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Introducción

La estabilidad postural estática es una base importante en la condición del 

individuo para hacer movimientos, soportar la estabilidad dinámica y cons-

tituye un elemento central para garantizar las capacidades adecuadas de 

llevar a cabo actividades diarias, entre las que se encuentran las transiciones 

hacia o desde posturas frecuentes; por ejemplo, el inicio o la terminación de 

la marcha, sentarse a pararse o pararse a sentarse, correr, montar bicicleta, 

hacer ejercicio, agacharse a amarrar sus zapatos, entre otras.

La estabilidad no implica solo la suma de reflejos estáticos, en realidad 

es una habilidad compleja basada en la interacción de los procesos sensorio-

motores dinámicos, entre los que se encuentran los sistemas propioceptivos 

para el apoyo de superficies, visual para obtener la adecuada realimentación 

sobre la eficacia de los movimientos y vestibular para la gravedad sensorial, 

integrados con información aferente para generar una salida motora, donde 

se involucran actuadores músculo-esqueléticos que actúan contra la superfi-

cie de apoyo. Además, es importante el lóbulo frontal en la corteza cerebral 

para hacer un correcto y organizado movimiento, así sea mínimo. Cada uno 

de estos sistemas aporta en el reclutamiento de información para generar 

los actos-reflejos necesarios para que un sujeto permanezca en una posición 

vertical ortoestática, también llamada estática postural. Por otro lado, en 

sujetos sanos (sin patologías), el aporte a la estabilidad se debe al sistema 

propioceptivo en un 70 %; el sistema vestibular que controla la orientación 

del tronco y la cabeza en el espacio contribuye con el 20 %, y el 10 % restante 

es aportado por el sistema visual. De allí que la alteración de uno o varios 

sistemas conlleve la afectación de la estabilidad postural; por ejemplo, un 

mal control postural aumenta el riesgo de caídas, impide el desplazamiento 
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autónomo, mayor consumo de energía para realizar las actividades diarias y, 

por ende, una disminución de la calidad de vida del individuo.

Todo el proceso de equilibrio y control postural de forma independiente 

se logra, en la mayoría de los casos, desde los primeros años de vida gracias a 

la maduración, el aprendizaje, la integración y la realimentación de diversos 

sistemas que componen al ser humano; gracias a los movimientos contro-

lados, independientes y eficientes, un niño, un joven y un adulto pueden 

efectuar actividades cotidianas simples o complejas, según lo requiera. Sin 

embargo, esta estabilidad del equilibrio está sujeta a varios factores mecá-

nicos (base de sustentación, altura del centro de gravedad, ubicación de la 

proyección del centro de gravedad), fisiológicos (edad, fatiga, alteraciones 

vestibulares, consumo de fármacos, alcohol o sustancias psicoactivas), psi-

cológicos (temor, estrés, ansiedad), entre otros.

Por lo anterior, los estudios para entender la estabilidad en diferen-

tes grupos poblacionales, así como las medidas precisas y fiables ligadas 

a la estabilidad, son fundamentales en la detección y prevención de enfer-

medades. La medición de las fuerzas ejercidas contra el suelo, durante la 

postura estática de bipedestación, se usa comúnmente para cuantificar la es-

tabilidad postural; esto se denomina “estabilometría”, ya que numerosas 

investigaciones han sugerido que cualquier comprensión de la estabilidad 

debe considerar tanto el desplazamiento del centro de presión (CoP) como 

su velocidad. Generalmente, la estabilometría se centra en las propiedades 

de la serie temporal del CoP, en dos direcciones: antero-posterior (AP) y me-

dial-lateral (ML). Sin embargo, el análisis del CoP produce un conjunto de 

datos (parámetros estabilométricos) que aportan información valiosa sobre 

la estabilidad. Los parámetros estabilométricos más comúnmente reporta-

dos en la literatura, son aquellos que describen las propiedades estadísticas 

lineales de la trayectoria CoP, considerada como una señal estacionaria, en 

los dominios de tiempo y frecuencia.

La caracterización de grupos poblaciones se lleva a cabo usando estos 

parámetros, entre los que se encuentran, en el dominio del tiempo: la ex-

cursión, el rango, la amplitud promedio o desplazamiento, el valor RMS, la 

velocidad, el valor mínimo y el máximo de amplitud. Y en el dominio de 

la frecuencia: la transformada de Fourier a corto plazo (STFT), la densidad 
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espectral de potencia (PSD), la relación de potencia de frecuencia entre dife-

rentes bandas (baja, media y alta), la frecuencia media (MPF), la frecuencia 

mediana (MDF), el ancho de banda ocupado del 99 %, el ancho de banda de 

3 dB, y la relación de potencia espectral (SPR).

Igualmente, el análisis no lineal ha tenido incursión en los últimos años, 

usando la entropía como medida de cuantificación de la estabilidad para 

distinguir el comportamiento grupal; este método de extracción de carac-

terísticas mide la complejidad del sistema en el dominio del tiempo. Y 

siguiendo este tipo de análisis, proponemos emplear la teoría matemática 

de la información (TI) propuesta por Shannon y el método de agrupamiento 

(clustering) para detectar las características de la estabilidad fundamentada en 

el desplazamiento y la velocidad del CoP; la TI permite medir la cantidad 

de información de la entrada que se obtiene en la salida, de esta forma se 

puede conocer la relación existente entre entradas y salidas; clustering realiza 

agrupamiento entre datos de acuerdo con la cantidad de información que 

estos poseen.

Este texto aborda el desafío de identificar diferentes métodos de explora-

ción de la estabilidad, con el objetivo de mostrar las particularidades de cada 

método y así verificar su desempeño. De esa manera, se pueden identificar 

cuáles métodos permiten entender el proceso del mantenimiento de la es-

tabilidad corporal en posición bípeda y así poder caracterizar la población 

objeto de estudio. Para ello, se efectuó un estudio con dos grupos pobla-

cionales: un grupo de personas con amputación transtibial unilateral y un 

grupo de personas sin amputación transtibial (grupo control); en cada uno 

de ellos se tuvieron 37 sujetos a quienes se les realizó la medición de CoP 

bajo cada pie y en las direcciones AP y ML.

El análisis de la estabilidad en posición bípeda en personas con amputa-

ción transtibial unilateral es base fundamental para una correcta alineación 

del miembro protésico: permite mejorar las características técnicas de la 

prótesis y la selección del programa de rehabilitación adecuado, dado que 

el centro de gravedad se desplaza hacia el lado no amputado; asimismo, 

hacer una buena distribución del peso, disminuir el gasto energético en la 

marcha protésica, lograr una marcha relativamente normal, por citar algu-

nas aplicaciones.
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Se espera, por tanto, que los resultados obtenidos puedan ser utilizados 

por investigadores y personal clínico en las aplicaciones clínicas o en los pro-

cesos de investigación en consideración a la evaluación del control postural 

o al desarrollo de programas de rehabilitación en la población de estudio.
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Capítulo 1

Generalidades de la estabilidad postural

El estudio de la estabilidad postural es un tema que involucra diferentes dis-

ciplinas y que tiene distintos nichos de estudio, ya que se puede hacer con un 

enfoque “básico” de análisis del equilibrio durante la marcha o actividades 

de locomoción del ser humano, o en el ámbito deportivo para el mejora-

miento de la ejecución de los gestos deportivos o desde el punto de vista de la 

rehabilitación para la evaluación y el mejoramiento de la marcha patológica. 

Este libro está enfocado en el análisis de la estabilidad postural estática de 

personas con amputación en sus extremidades inferiores y que son usuarias 

de prótesis de diferentes tipos.

Cuando se habla de estudiar la estabilidad postural de los seres vivos, 

relacionada estrechamente con el sistema musculoesquelético, la parte sen-

sorial, la movilidad y otros factores, puede que se tenga la falsa concepción 

de que es algo sencillo, pero en realidad y de acuerdo con el nivel de detalle y 

precisión que se quiera tener al respecto, se deben conocer diferentes defini-

ciones, datos, técnicas y metodologías que intervienen en el control postural, 

por lo que se deben tener claros algunos conceptos que forman parte de 

este campo del saber. Por ejemplo, es necesario saber que el sistema sen-

soriomotor, responsable en gran medida de la estabilidad del ser humano, 

está compuesto por receptores periféricos, más conocidos como mecano-

rreceptores periféricos, que se encuentran en la piel, las articulaciones, los 

ligamentos, los tendones y los músculos y que a través de la integración y 

el procesamiento central generan una respuesta motora. Todo este proce-

so se implica en el mantenimiento de la homeostasis articular durante los 
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movimientos corporales (estabilidad funcional de la articulación) (véase fi-

gura 1) (Fort Vanmeerhaeghe y Romero Rodríguez, 2013).

La estabilidad articular se puede garantizar por medio de una actividad 

sinérgica precisa y armónica entre diferentes estructuras de los sistemas 

osteoarticular (huesos, articulaciones y cápsulas articulares), musculoten-

dinoso (ligamentos, tendones y músculos) y mecanorreceptor (receptores 

sensoriales y vías neurales espinales y corticales). Por lo anterior, se puede 

evidenciar que en la estabilidad articular dinámica intervienen diferentes 

procesos neurosensoriales, de integración, de procesamiento central y pe-

riférico y, finalmente, de respuesta neuromuscular (Fort Vanmeerhaeghe y 

Romero Rodríguez, 2013).

