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Capitulo 1

Sistemas para Inteligencia Robética

1.1. Introduccion

El presente documento expone el desarrollo de un algoritmo orien-
tado a esquemas de robdtica asistencial trabajando en ambientes mul-
ti-herramientas. Esto se refiere a un robot de tipo antropomdrfico, que se
desenvuelve en un area de trabajo compartida por una persona, a quien
asistird en tareas como entrega de herramientas. Para ello, el robot debe
identificar qué herramienta desea tomar dentro de un grupo de herramien-
tas, lo que corresponde a una labor de reconocimiento de patrones. Cada
herramienta presenta caracteristicas particulares que deben ser aprendi-
das mediante un algoritmo de reconocimiento.

En este trabajo, se expone una dificultad en dicho reconocimiento atn
no abordada en trabajos similares, y que surgid de los desarrollos propios
de robdtica asistencial realizados previamente. Al buscar reconocer una
herramienta dentro de un grupo, el sistema de reconocimiento de patro-
nes debe aprender las caracteristicas que exhibe cada herramienta. Tipica-
mente, esta tarea se realiza mediante la captura de laimagen del grupo de
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herramientas por medio de una cdmara, desde una posicién dada, apren-
diendo herramienta por herramienta.

Una vez reconocida y ubicada espacialmente la herramienta, se em-
plean algoritmos de planeacién de trayectorias que, por medio de la ci-
nematica del robot, permiten el desplazamiento del efector final hasta
la herramienta. Pero, si se presenta el caso que en el drea de trabajo un
usuario interrumpa dicha trayectoria, el robot debe buscar una solucién
para alcanzar su objetivo. En la actualidad, dicha solucidn se ha orientado
a detener el robot y esperar a que termine la interrupcién por parte del
usuario. Al buscar mejorar esta opcién, por el ejemplo, a partir de que el
robot sea capaz de generar la evasidn del usuario, o de lo que le obstruye,
se debe buscar una nueva trayectoria que este libre, partiendo desde el
nuevo punto en que se encuentra luego de detenerse (robot desplazado)
hasta la herramienta. Es aqui donde se presenta el problema de reconoci-
miento, desde la nueva posicidn se debe capturar la informacién de la he-
rramienta para generar el nuevo desplazamiento, donde al cambiar el pun-
to de captura, por cercania o lejania, la herramienta presenta mas o menos
caracteristicas a nivel de la imagen original capturada, lo que varia el grado
de reconocimiento desde el punto del aprendizaje inicial, dificultando el
reconocimiento y confundiendo las herramientas presentes en la escena.

Los algoritmos de desplazamiento en funcidn de una trayectoria libre,
partiendo de la captura del objeto de agarre desde una posicién siempre
fijay equidistante, se han trabajado ampliamente. Sin embargo, desde esta
perspectiva dindmica planteada (avanzar-detenerse y calcular, iterativa-
mente), no presenta auin soluciones que se hacen necesarias para mejorar
la interaccién hombre-mdquina, tal cual como lo hace un ser humano, que
cambia la trayectoria a su destino cuando un obstdculo se detecta y se va
aproximando a este. De manera que se realiza una revision del estado del
arte, que evidencia trabajos de reconocimiento de patrones en el campo
delarobdtica, e incluso de la robdtica asistencial, sin encontrar soluciones
al caso aqui expuesto. Motivo por el cual se considera un aporte al estado
del arte y al conocimiento. Este aporte se da en la construccién de una
arquitectura de reconocimiento de patrones, que considera variaciones de
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la distancia del objeto a reconocer desde el punto de captura de laimagen.
Dicha arquitectura se estructura desde técnicas de aprendizaje de tipo pro-
fundo (o de varias capas), que hacen parte de las técnicas mas novedosas
en el drea de reconocimiento de patrones.

Después de presentada la arquitectura, en el documento se exponen
algoritmos adicionales, que se requieren en la tarea de la robdtica asisten-
cial. Es el caso de un algoritmo de planeacion de trayectorias, mediante
técnicas de optimizacion no lineal; un algoritmo de evasion de obstaculos,
basado en la arquitectura disefiada; un algoritmo de agarre, para la toma
de la herramienta; y se sugiere un algoritmo de control para las variaciones
de peso, que implica el tomar una herramienta u otra. Finalmente, se expo-
ne el resultado de la tarea conjunta del robot asistencial empleando estos
algoritmos en un ambiente virtual.

1.2. Motivacion

La inclusién de agentes robdticos en diversas actividades humanas es
un componente del quehacer diario, que va cobrando mayor participacién
conforme se van dando avances tecnoldgicos. Es asi, como la Organizacién
para la Cooperacion y el Desarrollo Econdmicos (OCDE) prevé un incre-
mento en la fuerza laboral robdtica en los préximos 10 afios (2018-2028).
Una de las labores en las que vamos encontrando mds y mds robots es la
tarea de asistencia humana en diferentes ambientes y aplicaciones, lo que
implicara la interaccion hombre-mdaquina en un mismo espacio de trabajo
(ver Figura 1-1), impulsando asi el concepto de robdtica asistencial.

Cada aplicacion robdtica presenta diversos retos a cumplir. Pero, las
capacidades que debe tener el robot estan claras, en cuanto a la percep-
cién e interaccion que requiere con el medio en que se desenvolverd. Den-
tro de las aplicaciones de los robots asistenciales, estos cumplen tareas de
alto riesgo, esfuerzo o repetitividad. Aunque, hoy en dia su participacién
se ve restringida a una secuencia de movimientos pre-establecidos, 0 a un
control via sistemas inaldmbricos, sistemas hapticos (de realimentacion al
usuario), o incluso por sefias (procesamiento de imagen), que estan condi-
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cionados por las técnicas de percepcidn e interaccion de maquina predo-
minantes durante los ultimos 15 afios, algunas de las cuales son referidas
mas adelante.

Figura 1-1: Interaccién hombre-mdquina'.

La autonomia de los robots es limitada y, aunque los sistemas de vi-
siéon de maquina actuales permiten aumentar dicha autonomia, la capaci-
dad de discriminacidon de objetos para la interaccién robdtica se reduce
a técnicas como conversidn en espacios de color, calculo de contornos,
uso de clasificadores (tipo Haar por ejemplo), y redes neuronales de maxi-
mo una capa oculta (MPL, de sus siglas en inglés, Multi Layer Perceptron).
Para este ultimo caso, mas de una capa ha presentado problemas de so-
bre-entrenamiento o perdida de la funcién de error. Estos algoritmos po-
seen problemas de reconocimiento, debido a restricciones como la profun-
didad limitada de las redes neuronales (nimero de capas ocultas), por las
razones mencionadas previamente, y el manejo de sombras o cambios de
iluminacidn, o de distancia, en los sistemas de visidn, lo que limita mucho el
desenvolvimiento de un robot en los ambientes asistidos.

Algunos trabajos previos han permitido evidenciar directamente las
falencias de los algoritmos de procesamiento de imagenes [Jimenez Mo-
reno, 2011] y reconocimiento de patrones mediante redes neuronales [Pin-
zon-Arenas et al., 2019], en sistemas de aplicaciones de visién de maquina
como el presentado en la Figura 1-2.

1 lIzquierda, tomada de: https://blog.robotiq.com/hubfs/eBooks/Part%20Presentation%20Playbook
%20.pdf?hsLang=en-ca&t=1536232209651. Derecha, tomada de: https: //elpais.com/economia
[2016/05/20/actualidad/1463769085 077235.html
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Figura 1-2: Sistema de vision de maquina para deteccion de cansancio en conductores
[Jimenez Moreno, 2011].

Frente a estas falencias, recientes métodos de aprendizaje como el
Deep Learning (DL), ofrecen nuevas posibilidades de entrenamiento de
sistemas neuronales y de procesamiento de imagenes, que pueden ser
aprovechados para la interaccién con agentes robdticos (ver Figura 1-3).
Dichos métodos de aprendizaje han mostrado su eficiencia en el recono-
cimiento de patrones. Por ejemplo, a nivel de reconocimiento de coman-
dos de voz [Pinzén-Arenas y Jiménez-Moreno, 2020], e identificacion de
objetos en imagenes [Velandia et al., 2019]. Dentro de estos métodos de
aprendizaje se encuentran las redes neuronales convolucionales (CNN, de
sus siglas en inglés, Convolutional Neural Networks), que son la principal
técnica de Deep Learning orientada al reconocimiento de objetos en ima-
genes [Jimenez Moreno, 2011], con grandes ventajas sobre las técnicas
convencionales de procesamiento de imagenes y problemas descritos en
el parrafo anterior.

Sin embargo, las aplicaciones que emplean redes neuronales convolu-
cionales siguen en desarrollo y dan lugar a mejoras en los algoritmos exis-
tentes. En el caso de la robdtica asistencial, estas aplicaciones son recien-
tes y las falencias de las redes neuronales convolucionales ya comienzan a
abordarse. Una de estas falencias es la capacidad de las redes neuronales
convolucionales en la identificacion de objetos en ambientes dinamicos,
donde la cdmara se acerque o aleje del objeto. Para agentes robdticos asis-
tenciales, los cuales pueden llegar a variar la perspectiva con la que ven un
grupo de objetos en el espacio, debido a su naturaleza mdvil, esta falencia
genera problemas de confusién de clases, la cual no ha sido abordada en
el estado del arte.
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Figura 1-3: Técnicas recientes aplicables a sistemas de vision de maquina.

La situacién mencionada previamente se presenta de forma caracte-
ristica en aplicaciones de interaccién hombre-maquina, donde el robot y el
usuario comparten la misma zona de desplazamiento. Por ejemplo, para
un robot que alimenta a una persona, o le alcanza instrumentos de traba-
jo, si la persona obstruye el desplazamiento del robot, este debe cambiar
de trayectoria, de forma que al buscar de nuevo el punto de destino, de-
marcado por el objeto o herramienta de interés, la perspectiva desde
este desplazamiento cambia, haciendo que aumenten o disminuyan las
caracteristicas de los objetos en su nuevo campo de visién, conllevando
problemas como la confusidon de clases. En el presente documento se ex-
pone un aporte al conocimiento, mediante la aplicaciéon de sistemas de
reconocimiento visual por redes neuronales convolucionales para agen-
tes roboticos, en ambientes de trabajo compartido hombre-maquina, ya
sea de forma colaborativa o asistencial, solventando las variaciones de
perspectiva de un grupo de objetos, que puedan generar confusién entre
estos por parte del robot.

1.3. Objetivos
1.3.1. Objetivo General
Estructurar una técnica de reconocimiento de herramientas en tres
dimensiones, mediante el desarrollo de un algoritmo basado en Deep Lear-

ning para emplear un brazo robdtico como asistente personal en escena-
rios multi-herramienta.
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1.3.2. Objetivos Especificos

. Analizar las técnicas existentes de Deep Learning aplicables a
la deteccidn de objetos, validando su funcionalidad, y deter-
minar la mejor arquitectura para discriminacion de herramien-
tas en imagenes.

. Desarrollar un algoritmo de entrenamiento basado en la me-
jor arquitectura de Deep Learning, que permita distinguir una
herramienta particular de un grupo de herramientas, some-
tiéndola a variaciones de distancia.

. Desarrollar un algoritmo de posicionamiento que permita a
un brazo robdtico ubicar su efector final sobre una herra-
mienta identificada, evitando colisionar con una persona que
ingrese a su espacio de trabajo, o con quien interactue.

. Implementar un ambiente de pruebas virtual o real, que per-
mita validar la técnica desarrollada mediante la localizacion
de una herramienta por parte de un agente robdtico asisten-
cial y entregarla a un usuario, empleando Deep Learning.

1.4. Marco Metodolégico

Con el propdsito de dar cumplimiento a los objetivos propuestos, el
marco metodoldgico se establece, inicialmente, validando las prestaciones
de las redes neuronales convolucionales en el aprendizaje de herramientas
en un escenario particular, buscando una arquitectura de red, que permita
la identificacién de objetos deseados, mediante heuristicas soportadas en
la literatura. Inicialmente, se entrena una red neuronal convolucional con
una base de datos de un grupo de herramientas a una distancia fija y, poste-
riormente, se evaltia con imdagenes de dichas herramientas a diferentes dis-
tancias del foco de la cdmara, esto permite evidenciar la necesidad de una
arquitectura diferente a la estructura neuro-convolucional convencional.
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Para ofrecer una solucion a esta necesidad, se establecieron dos es-
quemas en una arquitectura multi-convolucional paralela, validando dos
métodos de aprendizaje diferentes, para definir la mejor arquitectura de
red a establecer, que incluye un canal adicional de informacidn de la dis-
tancia de la cdmara al objeto. Una vez hecho esto, se determina una capa
final, que permite la ponderacidn de las ramas, mediante dos propuestas:
una aritmética y otra mediante un sistema de inferencia difusa. De forma
que, el resultado obtenido es una arquitectura neuro-convolucional, que
en funcién a una entrada RGB-D (imagen a color més la informacién de pro-
fundidad), identifica las herramientas de un escenario particular, que per-
mite variaciones de ubicacidn espacial del sensor de captura de imagen.

Una vez lograda la identificacién, se aplica un algoritmo de optimiza-
cién de trayectoriaaunbrazo robdtico de tipo académico, para el agarre de
la herramienta objetivo en dicho escenario. Los puntos de desplazamiento
del algoritmo realimentan la entrada de la red, en las diferentes perspecti-
vas que el brazo va tomando de la herramienta. Se emplea la arquitectura
disefiada para establecer un algoritmo de evasidon de obstaculos dindmi-
cos, como puede ser un usuario que ingresa en el drea de trabajo del robot.

Por ultimo, los algoritmos resultantes se prueban en ambientes simu-
lados y reales, para evidenciar la utilidad de los mismos. De forma general,
la metodologia empleada es tipo experimental.

1.5. Lineadeinvestigacion

El desarrollo de esta investigacion esta enmarcado dentro del Grupo
de Investigacion, Desarrollo y Aplicaciones en Sefales - IDEAS, de la Uni-
versidad Distrital Francisco José de Caldas, en las lineas de investigacion:
Procesamiento de Imagenes y de video, y Control y Automatizacion. Asi
mismo, dentro del grupo de investigacion Davinci, de la Universidad Militar
Nueva Granada, en la linea de investigacion de robdtica hibrida.
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1.6. Contribucion del trabajo

Un robot asistencial busca desplazarse con un fin determinado. Por
ejemplo, en el caso de una plataforma multi-herramientas, para tomar una
herramienta entre un grupo de estas, y, debido a que parte de la labor que
debe solventar el robot, al interactuar en un ambiente compartido, es el
desplazamiento hacia su objetivo, en el que puede encontrar posibles obs-
trucciones en su trayectoria, o tener que manejar ciertos limites de seguri-
dad, para evitar colisiones. Al establecer una trayectoria, para alcanzar el
punto en el espacio donde se encuentra la herramienta, dado que se bus-
ca tener un entorno compartido hombre-maquina, el robot debe validar
permanentemente que no se presenten obstaculos en dicha trayectoria.
De ser asi, debe replantear su desplazamiento desde la posicién en la que
detecta el obstaculo. El determinar dicho cambio implica moverse lateral-
mente fuera del alcance del obstaculo, donde debe reevaluar la posicién
de la herramienta desde su nueva perspectiva. Al haberse desplazado la
distancia del nuevo punto de percepcidn las herramientas exhiben nuevas,
o pierden, caracteristicas respecto a la percepcidn inicial, desde el punto
de origen. Lo que deja al entrenamiento inicial de la arquitectura de red,
encargada de reconocer la herramienta, susceptible a variaciones vy,
por consiguiente, a errores en la clasificacion.

El aporte al conocimiento logrado consiste en el desarrollo de una ar-
quitectura de red basada en Deep Learning, para entrenamiento de robots
asistentes en reconocimiento de objetos orientado a plataformas multi-he-
rramienta. En donde se robustezca, en funcién de la distancia, el reconoci-
miento de dichos objetos, sin importar las variaciones que pueda sufrir el
punto de captura de la imagen, respecto al objeto. El algoritmo base sera
tal que determinara la arquitectura de Deep Learning, que ofrece una solu-
cién a este problema y permite el desarrollo de una aplicacién de robdtica
asistencial, con un grado de inteligencia mayor al actualmente encontrado
en el estado del arte.
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Para el problema que se desea abordar, debe ser claro que se requiere
una cdmara alojada en el efector del brazo, que oriente la relacién espacial
entre el punto del actuador y su destino final, como lo es la localizacién
espacial de la herramienta. Una cdmara fija supervisora esta susceptible a
obstrucciones del brazo y del usuario, lo cual al ocluir la herramienta impi-
de surelocalizacion en funcion al desplazamiento del efector. Una analogia
clara del problema puntual a abordar se da con respecto a la vision humana
que, dependiendo de la distancia, logra reconocer ciertos objetos, segun
se evidencia en la Figura 1-4. Un sistema de reconocimiento de patrones en
imagenes sufre el mismo problema, si la cdmara de adquisicion de la ima-
gen se acerca, o aleja, del objeto podra reconocer ciertas caracteristicas y
otras no. Por lo que se busca disefiar una arquitectura de redes neuronales
convolucionales que genere el mismo valor de confidencia en el reconoci-
miento de un objeto, sin importar si se da dicho cambio.

LO
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ES VER
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INVISIBLE PARA
L o 3 D E M A 3

Figura 1-4: Discriminacion de caracteres con cambio de escala

1.7.  Algoritmo empleado para el desarrollo propuesto

El procedimiento desarrollado para abordar el problema previamente
establecido, se muestra en el Algoritmo 1.
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Algoritmo 1: Desarrollo del trabajo

Begin

Paso 1: Establecer las caracteristicas de las redes convolucionales

para deteccion de objetos en ambientes dinamicos.
Paso 2: Disenar una arquitectura de red robusta a cambios

dindmicos del punto focal mediante una estructura paralela.
Contribucion
Begin
Paso 1: Disenar una arquitectura base de red convolucional
para reconocimiento segin profundidad, mediante:
a. Entrenamiento por transferencia de aprendizaje del
conjunto paralelo.
b. Disenar cada arquitectura paralela por separado.
Paso 2: Disefiar una capa de salida para ponderaciéon de cada
respuesta paralela en funciéon de la profundidad, mediante:
a. Establecer una ecuacion genérica de tipo algebraico que
pondere la salida y emplee un elemento de saturacién final.
b. Disenar un sistema de inferencia difusa para ponderacion
de las capas establecidas.
Paso 3: Establecer la mejor arquitectura para reconocimiento
en ambientes dindmicos.
end
Paso 3: Establecer un conjunto de algoritmos necesarios para
entrenar un robot asistencial en ambientes dindmicos para agarre y
entrega de herramientas, entre los que se tiene:
a. Planeacién de trayectorias.
b. Evasion de posibles colisiones.
c. Agarre de herramientas.
d. Controlador para el efector de agarre.
Paso 4: Validar el desarrollo mediante un ambiente virtual de
simulacién.
end

1.8.

Organizacién del documento

El capitulo 2 expone los conceptos generales y el estado del arte so-
bre agentes robdticos y el empleo de algoritmos de aprendizaje de ma-

quina,

que permiten dotar de cierto grado de inteligencia a dichos robots.

De forma que, se busca exponer un escenario en el que: i) la robética co-
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bra un papel cada vez mds relevante en la vida cotidiana, y ii) los algorit-
mos de aprendizaje de maquina aun estan en desarrollo y son de interés
investigativo. Esta revision de los trabajos de investigacién, en robdtica
asistencial y algoritmos de inteligencia de maquina, pretende validar el
aporte aqui presentado, donde lo primero que destaca es la reciente in-
corporacion de las técnicas de aprendizaje de maquina basadas en Deep
Learning en el campo de la robdtica y cdmo el escenario multi-herramien-
ta planteado no ha sido explorado, por lo cual los problemas y soluciones
asociadas, estan en incubacion.

El capitulo 3 expone de forma puntual los algoritmos de Deep Lear-
ning, que actualmente estan siendo trabajados, sus ventajas, frente a
técnicas convencionales de aprendizaje de maquina, y sus desventajas, al
operar en ambientes dindmicos, como lo es el requerido en la interaccion
hombre-maquina. Aqui, se evidencia claramente el problema de identifica-
cién de objetos cuando la distancia de captura de la imagen varia.

El capitulo 4 presenta el aporte principal del presente trabajo, donde
se desarrolla una solucién frente a la desventaja mencionada, mediante el
disefio de una red multi-paralela, con una capa de ponderacién final, que
se valida mediante dos métodos: un sistema de inferencia difusa y el desa-
rrollo de una ecuacidn que realiza de forma generalizada la misma tarea.
Se expone un caso representativo que permite evidenciar el desempefio
de lared y establecer asi comparaciones frente a los resultados de ambas
metodologias empleadas.

El capitulo 5 presenta algunos algoritmos necesarios para la imple-
mentacion de un ambiente robdtico asistencial en plataformas multi-he-
rramientas. Primero, se presenta un algoritmo de optimizacién para pla-
neacién de trayectorias del brazo robdtico. Posteriormente, se expone
una aplicacidén adicional de la red propuesta como aporte al conocimiento,
aplicada a la evasidn de obstdaculos en el desplazamiento robdtico asisten-
te. Finalmente, se expone un algoritmo de agarre, orientado a la captura
de herramientas por medio de un efector tipo pinza.
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El Capitulo 6 presenta el ambiente virtual de pruebas, contemplando
todas las etapas descritas a lo largo del documento: i) deteccidn de la he-
rramienta, ii) generacidn de la trayectoria del punto inicial al punto donde
se detectd la herramienta, iii) descripcidn de la trayectoria con evasién de
colisiones, iv) seleccién del punto de agarre de la herramienta y proceso de
entrega de la misma.

Finalmente, el Capitulo 7 presenta las conclusiones obtenidas en el

desarrollo del trabajo de investigacion en cada etapay los trabajos futuros
derivados que complementarian el aqui expuesto.
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Capitulo 2

Desarrollo de Sistemas para
Robética Auténoma

Este capitulo permite contextualizar los desarrollos actuales de los
algoritmos de inteligencia artificial y su empleo en sistemas robdticos, me-
diante un analisis del estado del arte. También se aborda cdmo los recien-
tes desarrollos de técnicas de Deep Learning, especificamente los basados
en redes neuronales convolucionales, estan generando avances en la fron-
tera del conocimiento, que pueden ser orientados hacia nuevas aplicacio-
nes para sistemas robdticos.

2.1. Generalidades

La capacidad para que un robot pueda realizar de forma auténoma
una tarea, con algun grado de toma de decisiones, se basa en la integra-
cidn de técnicas tanto de andlisis cinematico como de inteligencia artificial,
en los pasos iniciales e intermedios durante la ejecucion de la tarea a llevar
a cabo. Actualmente, en la industria, la mayor parte de los agentes robdti-
cos cumplen papeles repetitivos. Por ejemplo, en lineas de ensamble (ver
Figura 2-1), donde existe una pre-programacion de la tarea y el robot no
toma ningun tipo de decisidn, lo que los incapacita para acciones como la
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interaccion hombre-maquina. A la par, se suelen utilizar dispositivos de se-
guridad para proteccion, si una persona se aproxima al robot, deteniendo
la operacidn que este ejecuta. La Figura 2-2 ilustra una celda infrarroja de
seguridad, que si es atravesada detiene la operacidn del robot.

Figura 2-2: Celda infrarroja de seguridad?.

El soportar las actividades robdticas por medio de algoritmos de in-
teligencia artificial se fundamenta en las técnicas de Machine Learning
(ML). Estas técnicas permiten dar mayor autonomia a agentes robdticos,
de cdmputo y similares. Entre las multiples aplicaciones que brindan se en-

1 Tomado de: https://www.motorpasion.com/industria/general-motors-esta-conectando-los-robots-
de-sus-fabricas-a-internet-y-ya-comienza-a-cosechar-beneficios

2 Tomado de: https://www.interempresas.net/Robotica-industrial/Articulos/28378-La-proteccion-se
gura-de-celdas-robotizadas.html
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cuentran: el reconocimiento de comandos naturales como el habla [Pin-
zén-Arenas et al., 2019], el reconocimiento de escritura [Pinzén-Arenas y
Jiménez-Moreno, 2020] o de sefias [Velandia et al., 2019], la interaccién
hombre-maquina[Pinzén et al., 2017]y la toma de decisiones [ Pachon-Sues-
cun et al., 2020].

Dentro de las mas recientes técnicas de Machine Learning actualmen-
te se destacan las referentes al Deep Learning [Perconti y Plebe, 2020,
Koumakis, 2020, Zhang et al., 2020, Azarang y Kehtarnavaz, 2020, Salehi
et al., 2020]. La Figura 2-3 ilustra la relacién entre la inteligencia artificial, el
Machine Learning y el Deep Learning. El Deep Learning ofrece algoritmos
en la linea del Machine Learning para implementar sistemas de inteligencia
artificial, que actualmente estan siendo desarrollados y aplicados a dife-
rentes areas de la ingenieria y las ciencias basicas, con menos de una déca-
da de aplicacion.

Al

La inteligencia artificial |ML
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Figura 2-3: Relacién entre inteligencia artificial, Machine Learnign (ML) y Deep Learning (DL).

El Deep Learning estd orientado al entrenamiento multicapa, basado
en los esquemas de aprendizaje del cerebro humano, permitiendo abarcar
grandes cantidades de datos, de los cuales se extraen los patrones de inte-
rés. Por ejemplo, los que derivan de imagenes y el reconocimiento propio
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de objetos dentro de esta. En la Figura 2-4 se puede observar la evolucion
de las técnicas de reconocimiento de patrones por la via del entrenamien-
to neuronal, se observa que hacia 1979 se iniciaron los desarrollos con
redes convolucionales, pero solo hasta 1999 se desarrollaron algoritmos
de entrenamiento profundo basados en Maquinas Restrictivas de Bolzt-
man (RBM, de sus siglas en inglés, Restrictive Boltzman Machine), que en
2006 derivaron en las primeras técnicas de Deep Learning con las redes de
creencia profunda (DBN, de sus siglas en inglés, Deep Belief Networks).
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Figura 2-4: Linea de tiempo de Deep Learning.

