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Capítulo 1

Sistemas para Inteligencia Robótica

1.1.	  Introducción

El presente documento expone el desarrollo de un algoritmo orien-
tado a esquemas de robótica asistencial trabajando en ambientes mul-
ti-herramientas. Esto se refiere a un robot de tipo antropomórfico, que se 
desenvuelve en un área de trabajo compartida por una persona, a quien 
asistirá en tareas como entrega de herramientas. Para ello, el robot debe 
identificar qué herramienta desea tomar dentro de un grupo de herramien-
tas, lo que corresponde a una labor de reconocimiento de patrones. Cada 
herramienta presenta características particulares que deben ser aprendi-
das mediante un algoritmo de reconocimiento.

En este trabajo, se expone una dificultad en dicho reconocimiento aún 
no abordada en trabajos similares, y que surgió de los desarrollos propios 
de robótica asistencial realizados previamente. Al buscar reconocer una 
herramienta dentro de un grupo, el sistema de reconocimiento de patro-
nes debe aprender las características que exhibe cada herramienta. Típica-
mente, esta tarea se realiza mediante la captura de la imagen del grupo de 
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herramientas por medio de una cámara, desde una posición dada, apren-
diendo herramienta por herramienta.

Una vez reconocida y ubicada espacialmente la herramienta, se em-
plean algoritmos de planeación de trayectorias que, por medio de la ci-
nemática del robot, permiten el desplazamiento del efector final hasta 
la herramienta. Pero, si se presenta el caso que en el área de trabajo un 
usuario interrumpa dicha trayectoria, el robot debe buscar una solución 
para alcanzar su objetivo. En la actualidad, dicha solución se ha orientado 
a detener el robot y esperar a que termine la interrupción por parte del 
usuario. Al buscar mejorar esta opción, por el ejemplo, a partir de que el 
robot sea capaz de generar la evasión del usuario, o de lo que le obstruye, 
se debe buscar una nueva trayectoria que este libre, partiendo desde el 
nuevo punto en que se encuentra luego de detenerse (robot desplazado) 
hasta la herramienta. Es aquí donde se presenta el problema de reconoci-
miento, desde la nueva posición se debe capturar la información de la he-
rramienta para generar el nuevo desplazamiento, donde al cambiar el pun-
to de captura, por cercanía o lejanía, la herramienta presenta más o menos 
características a nivel de la imagen original capturada, lo que varía el grado 
de reconocimiento desde el punto del aprendizaje inicial, dificultando el 
reconocimiento y confundiendo las herramientas presentes en la escena.

Los algoritmos de desplazamiento en función de una trayectoria libre, 
partiendo de la captura del objeto de agarre desde una posición siempre 
fija y equidistante, se han trabajado ampliamente. Sin embargo, desde esta 
perspectiva dinámica planteada (avanzar-detenerse y calcular, iterativa-
mente), no presenta aún soluciones que se hacen necesarias para mejorar 
la interacción hombre-máquina, tal cual como lo hace un ser humano, que 
cambia la trayectoria a su destino cuando un obstáculo se detecta y se va 
aproximando a este. De manera que se realiza una revisión del estado del 
arte, que evidencia trabajos de reconocimiento de patrones en el campo 
de la robótica, e incluso de la robótica asistencial, sin encontrar soluciones 
al caso aquí expuesto. Motivo por el cual se considera un aporte al estado 
del arte y al conocimiento. Este aporte se da en la construcción de una 
arquitectura de reconocimiento de patrones, que considera variaciones de 
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la distancia del objeto a reconocer desde el punto de captura de la imagen. 
Dicha arquitectura se estructura desde técnicas de aprendizaje de tipo pro-
fundo (o de varias capas), que hacen parte de las técnicas más novedosas 
en el área de reconocimiento de patrones.

Después de presentada la arquitectura, en el documento se exponen 
algoritmos adicionales, que se requieren en la tarea de la robótica asisten-
cial. Es el caso de un algoritmo de planeación de trayectorias, mediante 
técnicas de optimización no lineal; un algoritmo de evasión de obstáculos, 
basado en la arquitectura diseñada; un algoritmo de agarre, para la toma 
de la herramienta; y se sugiere un algoritmo de control para las variaciones 
de peso, que implica el tomar una herramienta u otra. Finalmente, se expo-
ne el resultado de la tarea conjunta del robot asistencial empleando estos 
algoritmos en un ambiente virtual.

1.2.	 Motivación

La inclusión de agentes robóticos en diversas actividades humanas es 
un componente del quehacer diario, que va cobrando mayor participación 
conforme se van dando avances tecnológicos. Es así, como la Organización 
para la Cooperación y el Desarrollo Económicos (OCDE) prevé un incre-
mento en la fuerza laboral robótica en los próximos 10 años (2018-2028). 
Una de las labores en las que vamos encontrando más y más robots es la 
tarea de asistencia humana en diferentes ambientes y aplicaciones, lo que 
implicará la interacción hombre-máquina en un mismo espacio de trabajo 
(ver Figura 1-1), impulsando así el concepto de robótica asistencial.

Cada aplicación robótica presenta diversos retos a cumplir. Pero, las 
capacidades que debe tener el robot están claras, en cuanto a la percep-
ción e interacción que requiere con el medio en que se desenvolverá. Den-
tro de las aplicaciones de los robots asistenciales, estos cumplen tareas de 
alto riesgo, esfuerzo o repetitividad. Aunque, hoy en día su participación 
se ve restringida a una secuencia de movimientos pre-establecidos, o a un 
control vía sistemas inalámbricos, sistemas hápticos (de realimentación al 
usuario), o incluso por señas (procesamiento de imagen), que están condi-
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cionados por las técnicas de percepción e interacción de máquina predo-
minantes durante los últimos 15 años, algunas de las cuales son referidas 
más adelante.

La autonomía de los robots es limitada y, aunque los sistemas de vi-
sión de máquina actuales permiten aumentar dicha autonomía, la capaci-
dad de discriminación de objetos para la interacción robótica se reduce 
a técnicas como conversión en espacios de color, cálculo de contornos, 
uso de clasificadores (tipo Haar por ejemplo), y redes neuronales de máxi-
mo una capa oculta (MPL, de sus siglas en inglés, Multi Layer Perceptron). 
Para este último caso, más de una capa ha presentado problemas de so-
bre-entrenamiento o perdida de la función de error. Estos algoritmos po-
seen problemas de reconocimiento, debido a restricciones como la profun-
didad limitada de las redes neuronales (número de capas ocultas), por las 
razones mencionadas previamente, y el manejo de sombras o cambios de 
iluminación, o de distancia, en los sistemas de visión, lo que limita mucho el 
desenvolvimiento de un robot en los ambientes asistidos.

Algunos trabajos previos han permitido evidenciar directamente las 
falencias de los algoritmos de procesamiento de imágenes [Jimenez Mo-
reno, 2011] y reconocimiento de patrones mediante redes neuronales [Pin-
zón-Arenas et al., 2019], en sistemas de aplicaciones de visión de máquina
como el presentado en la Figura 1-2.

1 Izquierda, tomada de: https://blog.robotiq.com/hubfs/eBooks/Part%20Presentation%20Playbook
%20.pdf?hsLang=en-ca&t=1536232209651. Derecha, tomada de: https: //elpais.com/economia
/2016/05/20/actualidad/1463769085_077235.html

Figura 1-1: Interacción hombre-máquina1.
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Frente a estas falencias, recientes métodos de aprendizaje como el 
Deep Learning (DL), ofrecen nuevas posibilidades de entrenamiento de 
sistemas neuronales y de procesamiento de imágenes, que pueden ser 
aprovechados para la interacción con agentes robóticos (ver Figura 1-3). 
Dichos métodos de aprendizaje han mostrado su eficiencia en el recono-
cimiento de patrones. Por ejemplo, a nivel de reconocimiento de coman-
dos de voz [Pinzón-Arenas y Jiménez-Moreno, 2020], e identificación de 
objetos en imágenes [Velandia et al., 2019]. Dentro de estos métodos de 
aprendizaje se encuentran las redes neuronales convolucionales (CNN, de 
sus siglas en inglés, Convolutional Neural Networks), que son la principal 
técnica de Deep Learning orientada al reconocimiento de objetos en imá-
genes  [Jimenez Moreno, 2011],  con  grandes  ventajas  sobre  las  técnicas 
convencionales de procesamiento de imágenes y problemas descritos en 
el párrafo anterior.

Sin embargo, las aplicaciones que emplean redes neuronales convolu-
cionales siguen en desarrollo y dan lugar a mejoras en los algoritmos exis-
tentes. En el caso de la robótica asistencial, estas aplicaciones son recien-
tes y las falencias de las redes neuronales convolucionales ya comienzan a 
abordarse. Una de estas falencias es la capacidad de las redes neuronales 
convolucionales en la identificación de objetos en ambientes dinámicos, 
donde la cámara se acerque o aleje del objeto. Para agentes robóticos asis-
tenciales, los cuales pueden llegar a variar la perspectiva con la que ven un 
grupo de objetos en el espacio, debido a su naturaleza móvil, esta falencia 
genera problemas de confusión de clases, la cual no ha sido abordada en 
el estado del arte.

Figura 1-2: Sistema de vision de máquina para detección de cansancio en conductores
[Jimenez Moreno, 2011].
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La situación mencionada previamente se presenta de forma caracte-
rística en aplicaciones de interacción hombre-máquina, donde el robot y el 
usuario comparten la misma zona de desplazamiento. Por ejemplo, para 
un robot que alimenta a una persona, o le alcanza instrumentos de traba-
jo, si la persona obstruye el desplazamiento del robot, este debe cambiar 
de trayectoria, de forma que al buscar de nuevo el punto de destino, de-
marcado por el objeto o herramienta  de  interés,  la  perspectiva  desde  
este  desplazamiento  cambia, haciendo que aumenten o disminuyan las 
características de los objetos en su nuevo campo de visión, conllevando 
problemas como la confusión de clases. En el presente documento se ex-
pone un aporte al conocimiento, mediante la aplicación  de  sistemas  de  
reconocimiento  visual  por  redes  neuronales convolucionales para agen-
tes robóticos, en ambientes de trabajo compartido hombre-máquina, ya 
sea de forma colaborativa o asistencial, solventando las variaciones de 
perspectiva de un grupo de objetos, que puedan generar confusión entre 
estos por parte del robot.

1.3.	 Objetivos

1.3.1.		  Objetivo General

Estructurar una técnica de reconocimiento de herramientas en tres 
dimensiones, mediante el desarrollo de un algoritmo basado en Deep Lear-
ning para emplear un brazo robótico como asistente personal en escena-
rios multi-herramienta.

Figura 1-3: Técnicas recientes aplicables a sistemas de visión de máquina.
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1.3.2.		 Objetivos Específicos

•	 Analizar las técnicas existentes de Deep Learning aplicables a 
la detección de objetos, validando su funcionalidad, y deter-
minar la mejor arquitectura para discriminación de herramien-
tas en imágenes.

•	 Desarrollar un algoritmo de entrenamiento basado en la me-
jor arquitectura de Deep Learning, que permita distinguir una 
herramienta particular de un grupo de herramientas, some-
tiéndola a variaciones de distancia.

•	 Desarrollar un algoritmo de posicionamiento que permita a 
un brazo robótico  ubicar  su  efector  final  sobre  una  herra-
mienta  identificada, evitando colisionar con una persona que 
ingrese a su espacio de trabajo, o con quien interactúe.

•	 Implementar un ambiente de pruebas virtual o real, que per-
mita validar la técnica desarrollada mediante la localización 
de una herramienta por parte de un agente robótico asisten-
cial y entregarla a un usuario, empleando Deep Learning.

1.4.	 Marco Metodológico

Con el propósito de dar cumplimiento a los objetivos propuestos, el 
marco metodológico se establece, inicialmente, validando las prestaciones 
de las redes neuronales convolucionales en el aprendizaje de herramientas 
en un escenario particular, buscando una arquitectura de red, que permita 
la identificación de objetos deseados, mediante heurísticas soportadas en 
la literatura. Inicialmente, se entrena una red neuronal convolucional con 
una base de datos de un grupo de herramientas a una distancia fija y, poste-
riormente, se evalúa con imágenes de dichas herramientas a diferentes dis-
tancias del foco de la cámara, esto permite evidenciar  la  necesidad  de  una  
arquitectura  diferente  a  la  estructura neuro-convolucional convencional.
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Para ofrecer una solución a esta necesidad, se establecieron dos es-
quemas en una arquitectura multi-convolucional paralela, validando dos 
métodos de aprendizaje diferentes, para definir la mejor arquitectura de 
red a establecer, que incluye un canal adicional de información de la dis-
tancia de la cámara al objeto. Una vez hecho esto, se determina una capa 
final, que permite  la ponderación de las ramas, mediante dos propuestas: 
una aritmética y otra mediante un sistema de inferencia difusa. De forma 
que, el resultado obtenido es una arquitectura neuro-convolucional, que 
en función a una entrada RGB-D (imagen a color más la información de pro-
fundidad), identifica las herramientas de un escenario particular, que per-
mite variaciones de ubicación espacial del sensor de captura de imagen.

Una vez lograda la identificación, se aplica un algoritmo de optimiza-
ción de trayectoria a un brazo robótico de tipo académico, para el agarre de 
la herramienta objetivo en dicho escenario. Los puntos de desplazamiento 
del algoritmo realimentan la entrada de la red, en las diferentes perspecti-
vas que el brazo va tomando de la herramienta. Se emplea la arquitectura 
diseñada para establecer un algoritmo de evasión de obstáculos dinámi-
cos, como puede ser un usuario que ingresa en el área de trabajo del robot.

Por último, los algoritmos resultantes se prueban en ambientes simu-
lados y reales, para evidenciar la utilidad de los mismos. De forma general,  
la metodología empleada es tipo experimental.

1.5.	 Línea de investigación

El desarrollo de esta investigación está enmarcado dentro del Grupo 
de Investigación, Desarrollo y Aplicaciones en Señales - IDEAS, de la Uni-
versidad Distrital Francisco José de Caldas, en las líneas de investigación: 
Procesamiento de Imágenes y de video, y Control y Automatización. Así 
mismo, dentro del grupo de investigación Davinci, de la Universidad Militar 
Nueva Granada, en la línea de investigación de robótica híbrida.
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1.6.	 Contribución del trabajo

Un robot asistencial busca desplazarse con un fin determinado. Por 
ejemplo, en el caso de una plataforma multi-herramientas, para tomar una 
herramienta entre un grupo de estas, y, debido a que parte de la labor que 
debe solventar el robot, al interactuar en un ambiente compartido, es el 
desplazamiento hacia su objetivo, en el que puede encontrar posibles obs-
trucciones en su trayectoria, o tener que manejar ciertos límites de seguri-
dad, para evitar colisiones. Al establecer una trayectoria, para alcanzar el 
punto en el espacio donde se encuentra la herramienta, dado que se bus-
ca tener un entorno compartido hombre-máquina, el robot debe validar 
permanentemente que no se presenten obstáculos en dicha trayectoria. 
De ser así, debe replantear su desplazamiento desde la posición en la que 
detecta el obstáculo. El determinar dicho cambio implica moverse lateral-
mente fuera del alcance del obstáculo, donde debe reevaluar la posición 
de la herramienta desde su nueva perspectiva. Al haberse desplazado la 
distancia del nuevo punto de percepción las herramientas exhiben nuevas, 
o pierden, características respecto a la percepción inicial, desde el punto 
de origen. Lo que deja al entrenamiento inicial de la arquitectura de red, 
encargada  de  reconocer  la  herramienta,  susceptible  a  variaciones  y,  
por consiguiente, a errores en la clasificación.

El aporte al conocimiento logrado consiste en el desarrollo de una ar-
quitectura de red basada en Deep Learning, para entrenamiento de robots 
asistentes en reconocimiento de objetos orientado a plataformas multi-he-
rramienta. En donde se robustezca, en función de la distancia, el reconoci-
miento de dichos objetos, sin importar las variaciones que pueda sufrir el 
punto de captura de la imagen, respecto al objeto. El algoritmo base será 
tal que determinará la arquitectura de Deep Learning, que ofrece una solu-
ción a este problema y permite el desarrollo de una aplicación de robótica 
asistencial, con un grado de inteligencia mayor al actualmente encontrado 
en el estado del arte.
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Para el problema que se desea abordar, debe ser claro que se requiere 
una cámara alojada en el efector del brazo, que oriente la relación espacial 
entre el punto del actuador y su destino final, como lo es la localización 
espacial de la herramienta. Una cámara fija supervisora esta susceptible a 
obstrucciones del brazo y del usuario, lo cual al ocluir la herramienta impi-
de su relocalización en función al desplazamiento del efector. Una analogía 
clara del problema puntual a abordar se da con respecto a la visión humana 
que, dependiendo de la distancia, logra reconocer ciertos objetos, según 
se evidencia en la Figura 1-4. Un sistema de reconocimiento de patrones en 
imágenes sufre el mismo problema, si la cámara de adquisición de la ima-
gen se acerca, o aleja, del objeto podrá reconocer ciertas características y 
otras no. Por lo que se busca diseñar una arquitectura de redes neuronales 
convolucionales que genere el mismo valor de confidencia en el reconoci-
miento de un objeto, sin importar si se da dicho cambio.

1.7.	 Algoritmo empleado para el desarrollo propuesto

El procedimiento desarrollado para abordar el problema previamente 
establecido, se muestra en el Algoritmo 1. 

Figura 1-4: Discriminación de caracteres con cambio de escala



Sistemas para Inteligencia Robótica

25

1.8.	 Organización del documento

El capítulo 2 expone los conceptos generales y el estado del arte so-
bre agentes robóticos y el empleo de algoritmos de aprendizaje de má-
quina, que permiten dotar de cierto grado de inteligencia a dichos robots. 
De forma que, se busca exponer un escenario en el que: i) la robótica co-
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bra un papel cada vez más relevante en la vida cotidiana, y ii) los algorit-
mos de aprendizaje de máquina aún están en desarrollo y son de interés 
investigativo. Esta revisión de los trabajos de investigación, en robótica 
asistencial y algoritmos de inteligencia de máquina, pretende validar el 
aporte aquí presentado, donde lo primero que destaca es la reciente in-
corporación de las técnicas de aprendizaje de máquina basadas en Deep  
Learning en el campo de la robótica y cómo el escenario multi-herramien-
ta planteado no ha sido explorado, por lo cual los problemas y soluciones 
asociadas, están en incubación.

El capítulo 3 expone de forma puntual los algoritmos de Deep Lear-
ning, que actualmente están siendo trabajados, sus ventajas, frente a 
técnicas convencionales de aprendizaje de máquina, y sus desventajas, al 
operar en ambientes dinámicos, como lo es el requerido en la interacción 
hombre-máquina. Aquí, se evidencia claramente el problema de identifica-
ción de objetos cuando la distancia de captura de la imagen varía.

El capítulo 4 presenta el aporte principal del presente trabajo, donde 
se desarrolla una solución frente a la desventaja mencionada, mediante el 
diseño de una red multi-paralela, con una capa de ponderación final, que 
se valida mediante dos métodos: un sistema de inferencia difusa y el desa-
rrollo de una ecuación que realiza de forma generalizada la misma tarea. 
Se expone un caso representativo que permite evidenciar el desempeño 
de la red y establecer así comparaciones frente a los resultados de ambas 
metodologías empleadas.

El capítulo 5 presenta algunos algoritmos necesarios para la imple-
mentación de un ambiente robótico asistencial en plataformas multi-he-
rramientas. Primero, se presenta un algoritmo de optimización para pla-
neación de trayectorias del brazo robótico. Posteriormente, se expone 
una aplicación adicional de la red propuesta como aporte al conocimiento, 
aplicada a la evasión de obstáculos en el desplazamiento robótico asisten-
te. Finalmente, se expone un algoritmo de agarre, orientado a la captura 
de herramientas por medio de un efector tipo pinza.
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El Capítulo 6 presenta el ambiente virtual de pruebas, contemplando 
todas las etapas descritas a lo largo del documento: i) detección de la he-
rramienta, ii) generación de la trayectoria del punto inicial al punto donde 
se detectó la herramienta, iii) descripción de la trayectoria con evasión de 
colisiones, iv) selección del punto de agarre de la herramienta y proceso de 
entrega de la misma.

Finalmente, el Capítulo 7 presenta las conclusiones obtenidas en el 
desarrollo del trabajo de investigación en cada etapa y los trabajos futuros 
derivados que complementarían el aquí expuesto.
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Capítulo 2

Desarrollo de Sistemas para
Robótica Autónoma

Este capítulo permite contextualizar los desarrollos actuales de los 
algoritmos de inteligencia artificial y su empleo en sistemas robóticos, me-
diante un análisis del estado del arte. También se aborda cómo los recien-
tes desarrollos de técnicas de Deep Learning, específicamente los basados 
en redes neuronales convolucionales, están generando avances en la fron-
tera del conocimiento, que pueden ser orientados hacia nuevas aplicacio-
nes para sistemas robóticos.

2.1.	 Generalidades

La capacidad para que un robot pueda realizar de forma autónoma 
una tarea, con algún grado de toma de decisiones, se basa en la integra-
ción de técnicas tanto de análisis cinemático como de inteligencia artificial, 
en los pasos iniciales e intermedios durante la ejecución de la tarea a llevar 
a cabo. Actualmente, en la industria, la mayor parte de los agentes robóti-
cos cumplen papeles repetitivos. Por ejemplo, en líneas de ensamble (ver 
Figura 2-1), donde existe una pre-programación de la tarea y el robot no 
toma ningún tipo de decisión, lo que los incapacita para acciones como la 
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interacción hombre-máquina. A la par, se suelen utilizar dispositivos de se-
guridad para protección, si una persona se aproxima al robot, deteniendo 
la operación que este ejecuta. La Figura 2-2 ilustra una celda infrarroja de 
seguridad, que si es atravesada detiene la operación del robot.

El soportar las actividades robóticas por medio de algoritmos de in-
teligencia artificial se fundamenta en las técnicas de Machine Learning 
(ML). Estas técnicas permiten dar mayor autonomía a agentes robóticos, 
de cómputo y similares. Entre las múltiples aplicaciones que brindan se en-

1 Tomado de: https://www.motorpasion.com/industria/general-motors-esta-conectando-los-robots-
de-sus-fabricas-a-internet-y-ya-comienza-a-cosechar-beneficios
2 Tomado de: https://www.interempresas.net/Robotica-industrial/Articulos/28378-La-proteccion-se
gura-de-celdas-robotizadas.html

Figura 2-1: Línea de ensamble robótica1.

Figura 2-2: Celda infrarroja de seguridad2.
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cuentran: el reconocimiento de comandos naturales como el habla [Pin-
zón-Arenas et al., 2019], el reconocimiento de escritura [Pinzón-Arenas y 
Jiménez-Moreno, 2020] o de señas [Velandia et al., 2019], la interacción 
hombre-máquina [Pinzón et al., 2017] y la toma de decisiones [Pachon-Sues-
cun et al., 2020].

Dentro de las más recientes técnicas de Machine Learning actualmen-
te se destacan las referentes al Deep Learning [Perconti y Plebe, 2020, 
Koumakis, 2020, Zhang et al., 2020, Azarang y Kehtarnavaz, 2020, Salehi 
et al., 2020]. La Figura 2-3 ilustra la relación entre la inteligencia artificial, el 
Machine Learning y el Deep Learning. El Deep Learning ofrece algoritmos 
en la línea del Machine Learning para implementar sistemas de inteligencia 
artificial, que actualmente están siendo desarrollados y aplicados a dife-
rentes áreas de la ingeniería y las ciencias básicas, con menos de una déca-
da de aplicación. 

El Deep Learning está orientado al entrenamiento multicapa, basado 
en los esquemas de aprendizaje del cerebro humano, permitiendo abarcar 
grandes cantidades de datos, de los cuales se extraen los patrones de inte-
rés. Por ejemplo, los que derivan de imágenes y el reconocimiento propio 

Figura 2-3: Relación entre inteligencia artificial, Machine Learnign (ML) y Deep Learning (DL).
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de objetos dentro de esta. En la Figura 2-4 se puede observar la evolución 
de las técnicas de reconocimiento de patrones por la vía del entrenamien-
to neuronal, se observa que hacia 1979 se iniciaron los desarrollos con 
redes convolucionales, pero solo hasta 1999 se desarrollaron algoritmos 
de entrenamiento profundo basados en Máquinas Restrictivas de Bolzt-
man (RBM, de sus siglas en inglés, Restrictive Boltzman Machine), que en 
2006 derivaron en las primeras técnicas de Deep Learning con las redes de 
creencia profunda (DBN, de sus siglas en inglés, Deep Belief Networks).