Los procesos neurosensoriales están coordinados por el sistema nervioso 

central que obtiene información de los sistemas somatosensorial, vestibular 

y visual (figura 1). En el sistema somatosensorial se tiene información de 

la propiocepción (sensación de posición y movimiento de las extremida-

des), en donde se tiene conciencia de la postura y estabilidad articular y de 

la postura global, termorreceptiva, dolorosa, lumínica y química derivada 

de la periferia. En cuanto a la integración y el procesamiento central que 

originan respuestas motoras en el individuo, el control del movimiento y 

de la postura del individuo dependerá del flujo de información enviada vía 

aferente y procesada en un eje central compuesto por la médula espinal, el 

tronco cerebral y la corteza cerebral, y asociada mediante el cerebelo y los 

ganglios basales.

Las respuestas motoras generadas, se pueden dar en la médula espinal o 

por reflejo monosináptico, en donde las respuestas son simples; o en el tron-

co del encéfalo, en donde se da una respuesta inmediata ante los reflejos más 

complejos y, finalmente, en la corteza cerebral que controla los movimientos 

muy complejos.

Finalmente, la respuesta controlada del sistema neuromuscular es la 

respuesta eferente inconsciente a una señal aferente que tiene como obje-

tivo conseguir la estabilidad dinámica de las articulaciones. Este control 

neuromuscular también es definido como la capacidad para producir un 

movimiento controlado mediante la actividad muscular coordinada y la 
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interacción exacta entre el sistema nervioso y el sistema musculoesqueléti-

co. Las principales estrategias para este tipo de control son la coordinación 

intramuscular, la coordinación intermuscular y el control postural (Fort 

Vanmeerhaeghe y Romero Rodríguez, 2013).

Figura 1. Representación del funcionamiento del sistema sensoriomotor

Fuente: Fort Vanmeerhaeghe y Romero Rodríguez (2013).

En la sección “Estabilidad postural” se hablará con mayor detalle sobre la 

estabilidad postural. A continuación, se presentan algunos de los conceptos 

que serán de ayuda para el lector.

Centro de presión
El centro de presión (CoP) o baricentro corporal, puede ser considerado como 

una representación 2D del punto en el cual se proyecta el vector de reacción 

del suelo (figura 2). También, es considerado como el promedio de todas las 

presiones sobre la superficie del área en contacto del pie sobre el suelo en el 

plano sagital (movimientos en sentido antero-posterior) y en el plano coronal 

(movimientos en sentido latero-lateral). En otras palabras, el punto resultante 
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del intercambio de las fuerzas del pie con el piso (donde la ∑ Fy = 0), es la 

fuerza de reacción del piso aplicada a cada uno de los puntos que mantienen 

contacto entre la superficie plantar del pie con la base y está ubicado en la su-

perficie plantar del pie cuando se está en una posición monopodal o se ubica 

entre los dos pies cuando se está en posición bípeda o se realiza una actividad 

bipodal o bípeda (Petrocci y Cárdenas, 2011). Con el Test de Uterberger se 

puede registrar el desplazamiento del CoP cuando se encuentra en condi-

ciones dinámicas, mientras el paciente eleva alternativamente ambos muslos 

hasta la horizontal, a un ritmo de 50 pasos por minuto.

Figura 2. Ubicación del CoP en la base o polígono de sustentación del cuerpo humano

Fuente: Luengas y Toloza (2020b).

El centro de presión es dependiente de la fuerza de reacción que existe en cada 

pie, que es igual y opuesta a la masa corporal (kg) y de los momentos, que 

equivalen a los vectores fuerza por la distancia hacia el centro articular (kg.m). 

La representación gráfica de los movimientos del CoP del paciente sano o 

con alguna patología en la base de sustentación (BDS) (antero-posteriores y 

medio-laterales) a lo largo del tiempo se hace mediante un estabilograma, el 

cual es analizado por personal experto, cuanto mayor es la dispersión, más 

deficiente es la estabilidad del equilibrio del paciente (figura 3).
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Figura 3. Ejemplo del registro de una prueba de estabilografía

Fuente: elaboración propia.

Centro de gravedad
El centro de gravedad (CG) es un punto imaginario en el espacio tridimen-

sional, en donde se concentra toda la masa corporal de un individuo. En 

este punto actúa la fuerza de la gravedad en dirección hacia el centro de la 

Tierra (en el ser humano, está localizado teóricamente a la altura del ombli-

go) (figura 4). En otras palabras, el CG es el punto que representa el centro 

de masa teniendo en cuenta la fuerza de la gravedad. La ubicación del CG se 

afecta por la morfología del sujeto, la posición que adopta y el movimiento 

que ejecuta; pero en posición de bipedestación estática se ubica en la pelvis 

menor, cerca de la tercera vértebra lumbar (figura 4), haciendo que su pro-

yección se establezca dentro del polígono de sustentación (figura 2).

Para que un cuerpo se encuentre en equilibrio (teniendo solo en cuenta la 

gravedad), la proyección de su centro de gravedad debe estar ubicado dentro 

del polígono de la base de sustentación (BDS). Para una altura reducida del 

CG con una misma BDS se obtiene un aumento en la estabilidad del equili-

brio, ya que la fuerza necesaria para generar un desequilibrio en el individuo 

también debe aumentar. El polígono o la base de sustentación BDS es la su-

perficie con forma de polígono que abarca la parte externa de los pies (figura 

2) (Chaudhry et al., 2011; Luengas y Toloza, 2019). En resumen, una mayor 

BDS genera que las personas tengan una mejor estabilidad del equilibrio.
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Figura 4. Ubicación del centro de gravedad (CG) y variación de la 
base de sustentación (BDS) durante la marcha humana

Fuente: García y Rodríguez (2016).

Existen algunos factores mecánicos que favorecen el equilibrio aun cuando 

la proyección del CG no esté en la BDS, estos son: la acción de la fuerza 

centrípeta, el aprovechamiento de la inercia y la cantidad de movimiento 

lineal y angular, y el cambio de posición de la BDS. Estos mecanismos 

actúan según la actividad que esté realizando el individuo para impedir una 

posible caída.

La regulación del aparato locomotor con el fin de mantener el control 

de la postura en posición de bipedestación la lleva a cabo principalmente el 

sistema nervioso central (SNC); este da las instrucciones precisas para pro-

ducir y coordinar las fuerzas necesarias de control de posición del cuerpo en 

el área con un ahorro energético (Beltrán, 2008; Bricot, 2008; Chávez, 2016; 

Duarte y Freitas, 2010; Martín-Casado et al., 2010). Estas fuerzas son:

1.	 La alineación corporal, definida como la acción de conservar la ubicación 

apropiada de los segmentos del cuerpo entre sí; su función es minimizar 

el impacto de las fuerzas gravitacionales distribuyendo el peso de forma 

adecuada en las extremidades inferiores.

2.	 El tono muscular, es un reflejo controlado mediante el cual los músculos 

se oponen al estiramiento inducido por la fuerza de la gravedad; se ca-

racteriza por una contracción parcial, pasiva y continua de los músculos 

para mantener una postura corporal afín a la actividad a realizar. Los 
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sistemas que dan origen al tono muscular son el huso muscular, las vías 

aferentes, el complejo sináptico entre terminaciones sensitivas y moto-

neuronas alfa y gama, así como los axones de estas motoneuronas.

3.	 El tono postural, es la base para el movimiento donde los músculos gra-

vitatorios realizan actividad tónica para mantener el cuerpo en posición 

vertical durante la posición de bipedestación.

Posturografía
La posturografía (también denominada en ocasiones “estabilometría”) es 

una técnica cuantitativa (dinámica y estática) que permite estudiar, medir y 

evaluar el comportamiento de un individuo en posición bípeda con apoyo 

estable, en condiciones de desestabilización, así como en movimientos acti-

vos como la marcha. Además, permite evaluar objetivamente la contribución 

de los reflejos vestíbulo-espinales en la función del equilibrio, el estado y la 

eficiencia del control postural del ser humano sano, con déficit de equilibrio, 

con trastornos cerebrovasculares o con traumatismos craneoencefálicos, 

por medio del estudio del movimiento del centro de presiones (CoP) sobre 

una plataforma dinamométrica (figura 5) e informa de diversos aspectos del 

equilibrio postural durante el movimiento y la bipedestación.

Figura 5. Posición de un paciente durante una prueba de posturografía

Fuente: Luengas y Toloza (2020b).
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La posturografía dinámica computarizada (en inglés, comutarized dynamic 

posturography, CDP) es conocida como una técnica que refleja objetivamente 

los cambios en la capacidad funcional de equilibrio y produce patrones 

claramente identificables, lo cual complementa el diagnóstico clínico 

de los especialistas (rehabilitadores, neurólogos, otorrinolaringólogos 

y oftalmólogos) (Balaguer García et al., 2012). El control postural es una 

función básica para el ser humano, ya que le permite desarrollar varias de 

sus actividades que requiere para su vida cotidiana; este control se logra 

mediante la integración y regulación automática o subconsciente del sistema 

nervioso central (SNC) compuesto por el cerebro, el cerebelo y el córtex, los 

cuales intervienen permanentemente en la actividad humana, permitiendo 

la autonomía del ser humano, así como su relación con el entorno en el que 

se desenvuelve (García, 2016).