La base de un sistema de inteligencia robdtica, que permita la inte-
raccion hombre-maquina, debe integrar las técnicas propias del recono-
cimiento de patrones, que le faculten para la toma de decisiones y res-
pectivas acciones. Los desarrollos en Deep Learning ofrecen soluciones en
estos aspectos. Por ejemplo, para el caso de la presente investigacion, en
la busqueda de la interaccidon de un robot como asistente, es requerida la
capacidad de percepcidn del medio por parte de este, lo cual se logra con
una camara como elemento de captacién del medio. En funcidén de la infor-
macidon que se obtiene con la camara, el robot debe discriminar qué hay en
el medio y qué hacer con lo encontrado.

2.2. Estado del arte en sistemas de inteligencia robética

La interaccion hombre-maquina con agentes robdticos se ha presen-
tado como un drea importante de investigacion y desarrollo en las dos ulti-
mas décadas [Daugherty y Wilson, 2018]. En este campo, se pueden encon-
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trar agentes robdticos desempefiando diferentes tareas de la mano con
algoritmos de Machine Learning. Por ejemplo, en medicina operan como
asistentes para el tratamiento de patologias [Kiguchi y Hayashi, 2013]; en
sistemas de automatizacién, operan en tareas de tipo industrial [Buchner
et al., 2012]; en sistemas bioldgicos, permiten emular diferentes ambien-
tes mediante redes neuronales [Kopman et al., 2015]. En [Jiménez-Moreno
et al., 2012] se entrena un sistema de visién de maquina mediante redes
neuronales a fin de detectar sintomas de somnolencia o distracciéon en un
conductor.

Otra de las técnicas de Machine Learning son los sistemas difusos. Por
ejemplo, en [Farooq et al., 2012, Guechi et al., 2012, Ansari et al., 2012] estos
sistemas se utilizan para determinar la trayectoria de navegacion de agen-
tes robdticos. En [Moreno y Lopez, 2013] se presenta un sistema hibrido
de Machine Learning, un algoritmo de clustering difuso que permite esta-
blecer la trayectoria de un mdvil bajo un sistema de vision de maquina en 2
dimensiones. En [Moreno et al., 2013] se presentan varios casos de robots
asistenciales que emplean sistemas difusos para su operacion.

Los principales desarrollos alcanzados en Deep Learning cubren algu-
nos casos puntuales como modelamiento de datos de series temporales
[Langkvist et al., 2014]. Una aplicacién bastante trabajada se encuentra en
los sistemas de reconocimiento de habla [Cui et al., 2015], para la cual se
vienen presentando diversos métodos complementarios a las técnicas de
Deep Learning, como la inclusidn del método de gradiente descendiente
estocastico promedio [You et dl., 2014], reduciendo el tiempo de entrena-
miento de la red. Otra mejora de Deep Learning bajo esta aplicacion se
puede encontrar en [Ochiai et al., 2014], en donde un sistema de reconoci-
miento de palabras basado en modelos ocultos de markov (HMM, de sus
siglas en inglés, Hiden Markov Models) es integrado con una red neuronal
profunda (DNN, de sus siglas en inglés, Deep Neural Network), confor-
mando un nuevo modelo denominado DNN-HMM, que mejora el reconoci-
miento de la técnica inicial con una reduccién de error del 8.4%.
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Los sistemas de reconocimiento de caracteres son otra aplicacién im-
portante de las técnicas de Deep Learning, que han originado modelos hi-
bridos. Por ejemplo, en [Ji et al., 2014], los autores presentan una variacion
de las Deep Belief Networks (DBN), a fin de lograr reducir la redundancia
en el entrenamiento. Esta nueva red denominada SR-DBN (SR, de sus siglas
en inglés, Sparse Response), es capaz de extraer multiples caracteristicas
a multiples niveles de abstraccion, validdndola en caracteres numéricos a
mano alzada, logrando mejorar significativamente el desempefio de téc-
nicas, como el andlisis de componentes principales (PCA, de sus siglas en
inglés, Principal Component Analysis).

En relacién al tratamiento de imagenes, se han comenzado a presen-
tar desarrollos de métodos de identificacién de objetos y extraccion de las
caracteristicas presentes en laimagen . Por ejemplo, en [Chen et al., 2014],
los autores proponen una variacion al entrenamiento de una red neuronal
convolucional profunda, otro tipo base de Deep Learning, con el objetivo
de extraer de imagenes satelitales complejas, patrones deseados como lo
es la deteccidn vehicular, desarrollan una variante hibrida dividiendo los
datos en varios bloques de diferentes escalas y empleando caracteristicas
Haar para ello, presentando asi un mejor desempefio que las redes neu-
ronales profundas convencionales y solucionando el problema de escala,
visto desde el satélite, a la que se pueda encontrar el vehiculo en entornos
como una ciudad.

Otras aplicaciones se centran en la deteccidn facial. Por ejemplo,
en[Zhangy Zhang, 2014], los autores utilizan Deep Learning para iden-
tificar rostros con cambios de pose, de expresién y de iluminacidn, to-
mando una base de 117 mil rostros con dichos cambios a fin de reconocer 5
poses que, con variaciones de angulo, determinan 15 subcategorias en las
que encontrar un posible rostro, superando asi los problemas de clasifica-
dores convencionales como los presentados en el algoritmo de Viola-Jones
[Viola'y Jones, 2001]. Otras aplicaciones de deteccidn de rostros mediante
Deep Learning permiten identificar estados de adormecimiento en un con-
ductor [Dwivedi et al., 2014], reconocimiento de expresiones [Song et dl.,
2014], y reconocimientos de caracteristicas de belleza [Gan et al., 2014].
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En [Hou et al., 2015] se presenta un caso particular de entrenamiento
bajo Deep Learning. En este caso, se busca evaluar la calidad de una ima-
gen, dada la posibilidad de que contenga ruido, variaciones de resolucion,
o pre-procesamiento, clasificandola en 5 grados o niveles de calidad y bus-
cando emular la forma en que lo haria un humano. Otras aplicaciones de
interés en procesamiento de imdgenes se pueden encontrar en [Wang y
Morel, 2014, Rioux-Maldague y Giguére, 2014, Wu et dl., 2014].

En el campo de la automatizacién, son pocos los trabajos desarrolla-
dos mediante técnicas de Deep Learning. En [Tamilselvan y Wang, 2013],
los autores proponen un método de validacién de las condiciones de ope-
racion de sistemas eléctricos complejos, como son los motores de avién
o transformadores eléctricos. Mediante entrenamiento multivariable em-
pleando Deep Learning, se desarrolla un algoritmo orientado a reducir
costos de mantenimiento y prevencién de fallas. En [Shang et al., 2014] se
presenta un entrenamiento mediante Deep Learning para un sensor indus-
trial capaz de validar multiples entradas (35 para este caso), que permite
estimar el punto de destilacién por unidad de diesel pesado, mostrando
las ventajas que presenta sobre redes neuronales simples y maquinas de
soporte vectorial.

Los desarrollos orientados en Deep Learning han generado comple-
mentos a los métodos convencionales de esta técnica, como lo son las re-
des convolucionales, auto-encoders y las redes de creencia profunda, me-
joras que se han incrementado en los ultimos afios [Schmidhuber, 2015].
Algunas de estas mejoras estdn orientadas a aumentar la discriminacion de
las caracteristicas en imdgenes, como se presentan en [Zhang et al., 20153,
Dong et al., 2016, Guo et al., 2016]. Las variaciones presentadas involucran
modelos hibridos de Deep Learning con técnicas convencionales como ma-
quinas de soporte vectorial [Kim et al., 20153, Kim et al., 2015b] y aprendiza-
je multi-escala [Bai et al., 2016], donde el desarrollo de nuevas técnicas de
Deep Learning son emergentes de diversos trabajos de investigacion [Liu
et al., 2015, Zhang et al., 2015b].
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En la Figura 2-5, se puede observar una relacion de las aplicaciones
que recientemente (2016-2017) se han generado con el uso de las redes
neuronales convolucionales en diversos campos, donde se evidencia que
el mayor aporte se centra en el reconocimiento de patrones en imagenes.

Areas de aplicacién de las CNN

Figura 2-5: Areas de trabajo en redes neuronales convolucionales 2016-2017.

En el campo de la robdtica, igual que en el de la automatizacidn,
también son pocos los trabajos desarrollados mediante técnicas de Deep
Learning, donde es de destacar que este es un campo de aplicacion en el
que se requiere trabajo investigativo y desarrollo de técnicas para entre-
namiento robdtico. Dentro de los trabajos mds destacados se encuentran
los mencionados a continuacion, siendo evidente que las técnicas de Deep
Learning permiten implementar sistemas de inteligencia computacional en
robots [Neukart y Moraru, 2014].

Buchner, en [Buchner et al., 2012], propone un método de interaccién
humano-robot en el que, mediante analisis de procesamiento de image-
nes, reconoce sefiales de la mano para identificar las tareas a realizar por
parte del robot. De las caracteristicas extraidas, se emplea un sistema de
Machine Learning empleando una técnica de Deep Learning, que deriva
caracteristicas espacio-temporales en una jerarquia en forma de arbol res-
pecto a la imagen de entrada, combinado con técnicas conocidas de cla-
sificacion como lo son la maquinas de soporte vectorial y la técnica de los
K-vecinos mas cercanos.
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Guo, en [Guo et al., 2017], expone una métodologia de agarre de ob-
jetos mediante redes neuronales convolucionales basada en regiones de
interés (Rol, de sus siglas en inglés, Regions of Interest). Este tipo de red
tiende a incrementar el tiempo de ejecucién, dependiendo de la cantidad
de contornos que haya en la imagen y el tamafio de ésta, debido al algo-
ritmo de la Rol, por lo que usan una variacion de esta red, denominada
Fast R-CNN que emplea cinco capas convolucionales, no siendo claro si se
emplea informacién de profundidad en laimagen para el agarre del objeto.

Wang, en [Wang et al., 2016], presenta el desarrollo de un algoritmo
de agarre de objetos mediante un manipulador robético, realizando reco-
nocimiento del agarre mediante una red neuronal convolucional de cinco
capas de profundidad, basada en el aprendizaje de aspectos como color,
profundidad y superficie, de objetos etiquetados en bases de datos conoci-
das, no evidenciando qué ocurre con variaciones de distancia de la cdmara
o del objeto.

Lenz, en [Lenz et al., 2015], presenta un desarrollo para agarre de ob-
jetos, orientado a robots manipuladores y basado en Deep Learning e in-
formacion de profundidad, determinando superficies rectangulares como
posibles candidatas a un agarre, empleando métodos de penalizaciéon que
deriven en la optimizacidn de este. Se emplean redes de dos capas de pro-
fundidad, entrenadas segun tamafios, posiciones y orientacion de agarres
posibles. La informacién de profundidad permite conocer los aspectos
base de contorno, para la generacidon de la superficie de la que resulta el
agarre, no evidenciando qué ocurre con variaciones de distancia de la ca-
mara o del objeto. Por esta misma via, se encuentran otros desarrollos en
Deep Learning orientados a manipulacién robdtica basada en la etapa de
agarre. Dentro los mas recientes, se encuentra el presentado en [Kalashni-
kov et al., 2018], donde llegan a evaluar hasta 580 mil intentos de agarre.

Hossain, en [Hossain et al., 2017], propone un algoritmo de Deep Lear-

ning, una red de creencia profunda optimizada mediante algoritmos ge-
néticos, para reconocimiento de objetos, con la que se estima la pose del
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objeto y se encuentra el agarre adecuado. No se contempla informacidn
de profundidad y la vista desde la que se procesa la imagen corresponde a
una distancia fija. Por la misma via, en el drea de la interaccién humano-ro-
bot son pocos los desarrollos encontrados. En [Gutiérrez et al., 2017] se
expone la aplicacién de un robot social para interacciéon en un ambiente
doméstico, donde se emplea informacién de profundidad para detectar y
discriminar objetos, de forma tal que utilizando segmentacién semantica
se le informa a un usuario la posicién de los objetos.

Chen, en[Chen et al., 2018], presenta el desarrollo de un algoritmo de
reconocimiento de emociones, orientado a facultar a un robot social en el
reconocimiento de dos estados de animo de la persona con que interac-
tue. Los estados considerados corresponden a felicidad o enojo. Para ello,
emplean imagenes estdticas de rostros y basan los algoritmos en Deep
Sparse Autoencoder Network (DSAN), una técnica de Deep Learning que
permite aprender dreas como las cejas, los ojos y la boca, y facultan a un
robot para discriminar hasta en un 89% alguno de estos dos estados.

Dairi, en [Dairi et al., 2018], expone un desarrollo utilizando sistemas
de inferencia difusa e informacién de profundidad, orientando su trabajo a
un sistema de evasion de obstaculos en sistemas de conduccién vehicular
auténoma. Los autores, en funcién a un mapa de disparidad (diferencia
de dos imagenes), encuentran la informacién de profundidad de la escena
detectando un posible obstaculo, para lo que emplean una maquina de
Boltzman profunda como algoritmo de Deep Learning. La salida de esta
es sometida a un sistema difuso para generar las alarmas de evasion. De
forma tal que, se logra establecer una arquitectura totalmente diferente
de Deep Learning, a la desarrollada en este trabajo, pero con los mismos
componentes base de algoritmia. Lo cual ayuda a validar el camino optado
como medio de solucidn de las falencias en aplicaciones de Deep Learning.

En conclusidn, los trabajos previamente expuestos no contemplan las

consideraciones propias del problema planteado, en el desarrollo y aporte
del presente trabajo de investigacion. Sin embargo, permiten evidenciar un
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fuerte interés en el desarrollo de algoritmos de inteligencia artificial orien-
tados a robdtica, como se expone en [Jiménez-Moreno et al., 2012]{More-
no etal.,2013] y [Neukart y Moraru, 2014], empleando técnicas como redes
neuronales convencionales o sistemas difusos. En[Hou et al., 2015]-[Zhang
et al., 2015b], se evidencia un creciente desarrollo de aplicaciones basadas
en Deep Learning, donde técnicas como las redes neuronales convolucio-
nales, que estdn actualmente en la frontera del conocimiento, estan sien-
do implementadas y mejoradas. Es asi como en [Guo et al., 2017]-[Hossain
et al., 2017] se evidencia cémo en el campo de la robética y, muy de cerca,
de la robdtica asistencial se comienzan a emplear estas técnicas para la
solucién de los problemas de interaccion humano-maquina.

En [Lu et al., 2017], se encuentra una aproximacion al escenario aqui
planteado, en el cual se emplean imagenes de entrada con objetos que
presentan variacion de tamafo, segun la distancia a la que se encuentren
del foco de la cdmara utilizada, que también esta orientado a aplicaciones
robdticas. Los autores ilustran el caso hacia vehiculos auténomos, cuya
camara de sensado del medio captura la imagen de otros vehiculos, que
varian su distancia respecto a si se acercan o alejan, lo cual también aplican
a la identificacidon de peatones. La diferencia en las soluciones propuestas
es que los autores realizan un modificacién a las capas de convolucidn para
que operen bajo regiones de histograma de los objetos encontrados y asi
discriminar su clasificacion, pero desde un mismo enfoque visual dindmico,
haciendo asi divergir las metodologias y soluciones desarrolladas.
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Capitulo 3

Identificacién de Objetos Mediante
Aprendizaje Profundo

El presente capitulo permite derivar las conclusiones en relacién a la
mejor arquitectura de red para discriminacion de herramientas median-
te Deep Learning, estableciendo claramente el problema planteado de va-
riacidon de distancia mediante deteccidn por redes neuronales convolucio-
nales. Para ello se introduce el marco tedrico referente a esta técnica, se
compara su desempefio frente a resultados obtenidos mediante técnicas
clasicas de redes neuronales y, finalmente, se establece una arquitectura
de reconocimiento en plataformas multi-herramientas.

3.1. Redes Neuronales de aprendizaje profundo

El Machine Learning, desarrollado por medio de técnicas de inteligen-
cia artificial, implica diferentes niveles de abstraccién. Es decir, es depen-
diente del patrén a aprender, como se puede evidenciar en el reconoci-
miento de caracteres a mano alzada que se muestra en la Figura 3-1 [Walid
y Lasfar, 2014]. Basados en este ejemplo, el entrenamiento para aprendi-
zaje con caracteres uniformes, como los de la parte izquierda de la figura,

41



Arquitecturas de Red Neuro-convolucional para Aplicaciones de Robdtica Asistencial

reduce la complejidad del patrdn, lo que va de la mano con la reduccién
general del sistema de reconocimiento de patrones de caracteres numé-
ricos. Sin embargo, un caso general debe implicar las posibles variaciones
del patrén, como se ilustra en la parte derecha de la Figura 3-1, con los
caracteres a mano alzada. Un sistema como este requiere un aprendizaje
mas profundo. Es decir, un aprendizaje que permita mayor nivel de abs-
traccion de los patrones, lo que implicara mayor complejidad del sistema
de reconocimiento de patrones.
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Figura 3-1: Aplicaciones de redes neuronales convolucionales en reconocimiento de texto

mano alzada.

Q

Las técnicas de Deep Learning han surgido como solucién al problema
de entrenamiento multicapa de las redes neuronales convencionales.
Estos problemas se centran en el desvanecimiento del gradiente asociado
al errory al sobre-ajuste de los pesos de entrenamiento. Dichos problemas
se evidencian en arquitecturas neuronales convencionales de mas de una
capa oculta, que no logran una mejoria en razén del aprendizaje, o una con-
vergencia a un valor en los pesos de las neuronas de cada capa, generando
un estancamiento en el aprendizaje y la profundidad de dichas redes.

Schmidhuber, en [Schmidhuber, 2015], hace referencia a lo descrito
como: “Una arquitectura profunda se refiere al nimero de niveles de compo-
sicién de operaciones no lineales en la funcién aprendida. Mientras que la ma-
yoria de los algoritmos de aprendizaje actuales corresponden a arquitecturas
poco profundas (1, 2 0 3 niveles), el cerebro de los mamiferos estd organizado
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en una arquitectura profunda, con una percepcion de entrada dada, repre-
sentada en multiples niveles de abstraccion, correspondiendo cada nivel a
un drea diferente de la corteza, de forma similar al de los seres humanos.
El cerebro también parece procesar informacion a través de multiples eta-
pas de transformacion y representacion. Esto es particularmente claro en el
sistema visual de primates, con su secuencia de etapas de procesamiento:
deteccidn de bordes, formas primitivas, y moviéndose hasta formas visuales
gradualmente mds complejas. Inspirados en la profundidad arquitectdnica
del cerebro, los investigadores de redes neuronales habian querido duran-
te décadas entrenar profundas redes neuronales multicapa, pero no hubo
intentos exitosos antes de 2006, cuando se obtuvieron resultados positivos
con tipicamente dos o tres niveles (es decir, una o dos capas ocultas), pero el
entrenamiento de redes mds profundas produjo consistentemente resulta-
dos mds pobres.”

Entre las técnicas mas representativas de Deep Learning se encuen-
tran las maquinas restrictivas de Boltzmann, las redes de creencia profun-
day las redes neuronales convolucionales. Estas ultimas han mostrado un
alto desempefio en el reconocimiento de imagenes, por ejemplo, el recono-
cimiento de caracteres a mano alzada como el presentado en la Figura 3-1
[Walid y Lasfar, 2014]. Siendo actualmente la técnica mas aplicada a diver-
sos campos de las ciencias y la ingenieria, como se evidencié en el estado
del arte del capitulo anterior.

3.2. Redes Neuronales Convolucionales

Como se menciona en [Bengio, 2009], las redes neuronales convolu-
cionales fueron inspiradas por la estructura del sistema visual orientado al
reconocimiento de objetos. En esencia, una red neuronal convolucional
busca transformar gradualmente la imagen, o sefial, de entrada, detec-
tando elementos simples inicialmente, hasta aprender detalles especificos
del objeto de interés. Es decir, basa el aprendizaje de conceptos comple-
jos, mediante la descomposicion de los mismos en elementos mas simples,
donde el entrenamiento viene dado por establecer gradualmente un gru-
po de filtros de convolucidn, los cuales son determinados en funcidn a la
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base de datos de entrenamiento y la estructura general de la red. Dicha
estructura se compone de una serie de capas consecutivas de convolu-
cién - relu - pooling, o variaciones de las mismas, en una etapa denominada
de extraccidn de caracteristicas, seguida de otra de clasificacién. Los
filtros conforman un grupo de mapas de caracteristicas, donde cada mapa
se obtiene por la aplicacidn repetida de la funcidn filtro a través de sub-re-
giones de toda laimagen de entrada, mediante [Gonzalez y Woods, 2008]

J

K
By =méx {0, byt wwp; | (3-1)
k=1

donde h; determina el mapa de caracteristicas de salida, hy el de entrada,
que para la etapa inicial respondera a la imagen, wy, corresponde al nucleo
de convolucion, objeto del aprendizaje, con K= I silaimagen estd en escala
de grises o K= 3 si es a color. Cada capa que determina la profundidad de la
red neuronal convolucional, requiere un hy para determinar un hj, el filtro a
aprender es operado en cada iteracion del entrenamiento sobre la entrada
h bajo el concepto de convolucidn, del cual recibe su nombre [Gonzalez y
Woods, 2008].

El concepto de convolucion en imagenes es asociado a la operacion
con matrices, donde la definicién formal estd dada por [Palomare set al.,
2016], como se muestra a continuacién.

Definicién: Dada una matriz A, y una matriz Cini1)x(2N+1) €ON
dimensiones (2N+1), (2N+1)< m, n se define la convolucién de las
matrices A y C como una nueva matriz D=A=*C, donde en adelante
el simbolo * denotara la operaciéon de convolucién, definida a partir de

2F+12F+1

1
dig) = ]_9 Z Z A(i—N+r—1,j—N+s—1) C(r,s), (3-2)

r=1 s=1

donde los ay; ;) son los elementos de la matriz A'y
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2N+1

p= Z C(ij) s (3-3)

ij=1

F corresponde al tamano lateral del filtro, tipicamente cuadrado. Si p
calculada mediante (3-3) es igual a cero, se reemplaza por 1 para evi-
tar la indeterminacion de (3-2). Como ejemplo, la Figura 3-2 ilustra el
proceso de convolucién de un filtro de dimensiones 3x3 con una ma-
triz de entrada hj de dimensiones 7x7. El filtro se desplaza una can-
tidad de celdas determinada, hasta cubrir todas las celdas de la ma-
triz de entrada, donde dicha cantidad se conoce como stride (S).
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Figura 3-2: Capa de convolucion de una red neuronal convolucional.

La Figura 3-3 muestra el resultado de aplicar un filtro de convolucién
conocido para deteccién de bordes en imagenes, denominado filtro Lapla-
ciano, a manera de ejemplo de cdmo lo realiza una red neuronal convolu-
cional durante la etapa de entrenamiento y después de haber obtenido los
filtros finales. Debido a que el filtro debe operar con cada celda de la matriz
de entrada, para las celdas laterales se obtendrian valores negativos, por
lo que se hace un relleno de bordes a la matriz de entrada denominado
padding (P), puede ser basado en relleno con ceros, unos o repitiendo el
valor de los bordes.
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4 Convolucion_Imagenes

Imagen Original Imagen Resultante
Filtro 3x3
2 o 1 o |
e x Fillx
o o 1 o
PADDING 5
Buscar en Evaluar
e ®© Ceros OUnos CBordes -

Figura 3-3: Operacion de convolucién en imagenes

La Figura 3-4 ilustra un ejemplo de la arquitectura de una red neuronal
convolucional con la estructura base de este tipo de red.

CONVOLUTIONAL NEURAL NETWORK

- w2
it [ ]

=1 i =Y A | Il =

4 D wi

ENTRADA CONVOLUCION RELU POOLING

Figura 3-4: Estructura base de una red neuronal convolucional.

La estructura de una red neuronal convolucional cuenta con una entrada
basada en imdgenes en escala de grises, es decir de una dimension, o a color
referidas a sus componentes rojo, verde y azul, con tres dimensiones correspon-
dientemente. Estaimagen inicia siendo el primer h, es decir h1. Cada hy, cuenta
conun alto (H) y ancho conocido (W), asi como una profundidad Dy, que serd
1, silaimagen es a escala de grises, 0 3, si es a color. Dentro de los hiper-pardme-
tros de entrenamiento iniciales para la convolucién con cada filtro a aprender,
se requiere determinar el tamafio del filtro (F'x F), cantidad de filtros (Nf), un
valor inicial de las posiciones de cada uno de los filtros (aleatorio generalmente),
el stride y el padding (ver Figura 3-5), que determinan el h; de salida.
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Figura 3-5: Hiper-parametros de convolucion.

El resultado de la convolucién ingresa a la capa de RELU (de sus siglas
en inglés, Rectified Lineal Unit, o unidad lineal rectificada), la cual es una
capa de funcidn de activacién tipo rampa, que no presenta saturacién por
la parte superior, lo que evita saturacion del gradiente y no cambia el ta-
mafio del volumen de salida, pero si elimina valores negativos en el filtro.

Para efectuar las operaciones de la capa RELU, se debe determinar el
numero de capas (n) que ha de tener la red. Las dimensiones del volumen
de salida de la capa de convolucidn a la de RELU se calculan mediante

W1 = (W, — F, +2P,))/S, + 1, (3-4)
H,.1=(H,—F,+2P,))/S,+1 (3-5)

y
Dn+1 = an (3’6)

La Figura 3-6 ilustra los filtros de convolucién aprendidos para el ejemplo
de la Figura 3-4, donde se han empleado dos bancos de filtros con 10 filtros
cada uno.
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Figura 3-6: Resultado del banco de filtros.

La Figura 3-7 ilustra un ejemplo de la salida de la capa RELU para algu-
nos de los filtros empleados en la red de la Figura 3-4. La figura de entrada
se muestra a la izquierda, dos resultados de convolucién en el medio y dos

resultados de la capa RELU a la derecha.

100

200
200
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300

250

300
100 200 300 400 500 100 200 300 400 500

Figura 3-7: Resultado de la capa RELU.

