuente: elaboración propia.

Tabla 39. Valores relativos de AAFH para vikor 
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SU10 75,00 100 47,37 21,43 91,21 100 81,37 61,48

SU20 60,00 100 35,29 14,63 88,37 100 76,00 69,72

SU50 66,67 100 35,29 14,63 86,90 100 73,74 70,19

SU80 55,56 100 29,41 12,50 86,90 100 73,74 73,74

SU100 50,00 100 23,53 12,90 88,89 100 74,23 72,73

Fuente: elaboración propia.
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Ancho de banda promedio 

Figura 78. ABW en GSM para el algoritmo FFAHP
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Figura 79. ABW en Wi-Fi para el algoritmo FFAHP
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Figura 80. ABW en GSM para el algoritmo SAW
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Figura 81. ABW en Wi-Fi para el algoritmo SAW
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Figura 82. ABW en GSM para el algoritmo topsis
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Figura 83. ABW en Wi-Fi para el algoritmo topsis
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Figura 84. ABW en GSM para el algoritmo vikor
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Figura 85. ABW en Wi-Fi para el algoritmo vikor
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Tabla 40. Valores relativos de ABW para FFAHP 
F

F
A

H
P

G
SM

-B
E
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T

G
SM
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-L
T

G
SM

-B
E

-H
T

G
SM

-R
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T

W
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B
E
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F
i-

R
T

-L
T

W
i-

F
i-

B
E

-H
T

W
i-

F
i-

R
T

-H
T

SU10 100 96,68 91,21 77,62 100 99,23 98,72 97,96

SU20 100 99,09 91,41 77,58 100 98,69 98,14 97,40

SU50 100 99,13 91,25 77,38 100 98,94 98,58 97,64

SU80 100 99,11 91,24 77,38 100 98,42 97,38 98,15

SU100 100 99,05 91,15 77,41 100 99,74 97,81 98,55

Fuente: elaboración propia.

Tabla 41. Valores relativos de ABW para SAW

SA
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T

SU10 100 93,81 87,52 87,47 100 99,25 94,90 98,21

SU20 99,50 100 86,92 86,83 100 98,50 96,04 97,13

SU50 98,16 100 85,72 85,64 100 98,01 96,49 97,71

SU80 100 100 85,74 85,66 100 99,62 97,39 97,59

SU100 99,91 100 86,10 92,47 100 99,13 97,38 97,26

Fuente: elaboración propia.
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Tabla 42. Valores relativos de ABW para topsis
T
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SU10 100 93,95 83,89 81,25 93,46 100 92,76 97,14

SU20 100 99,69 84,07 81,07 99,86 100 97,38 99,81

SU50 100 99,20 83,43 80,45 99,82 99,89 99,54 100

SU80 100 99,99 89,02 79,59 98,56 99,04 100 98,69

SU100 100 99,77 89,17 84,53 98,70 99,28 100 99,43

Fuente: elaboración propia.

Tabla 43. Valores relativos de ABW para vikor

V
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SU10 100 99,74 93,37 81,26 100 99,56 99,82 94,76

SU20 99,99 100 93,80 80,48 99,18 100 98,54 97,87

SU50 100 99,85 92,95 79,79 99,32 100 99,03 98,93

SU80 100 99,77 93,62 79,71 99,07 100 99,49 98,48

SU100 100 99,52 93,33 84,72 99,82 100 98,75 97,91

Fuente: elaboración propia.
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Retardo promedio acumulado 

Figura 86. AAD en GSM para el algoritmo FFAHP
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Fuente: elaboración propia.
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Figura 87. AAD en Wi-Fi para el algoritmo FFAHP
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Fuente: elaboración propia.
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Figura 88. AAD en GSM para el algoritmo SAW
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Fuente: elaboración propia.
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Figura 89. AAD en Wi-Fi para el algoritmo SAW
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Fuente: elaboración propia.
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Figura 90. AAD en GSM para el algoritmo topsis
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Figura 91. AAD en Wi-Fi para el algoritmo topsis
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Figura 92. AAD en GSM para el algoritmo vikor
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Figura 93. AAD en Wi-Fi para el algoritmo vikor
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Tabla 44. Valores relativos de AAD para FFAHP 
F

F
A

H
P
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T
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B
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W
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F
i-

R
T

-H
T

SU10 100 99,33 72,41 73,44 100 97,88 98,44 97,03

SU20 100 99,92 71,55 72,73 98,97 100 98,40 96,30

SU50 99,59 100 71,33 72,43 95,69 100 95,98 93,90

SU80 100 98,02 69,95 71,01 98,95 100 96,77 94,78

SU100 100 99,04 69,88 70,16 97,34 100 95,90 93,66

Fuente: elaboración propia.

Tabla 45. Valores relativos de AAD para SAW

SA
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i-

R
T

-H
T

SU10 98,02 100 74,23 73,41 100 97,12 86,99 92,80

SU20 98,97 100 72,20 71,41 100 95,32 87,80 91,35

SU50 100 100 71,41 70,53 100 95,97 91,43 91,49

SU80 100 100 71,41 70,60 100 95,87 91,58 92,61

SU100 100 96,54 68,61 69,87 100 96,15 91,07 91,27

Fuente: elaboración propia.
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Tabla 46. Valores relativos de AAD para topsis
T
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W
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R
T

-H
T

SU10 98,09 100 83,02 82,95 89,01 100 81,16 96,15

SU20 100 98,60 80,10 79,79 100 97,73 87,75 92,27

SU50 100 99,76 80,06 79,75 100 96,94 89,79 92,31

SU80 100 99,85 83,04 79,70 100 96,57 90,70 92,30

SU100 100 98,85 80,39 76,59 100 96,71 91,03 93,51

Fuente: elaboración propia.

Tabla 47. Valores relativos de AAD para vikor
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F
i-

R
T

-H
T

SU10 95,99 100 77,78 81,19 100 95,45 92,08 87,02

SU20 99,99 100 77,88 81,12 100 97,07 91,86 91,96

SU50 100 99,07 76,88 80,09 100 97,34 92,58 92,30

SU80 100 99,43 77,03 79,99 100 97,25 92,72 92,31

SU100 100 97,50 75,63 78,95 100 97,67 91,41 92,03

Fuente: elaboración propia.
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Throughput promedio acumulado 

Figura 94. AAT en GSM para el algoritmo FFAHP
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Figura 95. AAT en Wi-Fi para el algoritmo FFAHP
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Figura 96. AAT en GSM para el algoritmo SAW
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Figura 97. AAT en Wi-Fi para el algoritmo SAW
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Figura 98. AAT en GSM para el algoritmo topsis
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Figura 99. AAT en Wi-Fi para el algoritmo topsis
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Figura 100. AAT en GSM para el algoritmo vikor
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Figura 101. AAT en Wi-Fi para el algoritmo vikor
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Tabla 48. Valores relativos de AAT para FFAHP 
F

F
A

H
P

G
SM

-B
E

-L
T

G
SM
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T

-L
T

G
SM
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E
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T
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SM
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T
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F
i-

R
T

-L
T

W
i-

F
i-

B
E

-H
T

W
i-

F
i-

R
T

-H
T

SU10 100 97,25 88,44 77,42 100 99,74 98,53 98,24

SU20 100 99,13 88,14 77,11 100 99,75 98,22 96,81

SU50 100 99,33 88,21 77,10 99,18 100 97,65 96,38

SU80 100 99,31 88,20 77,10 100 99,17 96,61 96,70

SU100 100 99,23 87,97 76,94 99,39 100 96,98 96,23

Fuente: elaboración propia.

Tabla 49. Valores relativos de AAT para SAW 

SA
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F
i-

R
T

-H
T

SU10 100 97,08 86,58 86,37 100 98,06 91,53 95,33

SU20 99,67 100 85,84 85,62 100 97,55 93,15 94,45

SU50 99,56 100 85,12 84,88 100 97,67 94,82 95,33

SU80 100 100 85,13 84,89 100 98,01 94,42 94,98

SU100 99,73 100 85,27 88,84 100 98,40 95,20 95,02

Fuente: elaboración propia.

Tabla 50. Valores relativos de AAT para topsis 
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R
T
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SU10 100 97,03 84,04 81,06 95,51 100 90,68 96,65

SU20 100 99,30 83,38 80,22 100 99,15 93,92 96,63

SU50 100 99,84 83,39 80,23 100 99,06 96,02 96,67

SU80 100 99,99 86,70 79,77 100 98,97 97,14 96,98

SU100 100 99,85 86,97 82,41 100 99,08 97,12 97,40

Fuente: elaboración propia.
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Tabla 51. Valores relativos de AAT para vikor 
V
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R
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SU10 99,69 100 90,67 81,08 100 99,04 96,89 92,46

SU20 100 99,97 90,82 80,55 100 99,07 96,73 95,82

SU50 100 99,81 90,32 80,08 100 99,40 96,68 96,44

SU80 100 99,83 90,61 80,02 99,74 100 97,28 96,01

SU100 100 99,44 90,25 82,52 100 98,92 96,31 95,61

Fuente: elaboración propia.

Evaluación comparativa 
En las tablas 52-56 se presentan los porcentajes comparativos del desempeño de cada 
algoritmo por nivel de colaboración para cada EM, respectivamente. Lo anterior, 
con el objetivo de analizar el nivel de dependencia y aporte, que representa la cola-
boración, y, de acuerdo con esto, seleccionar los niveles de colaboración más intere-
santes. En las tablas 57-61 se presentan los porcentajes comparativos del desempeño 
de cada algoritmo en cada uno de los ocho escenarios diseñados para dos niveles de 
colaboración (10 % y 100 %). Finalmente, en la tabla 62 se presentan los porcentajes 
comparativos globales del desempeño de cada algoritmo por EM, tanto para la red 
GSM como para Wi-Fi.

Tabla 52. Evaluación comparativa por nivel de colaboración para AAH 
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W
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R
T
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T

FFAHP-SU10 91,33 92,67 91,14 99,56 89,11 89,17 95,01 95,71

SAW-SU10 74,05 78,09 79,12 81,23 94,90 94,75 85,88 94,81

Topsis-SU10 71,35 75,54 92,31 94,14 70,31 90,18 71,34 91,92

Vikor-SU10 71,35 77,22 84,38 94,94 93,75 93,18 93,35 88,16

FFAHP-SU20 93,84 94,56 91,14 99,56 89,70 93,18 97,04 96,33

SAW-SU20 78,29 80,35 79,12 81,23 97,12 95,24 89,94 95,87

Topsis-SU20 77,40 78,09 92,70 94,14 91,37 92,72 84,53 93,34

Vikor-SU20 75,27 77,65 84,38 95,34 94,57 95,89 93,50 95,11

FFAHP-SU50 93,84 95,86 91,53 99,56 90,30 97,22 98,01 98,69
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SAW-SU50 80,59 81,76 79,41 81,23 97,47 96,22 94,25 96,33

Topsis-SU50 77,40 78,53 92,70 94,14 92,78 93,02 89,67 94,37

Vikor-SU50 76,97 78,09 84,38 95,34 94,74 96,39 94,40 95,87

FFAHP-SU80 97,86 95,86 91,53 100 94,08 97,56 98,66 99,83

SAW-SU80 80,59 81,76 79,41 81,52 98,00 96,55 94,70 97,89

Topsis-SU80 77,84 78,98 97,30 94,14 92,78 93,02 91,05 94,81

Vikor-SU80 77,40 78,53 84,71 95,74 94,90 96,55 94,86 96,63

FFAHP-SU100 100 100 93,51 100 94,08 100 100 100

SAW-SU100 88,96 84,76 82,76 86,54 100 98,77 96,09 98,05

Topsis-SU100 83,54 84,24 100 94,94 93,43 93,33 91,90 96,48

Vikor-SU100 80,12 78,98 85,38 96,57 96,77 98,77 95,16 97,89

Nota: la comparación de esta tabla se debe realizar solo verticalmente.

Fuente: elaboración propia.