La base de un sistema de inteligencia robótica, que permita la inte-
racción hombre-máquina, debe integrar las técnicas propias del recono-
cimiento de patrones, que le faculten para la toma de decisiones y res-
pectivas acciones. Los desarrollos en Deep Learning ofrecen soluciones en 
estos aspectos. Por ejemplo, para el caso de la presente investigación, en 
la búsqueda de la interacción de un robot como asistente, es requerida la 
capacidad de percepción del medio por parte de este, lo cual se logra con 
una cámara como elemento de captación del medio. En función de la infor-
mación que se obtiene con la cámara, el robot debe discriminar qué hay en 
el medio y qué hacer con lo encontrado.

2.2.	 Estado del arte en sistemas de inteligencia robótica

La interacción hombre-máquina con agentes robóticos se ha presen-
tado como un área importante de investigación y desarrollo en las dos últi-
mas décadas [Daugherty y Wilson, 2018]. En este campo, se pueden encon-

Figura 2-4: Línea de tiempo de Deep Learning.
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trar agentes robóticos desempeñando diferentes tareas de la mano con 
algoritmos de Machine Learning. Por ejemplo, en medicina operan como 
asistentes para el tratamiento de patologías [Kiguchi y Hayashi, 2013]; en 
sistemas de automatización, operan en tareas de tipo industrial [Buchner 
et al., 2012]; en sistemas biológicos, permiten emular diferentes ambien-
tes mediante redes neuronales [Kopman et al., 2015]. En [Jiménez-Moreno 
et al., 2012] se entrena un sistema de visión de máquina mediante redes 
neuronales a fin de detectar síntomas de somnolencia o distracción en un 
conductor.

Otra de las técnicas de Machine Learning son los sistemas difusos. Por 
ejemplo, en [Farooq et al., 2012, Guechi et al., 2012, Ansari et al., 2012] estos 
sistemas se utilizan para determinar la trayectoria de navegación de agen-
tes robóticos. En [Moreno y Lopez, 2013] se presenta un sistema híbrido 
de Machine Learning, un algoritmo de clustering difuso que permite esta-
blecer la trayectoria de un móvil bajo un sistema de visión de máquina en 2 
dimensiones. En [Moreno et al., 2013] se presentan varios casos de robots 
asistenciales que emplean sistemas difusos para su operación.

Los principales desarrollos alcanzados en Deep Learning cubren algu-
nos casos puntuales como modelamiento de datos de series temporales 
[Längkvist et al., 2014]. Una aplicación bastante trabajada se encuentra en 
los sistemas de reconocimiento de habla [Cui et al., 2015], para la cual se 
vienen presentando diversos métodos complementarios a las técnicas de 
Deep Learning, como la inclusión del método de gradiente descendiente 
estocástico promedio [You et al., 2014], reduciendo el tiempo de entrena-
miento de la red. Otra mejora de Deep Learning bajo esta aplicación se 
puede encontrar en [Ochiai et al., 2014], en donde un sistema de reconoci-
miento de palabras basado en modelos ocultos de markov (HMM, de sus 
siglas en inglés, Hiden Markov Models) es integrado con una red neuronal 
profunda (DNN, de sus siglas en inglés, Deep Neural Network), confor-
mando un nuevo modelo denominado DNN-HMM, que mejora el reconoci-
miento de la técnica inicial con una reducción de error del 8.4%.
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Los sistemas de reconocimiento de caracteres son otra aplicación im-
portante de las técnicas de Deep Learning, que han originado modelos hí-
bridos. Por ejemplo, en [Ji et al., 2014], los autores presentan una variación 
de las Deep Belief Networks (DBN), a fin de lograr reducir la redundancia 
en el entrenamiento. Esta nueva red denominada SR-DBN (SR, de sus siglas 
en inglés, Sparse Response), es capaz de extraer múltiples características 
a múltiples niveles de abstracción, validándola en caracteres numéricos a 
mano alzada, logrando mejorar significativamente el desempeño de téc-
nicas, como el análisis de componentes principales (PCA, de sus siglas en 
inglés, Principal Component Analysis).

En relación al tratamiento de imágenes, se han comenzado a presen-
tar desarrollos de métodos de identificación de objetos y extracción de las 
características presentes en la imagen . Por ejemplo, en [Chen et al., 2014], 
los autores proponen una variación al entrenamiento de una red neuronal 
convolucional profunda, otro tipo base de Deep Learning, con el objetivo 
de extraer de imágenes satelitales complejas, patrones deseados como lo 
es la detección vehicular, desarrollan una variante híbrida dividiendo los 
datos en varios bloques de diferentes escalas y empleando características 
Haar para ello, presentando así un mejor desempeño que las redes neu-
ronales profundas convencionales y solucionando el problema de escala, 
visto desde el satélite, a la que se pueda encontrar el vehículo en entornos 
como una ciudad.

Otras aplicaciones se centran en la detección facial. Por ejemplo, 
en [Zhang y Zhang, 2014], los autores utilizan Deep Learning para iden-
tificar rostros con cambios de pose, de expresión y de iluminación, to-
mando una base de 117 mil rostros con dichos cambios a fin de reconocer 5 
poses que, con variaciones de ángulo, determinan 15 subcategorias en las 
que encontrar un posible rostro, superando así los problemas de clasifica-
dores convencionales como los presentados en el algoritmo de Viola-Jones 
[Viola y Jones, 2001]. Otras aplicaciones de detección de rostros mediante 
Deep Learning permiten identificar estados de adormecimiento en un con-
ductor [Dwivedi et al., 2014], reconocimiento de expresiones [Song et al., 
2014], y reconocimientos de características de belleza [Gan et al., 2014].
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En [Hou et al., 2015] se presenta un caso particular de entrenamiento 
bajo Deep Learning. En este caso, se busca evaluar la calidad de una ima-
gen, dada la posibilidad de que contenga ruido, variaciones de resolución, 
o pre-procesamiento, clasificándola en 5 grados o niveles de calidad y  bus-
cando emular la forma en que lo haría un humano. Otras aplicaciones de 
interés en procesamiento de imágenes se pueden encontrar en [Wang y 
Morel, 2014, Rioux-Maldague y Giguère, 2014, Wu et al., 2014].

En el campo de la automatización, son pocos los trabajos desarrolla-
dos mediante técnicas de Deep Learning. En [Tamilselvan y Wang, 2013], 
los autores proponen un método de validación de las condiciones de ope-
ración de sistemas eléctricos complejos, como son los motores de avión 
o transformadores eléctricos. Mediante entrenamiento multivariable em-
pleando Deep Learning, se desarrolla un algoritmo orientado a reducir 
costos de mantenimiento y prevención de fallas. En [Shang et al., 2014] se 
presenta un entrenamiento mediante Deep Learning para un sensor indus-
trial capaz de validar múltiples entradas (35 para este caso), que permite 
estimar el punto de destilación por unidad de diesel pesado, mostrando 
las ventajas que presenta sobre redes neuronales simples y máquinas de 
soporte vectorial.

Los desarrollos orientados en Deep Learning han generado comple-
mentos a los métodos convencionales de esta técnica, como lo son las re-
des convolucionales, auto-encoders y las redes de creencia profunda, me-
joras que se han incrementado en los últimos años [Schmidhuber, 2015]. 
Algunas de estas mejoras están orientadas a aumentar la discriminación de 
las características en imágenes, como se presentan en [Zhang et al., 2015a, 
Dong et al., 2016, Guo et al., 2016]. Las variaciones presentadas involucran 
modelos híbridos de Deep Learning con técnicas convencionales como má-
quinas de soporte vectorial [Kim et al., 2015a, Kim et al., 2015b] y aprendiza-
je multi-escala [Bai et al., 2016], donde el desarrollo de nuevas técnicas de 
Deep Learning son emergentes de diversos trabajos de investigación [Liu 
et al., 2015, Zhang et al., 2015b].



36

Arquitecturas de Red Neuro-convolucional para Aplicaciones de Robótica Asistencial

En la Figura 2-5, se puede observar una relación de las aplicaciones 
que recientemente (2016-2017) se han generado con el uso de las redes 
neuronales convolucionales en diversos campos, donde se evidencia que 
el mayor aporte se centra en el reconocimiento de patrones en imágenes.

En el campo de la robótica, igual que en el de la automatización, 
también son pocos los trabajos desarrollados mediante técnicas de Deep 
Learning, donde es de destacar que este es un campo de aplicación en el 
que se requiere trabajo investigativo y desarrollo de técnicas para entre-
namiento robótico. Dentro de los trabajos más destacados se encuentran 
los mencionados a continuación, siendo evidente que las técnicas de Deep 
Learning permiten implementar sistemas de inteligencia computacional en 
robots [Neukart y Moraru, 2014].

Buchner, en [Buchner et al., 2012], propone un método de interacción 
humano-robot en el que, mediante análisis de procesamiento de imáge-
nes, reconoce señales de la mano para identificar las tareas a realizar por 
parte del robot. De las características extraídas, se emplea un sistema de 
Machine Learning empleando una técnica de Deep Learning, que deriva 
características espacio-temporales en una jerarquía en forma de árbol res-
pecto a la imagen de entrada, combinado con técnicas conocidas de cla-
sificación como lo son la máquinas de soporte vectorial y la técnica de los 
K-vecinos más cercanos.

Figura 2-5: Áreas de trabajo en redes neuronales convolucionales 2016-2017.
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Guo, en [Guo et al., 2017], expone una métodologia de agarre de ob-
jetos mediante redes neuronales convolucionales basada en regiones de 
interés (RoI, de sus siglas en inglés, Regions of Interest). Este tipo de red 
tiende a incrementar el tiempo de ejecución, dependiendo de la cantidad 
de contornos que haya en la imagen y el tamaño de ésta, debido al algo-
ritmo de la RoI, por lo que usan una variación de esta red, denominada 
Fast R-CNN que emplea cinco capas convolucionales, no siendo claro si se 
emplea información de profundidad en la imagen para el agarre del objeto.

Wang, en [Wang et al., 2016], presenta el desarrollo de un algoritmo 
de agarre de objetos mediante un manipulador robótico, realizando reco-
nocimiento del agarre mediante una red neuronal convolucional de cinco 
capas de profundidad, basada en el aprendizaje de aspectos como color, 
profundidad y superficie, de objetos etiquetados en bases de datos conoci-
das, no evidenciando qué ocurre con variaciones de distancia de la cámara 
o del objeto.

Lenz, en [Lenz et al., 2015], presenta un desarrollo para agarre de ob-
jetos, orientado a robots manipuladores y basado en Deep Learning e in-
formación de profundidad, determinando superficies rectangulares como 
posibles candidatas a un agarre, empleando métodos de penalización que 
deriven en la optimización de este. Se emplean redes de dos capas de pro-
fundidad, entrenadas según tamaños, posiciones y orientación de agarres 
posibles. La información de profundidad permite conocer los aspectos 
base de contorno, para la generación de la superficie de la que resulta el 
agarre, no evidenciando qué ocurre con variaciones de distancia de la cá-
mara o del objeto. Por esta misma vía, se encuentran otros desarrollos en 
Deep Learning orientados a manipulación robótica basada en la etapa de 
agarre. Dentro los más recientes, se encuentra el presentado en [Kalashni-
kov et al., 2018], donde llegan a evaluar hasta 580 mil intentos de agarre.

Hossain, en [Hossain et al., 2017], propone un algoritmo de Deep Lear-
ning, una red de creencia profunda optimizada mediante algoritmos ge-
néticos, para reconocimiento de objetos, con la que se estima la pose del 
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objeto y se encuentra el agarre adecuado. No se contempla información 
de profundidad y la vista desde la que se procesa la imagen corresponde a 
una distancia fija. Por la misma vía, en el área de la interacción humano-ro-
bot son pocos los desarrollos encontrados. En [Gutiérrez et al., 2017] se 
expone la aplicación de un robot social para interacción en un ambiente 
doméstico, donde se emplea información de profundidad para detectar y 
discriminar objetos, de forma tal que utilizando segmentación semántica 
se le informa a un usuario la posición de los objetos.

Chen, en [Chen et al., 2018], presenta el desarrollo de un algoritmo de 
reconocimiento de emociones, orientado a facultar a un robot social en el 
reconocimiento de dos estados de ánimo de la persona con que interac-
túe. Los estados considerados corresponden a felicidad o enojo. Para ello, 
emplean imágenes estáticas de rostros y basan los algoritmos en Deep 
Sparse Autoencoder Network (DSAN), una técnica de Deep Learning que 
permite aprender áreas como las cejas, los ojos y la boca, y facultan a un 
robot para discriminar hasta en un 89% alguno de estos dos estados.

Dairi, en [Dairi et al., 2018], expone un desarrollo utilizando sistemas 
de inferencia difusa e información de profundidad, orientando su trabajo a 
un sistema de evasión de obstáculos en sistemas de conducción vehicular 
autónoma. Los autores, en función a un mapa de disparidad (diferencia 
de dos imágenes), encuentran la información de profundidad de la escena 
detectando un posible obstáculo, para lo que emplean una máquina de 
Boltzman profunda como algoritmo de Deep Learning. La salida de esta 
es sometida a un sistema difuso para generar las alarmas de evasión. De 
forma tal que, se logra establecer una arquitectura totalmente diferente 
de Deep Learning, a la desarrollada en este trabajo, pero con los mismos 
componentes base de algoritmia. Lo cual ayuda a validar el camino optado 
como medio de solución de las falencias en aplicaciones de Deep Learning.

En conclusión, los trabajos previamente expuestos no contemplan las
consideraciones propias del problema planteado, en el desarrollo y aporte 
del presente trabajo de investigación. Sin embargo, permiten evidenciar un 
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fuerte interés en el desarrollo de algoritmos de inteligencia artificial orien-
tados a robótica, como se expone en [Jiménez-Moreno et al., 2012]-[More-
no et al., 2013] y [Neukart y Moraru, 2014], empleando técnicas como redes 
neuronales convencionales o sistemas difusos. En [Hou et al., 2015]-[Zhang 
et al., 2015b], se evidencia un creciente desarrollo de aplicaciones basadas 
en Deep Learning, donde técnicas como las redes neuronales convolucio-
nales, que están actualmente en la frontera del conocimiento, están sien-
do implementadas y mejoradas. Es así como en [Guo et al., 2017]-[Hossain 
et al., 2017] se evidencia cómo en el campo de la robótica y, muy de cerca, 
de la robótica asistencial se comienzan a emplear estas técnicas para la 
solución de los problemas de interacción humano-máquina.

En [Lu et al., 2017], se encuentra una aproximación al escenario aquí 
planteado, en el cual se emplean imágenes de entrada con objetos que 
presentan variación de tamaño, según la distancia a la que se encuentren 
del foco de la cámara utilizada, que también esta orientado a aplicaciones 
robóticas. Los autores ilustran el caso hacia vehículos autónomos, cuya 
cámara de sensado del medio captura la imagen de otros vehículos, que 
varían su distancia respecto a si se acercan o alejan, lo cual también aplican 
a la identificación de peatones. La diferencia en las soluciones propuestas 
es que los autores realizan un modificación a las capas de convolución para 
que operen bajo regiones de histograma de los objetos encontrados y así 
discriminar su clasificación, pero desde un mismo enfoque visual dinámico, 
haciendo así divergir las metodologías y soluciones desarrolladas.
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Capítulo 3

Identificación de Objetos Mediante
Aprendizaje Profundo

El presente capítulo permite derivar las conclusiones en relación a la 
mejor arquitectura  de  red  para  discriminación  de  herramientas  median-
te  Deep Learning, estableciendo claramente el problema planteado de va-
riación de distancia mediante detección por redes neuronales convolucio-
nales. Para ello se introduce el marco teórico referente a esta técnica, se 
compara su desempeño frente a resultados obtenidos mediante técnicas 
clásicas de redes neuronales y, finalmente, se establece una arquitectura 
de reconocimiento en plataformas multi-herramientas.

3.1. Redes Neuronales de aprendizaje profundo

El Machine Learning, desarrollado por medio de técnicas de inteligen-
cia artificial, implica diferentes niveles de abstracción. Es decir, es depen-
diente del patrón a aprender, como se puede evidenciar en el reconoci-
miento de caracteres a mano alzada que se muestra en la Figura 3-1 [Walid 
y Lasfar, 2014]. Basados en este ejemplo, el entrenamiento para aprendi-
zaje con caracteres uniformes, como los de la parte izquierda de la figura, 
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reduce la complejidad del patrón, lo que va de la mano con la reducción 
general del sistema de reconocimiento de patrones de caracteres numé-
ricos. Sin embargo, un caso general debe implicar las posibles variaciones 
del patrón, como se ilustra en la parte derecha de la Figura 3-1, con los 
caracteres a mano alzada. Un sistema como este requiere un aprendizaje 
más profundo. Es decir, un aprendizaje que permita mayor nivel de abs-
tracción de los patrones, lo que implicará mayor complejidad del sistema 
de reconocimiento de patrones.

Las técnicas de Deep Learning han surgido como solución al problema 
de entrenamiento  multicapa  de  las  redes  neuronales  convencionales.  
Estos problemas se centran en el desvanecimiento del gradiente asociado 
al error y al sobre-ajuste de los pesos de entrenamiento. Dichos problemas 
se evidencian en arquitecturas neuronales convencionales de más de una 
capa oculta, que no logran una mejoría en razón del aprendizaje, o una con-
vergencia a un valor en los pesos de las neuronas de cada capa, generando 
un estancamiento en el aprendizaje y la profundidad de dichas redes.

Schmidhuber, en [Schmidhuber, 2015], hace referencia a lo descrito 
como: “Una arquitectura profunda se refiere al número de niveles de compo-
sición de operaciones no lineales en la función aprendida. Mientras que la ma-
yoría de los algoritmos de aprendizaje actuales corresponden a arquitecturas 
poco profundas (1, 2 o 3 niveles), el cerebro de los mamíferos está organizado 

Figura 3-1: Aplicaciones de redes neuronales convolucionales en reconocimiento de texto a mano alzada.
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en una arquitectura profunda, con una percepción de entrada dada, repre-
sentada en múltiples niveles de abstracción, correspondiendo cada nivel a 
un área diferente de la corteza, de forma similar al de los seres humanos. 
El cerebro también parece procesar información a través de múltiples eta-
pas de transformación y representación. Esto es particularmente claro en el 
sistema visual de primates, con su secuencia de etapas de procesamiento: 
detección de bordes, formas primitivas, y moviéndose hasta formas visuales 
gradualmente más complejas. Inspirados en la profundidad arquitectónica 
del cerebro, los investigadores de redes neuronales habían querido duran-
te décadas entrenar profundas redes neuronales multicapa, pero no hubo 
intentos exitosos antes de 2006, cuando se obtuvieron resultados positivos 
con típicamente dos o tres niveles (es decir, una o dos capas ocultas), pero el 
entrenamiento de redes más profundas produjo consistentemente resulta-
dos más pobres.”

Entre las técnicas más representativas de Deep Learning se encuen-
tran las máquinas restrictivas de Boltzmann, las redes de creencia profun-
da y las redes neuronales convolucionales. Estas últimas han mostrado un 
alto desempeño en el reconocimiento de imágenes, por ejemplo, el recono-
cimiento de caracteres a mano alzada como el presentado en la Figura  3-1 
[Walid y Lasfar, 2014]. Siendo actualmente la técnica más aplicada a diver-
sos campos de las ciencias y la ingeniería, como se evidenció en el estado 
del arte del capítulo anterior.

3.2.	 Redes Neuronales Convolucionales

Como se menciona en [Bengio, 2009], las redes neuronales convolu-
cionales fueron inspiradas por la estructura del sistema visual orientado al 
reconocimiento de objetos.  En  esencia,  una  red  neuronal  convolucional  
busca  transformar gradualmente la imagen, o señal, de entrada, detec-
tando elementos simples inicialmente, hasta aprender detalles específicos 
del objeto de interés. Es decir, basa el aprendizaje de conceptos comple-
jos, mediante la descomposición de los mismos en elementos más simples, 
donde el entrenamiento viene dado por establecer gradualmente un gru-
po de filtros de convolución, los cuales son determinados en función a la 



44

Arquitecturas de Red Neuro-convolucional para Aplicaciones de Robótica Asistencial

base de datos de entrenamiento y la estructura general  de  la  red.  Dicha  
estructura  se  compone  de  una  serie  de  capas consecutivas de convolu-
ción - relu - pooling, o variaciones de las mismas, en una etapa  denominada 
de extracción de características,   seguida  de  otra  de clasificación. Los 
filtros conforman un grupo de mapas de características, donde cada mapa 
se obtiene por la aplicación repetida de la función filtro a través de sub-re-
giones de toda la imagen de entrada, mediante [Gonzalez y Woods, 2008]

donde hj determina el mapa de características de salida, hk el de entrada, 
que para la etapa inicial responderá a la imagen, wk corresponde al núcleo 
de convolución, objeto del aprendizaje, con K= 1 si la imagen está en escala 
de grises o K= 3 si es a color. Cada capa que determina la profundidad de la 
red neuronal convolucional, requiere un hk para determinar un hj, el filtro a 
aprender es operado en cada iteración del entrenamiento sobre la entrada 
hk bajo el concepto de convolución, del cual recibe su nombre [Gonzalez y 
Woods, 2008].

El concepto de convolución en imágenes es asociado a la operación 
con matrices, donde la definición formal está dada por [Palomare set al., 
2016], como se muestra a continuación.

Definición: Dada una matriz Am×n y una matriz C(2N+1)×(2N+1) con
dimensiones (2N+1), (2N+1)< m, n se define la convolución de las 
matrices A y C como una nueva matriz D=A∗C, donde en adelante 
el símbolo * denotará la operación de convolución, definida a partir de

donde los a(i,j) son los elementos de la matriz A y
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F corresponde al tamaño lateral del filtro, típicamente cuadrado. Si p
calculada mediante (3-3) es igual a cero, se reemplaza por 1 para evi-
tar la indeterminación de (3-2). Como ejemplo, la Figura 3-2 ilustra el 
proceso de convolución de un filtro de dimensiones 3×3 con una ma-
triz de entrada hk de dimensiones 7×7. El filtro se desplaza una can-
tidad de celdas determinada, hasta cubrir todas las celdas de la ma-
triz de entrada, donde dicha cantidad se conoce como stride (S).

La Figura 3-3 muestra el resultado de aplicar un filtro de convolución 
conocido para detección de bordes en imágenes, denominado filtro Lapla-
ciano, a manera de ejemplo de cómo lo realiza una red neuronal convolu-
cional durante la etapa de entrenamiento y después de haber obtenido los 
filtros finales. Debido a que el filtro debe operar con cada celda de la matriz 
de entrada, para las celdas laterales se obtendrían valores negativos, por 
lo que se hace un relleno de bordes a la matriz de entrada denominado 
padding (P), puede ser basado en relleno con ceros, unos o repitiendo el 
valor de los bordes.

Figura 3-2: Capa de convolución de una red neuronal convolucional.
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La Figura 3-4 ilustra un ejemplo de la arquitectura de una red neuronal 
convolucional con la estructura base de este tipo de red.

La estructura de una red neuronal convolucional cuenta con una entrada 
basada en imágenes en escala de grises, es decir de una dimensión, o a color 
referidas a sus componentes rojo, verde y azul, con tres dimensiones correspon-
dientemente. Esta imagen inicia siendo el primer hn, es decir h1. Cada hn cuenta 
con un alto (H) y ancho conocido (W) , así como una profundidad Dn que será 
1, si la imagen es a escala de grises, o 3, si es a color. Dentro de los hiper-paráme-
tros de entrenamiento iniciales para la convolución con cada filtro a aprender, 
se requiere determinar el tamaño del filtro (F×F), cantidad de filtros (N f), un 
valor inicial de las posiciones de cada uno de los filtros (aleatorio generalmente), 
el stride y el padding (ver Figura 3-5), que determinan el hj de salida.