La posturografía, en general, es una prueba diagnóstica y terapéutica 

empleada para registrar las variaciones asociadas a la postura. Permite 

cuantificar de forma objetiva y reproducible la estabilidad o inestabilidad 

de un paciente, lo cual es útil para diseñar y planificar un tratamiento re-

habilitador y efectuar procesos de seguimiento o monitoreo de la evolución 

de un paciente.

Existe la posturografía estática, que estudia la postura estática sin pertur-

bación y el individuo intentando quedarse inmóvil en una posición bípeda 

estática, mientras observa fijamente a un punto fijo a la altura de los ojos 

(figura 5). Hay diferentes variaciones de la posturografía estática; por ejem-

plo, con los ojos abiertos o cerrados, con la cabeza en posición normal o en 

hiperextensión, realizando simultáneamente actividades mentales, con una 

base firme o inestable o usando un balancín.

También, se puede evaluar la postura de un paciente con un programa de 

posturografía estática (SPGIII), mediante el estudio de las diferentes prue-

bas combinando varias posiciones de la cabeza, el cuerpo y el uso de visión 

referenciada y una plataforma (goma-espuma), con el cual se puede valorar 

los resultados obtenidos usando una plataforma dinamométrica fija y las 

diferentes pruebas de Romberg (Agrawal et al., 2011), en donde se mues-

tra cómo la superficie del CoP aumenta entre dos y tres veces cuando el 
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paciente tiene los ojos cerrados (García, 2016). Las pruebas de Romberg 

(figura 6), son:

•	 Test 1 de Romberg con ojos abiertos (ROA), sobre plataforma fija.

•	 Test 2 de Romberg con ojos cerrados (ROC), sobre plataforma fija.

•	 Test 3 de Romberg con ojos cerrados con la cabeza hiperextendida, sobre 

plataforma fija.

•	 Test 4 de Romberg con ojos abiertos (RGA), sobre base de goma-espuma.

•	 Test 5 de Romberg con ojos cerrados (RGC), sobre base de goma-espuma.

•	 Test 6 de Romberg con ojos cerrados con la cabeza hiperextendida, sobre 

colchón de goma-espuma.

Luego de hacer este programa de posturografía estática, se pueden obtener 

diferentes patrones, tales como:

•	 Normal en todas las pruebas, en donde la persona tiene una compensa-

ción normal.

•	 Normal para la prueba 1 (ojos abiertos, sobre plataforma fija), donde el 

paciente necesita toda la información disponible en el medio para man-

tener el equilibrio.

•	 Efecto visual dominante, donde el paciente pierde el equilibrio cuando 

cierra sus ojos.

•	 Efecto propioceptivo dominante, es decir, el paciente pierde el equilibrio 

cuando se ubica sobre una superficie móvil.

•	 Efecto combinado o fórmula vestibular, donde el paciente pierde el equi-

librio cuando cierra los ojos y está ubicado sobre una superficie móvil. En 

este patrón, la información vestibular del paciente es la única que no se 

ha alterado.

•	 Ausencia de interacción sensorial, es decir, no hay ningún efecto en las 

condiciones alteradas o el efecto es semejante.
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Figura 6. Patrones básicos sensoriales detectados en pruebas de posturografía

Fuente: elaboración propia.

Mediante estas pruebas de estabilidad, se puede determinar el grado de es-

tabilidad de una persona, realizar análisis sensoriales y de la estrategia de 

equilibrio, así como una alineación del centro de gravedad de un paciente.

Además, durante una condición de equilibrio casi estático, se puede lle-

gar a determinar las coordenadas del CoP y la superficie de la curva corres-

pondiente a la elipse que incluye el 85 % o el 95 % de los puntos registrados. 

El procesamiento de los datos obtenidos del desplazamiento del CoP en los 

ejes antero-posterior y medio-lateral permite a expertos precisar, por un lado, 

su espectro de potencia (FFT, Fast Fournier Transformation) y, por otro, el 

grado de intercorrelación entre los parámetros. En el individuo “normal” ubi-

cado en una posición de bipedestación estática, la superficie que barre el CoP 

es muy reducida (±1 cm²). En condiciones normales, el CoP está situado por 

detrás y a la derecha del centro de la plataforma, el análisis secuencial no pre-

senta picos u oscilaciones inferiores a los 0,5 Hz (García et al., 2017).
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Por otro lado, la posturografía cinética o dinámica estudia la postura cuan-

do un movimiento o perturbación es aplicado a una persona y la respuesta 

del paciente a dicha perturbación. Para este tipo de análisis, se requiere de 

una plataforma de fuerza móvil, un entorno visual y un computador para la 

recepción y el procesamiento de las señales obtenidas en la prueba (figura 7).

Figura 7. Sistema de posturografía dinámica computarizada

Fuente: García (2017).

Este tipo de posturografía consta de un grupo de pruebas que estudian el 

comportamiento motor del paciente y otras que estudian la organización 

sensorial, las dos asociadas al equilibrio del paciente. Con lo anterior, se mide 

el grado de oscilación postural en el sentido antero-posterior del paciente en 

diferentes condiciones sensoriales (García et al., 2017) (figura 8), tales como:

1.	 Ojos abiertos, entorno visual y plataforma de soporte fija.

2.	 Ojos cerrados y plataforma de soporte fija.

3.	 Ojos abiertos, entorno visual móvil (moviéndose proporcionalmente al 

ángulo de balanceo antero-posterior del cuerpo) y plataforma de sopor-

te fija.
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4.	 Ojos abiertos, entorno visual fijo y plataforma de soporte móvil (mo-

viéndose proporcionalmente al ángulo de balanceo antero-posterior 

del cuerpo).

5.	 Ojos cerrados y plataforma de soporte móvil.

6.	 Ojos abiertos, entorno visual móvil y plataforma de soporte móvil, 

entre otros.

Figura 8. Pruebas de valoración de la estabilidad del equilibrio bajo diferentes condiciones

Fuente: García-López y Rodríguez-Marroyo (2015).

Con la posturografía dinámica computarizada se pueden hacer las siguientes 

pruebas:

•	 Test de organización sensorial, también conocido como “prueba de 

organización somatosensorial” (SOT). Es una prueba que permite a espe-

cialistas analizar el aporte individual y combinado que tiene cada sistema 

en el control del equilibrio. El resultado de esta prueba es el grado de 

estabilidad o porcentaje de equilibrio (Equilibrium Score). En este test, se 

hace un análisis sensorial, un análisis de la estrategia (movimiento realiza-

do para mantener el centro de gravedad dentro de la base de sustentación) 

y un patrón afisiológico (para pacientes con trastornos somatomorfos, en 

depresión y con trastornos de ansiedad) (figura 9).



31

Herramientas de análisis para la estabilidad estática postural. Caso de aplicación: personas con amputación transtibial

Figura 9. Presentación de información obtenida en un SOT 
para un paciente con un patrón afisiológico

Fuente: modificada de Cordero-Civantos y Calle-Cabanillas (2017).

•	 Límites de estabilidad. En esta prueba se busca determinar el área en 

el que puede moverse su centro de presiones sin que el paciente pierda 

el equilibrio. Para esta prueba, se le pide al paciente que, al observar la 

representación de su centro de presiones en una pantalla situada frente 

a él, la desplace en ocho direcciones diferentes (según las indicaciones 

que se le den), que van a ir apareciendo mediante dianas en un monitor, 

siempre iniciando en la posición central (figura 10). Esta prueba ofrece la 

siguiente información:

	– Tiempo de reacción (s) desde que se ilumina la diana hasta el inicio del 

movimiento.

	– Velocidad de movimiento del movimiento del centro de presiones (gra-

dos/s).

	– Punto de excursión inicial, que es la distancia recorrida en el primer in-

tento de alcanzar la diana (en porcentaje [%] de límites de estabilidad).

	– Punto de excursión máxima, que es la distancia máxima alcanzada (ex-

presada en porcentaje [%] de límites de estabilidad).

	– Control direccional, que compara el movimiento hacia el objetivo y en 

la dirección contraria.
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Figura 10. Presentación de los resultados de una prueba de límites de 
estabilidad de un paciente con déficit vestibular izquierdo

Fuente: Cordero-Civantos y Calle-Cabanillas (2017).

•	 Test de adaptación. Es una prueba que permite medir la capacidad de re-

acción de un individuo ante movimientos bruscos e inesperados. Para esta 

prueba, se somete al paciente a rápidas rotaciones de la plataforma (cinco 

hacia adelante y cinco hacia atrás), lo que provoca respuestas automáticas 

del paciente que busca contrarrestar la tendencia a desplazarse o a caer 

(figura 11). Estas respuestas automáticas se analizan por un periodo de 

2,5 segundos, cuando la amplitud de los movimientos va disminuyendo 

con cada intento, representa un patrón de normalidad, ya que el paciente 

tiene buena capacidad de adaptabilidad al cambio; por el contrario, una 

mayor frecuencia en el movimiento o en las caídas es evidencia de alte-

raciones y dificultad para caminar en superficies irregulares o inestables.
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Figura 11. Resultados de un test de adaptación para una persona normal

Fuente: Cordero-Civantos y Calle-Cabanillas (2017).