La capa de pooling opera independiente y se encarga de reducir pro-
gresivamente el tamafio de las capas, mediante los métodos del maximo o

del promedio, los cuales se establecen mediante

n max nel/— —
hj (.TJ, y) = hj 1(567 y>7 (3-7)

ZEN(z),§y€N (y)
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hy(x,y) =

> W), (3-8)

ZEN (z),yEN(y)

=)=

donde h; determina el nuevo mapa de caracteristicas de esta etapa, basa-
do en el anterior. La Figura 3-8 ilustra un ejemplo de la salida de la capa de
pooling para uno de los filtros empleados en la red de la Figura 3-4. Para
este caso se emplea el método del maximo. La tabla 3-1ilustra el resultado
matematico de ambos tipos de pooling y evidencia la reducciéon del tama-
fio del volumen.

Tabla 3-1: Ejemplo pooling.

| Entrada | | Max | | Prom |
41103

210 |7 10 | 10 415
91110 9 | 7 312

. -

" /

i 50 100 150 200 250 300
o lReef-

50 100 150 200 250 300

Figura 3-8: Resultado de la capa de pooling.

Otros hiper-pardmetros de entrenamiento son:

. Tamafio del pooling.

. Tasa inicial de aprendizaje.

. Tamafio del Batch, que emplea un ndmero normalizado de
muestras de entrenamiento y prueba.
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. Dropout, que establece aleatoriamente los elementos de en
trada a cero con una probabilidad dada para evitar sobre
ajuste de lared.

En [Zeiler y Fergus, 2014] se puede profundizar sobre la operacién de
las redes neuronales convolucionales en aplicaciones de reconocimiento
de objetos en imagenes.

3.3. Comparacion entre las redes neuronales convencionales
y las convolucionales

Dentro de las desventajas de las redes neuronales convencionales,
como las backpropagation, que permiten entrenamiento multicapa, la pro-
pagacion hacia atrds propia del entrenamiento de este tipo de red hace
que el error se diluya de forma exponencial desde las ultimas capas hasta
las iniciales, por lo que las primeras capas no tienen tendencia al cambio. A
su vez, la complejidad de entrenamiento de una red neuronal para traba-
jo con imagenes es elevada. Por ejemplo, para una imagen de entrada de
128x 128, es decir de 16.384 pixeles, se requiere una conexién completa
entre todas las neuronas de una capa con la siguiente. Es decir, que cada
pixel de la imagen de entrada se encuentra conectado con cada neurona
de la primera capa de la red. Lo que implica al menos 16.384 neuronas,
cada una con 16.384 conexiones y un total de 284'435.456 pesos a entre-
nar solo en la primera capa. Por consiguiente, el incremento de capas enla
red elevaria demasiado la cantidad de pesos a calcular, por lo que el entre-
namiento se volveria demasiado extenso y demorado.

Para evidenciar mas claramente la diferencia entre las redes neuro-
nales convencionales y las convolucionales, se presenta un ejemplo de
aprendizaje simple, como lo es la identificacién de colores, para ello se es-
tablecen las arquitecturas de red de cada tipo y se evalta el desempefio
obtenido para cada caso.
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3.3.1. Red Neuronal Backpropagation

El primer paso es establecer la base de datos de entrada que se em-
pleard para el entrenamiento. En este caso, se presentan dos esquemas
para comparacion uno con 12 colores y otro con 18. La base de datos de
entrenamiento se ilustra en Figura 3-9, la cual es entregada a la red como
un arreglo de 3 filas por M columnas, donde M es la cantidad de image-
nes de entrenamiento, y cada fila representa las componentes R, Gy B de
cierto color. Cada columna del arreglo contiene el color promedio de cada
imagen de entrada, y las 3 filas corresponden a los componentes RGB de
dicho color [Pramparo y Moreno, 2017].

100 200 300 400 500 600

1.5 ——

100 200 300 400 500 600 700 800 =le

Figura 3-9: Base de datos de colores utilizados.

Debido alarespuesta tipica de un red neuronal, en un rango numérico
derivado de la funcién de activacién empleada, a cada patrén de color se le
asignd un cédigo binario para clasificarlo, como se muestra en la Tabla 3-2,
generando asi un arreglo objetivo Y, de 5 filas por M columnas, donde el
5 equivale a la cantidad de bits del cédigo binario.
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Tabla 3-2: Codificacion de los patrones para la clasificacion de 12 colores y 18 colores.

| COLOR [ CODIGO |

Amarillo claro 00000
Amarillo intenso 00001

Azul claro 00010
Azul oscuro 00011
Lila 00100
Morado 00101
Naranja 00110
Negro 00111
Rojo 01000
Rosado claro 01001
Rosado intenso 01010
Vinotinto 01011

Amarillo claro 00000
Amarillo intenso 00001

Azul claro 00010
Azul oscuro 00011
Café oscuro 00100

Gris 00101

Lila 00110
Morado 00111
Naranja 01000
Negro 01001
Rojo 01010
Rosado claro 01011
Rosado intenso 01100
Arena 01101
Verde lima, 01110
Verde marino 01111
Verde oscuro 10000
Vinotinto 10001

Las dos arquitecturas de red implementadas para cada base de datos
se ilustra en la Figura 3-10, donde la red de la Figura 3-10(a) estd orientada
a la clasificacion de 12 colores, y lared de la Figura 3-10(b) a los 18 colores.
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(b)

Figura 3-10: Estructura de la red neuronal multicapa backpropagation para clasificar 12
colores (a) y 18 colores (b).

En la Tabla 3-3 se presentan los porcentajes de exactitud obtenidos
para cadared, y en la Figura 3-11 el reconocimiento de ambas redes sobre
las imagenes de prueba, donde los colores de la grafica superior corres-
ponden a los colores de entrenamiento, y los colores de la grafica inferior
alos de prueba (arriba) y los de clasificacién (abajo).

Tabla 3-3: Porcentajes de exactitud para la clasificacion de 12 y 18 colores
por medio de una FCNN.

| | Cantidad de colores | Porcentaje de exactitud |

12 colores 93,35 %
Red 1 18 colores 35,23 %
12 colores 33,33 %
Red 2 18 colores 22,23%

400 500

Clasificacion del Test

e
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»
T

Clasicacion - imagenes Test

Clasificacion - Imagenes Test

N
b

20 P

a b.

Figura 3-11: Clasificacién para los colores de prueba, 12 colores (a) y 18 colores (b).
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Como se puede observar, la red 1 logré reconocer casi todos los co-
lores prueba, obteniendo un 93% de exactitud, pero al aumentar la canti-
dad de patrones a 18, la exactitud se redujo a un 35%, confundiendo casi
todos los colores, y sin lograr reconocer casi ninguna de las tonalidades
verdes. La red 2 generalizé los colores amarillo, azul y morado, y los de-
mas no logrd clasificarlos. Se variaron la cantidad de neuronas por capa
para tratar de mejorar el reconocimiento, pero los porcentajes de exacti-
tud rondaban el 22%.

3.3.2. Red Neuronal Convolucional

Para realizar el reconocimiento de la misma base de datos de colo-
res, se implementd una arquitectura de red neuronal convolucional que se
muestra en la Figura 3-4, la cual no requiere ser muy profunda, ya que no
requiere obtener patrones detallados, sino diferentes tonalidades de un
mismo color, por lo que para el reconocimiento de 12 y 18 categorias, se
utiliza la misma arquitectura. La Figura 3-12 ilustra los hiper-parametros de
entrenamiento empleados.

INPUT

64x64x3

Convolution

B=16K=10,5=1
(ReLU)

MaxPooling Ki= 2,5 =2 ]

Convolution
(ReLU) —>[ E=82K=5"5=4 ]

MaxPooling =25 — 3 ]

Fully-Connected {

T F=256 ]

Fully-Connected

SoftMax

Figura 3-12: Arquitectura de la CCN empleada.

54



Identificacién de Objetos Mediante Aprendizaje Profundo

Una vez la red ha sido entrenada, se realiza la validacién, obteniendo
los resultados presentados en la Tabla 3-4, en donde se encuentran los por-
centajes de exactitud para la red entrenada con 12 colores como para 18.
Teniendo en cuenta estos resultados, se puede observar que la arquitectu-
ra entrenada tanto para 12 como para 18 colores mantiene una exactitud
por encima del 93%, lo cual representa una exactitud muy buena para apli-
caciones de discriminacion de color y evidentemente un desempefio supe-
rior a la de red neuronal convencional, sin necesidad de emplear una arqui-
tectura profunda, determinada por mas de tres capas de convolucién. En
este ejemplo, la principal dificultad para alcanzar el 100% en la prediccién
son las tonalidades semejantes de algunos colores, por ejemplo, las varia-
ciones de amarillo.

Tabla 3-4: Porcentajes de exactitud para la clasificacién de 12 y 18 colores por medio de una red neuronal
convolucional.

’ Cantidad de colores \ Porcentaje de exactitud ‘

12 colores 95.33 %
18 colores 93.67 %

3.4. Problema de identificacién de una CNN
en ambientes 3D

Si bien en el estado del arte se planted el gran auge de las redes neu-
ronales convolucionales en aplicaciones de reconocimiento de imagenes,
también se establecié que estas técnicas de Deep Learning siguen en de-
sarrollo. Esto debido a que su aplicacidn particular para resolver un pro-
blema todavia presenta posibles mejoras, como en el caso de emplear una
red neuronal convolucional para identificaciéon de objetos en un ambiente
dinamico, donde la variacidn de la distancia entre camara y objeto, hace
resaltar o reducir caracteristicas de este.

Para evidenciar la falencia que las arquitecturas neuronales convolu-
cionales presentan en ambientes dinamicos, en los que la cdmara se mue-
ve hacia o desde el objeto, se realiza el entrenamiento convencional de
una red neuronal convolucional, estableciendo inicialmente la mejor ar-
quitectura para la identificacién de objetos en una plataforma multi-herra-

55



Arquitecturas de Red Neuro-convolucional para Aplicaciones de Robdtica Asistencial

mientas, manteniendo una distancia fija de la cdmara al objeto de 60 cm.
El disefio de la arquitectura de la red neuronal convolucional se realiza por
medio de iteraciones, en funcidn a las capas de convolucién y tamafio de
sus respectivos filtros, que permiten determinar cudl es la arquitectura fi-
nal que converge en una discriminacidn clara de dichas herramientas.

Para observar el comportamiento de las diferentes arquitecturas po-
sibles, se establece inicialmente una base de datos con imagenes de cada
una de las herramientas a identificar, sometidas a rotaciones y traslaciones
leves. Posteriormente, se determinan arquitecturas posibles realizando
cambios en el kernel de convolucidn y la cantidad de estos que se emplea-
ran, cComo se expone a continuacion.

3.4.1. Base de datos a distancia fija

Para determinar la arquitectura final de la red y poder evaluarla, se
debe disponer de una base de datos de imagenes de entrenamiento y una
para la validacidn, al igual que ocurre con las redes neuronales convencio-
nales. La base de datos de entrenamiento permite a la red aprender sobre
las caracteristicas de cada clase, mientras que la de validacion emplea ima-
genes que permiten evidenciar qué tan bien quedd aprendida cada clase,
mediante imagenes que no se han presentado a la red. Para este caso, se
construyd una base de datos de 800 imagenes con diferentes caracteris-
ticas de rotacidn y traslacion, para cada una de las cuatro clases de herra-
mientas a aprender: pinzas, destornillador, bisturi y tijeras, como se apre-
cia en la Figura 3-13.
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Figura 3-13: Base de datos de entrenamiento a distancia fija.
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La Tabla 3-5 resume la cantidad de imagenes empleadas para el entre-
namiento y validacién del caso, a una distancia fija aproximada de 60 cm.

Tabla 3-5: Distribucion de la base de datos.

Conjunto de imégenes

Herramienta | Entrenamiento | Validacion
Pinzas 125 75
Destornillador 125 75
Bisturi 125 75
Tijeras 125 75

3.4.2. Arquitecturas de red

A fin de determinar la red convolucional final que mejor desempefio
ofrezca en el aprendizaje de las herramientas establecidas, se implemen-
taron diferentes arquitecturas de redes neuronales convolucionales, basa-
das en combinaciones de la estructura basica mostrada en la Figura 3-4, las
cuales son evaluadas segun la exactitud presentada en la discriminacion
de estas y calculadas mediante una matriz de confusién. Debido a que se
cuenta con pocas clases y con herramientas aparentemente distinguibles
unas de las otras, se inicié con una arquitectura simple, dicha arquitectura
se va robusteciendo para observar el desempefio de cada red, tanto por
la variacion de hiper-parametros, como de la profundidad de la red, segin
seilustra en la Tabla 3-6. Para lograr determinar una arquitectura se deben
realizar iteraciones que varien los parametros de la red en cuanto a capas,
tamanfo de filtros y cantidad de estos, segun se indica en el Apéndice A.
Para este caso se toman cinco arquitecturas representativas de un grupo
de 30 combinaciones probadas.
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Tabla 3-6: Arquitecturas de red evaluadas.

’ Nombre ‘ Tipo Kernel ‘ Filtros ‘
Convolution 10x10 S=2 10-10/50
MaxPooling 8x8 S=2 20-20

Arq 1 Convolution 55 S=2 30-30
MaxPooling 10x10 S=2 40-40
Full-Connected -
Softmax 4
Convolution 26 x26 S=2
MaxPooling 6x6 S=2
Convolution 6x6 S=2
Arq 2 MaxPooling 6x6 S=2 10-10/30
Full-Connected -
Softmax 4
Convolution 3636 S=2
MaxPooling 5x5 S=2
Convolution TXT S=3
Arq 3 Full-Connected - 10-20
Softmax 4
Convolution dx4 | S=1/P=2
Convolution 4x4 S=2
MaxPooling 2x2 | S=2 / P=1
Convolution 5x5 S=2 10-20-40-80-200
Arq 4 Convolution 6x6 S=2
MaxPooling 2% 2 S=2 20-20-40-80-200
Convolution 4x4 S=2
Full-Connected -
Softmax 4
Convolution dx4 | S=1/P=2
Convolution 4x4 S=2
MaxPooling 2x2 | S=2 / P=1
Convolution 5x5 S=2
Arq 5 Convolution 5x5 S=2
MaxPooling 2x2 S=2 20-20-50-50-200
Convolution 4x4 S=2
MaxPooling 3x3 S=2
Full-Connected -
Softmax 4

En cada entrenamiento se lograron observar variaciones en la preci-
sién de cada red, donde el comportamiento esperado es que el error des-
cienda haciendo llegar la precisién al 100%. La Figura 3-14 permite apre-
ciar el resultado del entrenamiento de cada una de las cinco arquitecturas
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escogidas, que llegaron a un 100%. Se pueden observar variaciones en la
forma como aprende la red en cada entrenamiento, mientras mas com-
pleja es la arquitectura, mas le cuesta a la red aprender (mayor nimero de
iteraciones).
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Figura 3-14: Precision de entrenamiento.

La validacidn de las arquitecturas de las redes entrenadas se realizé
mediante una matriz de confusién, que permite validar la exactitud de
cada una en el reconocimiento de las diferentes clases: A, para las pinzas,
B, para los destornilladores, C, para los bisturies, y D, para las tijeras. La
Tabla 3-7 muestra la nomenclatura empleada para la matriz de confusion,
donde A A representa las imagenes de pinzas que fueron clasificadas como
tal, AB representa pinzas que fueron clasificadas como destornilladores,
AC, representa pinzas que fueron clasificadas como bisturies, AD repre-
senta pinzas que fueron clasificadas como tijeras, y de manera similar se
procede con las otras opciones de nomenclatura. A partir de la matriz de
confusién, se puede calcular la exactitud (E) de la clasificacién de la cada
red, que estd dada mediante el calculo de los falsos y los verdaderos posi-
tivos (VP) de las clases pinzas, destornillador, bisturi y tijeras. En la Tabla
3-7, los verdaderos positivos estan representados mediante AA, BB, CC
y DD, mientras que las demds representaciones estan relacionadas con
falsos positivos. Para lo que la exactitud puede ser calculada como
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E(%) = % x 100, (3-9)

donde SVP=AA+BB+CC+DD, representa el total de verdaderos
positivos y Tt representa el total de clasificaciones hechas, calculado como

ZTt = AA+AB+AC+AD+BA+BB+BC+BD+CA+
CB+CC+CD+DA+DB+DC+DD.

Tabla 3-7: Matriz de confusion para la prueba a distancia fija de 60 cm.

CLASIFICADA
Pinzas | Destornillador | Bisturi | Tijeras
Pinzas AA AB AC AD
| Destornillador | BA BB BC | BD
= Bisturf CA CB CC CD
Tijeras DA DB DC DD

Los resultados obtenidos en el entrenamiento de las cinco arquitec-
turas, realizando diferentes variaciones que incluyen dropout y bacht-nor-
malization, se ilustran en la Tabla 3-8, incluyendo el maximo error obtenido
(MaxErr), que se encuentra entre un 15% a un 66%.

Tabla 3-8: Mejores resultados por arquitectura para distancia fija.

Caracteristica Arquitectura Arq1 | Arq2 | Arq3 | Arq4 | Arg5b
MaxErr 66.7% | 66.5% | 44.7% | 24.7% | 15%
Exactitud 373% | 34% | 53.7% | 87.3% | 93.8%
AA 46 57 87 92 96
BB 60 65 96 112 116
CC 60 46 89 102 121
DD 16 47 78 92 119

Se logra evidenciar que una arquitectura simple, como Arq 1, no ge-
nera un buen aprendizaje para el caso particular de discriminacion de las
cuatro categorias de herramientas deseadas, ni siquiera con la variacién
de hiper-parametros realizadas en las arquitecturas 2 y 3. Dada la multipli-
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cidad de caracteristicas presentadas por las cuatro clases a aprender, los
requerimientos de la arquitectura de red se evidencian mas exigentes, en
comparacion con el aprendizaje de multiples clases de estructuras simples.

Un aumento en la profundidad de la red convolucional mejora signifi-
cativamente el aprendizaje de caracteristicas. Al igual que, el aumentar la
cantidad de filtros en la capa de entrada. Lo que permite concluir que, la
arquitectura 5 es la mejor opcidn para el caso de aprendizaje de herramien-
tas con cuatro categorias. Finalmente, la arquitectura a emplear tiene la
estructura que se muestra en la Figura 3-15.

Batch-Normalization

+ Dropout

Batch-Normalization
+ Dropout

Batch-Normalization

+ Dropout

Batch-Normalization
+ Dropout

MaxPooling

Convolution Batch-Normalization
{RelU) + Dropout

MaxPooling

Full-
connected

Figura 3-15: Arquitectura final establecida.

De esta forma, en funcidén a las curvas de eficiencia de aprendizaje
y matriz de confusidn, se da cumplimiento al objetivo especifico nimero
uno, en donde se logra determinar una arquitectura eficiente de Deep
Learning para la mejor discriminacion de un grupo de cuatro herramientas.
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3.4.3. Validacién en profundidad

Para determinar el desempefio de la red convolucional entrenada en
la discriminacién de las categorias aprendidas, pero con variaciones de pro-
fundidad, se establece una base de datos de prueba segun se relaciona en
la Tabla 3-9. En la Figura 3-16 se ilustra una muestra de la misma. El tamafo
del volumen de entrada se evidencia significante en relacion a la pixelacién
que recibe la imagen al ingresar a la red. Se observa que un redimensio-
namiento de 64x64 pixeles pierde las caracteristicas relevantes de cada
categoria (Figura 3-17), mientras que uno de 128 x128 permite mantener
las caracteristicas suficientes, compensando el mayor nimero de opera-
ciones que debe generar la red y que implican aumento en el costo com-
putacional. De forma tal que, el desempefio obtenido para una imagen de
128 x128 pixeles se tabula por distancia, segun el acierto en la categoria
correspondiente, como se muestra en la Tabla 3-10. Se puede evidenciar
que, a medida que se acerca el objeto, o se aleja demasiado, se pierde pre-
cisién en la identificacion, obteniendo una precisién promedio en el peor
caso de 43.4% a una distancia de 20 cm, lo que implica una degradacion de
mas del 50% del desempeiio de la red.

Tabla 3-9: Base de datos de profundidad.

Profundidad Herramientas Pinzas | Destornillador | Bisturi | Tijeras
20 cm 100 100 100 100
40 cm 100 100 100 100
60 cm 100 100 100 100
80 cm 100 100 100 100
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Figura 3-16: Base de datos en funcién a la distancia.

imagen a 128x128

Figura 3-17: Redimensionamiento de entrada.

Tabla 3-10: Acierto en profundidad.

Profundidad Herramientas Pinzas | Destornillador | Bisturi | Tijeras
20 cm 40,4 % 51,1% 484% | 33,1%
40 cm 61,6 % 74,7 % 65,1% | 63,4%
60 cm 91,5 % 94,2 % 95,8% | 93,2%
80 cm 51,6 % 84,7% 85,1% | 61,6%
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Como validacion adicional se emplea la arquitectura de la Figura 3-15.
Pero, con la base de datos tomada a 40 cm de distancia entre objeto y
camara, donde el peor caso se presenta para una distancia de 80 cm, con
una precisién promedio del 38,91%. Como era de esperarse, al alejarse la
camara, desapareen caracteristicas. Lo que implica la pérdida del recono-
cimiento y, de ahi, la baja tasa de precisidn. Con la nueva base de datos,
los filtros cambian y esto genera las variaciones en la respuesta de la red,
incluso empleando la misma arquitectura.

Al validar las activaciones de la red a 40 cm con un objeto determina-
do (tijeras para este caso), se presentan cerca de un 20% mds de activa-
ciones, que al alejar el objeto a 60 c¢cm. Esto se evidencia en la Figura 3-18,
donde se observa que a 40 cm mejora el reconocimiento.

Figura 3-18: Activaciones a 40y 60 cm.

Una alternativa de solucién consiste en ampliar la base de datos de
la red inicialmente entrenada, incluyendo las imagenes de los objetos a
las diferentes distancias evaluadas (800 imdgenes). Bajo este esquema, la
Figura 3-19 ilustra el desempefio en el entrenamiento de la red basada en
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la arquitectura escogida en la Seccidn 3.4.2, con la base de datos conjunta.
Se observa que a lared le cuestan muchas mas iteraciones el aprender las
caracteristicas, a la par que el desempefo baja al 79,71% y le toma casi el
doble de tiempo de entrenamiento con la nueva base de datos. Esto con-
lleva a una degradacion general en la identificacidon de objetos bajo este as-
pecto. Lo cual era de esperarse, debido a que las caracteristicas de apren-
dizaje ahora divergen con las nuevas imagenes. En la Tabla 3-11, se observa
la matriz de confusién obtenida, donde se aprecia que, con un aumento en
la base de datos, las categorias se confunden entre ellas.
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Figura 3-19: Entrenamiento de la red

Tabla 3-11: Matriz de confusion para la prueba a distancia variable.

CLASIFICADA
Pinzas | Destornillador | Bisturi | Tijeras
Pinzas 130 0 52 34
= | Destornillador | 0 132 12 66
2|  Bistwf 68 0 142 0
Tijeras 0 8 50 106
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Principalmente, en la clase bisturi, donde 56 imagenes de otras cate-
gorias fueron interpretadas como esta, ya que por estar a diferentes dis-
tancias exhiben diferentes caracteristicas y las mds alejadas se aprecian
como un objeto mas uniforme, como lo es la estructura morfoldgica del
bisturi.

Las pruebas de profundidad evidencian que la red neuronal convo-
lucional, que tenia el mejor comportamiento para clasificar herramientas
a distancia fija, no tiene un buen comportamiento cuando la distancia de
toma de la imagen varia. Sin importar si se amplia la base de datos de en-
trenamiento, incluyendo imdgenes tomadas a diferentes distancias. En el
siguiente capitulo se abordard una solucion a este problema.
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Capitulo 4

Arquitecturas Neuronales
Convolucionales Propuestas

Frente al problema expuesto en relacidn a la clasificacién de los obje-
tos al presentarse una variacion espacial de captura de la imagen, se plan-
tea como solucidn una arquitectura de red convolucional paralela especia-
lizada en las diferentes perspectivas del objeto areconocer, en funcién ala
profundidad en que se encuentre. Es decir, se realiza el entrenamiento de
un conjunto de redes neuronales, donde cada una aprenderd a reconocer
el objeto desde una distancia particular y se ird activando cada red a medi-
da que se acerca o aleja del objeto, como se ilustra en Figura 4-1. Esta so-
lucién se propone en funcidn al trabajo expuesto en [Ciregan et al., 2012],
donde se presenta una arquitectura paralela basada en redes neuronales
convolucionales, como una mejora al aprendizaje de caracteristicas en el
reconocimiento del mismo objeto, la cual presenta ventajas frente a lared
neuronal convolucional convencional, pero en este trabajo la red no esta
orientada a operar en profundidad y emplea la misma base da datos para
todas las redes.
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Figura 4-1: Arquitectura propuesta con ponderacién aritmética.

El Algoritmo 2 expone los pasos establecidos para solucionar el pro-
blema de variacidn de caracteristicas ante la clasificacion de la red neuro-
nal convolucional cuando varia la distancia de captura de la imagen.

Algoritmo 2: Disefio de arquitectura 3D

Begin
Paso 1: Establecer las bases de datos de entrenamiento en funcion a 4
distancias de prueba: 20 ¢m, 40cm, 60cm y 80 cm.
Paso 2: Establecer las arquitecturas neuro-convolucionales para cada
distancia, evaluadas por transferencia de aprendizaje y disefio
independiente.
Paso 3: Disefiar una capa de ponderacion final que determine la salida
de la red en funcién a las activaciones de cada red individual operando
en paralelo, mediante la comparacién de la solucién por una ecuacion
matematica general y un sistema de inferencia difusa.
Paso 4: Establecer la mejor arquitectura final y evaluarla.

end

La entrada al tipo de red propuesto requiere de la imagen a color mas
un canal de distancia, este canal se puede establecer mediante la infor-
macién suministrada por una cdmara de captura RGB-D, como ejemplo se
presenta la Blaster Senz3D Creative, cuyo rango de vision 3D se encuentra
delos 0.2 alos 1.5 metros, la cual se puede apreciar en la Figura 4-2.
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Figura 4-2: Sensor de captura RGB-D

Se presentan dos opciones para el entrenamiento de la multi-red. La
primera consiste en un pre-entrenamiento convolucional que, mediante
transferencia de aprendizaje, permita emplear la red obtenida en la Sec-
cidn 3.4.2 como arquitectura base ya conocida, donde se entrenen cuatro
de estas redes, cada una con una base datos de profundidad diferente. La
segunda opcidn consiste en determinar cada una de las cuatro arquitectu-
ras de las redes convolucionales de forma independiente, para ser entre-
nadas con bases de datos respectivas.