Figura 3-3: Operación de convolución en imágenes 

Figura 3-4: Estructura base de una red neuronal convolucional.
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El resultado de la convolución ingresa a la capa de RELU (de sus siglas 
en inglés, Rectified Lineal Unit, o unidad lineal rectificada), la cual es una 
capa de función de activación tipo rampa, que no presenta saturación por 
la parte superior, lo que evita saturación del gradiente y no cambia el ta-
maño del volumen de salida, pero si elimina valores negativos en el filtro.

Para efectuar las operaciones de la capa RELU, se debe determinar el 
número de capas (n) que ha de tener la red. Las dimensiones del volumen 
de salida de la capa de convolución a la de RELU se calculan mediante

y

La Figura 3-6 ilustra los filtros de convolución aprendidos para el ejemplo 
de la Figura 3-4, donde se han empleado dos bancos de filtros con 10 filtros 
cada uno.

Figura 3-5: Hiper-parámetros de convolución.
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La Figura 3-7 ilustra un ejemplo de la salida de la capa RELU para algu-
nos de los filtros empleados en la red de la Figura 3-4. La figura de entrada 
se muestra a la izquierda, dos resultados de convolución en el medio y dos 
resultados de la capa RELU a la derecha.

La capa de pooling opera independiente y se encarga de reducir pro-
gresivamente el tamaño de las capas, mediante los métodos del máximo o 
del promedio, los cuales se establecen mediante

y

Figura 3-6: Resultado del banco de filtros.

Figura 3-7: Resultado de la capa RELU.
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donde hj determina el nuevo mapa de características de esta etapa, basa-
do en el anterior. La Figura 3-8 ilustra un ejemplo de la salida de la capa de 
pooling para uno de los filtros empleados en la red de la Figura 3-4. Para 
este caso se emplea el método del máximo. La tabla 3-1 ilustra el resultado 
matemático de ambos tipos de pooling y evidencia la reducción del tama-
ño del volumen.

Otros hiper-parámetros de entrenamiento son:

	 •	 Tamaño del pooling.
	 •	 Tasa inicial de aprendizaje.
	 •	 Tamaño del Batch, que emplea un número normalizado de
 		  muestras de entrenamiento y prueba.

Tabla 3-1: Ejemplo pooling.

Figura 3-8: Resultado de la capa de pooling.
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	 •	 Dropout, que establece aleatoriamente los elementos de en
		  trada a cero con una probabilidad dada para evitar sobre
		  ajuste de la red.

En [Zeiler y Fergus, 2014] se puede profundizar sobre la operación de 
las redes neuronales convolucionales en aplicaciones de reconocimiento 
de objetos en imágenes.

3.3.	 Comparación entre las redes neuronales convencionales
	 y las convolucionales

Dentro de las desventajas de las redes neuronales convencionales, 
como las backpropagation, que permiten entrenamiento multicapa, la pro-
pagación hacia atrás propia del entrenamiento de este tipo de red hace 
que el error se diluya de forma exponencial desde las últimas capas hasta 
las iniciales, por lo que las primeras capas no tienen tendencia al cambio. A 
su vez, la complejidad de entrenamiento de una red neuronal para traba-
jo con imágenes es elevada. Por ejemplo, para una imagen de entrada de 
128×128, es decir de 16.384 píxeles, se requiere una conexión completa 
entre todas las neuronas de una capa con la siguiente. Es decir, que cada 
píxel de la imagen de entrada se encuentra conectado con cada neurona 
de la primera capa de la red. Lo que implica al menos 16.384 neuronas, 
cada una con 16.384 conexiones y un total de 284’435.456 pesos a entre-
nar solo en la primera capa. Por consiguiente, el incremento de capas en la 
red elevaría demasiado la cantidad de pesos a calcular, por lo que el entre-
namiento se volvería demasiado extenso y demorado.

Para evidenciar más claramente la diferencia entre las redes neuro-
nales convencionales y las convolucionales, se presenta un ejemplo de 
aprendizaje simple, como lo es la identificación de colores, para ello se es-
tablecen las arquitecturas de red de cada tipo y se evalúa el desempeño 
obtenido para cada caso.
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3.3.1.		 Red Neuronal Backpropagation

El primer paso es establecer la base de datos de entrada que se em-
pleará para el entrenamiento. En este caso, se presentan dos esquemas 
para comparación uno con 12 colores y otro con 18. La base de datos de 
entrenamiento se ilustra en Figura 3-9, la cual es entregada a la red como 
un arreglo de 3 filas por M columnas, donde M es la cantidad de imáge-
nes de entrenamiento, y cada fila representa las componentes R, G y B de 
cierto color. Cada columna del arreglo contiene el color promedio de cada 
imagen de entrada, y las 3 filas corresponden a los componentes RGB de 
dicho color [Pramparo y Moreno, 2017].

Debido a la respuesta típica de un red neuronal, en un rango numérico 
derivado de la función de activación empleada, a cada patrón de color se le 
asignó un código binario para clasificarlo, como se muestra en la Tabla 3-2, 
generando así un arreglo objetivo Y , de 5 filas por M columnas, donde el 
5 equivale a la cantidad de bits del código binario.

Figura 3-9: Base de datos de colores utilizados.
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Las dos arquitecturas de red implementadas para cada base de datos 
se ilustra en la Figura 3-10, donde la red de la Figura 3-10(a) está orientada 
a la clasificación de 12 colores, y la red de la Figura 3-10(b) a los 18 colores.

Tabla 3-2: Codificación de los patrones para la clasificación de 12 colores y 18 colores.

COLOR CÓDIGO
Amarillo claro 00000

Amarillo intenso 00001
Azul claro 00010

Azul oscuro 00011
Lila 00100

Morado 00101
Naranja 00110
Negro 00111
Rojo 01000

Rosado claro 01001
Rosado intenso 01010

Vinotinto 01011
Amarillo claro 00000

Amarillo intenso 00001
Azul claro 00010

Azul oscuro 00011
Café oscuro 00100

Gris 00101
Lila 00110

Morado 00111
Naranja 01000
Negro 01001
Rojo 01010

Rosado claro 01011
Rosado intenso 01100

Arena 01101
Verde lima 01110

Verde marino 01111
Verde oscuro 10000

Vinotinto 10001
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En la Tabla 3-3 se presentan los porcentajes de exactitud obtenidos 
para cada red, y en la Figura 3-11 el reconocimiento de ambas redes sobre 
las imágenes de prueba, donde los colores de la gráfica superior corres-
ponden a los colores de entrenamiento, y los colores de la gráfica inferior 
a los de prueba (arriba) y los de clasificación (abajo).

Figura 3-10: Estructura de la red neuronal multicapa backpropagation para clasificar 12
colores (a) y 18 colores (b).

Tabla 3-3: Porcentajes de exactitud para la clasificación de 12 y 18 colores
por medio de una FCNN.

Figura 3-11: Clasificación para los colores de prueba, 12 colores (a) y 18 colores (b).
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Como se puede observar, la red 1 logró reconocer casi todos los co-
lores prueba, obteniendo un 93% de exactitud, pero al aumentar la canti-
dad de patrones a 18, la exactitud se redujo a un 35%, confundiendo casi 
todos los colores, y sin lograr reconocer casi ninguna de las tonalidades 
verdes. La red 2 generalizó los colores amarillo, azul y morado, y los de-
más no logró clasificarlos. Se variaron la cantidad de neuronas por capa 
para tratar de mejorar el reconocimiento, pero los porcentajes de exacti-
tud rondaban el 22%.

3.3.2.		 Red Neuronal Convolucional

Para realizar el reconocimiento de la misma base de datos de colo-
res, se implementó una arquitectura de red neuronal convolucional que se 
muestra en la Figura 3-4, la cual no requiere ser muy profunda, ya que no 
requiere obtener patrones detallados, sino diferentes tonalidades de un 
mismo color, por lo que para el reconocimiento de 12 y 18 categorías, se 
utiliza la misma arquitectura. La Figura 3-12 ilustra los hiper-parámetros de 
entrenamiento empleados.

Figura 3-12: Arquitectura de la CCN empleada.
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Una vez la red ha sido entrenada, se realiza la validación, obteniendo 
los resultados presentados en la Tabla 3-4, en donde se encuentran los por-
centajes de exactitud para la red entrenada con 12 colores como para 18. 
Teniendo en cuenta estos resultados, se puede observar que la arquitectu-
ra entrenada tanto para 12 como para 18 colores mantiene una exactitud 
por encima del 93%, lo cual representa una exactitud muy buena para apli-
caciones de discriminación de color y evidentemente un desempeño supe-
rior a la de red neuronal convencional, sin necesidad de emplear una arqui-
tectura profunda, determinada por más de tres capas de convolución. En 
este ejemplo, la principal dificultad para alcanzar el 100% en la predicción 
son las tonalidades semejantes de algunos colores, por ejemplo, las varia-
ciones de amarillo.

3.4.	 Problema de identificación de una CNN
	 en ambientes 3D

Si bien en el estado del arte se planteó el gran auge de las redes neu-
ronales convolucionales en aplicaciones de reconocimiento de imágenes, 
también se estableció que estas técnicas de Deep Learning siguen en de-
sarrollo. Esto debido a que su aplicación particular para resolver un pro-
blema todavía presenta posibles mejoras, como en el caso de emplear una 
red neuronal convolucional para identificación de objetos en un ambiente 
dinámico, donde la variación de la distancia entre cámara y objeto, hace 
resaltar o reducir características de este.

Para evidenciar la falencia que las arquitecturas neuronales convolu-
cionales presentan en ambientes dinámicos, en los que la cámara se mue-
ve hacia o desde el objeto, se realiza el entrenamiento convencional de 
una red neuronal convolucional, estableciendo inicialmente la mejor ar-
quitectura para la identificación de objetos en una plataforma multi-herra-

Tabla 3-4: Porcentajes de exactitud para la clasificación de 12 y 18 colores por medio de una red neuronal 
convolucional.
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mientas, manteniendo una distancia fija de la cámara al objeto de 60 cm. 
El diseño de la arquitectura de la red neuronal convolucional se realiza por 
medio de iteraciones, en función a las capas de convolución y tamaño de 
sus respectivos filtros, que permiten determinar cuál es la arquitectura fi-
nal que converge en una discriminación clara de dichas herramientas.

Para observar el comportamiento de las diferentes arquitecturas po-
sibles, se establece inicialmente una base de datos con imágenes de cada 
una de las herramientas a identificar, sometidas a rotaciones y traslaciones 
leves. Posteriormente, se determinan arquitecturas posibles realizando 
cambios en el kernel de convolución y la cantidad de estos que se emplea-
rán, como se expone a continuación.

3.4.1. 	 Base de datos a distancia fija

Para determinar la arquitectura final de la red y poder evaluarla, se 
debe disponer de una base de datos de imágenes de entrenamiento y una 
para la validación, al igual que ocurre con las redes neuronales convencio-
nales. La base de datos de entrenamiento permite a la red aprender sobre 
las características de cada clase, mientras que la de validación emplea imá-
genes que permiten evidenciar qué tan bien quedó aprendida cada clase, 
mediante imágenes que no se han presentado a la red. Para este caso, se 
construyó una base de datos de 800 imágenes con diferentes caracterís-
ticas de rotación y traslación, para cada una de las cuatro clases de herra-
mientas a aprender: pinzas, destornillador, bisturí y tijeras, como se apre-
cia en la Figura 3-13.

Figura 3-13: Base de datos de entrenamiento a distancia fija.
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La Tabla 3-5 resume la cantidad de imágenes empleadas para el entre-
namiento y validación del caso, a una distancia fija aproximada de 60 cm.

 

3.4.2. Arquitecturas de red

A fin de determinar la red convolucional final que mejor desempeño 
ofrezca en el aprendizaje de las herramientas establecidas, se implemen-
taron diferentes arquitecturas de redes neuronales convolucionales, basa-
das en combinaciones de la estructura básica mostrada en la Figura 3-4, las 
cuales son evaluadas según la exactitud presentada en la discriminación 
de estas y calculadas mediante una matriz de confusión. Debido a que se 
cuenta con pocas clases y con herramientas aparentemente distinguibles 
unas de las otras, se inició con una arquitectura simple, dicha arquitectura 
se va robusteciendo para observar el desempeño de cada red, tanto por 
la variación de hiper-parámetros, como de la profundidad de la red, según 
se ilustra en la Tabla 3-6. Para lograr determinar una arquitectura se deben 
realizar iteraciones que varíen los parámetros de la red en cuanto a capas, 
tamaño de filtros y cantidad de estos, según se indica en el Apéndice A. 
Para este caso se toman cinco arquitecturas representativas de un grupo 
de 30 combinaciones probadas.

Tabla 3-5: Distribución de la base de datos.
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En cada entrenamiento se lograron observar variaciones en la preci-
sión de cada red, donde el comportamiento esperado es que el error des-
cienda haciendo llegar la precisión al 100%. La Figura 3-14 permite apre-
ciar el resultado del entrenamiento de cada una de las cinco arquitecturas 

Tabla 3-6: Arquitecturas de red evaluadas.
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escogidas, que llegaron a un 100%. Se pueden observar variaciones en la 
forma como aprende la red en cada entrenamiento, mientras más com-
pleja es la arquitectura, más le cuesta a la red aprender (mayor número de 
iteraciones).

La validación de las arquitecturas de las redes entrenadas se realizó 
mediante una matriz de confusión, que permite validar la exactitud de 
cada una en el reconocimiento de las diferentes clases: A, para las pinzas, 
B, para los destornilladores, C, para los bisturíes, y D, para las tijeras. La 
Tabla 3-7 muestra la nomenclatura empleada para la matriz de confusión, 
donde AA representa las imágenes de pinzas que fueron clasificadas como 
tal, AB representa pinzas que fueron clasificadas como destornilladores, 
AC, representa pinzas que fueron clasificadas como bisturíes, AD repre-
senta pinzas que fueron clasificadas como tijeras, y de manera similar se 
procede con las otras opciones de nomenclatura. A partir de la matriz de 
confusión, se puede calcular la exactitud (E) de la clasificación de la cada 
red, que está dada mediante el cálculo de los falsos y los verdaderos posi-
tivos (VP) de las clases pinzas, destornillador, bisturí y tijeras. En la Tabla 
3-7, los verdaderos positivos están representados mediante AA, BB, CC 
y DD, mientras que las demás representaciones están relacionadas con 
falsos positivos. Para lo que la exactitud puede ser calculada como

Figura 3-14: Precisión de entrenamiento.
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donde ∑V P     =AA+BB+CC+DD, representa el total de verdaderos 
positivos y Tt representa el total de clasificaciones hechas, calculado como

Los resultados obtenidos en el entrenamiento de las cinco arquitec-
turas, realizando diferentes variaciones que incluyen dropout y bacht-nor-
malization, se ilustran en la Tabla 3-8, incluyendo el máximo error obtenido 
(MáxErr), que se encuentra entre un 15% a un 66%.

Se logra evidenciar que una arquitectura simple, como Arq 1, no ge-
nera un buen aprendizaje para el caso particular de discriminación de las 
cuatro categorías de herramientas deseadas, ni siquiera con la variación 
de hiper-parámetros realizadas en las arquitecturas 2 y 3. Dada la multipli-

Tabla 3-8: Mejores resultados por arquitectura para distancia fija.

Tabla 3-7: Matriz de confusión para la prueba a distancia fija de 60 cm.
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cidad de características presentadas por las cuatro clases a aprender, los 
requerimientos de la arquitectura de red se evidencian más exigentes, en 
comparación con el aprendizaje de múltiples clases de estructuras simples.

Un aumento en la profundidad de la red convolucional mejora signifi-
cativamente el aprendizaje de características. Al igual que, el aumentar la 
cantidad de filtros en la capa de entrada. Lo que permite concluir que, la 
arquitectura 5 es la mejor opción para el caso de aprendizaje de herramien-
tas con cuatro categorías. Finalmente, la arquitectura a emplear tiene la 
estructura que se muestra en la Figura 3-15.

De esta forma, en función a las curvas de eficiencia de aprendizaje 
y matriz de confusión, se da cumplimiento al objetivo específico número 
uno, en donde se logra determinar una arquitectura eficiente de Deep 
Learning para la mejor discriminación de un grupo de cuatro herramientas.

Figura 3-15: Arquitectura final establecida.
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3.4.3. 	 Validación en profundidad

Para determinar el desempeño de la red convolucional entrenada en 
la discriminación de las categorías aprendidas, pero con variaciones de pro-
fundidad, se establece una base de datos de prueba según se relaciona en 
la Tabla 3-9. En la Figura 3-16 se ilustra una muestra de la misma. El tamaño 
del volumen de entrada se evidencia significante en relación a la pixelación 
que recibe la imagen al ingresar a la red. Se observa que un redimensio-
namiento de 64×64 píxeles pierde las características relevantes de cada 
categoría (Figura 3-17), mientras que uno de 128×128 permite mantener 
las características suficientes, compensando el mayor número de opera-
ciones que debe generar la red y que implican aumento en el costo com-
putacional. De forma tal que, el desempeño obtenido para una imagen de 
128×128 píxeles se tabula por distancia, según el acierto en la categoría 
correspondiente, como se muestra en la Tabla 3-10. Se puede evidenciar 
que, a medida que se acerca el objeto, o se aleja demasiado, se pierde pre-
cisión en la identificación, obteniendo una precisión promedio en el peor 
caso de 43.4% a una distancia de 20 cm, lo que implica una degradación de 
más del 50% del desempeño de la red.

Tabla 3-9: Base de datos de profundidad.
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Tabla 3-10: Acierto en profundidad.

Figura 3-16: Base de datos en función a la distancia.

Figura 3-17: Redimensionamiento de entrada.
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Como validación adicional se emplea la arquitectura de la Figura 3-15. 
Pero, con la base de datos tomada a 40 cm de distancia entre objeto y 
cámara, donde el peor caso se presenta para una distancia de 80 cm, con 
una precisión promedio del 38,91%. Como era de esperarse, al alejarse la 
cámara, desapareen características. Lo que implica la pérdida del recono-
cimiento y, de ahí, la baja tasa de precisión. Con la nueva base de datos, 
los filtros cambian y esto genera las variaciones en la respuesta de la red, 
incluso empleando la misma arquitectura.

Al validar las activaciones de la red a 40 cm con un objeto determina-
do (tijeras para este caso), se presentan cerca de un 20% más de activa-
ciones, que al alejar el objeto a 60 cm. Esto se evidencia en la Figura 3-18, 
donde se observa que a 40 cm mejora el reconocimiento.

Una alternativa de solución consiste en ampliar la base de datos de 
la red inicialmente entrenada, incluyendo las imágenes de los objetos a 
las diferentes distancias evaluadas (800 imágenes). Bajo este esquema, la 
Figura 3-19 ilustra el desempeño en el entrenamiento de la red basada en 

Figura 3-18: Activaciones a 40 y 60 cm.
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la arquitectura escogida en la Sección 3.4.2, con la base de datos conjunta. 
Se observa que a la red le cuestan muchas más iteraciones el aprender las 
características, a la par que el desempeño baja al 79,71% y le toma casi el 
doble de tiempo de entrenamiento con la nueva base de datos. Esto con-
lleva a una degradación general en la identificación de objetos bajo este as-
pecto. Lo cual era de esperarse, debido a  que las características de apren-
dizaje ahora divergen con las nuevas imágenes. En la Tabla 3-11, se observa 
la matriz de confusión obtenida, donde se aprecia que, con un aumento en 
la base de datos, las categorías se confunden entre ellas.

Figura 3-19: Entrenamiento de la red

Tabla 3-11: Matriz de confusión para la prueba a distancia variable.
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Principalmente, en la clase bisturí, donde 56 imágenes de otras cate-
gorías fueron interpretadas como esta, ya que por estar a diferentes dis-
tancias exhiben diferentes características y las más alejadas se aprecian 
como un objeto más uniforme, como lo es la estructura morfológica del 
bisturí.

Las pruebas de profundidad evidencian que la red neuronal convo-
lucional, que tenía el mejor comportamiento para clasificar herramientas 
a distancia fija, no tiene un buen comportamiento cuando la distancia de 
toma de la imagen varía. Sin importar si se amplía la base de datos de en-
trenamiento, incluyendo imágenes tomadas a diferentes distancias. En el 
siguiente capítulo se abordará una solución a este problema.
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Arquitecturas Neuronales
Convolucionales Propuestas

Frente al problema expuesto en relación a la clasificación de los obje-
tos al presentarse una variación espacial de captura de la imagen, se plan-
tea como solución una arquitectura de red convolucional paralela especia-
lizada en las diferentes perspectivas del objeto a reconocer, en función a la 
profundidad en que se encuentre. Es decir, se realiza el entrenamiento de 
un conjunto de redes neuronales, donde cada una aprenderá a reconocer 
el objeto desde una distancia particular y se irá activando cada red a medi-
da que se acerca o aleja del objeto, como se ilustra en Figura 4-1. Esta so-
lución se propone en función al trabajo expuesto en [Ciregan et al., 2012], 
donde se presenta una arquitectura paralela basada en redes neuronales 
convolucionales, como una mejora al aprendizaje de características en el 
reconocimiento del mismo objeto, la cual presenta ventajas frente a la red 
neuronal convolucional convencional, pero en este trabajo la red no esta 
orientada a operar en profundidad y emplea la misma base da datos para 
todas las redes.
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El Algoritmo 2 expone los pasos establecidos para solucionar el pro-
blema de variación de características ante la clasificación de la red neuro-
nal convolucional cuando varia la distancia de captura de la imagen.

La entrada al tipo de red propuesto requiere de la imagen a color más 
un canal de distancia, este canal se puede establecer mediante la infor-
mación suministrada por una cámara de captura RGB-D, como ejemplo se 
presenta la Blaster Senz3D Creative, cuyo rango de visión 3D se encuentra 
de los 0.2 a los 1.5 metros, la cual se puede apreciar en la Figura 4-2.

Figura 4-1: Arquitectura propuesta con ponderación aritmética.
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Se presentan dos opciones para el entrenamiento de la multi-red. La 
primera consiste en un pre-entrenamiento convolucional que, mediante 
transferencia de aprendizaje, permita emplear la red obtenida en la Sec-
ción 3.4.2 como arquitectura base ya conocida, donde se entrenen cuatro 
de estas redes, cada una con una base datos de profundidad diferente. La 
segunda opción consiste en determinar cada una de las cuatro arquitectu-
ras de las redes convolucionales de forma independiente, para ser entre-
nadas con bases de datos respectivas.

4.1.	 Arquitectura basada en Transferencia de Aprendizaje

A partir de la red neuronal convolucional para discriminación de herra-
mientas obtenida en la sección 3.4.2, que permite la discriminación de las 
cuatro categorías y cuya eficiencia fue del 93,8% en la clasificación a una 
distancia fija, se emplea su arquitectura como base para realizar la tarea 
de transferencia de aprendizaje [Pan y Yang, 2010], donde para cada una 
de las cuatro redes re-entrenadas se utiliza la base de datos de imágenes 
ilustrada en la Tabla 4-1.

Figura 4-2: Sensor de captura RGB-D
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La diferencia en la cantidad de imágenes empleadas por cada red, se-
gún la profundidad, está determinada por la cantidad de características 
que deben aprender los filtros en el entrenamiento. Mientras más cerca, 
o más lejos, está la imagen, más variaciones se encuentran respecto a la 
red inicial. Una imagen cerca  al  objeto  permite  una  mejor  identificación,  
pues  las  características exhibidas son fácilmente extraíbles; requiriendo 
un menor uso de recursos computacionales, lo que implica menor tiem-
po en las tareas de entrenamiento y clasificación. En este caso, el tiempo 
promedio de entrenamiento es de 470 segundos y de 0.612 segundos en 
la clasificación. La Figura 4-3 ilustra el desempeño en el entrenamiento de 
las nuevas redes a 20, 40 y 80 cm, para 60 cm se presentó en el capítulo 
anterior.

Tabla 4-1: Base de imágenes en Profundidad.