Tabla 53. Evaluación comparativa por nivel de colaboración para AAFH
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FFAHP-SU10 55,56 25,00 61,11 38,64 68,04 62,61 87,16 75,65

SAW-SU10 83,33 20,00 37,93 58,62 90,41 85,71 68,84 73,11

Topsis-SU10 62,50 23,08 45,83 39,53 26,83 72,00 42,22 71,31

Vikor-SU10 41,67 33,33 57,89 40,48 72,53 86,75 93,14 64,44

FFAHP-SU20 83,33 30,00 61,11 38,64 72,53 69,90 91,35 85,29

SAW-SU20 83,33 42,86 37,93 58,62 90,41 88,89 82,61 78,38

Topsis-SU20 83,33 60,00 47,83 39,53 70,97 79,12 68,84 84,47

Vikor-SU20 50 50,00 64,71 41,46 76,74 94,74 95,00 79,82

FFAHP-SU50 83,33 37,50 64,71 38,64 75,00 75,00 95,00 91,58

SAW-SU50 83,33 50,00 39,29 58,62 91,67 90,00 87,16 79,09

Topsis-SU50 83,33 75,00 47,83 39,53 71,74 79,12 91,35 86,14

Vikor-SU50 55,56 50,00 64,71 41,46 78,57 98,63 95,96 83,65

FFAHP-SU80 83,33 37,50 64,71 39,53 83,54 76,60 95,96 94,57

SAW-SU80 83,33 50,00 39,29 60,71 100 96,00 88,79 79,09
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Topsis-SU80 83,33 75,00 78,57 39,53 74,16 80,90 94,06 87,00

Vikor-SU80 55,56 60,00 64,71 42,50 78,57 98,63 95,96 87,88

FFAHP-SU100 100 42,86 68,75 42,50 83,54 86,75 98,96 100

SAW-SU100 100 60,00 64,71 100 100 96,00 90,48 81,31

Topsis-SU100 83,33 100 100 50,00 76,74 80,90 100 89,69

Vikor-SU100 62,50 75,00 64,71 54,84 81,48 100 97,94 87,88

Nota: la comparación de esta tabla se debe realizar solo verticalmente.

Fuente: elaboración propia.

Tabla 54. Evaluación comparativa por nivel de colaboración para ABW
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FFAHP-SU10 99,50 97,12 99,56 84,99 96,43 95,90 96,61 96,69

SAW-SU10 96,09 91,00 92,25 92,48 96,72 96,21 93,15 97,22

Topsis-SU10 95,00 90,11 87,42 84,93 89,29 95,75 89,94 94,99

Vikor-SU10 95,10 95,76 97,41 85,03 96,52 96,30 97,78 93,61

FFAHP-SU20 99,57 99,61 99,85 85,00 97,36 96,29 96,96 97,05

SAW-SU20 96,32 97,73 92,30 92,49 97,91 96,66 95,43 97,34

Topsis-SU20 95,21 95,83 87,81 84,93 95,54 95,89 94,55 97,74

Vikor-SU20 96,07 97,01 98,87 85,09 97,04 98,06 97,85 98,02

FFAHP-SU50 99,86 99,95 99,97 85,03 97,43 96,61 97,48 97,37

SAW-SU50 96,39 99,14 92,34 92,53 98,78 97,03 96,74 98,80

Topsis-SU50 95,96 96,11 87,84 84,96 95,66 95,94 96,81 98,09

Vikor-SU50 97,05 97,83 98,96 85,20 97,37 98,25 98,52 99,26

FFAHP-SU80 99,89 99,95 99,98 85,05 98,63 97,29 97,48 99,08

SAW-SU80 98,19 99,14 92,36 92,56 99,09 98,93 97,94 98,98

Topsis-SU80 97,03 97,95 94,76 84,98 96,21 96,89 99,07 98,61

Vikor-SU80 97,18 97,89 99,81 85,23 97,92 99,05 99,79 99,63

FFAHP-SU100 100 100 100 85,18 98,74 98,70 98,01 99,60

SAW-SU100 98,19 99,22 92,83 100 100 99,35 98,83 99,55
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Topsis-SU100 97,32 98,03 95,20 90,52 96,38 97,16 99,11 99,38

Vikor-SU100 97,50 97,96 99,82 90,89 99,60 100 100 100

Nota: la comparación de esta tabla se debe realizar solo verticalmente.

Fuente: elaboración propia.

Tabla 55. Evaluación comparativa por nivel de colaboración para AAD
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FFAHP-SU10 95,16 95,44 96,97 99,61 91,74 91,64 96,10 96,98

SAW-SU10 81,72 84,18 87,08 87,24 95,72 94,86 88,60 96,78

Topsis-SU10 79,45 81,79 94,63 95,76 79,85 91,54 77,47 93,98

Vikor-SU10 79,82 83,96 91,02 96,22 95,88 93,39 93,95 90,91

FFAHP-SU20 96,31 97,16 96,97 99,84 91,90 94,75 97,22 97,42

SAW-SU20 84,84 86,56 87,10 87,25 97,79 95,12 91,36 97,33

Topsis-SU20 84,20 83,83 94,91 95,76 93,55 93,30 87,35 94,04

Vikor-SU20 83,38 84,21 91,40 96,43 96,23 95,32 94,06 96,41

FFAHP-SU50 96,32 97,65 97,08 99,85 92,14 98,26 98,34 98,52

SAW-SU50 86,80 87,65 87,23 87,26 97,95 95,92 95,29 97,64

Topsis-SU50 84,25 84,87 94,92 95,77 94,69 93,68 90,48 95,24

Vikor-SU50 84,48 84,51 91,41 96,44 96,32 95,67 94,89 96,87

FFAHP-SU80 98,66 97,65 97,12 99,87 95,38 98,36 99,24 99,53

SAW-SU80 86,80 87,65 87,23 87,36 98,17 96,03 95,65 99,05

Topsis-SU80 84,32 85,01 98,53 95,78 95,06 93,68 91,75 95,60

Vikor-SU80 84,66 85,00 91,78 96,53 96,67 95,94 95,37 97,23

FFAHP-SU100 100 100 98,34 100 95,39 100 100 100

SAW-SU100 91,87 89,55 88,70 91,48 100 98,12 96,91 99,44

Topsis-SU100 88,39 88,22 100 96,50 95,16 93,91 92,17 96,95

Vikor-SU100 86,49 85,15 92,05 97,33 98,22 97,90 95,53 98,49

Nota: la comparación de esta tabla se debe realizar solo verticalmente.

Fuente: elaboración propia.
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Tabla 56. Evaluación comparativa por nivel de colaboración para AAT
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FFAHP-SU10 99,19 97,21 99,73 88,76 95,35 95,99 97,79 98,25

SAW-SU10 95,43 93,36 93,93 95,26 98,18 97,17 93,52 98,17

TOPSIS-SU10 94,17 92,08 89,96 88,22 90,51 95,65 89,44 96,07

VIKOR-SU10 94,13 95,15 97,32 88,49 97,28 97,24 98,10 94,33

FFAHP-SU20 99,65 99,55 99,85 88,81 96,15 96,80 98,29 97,62

SAW-SU20 95,97 97,03 93,96 95,28 98,61 97,10 95,60 97,68

TOPSIS-SU20 95,15 95,21 90,18 88,22 96,27 96,34 94,10 97,57

VIKOR-SU20 95,11 95,82 98,19 88,55 97,67 97,67 98,33 98,16

FFAHP-SU50 99,68 99,77 99,95 88,82 96,27 97,96 98,64 98,11

SAW-SU50 96,71 97,88 93,99 95,29 98,77 97,37 97,47 98,76

TOPSIS-SU50 95,15 95,73 90,19 88,23 96,39 96,37 96,33 97,73

VIKOR-SU50 95,73 96,28 98,28 88,59 97,94 98,26 98,54 99,06

FFAHP-SU80 99,70 99,77 99,96 88,85 98,38 98,47 98,92 99,78

SAW-SU80 97,13 97,88 94,00 95,30 99,95 98,88 98,22 99,57

TOPSIS-SU80 95,72 96,44 94,33 88,25 96,89 96,79 97,96 98,55

VIKOR-SU80 95,82 96,39 98,69 88,61 98,20 99,38 99,69 99,15

FFAHP-SU100 100 100 100 88,92 98,47 100 100 100

SAW-SU100 97,13 98,15 94,41 100 100 99,32 99,08 99,66

TOPSIS-SU100 95,87 96,46 94,78 91,31 97,07 97,08 98,12 99,17

VIKOR-SU100 96,21 96,41 98,70 91,76 99,63 99,47 99,87 99,91

Nota: la comparación de esta tabla se debe realizar solo verticalmente.

Fuente: elaboración propia.

Tabla 57. Evaluación comparativa por escenario con 
colaboración de 10 % y 100 % para AAH
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GSM-BE-LT 91,33 74,05 71,35 71,35 100 88,96 83,54 80,12

GSM-RT-LT 92,67 78,09 75,54 77,22 100 84,76 84,24 78,98

GSM-BE-HT 91,14 79,12 92,31 84,38 93,51 82,76 100 85,38

GSM-RT-HT 99,56 81,23 94,14 94,94 100 86,54 94,94 96,57
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Wi-Fi-BE-LT 89,11 94,90 70,31 93,75 94,08 100 93,43 96,77

Wi-Fi-RT-LT 89,17 94,75 90,18 93,18 100 98,77 93,33 98,77

Wi-Fi-BE-HT 95,01 85,88 71,34 93,35 100 96,09 91,90 95,16

Wi-Fi-RT-HT 95,71 94,81 91,92 88,16 100 98,05 96,48 97,89

GSM-LT 92,00 76,07 73,445 74,285 100 86,86 83,89 79,55

GSM-HT 95,35 80,175 93,225 89,66 96,755 84,65 97,47 90,975

GSM-BE 91,235 76,585 81,83 77,865 96,755 85,86 91,77 82,75

GSM-RT 96,115 79,66 84,84 86,08 100 85,65 89,59 87,775

Wi-Fi-LT 89,14 94,825 80,245 93,465 97,04 99,385 93,38 97,77

Wi-Fi-HT 95,36 90,345 81,63 90,755 100 97,07 94,19 96,525

Wi-Fi-BE 92,06 90,39 70,825 93,55 97,04 98,045 92,665 95,965

Wi-Fi-RT 92,44 94,78 91,05 90,67 100 98,41 94,905 98,33

Score GSM 93,675 78,122 83,335 81,972 98,377 85,755 90,68 85,262

Score Wi-Fi 92,25 92,585 80,937 92,11 98,52 98,227 93,785 97,147

Nota: la comparación de esta tabla se debe realizar solo horizontalmente.

Fuente: elaboración propia.

Tabla 58. Evaluación comparativa por escenario con 
colaboración de 10 % y 100 % para AAFH
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GSM-BE-LT 55,56 83,33 62,50 41,67 100 100 83,33 62,50

GSM-RT-LT 25,00 20,00 23,08 33,33 42,86 60,00 100 75,00

GSM-BE-HT 61,11 37,93 45,83 57,89 68,75 64,71 100 64,71

GSM-RT-HT 38,64 58,62 39,53 40,48 42,50 100 50,00 54,84

Wi-Fi-BE-LT 68,04 90,41 26,83 72,53 83,54 100 76,74 81,48

Wi-Fi-RT-LT 62,61 85,71 72,00 86,75 86,75 96,00 80,90 100

Wi-Fi-BE-HT 87,16 68,84 42,22 93,14 98,96 90,48 100 97,94

Wi-Fi-RT-HT 75,65 73,11 71,31 64,44 100 81,31 89,69 87,88

GSM-LT 40,28 51,665 42,79 37,50 71,43 80,00 91,665 68,75

GSM-HT 49,875 48,275 42,68 49,185 55,625 82,355 75,00 59,775
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GSM-BE 58,335 60,63 54,165 49,78 84,375 82,355 91,665 63,605

GSM-RT 31,82 39,31 31,305 36,905 42,68 80,00 75,00 64,92

Wi-Fi-LT 65,325 88,06 49,415 79,64 85,145 98,00 78,82 90,74

Wi-Fi-HT 81,405 70,975 56,765 78,79 99,48 85,895 94,845 92,91

Wi-Fi-BE 77,60 79,625 34,525 82,835 91,25 95,24 88,37 89,71

Wi-Fi-RT 69,13 79,41 71,655 75,595 93,375 88,655 85,295 93,94

Score GSM 45,077 49,97 42,735 43,342 63,527 81,177 83,332 64,262

Score Wi-Fi 73,365 79,517 53,09 79,215 92,312 91,947 86,832 91,825

Nota: la comparación de esta tabla se debe realizar solo horizontalmente.

Fuente: elaboración propia.

Tabla 59. Evaluación comparativa por escenario con 
colaboración de 10 % y 100 % para ABW
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GSM-BE-LT 99,50 96,09 95,00 95,10 100 98,19 97,32 97,50

GSM-RT-LT 97,12 91,00 90,11 95,76 100 99,22 98,03 97,96

GSM-BE-HT 99,56 92,25 87,42 97,41 100 92,83 95,20 99,82

GSM-RT-HT 84,99 92,48 84,93 85,03 85,18 100 90,52 90,89

Wi-Fi-BE-LT 96,43 96,72 89,29 96,52 98,74 100 96,38 99,60

Wi-Fi-RT-LT 95,90 96,21 95,75 96,30 98,70 99,35 97,16 100

Wi-Fi-BE-HT 96,61 93,15 89,94 97,78 98,01 98,83 99,11 100

Wi-Fi-RT-HT 96,69 97,22 94,99 93,61 99,60 99,55 99,38 100

GSM-LT 98,31 93,545 92,555 95,43 100 98,705 97,675 97,73

GSM-HT 92,275 92,365 86,175 91,22 92,59 96,415 92,86 95,355

GSM-BE 99,53 94,17 91,21 96,255 100 95,51 96,26 98,66

GSM-RT 91,055 91,74 87,52 90,395 92,59 99,61 94,275 94,425

Wi-Fi-LT 96,165 96,465 92,52 96,41 98,72 99,675 96,77 99,80

Wi-Fi-HT 96,65 95,185 92,465 95,695 98,805 99,19 99,245 100

Wi-Fi-BE 96,52 94,935 89,615 97,15 98,375 99,415 97,745 99,80
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Wi-Fi-RT 96,295 96,715 95,37 94,955 99,15 99,45 98,27 100

Score GSM 95,292 92,955 89,365 93,325 96,295 97,56 95,267 96,542

Score Wi-Fi 96,407 95,825 92,492 96,052 98,762 99,432 98,007 99,90

Nota: la comparación de esta tabla se debe realizar solo horizontalmente.