4.4. Arquitectura basada en Transferencia de Aprendizaje

A partir de lared neuronal convolucional para discriminacion de herra-
mientas obtenida en la seccidn 3.4.2, que permite la discriminacidn de las
cuatro categorias y cuya eficiencia fue del 93,8% en la clasificacion a una
distancia fija, se emplea su arquitectura como base para realizar la tarea
de transferencia de aprendizaje [Pan y Yang, 2010], donde para cada una
de las cuatro redes re-entrenadas se utiliza la base de datos de imagenes
ilustrada en la Tabla 4-1.
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Tabla 4-1: Base de imdgenes en Profundidad.

’ Red/Profundidad ‘ Pinzas ‘ Destornillador ‘ Bisturi ‘ Tijeras ‘

1/20cm 100 100 100 100
2 /40 cm 100 100 100 100
3/ 60 cm 200 200 200 200
4 / 80 cm 200 200 200 200

La diferencia en la cantidad de imagenes empleadas por cada red, se-
gun la profundidad, estd determinada por la cantidad de caracteristicas
que deben aprender los filtros en el entrenamiento. Mientras mas cerca,
0 mas lejos, estd la imagen, mas variaciones se encuentran respecto a la
red inicial. Una imagen cerca al objeto permite una mejor identificacidn,
pues las caracteristicas exhibidas son facilmente extraibles; requiriendo
un menor uso de recursos computacionales, lo que implica menor tiem-
po en las tareas de entrenamiento y clasificacién. En este caso, el tiempo
promedio de entrenamiento es de 470 segundos y de 0.612 segundos en
la clasificacidn. La Figura 4-3 ilustra el desempefio en el entrenamiento de
las nuevas redes a 20, 40 y 80 cm, para 60 cm se presentd en el capitulo
anterior.
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Figura 4-3: Desempeiio por transferencia de aprendizaje para las redes a diferentes distancias: 20 cm
(arriba), 40 cm (en el medio) y 80 cm (abajo).
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En relacién a la eficiencia en la clasificacién se obtuvo un 86,25%,
83,49% y un 82,37% para cada red, segun se observa en las Tablas 4-2 -
4-4, a partir de las matrices de confusidn respectivas. Se puede observar
cdmo a distancias mas cercanas al objeto la clasificaciéon mejora y que las
caracteristicas son mas facilmente reconocidas, como es el caso de las ti-
jeras, que presentan muy pocos falsos positivos a distancias cortas, que
aumentan considerablemente a distancias mayores, siendo confundidas

principalmente con el bisturi.

Tabla 4-2: Matriz de confusién para la Red 1- 20 cm. Eficiencia = 86.25%.

CLASIFICADA
Pinzas | Destornillador | Bisturi | Tijeras
Pinzas 92 0 12 4
2| Destornillador | 0 85 20 0
= Bistwf 17 0 87 1
Tijeras 0 0 1 81
Tabla 4-3: Matriz de confusién para la Red 2 - 40 cm. Eficiencia = 83.49%.
CLASIFICADA
Pinzas | Destornillador | Bisturi | Tijeras
Pinzas 86 0 16 6
2| Destornillador | 0 79 26 0
= Bistwf 14 0 90 1
Tijeras 2 0 1 79
Tabla 4-4: Matriz de confusion para la Red 4 - 80 cm. Eficiencia = 82.37%.
CLASIFICADA
Pinzas | Destornillador | Bisturi | Tijeras
Pinzas 145 0 25 8
é Destornillador 0 165 12 33
= Bisturi 34 0 205 0
Tijeras 0 8 21 144
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4.2. Arquitectura basada en Aprendizaje Individual

Para la segunda opcidn, se implementaron cuatro arquitecturas dife-
rentes para su entrenamiento individual, para la red orientada a recono-
cimiento de media distancia (60 cm) se mantiene la misma estructura de
la Figura 3-15. Para las otras se emplearon tres arquitecturas diferentes
cuyas caracteristicas son mostradas en la Tabla 4-5.

Tabla 4-5: Arquitecturas de red basadas en profundidad.

] Nombre Tipo Kernel \ Filtros ‘
Convolution 10x10 =
MaxPooling 8x8 =2 | 10-10/50
Convolution 5xH = 20-20
Arq 1-20 em e s Ting | 10x10 | S= 30-30
Fully-Connected 1 40-40
Softmax 5
Convolution 26x26 | S=2
MaxPooling 6x6 | S=2
Convolution 6x6 | S=2
MaxPooling 6x6 | S=2
Arq 2 - 40 em [TUComected : 10-10/30
MaxPooling 9Xb =2
Convolution =7 =3
Fully-Connected 1
Softmax 5
Convolution 26x26 | S=2
MaxPooling 6x6 | S=2
Convolution 6x6 | S=2
MaxPooling 6x6 | S=2
Fully-Connected
Arq 4 - 80 cm Softmax 5 10-10/30
MaxPooling 5%5 =2
Convolution X7 =3
Fully-Connected
Softmax 5

Las diferencias en las arquitecturas se dan por la complejidad del apren-
dizaje que debe manejar cada una de las redes, acorde a la cantidad de in-
formacion en la imagen. Mientras mayor sea la distancia de la captura de la
imagen al objeto, mayor informacién ingresa a la red, la cual debe discrimi-
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nar claramente el objeto del resto. Por ejemplo, gran parte correspondera
al fondo, el cual debera ser discriminado del aprendizaje respecto al objeto.

Cada una de las arquitecturas implementadas fue entrenada con la
base de datos de entrada que relaciona la Tabla 4-1, donde el 80% de los da-
tos data se usan para el entrenamiento y el 20% restante para validacion.
La Figura 4-4 ilustra el resultado del comportamiento en el entrenamiento
de las arquitecturas 1, 2 y 4, respectivamente. Se puede observar que la
arquitectura 1 presentd la curva de aprendizaje mas rapida. Pero, a su vez,
asimila parte del fondo como del objeto en si. Mientras que la arquitec-
tura 4 reconoce patrones mds complejos del mapa de caracteristicas del
objeto, lo cual explica el retardo de aprendizaje evidenciado en esta red,
discriminando claramente el objeto del fondo. De igual forma, se evidencia
que la complejidad de la arquitectura y el objeto de aprendizaje respecto a
laimagen, afectan el tiempo de entrenamiento. Para este caso, la arquitec-
turat requiere la mitad de épocas de entrenamiento que la arquitectura 4.
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Figura 4-4: Desempefio por aprendizaje individual para las redes a diferentes distancias: 20cm (arriba), 40
cm (en el medio) y 80 cm (abajo).

4.3. Arquitectura final de aprendizaje en profundidad

Para determinar el desempefio de cada arquitectura, se evalda la capa-
cidad de prediccién por escenario planteado, en funcién a la profundidad
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de la captura de laimagen, caso A por transferencia de aprendizaje y caso
B por disefio individual de cada red convolucional. En la Tabla 4-6 se puede
apreciar la tasa de error obtenida que, de forma general, permite concluir
que el caso B permite el mejor reconocimiento a profundidad dindmica.

Tabla 4-6: Error de clasificacién.

’ Caso ‘ Arquitectura 1 | Arquitectura 2 ‘ Arquitectura 3 ‘ Promedio ‘

A 12.67 % 10.72% 6.6 % 9.99 %
B 10.56 % 7.87% 6.5% 8.31%

Los resultados mostrados en la Tabla 4-6 son obtenidos de la valida-
cién individual de cada red. Debido a que la funcionalidad del desarrollo
estd orientada a cambios dinamicos de la profundidad, donde la clasifica-
Cién se debe realizar en tiempo real, se emplea una arquitectura final con-
junta con una capa de salida de ponderacién basada en la profundidad de
captura en la imagen de entrada.

La capa de ponderacidn adicional genera una suma ponderada de las
respuestas individuales de cada salida de las redes de la arquitectura final,
en funcidn a la profundidad

m

> (140, (4-1)

n=1

P

donde P. corresponde a la ponderacion que determina la categoria de
salida, m representa el nimero de redes que posee la arquitectura final,
la distancia normalizada (d) se toma como la distancia en centimetros de
la cdmara (do) sobre la distancia minima que distingue (20 cm), es decir
d= do/20. La funcién de saturaciéon empleada, que se observa en la capa
de salida en la Figura 4-1, se hace necesaria debido a que el exponente en
(4-1) tiende a infinito al activarse la red correspondiente. P, es obtenida
mediante el grupo de iteraciones ilustradas en la Tabla 4-7. Dado que se
requiere que, a las distancias de entrenamiento, la red correspondiente
sea la predominante, se busca que su salida (O,,) posea una relacién ex-
ponencial alta que demarque el resultado de la sumatoria. Para este caso,
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la relacién inversa 1/(n—d) genera un valor infinito en la dupla red-distan-
cia, a diferencia de las combinaciones previas validadas. El parametro SAT,
denota dicho valor infinito al cual se le adiciona la saturacién a un valor
de 0 a 10, eliminando los valores negativos. Para el caso de las relaciones
1/(n+1- d) y 1/(d+1- n), la condicién en el denominador de cero (DIV 0)
elimina la ecuacién como opcién. Finalmente, la salida total de lared, Oy,

corresponde al argumento maximo de P.,.

Tabla 4-7: Iteracion para el establecimiento de Pc.

[do] d [n[d+1ln [n+1-d [ n/d | d/n [ 1/(d+1-n) [ 1/(n+1-d) | nd | 1/(n-d) |
20 1 1 1 1 1 1 1 1 0 SAT
20 1 |2 0 2 2 0,5 DIV 0 0,5 1 1
20 1 [3] -1 3 3 10,33 -1 0,33 2 0,5
30151 15 05 |066] 1,5 0,66 2 -0,5 -2
30152 05 1,5 | 1,3 0,75 2 -0,66 0,5 2
30[15]3] -05 2,5 2 | 05 -2 0,4 1,5 0,6
40 2 1 2 0 0,5 2 0,5 DIV 0 -1 -1
40 2 2 1 1 1 1 1 1 0 SAT
40 2 |3 0 2 1,5 | 0,6 DIV 0 0,5 1 1
50251 25 0,5 | 04 | 25 0,4 -2 15| -06
50252 1,5 05 | 0,8 1,25 0,6 2 -0,5 -2
50253 05 1,5 1,2 | 0,8 2 0,6 0,5 2

En la Figura 4-5 se puede apreciar el resultado de la clasificacidon de
la arquitectura neuro-convolucional disefiada, basada en profundidad. Se
aprecia que las imdgenes empleadas son reconocidas satisfactoriamente
cuando la cdmara es acercada hacia los objetos de interés. Para este caso
el error se reduce al 8,31%. Note que, para cada columna de la Figura 4-5
se tiene larelacién de capturailustrada en la Tabla 4-8. Se observa que para
los valores de distancia del entrenamiento la salida se satura, mientras que
para valores intermedios es ponderada por las activaciones respectivas.
Por ejemplo, para una distancia de 50 cm, la ponderacidn resultante es
4.74, resultando de las activaciones de las arquitecturas 2 y 3 que, sin llegar
a saturarse, da por encima del valor de las otras clases.
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Prediction: screwdriver
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Prediction: screwdriver
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Prediction: nippers

Figura 4-5: Respuesta de la red neuronal convolucional basada en profundidad.

Tabla 4-8: Resultados ponderacion para bisturi en profundidad.

Profundidad ‘ 60 cm ‘ 30 cm ‘ 20 cm ‘ 10 cm ‘
Arquitectura activada 3 2-3 1 1
Ponderacion 10 5,66 10 10

4.4. Arquitectura hibrida difusa de aprendizaje en profundidad

Una alternativa a la solucién planteada es cambiar la capa final de pon-
deracién por una capa de inferencia difusa, como se ilustra en la Figura
4-6. Obteniendo asi una arquitectura hibrida en la que hay que disefiar el

sistema de inferencia difusa que reemplace a (4-1).
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El primer aspecto a tener en cuenta es que se debe fusificar la salida
de las redes paralelas, para su interpretacion en el sistema de inferencia
difusa. Cada una delas salidas de las redes, por categoria a reconocer, varia
entre 0y 1, ya que estas se componen de una funcidn de activacién en la
etapa de clasificacién que emplea una relacién no lineal tipo tangencial, lo
que orienta a usar funciones de pertenencia de tipo Gaussiano en los con-
juntos difusos. A la salida de cada red (S_C'tg), se multiplica por 33.5 y se
le ajusta un offset, a fin de cubrir un universo de discurso de 0 a 100, entre
las cuatro categorias, como se ilustra en la Tabla 4-9.

Tabla 4-9: Fusificacion categorias.

’ CATEGORIA ‘ Fusificacién ‘ Rango
Pinza 33.5(1-5_Ctgl) 0-335

Destornillador | 33.5(S_Ctg2) 0-67
Bisturi 33.5(S_Ctg3+1) | 335 - 100
Tijeras 33.5(S_Ctgdt2) | 67- 100

La Figura 4-7 ilustra el sistema de inferencia difusa, donde se observan
las entradas del sistema, relacionadas a cada una de las cuatro redes em-
pleadas, y la entrada de distancia, las cuales determinaran finalmente
la categoria de clasificacion que se relacionan mediante la base de reglas
que gobernara la respuesta del sistema.

PONDERACION

60cm - (mamdani)

| k - SALIDA

PROFUNDIDAD

Figura 4-7: Sistema de inferencia Difusa para ponderacion.

La base de reglas relaciona los diferentes conjuntos difusos de entra-
da, que corresponden a las salidas fusificadas de las redes convolucionales
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entrenadas a cada distancia particular (20 cm, 40 cm, 60 cm y 80 c¢m).
Cadared determina su categoria de salida entre pinzas, destornillador, bis-
turi y tijeras, las cuales entran a ser las etiquetas lingtisticas de cada con-
junto, como se observa en la Figura 4-8. Los conjuntos conforman el uni-
verso de discurso a operar, la figura a su vez permite apreciar graficamente
las relaciones de fusificacion de la Tabla 4-9.
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Figura 4-8: Funciones de pertenencia de entrada.

La informacién de distancia, obtenida del sensor RGB-D, es ingresa-
da al conjunto difuso de profundidad, de forma tal que los universos de
discurso no cubren mas alla del rango de interés. Es decir, los 20 cm de
rango minimo y los 80 ¢m de entrenamiento maximo, como se ilustra en
la Figura 4-9.

T T T T T T T T T
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1 ﬁ—i
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input variable “PROFUNDIDAD"

Figura 4-9: Funciones de pertenencia de profundidad.
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El conjunto difuso de salida determinard finalmente la categoria de
seleccion. Por lo tanto, se establece en el mismo rango y relacion que los
conjuntos difusos de entrada, dado que tiene la misma estructura respec-
to ala clasificacion de las categorias. Pero en este caso, independiente de
la profundidad, como se ilustra en la Figura 4-10.
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Figura 4-10: Funciones de pertenencia de salida.

En la Figura 4-11 se presenta una muestra de la base de reglas em-
pleada. Es de resaltar que el problema se plantea con cuatro categorias,
en cinco conjuntos difusos, lo que resulta en 45=1024 combinaciones de
reglas por determinar.

1. 1f (20cm is PINZAS) and (40cm is PINZAS) and (60cm is PINZAS) and (80cm is PINZAS) and (PROFUNDIDAD is 20cm) then (SALIDA is PINZAS) (1) ~
2. If (20cm is DESTORNILLADOR) and {40cm is DESTORNILLADOR) and (60cm is DESTORNILLADOR) and (80cm is DESTORNILLADOR) and (PROFUNDIDAD is 20cm) then (SALIDA is DESTORNILLADOR) (1)
3. (20cm is TUERAS) and (40cm is TUERAS) and (60cm is TUERAS) and (80cm is TUERAS) and (PROFUNDIDAD is 20cm) then (SALIDA is TUERAS) (1)

4.1f (20cm is BISTURI) and (40cm is BISTURI) and (60cm is BISTURI) and (80cm is BISTURI) and (PROFUNDIDAD is 20cm) then (SALIDA is BISTURI) (1)

5. If (20cm is PINZAS) and (40cm is PINZAS) and (60cm is PINZAS) and (80cm is PINZAS) and (PROFUNDIDAD is 40cm) then (SALIDA is PINZAS) (1)

6. If (20cm is DESTORNILLADOR) and (40cm is DESTORNILLADOR) and (60cm is DESTORNILLADOR) and (80cm is DESTORNILLADOR) and (PROFUNDIDAD is 40cm) then (SALIDA is DESTORNILLADOR) (1)
7. If (20cm is TUERAS) and (40cm is TUERAS) and (60cm is TWERAS) and (80cm is TUERAS) and (PROFUNDIDAD is 40cm) then (SALIDA is TUERAS) (1)

8. If (20cm is BISTURI) and (40cm is BISTURI) and (60cm is BISTURI) and (80cm is BISTUR!) and (PROFUNDIDAD is 40cm) then (SALIDA is BISTURI) (1)

9. If (20cm is PINZAS) and (40cm is PINZAS) and (60cm is PINZAS) and (80cm is PINZAS) and (PROFUNDIDAD is 60cm) then (SALIDA is PINZAS) (1)

10. If (20cm is DESTORNILLADOR) and (40cm is DESTORNILLADOR) and (60cm is DESTORNILLADOR) and (80cm is DESTORNILLADOR) and (PROFUNDIDAD is 60cm) then (SALIDA is DESTORNILLADOR) (1)
11. f (20cm is TUERAS) and (40cm is TUERAS) and (60cm is TUERAS) and (80cm is TUERAS) and (PROFUNDIDAD is 60cm) then (SALIDA is TUERAS) (1)

12. I (20cm is BISTURI) and (40cm is BISTURI) and (60cm is BISTUR!) and (80cm is BISTURI) and (PROFUNDIDAD is 60cm) then (SALIDA is BISTURI) (1)

13.If (20cm is PINZAS) and (40cm is PINZAS) and (60cm is PINZAS) and (80cm is PINZAS) and (PROFUNDIDAD is 80cm) then (SALIDA is PINZAS) (1)

14 If (20cm is DESTORNILLADOR) and (40cm is DESTORNILLADOR) and (60cm is DESTORNILLADOR) and (80cm is DESTORNILLADOR) and (PROFUNDIDAD is 80cm) then (SALIDA is DESTORNILLADOR) (1)
15. If (20cm is TWERAS) and (40cm is TUERAS) and (60cm is TUERAS) and (80cm is TUERAS) and (PROFUNDIDAD is 80cm) then (SALIDA is TWERAS) (1)

16. If (20cm is BISTURI) and (40cm is BISTUR!) and (60cm is BISTURI) and (80cm is BISTURI) and (PROFUNDIDAD is 80cm) then (SALIDA is BISTURI) (1)

17. If (20cm is PINZAS) and (40cm is PINZAS) and (60cm is PINZAS) and (80cm is DESTORNILLADOR) and (PROFUNDIDAD is 20cm) then (SALIDA is PINZAS) (1)

18. I (20cm is PINZAS) and (40cm is PINZAS) and (60cm is PINZAS) and (80cm is BISTURI) and (PROFUNDIDAD is 20cm) then (SALIDA is PINZAS) (1)

19.If (20cm is PINZAS) and (40cm is PINZAS) and (60cm is PINZAS) and (80cm is TUERAS) and (PROFUNDIDAD is 20cm) then (SALIDA is PINZAS) (1)

120, f {20cm is DESTORNILLADOR) and (40cm is DESTORNILLADOR) and (60cm is DESTORNILLADOR) and (80<m is PINZAS) and (PROFUNDIDAD is 20cm) then (SALIDA is DESTORNILLADORI () !

Figura 4-11: Base de reglas.

Para ilustrar el proceso de fusificacion empleado, se expone el ejemplo
de clasificacién que se muestra en la Figura 4-12, donde la entrada es la
imagen de un destornillador a una distancia de 40 cm. La red 2, entrenada
a 40 cm, evidencia un 94,99% de acierto en la clasificacién y las demas
redes decrementan dicho acierto, como era de esperarse. En la Figura
4-12 se ilustran los resultados de las cuatro redes por cada categoria dada:
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pinza (label1l), destornillador (1abel?2), bisturi (1abel3) vy tijeras
(Label4). La fusificacion de estos resultados se ilustra en la Tabla 4-10,
donde p (x) corresponde al grado de pertenencia.

¥ Editor - C:\Users\Robinson\Desktop\prb\predictionCnn.m

Command Window

labell =

1x4 single row vector

(4 Figure 1 = o X
0.0181 0.7874 0.1844 0.0101

File Edit View Insert Tools Desktop Window Help ~
ODE8W&[k[ARTBDEL-[B[0E[nQ|

labelZ =

1x4 single row vector Red 40:destornillador
0.0020 0.9499 0.0259 0.0222 /f/
v

label3 =

1x4 single row vector

0.1190 0.8434 0.0355 0.0020

labeld =

1x4 single row vector

0.0077 0.8171 0.1448 0.0304

fe>>
Figura 4-12: Respuesta del sistema sin ponderacion.
Tabla 4-10: Resultados capa difusa.
RED Categoria Salida de la red (z) ‘ Fusificaciéon (u(z)) ‘

Pinzas 0.0181 32.893

Destornillador 0.7874 26.377

L CRN 20 em 0.1844 39.677
Tijeras 0.0101 67.338

Pinzas 0.002 33.43

9. NN 40 cm Desto'rnillador 0.949 31.821
Bisturi 0.0259 34.367

Tijeras 0.022 67.743

Pinzas 0.119 29.513

3. ONN 60 em Destornillador 0.8434 28.253
Bisturi 0.0355 34.689

Tijeras 0.002 67.06

Pinzas 0.007 33.242

4 CNN 80 em Destornillador 0.817 27.372
Bisturi 0.144 38.350

Tijeras 0.0304 68.018
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La Figura 4-13 permite observar graficamente el resultado de la fusifi-
cacion sobre el conjunto difuso paralared 2 (Arq 2 - 40 cm), evidenciando
que corresponde a un destornillador. A su vez se pueden observar la fusifi-
cacion de las otras tres redes.

ol :
Membership function plots plot points 181

PINZAS DESTORNILLADOR BISTURI TIJERAS

o —

input variable "40cm’ —R1 —R2 —R3 — R4

Figura 4-13: Salida difusa ponderada.

La salida del sistema de inferencia difusa se calcula empleando el al-
goritmo Mamdani, el cual implica los pasos descritos en el Algoritmo 3 [Ba-
buska, 2001].

Algoritmo 3: Inferencia Mamdani
Begin
Paso 1: Evaluacion del antecedente en cada regla.
Bi = m)c(zx[uA’(x) ApAi(z)], 1 <i<K.
Paso 2: Obtener la conclusion en cada regla, para los conjuntos difusos
de salida. B}; uBi(y) = 8; AuBi(y), 1 <i < K

Paso 3: Agregar la conclusion de cada regla. B} : pB'(y) = maz uB'(y)

end

En este caso, se tienen los conjuntos difusos de entrada, como ante-
cedente difuso:

20cm = {0,0181/32; 0,7874/26,37; 0,1844/39,67; 0,0101/67,33},
40cm = {0,002/33,43; 0,9499/31,82; 0,0259/34,36; 0,0222/67,74},
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60cm = {0,119/29,51; 0,8434/28,25; 0,0355/34,68; 0,002/67,06},
80cm = {0,0077/33,24; 0,8171/27,37; 0,1448/38,35; 0,0304/68,01},

que operaran con los conjuntos difusos relacionales:

pinzas = {1/0; 0,03/35; 0,001/67; 0/100},
destornillador {0/0; 1/35; 0,01/67; 0/100},

bisturi = {0/0; 0,001/35; 1/67; 0,01/100},
{0/0; 0/35 0,01/67; 1/100}.

tijeras

Se tienen los conjuntos difusos de salida, como consecuente difuso:

{1/0; 0,03/35 0,001/67; 0/100},

destornillador {0/0; 1/35; 0,01/67; 0/100},
bisturi = {0/0; 0,001/35; 1/67; 0,01/100},
tijeras = {0/0; 0/35; 0,01/67; 1/100}.

pinzas

A continuacidn, se ilustra el computo del algoritmo Mamdani, donde
se requiere obtener cada f,, y B,, hasta S5 y By de las cuatro redes y
operarlos posteriormente con el de profundidad (8Depth).

p1= max({0,0181; 0,7874; 0,1844; 0,0101}"{1; 0,03; 0,001; 0})=0,03
Bo= max({0,0181; 0,7874; 0,1844; 0,0101}7{0; 1; 0,01; 0})=0,7874
B5= max({0,0181; 0,7874; 0,1844; 0,0101}"{0; 0,001; 1; 0,01})=0,1844
B4= max({0,0181; 0,7874; 0,1844; 0,0101}"{0; 0; 0,01; 1})=0,01
B5=max({0,002; 0,9499; 0,0259; 0,0222}"{1; 0,03; 0,001; 0})=0,002
Be= max({0,002; 0,9499; 0,0259; 0,0222}{0; 1; 0,01; 0})=0,9499
Br= max({0,002; 0,9499; 0,0259; 0,0222}"{0; 0,001; 1; 0,01})=0,0259
Bs= max({0,002; 0,9499; 0,0259; 0,0222}7{0; 0; 0,01; 1})=0,0222
Bo= max({0,119; 0,8434; 0,0355; 0,002} ~{1; 0,03; 0,001; 0})=0,119
Bro= max({0,119; 0,8434; 0,0355; 0,002} ~{0; 1; 0,01; 0})=0,8434
B11= max({0,119; 0,8434; 0,0355; 0,002} ~{0; 0,001; 1; 0,01})=0,0355
B1o= max({0,119; 0,8434; 0,0355; 0,002} ~{0; 0; 0,01; 1})=0,0355
B15= max({0,0077; 0,8171; 0,1448; 0,0304}"{1; 0,03; 0,001; 0})=0,03
Br4= max({0,0077; 0,8171; 0,1448; 0,0304}~{0; 1; 0,01; 0})=0,8171
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1= max({0,0077; 0,8171; 0,1448; 0,0304}~{0; 0,001; 1; 0,01})=0,1448
1= max({0,0077; 0,8171; 0,1448; 0,0304}~{0; 0; 0,01; 1})=0,1448
Bi=0,18447{1; 0,03; 0,001; 0} ={0,1884; 0,03; 0,001; 0}
Bo=0,7874°{0; 1; 0.01; 0} ={0; 0,7874:0,01;0}

By= 0,18447{0; 0,001; 1; 0,01} ={0; 0,001; 0,1844; 0,01}
B,=0,017{0; 0; 0,01; 1} ={0; 0; 0,01; 0,01}
Bs=0,002"{1; 0,03; 0,001; 0} ={0,002; 0,002; 0,001; 0}
Bg= 0,94997{0; 1: 0,01; 0} ={0; 0,0499:0,01:0}
Br=0,02597{0; 0,001; 1; 0,01} ={0; 0,001; 0,0259; 0,01}
Bg=0,02227{0; 0; 0,01; 1} ={0; 0; 0,01; 0,0222}

By~ 0,119"{1; 0,03; 0,001; 0} ={0,119; 0,03; 0,001; 0}
Bio= 0,84347{0; 1: 0,01; 0} ={0; 0,8434:0,01;0}
Bii=0,03557{0; 0,001; 1; 0,01} ={0; 0,001; 0,0355; 0,01}
Bio=0,03557{0; 0; 0,01; 1} ={0; 0; 0,01; 0,0355}
Bis=0,03~{1; 0,03; 0.001; 0} ={0,03; 0,03; 0,001; 0}
Bu=0,81717{0; 1; 0,01; 0} ={0; 0,8171:0,01;0}
Bis=0,14487{0; 0,001; 1; 0,01} ={0; 0,001; 0,1448; 0,01}
Big=0,14487{0; 0; 0,01; 1} ={0; 0; 0,01; 0,1448}
B={0,1884; 0,9499:0,1844:0,1448}

BDepth=max({0; 1; 0; 0}{0; 1; 0; 0}) =1
BDepth=1"{0; 1; 0; 0} ={0;1;0; 0}

Btotal={0,1884; 1;0,1844;0,1448}

A este resultado se le aplica un método de fusificacion. Por ejemplo,
mediante centro de gravedad, como sigue

S s ()XY, 0,188x14+1x 33+ 0,184 6640144 x99
= = — 39,3
' Syt (y)) N 0,18841+0,184+ 0,144 o

(42)

El valor y' corresponde al centro de gravedad del conjunto difuso de
salida Btotal y para un valor de 39,3 tiene un grado de pertenencia del
92,34% en la categoria de destornillador (ver Figura 4-13). De forma tal,
que la diferencia entre la red difusa y el obtener el promedio aritmético
de las salidas de la categoria destornillador entre cada red, que da un
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84,94% de acierto en la clasificacién, muestra un 7,39% mas acertada a la
red difusa. Mientras que el resultado obtenido mediante (4-1), al ser una
distancia de entrenamiento, satura la salida dando 100% en la clasificacién.