•	 Desplazamiento máximo voluntario o control rítmico del peso. Es una 

prueba que permite identificar la capacidad de realizar desplazamientos 

rítmicos del centro de gravedad del propio paciente. Con esta prueba se 

determinan la velocidad sobre el eje y el control direccional. La prueba 

consiste en que un paciente debe seguir una diana (representación de su 

centro de presiones) que se mueve a diferentes velocidades en los planos 

anteroposterior y lateral (figura 12).
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Figura 12. Presentación de resultados de un Test de Control del Ritmo

Fuente: Cordero-Civantos y Calle-Cabanillas (2017).

Otros parámetros cinéticos que se pueden medir, evaluar e investigar por 

medio de una prueba de posturografía (Lafuente y Belda, 1997), son:

•	 Desplazamiento medio del punto de aplicación en el eje de ordenadas 

(X), medido en milímetros.

•	 Desplazamiento medio del punto de aplicación en el eje de abscisas (Y), 

medido en milímetros.

•	 Desplazamiento medio total del punto de aplicación, desde el origen, en 

línea recta, medido en milímetros.

•	 Ángulo del desplazamiento formado por la anterior recta y el eje OY, siendo 

positivo hacia la derecha y negativo hacia la izquierda, medido en grados.

•	 Dispersión en x del punto de aplicación (Dx), que equivale a la desviación 

típica de dicha coordenada, medida en milímetros.



35

Herramientas de análisis para la estabilidad estática postural. Caso de aplicación: personas con amputación transtibial

•	 Dispersión en y del punto de aplicación (Dy), que equivale a la desviación 

típica de dicha coordenada, medida en milímetros.

•	 Área media barrida por el punto de aplicación (A), que se calcula a partir 

de las dispersiones en x y y, medida en milímetros cuadrados.

•	 Distancia recorrida por el punto de aplicación (D), medida en milímetros.

•	 Velocidad media de desplazamiento del punto de aplicación (V), que se 

calcula dividiendo la distancia entre la duración de la prueba, medida en 

metros/segundo.

En la mayoría de los estudios de posturografía con fines de valoración fun-

cional o de seguimiento de un proceso de rehabilitación, se adopta como 

“criterio de normalidad”, el que los valores resultantes se encuentren dentro 

de un intervalo de ± 2 desviaciones estándar en torno al promedio de esa 

variable en población sana de edad semejante, aunque el concepto final lo 

debe dar un grupo de especialistas junto con el resultado de otras pruebas 

clínicas y exámenes complementarios.

La combinación de los resultados de las pruebas sensoriales permite de-

terminar qué patrón (o patrones) sensorial es responsable de la alteración 

del equilibrio corporal y, también, el sistema sensorial que domina princi-

palmente el control corporal. Lo anterior ayuda a personal experto a generar 

diagnósticos de la condición de equilibrio de un paciente. Los principales 

patrones sensoriales (García et al., 2017) identificados mediante las pruebas 

de posturografía son:

•	 Patrón de disfunción vestibular: se presentan fallos en las condiciones 5 y 6, 

es decir, el paciente no cuenta con estímulos vestibulares o no los utiliza 

adecuadamente, lo que genera un aumento del balanceo cuando cierra 

los ojos y está sobre una plataforma móvil, por lo que, para mantener el 

equilibrio, necesita estar en la condición 1.

•	 Patrón de disfunción visual: el equilibrio disminuye cuando se está con los 

ojos cerrados o la visión alterada por el entorno, condiciones 2 y 5 o 3 y 6. 

En este caso, el paciente no dispone de estímulos visuales adecuados (se 

suprimen las aferencias somato-sensoriales), lo que hace que aumente el 

balanceo para mantener el equilibrio.
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•	 Patrón de disfunción somatosensorial: el equilibrio del individuo disminuye 

cuando la plataforma de soporte es móvil, condiciones 4, 5 y 6. El pacien-

te, al no contar con estímulos somatosensoriales y con los ojos cerrados, 

hace que el balanceo aumente para mantener el equilibrio.

•	 Patrón afisiológico: en este caso, el paciente presenta un bajo equilibrio más 

en pruebas sencillas (1 y 2) que en las complejas (3, 4, 5 y 6).

La posturografía cumple un papel muy importante en la valoración funcional, 

así como en la evolución de la rehabilitación de pacientes con alteraciones 

del equilibrio, ya que permite conocer su estado funcional en cuanto al 

control del equilibrio, por medio de la información (cuantificada) sobre el 

funcionamiento de diferentes sistemas sensoriales que participan en esta 

acción, tales como visual, vestibular y somatosensorial. Estas informaciones 

generadas por los diferentes sistemas, son representadas por los marcos 

referenciales geocéntricos, con respecto al centro de la Tierra; referencial 

gravitatorio (sistema vestibular y graviceptores abdominales); referencial 

egocéntrico constituido por el eje céfalo-caudal en el que es importante el 

uso combinado de la información propioceptiva y referencial alocéntrico 

(sistema visual con la retina central y periférica) (García, 2016). Permite 

medir no solo los componentes sensoriales, sino también el sistema motor 

y el control inconsciente cerebeloso, que favorecen el mantenimiento del 

control postural.

Mediante la posturografía se puede evaluar el equilibrio de un individuo 

de forma cualitativa y cuantitativa, se obtiene el estatocinesiograma y el es-

tabilograma para las porciones anteroposterior y medio-lateral en diferentes 

condiciones, el tiempo de la prueba (duración) y su frecuencia de muestreo; 

permite también conocer el grado de alteración funcional que provocan las 

patologías tanto centrales como periféricas. Además, se puede obtener con 

claridad el grado de disfunción o alteración que presenta el paciente y el 

grado de compensación que realiza para mantener el equilibrio corporal, 

permitiendo que la persona pueda afinar sus respuestas posturales. Lo que 

no permite esta técnica, es el diagnóstico diferencial entre las patologías.

Por otro lado, con el estudio de la posturografía, se pueden generar estra-

tegias para el control y mantenimiento del CoP, diseñar o seleccionar mejor 
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un tratamiento realizando un completo control de la eficacia del mismo; e 

incluso, generar procesos de rehabilitación mediante técnicas de realimenta-

ción basadas en el déficit objetivado del paciente, determinar los límites de 

estabilidad de una persona, se potencia la confianza de un paciente inestable 

y, por ende, se fomenta su autosuperación y autocontrol. Además, ayuda 

a aumentar la capacidad del paciente para hacer un control voluntario del 

desplazamiento de su centro de gravedad (Peydro de Moya et al., 2005). 

Asimismo, conocer el déficit del control postural de un paciente, ayuda 

significativamente en el desarrollo de planes o estrategias para prevenir el 

riesgo de caídas durante la marcha o subida y bajada de escaleras.

Según Lafuente y Belda (1997):

la mayor dificultad de la posturografía estriba en la determinación de las 

pruebas de medida que proporcionen información significativa y en la 

selección de parámetros que se puedan extraer de dichas medidas y que 

permitan caracterizar el estado funcional del equilibrio del sujeto y emitir 

valoraciones clínicas útiles. (p. 24)

En resumen, los resultados de la posturografía son útiles para caracterizar 

las alteraciones del equilibrio de una persona, identificar patrones de reha-

bilitación vestibular, monitorear la evolución de procesos de rehabilitación 

de pacientes con problemas de equilibrio o vértigo, diseñar tratamientos y 

cuantificar su eficacia y permite cuantificar el papel que desempeña la vista, 

la propiocepción y el sistema vestibular en el equilibrio de un paciente.

Plataformas de fuerza
Dado que las plataformas de fuerza son herramientas clave en los estudios 

sobre la estabilidad del ser humano, es importante comprender qué es y 

cómo funciona. Una plataforma dinamométrica, es un equipo o sistema de 

análisis de movimiento que permite medir y analizar las fuerzas de reacción 

que el pie de un individuo ejerce sobre el suelo (superficie de apoyo) durante 

la bipedestación estática y dinámica, la marcha y la realización de un movi-

miento o gesto determinado, empleadas desde finales de 1900 (García et al., 

2017) (figura 13). Esta fuerza de reacción puede ser ejercida en los tres ejes 

(X, Y y Z) y medida mediante tecnologías de transductores extensiométricos 

y piezoeléctricos, pero depende del tipo de plataforma que se tenga, se puede 
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obtener una, dos (bidimensionales) o las tres componentes (tridimensiona-

les) para el estudio (figura 14).

Figura 13. Sistema de plataforma de fuerza con marcadores y cámaras de video

Fuente: elaboración propia.

Figura 14. Registro sobre una plataforma de fuerzas del 
desplazamiento relativo del CoP respecto al CG

Fuente: elaboración propia.

Por lo general, estas plataformas dinamométricas son de forma cuadrada 

y vienen instrumentadas con cuatro sensores transductores de presión, 

ubicados simétricamente uno en cada esquina de la plataforma para medir 

las fuerzas verticales y un transductor ubicado en el centro para medir las 
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fuerzas horizontales a lo largo del eje anteroposterior en el plano paralelo 

al suelo. Las diferencias en las mediciones de los sensores anteriores y 

posteriores reflejan el movimiento antero-posterior y la diferencia entre los 

sensores laterales refleja el movimiento de un lado a otro del paciente.