Fuente: elaboración propia.

Tabla 60. Evaluación comparativa por escenario con 
colaboración de 10 % y 100 % para AAD
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GSM-BE-LT 95,16 81,72 79,45 79,82 100 91,87 88,39 86,49

GSM-RT-LT 95,44 84,18 81,79 83,96 100 89,55 88,22 85,15

GSM-BE-HT 96,97 87,08 94,63 91,02 98,34 88,70 100 92,05

GSM-RT-HT 99,61 87,24 95,76 96,22 100 91,48 96,50 97,33

Wi-Fi-BE-LT 91,74 95,72 79,85 95,88 95,39 100 95,16 98,22

Wi-Fi-RT-LT 91,64 94,86 91,54 93,39 100 98,12 93,91 97,90

Wi-Fi-BE-HT 96,10 88,60 77,47 93,95 100 96,91 92,17 95,53

Wi-Fi-RT-HT 96,98 96,78 93,98 90,91 100 99,44 96,95 98,49

GSM-LT 95,30 82,95 80,62 81,89 100 90,71 88,305 85,82

GSM-HT 98,29 87,16 95,195 93,62 99,17 90,09 98,25 94,69

GSM-BE 96,065 84,40 87,04 85,42 99,17 90,285 94,195 89,27

GSM-RT 97,525 85,71 88,775 90,09 100 90,515 92,36 91,24

Wi-Fi-LT 91,69 95,29 85,695 94,635 97,695 99,06 94,535 98,06

Wi-Fi-HT 96,54 92,69 85,725 92,43 100 98,175 94,56 97,01

Wi-Fi-BE 93,92 92,16 78,66 94,915 97,695 98,455 93,665 96,875

Wi-Fi-RT 94,31 95,82 92,76 92,15 100 98,78 95,43 98,195

Score GSM 96,795 85,055 87,907 87,755 99,585 90,40 93,277 90,255

Score Wi-Fi 94,115 93,99 85,71 93,532 98,847 98,617 94,547 97,535

Nota: la comparación de esta tabla se debe realizar solo horizontalmente.

Fuente: elaboración propia.
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Tabla 61. Evaluación comparativa por escenario con colaboración  
de 10 % y 100 % para AAT
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GSM-BE-LT 99,19 95,43 94,17 94,13 100 97,13 95,87 96,21

GSM-RT-LT 97,21 93,36 92,08 95,15 100 98,15 96,46 96,41

GSM-BE-HT 99,73 93,93 89,96 97,32 100 94,41 94,78 98,70

GSM-RT-HT 88,76 95,26 88,22 88,49 88,92 100 91,31 91,76

Wi-Fi-BE-LT 95,35 98,18 90,51 97,28 98,47 100 97,07 99,63

Wi-Fi-RT-LT 95,99 97,17 95,65 97,24 100 99,32 97,08 99,47

Wi-Fi-BE-HT 97,79 93,52 89,44 98,10 100 99,08 98,12 99,87

Wi-Fi-RT-HT 98,25 98,17 96,07 94,33 100 99,66 99,17 99,91

GSM-LT 98,20 94,395 93,125 94,64 100 97,64 96,165 96,31

GSM-HT 94,245 94,595 89,09 92,905 94,46 97,205 93,045 95,23

GSM-BE 99,46 94,68 92,065 95,725 100 95,77 95,325 97,455

GSM-RT 92,985 94,31 90,15 91,82 94,46 99,075 93,885 94,085

Wi-Fi-LT 95,67 97,675 93,08 97,26 99,235 99,66 97,075 99,55

Wi-Fi-HT 98,02 95,845 92,755 96,215 100 99,37 98,645 99,89

Wi-Fi-BE 96,57 95,85 89,975 97,69 99,235 99,54 97,595 99,75

Wi-Fi-RT 97,12 97,67 95,86 95,785 100 99,49 98,125 99,69

Score GSM 96,222 94,495 91,107 93,772 97,23 97,422 94,605 95,77

Score Wi-Fi 96,845 96,76 92,917 96,737 99,617 99,515 97,86 99,72

Nota: la comparación de esta tabla se debe realizar solo horizontalmente.

Fuente: elaboración propia.

Tabla 62. Evaluación comparativa global por EM
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AAH-GSM 93,675 78,122 83,335 81,972 98,377 85,755 90,68 85,262

AAFH-GSM 45,077 49,97 42,735 43,342 63,527 81,177 83,332 64,262

ABW-GSM 95,292 92,955 89,365 93,325 96,295 97,56 95,267 96,542
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AAD-GSM 96,795 85,055 87,907 87,755 99,585 90,40 93,277 90,255

AAT-GSM 96,222 94,495 91,107 93,772 97,23 97,422 94,605 95,77

AAH-Wi-Fi 92,25 92,585 80,937 92,11 98,52 98,227 93,785 97,147

AAFH-Wi-Fi 73,365 79,517 53,09 79,215 92,312 91,947 86,832 91,825

ABW-Wi-Fi 96,407 95,825 92,492 96,052 98,762 99,432 98,007 99,90

AAD-Wi-Fi 94,115 93,99 85,71 93,532 98,847 98,617 94,547 97,535

AAT-Wi-Fi 96,845 96,76 92,917 96,737 99,617 99,515 97,86 99,72

Score GSM global 85,412 80,119 78,89 80,033 91,003 90,463 91,432 86,418

Score Wi-Fi global 90,596 91,735 81,029 91,529 97,612 97,548 94,206 97,225

Fuente: elaboración propia.

Discusión 
Durante el desarrollo de la fase de evaluación y validación de los algoritmos seleccio-
nados, se incluyeron varios parámetros de evaluación (o EM) que, aunque permiten 
realizar una evaluación comparativa más robusta e interesante, también hacen más 
difícil la tarea de presentar dicha información. Debido a lo anterior, la primera parte 
de la evaluación comparativa (tablas 52-56) se enfocó en contrastar el desempeño de 
la colaboración entre SU, para seleccionar los dos niveles más interesantes y descar-
tar los otros tres, lo que redujo el número de combinaciones que se presentarían en las 
tablas de comparación. Es importante tener en cuenta que, para las tablas 52-56, la 
comparación solo se debe realizar verticalmente, ya que no aporta mucho el análisis 
de un mismo algoritmo en diferentes escenarios, pues resulta lógico suponer que el 
desempeño de cada métrica será mejor en una traza LT que en una HT, dado que la 
primera presenta un mayor número de SO; siguiendo la misma lógica, el desempeño 
también será mejor en una red GSM que en una Wi-Fi, ya que la segunda resulta ser 
mucho más caótica que la primera. 

De los resultados obtenidos en las tablas 52-56, se puede observar que, si bien se 
evidencia una mejoría en el desempeño de cada algoritmo al aumentar el nivel de 
colaboración, esta mejoría no resulta ser mayor al 10 % en la mayoría de los casos. 
Por tanto, un análisis interesante sería evaluar comparativamente cada algoritmo en 
todos los escenarios, teniendo en cuenta los niveles de mayor y menor colaboración, 
es decir, el 10 % y el 100 %.



241

Modelo de decisión espectral colaborativo para mejorar el desempeño de las redes de radio cognitiva

De los resultados obtenidos en las tablas 57-61 se puede realizar un análisis del 
desempeño de cada algoritmo (incluyendo sus dos niveles de colaboración, 10 % y 
100 %), en cada uno de los ochos escenarios diseñados, para cada EM. En este caso, 
la evaluación comparativa sí se realiza horizontalmente para poder comparar los 
algoritmos en los diferentes escenarios. 

Con respecto a AAH, se observa que FFAHP-SU100 tiene el mejor desempeño en 
GSM, en el cual domina en tres de los cuatro escenarios, pues solo topsis-SU100, 
en BE-HT, logra relegarlo al segundo lugar, por una diferencia del 6,5 %; en Wi-Fi 
sucede algo similar: el mejor desempeño lo tiene FFAHP-SU100, y solo SAW, en BE-
LT, logra relegarlo al cuarto lugar, con una diferencia del 6 %.

Con respecto a AAFH, se observa que SAW (en BE-LT y RT-HT) y topsis (en 
BE-HT y RT-LT) comparten el mejor desempeño en la red GSM, mientras que en 
la red Wi-Fi no hay un algoritmo que domine en más de un escenario. Analizando 
los valores promedio, el mejor desempeño lo alcanza el algoritmo FFAHP-SU100, 
seguido muy de cerca por SAW y vikor, respectivamente. 

Con respecto a ABW, se observa que nuevamente FFAHP-SU100 domina en tres 
de los cuatro escenarios de GSM, y solo SAW, en RT-HT, logra relegarlo al quinto 
lugar, con una diferencia del 15 %, lo que hace que, en promedio, los dos algoritmos 
tengan el mismo desempeño; en el caso de la red Wi-Fi, vikor lidera el desempeño 
en tres escenarios, seguido muy de cerca por SAW, que en promedio tiene el mismo 
desempeño que vikor. 

Con respecto a AAD, se observa que nuevamente FFAHP-SU100 domina en tres 
de los cuatro escenarios de GSM, y solo vikor, en BE-HT, logra relegarlo al segundo 
lugar, con una diferencia del 1,7 %; sin embargo, en promedio, FFAHP supera amplia-
mente a vikor. En el caso de Wi-Fi, FFAHP-SU100 repite el liderato en el desempe-
ño de tres escenarios, y solo SAW, en BE-LT, logra relegarlo al quinto lugar, con una 
diferencia del 1,6 %; sin embargo, en promedio, los dos comparten el primer lugar.

Con respecto a AAT, se repite la historia: FFAHP-SU100 domina en tres de los 
cuatro escenarios de GSM, y solo SAW, en RT-HT, logra relegarlo al tercer lugar, con 
una diferencia de tan solo 1,5 %; sin embargo, en promedio, ambos ocupan el primer 
lugar. Para el caso de Wi-Fi, FFAHP-SU100 repite el liderato en el desempeño de tres 
escenarios, y solo SAW, en BE-LT, logra relegarlo al tercer lugar, con una diferencia del 
1,5 %; sin embargo, en promedio, los dos comparten el primer lugar junto con vikor.

Finalmente, los resultados obtenidos en la tabla 62 resumen el desempeño global 
de cada algoritmo (incluyendo sus dos niveles de colaboración, 10 % y 100 %), en el 
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nivel de EM, tanto para la red GSM como para la red Wi-Fi; se observa que el mejor 
desempeño de la mayor parte de las EM tanto en GSM como en Wi-Fi se lo reparten 
los algoritmos FFAHP y SAW; solo en el caso de AAFH-GSM, el mejor desempeño 
lo tiene topsis, seguido de cerca por SAW, y en ABW-Wi-Fi y AAT-Wi-Fi, vikor 
comparte el primer lugar con SAW y FFAHP. 

Cuando se realiza un análisis por tipo de escenario, no se evidencia un algoritmo 
que domine ampliamente, ya sea en todos los escenarios de tráfico alto, en todos los 
escenarios de tráfico bajo o en todos los escenarios con enfoque de RT o BE, por lo 
que es necesario realizar una ponderación para encontrar los algoritmos que mejor 
se desempeñan en cada red. De acuerdo con la tabla 62, en la red GSM, si sacamos 
de la ecuación a AAFH (lo cual no afecta significativamente, ya que el número de 
handoffs fallidos es significativamente menor al número de handoffs totales), el algo-
ritmo que domina ampliamente y en solitario es FFAHP. Para el caso de la red Wi-
Fi, tanto FFAHP como SAW presentan un desempeño similar. Sin embargo, con el 
objetivo de minimizar la complejidad del modelo, para el caso de Wi-Fi se selecciona 
únicamente a FFAHP. 