La Tabla 4-11 relaciona los resultados obtenidos para ambos casos de
ponderacién propuestos, donde P, corresponde a la respuesta de (4-1) y
F; a la respuesta del sistema difuso. Es evidente que, para los casos de
distancia de entrenamiento, la salida P, satura la respuesta, presentando
mejor desempefio que la salida F. Sin embargo, para casos intermedios
de distancia, las respuestas son mads similares, siendo levemente mejor la
salida difusa en algunos casos.

Tabla 4-11: Comparacion capas de ponderacion.

’ ‘ Pinzas Destornillador Bisturi Tijeras

P, F P. F P, F P, F
20 | 100 | 91,56 | 100 93,97 100 | 90,21 | 100 | 94,01
30 | 87,01 | 84,61 | 92,5 | 89,33 | 91,11 | 89,96 | 92,83 | 91,34
40 | 100 | 92,34 | 100 89,62 100 | 91,68 | 100 | 94,83
50 | 91,3 | 91,87 | 90,8 | 91,65 | 92,12 | 92,43 | 93,15 | 90,68
60 | 100 | 92,71 | 100 91,06 100 | 90,67 | 100 | 92,35
80 | 100 | 94,79 | 100 90,66 100 | 89,32 | 100 | 89,47

Es de aclarar que, aunque una red hibrida convolucional difusa, como
la disefiada, es una mezcla de técnicas de Machine Learning, que soluciona
el problema del ambiente dinamico de reconocimiento planteado, la red
por saturaciéon mediante (4-1) es mas simple y genérica, dado que el nime-
ro de redes paralelas puede cambiar facilmente, mientras que en el caso
difuso se debe redisefiar el sistema de inferencia para ingresar un nuevo
caso de profundidad.

4.5. Validacion mediante DAG-CNN

Para validar el desempefio del sistema propuesto se implementa una
red tipo DAG-CNN, que corresponde a un arquitectura paralela variante de
las redes neuronales convolucionales (CNN). Pero que, a diferencia de la
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arquitectura propuesta, no permite la inclusién de un canal de profundi-
dad como el empleado y, a su vez, trabaja con una base de datos genera-
lizada a todas las redes. Dentro del estado del arte, este tipo de red es el
método de validacién mas cercano al propuesto.

Como se ha mencionado, en las redes neuronales convolucionales
orientadas al reconocimiento de multiples grupos de clases en imagenes,
se necesita una mayor profundidad en la red para conservar una alta efi-
ciencia en la clasificacién. Para compensar esto, se disefiaron las estructu-
ras de tipo Directed Acyclic Graph (DAG) Network [Thulasiraman y Swamy,
1992]. Este tipo de arquitectura permite tener una mayor cantidad de ca-
pas de aprendizaje trabajando en ramas paralelas, por lo que no la requiere
hacer mas profunda, mejorando el tiempo de procesamiento e incremen-
tando la cantidad de caracteristicas que la red puede aprender, como se
expone en [Ciregan et al., 2012].

Al tener la posibilidad de personalizar los parametros de cada rama,
estos se pueden determinar de forma que aprendan distintas caracteristi-
cas de los objetos a clasificar. Dicho comportamiento, es similar a la pro-
puesta de red de arquitectura paralela expuesta, donde cada rama apren-
de las caracteristicas a una profundidad determinada. Por la similitud de
las arquitecturas se disefia una DAG-CNN para evaluar su comportamiento
con la base de datos completa. Es decir, se incluye cada categoria en los
diferentes niveles de profundidad que se establecieron.

Se implementd una primera DAG-CNN con la arquitectura de las redes
mostradas en la Tabla 4-5, como se aprecia en la Figura 4-14. Esta primera
arquitectura obtuvo una eficiencia en la clasificacién del 81,3%. Para me-
jorar el desempefio de esta red, se realizan 10 iteraciones, variando los pa-
rdmetros de cada rama, obteniendo un maximo de 86,64% de eficiencia
en la clasificacion, donde la DAG-CNN obtenida se ilustra en la Figura 4-15.
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Aungue un desempefio cercano al 87% se puede considerar suficiente
en la tarea de clasificacion, mas adn frente al 69,71% alcanzado con la red
neuronal convolucional de la Seccidn 3.4.2, que también incluye la base de
datos completa. Se puede evidenciar que la red DAG-CNN adquiere mayor
capacidad de discriminacion frente a los problemas de variacién de distan-
Cia y que una arquitectura paralela aporta un camino a solucionar dicho
problema. Sin embargo, la arquitectura propuesta en este capitulo, con
inclusion del canal de distancia, evidencia un mejor desempefio en un am-
biente dinamico, reduciendo significativamente los falsos positivos.

La Figura 4-16 permite evidenciar las activaciones del mismo objeto
a una distancia de 40 cm, con las redes cercanas (20 y 60 ¢m), donde se
aprecia que a 40 cm se generan mas y mejores activaciones que permiten
un claro reconocimiento, el cual se degrada al acercar o alejar el objeto.

Figura 4-16: Activacion 20, 40y 60 cm.
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Capitulo 5

Robdtica Asistente Mediante
Aprendizaje Profundo

Con el fin de entrenar un agente robdtico como asistente, en una pla-
taforma multi-herramientas, se deben considerar aspectos adicionales con
relacién a la identificacion de la herramienta en un ambiente dinamico.
Dentro de estos aspectos estd la planeacidn de trayectorias que realizara
el robot para ir de un punto en el espacio a otro. Dentro de este desplaza-
miento se puede presentar la necesidad de una posible evasién de obsta-
culosy, por ejemplo, al llegar a la herramienta se debe determinar cémo se
realizara su agarre, accion que a su vez puede requerir de un algoritmo de
control para compensacién de fuerza, por las variaciones de peso presente
entre herramientas y que afectan al ser tomadas por el efector final del
brazo robdtico.

A continuacidn se exponen algunos algoritmos que permiten dar una
solucidn tentativa a tales aspectos.

5.1.  Planeacion de trayectoria

El desplazamiento de un robot estd determinado por las relaciones
geométricas de su estructura, las cuales determinan su cinematica basica,
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y con un algoritmo, que le permita establecer por qué puntos en el espacio
moverse. A continuacion, se establece un posible esquema que permite a
un brazo robdtico asistencial, en funcién a su cinematica, desplazarse de
un punto a otro, lo que se denomina planeacién de trayectoria.

5.1.1. Andlisis matematico

El andlisis que permite conocer la posicion del efector final del brazo
robético respecto a las coordenadas de la base (o del mundo), se conoce
como andlisis cinematico. De forma general, relacionar las coordenadas
propias del robot respecto a cada uno de sus dngulos y longitudes, con la
ubicacién espacial (x,y,z) del efector final, se denomina cinematica direc-
ta. Esta se requiere para poder determinar, desde una posicidn inicial, la
forma en que cada articulacién del brazo se debe mover para lleva al efec-
tor a un punto deseado en el espacio.

El andlisis cinematico se realiza empleando el método de Devanit-Har-
tenberg (D-H), que relaciona el espacio de articulaciones de un brazo
robdtico con el espacio cartesiano [Weber, 2010], como una funcién
f.J(6;) > R3, donde 6; corresponde al dngulo de rotacién de cada articu-
lacién. Se tienen n grados de libertad del brazo (GDL), que para el caso del
brazo empleado es de 5 GDL, el quinto grado corresponde al efector final,
que no cambia la distancia alcanzada, por lo cual no hace parte de andlisis.
Cada grado de libertad, genera un sistema coordenado ortogonal. De for-
ma tal que, para relacionar el sistema ortogonal anterior (.S; —1) con el sis-
tema actual (S;), se utilizan transformaciones homogéneas que indican los
rotaciones y traslaciones que se deben efectuar sobre el sistema S; | para
llegar a la posicion y orientacion del sistema .S; . El método D-H propone
que a partir de cuatro transformaciones basicas, asociadas a traslaciones
y rotaciones sobre y alrededor de los ejes x y z, se puede relacionar la
posicion y orientacion de dos sistemas consecutivos, previa selecciéon ade-
cuada de los sistemas coordenados ortogonales [Barrientos et al., 2007],
como se muestra a continuacion
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LA, =Rot, g, Tras, g Trasy 5. Rotz 4.,

donde "' A; representa la posicién y orientacidn del sistema S; en coor-
denadas del sistema S; -1, 0, y ai representan rotaciones al rededor de los
ejes x y z (para que el sistema S; -1 quede con la misma orientacién que
Si), respectivamente; mientras que d; y a; representan traslaciones sobre
los ejes x y z (para que el sistema S; -1 quede enla posicién de S;), respec-
tivamente. Note que la matriz de transformacién genérica entre dos mar-
cos de referencia se puede escribir como [Abdel-Malek y Othman, 1999]

cos; —sinb; cos q; sinf; sinoy; a; cosb;
1A sin 6; cosb; cosa; —cosl; sina; a; sinb; (5-1)
’ 0 —sin «; cos v d; ’
0 0 0 1

Por lo que, para relacionar cada uno de los sistemas de referencia con la
base, se utiliza [Abdel-Malek y Othman, 1999]

A, =]]"As (5-2)

i=1

Dado que YA, esunamatriz de transformacién homogénea, tiene la estructura

(5-3)

donde R(#) es una matriz de rotacién, funcién de los dngulos de la arti-
culaciones, @ = [0, 05 65 6, 65], que indica la orientacién del efector en el
sistema coordenado de la base y (z(8), y(6), z(0)), también funcidn de los
angulos de las articulaciones, representan la posicién en R3 del efector.
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La Figura 5-1ilustra el brazo empleado y los parametros de D-H asocia-
dos, los cuales se obtienen siguiendo el procedimiento en [Barrientos et
al., 2007], y se condensan en la Tabla 5-1.

Symbol Small Manipulator
AU Arduino One
1 Servomotor 1
2 Servomotor 2
3 Servomotor 3
a4 Servomotor 4

/ﬂ':’r’

/11

Figura 5-1: Robot utilizado. Izquierda: foto. Centro: notacion. Derecha: esquematico del robot
con la definicién de sistemas coordenados por articulacion y distancias entre ellos.

Tabla 5-1: Parametros D-H para el robot de la Figura 5-1.

Pardmetros D-H ‘ 0 ‘ d ‘ a ‘ « ‘

1 1|l |0|-m/2
2 O | 0| s 0
3 O3 | 0 |lI3 0
4 0.1 00| n/2
5 0Ojl0f|O 05

Del andlisis cinemdtico del brazo se puede validar el desplazamiento del
mismo en una trayectoria determinada en R3, como el brazo robético corres-
ponde a una estructura antropomdrfica rotacional, sus movimientos estan
delimitados por las esferas de radio variable, segun la longitud de cada articu-
lacion. Dado esto, se emplea la siguiente funcién de costo que se ajusta a las
posibles trayectorias del brazo, como

J(0) = (x(0) —x4)* + (y(0) —yp)* + (2(0) — zp)*,  (5-4)
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donde (z f, y 4, z ) representan las coordenadas del punto deseado, a las que
se desea que el manipulador se dirija, las cuales son obtenidas a partir a par-
tir del resultado de la clasificacidn obtenida por la arquitectura de red CNN,
que retorna la posicion de la herramienta a agarrar en el espacio de trabajo.

Dado que el brazo utilizado existe fisicamente, los dngulos 8; tienen res-
tricciones fisicas, que se muestran en la Tabla 5-2. Note que el quinto grado
corresponde al efector que se encarga solamente del agarre. De igual forma,
se tiene la restriccidon adicional del plano paralelo al eje de la base del robot
y < k, que representa a la persona u obstdculo dindmico que ingresa al espacio
de trabajo del robot. Por seguridad, se establece que el brazo robdtico no podra
llegar hasta el plano sino hasta una distancia méxima de dicho plano, para el caso
se toman 10 cm. Por lo que la ecuacién del plano asignada como restriccion es
y <p — 10, donde p representa la distancia del plano al eje de la base del robot.

Tabla 5-2: Restricciones angulares.

Angulo ‘ jmin ‘ jmax ‘

01 -3m/4 | 3w/4
0o 2n/5 | 27/5
05 27/5 | 27/5
04 27/5 | 2w /5
05 -m/4 | w/4

La Figura 5-2 ilustra la simulacion del ambiente de trabajo, donde se apre-
cia el brazo robético en la posicidn inicial y desde la punta del efector resaltada
en negro se presenta el desplazamiento rotacional y traslacional de este, has-
ta aproximarse al plano representativo del obstaculo y alejarse nuevamente
(véase la trayectoria del brazo en rojo y el punto final en azul).

160 —

140 — \

120 —

100
N80
60
40 — I
i /7 200
20 ‘/
7 o

(P — L 0
- e
g -50 -100

Y
Figura 5-2: Simulacién restriccién de movimiento robético.

100 50
X
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5.1.2. Algoritmos de planeacién de trayectorias

Determinadas las condiciones de operacion del brazo, se establece la for-
ma general de un problema de optimizacién, que permite encontrar los dngu-
los que cada articulacidon debe desplazarse para alcanzar la posicidn deseada,
O un punto cercano a esta,

min J(6),
S.a. Omfn < 0 < Omé,xa (5'5)
y(0) < p—10.

Dado que el tipo de problema a resolver es de naturaleza no lineal,
se emplea como algoritmo de optimizacion el método de penalizacién ex-
terior, resuelto por sus variantes de valor absoluto y penalizacién cuadra-
tica. Este método requiere un paso intermedio de busqueda lineal, que
para el caso se realiza mediante el método de gradiente conjugado, el
cual a su vez requiere determinar el paso o nivel de cambio en la direccién
de descenso, que conducira al objetivo. Para este cdlculo se emplea el
método de busqueda lineal Backtracking (Armijo’s rule [Boyd y Vanden-
berghe, 2004]).

Con el fin de resolver el problema de optimizacién planteado en (5-5),
es necesario replantearlo, de forma que se incluya en la funcién de coste
las restricciones, con el fin de manejar un problema de optimizacidn sin
restricciones

m

min - J,(0,1) = J(0) + i | Y (9;(6:))| . (5-6)

=1

donde J,. es la funcién de coste modificada que incluye la funcién de coste
inicial, considerada en (5-5), r; es la penalizacion de cada restriccion de (5-
5), j es el indice que barre las restricciones de (5-5) que son seis (cinco aso-
ciadas a los limites fisicos de las articulaciones y una al plano que represen-
ta el obstaculo y la distancia de seguridad), las funciones g;(-) representan
las restricciones anteriores, que se consideran elevadas a la potencia .

94



Robdtica Asistente Mediante Aprendizaje Profundo

El algoritmo de penalizacion exterior implementado corresponde al
Algoritmo 4.

Algoritmo 4: Algoritmo de penalizacién exterior.

Begin

Paso 1: Inicializacién: inicialice con un punto inicial 8y, posicién de
reposo del brazo. Establezca el pardmetro de penalizacién inicial

r1 > 0, en este caso se utilizé r; = 1. También, se debe establecer la
tolerancia £ >0, para este caso dado que el posicionamiento del
brazo no conlleva punto decimal que demarca la precisiéon o
exactitud del punto final, se establece ¢ >1.

Paso 2: Subproblema: Resuelva por un método descendente el
problema de minimizacién, dado por (5-6), cuya solucién son los
valores angulares para las articulaciones del robot, dadas por 8. Se
emplea el método de gradiente conjugado Fletcher-Reeves, donde el
valor de @ se actualiza en cada iteracién a partir de

0,=0,1+ \d,
donde la direccion de descenso se obtiene como

d; = =V J.(0,) + B+ dy1,
donde V J,.(0;) representa el gradiente de la funcién de coste, y

5~ L9HO
IV J;(6e-1)

El valor de paso para cada iteracion se calcula mediante el método
Backtracking de bisqueda lineal (Armijo’s rule), que considera dos
constantes a € (0,0.5) y 8, € (0,1). Para cada iteracion, el paso se
inicializa como A = 1 y debe ser actualizado como A = 8, A, siempre
que se satisfaga que

Jr(et + A df) > Jf,«(et + « A VJT(Ot)T dt7 (5—7)

una vez la desigualdad planteada en (5-7) deja de satisfacerse, se
obtiene el valor de \; = .

Paso 3: Criterio de parada, si |J,.(0; — J.(6;_1] < € en la funcién de
penalizacion, el algoritmo finaliza, de otra forma vaya al paso 4.
Paso 4: Incremento de penalizacion, actualice el valor de

penalizacién 1.1 = 1 1y, con
6) —10[\"
y<>D 7 (5-5)

77t—7"< do

donde y(8) corresponde al plano y = k, b = 1 para el método de
valor absoluto y b = 2 para el cuadratico y do corresponde a la
distancia desde la base del robot al operario.
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La Figura 5-3 ilustra el diagrama de flujo del proceso completo del es-
tablecimiento de la trayectoria.

Ingresar punto final del efector y
distancia del usuario.

¥

Aplicar método de penalizacion en
funcién de la posicion de reposo del robot.

«—

Si

Valor absoluto Cuadratico

v v

Meétodo de gradiente descendiente.

Si

No

Newton Armijo

v v

| Nuevo x(t) |

Figura 5-3: Diagrama de flujo algoritmo de optimizacién.

5.1.3. Andlisis de Resultados

Las pruebas realizadas respecto a los diferentes métodos planteados
permiten establecer criterios de desempefio de cada una, mediante su si-
mulacién en Matlab®. Para poder realizar un andlisis comparativo, se esta-
blece un punto inicial para la posicion del robot, este punto corresponde al
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punto de partida respecto a cada trayectoria a realizar y el cual es tomado
como posicién de reposo con coordenadas & (0) = (0, 12, 76). Como punto
objetivo, se escoge una posicidn aleatoria dentro del espacio de trabajo
del robot. Para este caso, se toma x(ts) = (50, 22, 89), y se establece de
forma inicial una distancia del operario, o posible obstaculo, de 100 cm. En
este caso, la restriccion fuerte que corresponde a la cercania del operario
al robot no se activa, por lo que se espera que el resultado final corres-
ponda al objetivo o punto final ((ty) ). A continuacién, se muestran los
resultados para cada método implementado.

Método valor absoluto, la Tabla 5-3 expone los resultados realizando
la busqueda descendente mediante el método de gradiente y calculando
el paso por el algoritmo de Armijo cona =0,5y B, = 0,1. Se llegé a los si-
guientes angulos por articulacion: 6,= 0,12n, 65=1,2n, 650,697, 6,=0,8m,
05=0,5m, con un valor de penalizacién final r = 78125.

Tabla 5-3: Resultados método valor absoluto a = 0,5y S, =0,1.

Iteracion ‘ X ‘ Y ‘ 7 ‘
1 0.2513 | 11.7877 | 76.314
2 20.1058 | 15.8626 | 81.388
3 32.0905 | 18.3076 | 84.433
4 39.2543 | 19.7745 | 86.260
5 43.5526 | 20.6547 | 87.356
6 46.1315 | 21.1828 | 88.0136
7 47.6789 | 21.499 88.408
8 48.607 | 21.689 88.645
9 49.164 | 21.8039 | 88.787

Método valor absoluto, la Tabla 5-4 expone los resultados realizando
la busqueda descendente mediante el método de gradiente y calculando
el paso por el algoritmo de Armijo con o = 0,3y f, = 0,8. Se llegé a los si-
guientes angulos por articulacion: 6,=0,12xn, 65=1,2x, 65=0,69=w, 0,=—0,8m,
05=0,5m, con un valor de penalizacién final = 125.
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Tabla 5-4: Resultados método valor absoluto o = 0,3y 8, = 0,8.

Iteracion ‘ X ‘ Y ‘ Z ‘
1 0.2513 | 11.787 | 76.314
2 65.458 | 25.107 | 92.941
3 45.197 | 20.969 | 87.775
4 51.492 | 22.255 | 89.380
5 49.536 | 21.855 | 88.881

Método cuadratico, la Tabla 5-5 expone los resultados realizando la
busqueda descendente mediante el método de gradiente y calculando el
paso por el algoritmo de Armijo cona = 0,5y fa = 0,1. Se llegé a los si-
guientes angulos por articulacién: 6,=0,128x, 0y=1,2x, 65=0,69x, ,=—0,8,
05=0,51m, con un valor de penalizacién final r = 390625.

Tabla 5-5: Resultados método cuadrdatico o = 0,5y fa = 0,1.

‘ Iteracion ‘ X ‘ Y ‘ Z ‘
1 0.2513 | 11.787 | 76.314
2 20.105 | 15.891 | 81.388
3 32.090 | 18.277 | 84.433
4 39.254 | 19.730 | 86.260
5 43.552 | 20.598 | 87.356
6 46.131 | 21.118 | 88.013
7 47.678 | 21.428 | 88.408
8 48.607 | 21.614 | 88.645
9 49.164 | 21.725 | 88.786

Método cuadratico, la Tabla 5-6 expone los resultados realizando la
bldsqueda descendente mediante el método de gradiente y calculando el
paso por el algoritmo de Armijo cona=0,3y S, =0,8. Sellegé a los siguien-
tes angulos por articulacién: 6, = 0, 129m, 6, = 1, 25z, 05 =0, 697, 0, = —0,
82m, 5 =0, 51m, con un valor de penalizacién final r = 125.

Tabla 5-6: Resultados método cuadrdtico .= 0,3y f,, =0,8.

Tteracion ‘ X ‘ Y ‘ Z ‘
1 0.2513 | 11.787 | 76.314
2 65.457 | 24.846 | 92.941
3 45.196 | 20.458 | 87.775
4 51.492 | 21.942 | 89.380
5 49.536 | 21.442 | 88.881
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Por medio de los resultados expuestos, se puede observar la inciden-
cia de los parametros de paso del algoritmo de Armijo en el establecimien-
to de la trayectoria, donde es preferible iniciar con un valor bajo de a, e
incrementarlo mas répidamente por medio de un S, mayor. Se aprecia que
para cada caso, tanto de penalizacidn de valor absoluto como cuadratica,
empleando el cdlculo de paso por medio del algoritmo de Armijo, se re-
quieren mas iteraciones, implicando mayor costo computacional, siendo
mas larga la trayectoria y por consiguiente empleando mayor tiempo en
lograr alcanzar el punto deseado. Como es de esperarse las variaciones
en los dngulos finales son minimas. Al activar la restriccidn de distancia del
operario ubicandolo a 10 cm, se obtienen los resultados presentados a
continuacion.

Método cuadratico, la Tabla 5-7 expone los resultados realizando la
busqueda descendente mediante el método de gradiente y calculando
el paso por el algoritmo de Armijo con o=0,5 y ,=0,1. Donde 6,=0,12m,
0,=1,2n, 05=0,69n, 6,=—0,8n, 65=0,5t con un valor de penalizacién final
T ="78125.