Existen algunas plataformas que permiten registrar, medir y analizar las 

fuerzas que el pie o los pies ejercen durante una posición estática y dinámica 

(Villalobos et al., 2020), para evaluar las fuerzas en los tres ejes (X, Y y Z): 

fuerzas verticales, anteroposteriores (AP) y mediolaterales (ML). Las más 

citadas en la literatura para procesos de investigación o de valoración clínica 

del equilibrio estático son:

•	 La Plataforma de Fuerza Dinamométrica, para la valoración posturográfica 

de equilibrio, que permite el análisis y seguimiento de alteraciones del 

equilibrio estático mediante gráficos de fácil comprensión. La valoración 

se hace en dos etapas: primero se hace una valoración sensorial y dinámi-

ca y luego una valoración de control y de habilidades.

•	 La Plataforma de Fuerza AMTI (Modelo OR6-5-1), empleada para la inves-

tigación biomecánica del equilibrio. Se hace el registro del movimiento 

del centro de presión (CoP) en cuatro periodos diferentes de dos segundos 

cada uno y el tiempo que duran estables sobre la plataforma. Con esta in-

formación se pueden evaluar los efectos del tiempo y la capacidad de los 

pacientes en la estabilización y el mantenimiento del equilibrio corporal.

•	 La Plataforma de Fuerza Portátil (GK-100, IMM, Mittweida, Alemania), se 

utiliza para identificar variaciones en el equilibrio estático.

•	 La Plataforma de Fuerza Posturográfica, permite valorar la estabilidad del 

paciente, evaluar el balance corporal, localizar rápidamente el centro de 

presión (CoP) y encontrar probables alteraciones del equilibrio estático.

•	 Las plataformas estabilométricas, suelen tener de tres a cuatro sensores y se 

usan para valorar el desplazamiento del centro de presiones del cuerpo 

(CoP), en estudios de posturología, aunque no permiten medir las presio-

nes del pie en todos sus puntos (figura 15).
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Figura 15. Modelo de plataforma estabilométrica

Fuente: Montañola Vidal (2014).

Estas plataformas de fuerza se basan en 1-8 sensores que permiten medir 

fuerzas en los ejes anteroposterior, mediolateral y vertical, pero no son 

capaces de medir las presiones del pie en todos los puntos (Montañola Vidal, 

2014).

Para el estudio del equilibrio dinámico se cuenta con tecnología más 

avanzada, ya que se requiere obtener información más completa y confiable 

en poco tiempo. Para este tipo de evaluación, investigadores y personal de la 

salud emplean sistemas y equipos como los que se presentan a continuación:

•	 El Sistema Maestro de Balance Inteligente (Smart Balance Master System), es 

una plataforma de fuerza dinámica que registra, en tiempo real, todos los 

grados de movimiento y las fuerzas verticales ejercidas por medio de los 

pies del paciente sobre la plataforma, permitiendo medir la posición del 

centro de gravedad y el control postural. Además, hace posible el registro 

del equilibrio estático y dinámico.

•	 La Plataforma de Fuerza AMTI (Modelo OR6-5-1000), permite medir, con 

alta confiabilidad, las fuerzas y los movimientos que se ejercen sobre la 

superficie de la plataforma y es de gran utilidad para evaluar e investigar 

el equilibrio estático y dinámico, ya que cuenta con un sistema que regis-

tra las tres fuerzas X, Y y Z, con sus tres componentes.

•	 La Plataforma de Fuerzas Extensiométrica Dinascan 600M (IBV, España), 

hace el registro en tiempo real y análisis funcional de los movimientos 
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realizados en cualquier actividad motriz relacionada con el equilibrio es-

tático y dinámico. Esta plataforma tiene diferentes usos, tales como el 

análisis funcional de la marcha normal y patológica, la valoración de dis-

capacidad y su evolución, ayuda en la calibración de ayudas técnicas, 

ortesis y exoprótesis, la valoración del equilibrio corporal, el daño corpo-

ral e incapacidades laborales (Arévalo Márquez y Sangurima Tenepaguay, 

2020).

•	 La Plataforma Móvil KAT 2000, permite hacer el registro de forma eficaz 

ofreciendo una solución conveniente para el estudio del equilibrio está-

tico y dinámico, especialmente en grupos numerosos de pacientes y con 

una confiabilidad de más del 95 %.

•	 La Plataforma de Fuerza Dinámica (Kristler 9286AA), permite el registro in-

mediato de los datos y detectar las fuerzas y movimientos muy pequeños 

que se presenten en las pruebas, ya que utiliza sensores de gran calidad, es 

muy utilizada en los campos del equilibrio estático y dinámico. Además, 

tiene buena resistencia y durabilidad (figura 16).

Figura 16. Plataforma de fuerzas tipo Kristler

Fuente: Montañola Vidal (2014).

•	 La Plataforma de Presiones Pedistar, es usada para el análisis biomecánico 

de la marcha en 3D y permite efectuar estudios estáticos, posturológicos 

y dinámicos. Para el análisis estático es muy útil, pues permite evaluar la 

posición del punto de gravedad, la presión máxima y media en el antepié 

y el retropié; combinada con la visualización 3D es usada para realizar 

estudios estabilométricos (Arévalo Márquez y Sangurima Tenepaguay, 

2020) (figura 17).
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Figura 17. Plataforma Pedistar

Fuente: Arévalo Márquez y Sangurima Tenepaguay (2020).

•	 La Plataforma PodoPrint, incorpora funciones baropodométricas para aná-

lisis estático y dinámico. Tiene 1600 sensores de 1 cm2 cada uno y una 

adquisición de frecuencia de 100 imágenes por segundo. La visualización 

de la presión se puede hacer por medio de líneas de presión, puntos, valo-

res numéricos, contorno o 3D. Tiene un software (PodoPrint) que calcula 

superficie (cm²), fuerza (%), presión máxima y media por pie, y genera 

una distribución espacial de presión (Cervera-Garvi, 2020).

•	 La Plataforma Neo-Plate, permite el análisis estático y dinámico de presio-

nes, así como el análisis posturológico, mediante sus sensores de presión 

tipo resistivos. Su software calcula superficie (cm²), fuerza (%), presión 

máxima y media por pie y también genera una distribución espacial de 

presión (Cervera-Garvi, 2020).

Plantillas instrumentadas
Adicional al uso de plataformas de fuerza, en los estudios de estabilografía 

estática y dinámica para pacientes normales, con alguna deficiencia en el 

control postural, personas en procesos de rehabilitación, deportistas de di-

ferentes grados de formación, pacientes con pie diabético, personas con pie 

plano, entre otras, se emplean las plantillas instrumentadas para medir y mo-

nitorear la distribución de la presión plantar mientras camina, corre o hace 

alguna actividad específica; también para detectar puntos de alta presión, 
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para estimar el centro de presión del pie del paciente, para determinar la 

simetría del movimiento, por citar algunas aplicaciones (Echeverry, 2018).

Las plantillas instrumentadas usan sensores de presión para obtener la 

medida de distribución de presiones ejercidas durante ciertos movimientos, 

permiten obtener información confiable y directa de la presión ejercida so-

bre una superficie; además, identificar las zonas con mayor o menor presión 

y hacer diferentes gráficas según su uso (modelo de presión en un ciclo de 

marcha, modelo de presión en una prueba de estabilometría, modelo de 

presión en gestos deportivos, entre otros) (figura 18) (Arévalo Márquez y 

Sangurima Tenepaguay, 2020).

Figura 18. Distribución de presión en la planta del pie

Fuente: Arévalo Márquez y Sangurima Tenepaguay (2020).

Estas plantillas instrumentadas usan una gran cantidad de sensores de presión 

(los capacitivos ofrecen alta precisión) y con alta frecuencia de medición y 

de transmisión de los datos en tiempo real o su registro en una memoria SD 

para su posterior análisis. Son usadas para medir en condiciones estáticas y 

dinámicas la distribución de presiones que ejerce el pie sobre la plantilla ubicada 

dentro del calzado, durante cada una de las fases de contacto del pie con la 

superficie. Lo anterior es muy útil cuando se requiere diagnosticar y evaluar el 

comportamiento del pie en múltiples aplicaciones, ya que estas plantillas tienen 

varias ventajas: son delgadas, cómodas y flexibles, lo que hace posible que se 

coloque dentro del calzado del paciente en el momento de realizar pruebas de 

marcha o equilibrio y no afecte su movimiento (figura 19). Existen varios tipos 

de plantillas que, según el uso, el costo, la precisión, el número de sensores y 
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otras especificaciones, se pueden encontrar en el mercado para contribuir en los 

estudios de estabilometría, algunos tipos son:

•	 Plantillas Novel. Estas plantillas usan un conjunto de sensores de presión 

capacitivos de alta precisión que permiten la obtención de mapas de dis-

tribución de presiones en el pie de manera estática y dinámica 2D y 3D 

e isobárico, datos numéricos de cada sensor, durante la pisada de forma 

continua y en cualquier entorno o terreno.

Los datos numéricos de cada sensor pueden observarse en tiempo real 

mediante sistemas de fibra óptica o bluetooth y también es posible ver la 

línea de desplazamiento del centro de presiones, la superficie, la fuerza y el 

tiempo de contacto (figura 19), lo que permite el diagnóstico y la evaluación 

de la función del pie en multitud de aplicaciones. Algunos de sus campos de 

aplicación son: deporte, clínica, rehabilitación, investigación, laboratorios de 

análisis de marcha y de biomecánica deportiva y en aseguradoras (Luengas 

y Toloza, 2019).

Figura 19. Modelo de plantilla Novel

Fuente: adaptado de Luengas y Toloza (2019).