Figura 4-3: Desempeño por transferencia de aprendizaje para las redes a diferentes distancias: 20 cm
(arriba), 40 cm (en el medio) y 80 cm (abajo).
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En relación a la eficiencia en la clasificación se obtuvo un 86,25%, 
83,49% y un 82,37% para cada red, según se observa en las Tablas 4-2 - 
4-4, a partir de las matrices de confusión respectivas. Se puede observar 
cómo a distancias más cercanas al objeto la clasificación mejora y que las 
características son más fácilmente reconocidas, como es el caso de las ti-
jeras, que presentan muy pocos falsos  positivos  a  distancias  cortas,  que  
aumentan  considerablemente a distancias mayores, siendo confundidas 
principalmente con el bisturí.

Tabla 4-2: Matriz de confusión para la Red 1 - 20 cm. Eficiencia = 86.25%.

Tabla 4-3: Matriz de confusión para la Red 2 - 40 cm. Eficiencia = 83.49%.

Tabla 4-4: Matriz de confusión para la Red 4 - 80 cm. Eficiencia = 82.37%.
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4.2. Arquitectura  basada  en  Aprendizaje Individual

Para la segunda opción, se implementaron cuatro arquitecturas dife-
rentes para su entrenamiento individual, para la red orientada a recono-
cimiento de media distancia (60 cm) se mantiene la misma estructura de 
la Figura 3-15. Para las otras  se  emplearon  tres  arquitecturas  diferentes  
cuyas  características son mostradas en la Tabla 4-5.

Las diferencias en las arquitecturas se dan por la complejidad del apren-
dizaje que debe manejar cada una de las redes, acorde a la cantidad de in-
formación en la imagen. Mientras mayor sea la distancia de la captura de la 
imagen al objeto, mayor información ingresa a la red, la cual debe discrimi-

Tabla 4-5: Arquitecturas de red basadas en profundidad.
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nar claramente el objeto del resto. Por ejemplo, gran parte corresponderá 
al fondo, el cual deberá ser discriminado del aprendizaje respecto al objeto.

Cada una de las arquitecturas implementadas fue entrenada con la 
base de datos de entrada que relaciona la Tabla 4-1, donde el 80% de los da-
tos data se usan para el entrenamiento y el 20% restante para validación. 
La Figura 4-4 ilustra el resultado del comportamiento en el entrenamiento 
de las arquitecturas 1, 2 y 4, respectivamente. Se puede observar que la 
arquitectura 1 presentó la curva de aprendizaje mas rápida. Pero, a su vez, 
asimila parte del fondo como del objeto en sí. Mientras que la arquitec-
tura 4 reconoce patrones más complejos del mapa de características del 
objeto, lo cual explica el retardo de aprendizaje evidenciado en esta red, 
discriminando claramente el objeto del fondo. De igual forma, se evidencia 
que la complejidad de la arquitectura y el objeto de aprendizaje respecto a 
la imagen, afectan el tiempo de entrenamiento. Para este caso, la arquitec-
tura1 requiere la mitad de épocas de entrenamiento que la arquitectura 4.

4.3.	 Arquitectura  final  de  aprendizaje  en profundidad

Para determinar el desempeño de cada arquitectura, se evalúa la capa-
cidad de predicción por escenario planteado, en función a la profundidad 

Figura 4-4: Desempeño por aprendizaje individual para las redes a diferentes distancias: 20cm (arriba), 40 
cm (en el medio) y 80 cm (abajo).
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de la captura de la imagen, caso A por transferencia de aprendizaje y caso 
B por diseño individual de cada red convolucional. En la Tabla 4-6 se puede 
apreciar la tasa de error obtenida que, de forma general, permite concluir 
que el caso B permite el mejor reconocimiento a profundidad dinámica.

Los resultados mostrados en la Tabla 4-6 son obtenidos de la valida-
ción individual de cada red. Debido a que la funcionalidad del desarrollo 
está orientada a cambios dinámicos de la profundidad, donde la clasifica-
ción se debe realizar en tiempo real, se emplea una arquitectura final con-
junta con una capa de salida de ponderación basada en la profundidad de 
captura en la imagen de entrada.

La capa de ponderación adicional genera una suma ponderada de las 
respuestas individuales de cada salida de las redes de la arquitectura final, 
en función a la profundidad

donde Pc corresponde a la ponderación que determina la categoría de 
salida, m representa el número de redes que posee la arquitectura final, 
la distancia normalizada (d) se toma como la distancia en centímetros de 
la cámara (do) sobre la distancia mínima que distingue (20 cm), es decir
d = do/20. La función de saturación empleada, que se observa en la capa 
de salida en la Figura 4-1, se hace necesaria debido a que el exponente en 
(4-1) tiende a infinito al activarse la red correspondiente. Pc es obtenida 
mediante el grupo de iteraciones ilustradas en la Tabla 4-7. Dado que se 
requiere que, a las distancias de entrenamiento, la red correspondiente 
sea la predominante, se busca que su salida (On) posea una relación ex-
ponencial alta que demarque el resultado de la sumatoria. Para este caso, 

Tabla 4-6: Error de clasificación.



75

Arquitecturas Neuronales Convolucionales Propuestas

la relación inversa 1/(n −  d) genera un valor infinito en la dupla red-distan-
cia, a diferencia de las combinaciones previas validadas. El parámetro SAT,
denota dicho valor infinito al cual se le adiciona la saturación a un valor 
de 0 a 10, eliminando los valores negativos. Para el caso de las relaciones
1/(n +  1 − d) y 1/(d +  1 − n), la condición en el denominador de cero (DIV 0) 
elimina la ecuación como opción. Finalmente, la salida total de la red, Of, 
corresponde al argumento máximo de Pc.

En la Figura 4-5 se puede apreciar el resultado de la clasificación de 
la arquitectura neuro-convolucional diseñada, basada en profundidad. Se 
aprecia que las imágenes empleadas son reconocidas satisfactoriamente 
cuando la cámara es acercada hacia los objetos de interés. Para este caso 
el error se reduce al 8,31%. Note que, para cada columna de la Figura 4-5 
se tiene la relación de captura ilustrada en la Tabla 4-8. Se observa que para 
los valores de distancia del entrenamiento la salida se satura, mientras que 
para valores intermedios es ponderada por las activaciones respectivas. 
Por ejemplo, para una distancia de 50 cm, la ponderación resultante es 
4.74, resultando de las activaciones de las arquitecturas 2 y 3 que, sin llegar 
a saturarse, da por encima del valor de las otras clases.

Tabla 4-7: Iteración para el establecimiento de Pc.
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4.4.	 Arquitectura híbrida difusa de aprendizaje en profundidad

Una alternativa a la solución planteada es cambiar la capa final de pon-
deración por una capa de inferencia difusa, como se ilustra en la Figura 
4-6. Obteniendo así una arquitectura híbrida en la que hay que diseñar el 
sistema de inferencia difusa que reemplace a (4-1).

Figura 4-5: Respuesta de la red neuronal convolucional basada en profundidad.

Figura 4-6: Arquitectura híbrida CNN-Difusa.

Tabla 4-8: Resultados ponderación para bisturí en profundidad.
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El primer aspecto a tener en cuenta es que se debe fusificar la salida 
de las redes paralelas, para su interpretación en el sistema de inferencia 
difusa. Cada una delas salidas de las redes, por categoría a reconocer, varía 
entre 0 y 1, ya que estas se componen de una función de activación en la 
etapa de clasificación que emplea una relación no lineal tipo tangencial, lo 
que orienta a usar funciones de pertenencia de tipo Gaussiano en los con-
juntos difusos. A la salida de cada red (S_Ctg), se multiplica por 33.5 y se 
le ajusta un offset, a fin de cubrir un universo de discurso de 0 a 100, entre 
las cuatro categorías, como se ilustra en la Tabla 4-9.

La Figura 4-7 ilustra el sistema de inferencia difusa, donde se observan 
las entradas del sistema, relacionadas a cada una de las cuatro redes em-
pleadas, y la entrada  de  distancia,  las  cuales  determinarán  finalmente  
la  categoría  de clasificación que se relacionan mediante la base de reglas 
que gobernará la respuesta del sistema.

La base de reglas relaciona los diferentes conjuntos difusos de entra-
da, que corresponden a las salidas fusificadas de las redes convolucionales 

Figura 4-7: Sistema de inferencia Difusa para ponderación.

Tabla 4-9: Fusificación categorías.
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entrenadas a cada distancia particular (20 cm, 40 cm, 60 cm y 80 cm). 
Cada red determina su categoría de salida entre pinzas, destornillador, bis-
turí y tijeras, las cuales entran a ser las etiquetas lingüísticas de cada con-
junto, como se observa en la Figura 4-8. Los conjuntos conforman el uni-
verso de discurso a operar, la figura a su vez permite apreciar gráficamente 
las relaciones de fusificación de la Tabla 4-9.

La información de distancia, obtenida del sensor RGB-D, es ingresa-
da al conjunto difuso de profundidad, de forma tal que los universos de 
discurso no cubren más allá del rango de interés. Es decir, los 20 cm de 
rango mínimo y los 80 cm de entrenamiento máximo, como se ilustra en 
la Figura 4-9.

Figura 4-8: Funciones de pertenencia de entrada.

Figura 4-9: Funciones de pertenencia de profundidad.
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El conjunto difuso de salida determinará finalmente la categoría de 
selección. Por lo tanto, se establece en el mismo rango y relación que los 
conjuntos difusos de entrada, dado que tiene la misma estructura respec-
to a la clasificación de las categorías. Pero en este caso, independiente de 
la profundidad, como se ilustra en la Figura 4-10.

En la Figura 4-11 se presenta una muestra de la base de reglas em-
pleada. Es de resaltar que el problema se plantea con cuatro categorías, 
en cinco conjuntos difusos, lo que resulta en 45=1024 combinaciones de 
reglas por determinar.

Para ilustrar el proceso de fusificación empleado, se expone el ejemplo 
de clasificación que se muestra en la Figura 4-12, donde la entrada es la 
imagen de un destornillador a una distancia de 40 cm. La red 2, entrenada 
a 40 cm, evidencia un 94,99% de acierto en la clasificación y las demás 
redes decrementan dicho acierto, como era de esperarse. En la Figura 
4-12 se ilustran los resultados de las cuatro redes por cada categoría dada: 

Figura 4-10: Funciones de pertenencia de salida.

Figura 4-11: Base de reglas.
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pinza (label1), destornillador (label2), bisturí (label3) y tijeras
(label4). La fusificación de estos resultados se ilustra en la Tabla 4-10, 
donde μ (x) corresponde al grado de pertenencia.

Figura 4-12: Respuesta del sistema sin ponderación.

Tabla 4-10: Resultados capa difusa.
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Figura 4-13: Salida difusa ponderada.

La Figura 4-13 permite observar gráficamente el resultado de la fusifi-
cación sobre el conjunto difuso para la red 2 (Arq 2 - 40 cm), evidenciando 
que corresponde a un destornillador. A su vez se pueden observar la fusifi-
cación de las otras tres redes.

La salida del sistema de inferencia difusa se calcula empleando el al-
goritmo Mamdani, el cual implica los pasos descritos en el Algoritmo 3 [Ba-
buska, 2001].

En este caso, se tienen los conjuntos difusos de entrada, como ante-
cedente difuso:

20cm = {0,0181/32;    0,7874/26,37;    0,1844/39,67;    0,0101/67,33},
40cm = {0,002/33,43;   0,9499/31,82;    0,0259/34,36;    0,0222/67,74},
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60cm = {0,119/29,51;    0,8434/28,25;    0,0355/34,68;    0,002/67,06},
80cm = {0,0077/33,24;  0,8171/27,37;   0,1448/38,35;  0,0304/68,01},

que operaran con los conjuntos difusos relacionales:

	 pinzas	 =		 {1/0;    0, 03/35;    0, 001/67;    0/100},
	 destornillador	 =		 {0/0;    1/35;    0, 01/67;    0/100},
	 bisturí	 =		 {0/0;    0, 001/35;    1/67;    0, 01/100},
	 tijeras	 =		 {0/0;    0/35;    0, 01/67;    1/100}.

Se tienen los conjuntos difusos de salida, como consecuente difuso:

	 pinzas	 =		 {1/0;    0, 03/35;    0, 001/67;   0/100},
	 destornillador	 =		 {0/0;    1/35;    0, 01/67;   0/100},
	 bisturí	 =		 {0/0;    0, 001/35;    1/67;    0, 01/100},
	 tijeras	 =		 {0/0;    0/35;    0, 01/67;    1/100}.

A continuación, se ilustra el computo del algoritmo Mamdani, donde 
se requiere obtener cada βn y Bn hasta β16 y B16 de las cuatro redes y 
operarlos posteriormente con el de profundidad (βDepth).

β1= max({0,0181; 0,7874; 0,1844; 0,0101}^{1; 0,03; 0,001; 0})=0,03
β2= max({0,0181; 0,7874; 0,1844; 0,0101}^{0; 1; 0,01; 0})=0,7874
β3= max({0,0181; 0,7874; 0,1844; 0,0101}^{0; 0,001; 1; 0,01})=0,1844
β4= max({0,0181; 0,7874; 0,1844; 0,0101}^{0; 0; 0,01; 1})=0,01
β5= max({0,002; 0,9499; 0,0259; 0,0222}^{1; 0,03; 0,001; 0})=0,002
β6= max({0,002; 0,9499; 0,0259; 0,0222}^{0; 1; 0,01; 0})=0,9499
β7= max({0,002; 0,9499; 0,0259; 0,0222}^{0; 0,001; 1; 0,01})=0,0259
β8= max({0,002; 0,9499; 0,0259; 0,0222}^{0; 0; 0,01; 1})=0,0222
β9= max({0,119; 0,8434; 0,0355; 0,002}^{1; 0,03; 0,001; 0})=0,119
β10= max({0,119; 0,8434; 0,0355; 0,002}^{0; 1; 0,01; 0})=0,8434
β11= max({0,119; 0,8434; 0,0355; 0,002}^{0; 0,001; 1; 0,01})=0,0355
β12= max({0,119; 0,8434; 0,0355; 0,002}^{0; 0; 0,01; 1})=0,0355
β13= max({0,0077; 0,8171; 0,1448; 0,0304}^{1; 0,03; 0,001; 0})=0,03
β14= max({0,0077; 0,8171; 0,1448; 0,0304}^{0; 1; 0,01; 0})=0,8171
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β15= max({0,0077; 0,8171; 0,1448; 0,0304}^{0; 0,001; 1; 0,01})=0,1448
β16= max({0,0077; 0,8171; 0,1448; 0,0304}^{0; 0; 0,01; 1})=0,1448
B1= 0,1844^{1; 0,03; 0,001; 0} ={0,1884; 0,03; 0,001; 0}
B2= 0,7874^{0; 1; 0.01; 0} ={0; 0,7874;0,01;0}
B3= 0,1844^{0; 0,001; 1; 0,01} ={0; 0,001; 0,1844; 0,01}
B4= 0,01^{0; 0; 0,01; 1} ={0; 0; 0,01; 0,01}
B5= 0,002^{1; 0,03; 0,001; 0} ={0,002; 0,002; 0,001; 0}
B6= 0,9499^{0; 1; 0,01; 0} ={0; 0,9499;0,01;0}
B7= 0,0259^{0; 0,001; 1; 0,01} ={0; 0,001; 0,0259; 0,01}
B8= 0,0222^{0; 0; 0,01; 1} ={0; 0; 0,01; 0,0222}
B9= 0,119^{1; 0,03; 0,001; 0} ={0,119; 0,03; 0,001; 0}
B10= 0,8434^{0; 1; 0,01; 0} ={0; 0,8434;0,01;0}
B11= 0,0355^{0; 0,001; 1; 0,01} ={0; 0,001; 0,0355; 0,01}
B12= 0,0355^{0; 0; 0,01; 1} ={0; 0; 0,01; 0,0355}
B13= 0,03^{1; 0,03; 0.001; 0} ={0,03; 0,03; 0,001; 0}
B14= 0,8171^{0; 1; 0,01; 0} ={0; 0,8171;0,01;0}
B15= 0,1448^{0; 0,001; 1; 0,01} ={0; 0,001; 0,1448; 0,01}
B16= 0,1448^{0; 0; 0,01; 1} ={0; 0; 0,01; 0,1448}
B={0,1884; 0,9499;0,1844;0,1448}
βDepth= max({0; 1; 0; 0}^{0; 1; 0; 0}) =1
BDepth= 1^{0; 1; 0; 0} ={0;1;0; 0}
Btotal={0,1884; 1;0,1844;0,1448}

A este resultado se le aplica un método de fusificación. Por ejemplo, 
mediante centro de gravedad, como sigue

El valor y' corresponde al centro de gravedad del conjunto difuso de 
salida Btotal y para un valor de 39,3 tiene un grado de pertenencia del 
92,34% en la categoría de destornillador (ver Figura 4-13). De forma tal, 
que la diferencia entre la red difusa y el obtener el promedio aritmético 
de las salidas de la categoría destornillador entre cada red, que da un 
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84,94% de acierto en la clasificación, muestra un 7,39% más acertada a la 
red difusa. Mientras que el resultado obtenido mediante (4-1), al ser una 
distancia de entrenamiento, satura la salida dando 100% en la clasificación.

La Tabla 4-11 relaciona los resultados obtenidos para ambos casos de 
ponderación propuestos, donde Pc corresponde a la respuesta de (4-1) y 
Fs a la respuesta del sistema difuso. Es evidente que, para los casos de 
distancia de entrenamiento, la salida Pc satura la respuesta, presentando 
mejor desempeño que la salida Fs. Sin embargo, para casos intermedios 
de distancia, las respuestas son más similares, siendo levemente mejor la 
salida difusa en algunos casos.

Es de aclarar que, aunque una red híbrida convolucional difusa, como 
la diseñada, es una mezcla de técnicas de Machine Learning, que soluciona 
el problema del ambiente dinámico de reconocimiento planteado, la red 
por saturación mediante (4-1) es más simple y genérica, dado que el núme-
ro de redes paralelas puede cambiar fácilmente, mientras que en el caso 
difuso se debe rediseñar el sistema de inferencia para ingresar un nuevo 
caso de profundidad.

4.5.	 Validación mediante DAG-CNN

Para validar el desempeño del sistema propuesto se implementa una 
red tipo DAG-CNN, que corresponde a un arquitectura paralela variante de 
las redes neuronales convolucionales (CNN). Pero que, a diferencia de la 

Tabla 4-11: Comparación capas de ponderación.
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arquitectura propuesta, no permite la inclusión de un canal de profundi-
dad como el empleado y, a su vez, trabaja con una base de datos genera-
lizada a todas las redes. Dentro del estado del arte, este tipo de red es el 
método de validación más cercano al propuesto.

Como se ha mencionado, en las redes neuronales convolucionales 
orientadas al reconocimiento de múltiples grupos de clases en imágenes, 
se necesita una mayor profundidad en la red para conservar una alta efi-
ciencia en la clasificación. Para compensar esto, se diseñaron las estructu-
ras de tipo Directed Acyclic Graph (DAG) Network [Thulasiraman y Swamy, 
1992]. Este tipo de arquitectura permite tener una mayor cantidad de ca-
pas de aprendizaje trabajando en ramas paralelas, por lo que no la requiere 
hacer mas profunda, mejorando el tiempo de procesamiento e incremen-
tando la cantidad de características que la red puede aprender, como se 
expone en [Ciregan et al., 2012].

Al tener la posibilidad de personalizar los parámetros de cada rama, 
estos se pueden determinar de forma que aprendan distintas característi-
cas de los objetos a clasificar. Dicho comportamiento, es similar a la pro-
puesta de red de arquitectura paralela expuesta, donde cada rama apren-
de las características a una profundidad determinada. Por la similitud de 
las arquitecturas se diseña una DAG-CNN para evaluar su comportamiento 
con la base de datos completa. Es decir, se incluye cada categoría en los 
diferentes niveles de profundidad que se establecieron.

Se implementó una primera DAG-CNN con la arquitectura de las redes 
mostradas en la Tabla 4-5, como se aprecia en la Figura 4-14. Esta primera 
arquitectura obtuvo una eficiencia en la clasificación del 81,3%. Para me-
jorar el desempeño de esta red, se realizan 10 iteraciones, variando los pa-
rámetros de cada rama, obteniendo un máximo de 86,64% de eficiencia 
en la clasificación, donde la DAG-CNN obtenida se ilustra en la Figura 4-15.
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Figura 4-14: DAG-CNN de prueba inicial.

Figura 4-15: DAG-CNN de prueba final.



87

Arquitecturas Neuronales Convolucionales Propuestas

Aunque un desempeño cercano al 87% se puede considerar suficiente 
en la tarea de clasificación, más aún frente al 69,71% alcanzado con la red 
neuronal convolucional de la Sección 3.4.2, que también incluye la base de 
datos completa. Se puede evidenciar que la red DAG-CNN adquiere mayor 
capacidad de discriminación frente a los problemas de variación de distan-
cia y que una arquitectura paralela aporta un camino a solucionar dicho 
problema. Sin embargo, la arquitectura propuesta en este capítulo, con 
inclusión del canal de distancia, evidencia un mejor desempeño en un am-
biente dinámico, reduciendo significativamente los falsos positivos.

La Figura 4-16 permite evidenciar las activaciones del mismo objeto 
a una distancia de 40 cm, con las redes cercanas (20 y 60 cm), donde se 
aprecia que a 40 cm se generan más y mejores activaciones que permiten 
un claro reconocimiento, el cual se degrada al acercar o alejar el objeto. 

Figura 4-16: Activación 20, 40 y 60 cm.
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Capítulo 5

Robótica Asistente Mediante
Aprendizaje Profundo

Con el fin de entrenar un agente robótico como asistente, en una pla-
taforma multi-herramientas, se deben considerar aspectos adicionales con 
relación a la identificación de la herramienta en un ambiente dinámico. 
Dentro de estos aspectos está la planeación de trayectorias que realizará 
el robot para ir de un punto en el espacio a otro. Dentro de este desplaza-
miento se puede presentar la necesidad de una posible evasión de obstá-
culos y, por ejemplo, al llegar a la herramienta se debe determinar cómo se 
realizará su agarre, acción que a su vez puede requerir de un algoritmo de 
control para compensación de fuerza, por las variaciones de peso presente 
entre herramientas y que afectan al ser tomadas por el efector final del 
brazo robótico.

A continuación se exponen algunos algoritmos que permiten dar una 
solución tentativa a tales aspectos.

5.1.	 Planeación de trayectoria

El desplazamiento de un robot está determinado por las relaciones 
geométricas de su estructura, las cuales determinan su cinemática básica, 
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y con un algoritmo, que le permita establecer por qué puntos en el espacio 
moverse. A continuación, se establece un posible esquema que permite a 
un brazo robótico asistencial, en función a su cinemática, desplazarse de 
un punto a otro, lo que se denomina planeación de trayectoria.

5.1.1.		  Análisis matemático

El análisis que permite conocer la posición del efector final del brazo 
robótico respecto a las coordenadas de la base (o del mundo), se conoce 
como análisis cinemático. De forma general, relacionar las coordenadas 
propias del robot respecto a cada uno de sus ángulos y longitudes, con la 
ubicación espacial (x, y, z) del efector final, se denomina cinemática direc-
ta. Esta se requiere para poder determinar, desde una posición inicial, la 
forma en que cada articulación del brazo se debe mover para lleva al efec-
tor a un punto deseado en el espacio.