Tabla 5-7: Resultados método cuadratico a=0,5y f,=0,1.

| Tteracion | X | v | 7 |
1 0.251 | 11.787 | 76.314
2 20.105 | 13.515 | 81.388
3 32.090 | 14.206 | 84.433
4 39.254 | 14.206 | 84.433
5 43.552 | 14.593 | 87.356
6 46.131 | 14.637 | 88.013
7 47.678 | 14.654 | 88.408
8 48.607 | 14.662 | 88.645
9 49.164 | 14.664 | 88.787
10 49.498 | 14.665 | 88.872
11 49.699 | 14.665 | 88.923
12 49.819 | 14.666 | 88.95

Método cuadratico, la Tabla 5-8 expone los resultados realizando la
busqueda descendente mediante el método de gradiente y calculando el
paso por el algoritmo de Armijo con a=0, 3 y f,=0,8. Donde para cada
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caso la variacién de los angulos no es significativa, obteniendo: #,=0,09mx,
0o=1,18n, 65=0,67x, #4=-0,83xn, 05=0,5m.

Tabla 5-8: Resultados método cuadrdtico 0=0,3 y f,=0,8.

Iteracién ‘ X ‘ Y ‘ 7 ‘
1 0.2513 | 11.787 | 76.314
2 65.457 | 17.448 | 92.941
3 45.196 | 11.979 | 87.775
4 50.233 | 16.205 | 89.059
5 50.037 | 14.269 | 89.009
6 50.006 | 14.769 | 89.001
7 50.001 | 14.640 | 89.002
8 50.002 | 14.673 | 89.000
9 50.000 | 14.665 | 89.000
10 50.000 | 14.667 | 89.000
11 50.000 | 14.666 | 89.000

Se aprecia que en este caso la coordenada en x, = y no se logra alcan-
zar, tal y como se esperaba. De igual forma, ambos métodos tardan mas
en converger. Nuevamente, resultando mejor el método de cuadratico con
un valor a inicial pequefio.

De forma general, los resultados obtenidos permiten establecer que
los métodos de optimizacion aplicados logran alcanzar el punto objetivo,
en el espacio de trabajo del robot, cuando este no es obstruido por alguna
circunstancia. De forma tal que, al emplear el método de gradiente se ase-
gura una trayectoria minima, dado el seguimiento de esta directamente en
la direccién del punto objetivo y, donde a su vez, el método de penaliza-
cién cuadratica ofrece el mejor desempefio para el caso general.

5.2. Evasidn de colisiones para asistencia robética

Un método alternativo que permite realizar el desplazamiento de ro-
bot asistencial, teniendo en cuenta posibles colisiones, se plantea median-
te la red neuronal convolucional desarrollada en la Seccién 3.4.2, la cual
opera en funcién a la distancia de reconocimiento del objeto. Para este
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caso, se emplea el modelo cinematico inverso, debido a que el algoritmo
de desplazamiento cambia en funcién de puntos en el espacio y no como
en el caso anterior que el método de optimizacion entregaba directamen-
te los angulos deseados. Se emplea una camara que visualiza el drea de
interaccidn, en la cual se identifica la herramienta y la mano del usuario,
mediante el entrenamiento de redes neuronales convolucionales indepen-
dientes. Para el caso considerado, se mantiene la red paralela, desarrollada
para las herramientas, y se disefia la de la direccién la mano. En la Figura
5-4, se puede apreciar un esquema del entorno de la aplicacion, la herra-
mienta, el brazo robdtico y la mano del usuario, todo en una misma area.

Figura 5-4: Entorno del algoritmo anticolision.

La Figura 5-5 ilustra un ejemplo de la base de datos empleada para la
clasificacién de la mano. Las redes empleadas solo tienen dos clases: mano
0 no mano. Para la clase mano, se emplean 100 imagenes de esta, tanto
palma arriba como palma abajo, por cada uno de los cuatro niveles de pro-
fundidad. Para la clase no mano, se emplean 1000 imagenes que implican
las herramientas y el fondo de la aplicacidn. Se obtienen las cuatro redes
que se ilustran en la Tabla 5-9.
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Figura 5-5: Base de datos en profundidad para la mano.

10 cm 20cm 60 cm 80 cm

Tabla 5-9: Arquitecturas de red para la mano.

Capa RED 20 RED 40 RED 60 RED 80

F [S|Nf|F |S|Nf|[F [S|Nf[F |S]|Nf

Convolucién 8 [1]20| 4 | 1] 20 4 11] 30 | 4|1/ 40
Convoluciéon - - - - - - 4 12 30 | 4 ]2 40
MaxPooling 2 2] - 2 |2 - 2 |2 - 2 |2 -
Convolucién 511|505 |1]40 |5 |1]50 |5 1] 80
MaxPooling 2 2] - 2 12 - 2 12 - 2 |2 -
Convolucién - -] - 4 |1 ]118 | 4 | 1]200 | 4 |1]200
MaxPooling - | -1 - 11012 - 312 - 3|2 -
Fully-connected 1 2 1 2 1 2 1 2

Softmax 2 2 2 2

A continuacidn, se exponen las caracteristicas del brazo robdtico asis-
tencial de prueba empleado, el cual se encarga de recoger la herramienta
y entregarla en la mano del usuario, evitando colisionar con este. Los mo-
vimientos de desplazamiento se basan en la ubicacién espacial de la mano,
ubicacién obtenida mediante el reconocimiento por redes neuronales con-
volucionales en funcién al centro del recuadro de deteccién y de la ubica-
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cion de la herramienta por la misma técnica. De forma tal que, se establece
un vector de orientacion del movimiento de la mano, que pueda obstruir
una trayectoria directa de desplazamiento del robot hacia la herramienta.
En funcidn a este vector, se determina el desplazamiento del brazo. Paralo
cual, se requiere implementar la cinematica inversa del mismo. En la Figura
5-6, se puede observar el modelo geométrico que permite inferir las ecua-
ciones mediante las cuales se logra establecer los movimientos angulares
del robot [Useche et. al, 2018].

Z, Yt
X’ Pypeeeeeeercccccccany T
|}
PZfeeefommmmm = M :
. 7\ .
Q+ L} ]
I NE—"12 :
' 1
] — i
' 1
/ ' '
! I
7 : L1 :
- X |
Px )

X’

Figura 5-6: Cinemdtica inversa. Izquierda: Vista superior. Derecha: Vista lateral.

Con la vista superior de Figura 5-6, se obtiene la componente en z' del
punto P del efector final, como sigue

P, =+/P?+ P2. (5-9)
Por lo que, el angulo de la articulacion 1 se puede expresar como

I
6 = tan™! (E) : (5-10)

Mediante la vista frontal de Figura 5-6, se obtiene la longitud alcanzada por
el efector desde la segunda articulacién, d, como

d= /(P ~ L.)* + P2. (5-11)
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Conociendo d y las longitudes de los enlaces 2y 3, Ly y L, y aplicando el
Teorema del coseno al triangulo con dichos vértices, tenemos

d2 _ L2 _ L2
cos(m — 03) = W (5-12)
Sabiendo que
sin(m — 03) = ++/1 — cos?(m — 03), (5-13)
podemos encontrar el angulo de la tercera articulaciéon como
+£1/4L3L% — (d? — L3 — L3)®
03 = 7 — tan~* \/ 25— ( 2~ 1) (5-14)

&L 12 !

donde el signo positivo o negativo se seleccionara dependiendo dénde se de-
sea la configuracion codo abajo (65 positivo) o codo arriba (65 negativo).

De la vista frontal de la Figura 5-6, también podemos obtener el angulo

1Py—L1.

o = tan~
P,

(5-15)

Aplicando nuevamente el Teorema del coseno sobre el tridngulo con lados
d, Lyy L3, pero ahora respecto a f3, tenemos

L2+ d%—2L2
el 2 3 1
B = cos (—2L2d ) (5-16)

Porlo que

6, — {a — B8], codo arriba (5.17)

a+|B], codo abajo.
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Como se menciond, se requiere implementar una nueva arquitectura
neuronal del tipo convolucional, orientada a la deteccidon de la mano del
usuario. Para el caso, se presenta el entrenamiento para la deteccién de la
mano abierta del usuario. La Tabla 5-10 resume la arquitectura final emplea-
da para la red neuronal convolucional.

Tabla 5-10: Arquitectura CNN para deteccion de la mano.

CAPA | NUCLEO
Input 64 x 64 x 3
Convolution/RELU | 4 20
Convolution/RELU | 4 20
MaxPooling 2
Convolution/RELU | 5 50
Convolution/RELU | 5 50
MaxPooling 2
Convolution/RELU | 4 200
MaxPooling 3

La Figura 5-7 muestra el resultado de reconocimiento de la herramien-
ta y de la mano, en funcidén de las cuales se localiza su centroide para ser
empleado como punto de referencia espacial en un entorno virtual de si-
mulaciéon mediante Matlab®.

?| «§ Object Detection using Convolutional .. . o X

nippers !

-
: 7

!
Open: 99.96

150 :

200 ﬁ E
50 100 150 200 =

Figura 5-7: Resultado de la clasificacion.
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Para generar el desplazamiento del brazo robdtico en funcidn al pun-
to objetivo (que es la herramienta) y buscando no colisionar con la mano
de un usuario dentro del drea de trabajo, se establecen como puntos ca-
racteristicos dos centros de referencia: el correspondiente a la herramien-
ta, el cual es estdtico, y el correspondiente a la mano del usuario, el cual es
dindmico. De esta forma, se implementa un vector direccional del despla-
zamiento de la mano en funcién de la herramienta (ver Figura 5-8). Dado
que el brazo robdtico por defecto busca un desplazamiento espacial direc-
to, mediante su cinemdtica desde un punto del espacio a otro, se genera
una desviacidn de trayectoria en torno a la diferencia entre la distancia
mano-herramienta.

Open: (Confidence = 0.999685)

Open: (¢ gence = 0.999522)

Figura 5-8: Vector direccional de la mano.

El algoritmo que evita la colision opera en relacion a determinar la
posicién de la herramienta, como punto de referencia. En funcidén a este
punto, se desplaza el efector final del brazo robot, con el objetivo de alcan-
zarlo en trayectoria directa.

Al detectar una mano, evalua su vector direccional y lo suma al despla-
zamiento en el plano paralelo al de soporte de la herramienta. Desde este
nuevo punto, se recalcula la ubicacién del punto de referencia y se genera
el nuevo desplazamiento por trayectoria directa hacia la herramienta.
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La Figura 5-9 ilustra el entorno de simulacidn. La linea roja representa
la trayectoria del efector del brazo robdtico, la herramienta es simulada
por el rectangulo azul, mientras que la mano del usuario es representada
por el rectangulo rojo. Las ubicaciones de la mano y la herramienta son
obtenidas desde la deteccién de cada una mediante las redes neuronales
convolucionales. Como se menciond, la mano se vuelve un obstaculo dina-
mico, cuya simulacidén varia la posicion del plano que representa la mano,
en funcidn al centroide de la deteccidn. La Figura 5-9 presenta el caso ideal,
en el que el brazo robdtico se mueve hacia la herramienta estando la mano
estdtica sin obstruir el camino del brazo. El desplazamiento del brazo se
realiza en funcién a la cinematica inversa descrita, buscando alcanzar el
punto P, correspondiente a la referencia del centroide de la herramienta.
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Figura 5-9: Simulacién desplazamiento sin obstruccién de usuario.

La Figura 5-10 ilustra la simulacién de una trayectoria, que evidencia el
comportamiento del algoritmo para evitar la colision. Al ser detectada la
mano, a la izquierda del punto de referencia de la herramienta, la distancia
de desplazamiento serd incremental, si queda sobre la herramienta se de-
tiene el movimiento del brazo y si es detectada a la derecha, el movimiento
serd decremental. El esquema simula un desplazamiento constante de Ia
mano en z y en z, variando desde y = —100 hasta y = 100, punto en el que
el brazo se mueve desde el mismo punto de inicio en y hacia la izquierda,
tratando de buscar un punto de bajada hacia la herramienta, hasta que la
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mano se detiene, baja y no encuentra dngulos que le permitan agarrar el
objeto desde la posicidn final estatica de la mano, se desplaza nuevamente
alaizquierday al no poder bajar sube a la distancia inicial en z para finalizar
su desplazamiento.

250 -
200
150 -
100
50 -|
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Figura 5-10: Simulacion desplazamiento para evasion de usuario.

Al realizar diferentes simulaciones respecto a la incursién de la mano
del usuario en el drea de trabajo del robot, se observa la accidn de evasidon
respecto al acercamiento del brazo robdtico. La Tabla 5-11 ilustra el com-
portamiento de la variacion de distancia frente al acercamiento del efector
del robot. Se evidencia que el algoritmo trata de llevar el efector final has-
ta la herramienta (item 1 a 3), pero al encontrar un obstaculo (item 4 y 5)
conserva la distancia en z y se desplaza lateralmente (en ) buscando una
nueva perspectiva que le permita recalcular la trayectoria.

Tabla 5-11: Evasidn de colision.

’ ‘ Dist Man-Herr | Dist z efect | Dist x efect

1 120 150 0

2 60 110 50
3 40 80 75
4 25 50 100
S ) 50 120
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La Figura 5-11 ilustra un caso en el que la mano estd estatica junto a
la herramienta. El brazo robdtico inicia un desplazamiento pronunciado
en el eje z, hasta ver la mano. En ese punto, gira hacia la herramienta en
trayectoria recta con leves desplazamientos en z, para acercarse al pun-
to objetivo. Nuevamente, supera la mano y ve la opcién de bajar hasta la
herramienta con un desplazamiento pronunciado en el eje z. Dado que al
desplazarse en z hacia la herramienta viola la zona o espacio de seguridad,
el algoritmo no genera mas movimiento.

350
300
250 A
200 ~
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Figura 5-11: Trayectoria de evasion.

5.3. Algoritmo de agarre de herramientas

Un paso importante en la tarea de un robot asistencial, para platafor-
mas multi-herramientas, es la toma de la herramienta, una vez identificada
y ubicado el efector sobre la misma. Para esto, se requiere el desarrollo de
un algoritmo especifico que permita lograr la tarea. Para dar una solucién
a esta tarea, se desarrolla un algoritmo que permite establecer la posicidn
de agarre de la herramienta, mediante el procesamiento de imagen de la
escena del objeto discriminado, por diferencia del fondo y de tonalidad.
Discriminado el objeto, se buscan los puntos de agarre mas cercanos a su
centroide, para obtener las posiciones x y y del punto de agarre y la orien-
tacién con que la pinza debe tomar el objeto [Moreno et al., 2018].
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En el Algoritmo 5, se muestra la estructura basica de los pasos segui-
dos para el agarre de herramientas desarrollado. Desde el momento en
que se ingresa laimagen, hastala salida de las coordenadas y la orientacién
del agarre para un efector tipo pinza, donde se establecen 19 pasos de
ejecucion del algoritmo.

Algoritmo 5: Algoritmo de agarre.

Begin
Paso 1: Inicializacién de variables.
Paso 2: Captura de la imdgen de entrada (Herramientas)
Paso 3: Cambio de espacio de color a blanco y negro, imdgenes
imHB, imHN.
Paso 4: Sii<180°7. No, ir Paso 13.
Paso 5: Si, rotar i =7+ 1. Paso 4.
Paso 6: Si [x,y|<(fin de la imagen)? No, ¢ = i + 1. Paso 4.
Paso 7:Si, recortar imagen, imagenes imcHB, imcHN.
Paso 8: Libre de bordes? No, x =z + 10 y = y + 10. Ir a paso 6.
Paso 9: Grosor aceptable? No, z = x + 10 y = y + 10. Ir a paso 6.
Paso 10: Inclinaciéon < 15°? No, z = 2+ 10 y = y + 10. Ir a paso 6.
Paso 11: El efector esta alineado? No, z =z + 10y =y + 10. Ir a
paso 6.
Paso 12: Almacenar coordenadas de recorte y rotacién, variables
IgHB( ;, :, n), IgX(n), IgY(n),

IgAr(n), IgAh(n), n=n+1.
Paso 13: n=07 No, ir a Paso 15.
Paso 14: NO hay zona de agarre posible.
Paso 15: Buscar el drea més grande con la menor inclinacién,
variable iBest1.
Paso 16: Encontrar el mejor agarre al objeto, variable iBest2.
Paso 17: Mejor banlance del efector, variable iBest.
Paso 18: Recuperar coordenadas e inclinacién, variables Xc,Yc y
Ang.

Paso 19: Graficar resultados.

De forma general, los pasos 1 al 3, del Algoritmo 5, son los encargados
de lainicializacion del programa. En ellos, se realiza la captura de laimagen
y la segmentacién del objeto mediante un proceso de umbralizacion. En
los pasos 4 al 7, se recortan secciones de la imagen de entrada, en diferen-

110



Robdtica Asistente Mediante Aprendizaje Profundo

tes posiciones y orientaciones, para buscar posibles puntos de agarre en
cada uno de ellos. En los pasos 8 al 12, se evalta cada uno de los recortes
y se guardan Unicamente aquellos que cumplan con las condiciones de los
pasos 8 al 11. Los pasos 13 y 14 se ejecutan Gnicamente cuando no se en-
cuentra ningun agarre en toda la imagen. En los pasos 15 al 17, se evaltan
todos los agarres guardados en el paso 12, para escoger uno de ellos como
el punto de agarre ganador. Finalmente, en los pasos 18 y 19, se mues-
tran los resultados obtenidos. A continuacidn, se explicara detalladamente
cada uno de los pasos del Algoritmo 5.

5.3.1. Inicializacién del programa

En el paso 1, se inicializan las variables propias del algoritmo como
las dimensiones de la pinza: apertura y ancho de las puntas. Se determina
cada cudntos grados se debe rotar la imagen para evaluar posibles puntos
de agarre en diferentes orientaciones. Se establece el grosor maximo y
minimo de la seccién de agarre del objeto, y la cantidad de pixeles libres
que debe haber entre la zona de agarre y las puntas. Se deben inicializar en
el algoritmo las dimensiones de ancho y apertura de la pinza, con el fin de
conocer el espacio que ocupa el efector dentro del drea de trabajo y evitar
choques entre los elementos cuando la pinza proceda arealizar el agarre, y
se usan igualmente para definir la apertura maxima del efector al momen-
to de seleccionar el punto de agarre.

Se deben determinar las dimensiones de la pinza en relacién a sus tres
caracteristicas principales: largo, ancho y centro. La dimensién A repre-
senta la apertura de la pinza mas el grosor de las puntas, la dimensiéon B
representa el ancho del efector, y el punto C representa el centro de la
pinza que corresponde a las posiciones Xc y Yc que determinan la posi-
cién final del agarre.

En el paso 2, se realiza la captura de la imagen del drea de trabajo, la
cudl es redimensionada a 220 x 220 pixeles. En el paso 3, se lleva a cabo el
proceso de umbralizacion y binarizacion de laimagen, donde se realiza una
conversion de espacio de color de la imagen original, en RGB, a escala de
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grises y, finalmente, a blanco y negro. De tal manera que, el fondo de la
imagen queda completamente negro y solo el objeto sobre este, queda de
color blanco (im HB), como se observa en la Figura 5-12a. Luego, se toma
la imagen binarizada y se intercambia la intensidad de sus pixeles para ob-
tener una segunda imagen (¢imHN), con un fondo completamente blanco
y solo el objeto de color negro, como se aprecia en la Figura 5-12b. El um-
bral se define en el algoritmo como 0.9, debido a que todas las imagenes
que se probaron son de fondo blanco. Por lo que, no fue necesario consi-
derar cambios de luz estableciendo un ambiente de pruebas controlado.

a. . b.

Figura 5-12: Imagen binarizada.

5.3.2. Recorrido de laimagen

Sobre cada una de las imdgenes binarizadas (variables imHN e
imHB), se desplazé un recuadro con las dimensiones A y B inicializadas
en el paso 1, donde su posicidn inicial se encuentra en la esquina superior
izquierda de la imagen, que coincide con la esquina superior izquierda del
recuadro, y se desplaza hacia abajo una posicién equivalente a 10 pixeles
en busca de posibles agarres. Este recuadro representa el drea que ocupa
la pinza sobre el espacio cuando busca el objeto de trabajo. De tal manera
que, a partir de dicho recuadro se puede estimar dénde hay un posible
agarre y donde la pinza no puede sujetar el objeto finalmente. En cada
posicién del recuadro, se recorta la seccidn de la imagen que se encuen-
tra debajo de él, tanto para la imagen ¢m HN (donde el recorte se guarda
en imcHN), como para imHB (donde el recorte se guarda en imcHDB).
Cadarecorte se evalia de manera independiente, pasandolo por los condi-
cionales de los pasos 8 al 11 del Algoritmo 5, para determinar si es un posi-
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ble agarre o no. Cuando llega al paso 12 del algoritmo 5, 0 no cumple con
alguno de los condicionales de los pasos 8 al 11, se desplaza el recuadro
hacia abajo una posicién para evaluar el siguiente recorte.

La Figura 5-13 muestra un posible agarre para laimagen tm HN, don-
de se guarda la seccién de imagen que se recorta del recuadro en la Figura
5-13a. En la Seccidn de 5.3.3, se explica detalladamente cada uno de los
condicionales de los pasos 8 al 11 del Algoritmo 5, para determinar un po-
sible punto de agarre.

Top edge

A Bottom edge
a. b.

Figura 5-13: Recorte imcHN con un posible agarre.

Una vez finaliza el recorrido descendente y se alcanza la parte inferior
de la imagen, el recuadro se ubica en su posicion inicial, pero 10 pixeles
desplazado hacia la derecha y vuelve a desplazarse hacia abajo para sacar
nuevos recortes y, asi sucesivamente, aumentando el desplazamiento ho-
rizontal cada 10 pixeles, hasta llegar a la esquina inferior derecha de laima-
gen, con todos los posibles agarres almacenados. La cantidad de pixeles
que se desplaza el recuadro se seleccioné como 10 para acelerar el pro-
ceso de busqueda de agarre, considerando las dimensiones de la imagen
de entrada, y evitar guardar posibles agarres muy parecidos entre si que
aumenten la cantidad de datos a almacenar. Cuando el recuadro que re-
corre la imagen termina el recorrido, es decir su esquina inferior derecha
coincide con la esquina inferior derecha de la imagen binarizada, vuelve a
los pasos 4y 5 del Algoritmo 5 para generar una rotacion en laimageny, de
esta manera, volver a los pasos 6 y 7 para capturar nuevos recortes, pero
conlaimagen rotada un determinado dngulo. Este proceso permite buscar
nuevos agarres con orientaciones diferentes de la pinza y se repite hasta
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que la imagen se rota un total de 180°, momento en que se le ha dado la
vuelta completay, por lo tanto, se han evaluado todos los posibles agarres
que pueden haber sobre el objeto. Continuar con la rotacién solo hara que
se repitan los agarres encontrados pero en posiciones inversas, como se
observa en la Figura 5-14.

Top edge

Bottom edge

a. b.

Figura 5-14: Posible agarre (a). Posible agarre invertido (b).

Se obtienen los recortes (¢imcHN e imcHB) de ambas imagenes
binarizadas, con el fin de aplicar todos los criterios de seleccidon que se
encuentran en los pasos 8 al 11. Para aplicar estos criterios, es necesario
conocer aspectos de la imagen como la cantidad de pixeles blancos a los
bordes superior e inferior del recorte imcHN (marcados en la Figura 5-14),
y la cantidad de pixeles blancos en el recorte ¢#mcH B, para conocer el an-
cho del objeto capturado dentro del recorte.

5.3.3. Seleccién de posibles agarres

La seleccién de todos los posibles agarres, que pueden realizarse
sobre el objeto, obedece a una serie de condiciones planteadas en los pa-
sos 8 al 11 del Algoritmo 5. Cada condicional se aplica a cada uno de los re-
cortes (imcHB e imcHN) obtenidos en la Seccién 5.3.2 y solo el recorte
que supera todos los condicionales se considera como un posible agarre y
se almacena en una variable que contiene cada posible agarre. Si el recorte
no cumple con cualquiera de los condicionales se descarta y se vuelve a
desplazar el recuadro para evaluar el agarre en una nueva posicion.
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A. Bordes libres para el agarre

El paso 8 plantea el primer condicional, el cudl busca Unicamente
aquellos recortes donde no haya posibilidad de choque entre las puntas
de la pinza y el objeto. Para ello, realiza una sumatoria de la cantidad de
pixeles blancos en la primera y ultima fila del recorte ¢mcH B. Si la suma
es igual a cero, significa que todos los pixeles son de color negro y, por lo
tanto, corresponden al fondo de la imagen. Pero si la suma da diferente
de cero, entonces existe algun pixel blanco que corresponde al objeto, e
implica un posible choque entre la pinza y el elemento, razdn por la que se
elimina el recorte como posible agarre [Murillo et al., 2018].

La suma de todos los pixeles de la primera y ultima fila del recorte
tmcH B con fondo negro, donde Re Dim son las dimensiones de la ima-
geny S, el resultado de la suma, se calcula mediante

ReDim
Si= Y imeHB(L,i) + imcHB(ReDim, ). (5-18)

=1

La primera y ultima fila del recorte ¢mcH B se encuentran marcadas
con un recuadro, que se observa en la Figura 5-15¢, y corresponde a las po-
siciones que ocuparian las puntas de la pinza en el espacio de trabajo. En la
Figura 5-15a, se encuentra la imagen de entrada binarizada con fondo negro
tm H B. En la Figura 5-15b, se encuentra la imagen ¢m H B rotada con el re-
cuadro que recorre la imagen ubicada sobre un posible agarre. Finalmente,
en la Figura 5-15¢, se encuentra el posible agarre capturado por el recuadro.

a. b. c.
Figura 5-15: Imagen binarizada imHB (a). Imagen binarizada imHB rotada (b). Recorte
imcHB como posible agarre (c).
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B. Limite de grosor de la seccion de agarre

El paso 9 del diagrama del Algoritmo 5 plantea el siguiente condicio-
nal, que se aplica Unicamente si el recorte supera el paso 8. En este condi-
cional, se evalia el grosor del elemento donde se busca el agarre, con el
fin evitar que se considere como posible agarre una imagen que contenga
solo pixeles libres o ruido, o una superficie muy pequefia de agarre donde
se corra el riesgo de que se caiga el objeto, o donde el objeto sea tan grue-
so que el ajuste entre la pinza y la seccidn del objeto sea demasiado estre-
cho. Para determinar qué recorte supera esta condicién, se suman todos
los pixeles de ¥mcH B mediante el cdlculo de la variable .Sy

ReDim ReDim
Sy= > Y imcHB(i,j). (5-19)
=1 j=1

Posteriormente, se halla la cantidad total de pixeles en el recorte, a
partir de la multiplicacién de sus dimensiones, es decir P, = AB. Acto se-
guido, se halla el maximo de pixeles blancos Max P, mediante

MaxP = P, Ppsx, (5-20)

donde P, 4, representa un porcentaje maximo de blanco. Asi mismo, se

calcula en minimo ndmero de pixeles blancos, a partir de
MinP = P, Py, (5-21)

donde P, representa un porcentaje minimo de blanco.
Si Sy es mayor a Min Py menor a Max P, el recorte sigue al condi-

cional del paso 10. En caso contrario, se descarta y se vuelve al paso 6 del
algoritmo 5 para desplazar el recuadro una posicion.