Ahora, la pregunta es si se selecciona FFAHP-SU100 (FFAHP con un porcentaje 
de colaboración del 100 %) o FFAHP-SU10 (FFAHP con un porcentaje de colabo-
ración del 10 %). Analizando nuevamente la tabla 62, se observa que, si dejamos por 
fuera la EM AAFH, en el caso de GSM, FFAHP-SU100 tiene un desempeño del 
97,87 %, y FFAHP-SU10, del 95,50 %, una diferencia de apenas el 2 % en el desem-
peño, pero del 90 % en colaboración, lo que hace que FFAHP-SU10 sea una mejor 
alternativa. Haciendo un análisis similar en Wi-Fi, FFAHP-SU100 tiene un desem-
peño del 98,94 %, mientras que FFAHP-SU10, del 94,90 %, una diferencia de apenas 
el 4 % en el desempeño, pero del 90 % en colaboración, lo que hace, nuevamente, que 
FFAHP-10 sea una mejor alternativa.

Modelo de decisión espectral colaborativo definitivo 
La figura 102 describe el modelo de decisión espectral colaborativo, de acuerdo con 
los resultados alcanzados en cada módulo evaluado. El modelo está conformado por 
cuatro módulos fundamentales: 1) módulo colaborativo (intercambio de información 
entre SU); 2) módulo de caracterización del PU; 3) módulo de probabilidad de arribo 
del SU, y 4) módulo de selección de la SO.

La función de cada módulo es realizada por el algoritmo que mejor desempeño 
evidenció en la correspondiente evaluación de cada módulo. Los algoritmos selec-
cionados fueron: para el módulo colaborativo, el intercambio de información se dio 
a través del algoritmo de promedios; para el módulo de caracterización del PU, el 
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algoritmo LSTM; para el módulo de probabilidad de arribo del SU, el algoritmo 
MLPNN, y para el módulo de selección de canal, el algoritmo FFAHP-SU10. 

Figura 102. Modelo de decisión espectral colaborativo definitivo
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Herramienta de simulación 

La herramienta de simulación propuesta fue desarrollada en Matlab y está diseñada 
para permitirle al usuario trabajar en un ambiente amigable y parametrizable según 
las pruebas que se requiera realizar. Esta herramienta está basada en datos de ocu-
pación espectral reales capturados en las bandas de frecuencia GSM y Wi-Fi, a fin 
de incorporar el comportamiento real del usuario primario (PU) en la evaluación 
del desempeño del algoritmo de handoff espectral (SH) seleccionado. La herramienta 
propuesta permite seleccionar entre 16 posibles algoritmos de SH, enfocados a aplica-
ciones de tiempo real (RT) o mejor esfuerzo (BE), y también es posible modificarlos 
o incluso proponer uno propio. Además, permite configurar parámetros de interés 
como el porcentaje de cooperación entre usuarios secundarios (SU), el tiempo de 
transmisión del SU y el tipo de modulación, entre otros. La selección de frecuencia se 
toma a partir de los cuatro criterios de decisión (DC): probabilidad de disponibilidad 
(AP) del canal, tiempo estimado de disponibilidad (ETA) del canal, relación de señal 
a interferencia más ruido (SINR) y ancho de banda (BW). La evaluación del desem-
peño de los algoritmos de SH se realiza a partir de las cinco métricas de evaluación 
(EM): AAH, AAFH, ABW, AAD y AAT. 

Descripción general 
Detrás del entorno gráfico, el programa está conformado por 69 funciones, cada 
una de la cuales es parametrizada con diferentes valores de entrada y depende de 
la técnica o modelo seleccionado; un diagrama de bloques general se presenta en la 
figura 103.

La descripción de cada una de las variables de entrada y salida se realiza en la 
figura 104; este esquema permite identificar el flujo de datos entre cada uno de los 
bloques, desde la base de datos hasta los elementos de salida: figuras y matrices. Los 
bloques de color azul hacen referencia a los módulos que requieren de la parame-
trización del usuario en la ventana gráfica del software; los de color rojo, a procesos 
intermedios, y los de color negro, a entradas y salidas.
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Figura 103. Diagrama de bloques: descripción general
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Figure

Fuente: elaboración propia.

Base de datos 
El programa funciona a partir de tres matrices de datos de potencia: high, medium y 
low (traffic level), y para dos tipos de tecnología: GSM y Wi-Fi (load database), cada 
una con seis bases de datos. Los datos son valores reales tomados en Bogotá, Colom-
bia, en un periodo de una semana, incluyendo sábado y domingo. La cantidad de 
datos capturados para cada una de las tecnologías se muestra en la tabla 63.

 Tabla 63. Datos capturados

Tecnología
Datos capturados

Filas Columnas Datos totales

GSM 1.145.700 551 631.280.700

Wi-Fi 2.490.000 461 1.147.890.000

Fuente: elaboración propia.

La figura 105 presenta las variables de entrada para la base datos; el usuario debe 
seleccionar entre dos posibles tecnologías, GSM o Wi-Fi, y puede especificar el tipo 
de tráfico, aunque este ajuste no se requiere como criterio inicial. 
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Módulo colaborativo 
Este módulo permite segmentar la matriz de potencia según el número de usuarios 
(figura 106), y a partir de este número se puede analizar el efecto de reducir los 
usuarios, ya que, además de la división, el módulo cuenta con la posibilidad de selec-
cionar qué porcentaje del total de usuarios estará involucrado en las respectivas simu-
laciones. Para caracterizar este módulo, se requieren seis variables de ajuste: el tipo 
de tecnología, el tipo de tráfico, el número de usuarios en los cuales se va a dividir la 
matriz de potencia, el porcentaje de usuarios involucrado en la simulación, el tipo de 
segmentación (aleatoria o continua, según el porcentaje de usuarios) y, finalmente, si 
la división se realiza por filas o por columnas.

Como elementos de salida, se obtienen la matriz de potencia segmentada y dos 
parámetros de visualización que permiten identificar el número total de usuarios y la 
cantidad de estos que será parte de la simulación.

Figura 106. Estructura colaborativa

Power Matrix Power Matrix
Segmentation

GSM

WiFi

Segmentation

Division

User percentage User Full

User SimulationNumber of user

Collaborative

Fuente: elaboración propia.

La figura 107 muestra, a la izquierda, la matriz de potencia segmentada para 100 
usuarios si el porcentaje de usuarios que se quiere analizar es del 50 %: la zona en 
color negro representa el número de usuarios que son parte de la simulación, mien-
tras que la zona en color blanco representa información desconocida; asimismo, a la 
derecha, se tiene el mismo número de usuarios, pero ahora el porcentaje se reduce 
al 40 % y se seleccionan de forma aleatoria, es decir, solo 40 usuarios serán parte de 
la simulación, y debido a su selección aleatoria, se obtienen secciones desconocidas 
no continuas.
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Figura 107. Matriz de potencia segmentada

Fuente: elaboración propia.

Modelos disponibles 
Los usuarios del simulador tienen disponibles 14 tipos de modelos: 5 modelos para 
predicción y 9 modelos para el análisis de movilidad espectral (figura 108).

Estructura general de los modelos 
Si bien los modelos son independientes, requieren de parámetros en común, específi-
camente de la matriz de disponibilidad, por lo que, previo a la estructuración del mo-
delo, se necesitan dos módulos adicionales: el que realiza la conversión de la matriz 
de potencia a la de disponibilidad y el que determina los promedios de los criterios 
para el análisis multicriterio (figura 109). 
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Figura 108. Modelos disponibles para predicción y movilidad espectral
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Fuente: elaboración propia.

Figura 109. Descripción general de las entradas de los modelos
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Fuente: elaboración propia.

Parámetros iniciales 
Para establecer los parámetros iniciales de las respectivas simulaciones, el software cuenta 
con cuatro variables de entrada que deben ser parametrizadas por el usuario (tabla 64).
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Tabla 64. Descripción de los parámetros de entrada iniciales

Parámetro Descripción

Threshold
Umbral de decisión para determinar si una oportunidad espec-
tral (SO) está disponible.

Noise floor Piso de ruido promedio.

BW fixed Ancho de banda fijo para cada canal de frecuencia.

Multichannels
Número máximo de canales adyacentes disponibles que se 
pueden agrupar para formar un solo canal.

Fuente: elaboración propia.

Disponibilidad 
El software transforma los datos de potencia que están en un rango entre –40 y –147 a 
valores binarios, según la restricción dada por el valor de threshold —ecuación (130)—:

1    Power>

0    Power<

If o
A i

Thresh ld

T
va lable

I rh esholf d


= 



(130),

donde 1 representa una frecuencia disponible, y 0, una frecuencia no disponible. El 
resultado obtenido equivale a la matriz de disponibilidad y es la matriz de entrada 
para los diferentes modelos.

SINR 
A partir del noise floor y de la matriz de potencia segmentada, se determina la relación 
de señal a interferencia más ruido (SINR) y se realiza la resta entre la matriz de da-
tos de potencia de entrada y la variable noise floor ajustada por el usuario —ecuación 
(131)—:

[ ]  SINR Power Noise Floor= − (131).

Bandwidth 
Para determinar la matriz de ancho de banda (bandwidth), se utilizan la matriz de 
disponibilidad previamente obtenida y los parámetros de BW fixed y multichannels 
—ecuación (132)—:

- ( )Bandwidth BWfixed Count Availability= + (132),

donde el valor de BW fijo es parametrizado por el usuario en la ventana principal del 
software. 
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Average 
El módulo average determina los vectores de AP, ETA, PSINR y ABW (tabla 65), 
utilizados para realizar el análisis multicriterio de selección de canales disponibles.

Tabla 65. Vectores para el análisis multicriterio 

Sigla Promedio Descripción

AP Probabilidad de disponibilidad
Promedio de cada una de las columnas de la 
matriz de disponibilidad

ETA Tiempo medio de disponibilidad
Promedio de ‘unos’ consecutivos de la matriz de 
disponibilidad

PSINR Promedio de SINR
Promedio de cada columna de la matriz de 
SINR, sin tener en cuenta los ceros

ABW Promedio de ancho de banda
Promedio de cada una de las columnas de la 
matriz de ancho de banda

Fuente: elaboración propia.

El tamaño de cada uno de los vectores es de 1 × n, donde n corresponde a la cantidad 
de columnas de la matriz de potencia.

Ranking 
El ranking es un módulo que utiliza análisis multicriterio para asignarles una puntua-
ción a los diferentes canales; el objetivo es que, a partir de los vectores AP, ETA, PSINR 
y ABW, se puedan establecer los canales con mayor probabilidad de SO. Para obtener 
esta puntuación, el módulo requiere diferentes algoritmos multicriterio. La figura 110 
presenta las variables de entrada necesarias para la parametrización de este módulo. 

Figura 110. Variable de entrada del módulo ranking
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Fuente: elaboración propia.
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Cada técnica multicriterio corresponde a los diferentes algoritmos de handoff  models, 
que el usuario puede seleccionar para cada simulación, cada uno programado de 
acuerdo con el estado del arte realizado sobre este tema. En total, el módulo está 
formado por 14 técnicas de toma de decisión multicriterio (MCDM) para el análisis 
de movilidad espectral y por 4 técnicas MCDM para predicción (figura 111).

Figura 111. Algoritmos de handoff  models
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Fuente: elaboración propia.

Cada uno de los handoff  models requiere de la asignación de un vector de columna 
de pesos de tamaño 1 × 4, que corresponde a los pesos (puntuación) que se les quiera 
asignar a los vectores de AP, ETA, PSINR y ABW; estos pesos pueden ser ajustados 
por el usuario, excepto en el modelo random, que genera, de manera aleatoria, el vec-
tor de puntuaciones. En general, los pesos son multiplicados matricialmente por los 
vectores de decisión —ecuación (133)—:
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[ ]

[ ]
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1 4

1,1 1,n

2,1 2,n
4

3,1 3,n

4,1 4,n

 P

 [ ]

P

x xn

PD TED PSINR PWAx

xn

Weights Vector

Weights Vector W W W W

PD PD
TED TED

PSINR PSINR
PWA PWA

×

=

 
 
 =
 
 
 

 

 

 

 

(133).
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Descripción de modelos 
Cada uno de los modelos requiere como mínimo de la matriz de disponibilidad y de 
la puntuación entregada por el módulo ranking; el número de parámetros adicionales 
requeridos depende del tipo de estrategia a implementar, por lo que, a continuación, 
se realiza una descripción de las estrategias, los algoritmos de toma de decisión mul-
ticriterio, algunas técnicas para la predicción (aunque no se usaron todas) y el modelo 
para la movilidad espectral.

Técnicas de decisión multicriterio: FFAHP, SAW, topsis y vikor 
La movilidad espectral se realiza a través de un algoritmo de búsqueda que puede ser 
parametrizado a través de 16 algoritmos del spectral decision model, dentro de los cua-
les se encuentran los algoritmos seleccionados: FFAHP, SAW, topsis y vikor. El 
algoritmo es el encargado de realizar los saltos de columna (frecuencias) en la matriz 
de disponibilidad según el vector de posiciones entregado por el módulo ranking; de 
esta forma, el algoritmo realiza saltos hasta encontrar un valor de ‘uno’ equivalente a 
una frecuencia disponible. Al realizar los saltos de columna, si el algoritmo encuentra 
un ‘uno’, automáticamente realiza un nuevo salto, pero esta vez a la siguiente fila de 
la matriz de disponibilidad.