El análisis cinemático se realiza empleando el método de Devanit-Har-
tenberg (D-H), que relaciona el espacio de articulaciones de un brazo
robótico con el espacio cartesiano [Weber, 2010], como una función
f : J(θi) → R3, donde θi corresponde al ángulo de rotación de cada articu-
lación. Se tienen n grados de libertad del brazo (GDL), que para el caso del 
brazo empleado es de 5 GDL, el quinto grado corresponde al efector final, 
que no cambia la distancia alcanzada, por lo cual no hace parte de análisis. 
Cada grado de libertad, genera un sistema coordenado ortogonal. De for-
ma tal que, para relacionar el sistema ortogonal anterior (Si −1) con el sis-
tema actual (Si ), se utilizan transformaciones homogéneas que indican los 
rotaciones y traslaciones que se deben efectuar sobre el sistema Si −1 para 
llegar a la posición y orientación del sistema Si . El método D-H propone 
que a partir de cuatro transformaciones básicas, asociadas a traslaciones 
y rotaciones sobre y alrededor de los ejes x    y   z, se puede relacionar la 
posición y orientación de dos sistemas consecutivos, previa selección ade-
cuada de los sistemas coordenados ortogonales [Barrientos et al., 2007], 
como se muestra a continuación
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i−1Ai = Rotz,θi Trasz,di Trasx,ai Rotz,αi,

donde i−1Ai representa la posición y orientación del sistema Si en coor-
denadas del sistema Si −1, θi y αi representan rotaciones al rededor de los 
ejes x y z (para que el sistema Si −1 quede con la misma orientación que 
Si), respectivamente; mientras que di y ai representan traslaciones sobre 
los ejes x y z (para que el sistema Si −1 quede en la posición de Si), respec-
tivamente. Note que la matriz de transformación genérica entre dos mar-
cos de referencia se puede escribir como [Abdel-Malek y Othman, 1999]

Por lo que, para relacionar cada uno de los sistemas de referencia con la 
base, se utiliza [Abdel-Malek y Othman, 1999]

Dado que 0An es una matriz de transformación homogénea, tiene la estructura

donde R(θ) es una matriz de rotación, función de los ángulos de la arti-
culaciones, θ = [θ1 θ2 θ3 θ4 θ5], que indica la orientación del efector en el 
sistema coordenado de la base y (x(θ), y(θ), z(θ)), también función de los 
ángulos de las articulaciones, representan la posición en R3 del efector.
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Tabla 5-1: Parámetros D-H para el robot de la Figura 5-1.

Figura 5-1: Robot utilizado. Izquierda: foto. Centro: notación. Derecha: esquemático del robot
con la definición de sistemas coordenados por articulación y distancias entre ellos.

La Figura 5-1 ilustra el brazo empleado y los parámetros de D-H asocia-
dos, los cuales se obtienen siguiendo el procedimiento en [Barrientos et 
al., 2007], y se condensan en la Tabla 5-1.

Del análisis cinemático del brazo se puede validar el desplazamiento del 
mismo en una trayectoria determinada en R3, como el brazo robótico corres-
ponde a una estructura antropomórfica rotacional, sus movimientos están 
delimitados por las esferas de radio variable, según la longitud de cada articu-
lación. Dado esto, se emplea la siguiente función de costo que se ajusta a las 
posibles trayectorias del brazo, como
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donde (xf, yf, zf) representan las coordenadas del punto deseado, a las que 
se desea que el manipulador se dirija, las cuales son obtenidas a partir a par-
tir del resultado de la clasificación obtenida por la arquitectura de red CNN, 
que retorna la posición de la herramienta a agarrar en el espacio de trabajo.

Dado que el brazo utilizado existe físicamente, los ángulos θi tienen res-
tricciones físicas, que se muestran en la Tabla 5-2. Note que el quinto grado 
corresponde al efector que se encarga solamente del agarre. De igual forma, 
se tiene la restricción adicional del plano paralelo al eje de la base del robot
y ≤ k, que representa a la persona u obstáculo dinámico que ingresa al espacio 
de trabajo del robot. Por seguridad, se establece que el brazo robótico no podrá 
llegar hasta el plano sino hasta una distancia máxima de dicho plano, para el caso 
se toman 10 cm. Por lo que la ecuación del plano asignada como restricción es 
y ≤ p − 10, donde p representa la distancia del plano al eje de la base del robot.

La Figura 5-2 ilustra la simulación del ambiente de trabajo, donde se apre-
cia el brazo robótico en la posición inicial y desde la punta del efector resaltada 
en negro se presenta el desplazamiento rotacional y traslacional de este, has-
ta aproximarse al plano representativo del obstáculo y alejarse nuevamente 
(véase la trayectoria del brazo en rojo y el punto final en azul).

Figura 5-2: Simulación restricción de movimiento robótico.

Tabla 5-2: Restricciones angulares.
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5.1.2.		 Algoritmos de planeación de trayectorias

Determinadas las condiciones de operación del brazo, se establece la for-
ma general de un problema de optimización, que permite encontrar los ángu-
los que cada articulación debe desplazarse para alcanzar la posición deseada, 
o un punto cercano a esta,

Dado que el tipo de problema a resolver es de naturaleza no lineal, 
se emplea como algoritmo de optimización el método de penalización ex-
terior, resuelto por sus variantes de valor absoluto y penalización cuadrá-
tica. Este método requiere un paso intermedio de búsqueda lineal, que 
para el caso se realiza mediante el método de gradiente conjugado, el 
cual a su vez requiere determinar el paso o nivel de cambio en la dirección 
de descenso, que conducirá al objetivo. Para este cálculo se emplea el 
método de búsqueda lineal Backtracking (Armijo’s rule [Boyd y Vanden-
berghe, 2004]).

Con el fin de resolver el problema de optimización planteado en (5-5), 
es necesario replantearlo, de forma que se incluya en la función de coste 
las restricciones, con el fin de manejar un problema de optimización sin 
restricciones

donde Jr es la función de coste modificada que incluye la función de coste 
inicial, considerada en (5-5), rt es la penalización de cada restricción de (5-
5), j es el índice que barre las restricciones de (5-5) que son seis (cinco aso-
ciadas a los límites físicos de las articulaciones y una al plano que represen-
ta el obstáculo y la distancia de seguridad), las funciones gj  (·) representan 
las restricciones anteriores, que se consideran elevadas a la potencia β.
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El algoritmo de penalización exterior implementado corresponde al 
Algoritmo 4.
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La Figura 5-3 ilustra el diagrama de flujo del proceso completo del es-
tablecimiento de la trayectoria.

5.1.3. Análisis de Resultados

Las pruebas realizadas respecto a los diferentes métodos planteados 
permiten establecer criterios de desempeño de cada una, mediante su si-
mulación en Matlab®. Para poder realizar un análisis comparativo, se esta-
blece un punto inicial para la posición del robot, este punto corresponde al 

Figura 5-3: Diagrama de flujo algoritmo de optimización.



97

Robótica Asistente Mediante Aprendizaje Profundo

punto de partida respecto a cada trayectoria a realizar y el cual es tomado 
como posición de reposo con coordenadas x(0 ) = (0, 12, 76). Como punto 
objetivo, se escoge una posición aleatoria dentro del espacio de trabajo 
del robot. Para este caso, se toma x(tf) = (50, 22, 89), y se establece de 
forma inicial una distancia del operario, o posible obstáculo, de 100 cm. En 
este caso, la restricción fuerte que corresponde a la cercanía del operario 
al robot no se activa, por lo que se espera que el resultado final corres-
ponda al objetivo o punto final (x(tf) ). A continuación, se muestran los 
resultados para cada método implementado.

Método valor absoluto, la Tabla 5-3 expone los resultados realizando 
la búsqueda descendente mediante el método de gradiente y calculando 
el paso por el algoritmo de Armijo con α = 0,5 y βa = 0,1. Se llegó a los si-
guientes ángulos por articulación: θ1= 0,12π, θ2=1,2π, θ3=0,69π, θ4=−0,8π, 
θ5=0,5π, con un valor de penalización final r = 78125.

Método valor absoluto, la Tabla 5-4 expone los resultados realizando 
la búsqueda descendente mediante el método de gradiente y calculando 
el paso por el algoritmo de Armijo con α = 0,3 y βa = 0,8. Se llegó a los si-
guientes ángulos por articulación: θ1=0,12π, θ2=1,2π, θ3=0,69π, θ4=−0,8π, 
θ5=0,5π, con un valor de penalización final r = 125.

Tabla 5-3: Resultados método valor absoluto α = 0,5 y βa = 0,1.
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Método cuadrático, la Tabla 5-5 expone los resultados realizando la 
búsqueda descendente mediante el método de gradiente y calculando el 
paso por el algoritmo de Armijo con α = 0,5 y βa = 0,1. Se llegó a los si-
guientes ángulos por articulación: θ1=0,128π, θ2=1,2π, θ3=0,69π, θ4=−0,8π, 
θ5=0,51π, con un valor de penalización final r = 390625.

Método cuadrático, la Tabla 5-6 expone los resultados realizando la 
búsqueda descendente mediante el método de gradiente y calculando el 
paso por el algoritmo de Armijo con α = 0,3 y βa = 0,8. Se llegó a los siguien-
tes ángulos por articulación: θ1 = 0, 129π, θ2 = 1, 25π, θ3 = 0, 69π, θ4 = −0, 
82π, θ5 = 0, 51π, con un valor de penalización final r = 125.

Tabla 5-4: Resultados método valor absoluto α = 0,3 y βa = 0,8.

Tabla 5-5: Resultados método cuadrático α = 0,5 y βa = 0,1.

Tabla 5-6: Resultados método cuadrático α = 0,3 y βa = 0,8.
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Por medio de los resultados expuestos, se puede observar la inciden-
cia de los parámetros de paso del algoritmo de Armijo en el establecimien-
to de la trayectoria, donde es preferible iniciar con un valor bajo de α, e 
incrementarlo más rápidamente por medio de un βa mayor. Se aprecia que 
para cada caso, tanto de penalización de valor absoluto como cuadrática, 
empleando el cálculo de paso por medio del algoritmo de Armijo, se re-
quieren más iteraciones, implicando mayor costo computacional, siendo 
más larga la trayectoria y por consiguiente empleando mayor tiempo en 
lograr alcanzar el punto deseado. Como es de esperarse las variaciones 
en los ángulos finales son mínimas. Al activar la restricción de distancia del 
operario ubicándolo a 10 cm, se obtienen los resultados presentados a 
continuación.

Método cuadrático, la Tabla 5-7 expone los resultados realizando la 
búsqueda descendente mediante el método de gradiente y calculando 
el paso por el algoritmo de Armijo con α=0,5 y βa=0,1. Donde θ1=0,12π, 
θ2=1,2π, θ3=0,69π, θ4=−0,8π, θ5=0,5π con un valor de penalización final
r = 78125.

Método cuadrático, la Tabla 5-8 expone los resultados realizando la 
búsqueda descendente mediante el método de gradiente y calculando el 
paso por el algoritmo de Armijo con α=0, 3 y βa=0,8. Donde para cada 

Tabla 5-7: Resultados método cuadrático α=0,5 y βa=0,1.
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caso la variación de los ángulos no es significativa, obteniendo: θ1=0,09π, 
θ2=1,18π, θ3=0,67π, θ4=-0,83π, θ5=0,5π.

Se aprecia que en este caso la coordenada en x2 = y no se logra alcan-
zar, tal y como se esperaba. De igual forma, ambos métodos tardan más 
en converger. Nuevamente, resultando mejor el método de cuadrático con 
un valor α inicial pequeño.

De forma general, los resultados obtenidos permiten establecer que 
los métodos de optimización aplicados logran alcanzar el punto objetivo, 
en el espacio de trabajo del robot, cuando este no es obstruido por alguna 
circunstancia. De forma tal que, al emplear el método de gradiente se ase-
gura una trayectoria mínima, dado el seguimiento de esta directamente en 
la dirección del punto objetivo y, donde a su vez, el método de penaliza-
ción cuadrática ofrece el mejor desempeño para el caso general.

5.2.	 Evasión de colisiones para asistencia robótica

Un método alternativo que permite realizar el desplazamiento de ro-
bot asistencial, teniendo en cuenta posibles colisiones, se plantea median-
te la red neuronal convolucional desarrollada en la Sección 3.4.2, la cual 
opera en función a la distancia de reconocimiento del objeto. Para este 

Tabla 5-8: Resultados método cuadrático α=0,3 y βa=0,8.
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Figura 5-4: Entorno del algoritmo anticolisión.

caso, se emplea el modelo cinemático inverso, debido a que el algoritmo 
de desplazamiento cambia en función de puntos en el espacio y no como 
en el caso anterior que el método de optimización entregaba directamen-
te los ángulos deseados. Se emplea una cámara que visualiza el área de 
interacción, en la cual se identifica la herramienta y la mano del usuario, 
mediante el entrenamiento de redes neuronales convolucionales indepen-
dientes. Para el caso considerado, se mantiene la red paralela, desarrollada 
para las herramientas, y se diseña la de la dirección la mano. En la Figura 
5-4, se puede apreciar un esquema del entorno de la aplicación, la herra-
mienta, el brazo robótico y la mano del usuario, todo en una misma área.

La Figura 5-5 ilustra un ejemplo de la base de datos empleada para la 
clasificación de la mano. Las redes empleadas solo tienen dos clases: mano 
o no mano. Para la clase mano, se emplean 100 imágenes de esta, tanto 
palma arriba como palma abajo, por cada uno de los cuatro niveles de pro-
fundidad. Para la clase no mano, se emplean 1000 imágenes que implican 
las herramientas y el fondo de la aplicación. Se obtienen las cuatro redes 
que se ilustran en la Tabla 5-9.
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A continuación, se exponen las características del brazo robótico asis-
tencial de prueba empleado, el cual se encarga de recoger la herramienta 
y entregarla en la mano del usuario, evitando colisionar con este. Los mo-
vimientos de desplazamiento se basan en la ubicación espacial de la mano, 
ubicación obtenida mediante el reconocimiento por redes neuronales con-
volucionales en función al centro del recuadro de detección y de la ubica-

Tabla 5-9: Arquitecturas de red para la mano.

Figura 5-5: Base de datos en profundidad para la mano.
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Figura 5-6: Cinemática inversa. Izquierda: Vista superior. Derecha: Vista lateral.

ción de la herramienta por la misma técnica. De forma tal que, se establece 
un vector de orientación del movimiento de la mano, que pueda obstruir 
una trayectoria directa de desplazamiento del robot hacia la herramienta. 
En función a este vector, se determina el desplazamiento del brazo. Para lo 
cual, se requiere implementar la cinemática inversa del mismo. En la Figura 
5-6, se puede observar el modelo geométrico que permite inferir las ecua-
ciones mediante las cuales se logra establecer los movimientos angulares 
del robot [Useche et. al, 2018].

Con la vista superior de Figura 5-6, se obtiene la componente en x' del 
punto P del efector final, como sigue

Por lo que, el ángulo de la articulación 1 se puede expresar como

Mediante la vista frontal de Figura 5-6, se obtiene la longitud alcanzada por 
el efector desde la segunda articulación, d, como
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Conociendo d y las longitudes de los enlaces 2 y 3, L2 y L3, y aplicando el 
Teorema del coseno al triángulo con dichos vértices, tenemos

Sabiendo que

podemos encontrar el ángulo de la tercera articulación como

donde el signo positivo o negativo se seleccionará dependiendo dónde se de-
sea la configuración codo abajo (θ3 positivo) o codo arriba (θ3 negativo).

De la vista frontal de la Figura 5-6, también podemos obtener el ángulo

Aplicando nuevamente el Teorema del coseno sobre el triángulo con lados 
d, L2 y L3, pero ahora respecto a β, tenemos

Por lo que
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Tabla 5-10: Arquitectura CNN para detección de la mano.

Figura 5-7: Resultado de la clasificación.

Como se mencionó, se requiere implementar una nueva arquitectura 
neuronal del tipo convolucional, orientada a la detección de la mano del 
usuario. Para el caso, se presenta el entrenamiento para la detección de la 
mano abierta del usuario. La Tabla 5-10 resume la arquitectura final emplea-
da para la red neuronal convolucional.

La Figura 5-7 muestra el resultado de reconocimiento de la herramien-
ta y de la mano, en función de las cuales se localiza su centroide para ser 
empleado como punto de referencia espacial en un entorno virtual de si-
mulación mediante Matlab®.
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Para generar el desplazamiento del brazo robótico en función al pun-
to objetivo (que es la herramienta) y buscando no colisionar con la mano 
de un usuario dentro del área de trabajo, se establecen como puntos ca-
racterísticos dos centros de referencia: el correspondiente a la herramien-
ta, el cual es estático, y el correspondiente a la mano del usuario, el cual es 
dinámico. De esta forma, se implementa un vector direccional del despla-
zamiento de la mano en función de la herramienta (ver Figura 5-8). Dado 
que el brazo robótico por defecto busca un desplazamiento espacial direc-
to, mediante su cinemática desde un punto del espacio a otro, se genera 
una desviación de trayectoria en torno a la diferencia entre la distancia 
mano-herramienta.

El algoritmo que evita la colisión opera en relación a determinar la 
posición de la herramienta, como punto de referencia. En función a este 
punto, se desplaza el efector final del brazo robot, con el objetivo de alcan-
zarlo en trayectoria directa.

Al detectar una mano, evalúa su vector direccional y lo suma al despla-
zamiento en el plano paralelo al de soporte de la herramienta. Desde este 
nuevo punto, se recalcula la ubicación del punto de referencia y se genera 
el nuevo desplazamiento por trayectoria directa hacia la herramienta.

Figura 5-8: Vector direccional de la mano.
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La Figura 5-9 ilustra el entorno de simulación. La línea roja representa 
la trayectoria del efector del brazo robótico, la herramienta es simulada 
por el rectángulo azul, mientras que la mano del usuario es representada 
por el rectángulo rojo. Las ubicaciones de la mano y la herramienta son 
obtenidas desde la detección de cada una mediante las redes neuronales 
convolucionales. Como se mencionó, la mano se vuelve un obstáculo diná-
mico, cuya simulación varía la posición del plano que representa la mano, 
en función al centroide de la detección. La Figura 5-9 presenta el caso ideal, 
en el que el brazo robótico se mueve hacia la herramienta estando la mano 
estática sin obstruir el camino del brazo. El desplazamiento del brazo se 
realiza en función a la cinemática inversa descrita, buscando alcanzar el 
punto P, correspondiente a la referencia del centroide de la herramienta.

La Figura 5-10 ilustra la simulación de una trayectoria, que evidencia el 
comportamiento del algoritmo para evitar la colisión. Al ser detectada la 
mano, a la izquierda del punto de referencia de la herramienta, la distancia 
de desplazamiento será incremental, si queda sobre la herramienta se de-
tiene el movimiento del brazo y si es detectada a la derecha, el movimiento 
será decremental. El esquema simula un desplazamiento constante de la 
mano en z y en x, variando desde y = −100 hasta y = 100, punto en el que 
el brazo se mueve desde el mismo punto de inicio en y hacia la izquierda, 
tratando de buscar un punto de bajada hacia la herramienta, hasta que la 

Figura 5-9: Simulación desplazamiento sin obstrucción de usuario.
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mano se detiene, baja y no encuentra ángulos que le permitan agarrar el 
objeto desde la posición final estática de la mano, se desplaza nuevamente 
a la izquierda y al no poder bajar sube a la distancia inicial en z para finalizar 
su desplazamiento.

Al realizar diferentes simulaciones respecto a la incursión de la mano 
del usuario en el área de trabajo del robot, se observa la acción de evasión 
respecto al acercamiento del brazo robótico. La Tabla 5-11 ilustra el com-
portamiento de la variación de distancia frente al acercamiento del efector 
del robot. Se evidencia que el algoritmo trata de llevar el efector final has-
ta la herramienta (ítem 1 a 3), pero al encontrar un obstáculo (ítem 4 y 5) 
conserva la distancia en z y se desplaza lateralmente (en x) buscando una 
nueva perspectiva que le permita recalcular la trayectoria.

Tabla 5-11: Evasión de colisión.

Figura 5-10: Simulación desplazamiento para evasión de usuario.
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La Figura 5-11 ilustra un caso en el que la mano está estática junto a 
la herramienta. El brazo robótico inicia un desplazamiento pronunciado 
en el eje z, hasta ver la mano. En ese punto, gira hacia la herramienta en 
trayectoria recta con leves desplazamientos en z, para acercarse al pun-
to objetivo. Nuevamente, supera la mano y ve la opción de bajar hasta la 
herramienta con un desplazamiento pronunciado en el eje z. Dado que al 
desplazarse en z hacia la herramienta viola la zona o espacio de seguridad, 
el algoritmo no genera más movimiento.

5.3.	 Algoritmo de agarre de herramientas

Un paso importante en la tarea de un robot asistencial, para platafor-
mas multi-herramientas, es la toma de la herramienta, una vez identificada 
y ubicado el efector sobre la misma. Para esto, se requiere el desarrollo de 
un algoritmo específico que permita lograr la tarea. Para dar una solución 
a esta tarea, se desarrolla un algoritmo que permite establecer la posición 
de agarre de la herramienta, mediante el procesamiento de imagen de la 
escena del objeto discriminado, por diferencia del fondo y de tonalidad. 
Discriminado el objeto, se buscan los puntos de agarre más cercanos a su 
centroide, para obtener las posiciones x y y del punto de agarre y la orien-
tación con que la pinza debe tomar el objeto [Moreno et al., 2018].

Figura 5-11: Trayectoria de evasión.
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En el Algoritmo 5, se muestra la estructura básica de los pasos segui-
dos para el agarre de herramientas desarrollado. Desde el momento en 
que se ingresa la imagen, hasta la salida de las coordenadas y la orientación 
del agarre para un efector tipo pinza, donde se establecen 19 pasos de 
ejecución del algoritmo.

De forma general, los pasos 1 al 3, del Algoritmo 5, son los encargados 
de la inicialización del programa. En ellos, se realiza la captura de la imagen 
y la segmentación del objeto mediante un proceso de umbralización. En 
los pasos 4 al 7, se recortan secciones de la imagen de entrada, en diferen-
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tes posiciones y orientaciones, para buscar posibles puntos de agarre en 
cada uno de ellos. En los pasos 8 al 12, se evalúa cada uno de los recortes 
y se guardan únicamente aquellos que cumplan con las condiciones de los 
pasos 8 al 11. Los pasos 13 y 14 se ejecutan únicamente cuando no se en-
cuentra ningún agarre en toda la imagen. En los pasos 15 al 17, se evalúan 
todos los agarres guardados en el paso 12, para escoger uno de ellos como 
el punto de agarre ganador. Finalmente, en los pasos 18 y 19, se mues-
tran los resultados obtenidos. A continuación, se explicará detalladamente 
cada uno de los pasos del Algoritmo 5.

5.3.1.		 Inicialización del programa

En el paso 1, se inicializan las variables propias del algoritmo como 
las dimensiones de la pinza: apertura y ancho de las puntas. Se determina 
cada cuántos grados se debe rotar la imagen para evaluar posibles puntos 
de agarre en diferentes orientaciones. Se establece el grosor máximo y 
mínimo de la sección de agarre del objeto, y la cantidad de píxeles libres 
que debe haber entre la zona de agarre y las puntas. Se deben inicializar en 
el algoritmo las dimensiones de ancho y apertura de la pinza, con el fin de 
conocer el espacio que ocupa el efector dentro del área de trabajo y evitar 
choques entre los elementos cuando la pinza proceda a realizar el agarre, y 
se usan igualmente para definir la apertura máxima del efector al momen-
to de seleccionar el punto de agarre.

Se deben determinar las dimensiones de la pinza en relación a sus tres 
características principales: largo, ancho y centro. La dimensión A repre-
senta la apertura de la pinza más el grosor de las puntas, la dimensión B 
representa el ancho del efector, y el punto C representa el centro de la 
pinza que corresponde a las posiciones Xc y Yc que determinan la posi-
ción final del agarre.

En el paso 2, se realiza la captura de la imagen del área de trabajo, la 
cuál es redimensionada a 220×220 píxeles. En el paso 3, se lleva a cabo el 
proceso de umbralización y binarización de la imagen, donde se realiza una 
conversión de espacio de color de la imagen original, en RGB, a escala de 
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grises y, finalmente, a blanco y negro. De tal manera que, el fondo de la 
imagen queda completamente negro y solo el objeto sobre este, queda de 
color blanco (imHB), como se observa en la Figura 5-12a. Luego, se toma 
la imagen binarizada y se intercambia la intensidad de sus píxeles para ob-
tener una segunda imagen (imHN), con un fondo completamente blanco 
y solo el objeto de color negro, como se aprecia en la Figura 5-12b. El um-
bral se define en el algoritmo como 0.9, debido a que todas las imágenes 
que se probaron son de fondo blanco. Por lo que, no fue necesario consi-
derar cambios de luz estableciendo un ambiente de pruebas controlado.