C. Inclinacién maxima de la seccién de agarre

El paso 10 del Algoritmo 5 evalida el grado de inclinacidn, inc, de la
seccion del objeto en el recorte con respecto a la superficie de las pinzas.
Para obtener el grado de inclinacidn se traza una elipse sobre el drea de
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pixeles blancos del recorte, como se muestra en la Figura 5-16a, y se calcula
la inclinacion del eje mas largo de la elipse con respecto al eje , como se
muestra en la Figura 5-16b.

a. b.

Figura 5-16: Calculo de la inclinacidn de la seccidn del objeto.

La Figura 5-16a muestra los cuadrados blancos, que representan los
pixelesy, lalinea curva, que representa la elipse que se traza sobre el drea.
En la Figura 5-16b, la linea curva es la elipse trazada sobre el drea de pixeles
blancos, las lineas continuas son los ejes de la elipse, y la linea punteada es
el eje x con respecto al cual se mide el grado de inclinacidn.

El valor de inclinacién maxima, IncMax, del objeto con respecto al
efector es determinado por el usuario e ingresado en grados. La seccidon
del objeto capturada en los recortes debe tener una inclinacién inferior o
igual a la inclinaciéon maxima IncMax para superar la condicion del paso
10. Este criterio se agregd con el fin de controlar la maxima inclinacién ad-
misible entre el objeto y la pinza, dado que grandes valores de inclinacidn
pueden generar que el objeto se mueva de su ubicacién y reduzca la preci-
sion del agarre mientras el efector se estd cerrando.

D. Espacio libre para el efector

El paso 11 del Algoritmo 5 muestra la dltima condicidn que debe supe-
rar el recorte para guardarse como un posible agarre. El criterio consiste
en buscar aquellos recortes donde haya una cantidad minima de pixeles
blancos en los bordes superior e inferior del recorte, con el fin de aceptar
unicamente aquellos que tengan el espacio suficiente para que encajen las
puntas de la pinza en el agarre. Debido a que la dimensién A considera, no
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solo la apertura de la pinza sino también el ancho de las puntas, se debe
tener en cuenta que parte del drea del recorte incluye el area que ocupa la
pinza en el espacio.

Se debe tener en cuenta el grosor de las puntas de la pinza, que equi-
vale a la cantidad minima de pixeles blancos que debe haber al interior del
recorte para asegurar que existe el espacio suficiente para que el efector
encaje con el objeto.

Para determinar qué recortes superan el tltimo condicional, se define
el nimero de filas superiores e inferiores del recorte que deben contener
pixeles blancos. De tal manera que, la cantidad de filas a evaluar corres-
ponda al grosor real de las puntas de la pinza. Se obtiene un porcentaje,
Pg, del 3area que ocupa cada punta de la pinza con respecto al drea total
del cuadro, obteniendo un Pg=10% para cada punta y un 80% del area
libre para el agarre del objeto. Con el porcentaje, se calcula el nimero de fi-
las de pixeles, fp, que deben sumarse para evaluar el condicional del paso
11. El calculo del nimero de filas de pixeles (fp) se realiza como

fp= APy, (5-22)
y la suma de pixeles del recorte en las filas superior e inferior se calcula como
fp ReDim
Ss= Y imcHN(i,j)+ imcHN(ReDim — i+ 1,j). (5-23)

i=1 =1
Después de obtener la suma de pixeles S3, se realiza una comparacién
entre S5y la cantidad minima de pixeles blancos, Pw, que debe haber a
los extremos del recorte multiplicado por un factor de ruido, wh, entre 0
y 1. Ese factor, permite considerar la existencia de dreas muy pequefias de
pixeles blancos en los bordes superior e inferior del recorte, donde dicho
factor es determinado por el usuario segun la calidad de la imagen binari-
zada que se obtenga tras la segmentacion. Se requiere realizar el calculo
de la cantidad minima de pixeles blancos que debe tener el recorte en los
bordes superior e inferior, segtin el condicional del paso 11, a partir de

Pw =2whAB Pyg. (5-24)
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E. Guardar posibles agarres

El paso 12 del Algoritmo 5 presenta el almacenamiento de todos los
recortes que superan los condicionales de los pasos 8 al 11 como posibles
agarres. Se almacena el recorte en una variable, IgH B; las coordenadas
de su esquina superior izquierda (x, y) en los arreglos Igx e Igy respecti-
vamente; el angulo de inclinacién de la seccion de agarre con respecto a la
superficie de las puntas de la pinza, en el arreglo IgAr; y el grado de rota-
cion en el que se encuentra laimagen binarizada al momento de evaluar el
recorte, se guarda en el arreglo IgAh.

En caso de que la imagen binarizada rote los 180° y al terminar no
guarde ningun recorte como posible agarre, el algoritmo entra en el condi-
cional de los pasos 13 y 14, para indicar que no encontré ninguna zona de
agarre y finaliza el proceso. En caso contrario, entra a los condicionales de
los pasos 15 a 17, para escoger un solo agarre de todos los almacenados.

5.3.4. Seleccion del agarre final

Una vez almacenados todos los posibles agarres de la herramienta,
se debe seleccionar la mejor opcidn entre ellos. A continuacidn se detalla
este procedimiento.

A. Mayor drea y menor inclinacion

El primer criterio de seleccién del punto agarre se enfoca en buscar el
recorte con la mayor drea de agarre y el menor grado de inclinacién de la
herramienta con respecto al efector. Para ello, en el paso 15 del Algoritmo
5, se guardan los diez recortes con la mayor drea de agarre y luego se esco-
ge entre ellos aquel que tenga la menor inclinacion. Para calcular el drea de
agarre de cada recorte, se suman todos los pixeles del recorte (aplicando
(5-19)) y se escogen diez que tengan la mayor suma. Después, se compa-
ran los grados de inclinacién de los diez recortes ganadores (almacenados
enlavariable IgAr),y se escoge el que tenga el menor valor sin considerar
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el signo. Finalmente, se guarda en la variable 7 Best1 la posicion que ocupa
el recorte ganador de los posibles agarres.

B. Mejor encaje

El segundo criterio de seleccién se enfoca en buscar el agarre que ten-
ga la mayor superficie de contacto entre el objeto y la pinza, con el fin de
obtener la mayor friccidn entre ambos. Para ello, en el paso 16 del Algorit-
mo 5, se busca la seccién del objeto que se asemeje mas a un rectangulo
cuyos bordes superior e inferior sean paralelos a la superficie de las puntas
dela pinza. Para ello, se evalua el encaje de la seccidon del objeto capturado
en el recorte con respecto al borde inferior del recorte. Sobre los pixeles
blancos que se encuentran conectados entre siy representan al objeto en
el recorte, se traza un rectdngulo que los cubre por completo (como se
observa en la Figura 5-17), con coordenadas (z, y) sobre la esquina supe-
rior izquierda, y el valor del ancho y el alto del mismo se almacena en las

variables x , respectivamente.

w Yw

Con las dimensiones obtenidas de ancho y alto del rectangulo, se cal-
culasudreay selerestala cantidad total de pixeles blancos (usando (5-19))
del recorte correspondiente guardado en IgH B. De tal manera que, si la
resta es igual a cero, significa que la seccién del objeto es completamente
rectangulary, por lo tanto, tiene el mejor encaje con las puntas de la pinza.
En caso contrario, se supone que la superficie del objeto esta inclinada,
o es irregular, o tiene una geometria curva y no hay suficiente superficie
de contacto pararealizar el agarre. De todos los recortes almacenados, se
escoge como agarre ganador aquel cuya resta entre el drea de la cajay la
suma total de pixeles S, sea minima, y se guarda en ¢ Best2 su posicién en
el arreglo IgHB.

La Figura 5-17a muestra el recuadro que cubre la seccion del objeto y
los espacios vacios entre el objeto y la caja, mientras que en la Figura 5-17b
se muestra un encaje mds exacto entre la seccidn del objeto y la caja. El
recorte ganador entre ambos, segun el criterio del paso 16, seria el de Ia
Figura 5-17b.
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b.

Figura 5-17: Seleccién del mejor encaje.

C. Seleccion por centroide

Después de obtener los resultados : Best1 e 1 Best2, el algoritmo sigue al
paso 17, donde se escoge entre los recortes ganadores el que se encuentra mas
cerca al centroide del objeto para asegurar un mayor equilibrio en el agarre.

Primero, se calcula la distancia entre el centro de los recortes ganado-
resy el centroide del objeto. Para luego, escoger la menor distancia de los
dos y guardar el resultado en iBest. De tal manera que, si gana el recorte
de mayor drea, se guarda iBestl en 1Best, en caso contrario se guarda
1Best2 en 1 Best.

5.3.5. Entrega de resultados

El paso 18 del Algoritmo 5 entrega la posicién y el dngulo de inclina-
cién del recorte que contiene el agarre final, utilizando la posicién iBest
guardada en el paso anterior. Las coordenadas se buscan en las matrices
generales IgX, IgY e IgAh, y se guardan como z, y.y Ang, respecti-
vamente, para generar las salidas. Después, en el paso 19, se grafican los
resultados, como se muestra en la Figura 5-18. Alli, el recuadro representa
la posicidn (en pixeles) y el dngulo de inclinacion (en grados) de la pinza
sobre el objeto, el asterisco indica la posicién (z,.,y,.) del agarre ubicado
en el centro del recuadro, Ang es el angulo de rotacién que debe tener el
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efector para realizar el agarre, y el circulo es el centroide del objeto con
coordenadas (z,,y,)-

Figura 5-18: Posicién y orientacion de la pinza para el agarre escogido.

El lado A del rectangulo de la Figura 5-18 representa la apertura maxi-
ma de la pinza, o la dimensidn A, inicializada en el paso 1 del Algoritmo 5.
El lado B representa el grosor de las puntas de la pinza, o la dimensién B,
inicializada en el mismo paso. Para el caso de lo mostrado en la figura, se
tiene que z, =99, y. = 145, Ang = 50°, t = 1,723758s. Los valores de z,,
se toman positivos desde el borde izquierdo de la imagen hacia la derecha,
Y y. positivo desde el borde superior de la imagen hacia abajo. El grado
de inclinacion Ang se tomd con respecto a la horizontal de laimageny la
horizontal del recorte, tal y como se observa en la Figura 5-18.

Se validd el algoritmo desarrollado con varios tipos de objetos, dife-

rentes dimensiones A y B del efector, y con la inicializacién de variables
establecidas en la Tabla 5-12.
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Tabla 5-12: Inicializacién de variables.

Variable ‘ Valor ‘

Prsx 90 %
Pom 20 %
Grado 5°
IncMax 15°
Pg 10%
wh 98 %

La variable P, .. se escogié como 90%, para permitir secciones de
agarre lo suficientemente amplias. Por su parte, P, ;, se selecciond como
20%, tanto para evitar secciones de agarre muy delgadas como para filtrar
falsos “posibles agarres” generados por pixeles blancos que no pertene-
cen al objeto (ruido). La variable Grado indica cada cuantos grados se rota
la imagen binarizada, en los pasos 4 y 5 del Algoritmo 5, para la busqueda
de los posibles agarres y se escogié como 5°, con el fin de reducir el tiem-
po de ejecucidn del algoritmo sin perder muchas posibilidades de agarre.
Esta variable debe asignarse con un valor igual o superior a la resolucién
de rotacion del efector, ya que este definira el grado de rotacién final de
la pinza para realizar el agarre sobre el objeto. La variable IncMax se
escogié como 15° tanto para reducir el tiempo de ejecucién del progra-
ma, al filtrar todas las otras inclinaciones, como para evitar que el objeto
se mueva demasiado cuando la pinza se ajuste sobre él, pues esto puede
afectar el agarre, al generar un desplazamiento en el objeto. La variable Pg
se inicializé como 10%, suponiendo que las puntas de la pinza no ocupan,
cada una, mas de un 10% del area total de agarre. El porcentaje de ruido
aceptable wh se definié como el 2% debido a que las imagenes empleadas
no tienen mucho ruido debido al fondo blanco.

5.3.6. Analisis y Resultados del agarre

La primera prueba, ilustrada en la Figura 5-19 en la izquierda, arrojé
una seccidn de agarre ubicada sobre el filo de las tijeras para dimensiones
A =60 pixelesy B = 50 pixeles. Bajo estas medidas no se tuvo la apertura
suficiente para realizar el agarre sobre el mango de la herramienta, por lo
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que la Uinica opcién que encontrd el algoritmo fue el filo, una posicién com-
plicada de manejar para un efector tanto por el grosor de la seccién del
objeto, como por su geometria, su distancia con respecto al centroide, y el
cuidado necesario para el filo del elemento. El tiempo de cémputo (t) del
algoritmo fue de 2,017 segundos para calcular el agarre y graficar los resul-
tados. La geometria de la seccion de agarre es inclinada, por lo que puede
generar deslizamiento entre las pinzas y el objeto y hacer que las tijeras se
caigan, al igual que la distancia que existe entre el agarre y el centroide que
puede generar que el peso de las tijeras afecte la estabilidad del agarre.

Figura 5-19: Punto de agarre tijeras abiertas.

Debido a los resultados obtenidos en la primera prueba, se cambiaron
las dimensiones del recuadro por A = 50 pixeles y B = 30 pixeles, obte-
niendo los resultados de la Figura 5-19 derecha. En este caso, el agarre que
selecciond el algoritmo se encuentra mas cerca del centroide de la herra-
mienta y estd ubicado sobre el mango de las tijeras. A comparacion de la
prueba anterior, las probabilidades de que se resbale el objeto debido a la
geometria del agarre se reducen, ya que tanto el dedal como el tope de las
tijeras tienen mayor area que el asta donde se realiza el agarre, y no hay
riesgo de dafiar la calidad del filo. El inconveniente con el agarre de la dere-
cha es que la ubicacidn del efector sobre la herramienta debe ser muy pre-
ciso para que la pinza encaje en medio los dedales de la tijera sin tocarla.

En una segunda prueba, se buscaron los puntos de agarre sobre un
bisturi quirdrgico obteniendo los resultados mostrados en la Figura 5-20
para dimensiones A = 60 pixelesy B = 50 pixeles. Debido a que la geome-
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tria del bisturi no es tan irregular como la de las tijeras, cualquier posible
agarre se ubica sobre su cuerpo y se diferencian entre si por la distancia
que existe entre el agarre y el centroide de la herramienta. Para el caso el
agarre que escogid el algoritmo inicialmente (lado izquierdo), se encuen-
tra alejado del centroide, pero en una zona donde el encaje entre el objeto
y la pinza es elevado, cumpliendo con la condicidn de seleccidn del paso
16 del Algoritmo 5 donde se obtiene 7 Best2. Como recorte ganador, el
algoritmo escogi6 el de mejor encaje a pesar de no estar ubicado sobre el
centroide, ya que la condicion del centroide se evallda después del condi-
cional que selecciona los dos mejores agarres, y entre los agarres seleccio-
nados el mas cercano al centroide era el de mejor encaje con una distancia
aproximada de 62 pixeles, mientras que el de mayor drea se encontraba a
83 pixeles de distancia.

Figura 5-20: Puntos de agarre para un bisturi.

Paralas dimensiones A = 50 pixeles y B = 30 pixeles, el agarre final se
ubicé casi sobre el centroide del objeto como se observa a la derecha, en
la Figura 5-20. Al reducir las dimensiones del recuadro, se redujo el drea de
cada recorte, haciendo que la evaluacién de cada condicional de los pasos
8al 11y los pasos 15y 16 entregaran resultados diferentes a los obtenidos
en el caso inicial, visto en la izquierda de la figura. Por lo tanto, el recorte
ganador no podia contener areas tan grandes del objeto, ni los mismos
encajes que en el caso anterior, haciendo que el agarre se acercara mas a
una zona mas angosta de la herramienta.
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A partir de las pruebas realizadas es posible observar que, dependien-
do de las dimensiones del efector que se maneje en la aplicacidn, se pue-
den obtener diferentes puntos de agarre para el mismo objeto. Por otro
lado, la calidad del agarre depende de los condicionales de los pasos 15y
16 del Algoritmo 5, ya que ellos definen cudles son los dos mejores agarres
entre los que se escoge el ganador.

La distancia entre el agarre y el centroide es importante para encon-
trar agarres estables. No obstante, para el objeto presentado, su relevan-
cia aparecid después de haber escogido dos posibles agarres. Esto se de-
bié a que el centroide que se obtiene en el algoritmo esta basado en la
geometria del objeto mds no en su peso, por lo que en casos donde el
centro de masa y el centroide del objeto difieran considerablemente, un
agarre sobre el centroide no puede asegurar un agarre estable, razon por
la que se establecieron los condicionales de los pasos 15y 16 para tratar de
establecer agarres que consideren cambios de masa en diferentes areas
del objeto.
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Capitulo 6

Ambiente Virtual de Prueba para Plataforma
Multi-herramienta

Con el propdsito de integrar la tarea de reconocimiento de un robot
asistencial en una plataforma multi-herramienta, se emplea un ambiente
virtual, asociado a una sala de cirugia, desarrollado en el lenguaje de mo-
delizacién de realidad virtual (VRML, de sus siglas en inglés, Virtual Reality
Modeling Language) de Matlab®, empleando el robot manipulador asis-
tencial mostrado en la Figura 5-1. El escenario consiste en el manipulador,
una plataforma multi-herramientas y una mano lista para recibirlas. De for-
ma tal que, sobre la plataforma virtual se establece un punto de agarre so-
bre la herramienta deseada y se mueve el manipulador hasta dicho punto,
para tomar la herramienta y trasladarla directamente a la mano del usua-
rio. La seleccidn de la herramienta se ingresa de forma manual y se emplea
una captura de datos externa por cdmara para validar el algoritmo de Ia
red neuronal convolucional de profundidad desarrollada en la Seccidn 4.2.

6.1. Ambiente virtual

El entorno virtual empleado consta de una mesa quirdrgica de aspec-
to metalico sobre la que se ubica el manipulador y las herramientas. La
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mano virtual simula el punto final al que debe llevarse la herramienta selec-
cionada, dicha seleccion se realiza ingresando el nombre de la herramienta
en el programa (ver Apéndice B).

El manipulador fue ensamblado pieza por pieza mediante el software
SolidWorks, iniciando con una base fija que se agregé anidada a la mesay
terminando con el efector (pinza), este incluye pequefas esferas metalicas
en cada articulacidn, que simulan los motores del robot, para permitir los
movimientos rotacionales de cada eslabdn. Cada pieza adicional del mani-
pulador se afiadié anidada a las piezas anteriores, de tal manera que cual-
quier cambio de rotacién en alguno de los motores de las articulaciones
genera un movimiento en los eslabones siguientes hasta llegar al efector,
tal y como opera el manipulador real.

Se adicioné una caja rectangular sobre la mesa metalica para poner
sobre ella las herramientas, y asi permitirle al manipulador un mayor rango
de movimiento al que tendria cuando tiene que ir hasta un punto ubicado a
la altura de su base. Sobre la caja se ubicaron tres herramientas, una tijera,
un destornillador y un bisturi, cada uno de diferente color para reconocer-
los con mayor facilidad visualmente. En la Figura 6-1 se muestra el ambien-
te virtual desarrollado [Moreno et dal., 2017].

Figura 6-1: Ambiente virtual.

La captura externa se realiza mediante una webcam, empleando téc-
nicas convencionales de procesamiento de imagenes basadas en binari-
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zacion, para segmentar cada herramienta y someterla a la red neuronal
convolucional desarrollada en el Capitulo 4. La Figura 6-2 ilustra este pro-
cedimiento. Se observa mediante el recuadro verde las regiones de interés
que seran ingresadas a la red neuronal convolucional para su clasificacién.
Debido a que se emplean imagenes no incluidas dentro de la base de datos
del entrenamiento se validan las activaciones de cada herramienta, respec-
to a los filtros originales de la red neuronal convolucional entrenada. De
forma tal que, al evaluar las activaciones de la red con los filtros apren-
didos se tiene el resultado visto en la Figura 6-3. Esto permite concluir el
buen desempefio de la red.

Original Image

Binarized Image

100
150

200

100 200 300 100 200 300

Defined Objects (Binarized) Defined Objects (Color)

100 200 300 100 200 300
Figura 6-2: Entrada del ambiente virtual.

Figura 6-3: Activaciones de las redes neuronales convolucionales.

La validacidn de la red neuronal convolucional de profundidad se rea-
liza moviendo manualmente la distancia de captura de la imagen respecto
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las herramientas, obteniendo el resultado ilustrado en la Tabla 6-1. Donde
se observa que, el reconocimiento se realiza eficientemente con niveles de
desempefio cercanos, haciendo el reconocimiento inmune a la variacién
de distancia. La Figura 6-4 ilustra el proceso para una distancia de 30 cm.

Tabla 6-1: Deteccién en profundidad para el ambiente virtual.

) ) Acierto (%)

Distancia (cm) — - - -
Tijeras | Destornillador | Bisturi

20 100 99.82 98.34

30 96.81 97.79 96.85

40 99.43 99.23 99.12

50 96.93 97.62 96.98

60 98.33 97.93 97.45

70 96.12 96.34 97.02

80 96.56 96.95 97.12

Scissors: 96.7253%

Scalpel: 99.8944%

20
40
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80
100
120
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100

= 150
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Screwdriver: 99.6822%

20
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80

20 40 60 80

Figura 6-4: Desempeiio CNN de profundidad para el ambiente virtual.

6.2. Pruebas de agarre de herramienta

Parte integral del ambiente de simulacion y de las pruebas reales esta
asociada al algoritmo de agarre, que permite tomar la herramienta y en-
tregarla al usuario, lo que demarca la funcidn asistencial. Se establece una
evaluacién de desempefio del algoritmo operando en ambiente real. Ya
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que, a diferencia de la simulacién, el ambiente real presenta rozamientosy
fricciones no simuladas, asi como las imprecisiones propias del movimien-
to de los servo motores. La Tabla 6-2 relaciona el nimero de aciertos en
la repeticidn de 25 agarres por herramienta. Se puede evidenciar un buen
desempefio para las herramientas simples, como el bisturi y el destornilla-
dor, mientras que se le dificulta mas al robot el agarre de herramientas con
espacios entre parte de la misma como las pinzas y las tijeras, por tener
mayor volumen.

Tabla 6-2: Precision agarre.

Numero de errores | Precisién

Pinzas 5 80 %
Tijeras 3 88 %
Destornillador 2 92 %
Bistur{ 2 92 %

A continuacidn se ilustraran los agarres de diferentes herramientas.
La Figura 6-5 ilustra uno los agarres obtenidos por el sistema para la herra-
mienta tipo tijeras. Se puede observar cémo el efector del robot logra rea-
lizar un buen agarre cerca del centro de gravedad de la misma. La Figura
6-6 ilustra uno de los agarres obtenidos por el sistema para la herramienta
tipo bisturi, el agarre da hacia uno de los extremos pero permite su trans-
porte. La Figura 6-7 ilustra uno de los agarres obtenidos por el sistema para
la herramienta tipo destornillador, a pesar de que el punto de agarre da
hacia un extremo, el cierre de la pinza ajusta su posicion. La Figura 6-8 ilus-
tra uno de los casos de fallo. Para el ejemplo, el fallo se da con respecto a
la herramienta bisturi, donde la cercania con las tijeras reduce el campo de
sujeccion y determina el punto de agarre muy al extremo, lo que ocasiona
la caida de la herramienta.

131



Arquitecturas de Red Neuro-convolucional para Aplicaciones de Robdtica Asistencial

Figura 6-5: Punto de agarre tijeras.

Figura 6-6: Punto de agarre bisturi.

Figura 6-7: Punto de agarre destornillador.
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Figura 6-8: Agarre fallido.

6.3. Simulaciones de ubicacidn, agarre y entrega de herramienta

Por medio de la cdmara web empleada, se logra obtener un ambiente
hibrido real-virtual, lo que permite identificar las herramientas con la red
neuronal convolucional disefiada y aplicar el algoritmo de agarre sobre la
escena real. Dichos pardmetros son replicados de forma ideal en el am-
biente virtual y evidenciados posteriormente por la accién del robot, don-
de si se evidencian fallos de funcionalidad. A continuacién, se muestran
algunas imagenes de pruebas realizadas.

La Figura 6-9 ilustra algunas escenas de la operacién de agarre de la
herramienta destornillador y posterior entrega al usuario final, en las eta-
pas de ubicacidn y agarre, durante las que se evaltan las variaciones dina-
micas de las caracteristicas por cambios de distancia.

La Figura 6-10 ilustra el proceso de transporte y entrega en la mano
al usuario final. La Figura 6-11 ilustra algunas escenas de la operacidén de
agarre de la herramienta tijeras y, posterior, entrega al usuario final, en las
etapas de ubicacion, agarre, transporte y entrega. Como se indicd, el robot
replica la accidn prevista en la simulacién, tomando la herramienta y llevan-
dola a la mano del usuario. La Figura 6-12 ilustra el proceso de ubicacidn,
desplazamiento y agarre para la herramienta tijeras en un ambiente real.
La Figura 6-13 ilustra el proceso de entrega al usuario para la herramienta
tijeras en un ambiente real.
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Figura 6-9: Pruebas de simulacion para destornillador.
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Figura 6-10: Simulacion entrega destornillador.
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Figura 6-13: Ambiente real entrega tijeras.
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Conclusiones y Trabajo futuro

Conclusiones

Se logrd verificar el alto desempefio que brindan las redes neurona-
les convolucionales en las aplicaciones de reconocimiento de patrones
en imagenes y sus evidentes ventajas frente a los métodos tradicionales,
que implican procesamiento de imagen y redes neuronales convenciona-
les. Aun asi, esta funcionalidad de las redes neuronales convolucionales,
propicia para el trabajo con imagenes, tiene limitaciones inherentes que
abren la posibilidad a mejoras en las arquitecturas establecidas, siendo di-
chas mejoras objeto de investigacidn y aportes al conocimiento, como es
el caso aqui expuesto, en relacidn a la variaciéon dindmica de la cdmarayy el
desempeno de lared.