Modelo propuesto 
La figura 112 presenta el diagrama de bloques del modelo propuesto. Los primeros 
dos bloques corresponden a la información de cada uno de los canales y a la corres-
pondiente segmentación de las matrices de potencia y disponibilidad según el número 
de usuarios. El área rectangular central corresponde al modelo propuesto, que está 
formado por un bloque con los 16 algoritmos del spectral decision model; un segundo 
bloque de ranking, encargado de asignar la puntuación a cada canal, y, finalmente, el 
bloque que realiza el análisis de movilidad espectral de acuerdo con la puntuación 
asignada.

Figura 112. Etapas de los algoritmos para movilidad espectral
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Fuente: elaboración propia.
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Datos de entrada 
La figura 113 presenta el diagrama de bloques de los parámetros de entrada. La in-
formación pertenece a las variables de salida del módulo average, al ajuste del módulo 
ranking y a los parámetros de tiempo, rango y modulación.

La variable de entrada time representa un instante de tiempo y la condición de 
parada del algoritmo de búsqueda; es decir, el algoritmo realiza saltos de fila hasta 
completar el tiempo establecido.

Además de la condición de parada time, el modelo de movilidad tiene una variable 
de entrada llamada criteria time, que establece un criterio de tiempo para el cual el 
algoritmo de búsqueda saltará de acuerdo con el vector de fila de posiciones calcu-
lado inicialmente: si el tiempo de parada time es mayor que el criteria time, cuando el 
algoritmo de búsqueda se encuentre en el instante de tiempo t = criteria time, el vector 
de posiciones se actualizará calculando nuevamente los promedios para el mismo 
spectral decision model, pero, en este caso, para un número definido de filas de la matriz 
de disponibilidad, SINR y BW; la cantidad de filas es parametrizable por la entrada 
time range; las filas seleccionadas corresponden a las últimas filas utilizadas antes de la 
condición de criteria time. Esta condición permanecerá hasta que se cumpla el tiempo 
de simulación, por lo que, si el tiempo de parada time es mayor que n × criteria time, el 
vector de posiciones se actualizará n veces.

Figura 113. Datos de entrada y salida: movilidad espectral
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 Fuente: elaboración propia.
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Modelos de movilidad espectral 
Los modelos de movilidad espectral corresponden a los diferentes algoritmos del 
spectral decision model que el usuario puede seleccionar y dependen de la concatena-
ción de los vectores de AP, ETA, PSINR y ABW. 

Cada uno de los 16 algoritmos del spectral decision model requiere de la asignación 
de un vector de columna de pesos o puntuaciones de tamaño 1 × 4, que corresponde 
a la variable de entrada weights de la figura 114; estos pesos pueden ser ajustados por 
el usuario para cada uno de los diferentes modelos, excepto en el modelo random, que 
genera, de manera aleatoria, el vector de puntuaciones.

El diagrama de bloques que se muestra en la figura 114 se aplica de forma gene-
ral para cada una de las estrategias disponibles; la información de entrada equivale 
a los pesos, al modelo seleccionado y a los vectores AP, ETA, PSINR y ABW. La 
salida del bloque entrega dos vectores: el primero se denomina Score y contiene la 
puntuación asignada a cada canal, y el segundo es el ranking, que contiene, de forma 
descendente, los canales según la puntuación obtenida.

Figura 114. Variables de entrada y salida del ranking de 
decisión espectral para movilidad espectral 
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Fuente: elaboración propia.

Evaluación de movilidad espectral 
La evaluación de movilidad espectral se realiza a través de la matriz de entrenamiento y 
validación. Los resultados corresponden a las figuras 62-101 (handoffs, handoffs fallidos, 
BW, retardo y throughput). Además, los saltos de columna, los saltos de fila, el tiempo, la 
disponibilidad y el valor de BW correspondiente a la posición de cada salto son almace-
nados en un vector y retroalimentados en una tabla de Excel. La figura 115 muestra el 
diagrama con los parámetros de salida de la evaluación de la movilidad espectral.
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Figura 115. Parámetros de salida de la evaluación de la movilidad espectral
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Fuente: elaboración propia.

Técnica de predicción con cadenas de Markov 
Las cadenas de Markov son una técnica estocástica que se basa en el análisis de la 
dinámica interna del sistema; estas simulan la predicción del estado actual en un 
tiempo determinado a partir de los estados anteriores. Asimismo, son un proceso 
aleatorio que cuenta con la propiedad de que, dado el valor actual del proceso Xt, los 
valores futuros Xs para s > t son independientes de los valores pasados Xu para u < t.

Modelo propuesto 
El algoritmo elaborado para la evaluación de handoff espectral utilizando cadenas 
de Markov está divido en cinco etapas (figura 116). La primera etapa corresponde 
a la selección de los datos de entrada; en la segunda, con el objetivo de reducir los 
canales de estudio para mejorar los tiempos de simulación, se realiza una selección 
de canales para la matriz de entrada con dos algoritmos de selección; en la tercera 
etapa, se realiza la construcción de la matriz de probabilidades de transición; en la 
cuarta, se evalúa la matriz de transición, y, finalmente, en la quinta, se procesan los 
resultados de la evaluación y se muestran de forma gráfica los indicadores relevantes. 
La descripción de cada etapa se realiza, a partir de los algoritmos implementados, 
por estructura, y la programación se desarrolla utilizando funciones.

Datos de entrada y selección de canales 
La figura 117 presenta el diagrama de bloques de la primera y segunda etapa. Con 
respecto a la primera etapa, la información de entrada pertenece a las variables de sa-
lida del módulo average y al ajuste del módulo ranking; adicionalmente, el usuario del 
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software debe parametrizar el tiempo, el número de canales que se va a utilizar y un por-
centaje de relación para establecer cuándo una predicción es considerada como buena.

En la segunda etapa, el módulo debe seleccionar los canales (columnas) de estu-
dio; la cantidad de canales es un parámetro conocido, ya que corresponde al valor 
ajustado en channels number; sin embargo, se requiere establecer cómo y cuáles canales 
seleccionar, y para esto se utilizan dos técnicas: la primera utiliza el ranking FFAHP, y 
la segunda hace una selección aleatoria basada en un modelo de distribución normal.

Figura 116. Etapas del algoritmo de la cadena de Markov
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Fuente: elaboración propia.

Figura 117. Datos de entrada y salida: cadenas de Markov
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Probabilidad de estado 
La figura 118 muestra el diagrama de bloques para la tercera etapa, cuyo objetivo es 
determinar la matriz de probabilidades de transición; los datos de entrada correspon-
den a la matriz de entrenamiento, al número de canales y a un vector de estados, el 
cual indica los estados presentes de la matriz de entrenamiento.

Figura 118. Matriz de transición: cadenas de Markov
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Fuente: elaboración propia.

La matriz de transición de entrenamiento determina las probabilidades de estado 
actual y futuro que son necesarias para la implementación de las cadenas, y las pro-
babilidades de la matriz de entrenamiento serán utilizadas en la matriz de validación 
para cuantificar los handoffs espectrales. La cadena de Markov establece como reque-
rimiento conocer el estado actual y futuro del sistema; al respecto, un estado futuro 
se define como time steps + 1. 

La técnica utilizada para los estados actuales está orientada a modelar cada time 
step mediante un número entero positivo; para obtener este modelamiento, se repre-
senta cada fila de la matriz de disponibilidad de entrenamiento como un numero bina-
rio, donde cada bit corresponde a un canal, y posteriormente se realiza la conversión 
de base 2 a base 10.

Para los estados futuros se realiza un barrido de la matriz de entrenamiento según 
el conjunto de estados actuales obtenidos; luego, se determinan los estados de mayor 
y menor ocurrencia evaluando todos los canales del time step futuro, y posteriormente 
se normalizan los resultados. 

Evaluación de handoffs espectrales 
La figura 119 muestra el diagrama de bloques para la cuarta etapa, cuyo propósito es 
analizar los handoffs espectrales evaluando las probabilidades de transición sobre la 
matriz de validación; la información que se requiere para la evaluación es la matriz 
de validación de la segunda etapa y la probabilidad de transición de la tercera etapa.
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Los resultados se cuantifican a la salida de la evaluación a partir de la construc-
ción de las figuras 62-101 (handoffs, handoffs fallidos, BW, retardo y throughput); ade-
más, se entregan indicadores asociados a las predicciones exactas, buenas, regulares 
y malas (tabla 66).

Figura 119. Algoritmo de evaluación: cadena de Markov
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Fuente: elaboración propia.

Las figuras de salidas se construyen utilizando el software Spectrum Mobility Analyti-
cal Tool; los indicadores son valores porcentuales entregados en la evaluación del 
algoritmo (tabla 66). 

 Tabla 66. Indicadores de predicción

Indicador Característica

Predicción exacta
Se define como la condición en la que la predicción del futuro  
es 100 % acertada.

Predicción buena
Se define como la condición en la que la predicción del futuro tiene un 
acierto mayor al 70 % y menor al 100 %.

Predicción regular
Se define como la condición en la que la predicción del futuro tiene un 
acierto mayor al 30 % y menor al 70 %.

Predicción mala
Se define como la condición en la que la predicción del futuro tiene un 
acierto menor al 30 %.

Fuente: elaboración propia.

Técnica de predicción con algoritmos genéticos 
Los algoritmos genéticos son modelos de optimización inspirados en el proceso de 
genética y evolución; un modelo simple está integrado por una población inicial de in-
dividuos y un conjunto de operaciones que interactúan sobre la población para obtener 
nuevas generaciones de individuos. 
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La población está constituida por un conjunto de individuos representado me-
diante un equivalente en número binario: a la representación binaria se le llama 
cromosoma, y a cada bit dentro del cromosoma se le llama gen. En general, un algo-
ritmo genético se caracteriza mediante cinco definiciones o equivalentes genéticos, 
descritos en la tabla 67 y representados gráficamente para una población específica 
en la figura 120.

Tabla 67. Equivalentes genéticos

Parámetro 
genético

Descripción

Alelo Cada uno de los estados distintos que puede presentar un gen en una misma posición.

Gen Es el valor de un alelo dentro de un arreglo.

Cromosoma Es una colección de genes en forma de arreglo.

Posición Es el lugar que ocupa un gen dentro del cromosoma.

Índice Es la posición que tiene el individuo dentro de la población.

Fuente: elaboración propia.

Figura 120. Equivalentes genéticos para una población específica
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Fuente: elaboración propia.

El modelo genético establece una población inicial aleatoria, que es verificada por 
una función de transición (matriz de transición); el objetivo es asegurar que la pobla-
ción tenga valores coherentes; la selección, cruce y mutación construye la población 
final, equivalente a los datos de entrenamiento. El número de generaciones (iteracio-
nes) se ajusta bajo parámetros de rendimiento, como tiempos de simulación; es una 
variable que se parametriza con criterio de prueba y error. La figura 121 presenta el 
diagrama de flujo del algoritmo genético.
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Figura 121. Diagrama de flujo del algoritmo genético
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Fuente: elaboración propia.

En la figura 122 se presenta el diagrama de bloques del modelo: los bloques de 
occupation y processing están asociados a la base de datos de ocupación espectral 
y al respectivo procesamiento que permite definir la matriz de disponibilidad 
para cada uno de los canales; el algoritmo propuesto está conformado por cinco 
subbloques.

El modelo propuesto corresponde a los bloques delimitados por el cuadrado con 
línea discontinua, formado por cinco algoritmos: los bloques selection algorithm y chan-
nel selection permiten seleccionar los canales (número de columnas) a partir de dos 
técnicas: la estrategia multivariable difusa realimentada (FFAHP) o una selección 
aleatoria; la variable de parametrización es el número de canales (entre 10 y 460). Los 
bloques initial population, population operators y final population, por su parte, realizan la 
construcción de la matriz de entrenamiento a partir de algoritmos genéticos: primero, 
se establece una población inicial aleatoria que tiene una descripción binaria ajustada 
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según el número de canales, y luego se realizan las operaciones: selección directa, 
cruce y mutación (tasas de mutación pequeñas) para obtener la población final, equi-
valente a los datos de entrenamiento. 

Figura 122. Etapas del algoritmo: algoritmos genéticos
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Fuente: elaboración propia.

Datos de entrada y selección de canales 
La figura 123 presenta el diagrama de bloques de los parámetros de entrada. La 
información pertenece a las variables de salida del módulo average y al ajuste del 
módulo ranking; adicionalmente, el usuario del software debe parametrizar el tiempo, 
el número de canales que se va a utilizar, un porcentaje de relación para establecer 
cuándo una predicción es considerada como buena, el número de generaciones que 
se quieren analizar y el porcentaje de mutaciones.