5.3.2. 	 Recorrido de la imagen

Sobre cada una de las imágenes binarizadas (variables imHN e 
imHB), se desplazó un recuadro con las dimensiones A y B inicializadas 
en el paso 1, donde su posición inicial se encuentra en la esquina superior 
izquierda de la imagen, que coincide con la esquina superior izquierda del 
recuadro, y se desplaza hacia abajo una posición equivalente a 10 píxeles 
en busca de posibles agarres. Este recuadro representa el área que ocupa 
la pinza sobre el espacio cuando busca el objeto de trabajo. De tal manera 
que, a partir de dicho recuadro se puede estimar dónde hay un posible 
agarre y dónde la pinza no puede sujetar el objeto finalmente. En cada 
posición del recuadro, se recorta la sección de la imagen que se encuen-
tra debajo de él, tanto para la imagen imHN (donde el recorte se guarda 
en imcHN), como para imHB (donde el recorte se guarda en imcHB). 
Cada recorte se evalúa de manera independiente, pasándolo por los condi-
cionales de los pasos 8 al 11 del Algoritmo 5, para determinar si es un posi-

Figura 5-12: Imagen binarizada.
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ble agarre o no. Cuando llega al paso 12 del algoritmo 5, o no cumple con 
alguno de los condicionales de los pasos 8 al 11, se desplaza el recuadro 
hacia abajo una posición para evaluar el siguiente recorte.

La Figura 5-13 muestra un posible agarre para la imagen imHN, don-
de se guarda la sección de imagen que se recorta del recuadro en la Figura 
5-13a. En la Sección de 5.3.3, se explica detalladamente cada uno de los 
condicionales de los pasos 8 al 11 del Algoritmo 5, para determinar un po-
sible punto de agarre.

Una vez finaliza el recorrido descendente y se alcanza la parte inferior 
de la imagen, el recuadro se ubica en su posición inicial, pero 10 píxeles 
desplazado hacia la derecha y vuelve a desplazarse hacia abajo para sacar 
nuevos recortes y, así sucesivamente, aumentando el desplazamiento ho-
rizontal cada 10 píxeles, hasta llegar a la esquina inferior derecha de la ima-
gen, con todos los posibles agarres almacenados. La cantidad de píxeles 
que se desplaza el recuadro se seleccionó como 10 para acelerar el pro-
ceso de búsqueda de agarre, considerando las dimensiones de la imagen 
de entrada, y evitar guardar posibles agarres muy parecidos entre sí que 
aumenten la cantidad de datos a almacenar. Cuando el recuadro que re-
corre la imagen termina el recorrido, es decir su esquina inferior derecha 
coincide con la esquina inferior derecha de la imagen binarizada, vuelve a 
los pasos 4 y 5 del Algoritmo 5 para generar una rotación en la imagen y, de 
esta manera, volver a los pasos 6 y 7 para capturar nuevos recortes, pero 
con la imagen rotada un determinado ángulo. Este proceso permite buscar 
nuevos agarres con orientaciones diferentes de la pinza y se repite hasta 

Figura 5-13: Recorte imcHN con un posible agarre.
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que la imagen se rota un total de 180o, momento en que se le ha dado la 
vuelta completa y, por lo tanto, se han evaluado todos los posibles agarres 
que pueden haber sobre el objeto. Continuar con la rotación solo hará que 
se repitan los agarres encontrados pero en posiciones inversas, como se 
observa en la Figura 5-14.

Se obtienen los recortes (imcHN e imcHB) de ambas imágenes 
binarizadas, con el fin de aplicar todos los criterios de selección que se 
encuentran en los pasos 8 al 11. Para aplicar estos criterios, es necesario 
conocer aspectos de la imagen como la cantidad de píxeles blancos a los 
bordes superior e inferior del recorte imcHN (marcados en la Figura 5-14), 
y la cantidad de píxeles blancos en el recorte imcHB, para conocer el an-
cho del objeto capturado dentro del recorte.

5.3.3. 	 Selección de posibles agarres

La selección de todos los posibles agarres, que pueden realizarse 
sobre el objeto, obedece a una serie de condiciones planteadas en los pa-
sos 8 al 11 del Algoritmo 5. Cada condicional se aplica a cada uno de los re-
cortes (imcHB e imcHN) obtenidos en la Sección 5.3.2 y solo el recorte 
que supera todos los condicionales se considera como un posible agarre y 
se almacena en una variable que contiene cada posible agarre. Si el recorte 
no cumple con cualquiera de los condicionales se descarta y se vuelve a 
desplazar el recuadro para evaluar el agarre en una nueva posición.

Figura 5-14: Posible agarre (a). Posible agarre invertido (b).
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Figura 5-15: Imagen binarizada imHB (a). Imagen binarizada imHB rotada (b). Recorte
imcHB como posible agarre (c).

A. Bordes libres para el agarre

El paso 8 plantea el primer condicional, el cuál busca únicamente 
aquellos recortes donde no haya posibilidad de choque entre las puntas 
de la pinza y el objeto. Para ello, realiza una sumatoria de la cantidad de 
píxeles blancos en la primera y última fila del recorte imcHB. Si la suma 
es igual a cero, significa que todos los píxeles son de color negro y, por lo 
tanto, corresponden al fondo de la imagen. Pero si la suma da diferente 
de cero, entonces existe algún píxel blanco que corresponde al objeto, e 
implica un posible choque entre la pinza y el elemento, razón por la que se 
elimina el recorte como posible agarre [Murillo et al., 2018].

La suma de todos los píxeles de la primera y última fila del recorte
imcHB con fondo negro, donde ReDim son las dimensiones de la ima-
gen y S1 el resultado de la suma, se calcula mediante

La primera y última fila del recorte imcHB se encuentran marcadas 
con un recuadro, que se observa en la Figura 5-15c, y corresponde a las po-
siciones que ocuparían las puntas de la pinza en el espacio de trabajo. En la 
Figura 5-15a, se encuentra la imagen de entrada binarizada con fondo negro 
imHB. En la Figura 5-15b, se encuentra la imagen imHB rotada con el re-
cuadro que recorre la imagen ubicada sobre un posible agarre. Finalmente, 
en la Figura 5-15c, se encuentra el posible agarre capturado por el recuadro.
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B. Limite de grosor de la sección de agarre

El paso 9 del diagrama del Algoritmo 5 plantea el siguiente condicio-
nal, que se aplica únicamente si el recorte supera el paso 8. En este condi-
cional, se evalúa el grosor del elemento donde se busca el agarre, con el 
fin evitar que se considere como posible agarre una imagen que contenga 
solo píxeles libres o ruido, o una superficie muy pequeña de agarre donde 
se corra el riesgo de que se caiga el objeto, o donde el objeto sea tan grue-
so que el ajuste entre la pinza y la sección del objeto sea demasiado estre-
cho. Para determinar qué recorte supera esta condición, se suman todos 
los píxeles de imcHB mediante el cálculo de la variable S2

Posteriormente, se halla la cantidad total de píxeles en el recorte, a 
partir de la multiplicación de sus dimensiones, es decir Pr = AB. Acto se-
guido, se halla el máximo de píxeles blancos MaxP, mediante

donde Pmáx representa un porcentaje máximo de blanco. Así mismo, se 
calcula en mínimo número de píxeles blancos, a partir de

donde Pmín representa un porcentaje mínimo de blanco.

Si S2 es mayor a MinP y menor a MaxP, el recorte sigue al condi-
cional del paso 10. En caso contrario, se descarta y se vuelve al paso 6 del 
algoritmo 5 para desplazar el recuadro una posición.

C. Inclinación máxima de la sección de agarre

El paso 10 del Algoritmo 5 evalúa el grado de inclinación, inc, de la 
sección del objeto en el recorte con respecto a la superficie de las pinzas. 
Para obtener el grado de inclinación se traza una elipse sobre el área de 
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píxeles blancos del recorte, como se muestra en la Figura 5-16a, y se calcula 
la inclinación del eje más largo de la elipse con respecto al eje x, como se 
muestra en la Figura 5-16b.

La Figura 5-16a muestra los cuadrados blancos, que representan los 
píxeles y, la línea curva, que representa la elipse que se traza sobre el área. 
En la Figura 5-16b, la línea curva es la elipse trazada sobre el área de píxeles 
blancos, las líneas continuas son los ejes de la elipse, y la línea punteada es 
el eje x con respecto al cual se mide el grado de inclinación.

El valor de inclinación máxima, IncMax, del objeto con respecto al 
efector es determinado por el usuario e ingresado en grados. La sección 
del objeto capturada en los recortes debe tener una inclinación inferior o 
igual a la inclinación máxima IncMax para superar la condición del paso 
10. Este criterio se agregó con el fin de controlar la máxima inclinación ad-
misible entre el objeto y la pinza, dado que grandes valores de inclinación 
pueden generar que el objeto se mueva de su ubicación y reduzca la preci-
sión del agarre mientras el efector se está cerrando.

D. Espacio libre para el efector

El paso 11 del Algoritmo 5 muestra la última condición que debe supe-
rar el recorte para guardarse como un posible agarre. El criterio consiste 
en buscar aquellos recortes donde haya una cantidad mínima de píxeles 
blancos en los bordes superior e inferior del recorte, con el fin de aceptar 
únicamente aquellos que tengan el espacio suficiente para que encajen las 
puntas de la pinza en el agarre. Debido a que la dimensión A considera, no 

Figura 5-16: Cálculo de la inclinación de la sección del objeto.
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solo la apertura de la pinza sino también el ancho de las puntas, se debe 
tener en cuenta que parte del área del recorte incluye el área que ocupa la 
pinza en el espacio.

Se debe tener en cuenta el grosor de las puntas de la pinza, que equi-
vale a la cantidad mínima de píxeles blancos que debe haber al interior del 
recorte para asegurar que existe el espacio suficiente para que el efector 
encaje con el objeto. 

Para determinar qué recortes superan el último condicional, se define 
el número de filas superiores e inferiores del recorte que deben contener 
píxeles blancos. De tal manera que, la cantidad de filas a evaluar corres-
ponda al grosor real de las puntas de la pinza. Se obtiene un porcentaje, 
Pg, del área que ocupa cada punta de la pinza con respecto al área total 
del cuadro, obteniendo un Pg=10% para cada punta y un 80% del área 
libre para el agarre del objeto. Con el porcentaje, se calcula el número de fi-
las de píxeles,  fp, que deben sumarse para evaluar el condicional del paso 
11. El calculo del número de filas de píxeles (fp) se realiza como

y la suma de píxeles del recorte en las filas superior e inferior se calcula como

Después de obtener la suma de píxeles S3, se realiza una comparación 
entre S3 y la cantidad mínima de píxeles blancos, Pw, que debe haber a 
los extremos del recorte multiplicado por un factor de ruido, wh, entre 0 
y 1. Ese factor, permite considerar la existencia de áreas muy pequeñas de 
píxeles blancos en los bordes superior e inferior del recorte, donde dicho 
factor es determinado por el usuario según la calidad de la imagen binari-
zada que se obtenga tras la segmentación. Se requiere realizar el cálculo 
de la cantidad mínima de píxeles blancos que debe tener el recorte en los 
bordes superior e inferior, según el condicional del paso 11, a partir de
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E. Guardar posibles agarres

El paso 12 del Algoritmo 5 presenta el almacenamiento de todos los 
recortes que superan los condicionales de los pasos 8 al 11 como posibles 
agarres. Se almacena el recorte en una variable, IgHB; las coordenadas 
de su esquina superior izquierda (x, y) en los arreglos Igx e Igy respecti-
vamente; el ángulo de inclinación de la sección de agarre con respecto a la 
superficie de las puntas de la pinza, en el arreglo IgAr; y el grado de rota-
ción en el que se encuentra la imagen binarizada al momento de evaluar el 
recorte, se guarda en el arreglo IgAh.

En caso de que la imagen binarizada rote los 180o y al terminar no 
guarde ningún recorte como posible agarre, el algoritmo entra en el condi-
cional de los pasos 13 y 14, para indicar que no encontró ninguna zona de 
agarre y finaliza el proceso. En caso contrario, entra a los condicionales de 
los pasos 15 a 17, para escoger un solo agarre de todos los almacenados.

5.3.4. 	 Selección del agarre final

Una vez almacenados todos los posibles agarres de la herramienta, 
se debe seleccionar la mejor opción entre ellos. A continuación se detalla 
este procedimiento.

A. Mayor área y menor inclinación

El primer criterio de selección del punto agarre se enfoca en buscar el 
recorte con la mayor área de agarre y el menor grado de inclinación de la 
herramienta con respecto al efector. Para ello, en el paso 15 del Algoritmo 
5, se guardan los diez recortes con la mayor área de agarre y luego se esco-
ge entre ellos aquel que tenga la menor inclinación. Para calcular el área de 
agarre de cada recorte, se suman todos los píxeles del recorte (aplicando 
(5-19)) y se escogen diez que tengan la mayor suma. Después, se compa-
ran los grados de inclinación de los diez recortes ganadores (almacenados 
en la variable IgAr), y se escoge el que tenga el menor valor sin considerar 
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el signo. Finalmente, se guarda en la variable iBest1 la posición que ocupa 
el recorte ganador de los posibles agarres.

B. Mejor encaje

El segundo criterio de selección se enfoca en buscar el agarre que ten-
ga la mayor superficie de contacto entre el objeto y la pinza, con el fin de 
obtener la mayor fricción entre ambos. Para ello, en el paso 16 del Algorit-
mo 5, se busca la sección del objeto que se asemeje más a un rectángulo 
cuyos bordes superior e inferior sean paralelos a la superficie de las puntas 
de la pinza. Para ello, se evalúa el encaje de la sección del objeto capturado 
en el recorte con respecto al borde inferior del recorte. Sobre los píxeles 
blancos que se encuentran conectados entre sí y representan al objeto en 
el recorte, se traza un rectángulo que los cubre por completo (como se 
observa en la Figura 5-17), con coordenadas (x, y) sobre la esquina supe-
rior izquierda, y el valor del ancho y el alto del mismo se almacena en las 
variables xw, yw, respectivamente.

Con las dimensiones obtenidas de ancho y alto del rectángulo, se cal-
cula su área y se le resta la cantidad total de píxeles blancos (usando (5-19)) 
del recorte correspondiente guardado en IgHB. De tal manera que, si la 
resta es igual a cero, significa que la sección del objeto es completamente 
rectangular y, por lo tanto, tiene el mejor encaje con las puntas de la pinza. 
En caso contrario, se supone que la superficie del objeto está inclinada, 
o es irregular, o tiene una geometría curva y no hay suficiente superficie 
de contacto para realizar el agarre. De todos los recortes almacenados, se 
escoge como agarre ganador aquel cuya resta entre el área de la caja y la 
suma total de píxeles S2 sea mínima, y se guarda en iBest2 su posición en 
el arreglo IgHB.

La Figura 5-17a muestra el recuadro que cubre la sección del objeto y 
los espacios vacíos entre el objeto y la caja, mientras que en la Figura 5-17b 
se muestra un encaje más exacto entre la sección del objeto y la caja. El 
recorte ganador entre ambos, según el criterio del paso 16, sería el de la 
Figura 5-17b.
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C. Selección por centroide

Después de obtener los resultados iBest1 e iBest2, el algoritmo sigue al 
paso 17, donde se escoge entre los recortes ganadores el que se encuentra más 
cerca al centroide del objeto para asegurar un mayor equilibrio en el agarre.

Primero, se calcula la distancia entre el centro de los recortes ganado-
res y el centroide del objeto. Para luego, escoger la menor distancia de los 
dos y guardar el resultado en iBest. De tal manera que, si gana el recorte 
de mayor área, se guarda iBest1 en  iBest, en caso contrario se guarda 
iBest2 en iBest.

5.3.5. 	 Entrega de resultados

El paso 18 del Algoritmo 5 entrega la posición y el ángulo de inclina-
ción del recorte que contiene el agarre final, utilizando la posición iBest 
guardada en el paso anterior. Las coordenadas se buscan en las matrices 
generales IgX, IgY e IgAh, y se guardan como xc , yc y Ang, respecti-
vamente, para generar las salidas. Después, en el paso 19, se grafican los 
resultados, como se muestra en la Figura 5-18. Allí, el recuadro representa 
la posición (en píxeles) y el ángulo de inclinación (en grados) de la pinza 
sobre el objeto, el asterisco indica la posición (xc ,yc) del agarre ubicado 
en el centro del recuadro, Ang es el ángulo de rotación que debe tener el 

Figura 5-17: Selección del mejor encaje.
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efector para realizar el agarre, y el círculo es el centroide del objeto con 
coordenadas (xo ,yo).

El lado A del rectángulo de la Figura 5-18 representa la apertura máxi-
ma de la pinza, o la dimensión A, inicializada en el paso 1 del Algoritmo 5. 
El lado B representa el grosor de las puntas de la pinza, o la dimensión B, 
inicializada en el mismo paso. Para el caso de lo mostrado en la figura, se 
tiene que xc = 99, yc = 145, Ang = 50o, t = 1,723758s. Los valores de xc 
se toman positivos desde el borde izquierdo de la imagen hacia la derecha, 
y yc positivo desde el borde superior de la imagen hacia abajo. El grado 
de inclinación Ang se tomó con respecto a la horizontal de la imagen y la 
horizontal del recorte, tal y como se observa en la Figura 5-18.

Se validó el algoritmo desarrollado con varios tipos de objetos, dife-
rentes dimensiones A y B del efector, y con la inicialización de variables 
establecidas en la Tabla 5-12.

Figura 5-18: Posición y orientación de la pinza para el agarre escogido.



123

Robótica Asistente Mediante Aprendizaje Profundo

La variable Pmáx se escogió como 90%, para permitir secciones de 
agarre lo suficientemente amplias. Por su parte, Pmín se seleccionó como 
20%, tanto para evitar secciones de agarre muy delgadas como para filtrar 
falsos “posibles agarres” generados por píxeles blancos que no pertene-
cen al objeto (ruido). La variable Grado indica cada cuántos grados se rota 
la imagen binarizada, en los pasos 4 y 5 del Algoritmo 5, para la búsqueda 
de los posibles agarres y se escogió como 5o, con el fin de reducir el tiem-
po de ejecución del algoritmo sin perder muchas posibilidades de agarre. 
Esta variable debe asignarse con un valor igual o superior a la resolución 
de rotación del efector, ya que este definirá el grado de rotación final de 
la pinza para realizar el agarre sobre el objeto. La variable IncMax se 
escogió como 15o tanto para reducir el tiempo de ejecución del progra-
ma, al filtrar todas las otras inclinaciones, como para evitar que el objeto 
se mueva demasiado cuando la pinza se ajuste sobre él, pues esto puede 
afectar el agarre, al generar un desplazamiento en el objeto. La variable Pg 
se inicializó como 10%, suponiendo que las puntas de la pinza no ocupan, 
cada una, más de un 10% del área total de agarre. El porcentaje de ruido 
aceptable wh se definió como el 2% debido a que las imágenes empleadas 
no tienen mucho ruido debido al fondo blanco.

5.3.6. Análisis y Resultados del agarre

La primera prueba, ilustrada en la Figura 5-19 en la izquierda, arrojó 
una sección de agarre ubicada sobre el filo de las tijeras para dimensiones 
A = 60 píxeles y B = 50 píxeles. Bajo estas medidas no se tuvo la apertura 
suficiente para realizar el agarre sobre el mango de la herramienta, por lo 

Tabla 5-12: Inicialización de variables.
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que la única opción que encontró el algoritmo fue el filo, una posición com-
plicada de manejar para un efector tanto por el grosor de la sección del 
objeto, como por su geometría, su distancia con respecto al centroide, y el 
cuidado necesario para el filo del elemento. El tiempo de cómputo (t) del 
algoritmo fue de 2,017 segundos para calcular el agarre y graficar los resul-
tados. La geometría de la sección de agarre es inclinada, por lo que puede 
generar deslizamiento entre las pinzas y el objeto y hacer que las tijeras se 
caigan, al igual que la distancia que existe entre el agarre y el centroide que 
puede generar que el peso de las tijeras afecte la estabilidad del agarre.

Debido a los resultados obtenidos en la primera prueba, se cambiaron 
las dimensiones del recuadro por A = 50 píxeles y B = 30 píxeles, obte-
niendo los resultados de la Figura 5-19 derecha. En este caso, el agarre que 
seleccionó el algoritmo se encuentra más cerca del centroide de la herra-
mienta y está ubicado sobre el mango de las tijeras. A comparación de la 
prueba anterior, las probabilidades de que se resbale el objeto debido a la 
geometría del agarre se reducen, ya que tanto el dedal como el tope de las 
tijeras tienen mayor área que el asta donde se realiza el agarre, y no hay 
riesgo de dañar la calidad del filo. El inconveniente con el agarre de la dere-
cha es que la ubicación del efector sobre la herramienta debe ser muy pre-
ciso para que la pinza encaje en medio los dedales de la tijera sin tocarla.

En una segunda prueba, se buscaron los puntos de agarre sobre un 
bisturí quirúrgico obteniendo los resultados mostrados en la Figura 5-20 
para dimensiones A = 60 píxeles y B = 50 píxeles. Debido a que la geome-

Figura 5-19: Punto de agarre tijeras abiertas.
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tría del bisturí no es tan irregular como la de las tijeras, cualquier posible 
agarre se ubica sobre su cuerpo y se diferencian entre sí por la distancia 
que existe entre el agarre y el centroide de la herramienta. Para el caso el 
agarre que escogió el algoritmo inicialmente (lado izquierdo), se encuen-
tra alejado del centroide, pero en una zona donde el encaje entre el objeto 
y la pinza es elevado, cumpliendo con la condición de selección del paso 
16 del Algoritmo 5 donde se obtiene iBest2. Como recorte ganador, el 
algoritmo escogió el de mejor encaje a pesar de no estar ubicado sobre el 
centroide, ya que la condición del centroide se evalúa después del condi-
cional que selecciona los dos mejores agarres, y entre los agarres seleccio-
nados el más cercano al centroide era el de mejor encaje con una distancia 
aproximada de 62 píxeles, mientras que el de mayor área se encontraba a 
83 píxeles de distancia.

Para las dimensiones A = 50 píxeles y B = 30 píxeles, el agarre final se 
ubicó casi sobre el centroide del objeto como se observa a la derecha, en 
la Figura 5-20. Al reducir las dimensiones del recuadro, se redujo el área de 
cada recorte, haciendo que la evaluación de cada condicional de los pasos 
8 al 11 y los pasos 15 y 16 entregaran resultados diferentes a los obtenidos 
en el caso inicial, visto en la izquierda de la figura. Por lo tanto, el recorte 
ganador no podía contener áreas tan grandes del objeto, ni los mismos 
encajes que en el caso anterior, haciendo que el agarre se acercara más a 
una zona más angosta de la herramienta.

Figura 5-20: Puntos de agarre para un bisturí.
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A partir de las pruebas realizadas es posible observar que, dependien-
do de las dimensiones del efector que se maneje en la aplicación, se pue-
den obtener diferentes puntos de agarre para el mismo objeto. Por otro 
lado, la calidad del agarre depende de los condicionales de los pasos 15 y 
16 del Algoritmo 5, ya que ellos definen cuáles son los dos mejores agarres 
entre los que se escoge el ganador.

La distancia entre el agarre y el centroide es importante para encon-
trar agarres estables. No obstante, para el objeto presentado, su relevan-
cia apareció después de haber escogido dos posibles agarres. Esto se de-
bió a que el centroide que se obtiene en el algoritmo está basado en la 
geometría del objeto más no en su peso, por lo que en casos donde el 
centro de masa y el centroide del objeto difieran considerablemente, un 
agarre sobre el centroide no puede asegurar un agarre estable, razón por 
la que se establecieron los condicionales de los pasos 15 y 16 para tratar de 
establecer agarres que consideren cambios de masa en diferentes áreas 
del objeto. 
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Capítulo 6

Ambiente Virtual de Prueba para Plataforma 
Multi-herramienta

Con el propósito de integrar la tarea de reconocimiento de un robot 
asistencial en una plataforma multi-herramienta, se emplea un ambiente 
virtual, asociado a una sala de cirugía, desarrollado en el lenguaje de mo-
delización de realidad virtual (VRML, de sus siglas en inglés, Virtual Reality 
Modeling Language) de Matlab®, empleando el robot manipulador asis-
tencial mostrado en la Figura 5-1. El escenario consiste en el manipulador, 
una plataforma multi-herramientas y una mano lista para recibirlas. De for-
ma tal que, sobre la plataforma virtual se establece un punto de agarre so-
bre la herramienta deseada y se mueve el manipulador hasta dicho punto, 
para tomar la herramienta y trasladarla directamente a la mano del usua-
rio. La selección de la herramienta se ingresa de forma manual y se emplea 
una captura de datos externa por cámara para validar el algoritmo de la 
red neuronal convolucional de profundidad desarrollada en la Sección 4.2.