•	 Plantillas Moticon. Son plantillas electrónicas inalámbricas, delgadas y 

robustas usadas en ortopedia y rehabilitación, pues permiten medir de 

forma simultánea la distribución de presiones en las zonas plantares, 

representada en una escala termográfica, la fuerza de reacción del pie 

durante el apoyo, la aceleración del pie y la trayectoria del centro de gra-

vedad (figura 20) (Arévalo Márquez y Sangurima Tenepaguay, 2020).
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Figura 20. Modelo de plantilla Moticon

Fuente: Arévalo Márquez y Sangurima Tenepaguay (2020).

•	 Plantillas Biofoot. Estas plantillas instrumentadas que se introducen en 

el zapato (entre la suela y la planta del pie) del sujeto de estudio, cuen-

tan con un máximo de 64 sensores piezoeléctricos con una distribución 

selectiva en zonas de mayor presión plantar (mide desde 0,1 kPa hasta 

1200 kPa), un módulo transmisor, una tarjeta de recepción y un softwa-

re específico de visualización que permite hacer un análisis detallado de 

presiones durante toda la secuencia de medida, lo que facilita al avance 

manual o automático (animación) y la representación de la información 

en varios formatos, como un mapa (con escala de grises) numérico 2D y 

3D de presiones, mapa de isobaras, gráficas de área de apoyo/tiempo y 

fuerza total/tiempo, presiones por sensor/tiempo, la posición y trayecto-

ria del baricentro y la monitorización del mapa de presiones en tiempo 

real (Cervera-Garvi, 2020). La plantilla puede ser usada en ambos pies y 

su vida útil es de 3000 pasos, aproximadamente.

Existen plantillas instrumentadas con sensores de diferentes tipos que 

permiten medir las presiones del pie en la mayoría de los puntos o en los más 

relevantes, según el estudio que se desee realizar (Montañola Vidal, 2014). 

A continuación, se presentan algunos modelos con el número de sensores 

que manejan:
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•	 PDM 240 con 6 sensores por pie.

•	 GaitScan con 8 sensores por pie.

•	 Parotec con 16 o 24 sensores por pie.

•	 Micro-Emed con 85, 170 y 256 sensores por pie.

•	 Emed-Pedar con 256 sensores por pie.

•	 F-Scan con 960 sensores por pie.

Finalmente, existen unas plantillas no instrumentadas, llamadas “plantillas 

posturales” de tipo exteroceptivas, que producen pequeños estímulos de pre-

sión en la planta del pie, que actúan de forma precisa sobre los baropresores 

dérmicos ubicados superficialmente sobre zonas somatotópicas sistematiza-

das. Con su acción y gracias a los reflejos posturales condicionan cambios 

posicionales globales sobre el eje vertical corporal y consecutivamente sobre 

el plano transverso y horizontal (Beltrán, 2008).

Por medio de este sistema de plantillas instrumentadas pueden detectarse 

puntos de alta presión, estimar el centro de presión (CoP) del pie del indi-

viduo, evaluar la simetría del movimiento corporal y detectar movimientos 

angulares articulares excesivos en el pie (figura 21). Información que es de 

gran utilidad para aplicaciones clínicas o proyectos de investigación.

Figura 21. Sistema de registro de centros de presión 
plantar mediante plantillas instrumentadas

Fuente: elaboración propia.
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Las plantillas instrumentadas de presión se emplean, además, para el estu-

dio de la fisiología deportiva y del aparato locomotor del ser humano. En el 

caso del estudio de la estabilidad del equilibrio corporal, las plantillas ins-

trumentadas permiten diagnosticar y evaluar patologías, estructurales o fun-

cionales, que repercuten en el apoyo del pie y en la distribución de presiones 

de contacto durante las pruebas de estabilidad postural (García et al., 2017).

Las plantillas instrumentadas están divididas en varias regiones, y cada re-

gión es instrumentada para registrar las diferentes presiones que se producen 

entre el pie y el calzado del paciente o sujeto de estudio, lo que permite un 

monitoreo completo y continuo de la interacción del pie con el suelo, sin las 

restricciones de movilidad espacial y de sensores limitados que presentan 

las plataformas de fuerza que están fijadas al suelo (Luengas y Toloza, 2019).

Las plataformas de fuerzas y las estabilométricas solo facilitan la posi-

ción del centro de gravedad en equilibrio dinámico. En estas plataformas, al 

inclinarse el plano de sustentación se genera una aceleración artificial que 

es difícil de precisar, por lo que las lecturas de velocidad y trayectoria del 

CoP pueden verse afectadas. Solo las plataformas electrónicas y las plata-

formas optométricas tienen una matriz de sensores que permite la medición 

de las presiones plantares y generan un mapa plantar, pero su costo es ele-

vado. Ahora bien, las plantillas instrumentadas se destacan en los estudios 

de estabilometría, porque permiten la obtención en tiempo real de diversos 

valores: mapas de distribución de presiones en el pie de manera estática y 

dinámica 2D y 3D e isobárico, datos numéricos de cada sensor (de cada 

pie) y en cualquier entorno o terreno. También, se puede ver la línea de des-

plazamiento del centro de presiones, la superficie, la fuerza y el tiempo de 

contacto (Luengas y Toloza, 2019).

Las plataformas de fuerza, si bien miden la fuerza total debida a los pies 

en contacto con el suelo, no pueden registrar cómo se distribuye esta carga 

sobre la superficie plantar. Por esta razón, en la actualidad se complementan 

los estudios con la tecnología que usan las plantillas flexibles instrumentadas 

insertadas entre el pie y el zapato, las cuales permiten un registro completo 

de las presiones en diferentes partes de la planta del pie y se puede hacer un 

seguimiento continuo de la interacción pie-suelo (Lescano et al., 2015).
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Otra diferencia entre las plataformas electrónicas y las plantillas instru-

mentadas, es que las primeras suelen tener entre uno y cuatro sensores por 

centímetro cuadrado, habitualmente con una disposición reducida de los 

sensores en forma de tablero de ajedrez, lo que genera zonas sensibles a la 

presión y otras zonas que no registran ningún valor. Lo anterior se corrige 

cuando existen plataformas con un alto número de sensores que permiten 

tener un mapeo completo del fenómeno. En el caso de las plantillas ins-

trumentadas con varios sensores alojados en puntos de presión estratégicos 

debajo de la planta del pie, hacen que cuantos más sensores se dispongan por 

centímetro cuadrado, mayor y mejor será la aproximación del mapa plantar 

a la realidad del sujeto o paciente (Lescano et al., 2015).

Postura
El término de “postura” tiene diferentes interpretaciones según el campo o 

situación de estudio. En biomecánica, la postura se refiere a la alineación 

que tienen los diferentes segmentos corporales y también a la orientación 

del cuerpo respecto del entorno, por lo que evidencia una relación entre la 

percepción y la acción. Por otro lado, también se puede considerar como:

•	 La capacidad de mantener todo el cuerpo, o parte de él, en una posición 

de referencia específica.

•	 Un conjunto de actitudes (antigravitatorias), cuya función es mantener el 

cuerpo en una posición dada.

•	 Orientación de cada segmento corporal con relación a la fuerza de grave-

dad y a un sistema de referencia.

En otras palabras, la postura es la orientación de los segmentos corporales 

en relación con los tres sistemas coordinados:

•	 Egocéntrico, donde se detalla la posición relativa de la parte en estudio con 

respecto a sí misma, solo se tiene el accionar de fuerzas músculo-esquelé-

ticas; influye el sistema propioceptivo y el tacto.

•	 Exocéntrico, empleando la visión se observa la interacción de la parte con 

el medio que la rodea, con el ambiente donde está expuesta.
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•	 Geocéntrico, accionar al campo gravitacional, actúa la fuerza gravita-

toria y se requiere el uso de los músculos y tendones para generar las 

fuerzas antigravitatorias, se detecta con el sistema vestibular (Martín-

Casado et al., 2010).

La postura bípeda erecta del ser humano es posible gracias a la contracción 

tónica ejercida por el sistema muscular (con ayuda de tendones y ligamentos), 

especialmente por la activación de los grupos extensores del tronco y de 

las extremidades inferiores. En el caso de los pacientes con prótesis, la 

alineación, el entrenamiento y la adaptación a la prótesis puede generar en 

la mayoría de los casos algún grado de desviación y asimetría en el patrón 

postural generado por diversos factores de la prótesis, tales como longitud 

del eje, nivel de amortiguación de carga, tipo de articulación protésica, 

grado de adaptación del socket, entre otros, lo cual puede ser identificado 

mediante análisis de la marcha en patología del paciente en laboratorios de 

movimiento (Torres-Pérez, 2005).

La orientación y la estabilización son dos propiedades o finalidades del 

control postural. El control postural requiere del dominio de la posición 

espacial del cuerpo con el fin de mantener la estabilidad o la orientación 

corporal. La orientación postural está definida como la destreza o capacidad 

para conservar la adecuada correspondencia entre los segmentos corporales 

y entre estos y el entorno en donde se realizan las actividades, siempre pre-

servando una acción definida. Para lograr la orientación, se requiere el uso 

de variadas referencias de tipo sensorial del entorno, tales como la fuerza 

de gravedad, el tipo de superficie de apoyo, la ubicación del cuerpo con los 

elementos que lo rodean, entre otras. La estabilización de la postura hace 

referencia a la destreza para conservar la posición de la proyección del cen-

tro de gravedad dentro de la base de sustentación, la cual fija los límites de 

estabilidad (Agrawal et al., 2011; Shumway-Cook y Woollacott, 2017).