Así como en el modelo de cadenas de Markov, este selecciona los canales (colum-
nas) de estudio; la cantidad de canales es un parámetro conocido, ya que corresponde 
al valor ajustado en channels number; sin embargo, se requiere establecer cómo y cuáles 
canales seleccionar, y para esto se utilizan dos técnicas: la primera utiliza el ranking 
FFAHP, y la segunda hace una selección aleatoria basada en un modelo de distribu-
ción normal.

Evaluación de handoffs espectrales 
La evaluación de los handoffs espectrales se realiza a través de la matriz de entrenamien-
to y validación. Los resultados corresponden a las figuras 62-101 (handoffs, handoffs fa-
llidos, BW, retardo y throughput). Aunque no hacen parte de la evaluación, se entregan 
datos del algoritmo genético: número de generaciones, población inicial y porcentaje 
de mutación, entre otros. La figura 124 muestra el diagrama de evaluación.
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Figura 123. Datos de entrada y salida: algoritmos genéticos
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Fuente: elaboración propia.

Figura 124. Algoritmo de evaluación: algoritmos genéticos
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Fuente: elaboración propia.

Técnica de predicción con clasificador bayesiano ingenuo 
Una de las principales consideraciones para la selección de modelos de predicción es 
que se tienen múltiples características o criterios que pueden mejorar la predicción. 
Esto se explica porque la formación del modelo de predicción puede tener en cuenta 
información o criterios como la AP y el ETA.
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Una estructura basada en el clasificador bayesiano ingenuo asume que la presen-
cia de una característica en particular no se relaciona de ninguna manera con la pre-
sencia de cualquier otra característica, incluso si una de estas características depende 
de la otra.

Modelo propuesto 
El modelo propuesto toma como variable de entrada una matriz de entrenamiento 
de ocupación espectral. Antes de ser usada en el proceso de entrenamiento del pre-
dictor, la información espectral pasa por el bloque de procesamiento de información 
espectral, el cual convierte los datos en series dicotómicas en las que un ‘0’ representa 
ocupación del canal, y un ‘1’, disponibilidad de canal. Con este procesamiento de la 
información, se entrena el algoritmo bayesiano ingenuo.

La figura 125 presenta el diagrama de bloques del modelo de predicción propues-
to. El primer bloque es la entrada del spectral information processing, que tiene la tarea 
de definir la ocupación o disponibilidad de cada uno de los canales, de acuerdo con la 
ecuación de probabilidad de falsa alarma. El área rectangular corresponde al modelo 
propuesto, que consta de dos algoritmos: 1) naive bayes algorithm (algoritmo bayesiano 
ingenuo) y 2) channel allocation prediction. Para calcular los parámetros de costo y gra-
diente que ajustan el predictor, la primera función utiliza como variables de entrena-
miento el vector PSINR, ETA y la matriz de disponibilidad, y el segundo algoritmo 
asigna la ocupación de canal mediante la asignación de ‘1’ y ‘0’, lo cual genera, como 
variable de salida, una matriz de predicción de disponibilidad de BW. 

Figura 125. Etapas del algoritmo bayesiano ingenuo
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Fuente: elaboración propia.

Datos de entrada 
La figura 126 presenta el diagrama de bloques de los parámetros de entrada. La 
información pertenece a las variables de salida del módulo average y al ajuste del 
módulo ranking; adicionalmente, el usuario del software debe parametrizar el tiempo, 
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la relación porcentual para establecer los criterios de predicción y el tiempo de reen-
trenamiento.

Como se ve en la figura 126, el módulo bayesiano ingenuo permite calcular el ciclo 
útil, para lo cual solo se requiere ajustar el tiempo.

Figura 126. Datos de entrada y salida: algoritmo bayesiano ingenuo
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Fuente: elaboración propia.

Predictor de ocupación espectral 
El algoritmo utiliza las probabilidades generadas a través del algoritmo bayesiano in-
genuo para predecir la disponibilidad de cada canal durante el tiempo de simulación 
(para la predicción, se deben procesar todos los canales disponibles).

Las variables AP y ETA se consideran las probabilidades de ocupación/disponibi-
lidad del canal. Durante el proceso, se construyen dos nuevas matrices que, junto con 
la función de predicción, clasifican cada fila (time step) en ocupada o disponible. Estas 
probabilidades se asignan a una matriz llamada disponibilidad predicción, donde los 
estados del canal están definidos por ‘1’ (disponible) y ‘0’ (ocupado). Una vez que se 
ha creado la matriz de predicción, es posible comparar la precisión de la predicción 
durante el tiempo de transmisión.



267

Modelo de decisión espectral colaborativo para mejorar el desempeño de las redes de radio cognitiva

Evaluación de handoffs espectrales 
La evaluación de los handoffs espectrales se realiza a través de la matriz de entrena-
miento y validación. Adicionalmente, este modelo cuenta con métricas adicionales 
asociadas a la calidad de las predicciones realizadas. Por lo tanto, para el análisis 
de handoffs espectrales, los resultados corresponden a las figuras 62-101 (handoffs, 
handoffs fallidos, BW, retardo y throughput); para el análisis de predicción, utiliza el 
número de handoffs anticipados, perfectos, fallidos y la interferencia. Para el análisis 
de ciclo útil, el simulador entrega los resultados de acuerdo con el ajuste del tiempo. 
La figura 127 muestra el diagrama de evaluación.

Figura 127. Algoritmo de evaluación del clasificador bayesiano ingenuo
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Fuente: elaboración propia.

Técnicas de predicción de regresión logística 
La regresión logística tiene como principal ventaja el hecho de que se pueden usar 
diversas variables explicativas de manera simultánea. Esta característica permite co-
nocer el impacto de las variables explicativas sobre la variable respuesta. Si se llegase a 
examinar las variables explicativas de forma independiente, ignorando la covarianza 
entre las variables, se podría caer en confusión.
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Modelo propuesto 
El modelo propuesto toma como variable de entrada una matriz de entrenamiento 
de ocupación espectral. Antes de ser usada en el proceso de entrenamiento del pre-
dictor, la información espectral pasa por el bloque de procesamiento de información 
espectral, el cual convierte los datos en series dicotómicas en las que un ‘0’ representa 
ocupación del canal, y un ‘1’, disponibilidad de canal. Con este procesamiento de la 
información, se entrena el algoritmo de regresión logística.

La figura 128 presenta el diagrama de bloques del modelo de predicción propuesto. 
El primer bloque es la entrada del spectral information processing, que tiene la tarea de 
definir la ocupación o disponibilidad de cada uno de los canales, de acuerdo con la 
ecuación de probabilidad de falsa alarma. El área rectangular central corresponde al 
modelo propuesto, que consta de dos algoritmos: 1) logistic regression algorithm (logarit-
mo de regresión logística) y 2) channel allocation prediction. Para calcular los parámetros 
de costo y gradiente que ajustan el predictor, la primera función utiliza como variables 
de entrenamiento el vector PSINR, ETA y la matriz de disponibilidad, y el segundo al-
goritmo asigna la ocupación de canal mediante la asignación de ‘1’ y ‘0’, lo cual genera, 
como variable de salida, una matriz de predicción de disponibilidad de BW. 

Figura 128. Etapas del algoritmo de regresión logística
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Fuente: elaboración propia.

Datos de entrada 
La figura 129 presenta el diagrama de bloques de los parámetros de entrada. La 
información pertenece a las variables de salida del módulo average y al ajuste del 
módulo ranking; adicionalmente, el usuario del software debe parametrizar el tiempo, 
la relación porcentual para establecer los criterios de predicción y el tiempo de reen-
trenamiento.

Como se ve en la figura 129, el módulo de regresión logística permite calcular el 
ciclo útil, para lo cual solo se requiere ajustar el tiempo.
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Figura 129. Datos de entrada y salida del algoritmo de regresión logística
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Fuente: elaboración propia.

Predictor de ocupación espectral 
El objetivo del algoritmo es utilizar una matriz dicotómica de entrenamiento para 
implementar una función h:X  Y tal que h(x) sea un predictor eficaz de ocupación 
espectral respecto a los valores Y. La figura 130 muestra el proceso de entrenamiento 
del algoritmo.

Evaluación de handoffs espectrales 
La evaluación de los handoffs espectrales se realiza a través de la matriz de entrena-
miento y validación. Adicionalmente, este modelo cuenta con métricas adicionales 
asociadas a la calidad de las predicciones realizadas. Por lo tanto, para el análisis 
de handoffs espectrales, los resultados corresponden a las figuras 62-101 (handoffs, 
handoffs fallidos, BW, retardo y throughput); para el análisis de predicción, utiliza el 
número de handoffs anticipados, perfectos, fallidos y la interferencia, y para el análisis 
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de ciclo útil, el simulador entrega los resultados de acuerdo con el ajuste del tiempo. 
La figura 131 muestra el diagrama de evaluación.

Figura 130. Proceso de entrenamiento del algoritmo de regresión logística
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Fuente: elaboración propia.

Figura 131. Algoritmo de evaluación de la regresión logística
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Técnica de predicción por series de tiempo 
El objetivo del modelo de transferencia proactiva pura es hacer predicciones que 
definan el comportamiento de los PU y dar herramientas al sistema para reaccionar 
antes de que ocurra el evento de interferencia. Los modelos estocásticos generan 
nuevos datos a partir de registros históricos mediante el ajuste de valores para dife-
rentes retardos de varianza basados en un coeficiente de correlación en serie. Existen 
modelos de series temporales basados en autorregresivas (AR), promedios móviles 
(MA), promedios móviles autorregresivos (ARMA), promedios móviles integrados 
autorregresivos (arima) y modelo estacionario de autorregresión integrado con 
media móvil (sarima).

El algoritmo propuesto se muestra en el diagrama de bloques de la figura 132: 
el módulo load data toma la información de la disponibilidad; el módulo de ranking 
contiene los métodos SAW, AHP, FFAHP y random para clasificar los canales que 
tienen mayores oportunidades espectrales, y el prediction module toma la información 
del canal seleccionado y aplica regresiones AR, MA, ARMA, arima y sarima para 
predecir la llegada del PU al canal seleccionado.

Figura 132. Etapas del algoritmo por series de tiempo
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Fuente: elaboración propia.

Datos de entrada 
La figura 133 presenta el diagrama de bloques de los parámetros de entrada. La infor-
mación pertenece a las variables de salida del módulo average y al ajuste del módulo 
ranking y el modelo de serie temporal.
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Figura 133. Datos de entrada y salida del algoritmo por series de tiempo
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Fuente: elaboración propia.

Evaluación de handoffs espectrales 
La evaluación de los handoffs espectrales se realiza a través de la matriz de entrena-
miento, validación y predicción, y los resultados corresponden a las figuras 62-101 
(handoffs, handoffs fallidos, BW, retardo y throughput). La figura 134 muestra el diagra-
ma de evaluación.
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Figura 134. Algoritmo de evaluación del algoritmo por series de tiempo
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Fuente: elaboración propia.

Movilidad espectral 
La movilidad espectral se realiza a través de un algoritmo de búsqueda encargado 
de realizar saltos de columna (frecuencias) en la matriz de disponibilidad según el 
vector de posiciones entregado por el módulo ranking; de esta forma, el algoritmo 
realiza saltos hasta encontrar un valor de ‘uno’ equivalente a una frecuencia dispo-
nible, y cada salto de columna es almacenado en un vector que será retroalimentado 
en forma de tabla para el usuario al final de la simulación. Al realizar los saltos de 
columna, si el algoritmo encuentra un ‘uno’, automáticamente realiza un nuevo sal-
to, pero esta vez a la siguiente fila de la matriz de disponibilidad; cada fila representa 
un instante de tiempo y la condición de parada del algoritmo de búsqueda, que es 
definida por el usuario en la variable time del entorno gráfico; es decir, el algoritmo 
realiza saltos de fila hasta completar el tiempo establecido; así como los saltos de co-
lumna, los saltos de fila, el tiempo y la disponibilidad son almacenados en un vector 
y retroalimentados en la misma tabla del vector de saltos de columna.

Además de la condición de parada time, el modelo de movilidad tiene una variable 
de entrada llamada criteria time, que establece un criterio de tiempo para el cual el 
algoritmo de búsqueda saltará de acuerdo con el vector de fila de posiciones calcu-
lado inicialmente: si el tiempo de parada time es mayor que el criteria time, cuando el 
algoritmo de búsqueda se encuentre en el instante de tiempo t = criteria time, el vector 
de posiciones se actualizará calculando nuevamente los promedios para el mismo 
handoff  model, pero, en este caso, para un número definido de filas de la matriz de 
disponibilidad, SINR y BW; la cantidad de filas es parametrizable por el usuario me-
diante la variable time range del entorno gráfico; las filas seleccionadas corresponden 
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a las últimas filas utilizadas antes de la condición de criteria time. Esta condición per-
manecerá hasta que se cumpla el tiempo de simulación, por lo que, si el tiempo de 
parada time es mayor que n × criteria time, el vector de posiciones se actualizará n veces.