6.1.	 Ambiente virtual

El entorno virtual empleado consta de una mesa quirúrgica de aspec-
to metálico sobre la que se ubica el manipulador y las herramientas. La 



128

Arquitecturas de Red Neuro-convolucional para Aplicaciones de Robótica Asistencial

mano virtual simula el punto final al que debe llevarse la herramienta selec-
cionada, dicha selección se realiza ingresando el nombre de la herramienta 
en el programa (ver Apéndice B).

El manipulador fue ensamblado pieza por pieza mediante el software 
SolidWorks, iniciando con una base fija que se agregó anidada a la mesa y 
terminando con el efector (pinza), este incluye pequeñas esferas metálicas 
en cada articulación, que simulan los motores del robot, para permitir los 
movimientos rotacionales de cada eslabón. Cada pieza adicional del mani-
pulador se añadió anidada a las piezas anteriores, de tal manera que cual-
quier cambio de rotación en alguno de los motores de las articulaciones 
genera un movimiento en los eslabones siguientes hasta llegar al efector, 
tal y como opera el manipulador real.

Se adicionó una caja rectangular sobre la mesa metálica para poner 
sobre ella las herramientas, y así permitirle al manipulador un mayor rango 
de movimiento al que tendría cuando tiene que ir hasta un punto ubicado a 
la altura de su base. Sobre la caja se ubicaron tres herramientas, una tijera, 
un destornillador y un bisturí, cada uno de diferente color para reconocer-
los con mayor facilidad visualmente. En la Figura 6-1 se muestra el ambien-
te virtual desarrollado [Moreno et al., 2017].

La captura externa se realiza mediante una webcam, empleando téc-
nicas convencionales de procesamiento de imágenes basadas en binari-

Figura 6-1: Ambiente virtual.
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zación, para segmentar cada herramienta y someterla a la red neuronal 
convolucional desarrollada en el Capítulo 4. La Figura 6-2 ilustra este pro-
cedimiento. Se observa mediante el recuadro verde las regiones de interés 
que serán ingresadas a la red neuronal convolucional para su clasificación. 
Debido a que se emplean imágenes no incluidas dentro de la base de datos 
del entrenamiento se validan las activaciones de cada herramienta, respec-
to a los filtros originales de la red neuronal convolucional entrenada. De 
forma tal que, al evaluar las activaciones de la red con los filtros apren-
didos se tiene el resultado visto en la Figura 6-3. Esto permite concluir el 
buen desempeño de la red.

La validación de la red neuronal convolucional de profundidad se rea-
liza moviendo manualmente la distancia de captura de la imagen respecto 

Figura 6-3: Activaciones de las redes neuronales convolucionales.

Figura 6-2: Entrada del ambiente virtual.
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las herramientas, obteniendo el resultado ilustrado en la Tabla 6-1. Donde 
se observa que, el reconocimiento se realiza eficientemente con niveles de
desempeño cercanos, haciendo el reconocimiento inmune a la variación 
de distancia. La Figura 6-4 ilustra el proceso para una distancia de 30 cm.

6.2.	 Pruebas de agarre de herramienta

Parte integral del ambiente de simulación y de las pruebas reales está 
asociada al algoritmo de agarre, que permite tomar la herramienta y en-
tregarla al usuario, lo que demarca la función asistencial. Se establece una 
evaluación de desempeño del algoritmo operando en ambiente real. Ya 

Tabla 6-1: Detección en profundidad para el ambiente virtual.

Figura 6-4: Desempeño CNN de profundidad para el ambiente virtual.
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que, a diferencia de la simulación, el ambiente real presenta rozamientos y 
fricciones no simuladas, así como las imprecisiones propias del movimien-
to de los servo motores. La Tabla 6-2 relaciona el número de aciertos en 
la repetición de 25 agarres por herramienta. Se puede evidenciar un buen 
desempeño para las herramientas simples, como el bisturí y el destornilla-
dor, mientras que se le dificulta más al robot el agarre de herramientas con 
espacios entre parte de la misma como las pinzas y las tijeras, por tener 
mayor volumen.

A continuación se ilustrarán los agarres de diferentes herramientas. 
La Figura 6-5 ilustra uno los agarres obtenidos por el sistema para la herra-
mienta tipo tijeras. Se puede observar cómo el efector del robot logra rea-
lizar un buen agarre cerca del centro de gravedad de la misma. La Figura 
6-6 ilustra uno de los agarres obtenidos por el sistema para la herramienta 
tipo bisturí, el agarre da hacia uno de los extremos pero permite su trans-
porte. La Figura 6-7 ilustra uno de los agarres obtenidos por el sistema para 
la herramienta tipo destornillador, a pesar de que el punto de agarre da 
hacia un extremo, el cierre de la pinza ajusta su posición. La Figura 6-8 ilus-
tra uno de los casos de fallo. Para el ejemplo, el fallo se da con respecto a 
la herramienta bisturí, donde la cercanía con las tijeras reduce el campo de 
sujección y determina el punto de agarre muy al extremo, lo que ocasiona 
la caída de la herramienta.

Tabla 6-2: Precisión agarre.
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Figura 6-6: Punto de agarre bisturí.

Figura 6-7: Punto de agarre destornillador.

Figura 6-5: Punto de agarre tijeras.
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6.3.	 Simulaciones de ubicación, agarre y entrega de herramienta

Por medio de la cámara web empleada, se logra obtener un ambiente 
híbrido real-virtual, lo que permite identificar las herramientas con la red 
neuronal convolucional diseñada y aplicar el algoritmo de agarre sobre la 
escena real. Dichos parámetros son replicados de forma ideal en el am-
biente virtual y evidenciados posteriormente por la acción del robot, don-
de sí se evidencian fallos de funcionalidad. A continuación, se muestran 
algunas imágenes de pruebas realizadas.

La Figura 6-9 ilustra algunas escenas de la operación de agarre de la 
herramienta destornillador y posterior entrega al usuario final, en las eta-
pas de ubicación y agarre, durante las que se evalúan las variaciones diná-
micas de las características por cambios de distancia.

La Figura 6-10 ilustra el proceso de transporte y entrega en la mano 
al usuario final. La Figura 6-11 ilustra algunas escenas de la operación de 
agarre de la herramienta tijeras y, posterior, entrega al usuario final, en las 
etapas de ubicación, agarre, transporte y entrega. Como se indicó, el robot 
replica la acción prevista en la simulación, tomando la herramienta y lleván-
dola a la mano del usuario. La Figura 6-12 ilustra el proceso de ubicación, 
desplazamiento y agarre para la herramienta tijeras en un ambiente real. 
La Figura 6-13 ilustra el proceso de entrega al usuario para la herramienta 
tijeras en un ambiente real.

Figura 6-8: Agarre fallido.
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Figura 6-9: Pruebas de simulación para destornillador.

Figura 6-10: Simulación entrega destornillador.
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Figura 6-11: Pruebas de simulación para tijeras.

Figura 6-12: Ambiente real con tijeras.

Figura 6-13: Ambiente real entrega tijeras.
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Conclusiones y Trabajo futuro

Conclusiones

Se logró verificar el alto desempeño que brindan las redes neurona-
les convolucionales en las aplicaciones de reconocimiento de patrones 
en imágenes y sus evidentes ventajas frente a los métodos tradicionales, 
que implican procesamiento de imagen y redes neuronales convenciona-
les. Aún así, esta funcionalidad de las redes neuronales convolucionales, 
propicia para el trabajo con imágenes, tiene limitaciones inherentes que 
abren la posibilidad a mejoras en las arquitecturas establecidas, siendo di-
chas mejoras objeto de investigación y aportes al conocimiento, como es 
el caso aquí expuesto, en relación a la variación dinámica de la cámara y el 
desempeño de la red.

Al variar los diferentes hiper-parámetros propios de las redes convo-
lucionales, se logró converger a una arquitectura de red, que permitiese 
obtener un alto desempeño en el reconocimiento de patrones en imáge-
nes. Dicha arquitectura está orientada a discriminar herramientas a una 
distancia fija del foco de la cámara de captura. Sobre esta arquitectura se 
validó la necesidad de mejorar el desempeño de las redes convolucionales, 
al variar la distancia de reconocimiento de las herramientas, donde el des-
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empeño se degrada con la perdida de características que la variación de 
distancia genera en las imágenes que ingresan a la red.

El generar un entorno de aplicación en robótica asistencial basado en
reconocimiento de patrones, empleando redes neuronales convoluciona-
les, permitió evidenciar una necesidad puntual de mejora en el desempeño 
del reconocimiento, frente a ambientes dinámicos que se puede alcanzar 
con variaciones de la arquitectura base de este tipo de red. El proponer 
una arquitectura paralela, que da la capacidad a la red de generar un reco-
nocimiento en profundidad, ofreció una solución satisfactoria frente al re-
conocimiento en ambientes dinámicos, permitiendo no solo solucionar la 
pérdida o aparición de características de un objeto en una imagen, cuando 
la distancia de captura varía, sino un método de planeación de trayectorias 
para evasión de obstáculos dinámicos, como lo es la mano de un usuario 
en el área de trabajo del robot.

Dentro de las soluciones planteadas en la arquitectura paralela pro-
puesta, se presentó el diseño de la capa final mediante dos opciones: una, 
basada en una ponderación aritmética con saturación y, la otra, mediante 
un sistema de inferencia difusa. Aunque ambas soluciones resuelven las 
necesidades de la capa final de ponderación, el uso de una ecuación aritmé-
tica ofrece una solución genérica para diferentes niveles de profundidad, 
a diferencia del sistema difuso, que debe ser rediseñado con cada agrega-
ción de nivel. La saturación permite delimitar la salida de la red obteniendo 
un 100% de acierto en la clasificación en los puntos de profundidad del en-
trenamiento que, a su vez, sirven de referencia espacial del desplazamien-
to del manipulador, lo que da la versatilidad a la red en la discriminación 
multi-distancia y de planeación de trayectoria en tres dimensiones.

Se evidencia que el solucionar el problema de reconocimiento dinámi-
co de objetos, para un robot asistencial desplazándose en tres dimensio-
nes, es solo una parte de la tarea de asistencia. Los algoritmos presenta-
dos para planeación de trayectoria y agarre, permiten esbozar el entorno 
completo de desarrollo, que requiere la implementación de un agente ro-
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bótico de este tipo. Sin embargo, estos algoritmos son dependientes del 
tipo de efector final a utilizar en un ambiente real.

El ambiente híbrido real-virtual presentado, permitió validar la funcio-
nalidad de los algoritmos diseñados y emular el ambiente integral de un 
robot asistencial capaz de entregar una herramienta a un usuario, con sus 
ventajas y desventajas.

Trabajo Futuro

El campo de la robótica asistencial está en desarrollo constante y al-
goritmos como los propuestos en el presente documento permiten tener 
una visión clara de los requerimientos mínimos que se deben satisfacer. 
Dentro de las aplicaciones desarrolladas como trabajo futuro se encuentra 
el análisis de obstáculos adicionales a la mano de un usuario, como puede 
ser el brazo, el cuerpo o incluso el rostro del mismo, que son susceptibles 
de verse involucrados dentro del área de trabajo del robot.

Las pruebas realizadas se aplicaron en función a que el efector final 
del brazo robótico posee la cámara de visión y que esta toma la imagen 
siempre hacia abajo, es decir, en orientación hacia el suelo, o más específi-
camente hacia el área de trabajo donde se encontrarían las herramientas. 
Lo cual abre la posibilidad a un trabajo futuro basado en una cámara de 
exploración omnidireccional, que valide el entorno del robot para generar 
trayectorias que puedan ser susceptibles de colisiones laterales y que en 
este trabajo no fueron consideradas. Otra alternativa es emplear un par de 
cámaras para detectar la profundidad y así obtener la información lateral.

El trabajo desarrollado fue delimitado a robots académicos con limita-
ciones en los actuadores y la dimensión de sus eslabones, lo cual hace que 
algoritmos de control para cada grado de libertad se deban considerar en 
un robot industrial o para un ambiente real. Esto a su vez ampliaría el área 
de trabajo del robot, lo cual podría implicar aumentar el nivel de profundi-
dad por distancia que debe manejar la red.
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Si bien el entorno multi-herramienta se desarrolló eficientemente, 
este tipo de aplicación puede ser orientada a otros escenarios diferentes a 
las herramientas propuestas. Por ejemplo, un entorno de sala de cirugía al 
manejar tijeras especializadas que varían levemente en su parte terminal 
de corte, siendo igual en la de sujeción, requeriría una estructura diferente 
de red convolucional por la limitada divergencia de patrones que exponen. 



141

Bibliografía

[Abdel-Malek y Othman, 1999] Abdel-Malek, K. y Othman, S. (1999). 
Multiple sweeping using the Denavit-Hartenberg representation method. 
Computer-Aided Design, 31(9):567 – 583.

[Ansari et al., 2012] Ansari, U., Alam, S., y Jafri, S. M. U. N. (2012). Tra-
jectory optimization and adaptive fuzzy based launch vehicle attitude 
control. En 2012 20th Mediterranean Conference on Control Automation 
(MED), pp. 457–462.

[Azarang y Kehtarnavaz, 2020] Azarang, A. y Kehtarnavaz, N. (2020). 
A review of multi-objective deep learning speech denoising methods. 
Speech Communication, 122:1 – 10.

[Babuska, 2001] Babuska, R. (2001). Fuzzy and  neural control.  DISC 
Course Lecture Notes, Delft University of Technology, Delft, The Nether-
lands.

[Bai et al., 2016] Bai, Y., Chen, Z., Xie, J., y Li, C. (2016). Daily reservoir 
inflow forecasting using multiscale deep feature learning with hybrid mo-
dels. Journal of Hydrology, 532:193 – 206.



142

Arquitecturas de Red Neuro-convolucional para Aplicaciones de Robótica Asistencial

[Barrientos et al., 2007] Barrientos, A., Balaguer, L. F. P. C., y Aracil, R. 
(2007). Fundamentos de robótica. McGraw-Hill.

[Bengio, 2009] Bengio, Y. (2009). Learning deep architectures for AI. 
Found. Trends Mach. Learn., 2(1):1–127.

[Boyd y Vandenberghe, 2004] Boyd, S. y Vandenberghe, L. (2004). 
Convex Optimization. Cambridge University Press, USA.

[Buchner et al., 2012] Buchner, R., Wurhofer, D., Weiss, A., y Tscheli-
gi, M. (2012). User experience of industrial robots over time. En 2012 7th 
ACM/IEEE International Conference on Human-Robot Interaction (HRI), 
pp. 115–116.

[Chen et al., 2018] Chen, L., Zhou, M., Su, W., Wu, M., She, J., y Hirota, 
K. (2018). Softmax regression based deep sparse autoencoder network for 
facial emotion recognition in human-robot interaction. Information Scien-
ces, 428:49 – 61.

[Chen et al., 2014] Chen, X., Xiang, S., Liu, C., y Pan, C. (2014). Vehicle 
detection in satellite images by hybrid deep convolutional neural networ-
ks. IEEE Geoscience and Remote Sensing Letters, 11(10):1797–1801.

[Ciregan et al., 2012] Ciregan, D., Meier, U., y Schmidhuber, J. (2012). 
Multicolumn deep neural networks for image classification. En 2012 IEEE 
Conference on Computer Vision and Pattern Recognition, pp. 3642–3649.

[Cui et al., 2015] Cui, X., Goel, V., y Kingsbury, B. (2015). Data augmen-
tation for deep neural network acoustic modeling. IEEE/ACM Transactions 
on Audio, Speech, and Language Processing, 23(9):1469–1477.

[Dairi et al., 2018] Dairi, A., Harrou, F., Senouci, M., y Sun, Y. (2018).
Unsupervised obstacle detection in driving environments using deep-lear-
ningbased stereovision. Robotics and Autonomous Systems, 100:287 – 301.



143

Bibliografía

[Daugherty y Wilson, 2018] Daugherty, P. R. y Wilson, H. J. (2018). Hu-
man + machine: reimagining work in the age of AI. Boston, Massachusetts: 
Harvard Business Review Press.

[Davis y Mermelstein, 1980] Davis, S. y Mermelstein, P. (1980). Com-
parison of parametric representations for monosyllabic word recognition 
in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, 
and Signal Processing, 28(4):357–366.

[Dong et al., 2016] Dong, Y., Liu, Y., y Lian, S. (2016). Automatic age 
estimation based on deep learning algorithm. Neurocomputing, 187:4 – 10. 
Recent Developments on Deep Big Vision.

[Dwivedi et al., 2014] Dwivedi, K., Biswaranjan, K., y Sethi, A. (2014). 
Drowsy driver detection using representation learning. En 2014 IEEE Inter-
national Advance Computing Conference (IACC), pp. 995–999.

[Farooq et al., 2012] Farooq, U., Hasan, K. M., Asad, M. U., y Saleh, S. 
O. (2012). Fuzzy logic based wall tracking controller for mobile robot navi-
gation. En 2012 7th IEEE Conference on Industrial Electronics and Applica-
tions (ICIEA), pp. 2102–2105.

[Gan et al., 2014] Gan, J., Li, L., Zhai, Y., y Liu, Y. (2014). Deep self-tau-
ght learning for facial beauty prediction. Neurocomputing, 144:295 – 303.

[Gonzalez y Woods, 2008] Gonzalez, R. y Woods, R. (2008). Procesa-
miento Digital de Imágenes. Prentice Hall.

[Guechi et al., 2012] Guechi, E., Abellard, A., y Franceschi, M. (2012).
Experimental fuzzy visual control for trajectory tracking of a khepera II mo-
bile robot. En 2012 IEEE International Conference on Industrial Technology, 
pp.25–30.



144

Arquitecturas de Red Neuro-convolucional para Aplicaciones de Robótica Asistencial

[Guo et al., 2017] Guo, D., Sun, F., Kong, T., y Liu, H. (2017). Deep vision 
networks for real-time robotic grasp detection. International Journal of 
Advanced Robotic Systems, 14(1).

[Guo et al., 2016] Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., y Lew, 
M. S. (2016). Deep learning for visual understanding: A review. Neurocom-
puting, 187:27 – 48. Recent Developments on Deep Big Vision.

[Gutiérrez et al., 2017] Gutiérrez, M. A., Manso, L. J., Pandya, H., y 
Núñez, P. (2017). A passive learning sensor architecture for multimodal 
image labeling: An application for social robots. Sensors (Basel), 17(2).

[Hossain et al., 2017] Hossain, D., Capi, G., y Jindai, M. (2017). Evolution 
of deep belief neural network parameters for robot object recognition and 
grasping. Procedia Computer Science, 105:153 – 158. 2016 IEEE Internatio-
nal Symposium on Robotics and Intelligent Sensors.

[Hou et al., 2015] Hou, W., Gao, X., Tao, D., y Li, X. (2015). Blind image 
quality assessment via deep learning. IEEE Transactions on Neural Networ-
ks and Learning Systems, 26(6):1275–1286.

[Ji et al., 2014] Ji, N.-N., Zhang, J.-S., y Zhang, C.-X. (2014). A sparse-res-
ponse deep belief network based on rate distortion theory. Pattern Recog-
nition, 47(9):3179 – 3191.

[Jimenez Moreno, 2011] Jimenez Moreno, R. (2011). Sistema de detec-
ción de nivel de cansancio en conductores mediante técnicas de visión por 
computador. Tesis de máster, Universidad Nacional de Colombia.

[Jiménez Moreno et al., 2017] Jiménez Moreno, R., Avilés, O., y Ovalle, 
D. M. (2017). Evaluación de hiperparámetros en cnn para detección de pa-
trones de imágenes. Visión electrónica, 11(2):140–145.



145

Bibliografía

[Jiménez-Moreno et al., 2012] Jiménez-Moreno, R., Orjuela, S. A., 
Hese, P. V., Prieto, F. A., Grisales, V. H., y Philips, W. (2012). Video survei-
llance formonitoring driver’s fatigue and distraction. En Optics, Photonics, 
and Digital Technologies for Multimedia Applications II, volumen 8436, pp. 
263 – 270. 

[Kalashnikov et al., 2018] Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, 
J., Herzog, A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., Vanhoucke, 
V., y Levine, S. (2018). Scalable deep reinforcement learning for vision-ba-
sed robotic manipulation. En Proceedings of The 2nd Conference on Robot 
Learning, volumen 87, pp. 651–673. PMLR.

[Kiguchi y Hayashi, 2013] Kiguchi, K. y Hayashi, Y. (2013). Upper-limb 
tremor suppression with a 7DOF exoskeleton power-assist robot. En 2013 
35th Annual International Conference of the IEEE Engineering in Medicine 
and Biology Society (EMBC), pp. 6679–6682.

[Kim et al., 2015a] Kim, S., Choi, Y., y Lee, M. (2015a). Deep learning 
with support vector data description. Neurocomputing, 165:111 – 117.

[Kim et al., 2015b] Kim, S., Yu, Z., Kil, R. M., y Lee, M. (2015b). Deep 
learning of support vector machines with class probability output networ-
ks. Neural Networks, 64:19 – 28. Special Issue on “Deep Learning of Repre-
sentations”.

[Kopman et al., 2015] Kopman, V., Laut, J., Acquaviva, F., Rizzo, A., y 
Porfiri, M. (2015). Dynamic modeling of a robotic fish propelled by a com-
pliant tail. IEEE Journal of Oceanic Engineering, 40(1):209–221.

[Koumakis, 2020] Koumakis, L. (2020). Deep learning models in geno-
mics; are we there yet? Computational and Structural Biotechnology Jour-
nal, 18:1466 – 1473.



146

Arquitecturas de Red Neuro-convolucional para Aplicaciones de Robótica Asistencial

[Lenz et al., 2015] Lenz, I., Lee, H., y Saxena, A. (2015). Deep learning 
for detecting robotic grasps. The International Journal of Robotics Re-
search, 34(4- 5):705–724.

[Liu et al., 2015] Liu, H., Ma, B., Qin, L., Pang, J., Zhang, C., y Huang, Q. 
(2015). Set-label modeling and deep metric learning on person re-identifi-
cation. Neurocomputing, 151:1283 – 1292.

[Lu et al., 2017] Lu, K., An, X., Li, J., y He, H. (2017). Efficient deep ne-
twork for vision-based object detection in robotic applications. Neurocom-
puting, 245:31 – 45.

[Längkvist et al., 2014] Längkvist, M., Karlsson, L., y Loutfi, A. (2014). A 
review of unsupervised feature learning and deep learning for time-series 
modeling. Pattern Recognition Letters, 42:11 – 24.

[Moreno et al., 2013] Moreno, R. J., Espinosa, F. A., y Hurtado, D. A. 
(2013). Teleoperated systems: A perspective on telesurgery applications. 
Revista Ingeniería Biomédica, 7:30 – 41.

[Moreno y Lopez, 2013] Moreno, R. J. y Lopez, J. D. (2013). Trajectory 
planning for a robotic mobile using fuzzy c-means and machine vision. En 
Symposium of Signals, Images and Artificial Vision - 2013: STSIVA - 2013, pp. 
1–4.

[Moreno et al., 2017] Moreno, R. J., Umaña, L. A. R., y Baquero, J. E. 
M. (2017). Virtual environment for robotic assistance. IJAER, 12(22):12315–
12318.

[Moreno et al. , 2018] Moreno, R. J., Mauledoux, M., y Martinez, B. J. 
(2018). Algorithm for object grasp detection. Research Journal of Applied 
Sciences, 13:162–175.



147

Bibliografía

[Murillo et al., 2018] Murillo, P. U., Jimenez, R., y Beleño, R. H. (2018). 
Algorithm for tool grasp detection. International Review of Mechanical En-
gineering (IREME), 12(1).