Si bien la postura es una condición del ser humano que puede estabilizarse 

con los ajustes automáticos por el arco reflejo en la médula, el sistema ner-

vioso central también puede en muchas ocasiones iniciar ajustes posturales 

anticipatorios para contrarrestar las perturbaciones voluntarias; por ejem-

plo, los deportistas que practican tiro, durante la ejecución del movimiento 
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emplean los brazos que requieren ajustes preprogramados en el tronco y las 

extremidades inferiores para mantener una postura estable y optimizar el 

tiro (Francino et al., 2020), esto se logra mediante entrenamientos y aprendi-

zajes de la técnica necesaria, según el deporte.

Para el mantenimiento de la postura erguida de un individuo, es nece-

saria la presencia de ajustes posturales anticipatorios que son reacciones 

musculares y cinemáticas, que se generan de manera previa a la realización 

de un movimiento voluntario, basadas en procesos de aprendizaje o de expe-

riencias previas de la misma actividad que se va a efectuar. Dado que estos 

ajustes predictivos dependen de experiencias previas del sujeto, las vivencias 

del individuo son un factor que puede condicionar la coordinación entre 

postura y movimiento. Este aprendizaje permite que se realicen movimien-

tos articulares, se fijen segmentos anatómicos y se desplace el centro de masa 

corporal para mantener el equilibrio, mediante la contracción tónica de los 

músculos posturales proximales y axiales, antes de que se lleven a cabo los 

movimientos finales.

Equilibrio
El equilibrio en algunos casos es también conocido como estabilidad pos-

tural, que se produce por el procesamiento en el sistema nervioso central 

(SNC) de información sensorial proveniente de los diferentes receptores pos-

turales. Cuanto menor es el movimiento del centro de presión (CoP) de un 

individuo para realizar una misma tarea, mayor será la estabilidad del equi-

librio que se tiene en esta tarea.

El equilibrio se basa en dos principios: la estabilización del campo visual 

y el mantenimiento de la posición adoptada, lo cual requiere de diferentes 

estructuras, como los receptores capsuloligamentosos y musculares, que pro-

porcionan información sobre la posición articular y el estado de tensión de 

las estructuras periarticulares y musculares; los receptores cutáneo-plantares 

de presión que brindan información sobre el grado de contacto entre el pie y 

la superficie de apoyo; los receptores vestibulares del oído (utrículo y sáculo) 

que proporcionan información sobre la posición de la cabeza en el espacio; 

los receptores mioarticulares de la región cervical que brindan informa-

ción sobre la posición de la cabeza con respecto al cuello y al tronco; los 
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receptores visuales (reflejos vestíbulo-ocular, optocinético y cérvico-ocular) 

y los receptores acústicos, que proporcionan información sobre la posición 

de los objetos, del propio cuerpo, y de las fuentes sonoras respecto del entor-

no del individuo (García, 2016).

Toda la información de los diferentes receptores es recibida, integrada y 

procesada por el SNC para luego generar respuestas motoras eferentes, que 

permiten mantener el control de la estabilidad postural, mediante la activi-

dad tónica muscular postural, lo que genera estática o dinámicamente en 

cada momento una adaptación de la postura, según la actividad y espacio en 

donde se encuentre. En una posición bípeda normal (estática), la estabilidad 

está a cargo de la autorregulación de fuerzas y momentos en las articulacio-

nes tibiotarsianas y coxofemorales del individuo (García, 2016).

En la figura 22 se observa una representación gráfica del proceso de re-

gulación de la postura y el equilibrio corporal. Una condición de equilibrio 

dinámico, es el resultado del manejo completo e integrado de fuerzas y ace-

leraciones que están involucradas para mantener el cuerpo erguido y estable 

durante el movimiento, como durante la marcha, el trote, el salto, entre otros. 

Es necesaria la realización de movimientos cambiantes, pero perfectamente 

combinados tanto en el tiempo como en el espacio; y para conseguir esta 

estabilidad, es necesaria la intervención de varios actores, como la corteza 

cerebral motora para la contracción voluntaria de los músculos esqueléticos, 

el sistema cerebeloso y los centros diencefálicos para coordinar la actividad 

muscular, los receptores vestibulares musculares y ampulares que informan 

de la posición de la cabeza respecto de la gravedad y de las desaceleraciones 

lineales y angulares. Los receptores cutáneos plantares y mioarticulares del 

aparato locomotor informan la posición relativa de cada uno de los segmen-

tos corporales con respecto de los demás en cada momento del tiempo, los 

receptores visuales que informan la posición corporal con relación al entor-

no y la velocidad del movimiento o desplazamiento (García, 2016).

Las aferencias visuales desempeñan un papel importante en los movi-

mientos combinados ojos-cabeza-cuello, de tal forma que existe una muy 

estrecha relación entre el sistema vestibular, la propiocepción muscular del 

cuello y la visión para la conservación de la estabilidad postural del ser hu-

mano. Además, el sistema visual proporciona información sobre el medio 
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circundante del individuo, distancia del cuerpo con objetos externos y 

respecto al terreno en que se produce el movimiento corporal o de las extre-

midades en el espacio (García, 2016).

Figura 22. Esquema general de la regulación central de la postura y el equilibrio

Fuente: adaptado de García (2016).

El cuerpo del ser humano en posición de bipedestación tiene a diario, en 

la mayoría del tiempo, un equilibrio inestable que continuamente debe 

ser restablecido por la acción de su sistema neuromuscular mediante las 

acciones excitatorias e inhibitorias y debido a mecanismos anticipatorios de 

control postural, es algo así como un efecto de control de bucle cerrado. Este 

desequilibrio se debe a los movimientos que hacen las diferentes partes del 

cuerpo (cabeza, tronco y las extremidades superiores e inferiores), así como 

por la propia acción de la gravedad. El mantenimiento del equilibrio es algo 

fundamental para los humanos en nuestra vida cotidiana y por medio de la 

biomecánica se puede valorar cualitativa y cuantitativamente esta estabilidad.

Como se mencionó previamente, un cuerpo se encuentra en equilibrio 

cuando la proyección de su centro de masa corporal (CM) se ubica al in-

terior del polígono que conforma la base de sustentación; para que esto 
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ocurra, es necesario que el SNC utilice información aferente procedente de 

distintas estructuras: propioceptores (detectan la orientación relativa de las 

extremidades con respecto de la superficie de apoyo), mecanorreceptores y 

receptores vestibulares (detectan los cambios en la posición de la cabeza con 

referencia a la verticalidad gravitacional), visuales (detecta los cambios de 

posición de la cabeza con relación al entorno geométrico que rodea al in-

dividuo) y acústicos (detectan la posición de las fuentes emisoras de sonido 

respecto a la cabeza) (García, 2016).

El equilibrio se define como la condición de hacerse cargo del sosteni-

miento de una posición corporal en contraposición de la fuerza gravitacional. 

A continuación, se clasifica el equilibrio con relación a las fuerzas externas 

(figura 23):

•	 Equilibrio inestable, se da cuando una pequeña fuerza genera un desequili-

brio en el individuo (el CG se encuentra encima de la BDS o del centro de 

flotación). Por ejemplo, durante la marcha, en carrera, montando bicicle-

ta, en práctica de surf  o de inmersión en agua (cabeza abajo), entre otros.

•	 Equilibrio hiperestable, se da cuando una fuerza de magnitud considerable 

es aplicada a un cuerpo y no provoca desequilibrio en el cuerpo u objeto 

(el CG se encuentra debajo de la BDS o del centro de flotación), o si lo 

hace, este recupera su posición inicial de equilibrio en muy corto tiempo. 

Por ejemplo, balance de un gimnasta en una barra fija, paracaidismo, pa-

rapente, entre otros.

•	 Equilibrio indiferente, se da cuando las fuerzas externas aplicadas a un 

cuerpo no generan ningún desequilibrio (el CG siempre se encuentra a 

la misma distancia de la BDS o del centro de flotación). Por ejemplo, 

las fuerzas aplicadas a balones en el agua y en el aire, dado que, al cabo 

de un tiempo muy corto, estos objetos vuelven a su posición inicial de 

equilibrio.
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Figura 23. Tipos de equilibrio en función del centro de gravedad (CG), 
el centro de flotación (CF) y de la base de sustentación (BDS)

A. Equilibrio inestable, B. Equilibrio hiperestable y C. Equilibrio indiferente.

Fuente: García-López y Rodríguez-Marroyo (2015).

El equilibrio postural es, también, la habilidad que tiene el ser humano para 

conservar en equilibrio su centro de masa corporal (CM) contra la acción 

de la fuerza de gravedad y se presenta gracias al control postural, que es 

la interacción entre el individuo, el entorno que lo rodea y la actividad 

desarrollada en ese momento. El mantenimiento del equilibrio (estático 

o dinámico) es como tal, el resultado de una actividad multisensorial y la 

coordinación precisa de procesos nerviosos de integración y de anticipación.

El estudio y la evaluación del control de la postura de un individuo se 

ejecuta en posición estática y dinámica, lo que corresponde a un equilibrio 

estático, reactivo y dinámico, respectivamente (Petrocci y Cárdenas, 2011). 