El diagrama presentado en la figura 135 muestra el flujo de datos de entrada y 
salida.

Figura 135. Datos de entrada y salida: movilidad espectral
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Fuente: elaboración propia.

Funciones Data_Export y Figure 
Cuando se cumple la condición de parada, la herramienta propuesta exporta los re-
sultados en dos diferentes formatos: .xls (Excel) y .mat (Matlab). En la tabla 68 se 
muestran los archivos exportados y el tipo de archivo, de acuerdo con lo seleccionado 
por el usuario en la función Data_Export.

Tabla 68. Formatos de los archivos exportados

Archivo Formato de exportación

Results Documento en Excel (.xls)

Database Documento en Matlab (.mat)

Ranking Documento en Matlab (.mat)

Fuente: elaboración propia.
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Los archivos de Matlab (.mat) contienen información referente a los resultados obte-
nidos en cada una de las funciones del algoritmo, y el archivo de Excel (.xls) contiene 
los saltos de columna, los saltos de fila, el tiempo, la disponibilidad y el valor de BW 
correspondiente a la posición de cada salto.

Finalmente, además de estos archivos, el programa genera cinco figuras que se ob-
tienen a partir de la última función: figure. Para las figuras, se crean dos tipos de archi-
vos: el primero, en formato .png, y el segundo es un archivo .fig editable en Matlab.

Tanto las figuras (.png y .fig) como los archivos exportados (.mat y .xls) se guar-
dan en la ruta seleccionada por el usuario (project name and project location).

Herramienta de simulación de handoff espectral desarrollada 
La figura 136 muestra el entorno principal de la herramienta de simulacion denomi-
nada Collaborative CRN. Este software se desarrolló utilizando el entorno App Desig-
ner, de Matlab, y está diseñado para permitirle al usuario trabajar bajo un ambiente 
amigable y parametrizable según las pruebas que se requiera realizar; el software está 
divido en ocho secciones: 1) project name and project location, 2) collaborative, 3) traffic 
level, 4) parameters, 5) prediction, 6) spectral mobility, 7) close and update y 8) run.

Figura 136. Interfaz de usuario del software Collaborative CRN 
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Fuente: elaboración propia.
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Conclusiones 

A partir de los resultados encontrados en la investigación, el módulo de caracteriza-
ción del usuario primario (PU) en función de los datos de entrada, utilizando redes 
neuronales recurrentes, y que está basado en deep learning (como es el caso de LSTM), 
debe ser considerado como una opción real y válida en la búsqueda de nuevas me-
todologías que permitan minimizar el error de modelamiento y predicción en la es-
timación de uso de bandas espectrales por parte de PU, pues con ello se mejora el 
desempeño de la etapa de decisión espectral en redes inalámbricas de radio cognitiva 
(CR). Esta apreciación se sustenta al validar los resultados obtenidos con LSTM fren-
te a otras técnicas de redes neuronales, como MLPNN.

Un aspecto relevante de la investigación (contrario a lo planteado en la mayo-
ría de las propuestas del estado del arte) es que el funcionamiento del algoritmo de 
caracterización LSTM fue probado con fuentes de tráfico reales (GSM y Wi-Fi) y 
contrastado con las técnicas de aprendizaje MLPNN y Anfis, y se alcanzaron por-
centajes en la predicción que oscilan entre el 63,82 % y el 97,09 %, valores superiores 
a los entregados por MLPNN (ubicados entre el 51,86 % y el 95,59 %) y Anfis (que 
oscilan entre el 55,86 % y el 96,30 %), lo que prueba que la implementación de LSTM 
en sistemas inalámbricos reales es prometedora.

La inclusión en el Anfis de funciones de membresía basadas en grid partition y 
c-means clustering mejora la capacidad de modelamiento y pronóstico de uso del canal. 
Los resultados de la simulación permiten afirmar que el sistema propuesto tiene un 
mayor porcentaje de acierto en la predicción del comportamiento caótico de PU en 
CR que otros paradigmas como el basado en deep learning, llamado LSTM; no obstan-
te, la integración de Anfis-grid y Anfis-FCM tiene un costo computacional agregado 
en tiempo de aprendizaje y en ejecución de la aplicación.

Después de realizar distintas y variadas pruebas sobre SVM (máquinas de soporte 
vectorial), no se ha podido llegar a un resultado útil con este sistema. La razón por la 
que SVM no es práctica para caracterizar y predecir PU en CR es que requiere muchos 
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ejemplos y la predicción que hace es fija, es decir, no tiene en cuenta distribuciones 
(que es probablemente lo que mejor encaja para describir una CR). No obstante, 
aunque la predicción sea fija, las SVM usadas permiten extraer las probabilidades de 
que el ejemplo aplicado sea de la clase 1 o de la clase 0; aun así, los valores obtenidos 
siempre fueron mayores de 0,995 para una de las dos clases, ya sea emisión o no 
emisión. Es por ello que SVM-2 (conocida formalmente como LibSVM) es capaz 
de predecir cómo se va a comportar el PU, pero de un modo equivocado, ya que, si 
el sistema está emitiendo en los últimos instantes grabados, la SVM detecta como 
predicción que esa radio estará emitiendo infinitamente. Lo mismo pasa si el estado 
para predecir está en no emisión: al final del ejemplo, la predicción que ofrece el 
algoritmo es que el PU estará sin emisión de modo permanente.

Con respecto al módulo de probabilidad de arribo de un usuario secundario (SU), 
a partir del modelamiento matemático, se demuestra que, para la variable tiempo de 
procesamiento en la estación base (BS), el tiempo que tarda el sistema reactivo en asignar 
un canal a un SU es mayor que el requerido por un sistema proactivo, condición que 
favorece u optimiza el rendimiento en la etapa de toma de decisiones en CR.

Adicionalmente, los resultados muestran que el sistema es más eficiente cuando 
la MLPNN puede llegar a establecer un patrón en la secuencia histórica; de lo contra-
rio, el porcentaje de acierto en la estimación de la siguiente solicitud por parte de un 
SU puede ser muy baja para la variable ancho de banda (BW), lo que vuelve inviable su 
implementación debido a que los canales reservados por la BS podrían no reunir las 
características que realmente requieran los usuarios cognitivos.

De acuerdo con los resultados alcanzados en el módulo de selección de oportuni-
dades espectrales (SO), se puede concluir que no hay un algoritmo que se desempeñe 
de forma excelente en todas las métricas de evaluación (ME) y para todos los escena-
rios de simulación (tipo de red, clase de aplicación y nivel de tráfico). Cada algorit-
mo se puede desempeñar de forma satisfactoria en determinadas ME y para ciertos 
escenarios, por lo que una propuesta interesante es el diseño de un módulo adapta-
tivo multivariable de selección espectral que permita cambiar su comportamiento de 
acuerdo con los requerimientos de la aplicación que se esté desarrollando durante 
la comunicación del SU. A pesar de lo anterior, el algoritmo que mejor desempeño 
evidenció en promedio fue FFAHP, seguido por SAW, lo que permite corroborar la 
importancia de incorporar la realimentación y el aprendizaje en los algoritmos para 
la selección de espectro. 

Con respecto al módulo de colaboración, se pudo evidenciar que el nivel de cola-
boración entre SU es directamente proporcional al desempeño del algoritmo; sin em-
bargo, la tasa de mejoría no es significativamente alta: de acuerdo con los resultados, 



279

Modelo de decisión espectral colaborativo para mejorar el desempeño de las redes de radio cognitiva

un incremento en el nivel de colaboración entre SU del 1000 % (al pasar del 10 % al 
100 %) tan solo logra una mejoría en el desempeño del algoritmo del 10 %, aproxima-
damente. El análisis de los resultados también mostró que el algoritmo con el mejor 
desempeño en el momento de intercambiar información entre SU es el método del pro-
medio, el cual permite guardar de forma indirecta el histórico de la información anterior. 

El modelo de decisión espectral colaborativo propuesto y desarrollado en esta 
investigación es una herramienta para la toma de decisiones que permite aprovechar 
efectivamente las SO en redes de radio cognitiva (CRN). Dicho modelo está con-
formado por cuatro módulos: 1) módulo colaborativo (intercambio de información 
entre SU); 2) módulo de caracterización del PU; 3) módulo de probabilidad de arribo 
del SU, y 4) módulo de selección de la SO. La función de cada módulo es realizada 
por el algoritmo que mejor desempeño evidenció en la correspondiente evaluación 
de cada módulo. Los algoritmos seleccionados fueron: para el módulo colaborativo, 
el intercambio de información se dio a través del algoritmo de promedios; para el 
módulo de caracterización del PU, el algoritmo LSTM; para el módulo de probabili-
dad de arribo del SU, el algoritmo MLPNN, y para el módulo de selección de canal, 
el algoritmo FFAHP-SU10. El modelo propuesto selecciona de forma dinámica e 
inteligente la mejor SO con base en los criterios de decisión (DC): probabilidad de 
disponibilidad (AP) del canal, tiempo estimado de disponibilidad (ETA) del canal, 
relación de señal a interferencia más ruido (SINR) y BW, que fueron seleccionados 
cuidadosamente a través del método Delphi modificado. La validación del desempe-
ño del modelo propuesto se realizó a través de datos reales de ocupación espectral 
capturados en experimentos realizados en las bandas de frecuencia GSM y Wi-Fi. 
Sin embargo, la aplicación del algoritmo también se puede extender a otras ban-
das de frecuencia siempre que se cuente con la información estadística necesaria y 
suficiente. 

Contribuciones de la investigación 
•	 Diseño y desarrollo de un modelo de decisión espectral colaborativo para mejo-

rar el desempeño de las CRN.

•	 Evaluación y validación de los algoritmos de decisión espectral desarrollados, 
con datos de ocupación espectral reales capturados en una campaña de medición 
realizada en la ciudad de Bogotá, Colombia. 

•	 Evaluación y validación de los algoritmos de handoff espectral (SH) desarrolla-
dos, en dos tipos de redes: GSM y Wi-Fi.
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•	 Evaluación y validación de los algoritmos de SH desarrollados, con dos tipos 
de enfoque: tiempo real (RT) y mejor esfuerzo (BE), de acuerdo con la clase de 
aplicación que puede ejecutar el SU. 

•	 Evaluación y validación de los algoritmos de SH desarrollados, con dos niveles 
de tráfico de PU: alto (HT) y bajo (LT).

•	 Evaluación y validación de los algoritmos de SH desarrollados, en ocho diferen-
tes escenarios de evaluación: GSM-RT-LT, GSM-RT-HT, GSM-BE-LT, GSM-
BE-HT, Wi-Fi-RT-LT, Wi-Fi-RT-HT, Wi-Fi-BE-LT y Wi-Fi-BE-HT. 

•	 Evaluación y validación de los algoritmos de SH desarrollados, bajo cinco EM: 
AAH, AAFH, ABW, AAD y AAT.

•	 Determinación de cuatro DC seleccionados cuidadosamente mediante el méto-
do Delphi modificado, para elegir la mejor SO; todos los algoritmos desarrolla-
dos trabajaron con los mismos cuatro DC, y cada DC fue calculado a partir de 
los datos de ocupación espectral reales. 

•	 Diseño y desarrollo de Collaborative CRN, una herramienta de simulación no-
vedosa para evaluar el desempeño de algoritmos de decisión espectral híbridos; 
está basada en los datos de ocupación espectral reales y permite modificar varios 
parámetros de interés para analizar el comportamiento del desempeño de cada 
algoritmo bajo diferentes situaciones; entre estos parámetros se destaca el nivel 
de colaboración entre SU. 

Investigación futura 
Para un trabajo futuro, se proponen tres directrices: la primera consiste en realizarle 
una modificación al algoritmo FFAHP para que pueda autoconfigurar los pesos de 
los DC con base en las estadísticas históricas recientes de estos; la segunda consiste 
en realizar una evaluación y validación con algoritmos de aprendizaje autónomo 
más relevantes en la literatura actual, como las SVM (máquinas de soporte vectorial), 
para realizar procesos de clasificación, y el aprendizaje por refuerzo, para desarrollar 
la parte de adaptación, y la tercera directriz consiste en realizar una evaluación y 
validación con equipos de CR que emulen una CRN en lugar de simulaciones, aun 
con datos de ocupación espectral reales.
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Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suarez, M. y Robert, F. (2010). 
Survey on spectrum utilization in Europe: Measurements, analyses and obser-
vations. En 2010 Proceedings of  the Fifth International Conference on Cognitive Radio 
Oriented Wireless Networks and Communications. IEEE. http://doi.org/10.4108/
ICST.CROWNCOM2010.922

Valero Verdú, S. y Senabre Blanes, C. (2013). Aplicación de un modelo de red neuronal no 
supervisado a la clasificación de consumidores eléctricos. Club Universitario.