Al variar los diferentes hiper-parametros propios de las redes convo-
lucionales, se logré converger a una arquitectura de red, que permitiese
obtener un alto desempefio en el reconocimiento de patrones en image-
nes. Dicha arquitectura estd orientada a discriminar herramientas a una
distancia fija del foco de la cdmara de captura. Sobre esta arquitectura se
validé la necesidad de mejorar el desempefio de las redes convolucionales,
al variar la distancia de reconocimiento de las herramientas, donde el des-
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empefo se degrada con la perdida de caracteristicas que la variacién de
distancia genera en las imagenes que ingresan a la red.

El generar un entorno de aplicacién en robdtica asistencial basado en
reconocimiento de patrones, empleando redes neuronales convoluciona-
les, permitié evidenciar una necesidad puntual de mejora en el desempefio
del reconocimiento, frente a ambientes dindmicos que se puede alcanzar
con variaciones de la arquitectura base de este tipo de red. El proponer
una arquitectura paralela, que da la capacidad a la red de generar un reco-
nocimiento en profundidad, ofrecié una solucidn satisfactoria frente al re-
conocimiento en ambientes dindmicos, permitiendo no solo solucionar la
pérdida o aparicion de caracteristicas de un objeto en una imagen, cuando
la distancia de captura varia, sino un método de planeacion de trayectorias
para evasion de obstaculos dindmicos, como lo es la mano de un usuario
en el drea de trabajo del robot.

Dentro de las soluciones planteadas en la arquitectura paralela pro-
puesta, se presentd el disefio de la capa final mediante dos opciones: una,
basada en una ponderacidn aritmética con saturacién y, la otra, mediante
un sistema de inferencia difusa. Aunque ambas soluciones resuelven las
necesidades de la capa final de ponderacidn, el uso de una ecuacidén aritmé-
tica ofrece una solucién genérica para diferentes niveles de profundidad,
a diferencia del sistema difuso, que debe ser redisefiado con cada agrega-
cién de nivel. La saturacién permite delimitar la salida de la red obteniendo
un 100% de acierto en la clasificacién en los puntos de profundidad del en-
trenamiento que, a su vez, sirven de referencia espacial del desplazamien-
to del manipulador, lo que da la versatilidad a la red en la discriminacion
multi-distancia y de planeacidn de trayectoria en tres dimensiones.

Se evidencia que el solucionar el problema de reconocimiento dindmi-
co de objetos, para un robot asistencial desplazdndose en tres dimensio-
nes, es solo una parte de la tarea de asistencia. Los algoritmos presenta-
dos para planeacion de trayectoria y agarre, permiten esbozar el entorno
completo de desarrollo, que requiere la implementacién de un agente ro-
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bdtico de este tipo. Sin embargo, estos algoritmos son dependientes del
tipo de efector final a utilizar en un ambiente real.

El ambiente hibrido real-virtual presentado, permitid validar la funcio-
nalidad de los algoritmos disefiados y emular el ambiente integral de un
robot asistencial capaz de entregar una herramienta a un usuario, con sus
ventajas y desventajas.

Trabajo Futuro

El campo de la robdtica asistencial estd en desarrollo constante y al-
goritmos como los propuestos en el presente documento permiten tener
una vision clara de los requerimientos minimos que se deben satisfacer.
Dentro de las aplicaciones desarrolladas como trabajo futuro se encuentra
el analisis de obstaculos adicionales a la mano de un usuario, como puede
ser el brazo, el cuerpo o incluso el rostro del mismo, que son susceptibles
de verse involucrados dentro del drea de trabajo del robot.

Las pruebas realizadas se aplicaron en funcién a que el efector final
del brazo robdtico posee la cdmara de vision y que esta toma la imagen
siempre hacia abajo, es decir, en orientacién hacia el suelo, o mas especifi-
camente hacia el darea de trabajo donde se encontrarian las herramientas.
Lo cual abre la posibilidad a un trabajo futuro basado en una camara de
exploracién omnidireccional, que valide el entorno del robot para generar
trayectorias que puedan ser susceptibles de colisiones laterales y que en
este trabajo no fueron consideradas. Otra alternativa es emplear un par de
camaras para detectar la profundidad y asi obtener la informacidn lateral.

El trabajo desarrollado fue delimitado a robots académicos con limita-
ciones en los actuadores y la dimensidn de sus eslabones, lo cual hace que
algoritmos de control para cada grado de libertad se deban considerar en
un robot industrial o para un ambiente real. Esto a su vez ampliaria el area
de trabajo del robot, lo cual podria implicar aumentar el nivel de profundi-
dad por distancia que debe manejar la red.
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Si bien el entorno multi-herramienta se desarrollé eficientemente,
este tipo de aplicacidon puede ser orientada a otros escenarios diferentes a
las herramientas propuestas. Por ejemplo, un entorno de sala de cirugia al
manejar tijeras especializadas que varian levemente en su parte terminal
de corte, siendo igual en la de sujecidn, requeriria una estructura diferente
dered convolucional por la limitada divergencia de patrones que exponen.
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Apéndice A

Ajuste de las Arquitecturas

de las CNN

En este apéndice se presentan una serie de pruebas que permiten evi-
denciar las variaciones de hiper-parametros para entrenamiento de redes
neuronales convolucionales [Jiménez Moreno et al., 2017]. La operacién de
convolucién implica un volumen fijo de entrada y un tamafio de filtro fijo.
De igual manera, esto significa que para el entrenamiento de lared se debe
establecer una base de datos de imdgenes, que contengan el objeto de
aprendizaje, u objetos de aprendizaje por categoria (cada objeto). Si bien
cada categoria puede tener un diferente nimero de imagenes y cada ima-
gen un diferente tamafio, a la entrada de la red deben ser redimensionadas
de forma uniforme. Esta operacidn de redimensionamiento puede implicar
variaciones de las caracteristicas de aprendizaje. Por ejemplo, si la imagen
es de un tamafio considerable en pixeles (superior a un Megapixel), el redi-
mensionamiento perderd resolucidn de la imagen, este efecto empeora si
la imagen no es cuadrada. De forma que, las dimensiones de la imagen de
entrada de la red, ya con el respectivo redimensionamiento, hacen parte
de los parametros a determinar y afectan el costo computacional.
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Otro aspectorelevante de la base de datos es la cantidad de imagenes.
Mientras mayor sea esta, mejor podrdn establecerse los filtros de convolu-
cion. Esta base de datos debe repartirse en un grupo de entrenamiento y
otro de validacién, en relacién promedio de 60/40 a 80/20. Donde el tiem-
po de entrenamiento tiene como uno de los pardmetros de incremento el
tamafio de la base de datos a emplear, de forma proporcional. Del conjun-
to de imagenes de entrenamiento, se emplea un subconjunto de imagenes
que se utiliza para evaluar el gradiente de la funcién de pérdida y actualizar
los pesos, denominado mini-batch, el tamafo de dicho subconjunto puede
configurarse como uno de los parametros de la red.

Debido a la multiplicidad de combinaciones que se pueden obtener
de las diferentes variaciones de los pardmetros de entrenamiento, solo
se tomaran las mas relevantes para poder apreciar su incidencia en la de-
terminacién de una arquitectura dptima de clasificacién. A continuacion,
se exponen dichas variaciones sometidas al entrenamiento. En primera
instancia, mediante dos equipos de computo de similares caracteristicas.
Pero, uno empleando procesamiento por CPU y el otro por GPU. Ambos
equipos se caracterizan por poseer un procesador Intel core i7 de séptima
generacion y 16 GB de memoria RAM, donde el equipo con GPU cuenta
con una tarjeta NVIDIA 1050 de 4 GB de memoria. En las Tablas A-1 - A-4,
se puede validar el efecto de emplear dos bases de datos de imagenes
redimensionadas a escalas diferentes, sometidas a dos tipos de redes con
variaciones de hiper-parametros.

En las Tablas A-1y A-2, se observan las mismas combinaciones de red,
sometidas a las mimas bases de datos de entrada, pero validando las va-
riaciones de entrenamiento basados en cambios del equipo de procesa-
miento. La diferencia fundamental se halla en el tiempo empleado, donde
el consumo de la CPU se hace notorio ralentizando procesos adicionales
al entrenamiento y, como se evidencia bajo tiempos prolongados, impli-
cando un costo computacional elevado. Las pequefias diferencias en la
eficiencia de la red entrenada se dan por las variaciones propias de un en-
trenamiento particular bajo el random de imagenes que emplea en la se-
paracion de los grupos de entrenamiento y validacion. La arquitectura de
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lared 1 consta de 2 capas de convolucién-relu-pooling, mientras que la red
2 consta de 3 de estas capas, donde la notacion N-I en las tablas, alude a
No Implementada, denotando la diferencia entre ambas redes. Se puede
apreciar cdmo el entrenamiento con imagenes de mayor tamafio entrega
mayor informacién de aprendizaje a la red. Sin embargo, para el caso em-
pleando un incremento en la profundidad de la red no resulta significativa-
mente mejor.

Tabla A-1: Entrenamiento por CPU Learning Rate 0.001.

BASE IMAGENES 64X64 BASE IMAGENES 128X128
RED 1 ‘ RED 2 RED 1 ‘ RED 2
Type Kernel | Filtros | Kernel | Filtros | Kernel | Filtros | Kernel | Filtros
Convolution/ReLu 5x5 30 5x5 30 5x5 30 5x5 30
MaxPooling 3x3 - 3x3 - 3x3 - 3x3 -
Convolution/ReLu 3x3 50 3x3 50 3x3 50 3x3 50
MaxPooling 2x2 - 2x2 - 2x2 - 2x2 -
Convolution/ReLu N-1 N-I 2x2 10 N-I N-I 2x2 10
MaxPooling N-1 N-1 2x2 - N-I N-I 2x2 -
Full-Connected 4 - 4 - 4 - 4 -
Softmax 4 - 4 - 4 - 4 -
Tiempo de entrenamiento 6,15 Horas 14,5 Horas 9,45 Horas 16,12 Horas
Precisién 8% 76 % 81,2% 82,6 %

Tabla A-2: Entrenamiento por GPU Learning Rate 0.001.

\ | BASE IMAGENES 64X64 | BASE IMAGENES 128X128

RED 1 RED 2 RED 1 RED 2
Type Kernel | Filtros | Kernel | Filtros | Kernel | Filtros | Kernel | Filtros

Convolution/ReLu 5x5 30 5x5 30 5x5 30 5x5 30

MaxPooling 3x3 - 3x3 - 3x3 - 3x3 -

Convolution/ReLu 3x3 50 3x3 50 3x3 50 3x3 50

MaxPooling 2x2 - 2x2 - 2x2 - 2x2 -

Convolution/ReLu N-1 N-I 2x2 10 N-I N-I 2x2 10

MaxPooling N-I N-I 2x2 - N-I N-I 2x2 -

Full-Connected 4 - 4 - 4 - 4 -

Softmax 4 - 4 - 4 - 4 -

Tiempo de entrenamiento 0,15 Horas 0,21 Horas 0,22 Horas 0,35 Horas
Precisién 78,42 % 77,03 % 81,6 % 84,87 %

La Tabla A-3 se articula con la Tabla A-2, al evidenciar las variaciones de
los hiper-parametros y profundidad de la red, variando la razén de apren-
dizaje (learning rate) para observar su efecto. El primer cambio notorio es
una reduccidn del tiempo de aprendizaje, pero la eficiencia de discrimina-
cién de categorias disminuye. Incluso una prueba con este valor en 0.005,
buscando una media entre los dos casos, evidencia tiempos y eficiencias
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intermedias entre las tabuladas. Donde, frente al costo computacional, es
preferible dedicar mas tiempo al entrenamiento bajo este parametro.

Tabla A-3: Entrenamiento por GPU Learning Rate 0.01.

\ | BASE IMAGENES 64X64 | BASE IMAGENES 128X128
RED 1 RED 2 RED 1 RED 2
Type Kernel | Filtros | Kernel | Filtros | Kernel | Filtros | Kernel | Filtros
Convolution/ReLu 5x5 30 5x5 30 5x5 30 5x5 30
MaxPooling 3x3 - 3x3 - 3x3 - 3x3 -
Convolution/ReLu 3x3 50 3x3 50 3x3 50 3x3 50
MaxPooling 2x2 - 2x2 - 2x2 - 2x2 -
Convolution/ReLu N-I N-I 2x2 10 N-I N-1 2x2 10
MaxPooling N-I N-I 2x2 - N-I N-I 2x2 -
Full-Connected 4 - 4 - 4 - 4 -
Softmax 4 - 4 - 4 - 4 -
Tiempo de entrenamiento 0,134 Horas 0,202 Horas 0,2092 Horas 0,312 Horas
Precisién 74,2 % 71,15% 79,32 % 80,51 %

De las pruebas realizadas, se establece como arquitectura base la red
2, con una entrada dimensionada a 128x128 y eficiencia de 84,87%, segun
la Tabla A-2, debido a que es la que mejor desempefio presenta en relacién
al costo computacional y flexibiliza asi mayor nimero de pruebas.

La Tabla A-4 ilustra el cambio del nimero de filtros por cada una de las
tres capas de convolucidn para esta arquitectura, evidenciando una me-
jora en la eficiencia hasta del 96,32%. Dicho cambio debe obedecer a un
balance de la informacidn a aprender de la capa anterior, se observa que
un uso excesivo de filtros, degradan el desempefio final.

Tabla A-4: Variacion filtros de la arquitectura CNN escogida.
] | Pruecbal | Prueba2 | Prueba3 [ Pruchad |

CNN 1 | 5xb/ 70 filtros | 5x5/ 70 filtros | 5x5/ 70 filtros | 5x5/ 70 filtros

CNN 2 | 5x5/ 70 filtros | 5x5/ 70 filtros | 5x5/ 70 filtros | 5x5/ 70 filtros

CNN 3 | 5xb/ 70 filtros | 5x5/ 70 filtros | 5x5/ 70 filtros | 5x5/ 70 filtros
Precision 8% 87,6 % 89,16 % 96,32 %

Se observé que la incidencia del equipo de computo se hace relevante
para el entrenamiento de lared y no para su uso en lalabor de clasificacidon.
Siendo asi indiferente para una aplicacidn si se cuenta o no con una GPU.
Sin embargo, se tiene que para poder iterar los parametros de entrena-
miento de la red a fin de optimizar la arquitectura a emplear, ain cuando
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se parta de una base de datos adecuada, segun las consideraciones aqui
establecidas, los tiempos de convergencia demuestran la ventaja evidente
del uso de la GPU. Se logré establecer que las variaciones en el tamafio de
los filtros de convolucidn estan relacionadas con las dimensiones del volu-
men de entrada. De forma que, el aprendizaje de caracteristicas relevantes
de una categoria dada, mejora mientras mas informacion se obtenga de
esta. La razdn de informacidn esta determinada por el aumento del tama-
flo de los volumenes en cada capa, que obedece a un aumento gradual
del aprendizaje que cada filtro lleva a la siguiente capa. Para validar las
pruebas presentadas es necesario realizar cambios paulatinos de un solo
parametro a la vez, que permitan el correcto andlisis del efecto que causa
su variacion en el entrenamiento. Mediante iteraciones multiples, se evi-
dencian las relaciones finales que permiten converger mas rapidamente
en una red eficiente. Pero, se destaca la importancia de una base de datos
adecuada, es decir, que genere patrones claros de aprendizaje.

157






Apéndice B

CNN para Reconocimiento
de Comandos de Voz

Un complemento necesario para un robot asistencial, como el plan-
teado, es el poder recibir la orden de entrega de una herramienta de forma
natural, por ejemplo un comando de voz [Pinzon et al., 2018]. Para aplica-
ciones de reconocimiento de habla no es sencillo implementar una arqui-
tectura tipo red neuronal convolucional. A diferencia de las arquitecturas
creadas para reconocimiento de imdgenes, en las que se puede tener una
idea de la dimensidn del objeto a reconocer, se puede iniciar con kernels de
filtros que permitan identificar las caracteristicas generales de dichos ob-
jetos, en el caso de reconocimiento de habla, los patrones que se quieren
reconocer no son evidentes, cada combinacién de palabras exhibe carac-
teristicas particulares.

Con el fin de construir la arquitectura de la red y efectuar su entrena-
miento, se construye una base de datos con las tres palabras de las que
se quieren reconocer: bisturi, destornillador y tijeras. Dicha base de datos
consta de 155 grabaciones por palabra de diferentes usuarios, con una du-
racion de 2 segundos por grabacion. De éstas, se toman 125 audios por
categoria para entrenamiento y 30 para validacion, obteniendo un total de
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375 audios de entrenamiento y 90 de prueba. Cada audio es adquirido con
una frecuencia de muestreo de 16000 Hz.

Debido a que las redes neuronales convolucionales son especializa-
das en reconocimiento de patrones, el encontrar una caracteristica en una
sefial pura no se hace tan sencillo, ni evidente para la red. Por tal motivo,
se requiere convertir la sefial a una entrada mas adecuada para guiar a la
red en su aprendizaje. Para esto, se hace una extraccion de caracteristicas
de cada sefal de audio, con el fin de obtener un mapa que permite ver el
comportamiento de la sefial a través del tiempo en diferentes frecuencias.
Esta extraccion se realiza por medio de los MFCC (Mel-frequency cepstral
coefficients) [Davis y Mermelstein, 1980], los cuales han tenido un amplio
uso en los sistemas de analisis del habla.

Para efectuar la extraccion de caracteristicas, en primer lugar, se
realiza un preénfasis de la sefial, pasandola por un filtro de primer orden
[Young et al., 2006], como

S =S, +aS, 1, (B-1)

aplicando un coeficiente a = 0,97, siendo S, la sefial original y S',, la sefial
filtrada. Un ejemplo de este proceso, se muestra en la Figura B-1, para la
palabra Bisturi.

0.2

Original
Filtered

0.15

0.1

0.05

Amplitude

0 02 04 06 08 1 12 14 16 18 2
Time (s)

Figura B-1: Sefal de voz para Bisturi.

Una vez hecho el filtrado, se realiza el framing y windowing, con el
fin de arreglar las muestras en frames y atenuar las discontinuidades de la
sefial, por medio de
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’ 2m (n — 1) ’
an = |:0,54 — 0,46 COS (ﬁ)} Sn (B—2)

Cabe resaltar que cada frame tiene una duracién de 20 ms y es
muestreado cada 10 ms. La transformacion se aplica a las muestras
{Sh s n = LLNf}[12], siendo N4 el nimero de frames. Seguido de esto, se
obtiene el espectro de magnitudes, por medio de la Transformada Rapida
de Fourier de cada frame, con una longitud de N = 512. Ya que cada frame
contiene 320 muestras, se debe usar la siguiente potencia de 2 de la canti-
dad de muestras. Para encontrar las magnitudes, utilizamos

MAG = . k=0,..., N—1. (B-3)

N
Z an(n)e—z 2nnk/N
n=1

Con el fin de usar los MFCC, las frecuencias deben ser trabajadas en la
escala de Mel, definida como

fmer = 1127 In(1 + £/700), (B-4)

donde f es la frecuencia en Hz. Con esta definicidn, se crea un banco de
filtros triangulares separados uniformemente, con frecuencias de corte en
escala de Mel dadas por

fhi Romel flome
Cmet(M) = flow, ., M —2 ]\/l[ 1 Loom=0,.,M+1, (B-5)

donde el limite inferior de frecuencia, flow,,.;, €s de 300 Hz en escala Mel,
y el limite superior de frecuencia, fhigh,,.;, €s de 8000 Hz en escala Mel.
Los rangos de frecuencias, se pueden encontrar como

fmaﬁx - fmin

Fk:ml'nk )
(k) = fouin + k=7

k=0,.,K-1, (B-6)
donde f,;, representa el rango inferior (0 Hz), f, 4. €l rango superior (8000
Hz), M la cantidad de canales del filtro, cuyo valor es 20, K es la longitud
de la respuesta en frecuencia, es decir K = (1 + N)/2. Finalmente, el banco
de filtros queda definido como
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0, F(k) < cg.(m),
F(k) —d(m)
ca(m+1) + cg(m)’
ca(m+2) +cp.(m+ 1)’
0, F(k) > cy.(m+2).

cu.(m) < F(k) < ep.(m+1),

H(m, k)

cr(m+1) < F(k) < eg.(m +2),

(B-7)

Una vez disefiados los filtros triangulares, estos son aplicados a la sec-
Cioén unica del espectro de magnitudes, acorde a

Fbe = H(m, k) MAG(k), k=0,.,K—1, (B-8)
obteniendo como resultado las energias de los filtros, para luego, compu-
tarla con la transformada discreta del Coseno, mientras se le aplica el loga-

ritmo a todos filtros, obteniendo los coeficientes cepstrales (Cc) [Young
etal., 2006]

M .
2 o, . .
Ce; = ”M Ej log(Fbej) cos (M(] — 0,5)) , 1=0,..,C. (B-9)

Para este caso se tomé un numero de C'= 12 coeficientes cepstrales por
cada frame, obteniendo unas caracteristicas generales dadas por la figura B-2.
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Figura B-2: Mapa de Caracteristicas MFCC
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Para el reconocimiento del habla, el uso de otros parametros ayuda a in-
crementar el desempefio del sistema. Por lo cual, se adicionan la primera deriva-
da (Cc”) y segunda derivada (Cc’) de los coeficientes con respecto al tiempo.
Para esto, se aplica la primera derivada de C'c;, dada por

N
> nlCe., —Cd,)

Cc;, = 2= - . t=1,.., Ny, (B-10)
2>
n=1

y la segunda derivada de C'c; dada por

N
n(Oc;—l—n - Oc;—n)
cc ==t N n? t=1,.,N; (B-11)
2>
n=1

con un valor de andlisis N=1 para este caso, obteniendo finalmente los ma-
pas de caracteristicas mostrados en la Figura B-3.
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Figura B-3: Mapas de Caracteristicas MFCC y derivadas.
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Los mapas de caracteristicas son ordenados en un arreglo matricial de
12x199x 3. Es decir, una matriz de 12 coeficientes adquiridos de 199 fra-
mes, con sus respectivas primera y segunda derivada. Esto se aplica a to-
das las grabaciones realizadas y, de esta forma, se construye la base de
datos que se va a usar para ser ingresada en la red neuronal convolucional.

Se propone una arquitectura basada en filtros cuadrados (ver Tabla
B-1). De forma tal que se puedan extraer caracteristicas combinadas entre
tiempo y coeficientes, permitiendo a la red aprender el comportamiento
en las dos dimensiones. Adicionalmente, aunque en la mayoria de los tra-
bajos no se agrega padding a las convoluciones [Qian y Woodland, 2016],
en éste si se usa, con el fin de que el tamafio original del volumen de entra-
da se mantenga a la salida de cada capa.

Tabla B-1: Arquitectura CNN.

Vol. Entrada Capa Kernel Filtros
H \ W \ D M \ N \ S \ P
- - - Entrada 12 1199 | - | - -
12 | 199 3 Convolution ) 5 1] 2 32
12 | 199 | 32 Convolution 5 5 1] 2 32
12 | 199 | 32 MaxPooling 2 1 210 -
6 | 199 | 32 Convolution 3 3 1)1 64
6 | 199 | 64 Convolution 3 3 1)1 64
6 | 199 | 64 MaxPooling 2 3 210 -
3 99 64 Convolution 2 2 111 128
4 | 100 | 128 Convolution 3 3 1)1 128
4 | 100 | 128 MaxPooling 4 2 210 -
2 50 | 128 | Fully-Connected | 1 1 - - 512
- Dropout -
512 Fully-Connected | 1 \ \ \ 2048
- Dropout
2048 Fully-Connected | 1 \ 1 - - 3
- SoftMax 3 - - -
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Es importante notar que, en el primer MaxPooling, se realiza el down-
sampling unicamente en el espacio de los MFCC. Principalmente, para que
haya una reduccidn en los coeficientes. Pero, se mantengan los frames
para la extraccion. Mientras que en los siguientes, si se realiza tanto en el
tiempo, como en los coeficientes. Cabe resaltar que, ya que se quiere ha-
cer el reconocimiento completo de cada palabra, diferente a como normal-
mente se realiza (por medio de fonemas), la entrada de la red es el arreglo
matricial completo obtenido de los mapas de caracteristicas.

Se realiza el entrenamiento de la arquitectura propuesta usando el
conjunto de datos construido por un total de 600 épocas. Segun el com-
portamiento obtenido durante el entrenamiento (ver Figura B-4), la red
tuvo un espacio de dificultad en su aprendizaje, debido a la dificultad de
adquirir los datos del mapa de caracteristicas. Sin embargo, aproximada-
mente en la época 170, la red empezd a tener una curva de aprendizaje,
alcanzando una exactitud de entrenamiento de mas del 90% en la época
238, hasta lograr una estabilizacién del 100% en la época 568. Con el fin
de tener una mayor confiabilidad en el reconocimiento, se validaron las
100 dltimas épocas, obteniendo los dos mejores desempefios en la época
500 y 511, con el 97.8% y 98.9% de exactitud de validacion, respectiva-
mente. Por consiguiente, para certificar que en épocas anteriores no haya
un mejor desempefio, ya que cabe la posibilidad que la red haya entrado
a overfitting cuando la red se estabiliza en 100% (empieza a memorizar
mas no a aprender), se realizé una nueva validacién de las épocas donde
su precision de entrenamiento fue superior al 95%, obteniendo que, en la
época 308, se tiene una exactitud de validacién del 100%, superando a las
dos mejores épocas encontradas anteriormente, por lo cual se toma como
red final dicha época.
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Figura B-4: Desempefio del entrenamiento de la red.

cual logré un 100% de exactitud en la validacién.
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