[Neukart y Moraru, 2014] Neukart, F. y Moraru, S.-A. (2014). A machine 
learning approach for abstraction based on the idea of deep belief artificial 
neural networks. Procedia Engineering, 69:1499 – 1508. 24th DAAAM Inter-
national Symposium on Intelligent Manufacturing and Automation, 2013.

[Ochiai et al., 2014] Ochiai, T., Matsuda, S., Lu, X., Hori, C., y Katagiri, 
S. (2014). Speaker adaptive training using deep neural networks. En 2014 
IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), pp. 6349–6353.

[Pachon-Suescun et al., 2020] Pachon-Suescun, C. G., Enciso-Aragon, 
C. J., y Jimenez-Moreno, R. (2020). Robotic navigation algorithm with ma-
chine vision. International Journal of Electrical and Computer Engineering 
(IJECE), 10.

[Palomares et al., 2016] Palomares, F. G., Serrá, J. A. M., y Martínez, E. 
A. (2016). Aplicación de la convolución de matrices al filtrado de imágenes. 
Modelling in Science Education and Learning, 9(1):97–108.

[Pan y Yang, 2010] Pan, S. J. y Yang, Q. (2010). A survey on transfer lear-
ning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345–
1359.

[Perconti y Plebe, 2020] Perconti, P. y Plebe, A. (2020). Deep learning 
and cognitive science. Cognition, 203:104365.

[Pinzon et al., 2018]. Pinzon, J. O., Jimenez-Moreno, R., Aviles, O., 
Nino, P., y Ovalle, D. (2018).  Very deep convolutional neural network for 
speech recognition based on words. Journal of Engineering and Applied 
Sciences, 13:6680–6685.



148

Arquitecturas de Red Neuro-convolucional para Aplicaciones de Robótica Asistencial

[Pinzón et al., 2017] Pinzón, J., Jiménez, R., y Hernandez, R. (2017). 
Deep convolutional neural network for hand gesture recognition used for 
humanrobot interaction. Journal Of Engineering and Applied Sciences, 
12:9278 – 9285.

[Pinzón-Arenas et al., 2019] Pinzón-Arenas, J., Jiménez-Moreno, R., 
y Pachón- Suescún, C. (2019). Handwritten word searching by means of 
speech commands using deep learning techniques. International Review 
on Modelling and Simulations (IREMOS), 12(4).

[Pinzón-Arenas y Jiménez-Moreno, 2020] Pinzón-Arenas, J. O. y Ji-
ménez- Moreno, R. (2020). Comparison between handwritten word and 
speech record in real-time using CNN. International Journal of Electrical 
and Computer Engineering (IJECE), 10:4313–4321.

[Pramparo y Moreno, 2017] Pramparo, L. y Moreno, R. J. (2017). Colori-
meter using artificial neural networks. Journal of Engineering and Applied 
Sciences, 12:5332–5337.

[Qian y Woodland, 2016] Qian, Y. y Woodland, P. C. (2016). Very deep 
convolutional neural networks for robust speech recognition. En 2016 IEEE 
Spoken Language Technology Workshop (SLT), pp. 481–488.

[Rioux-Maldague y Giguère, 2014] Rioux-Maldague, L. y Giguère, P. 
(2014). Sign language fingerspelling classification from depth and color 
images using a deep belief network. En 2014 Canadian Conference on Com-
puter and Robot Vision, pp. 92–97. 

[Salehi et al., 2020] Salehi, A. W., Baglat, p., y Gupta, G. (2020). Review 
on machine and deep learning models for the detection and prediction of-
coronavirus. Proceedings on Materials Today. 

[Schmidhuber, 2015] Schmidhuber, J. (2015). Deep learning in neural 
networks: An overview. Neural Networks, 61:85 – 117.



149

Bibliografía

[Shang et al., 2014] Shang, C., Yang, F., Huang, D., y Lyu, W. (2014). 
Datadriven soft sensor development based on deep learning technique. 
Journal of Process Control, 24(3):223 – 233.

[Song et al., 2014] Song, I., Kim, H., y Jeon, P. B. (2014). Deep lear-
ning for real-time robust facial expression recognition on a smartphone. 
En 2014 IEEE International Conference on Consumer Electronics (ICCE), pp. 
564–567.

[Tamilselvan y Wang, 2013] Tamilselvan, P. y Wang, P. (2013). Failure 
diagnosis using deep belief learning based health state classification. Re-
liability Engineering & System Safety, 115:124 – 135.

[Thulasiraman y Swamy, 1992] Thulasiraman, K. y Swamy, M. N. S. 
(1992). Graphs: Theory and Algorithms. John Wiley & Sons, Inc., USA.

[Useche et al., 2018] Useche, P. C., Beleno, R. D. H., y Moreno, R. J. 
(2018). Manipulation of tools by means of a robotic arm using artificial in-
telligence. Journal of Engineering and Applied Sciences, 13: 3479 – 3492.

[Velandia et al., 2019] Velandia, N. S., Moreno, R. J., y Rubiano, A. 
(2019). CNN architectures for hand gesture recognition using EMG signals 
throw wavelet feature extraction. Journal of Engineering and Applied 
Sciences, 14:3528–3537.

[Viola y Jones, 2001] Viola, P. y Jones, M. (2001). Rapid object detec-
tion using a boosted cascade of simple features. En Proceedings of the 
2001 IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition.

[Walid y Lasfar, 2014] Walid, R. y Lasfar, A. (2014). Handwritten digit 
recognition using sparse deep architectures. En 2014 9th International 
Conference on Intelligent Systems: Theories and Applications (SITA-14), 
pp.1–6.



150

Arquitecturas de Red Neuro-convolucional para Aplicaciones de Robótica Asistencial

[Wang y Morel, 2014] Wang, Y. y Morel, J. (2014). Can a single image 
denoising neural network handle all levels of gaussian noise? IEEE Signal 
Processing Letters, 21(9):1150–1153.

[Wang et al., 2016] Wang, Z., Li, Z., Wang, B., y Liu, H. (2016). Robot 
grasp detection using multimodal deep convolutional neural networks. 
Advances in Mechanical Engineering, 8(9).

[Weber, 2010] Weber, W. (2010). Automatic generation of the Denavit- 
Hartenberg convention. En ISR 2010 (41st International Symposium on Ro-
botics) and ROBOTIK 2010 (6th German Conference on Robotics), pp. 1–7.

[Wu et al., 2014] Wu, K., Chen, X., y Ding, M. (2014). Deep learning ba-
sed classification of focal liver lesions with contrast-enhanced ultrasound. 
Optik, 125(15):4057 – 4063.

[You et al., 2014] You, Z., Wang, X., y Xu, B. (2014). Exploring one pass 
learning for deep neural network training with averaged stochastic gra-
dient descent. En 2014 IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP), pp. 6854–6858.

[Young et al., 2006] Young, S. J., Evermann, G., Gales, M., Hain, T., Ker-
shaw, D., Moore, G. L., Odell, J. J., Ollason, D., Povey, D., Valtchev, y Wood-
land, P. C. (2006). The HTK book version 3.4.

[Zeiler y Fergus, 2014] Zeiler, M. D. y Fergus, R. (2014). Visualizing and 
understanding convolutional networks. En Computer Vision – ECCV 2014, 
pp. 818–833, Cham. Springer International Publishing.

[Zhang y Zhang, 2014] Zhang, C. y Zhang, Z. (2014). Improving multi-
view face detection with multi-task deep convolutional neural networks. 
En IEEE Winter Conference on Applications of Computer Vision, pp. 1036–
1041.



151

[Zhang et al., 2020] Zhang, H., Hongyu, L., Nyayapathi, N., Wang, D., 
Le, A., Ying, L., y Xia, J. (2020). A new deep learning network for mitigating 
limitedview and under-sampling artifacts in ring-shaped photoacoustic to-
mography. Computerized Medical Imaging and Graphics.

[Zhang et al., 2015a] Zhang, Y., Li, X., Zhang, Z., Wu, F., y Zhao, L. 
(2015a). Deep learning driven blockwise moving object detection with bi-
nary scene modeling. Neurocomputing, 168:454 – 463.

[Zhang et al., 2015b] Zhang, Y., Li, X., Zhang, Z., Wu, F., y Zhao, L. 
(2015b). Deep learning driven blockwise moving object detection with bi-
nary scene modeling. Neurocomputing, 168:454 – 463.





153

Apéndice A

Ajuste de las Arquitecturas
de las CNN

En este apéndice se presentan una serie de pruebas que permiten evi-
denciar las variaciones de hiper-parámetros para entrenamiento de redes 
neuronales convolucionales [Jiménez Moreno et al., 2017]. La operación de 
convolución implica un volumen fijo de entrada y un tamaño de filtro fijo. 
De igual manera, esto significa que para el entrenamiento de la red se debe 
establecer una base de datos de imágenes, que contengan el objeto de 
aprendizaje, u objetos de aprendizaje por categoría (cada objeto). Si bien 
cada categoría puede tener un diferente número de imágenes y cada ima-
gen un diferente tamaño, a la entrada de la red deben ser redimensionadas 
de forma uniforme. Esta operación de redimensionamiento puede implicar 
variaciones de las características de aprendizaje. Por ejemplo, si la imagen 
es de un tamaño considerable en píxeles (superior a un Megapíxel), el redi-
mensionamiento perderá resolución de la imagen, este efecto empeora si 
la imagen no es cuadrada. De forma que, las dimensiones de la imagen de 
entrada de la red, ya con el respectivo redimensionamiento, hacen parte 
de los parámetros a determinar y afectan el costo computacional.
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Otro aspecto relevante de la base de datos es la cantidad de imágenes. 
Mientras mayor sea esta, mejor podrán establecerse los filtros de convolu-
ción. Esta base de datos debe repartirse en un grupo de entrenamiento y 
otro de validación, en relación promedio de 60/40 a 80/20. Donde el tiem-
po de entrenamiento tiene como uno de los parámetros de incremento el 
tamaño de la base de datos a emplear, de forma proporcional. Del conjun-
to de imágenes de entrenamiento, se emplea un subconjunto de imágenes 
que se utiliza para evaluar el gradiente de la función de pérdida y actualizar 
los pesos, denominado mini-batch, el tamaño de dicho subconjunto puede 
configurarse como uno de los parámetros de la red.

Debido a la multiplicidad de combinaciones que se pueden obtener 
de las diferentes variaciones de los parámetros de entrenamiento, solo 
se tomarán las más relevantes para poder apreciar su incidencia en la de-
terminación de una arquitectura óptima de clasificación. A continuación, 
se exponen dichas variaciones sometidas al entrenamiento. En primera 
instancia, mediante dos equipos de computo de similares características. 
Pero, uno empleando procesamiento por CPU y el otro por GPU. Ambos 
equipos se caracterizan por poseer un procesador Intel core i7 de séptima 
generación y 16 GB de memoria RAM, donde el equipo con GPU cuenta 
con una tarjeta NVIDIA 1050 de 4 GB de memoria. En las Tablas A-1 - A-4, 
se puede validar el efecto de emplear dos bases de datos de imágenes 
redimensionadas a escalas diferentes, sometidas a dos tipos de redes con 
variaciones de hiper-parámetros.

En las Tablas A-1 y A-2, se observan las mismas combinaciones de red, 
sometidas a las mimas bases de datos de entrada, pero validando las va-
riaciones de entrenamiento basados en cambios del equipo de procesa-
miento. La diferencia fundamental se halla en el tiempo empleado, donde 
el consumo de la CPU se hace notorio ralentizando procesos adicionales 
al entrenamiento y, como se evidencia bajo tiempos prolongados, impli-
cando un costo computacional elevado. Las pequeñas diferencias en la 
eficiencia de la red entrenada se dan por las variaciones propias de un en-
trenamiento particular bajo el random de imágenes que emplea en la se-
paración de los grupos de entrenamiento y validación. La arquitectura de 
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la red 1 consta de 2 capas de convolución-relu-pooling, mientras que la red 
2 consta de 3 de estas capas, donde la notación N-I en las tablas, alude a 
No Implementada, denotando la diferencia entre ambas redes. Se puede 
apreciar cómo el entrenamiento con imágenes de mayor tamaño entrega 
mayor información de aprendizaje a la red. Sin embargo, para el caso em-
pleando un incremento en la profundidad de la red no resulta significativa-
mente mejor.

La Tabla A-3 se articula con la Tabla A-2, al evidenciar las variaciones de 
los hiper-parámetros y profundidad de la red, variando la razón de apren-
dizaje (learning rate) para observar su efecto. El primer cambio notorio es 
una reducción del tiempo de aprendizaje, pero la eficiencia de discrimina-
ción de categorías disminuye. Incluso una prueba con este valor en 0.005, 
buscando una media entre los dos casos, evidencia tiempos y eficiencias 

Tabla A-1: Entrenamiento por CPU Learning Rate 0.001.

Tabla A-2: Entrenamiento por GPU Learning Rate 0.001.
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intermedias entre las tabuladas. Donde, frente al costo computacional, es 
preferible dedicar más tiempo al entrenamiento bajo este parámetro.

De las pruebas realizadas, se establece como arquitectura base la red 
2, con una entrada dimensionada a 128x128 y eficiencia de 84,87%, según 
la Tabla A-2, debido a que es la que mejor desempeño presenta en relación 
al costo computacional y flexibiliza así mayor número de pruebas.

La Tabla A-4 ilustra el cambio del número de filtros por cada una de las 
tres capas de convolución para esta arquitectura, evidenciando una me-
jora en la eficiencia hasta del 96,32%. Dicho cambio debe obedecer a un 
balance de la información a aprender de la capa anterior, se observa que 
un uso excesivo de filtros, degradan el desempeño final.

Se observó que la incidencia del equipo de computo se hace relevante 
para el entrenamiento de la red y no para su uso en la labor de clasificación. 
Siendo así indiferente para una aplicación si se cuenta o no con una GPU. 
Sin embargo, se tiene que para poder iterar los parámetros de entrena-
miento de la red a fin de optimizar la arquitectura a emplear, aún cuando 

Tabla A-3: Entrenamiento por GPU Learning Rate 0.01.

Tabla A-4: Variación filtros de la arquitectura CNN escogida.
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se parta de una base de datos adecuada, según las consideraciones aquí 
establecidas, los tiempos de convergencia demuestran la ventaja evidente 
del uso de la GPU. Se logró establecer que las variaciones en el tamaño de 
los filtros de convolución están relacionadas con las dimensiones del volu-
men de entrada. De forma que, el aprendizaje de características relevantes 
de una categoría dada, mejora mientras mas información se obtenga de 
esta. La razón de información esta determinada por el aumento del tama-
ño de los volúmenes en cada capa, que obedece a un aumento gradual 
del aprendizaje que cada filtro lleva a la siguiente capa. Para validar las 
pruebas presentadas es necesario realizar cambios paulatinos de un solo 
parámetro a la vez, que permitan el correcto análisis del efecto que causa 
su variación en el entrenamiento. Mediante iteraciones múltiples, se evi-
dencian las relaciones finales que permiten converger más rápidamente 
en una red eficiente. Pero, se destaca la importancia de una base de datos 
adecuada, es decir, que genere patrones claros de aprendizaje.
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CNN para Reconocimiento
de Comandos de Voz

 Un complemento necesario para un robot asistencial, como el plan-
teado, es el poder recibir la orden de entrega de una herramienta de forma 
natural, por ejemplo un comando de voz [Pinzon et al., 2018]. Para aplica-
ciones de reconocimiento de habla no es sencillo implementar una arqui-
tectura tipo red neuronal convolucional. A diferencia de las arquitecturas 
creadas para reconocimiento de imágenes, en las que se puede tener una 
idea de la dimensión del objeto a reconocer, se puede iniciar con kernels de 
filtros que permitan identificar las características generales de dichos ob-
jetos, en el caso de reconocimiento de habla, los patrones que se quieren 
reconocer no son evidentes, cada combinación de palabras exhibe carac-
terísticas particulares. 

Con el fin de construir la arquitectura de la red y efectuar su entrena-
miento, se construye una base de datos con las tres palabras de las que 
se quieren reconocer: bisturí, destornillador y tijeras. Dicha base de datos 
consta de 155 grabaciones por palabra de diferentes usuarios, con una du-
ración de 2 segundos por grabación. De éstas, se toman 125 audios por 
categoría para entrenamiento y 30 para validación, obteniendo un total de 
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Figura B-1: Señal de voz para Bisturí.

375 audios de entrenamiento y 90 de prueba. Cada audio es adquirido con 
una frecuencia de muestreo de 16000 Hz.

Debido a que las redes neuronales convolucionales son especializa-
das en reconocimiento de patrones, el encontrar una característica en una 
señal pura no se hace tan sencillo, ni evidente para la red. Por tal motivo, 
se requiere convertir la señal a una entrada más adecuada para guiar a la 
red en su aprendizaje. Para esto, se hace una extracción de características 
de cada señal de audio, con el fin de obtener un mapa que permite ver el 
comportamiento de la señal a través del tiempo en diferentes frecuencias. 
Esta extracción se realiza por medio de los MFCC (Mel-frequency cepstral 
coefficients) [Davis y Mermelstein, 1980], los cuales han tenido un amplio 
uso en los sistemas de análisis del habla.

Para efectuar la extracción de características, en primer lugar, se 
realiza un preénfasis de la señal, pasándola por un filtro de primer orden 
[Young et al., 2006], como

aplicando un coeficiente α = 0,97, siendo Sn la señal original y S'n la señal 
filtrada. Un ejemplo de este proceso, se muestra en la Figura B-1, para la 
palabra Bisturí.

Una vez hecho el filtrado, se realiza el framing y windowing, con el 
fin de arreglar las muestras en frames y atenuar las discontinuidades de la 
señal, por medio de
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Cabe resaltar que cada frame tiene una duración de 20 ms y es 
muestreado cada 10 ms. La transformación se aplica a las muestras
{S'n , n = 1,Nf  } [12], siendo Nf   el número de frames. Seguido de esto, se 
obtiene el espectro de magnitudes, por medio de la Transformada Rápida 
de Fourier de cada frame, con una longitud de N = 512. Ya que cada frame 
contiene 320 muestras, se debe usar la siguiente potencia de 2 de la canti-
dad de muestras. Para encontrar las magnitudes, utilizamos

Con el fin de usar los MFCC, las frecuencias deben ser trabajadas en la 
escala de Mel, definida como

donde f es la frecuencia en Hz. Con esta definición, se crea un banco de 
filtros triangulares separados uniformemente, con frecuencias de corte en 
escala de Mel dadas por

donde el límite inferior de frecuencia, flowmel, es de 300 Hz en escala Mel, 
y el límite superior de frecuencia, fhighmel, es de 8000 Hz en escala Mel. 
Los rangos de frecuencias, se pueden encontrar como

donde fmín representa el rango inferior (0 Hz),  fmáx el rango superior (8000 
Hz), M la cantidad de canales del filtro, cuyo valor es 20, K es la longitud 
de la respuesta en frecuencia, es decir K = (1 + N)/2. Finalmente, el banco 
de filtros queda definido como
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Figura B-2: Mapa de Características MFCC

Una vez diseñados los filtros triangulares, estos son aplicados a la sec-
ción única del espectro de magnitudes, acorde a

obteniendo como resultado las energías de los filtros, para luego, compu-
tarla con la transformada discreta del Coseno, mientras se le aplica el loga-
ritmo a todos filtros, obteniendo los coeficientes cepstrales (Cc) [Young 
et al., 2006]

Para este caso se tomó un numero de C = 12 coeficientes cepstrales por 
cada frame, obteniendo unas características generales dadas por la figura B-2.
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Figura B-3: Mapas de Características MFCC y derivadas.

Para el reconocimiento del habla, el uso de otros parámetros ayuda a in-
crementar el desempeño del sistema. Por lo cual, se adicionan la primera deriva-
da (Cc’) y segunda derivada (Cc’) de los coeficientes con respecto al tiempo. 
Para esto, se aplica la primera derivada de Cci, dada por

y la segunda derivada de Cci  dada por

con un valor de análisis N=1 para este caso, obteniendo finalmente los ma-
pas de características mostrados en la Figura B-3.
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Los mapas de características son ordenados en un arreglo matricial de
12×199×3. Es decir, una matriz de 12 coeficientes adquiridos de 199 fra-
mes, con sus respectivas primera y segunda derivada. Esto se aplica a to-
das las grabaciones realizadas y, de esta forma, se construye la base de 
datos que se va a usar para ser ingresada en la red neuronal convolucional.

Se propone una arquitectura basada en filtros cuadrados (ver Tabla 
B-1). De forma tal que se puedan extraer características combinadas entre 
tiempo y coeficientes, permitiendo a la red aprender el comportamiento 
en las dos dimensiones. Adicionalmente, aunque en la mayoría de los tra-
bajos no se agrega padding a las convoluciones [Qian y Woodland, 2016], 
en éste si se usa, con el fin de que el tamaño original del volumen de entra-
da se mantenga a la salida de cada capa.

Tabla B-1: Arquitectura CNN.
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Es importante notar que, en el primer MaxPooling, se realiza el down-
sampling únicamente en el espacio de los MFCC. Principalmente, para que 
haya una reducción en los coeficientes. Pero, se mantengan los frames 
para la extracción. Mientras que en los siguientes, si se realiza tanto en el 
tiempo, como en los coeficientes. Cabe resaltar que, ya que se quiere ha-
cer el reconocimiento completo de cada palabra, diferente a como normal-
mente se realiza (por medio de fonemas), la entrada de la red es el arreglo 
matricial completo obtenido de los mapas de características.

Se realiza el entrenamiento de la arquitectura propuesta usando el 
conjunto de datos construido por un total de 600 épocas. Según el com-
portamiento obtenido durante el entrenamiento (ver Figura B-4), la red 
tuvo un espacio de dificultad en su aprendizaje, debido a la dificultad de 
adquirir los datos del mapa de características. Sin embargo, aproximada-
mente en la época 170, la red empezó a tener una curva de aprendizaje, 
alcanzando una exactitud de entrenamiento de más del 90% en la época 
238, hasta lograr una estabilización del 100% en la época 568. Con el fin 
de tener una mayor confiabilidad en el reconocimiento, se validaron las 
100 últimas épocas, obteniendo los dos mejores desempeños en la época 
500 y 511, con el 97.8% y 98.9% de exactitud de validación, respectiva-
mente. Por consiguiente, para certificar que en épocas anteriores no haya 
un mejor desempeño, ya que cabe la posibilidad que la red haya entrado 
a overfitting cuando la red se estabiliza en 100% (empieza a memorizar 
mas no a aprender), se realizó una nueva validación de las épocas donde 
su precisión de entrenamiento fue superior al 95%, obteniendo que, en la 
época 308, se tiene una exactitud de validación del 100%, superando a las 
dos mejores épocas encontradas anteriormente, por lo cual se toma como 
red final dicha época.
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La nueva arquitectura de una red neuronal convolucional enfocada al
reconocimiento de voz por medio de palabras, en función a la extracción 
de características de los audios obtenidos por medio de las MFCC, permitió 
obtener los datos de las palabras completas para ser ingresadas a la red, la 
cual logró un 100% de exactitud en la validación.

Figura B-4: Desempeño del entrenamiento de la red.
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Este libro aborda temáticas actuales pertinentes al desarrollo de 
la industria 4.0, donde las técnicas de inteligencia artificial y el 
uso de sistemas robóticos propenden por mejorar la 
calidad de vida de los seres humanos. Se presenta el 
desarrollo de arquitecturas paralelas de redes neuro-
nales convolucionales que, en el marco del apren-
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llos dada la robustez que poseen en el reconocimiento de 
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independiente por rama, cada una con una arquitectura propia, 
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reconocer una herramienta de entre un grupo, tomarla y entregarla 
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minar los beneficios de cada una. Además del problema de identifica-
ción de la herramienta a distancias variables, se expone un algoritmo 
de generación de trayectorias con evasión de obstáculos y un algorit-
mo orientado al agarre de la herramienta. Se plantea un entorno 
híbrido real-virtual, en el que se verifica la funcionalidad de la red 
diseñada, así como algunos aspectos por mejorar. 
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