Vásquez, H., Hernández, C. y Páez, I. (2015). Proactive spectrum handoff  model 
with time series prediction. International Journal of  Applied Engineering Research, 
10(21), 42.259-42.264.

Vasudeva, A. y Sood, M. (2018). Survey on sybil attack defense mechanisms in wire-
less ad hoc networks. Journal of  Network and Computer Applications, 120, 78-118. 
http://doi.org/https://doi.org/10.1016/j.jnca.2018.07.006 

Veeriah, V., Zhuang, N. y Qi, G.-J. (2015). Differential recurrent neural networks 
for action recognition. En 2015 IEEE International Conference on Computer Vision 
(ICCV). IEEE. http://doi.org/10.1109/ICCV.2015.46



302

Cesar Augusto Hernández Suarez, Danilo Alfonso López Sarmiento y Diego Armando Giral Ramírez

Velmurugan, T. (2014). Performance based analysis between k-Means and fuzzy C-
Means clustering algorithms for connection oriented telecommunication data. 
Applied Soft Computing, 19, 134-146. http://doi.org/10.1016/j.asoc.2014.02.011 

Wang, B. y Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE 
Journal of  Selected Topics in Signal Processing, 5(1), 5-23. http://doi.org/10.1109/
JSTSP.2010.209321

Wang, C.-W. y Wang, L.-C. (2009). Modeling and analysis for proactive-decision 
spectrum handoff  in cognitive radio networks. En 2009 IEEE International Confer-
ence on Communications. IEEE. http://doi.org/10.1109/ICC.2009.5199189 

Wang, J., Ghosh, M. y Challapali, K. (2011). Emerging cognitive radio applications: 
A survey. IEEE Communications Magazine, 49(3), 74-81. http://doi.org/10.1109/
MCOM.2011.5723803 

Wang, L.-C., Wang, C.-W. y Adachi, F. (2011). Load-balancing spectrum decision 
for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 
29(4), 757-769. http://doi.org/10.1109/JSAC.2011.110408 

Wang, L.-C., Wang, C.-W. y Chang, C.-J. (2012). Modeling and analysis for spec-
trum handoffs in cognitive radio networks. IEEE Transactions on Mobile Comput-
ing, 11(9), 1499-1513. http://doi.org/10.1109/TMC.2011.155

Wang, P., Ansari, J., Petrova, M. y Mähönen, P. (2016). CogMAC+: A decentralized 
MAC protocol for opportunistic spectrum access in cognitive wireless networks. 
Computer Communications, 79, 22-36. http://doi.org/https://doi.org/10.1016/j.
comcom.2015.09.016 

Wang, X. Y., Wong, A. y Ho, P.-H. (2010). Dynamically optimized spatiotemporal 
prioritization for spectrum sensing in cooperative cognitive radio. Wireless Net-
works, 16(4), 889-901. http://doi.org/10.1007/s11276-009-0175-

Wei, Q., Farkas, K., Prehofer, C., Mendes, P. y Plattner, B. (2006). Context-aware 
handover using active network technology. Computer Networks, 50(15), 2855-
2872. http://doi.org/10.1016/j.comnet.2005.11.002 

Wei, Y., Li, X., Song, M. y Song, J. (2008). Cooperation radio resource management 
and adaptive vertical handover in heterogeneous wireless networks. En Interna-
tional Conference on Natural Computation (vol. 5, pp. 197-201). IEEE. http://doi.
org/10.1109/ICNC.2008.504 

Willkomm, D., Machiraju, S., Bolot, J. y Wolisz, A. (2008). Primary users in cellular 
networks: A large-scale measurement study. En 2008 IEEE Symposium on New 



303

Modelo de decisión espectral colaborativo para mejorar el desempeño de las redes de radio cognitiva

Frontiers in Dynamic Spectrum Access Networks (pp. 401-411). IEEE. http://doi.
org/10.1109/DYSPAN.2008.48 

Winston, O., Thomas, A. y Okelloodongo, W. (2013). Optimizing neural network 
for TV idle channel prediction in cognitive radio using particle swarm optimiza-
tion. En Fifth International Conference on Computational Intelligence, Communication 
Systems and Networks (CICSyN 2013) (pp. 25-29). IEEE. http://doi.org/10.1109/
CICSYN.2013.68 

Woods, W. A. (1986). Important issues in knowledge representation. Proceedings of  
the IEEE, 74(10), 1322-1334. http://doi.org/10.1109/PROC.1986.13634

Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons. 

Wu, Y., Yang, Q., Liu, X. y Kwak, K. S. (2016). Delay-constrained optimal trans-
mission with proactive spectrum handoff  in cognitive radio networks. IEEE 
Transactions on Communications, 64(7), 2767-2779. http://doi.org/10.1109/
TCOMM.2016.2561936 

Xenakis, D., Passas, N. y Merakos, L. (2014). Multi-parameter performance analy-
sis for decentralized cognitive radio networks. Wireless Networks, 20(4), 787-803. 
https://doi.org/10.1007/s11276-013-0635-4

Xing, X., Jing, T., Cheng, W., Huo, Y. y Cheng, X. (2013). Spectrum prediction in 
cognitive radio networks. IEEE Wireless Communications, 20(2), 90-96. http://
doi.org/10.1109/MWC.2013.6507399 

Xing, X., Jing, T., Huo, Y., Li, H. y Cheng, X. (2013). Channel quality prediction based 
on Bayesian inference in cognitive radio networks. En 2013 Proceedings IEEE In-
focom (pp. 1465-1473). IEEE. http://doi.org/10.1109/INFCOM.2013.6566941 

Xu, G. y Lu, Y. (2006). Channel and modulation selection based on support vec-
tor machines for cognitive radio. En 2006 IEEE International Conference on 
Wireless Communications, Networking and Mobile Computing. IEEE. http://doi.
org/10.1109/WiCOM.2006.181 

Yang, S.-F. y Jung-ShyrWu. (2008). A IEEE 802.21 handover design with QOS pro-
vision across WLAN and WMAN. En 2008 International Conference on Commu-
nications, Circuits and Systems (pp. 548-552). IEEE. http://doi.org/10.1109/ICC-
CAS.2008.4657833 

Yang, S.-J. y Tseng, W.-C. (2013). Design novel weighted rating of  multiple attri-
butes scheme to enhance handoff  efficiency in heterogeneous wireless net-
works. Computer Communications, 36(14), 1498-1514. http://doi.org/10.1016/j.
comcom.2013.06.005 



304

Cesar Augusto Hernández Suarez, Danilo Alfonso López Sarmiento y Diego Armando Giral Ramírez

Yao, Y., Hu, Q., Yu, H. y Grzymala-Busse, J. W. (eds.). (2015). Rough sets, fuzzy sets, 
data mining, and granular computing (vol. 2639). Tianjin, China: Springer.

Yarkan, S. y Arslan, H. (2007). Binary time series approach to spectrum prediction 
for cognitive radio. En 2007 IEEE 66th Vehicular Technology Conference (pp. 1563-
1567). IEEE. http://doi.org/10.1109/VETECF.2007.332 

Yifei, W., Yinglei, T., Li, W., Mei, S. y Xiaojun, W. (2013). QoS provisioning ener-
gy saving dynamic access policy for overlay cognitive radio networks with 
hidden Markov channels. China Communications, 10(12), 92-101. http://doi.
org/10.1109/CC.2013.6723882 

Yonghui, C. (2010). Study of  the Bayesian networks. En 2010 International Conference 
on E-Health Networking, Digital Ecosystems and Technologies (vol. 1, pp. 172-174). 
IEEE. http://doi.org/10.1109/EDT.2010.5496612

Yoon, K. y Hwang, C.-L. (1995). Multiple attribute decision making: An introduction (vol. 
104). Sage. 

Youssef, M. E., Nasim, S., Wasi, S., Khisal, U. y Khan, A. (2018). Efficient coopera-
tive spectrum detection in cognitive radio systems using wavelet fusion. En 2018 
International Conference on Computing, Electronic and Electrical Engineering. IEEE. 
http://doi.org/10.1109/ICECUBE.2018.8610981 

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. http://doi.
org/10.1016/S0019-9958(65)90241-X 

Zapata, J. A., Arango, M. D. y Adarme, W. (2012). Applying fuzzy extended analyti-
cal hierarchy (Feahp) for selecting logistics software. Ingeniería e Investigación, 
32(1), 94-99. http://www.revistas.unal.edu.co/index.php/ingeinv/article/
view/28521/33581 

Zapata Muñoz, D. F. y Anzola Rojas, C. (2016). Diseño de un algoritmo MAC para 
la asignación equitativa de espectro en redes inalámbricas de radio cognitiva [tesis de 
pregrado, Universidad Distrital Francisco José de Caldas]. RIUD. http://reposi-
tory.udistrital.edu.co/bitstream/11349/3754/1/AnzolaRojasCamilo2016.pdf

Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M. y Nallanathan, A. (2017). Sensing 
time optimization and power control for energy efficient cognitive small cell 
with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communi-
cations, 16(2), 730-743. http://doi.org/10.1109/TWC.2016.2628821 

Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous net-
works. En 2004 IEEE Wireless Communications and Networking Conference (vol. 4, 
pp. 653-658). IEEE. http://doi.org/10.1109/WCNC.2004.1311263 



305

Modelo de decisión espectral colaborativo para mejorar el desempeño de las redes de radio cognitiva

Zhang, Y., Tay, W. P., Li, K. H., Esseghir, M. y Gaïti, D. (2016). Opportunistic spec-
trum access with temporal-spatial reuse in cognitive radio networks. En IEEE 
International Conference on Acoustics, Speech and Signal Processing (pp. 3661-3665). 
IEEE. https://sigport.org/documents/opportunistic-spectrum-access-tempo-
ral-spatial-reuse-cognitive-radio-networks

Zhao, Y., Mao, S., Neel, J. O. y Reed, J. H. (2009). Performance evaluation of  cogni-
tive radios: Metrics, utility functions, and methodology. Proceedings of  the IEEE, 
97(4), 642-658. http://doi.org/10.1109/JPROC.2009.2013017 

Zheng, H. y Cao, L. (2005). Device-centric spectrum management. En IEEE Inter-
national Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 56-
65). IEEE. http://doi.org/10.1109/DYSPAN.2005.1542617





César Augusto Hernández Suárez
Ingeniero electrónico con especialización en Interconexión de Redes; magíster en 
Ciencias de la Información y las Comunicaciones de la Universidad Distrital Fran-
cisco José de Caldas, y doctor en Ingeniería de la Universidad Nacional de Colom-
bia. Profesor titular de la Universidad Distrital Francisco José de Caldas, adscrito a 
los programas de Tecnología en Electricidad de Media y Baja Tensión e Ingeniería 
Eléctrica de la Facultad Tecnológica. Investigador Sénior de Colciencias, director 
del grupo de investigación SIREC con categoría A1 de Colciencias, e integrante de 
los grupos de investigación Gidenutas (A1 de Colciencias) e Internet Inteligente (A 
de Colciencias), en los que lidera investigaciones sobre sistemas y redes cognitivas 
y aplicaciones tecnológicas que contribuyen a mejorar la calidad de vida de comu-
nidades vulnerables. Ha realizado publicaciones de patentes, libros de investigación 
y artículos en el área de las telecomunicaciones en revistas indexadas de categoría 
nacional e internacional.

Danilo Alfonso López Sarmiento
Ingeniero electrónico, magíster en Teleinformática y doctor en Ingeniería de la Uni-
versidad Distrital Francisco José de Caldas. Profesor asociado de la Universidad Dis-
trital Francisco José de Caldas, adscrito a la Facultad de Ingeniería. Investigador 
Junior de Colciencias, integrante del grupo de investigación Internet Inteligente y 
LIDER con categoría A de Colciencias. Ha realizado publicaciones de libros de in-
vestigación y artículos en el área de las telecomunicaciones en revistas indexadas de 
categoría nacional e internacional.

Diego Armando Giral Ramírez
Ingeniero eléctrico de la Universidad Distrital Francisco José de Caldas, magíster en 
Ingeniería Eléctrica de la Universidad de los Andes y candidato a doctor en Inge-
niería de la Universidad Distrital Francisco José de Caldas. Profesor asistente de la 
Universidad Distrital Francisco José de Caldas, adscrito a los programas de Tecno-
logía en Electricidad de Media y Baja Tensión e Ingeniería Eléctrica de la Facultad 
Tecnológica. Investigador Junior de Colciencias, integrante del grupo de investiga-
ción SIREC con categoría A1 de Colciencias. Ha realizado publicaciones de libros de 
investigación y artículos en el área de las telecomunicaciones y sistemas de potencia 
en revistas indexadas de categoría nacional e internacional.



Este libro se 
terminó de imprimir

en noviembre de 2020
en la Editorial UD, 
Bogotá, Colombia