En el equilibrio se presentan dos condiciones principales (Algaba del Castillo 

et al., 2008; Aña-Pino et al., 2015):

•	 Tanto en el equilibrio estático como en el dinámico la sumatoria de todas 

las fuerzas actuantes es igual a cero (ecuación 1).

Figura 23. Tipos de equilibrio en función del centro de gravedad (CG), el centro de 

flotación (CF) y de la base de sustentación (BDS)

A. Equilibrio inestable, B. Equilibrio hiperestable y C. Equilibrio indiferente.

Fuente: García-López y Rodríguez-Marroyo (2015).

El equilibrio postural es, también, la habilidad que tiene el ser humano para conservar en 

equilibrio su centro de masa corporal (CM) contra la acción de la fuerza de gravedad y se 

presenta gracias al control postural, que es la interacción entre el individuo, el entorno que lo 

rodea y la actividad desarrollada en ese momento. El mantenimiento del equilibrio (estático 

o dinámico) es como tal, el resultado de una actividad multisensorial y la coordinación 

precisa de procesos nerviosos de integración y de anticipación.

El estudio y la evaluación del control de la postura de un individuo se ejecuta en 

posición estática y dinámica, lo que corresponde a un equilibrio estático, reactivo y dinámico, 

respectivamente (Petrocci y Cárdenas, 2011). En el equilibrio se presentan dos condiciones 

principales (Algaba del Castillo et al., 2008; Aña-Pino et al., 2015):

• Tanto en el equilibrio estático como en el dinámico la sumatoria de todas las fuerzas 

actuantes es igual a cero (ecuación 1).
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= 0

Ecuación 1

(1)
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•	 En la rotación de un cuerpo, la sumatoria de todos los momentos de tor-

sión es igual a cero y la velocidad angular es constante (ecuación 2).

• En la rotación de un cuerpo, la sumatoria de todos los momentos de torsión es igual 

a cero y la velocidad angular es constante (ecuación 2).

�𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 

𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

= 0

Ecuación 2

El equilibrio motriz es un aspecto fundamental en la actividad física y demás acciones de los 

seres humanos a lo largo de su vida. En la edad temprana del ser humano, el proceso de 

equilibrio y bipedestación tiene una relevancia significativa en la motricidad individual. Los 

niños aprenden a controlar su cuerpo para que su centro de gravedad no salga de la base de 

sustentación (Cabedo y Roca, 2008). En el ámbito de la actividad física y del deporte, el 

equilibrio es la “capacidad del hombre de mantener su propio cuerpo, otro cuerpo (u objetos) 

en una posición controlada y estable, por medio de movimientos compensatorios” (García-

López y Rodríguez-Marroyo, 2015), aunque hay diferencias entre el equilibrio estático, 

dinámico y la capacidad de mantener en equilibrio un cuerpo extraño u objeto. En la práctica

de algún deporte, el equilibrio tiene una gran importancia, pues en este campo se presentan 

múltiples situaciones en donde se requiere mantener el equilibrio, ya que de este depende 

buena parte del éxito para la realización de los gestos deportivos individuales o colectivos; 

por ejemplo, gimnasia, levantamiento de pesas, patinaje, ciclismo, entre otros.

En este sentido, se pueden considerar dos tipos de equilibrio: el equilibrio absoluto del 

cuerpo humano, en donde la sumatoria de fuerzas externas en los ejes X, Y y Z y la sumatoria 

de momentos de fuerza en los mismos ejes, aplicados sobre el cuerpo es “cero”, aquí hay una 

relación entre el centro de gravedad del ser humano y su base de sustentación; y el equilibrio 

relativo o “estabilidad del equilibrio” del cuerpo humano, que busca establecer el grado de 

estabilidad que se tiene (más o menos), dependiendo de la magnitud de la fuerza externa 

necesaria para provocar un desequilibrio en el individuo (García-López y Rodríguez-

Marroyo, 2015). La estabilidad postural es afectada, entre otras cosas, por la distancia de 

fijación visual del objeto de referencia; en la mayoría de los casos, se ve disminuida luego de 

(2)

El equilibrio motriz es un aspecto fundamental en la actividad física y demás 

acciones de los seres humanos a lo largo de su vida. En la edad temprana 

del ser humano, el proceso de equilibrio y bipedestación tiene una relevancia 

significativa en la motricidad individual. Los niños aprenden a controlar su 

cuerpo para que su centro de gravedad no salga de la base de sustentación 

(Cabedo y Roca, 2008). En el ámbito de la actividad física y del deporte, 

el equilibrio es la “capacidad del hombre de mantener su propio cuerpo, 

otro cuerpo (u objetos) en una posición controlada y estable, por medio de 

movimientos compensatorios” (García-López y Rodríguez-Marroyo, 2015), 

aunque hay diferencias entre el equilibrio estático, dinámico y la capacidad 

de mantener en equilibrio un cuerpo extraño u objeto. En la práctica de algún 

deporte, el equilibrio tiene una gran importancia, pues en este campo se 

presentan múltiples situaciones en donde se requiere mantener el equilibrio, 

ya que de este depende buena parte del éxito para la realización de los gestos 

deportivos individuales o colectivos; por ejemplo, gimnasia, levantamiento 

de pesas, patinaje, ciclismo, entre otros.

En este sentido, se pueden considerar dos tipos de equilibrio: el equilibrio 

absoluto del cuerpo humano, en donde la sumatoria de fuerzas externas en 

los ejes X, Y y Z y la sumatoria de momentos de fuerza en los mismos ejes, 

aplicados sobre el cuerpo es “cero”, aquí hay una relación entre el centro de 

gravedad del ser humano y su base de sustentación; y el equilibrio relativo o 

“estabilidad del equilibrio” del cuerpo humano, que busca establecer el grado de 

estabilidad que se tiene (más o menos), dependiendo de la magnitud de la fuerza 

externa necesaria para provocar un desequilibrio en el individuo (García-López 

y Rodríguez-Marroyo, 2015). La estabilidad postural es afectada, entre otras 

cosas, por la distancia de fijación visual del objeto de referencia; en la mayoría 

de los casos, se ve disminuida luego de alguna lesión articular, especialmente en 

las rodillas y en los tobillos (Fort Vanmeerhaeghe et al., 2009).
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Ahora bien, el equilibrio absoluto es dependiente de la relación entre la 

ubicación del centro de gravedad del cuerpo humano (CG o punto donde se 

aplican las fuerzas de la gravedad) y su base de sustentación (BDS) o centro 

de flotación (centro geométrico del cuerpo humano donde se aplican las 

fuerzas del aire y del agua), que en la posición de bipedestación es el área de 

longitud antero-posterior y el ancho medio lateral de la huella plantar, que 

encierra las plantas de los pies.

El equilibrio presenta varios tipos, entre los que están: el estático, el reac-

tivo y el dinámico. En el equilibrio estático, el individuo solo es afectado por 

la acción de la gravedad y el cuerpo se encuentra ubicado dentro de la base 

de sustentación; en este caso, no existen desplazamientos, solo se presenta el 

control de la postura mediante la realización de ajustes antigravitatorios y la 

energía potencial es mínima.

El equilibrio reactivo es el que se activa cuando alguna fuerza altera la 

posición de equilibrio y ocasiona un desplazamiento del centro de gravedad. 

Y el equilibrio dinámico o anticipatorio, se da cuando el individuo hace al-

gún movimiento de su cuerpo (parcial o total) que lo lleva a estar fuera de la 

base de sustentación, y hace referencia a la capacidad de conservar el cuerpo 

estable en situaciones que contengan desplazamiento o movimiento; aquí se 

establecen los mecanismos capaces de mantener la posición adecuada con 

baja energía potencial (Petrocci y Cárdenas, 2011).

En el caso del cuerpo humano, el equilibrio, al hacer el movimiento en los 

diferentes segmentos corporales, se mantiene por la acción del movimiento 

intencionado antecedido por un movimiento opuesto y anticipado, que per-

mita mantener la proyección del centro de gravedad dentro de los límites 

de estabilidad del nuevo polígono de sustentación (Chaudhry et al., 2011; 

Chávez, 2016).

Algunos de los factores que influyen en la estabilidad del equilibrio en los 

seres humanos son:

•	 Psicológicos y ambientales (estrés, miedo, sistema nervioso central [SNC] 

alterado, entre otros).

•	 Condición física (fuerza, resistencia, coordinación, agilidad, entre otros).
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•	 Fisiológicos (aferencias vestibulares y somatosensoriales, envejecimiento, 

fatiga, consumo de alcohol, consumo de fármacos y otras sustancias).

•	 Mecánicos (base de sustentación [BDS], proyección del centro de gravedad 

en la base de sustentación, altura del centro de gravedad, entre otros).

Es decir, una mayor BDS permite que las personas tengan un mejor control o 

estabilidad del equilibrio. Por ejemplo, cuando los adultos mayores utilizan 

bastones o caminadores durante la marcha, lo que buscan indirectamente es 

aumentar su BDS y, por ende, su estabilidad; una menor altura del CG para 

la misma BDS, lo que genera es un aumento en la estabilidad del equilibrio, 

porque la fuerza necesaria para generar el desequilibrio también aumenta; 

para que un cuerpo se encuentre en equilibrio sin tener en cuenta más fuerzas 

externas que la acción de la fuerza de la gravedad, la proyección de su CG 

debe estar dentro de la BDS.

Actualmente, se encuentran dos tipos de metodologías para evaluar el 

equilibrio: una de ellas es la metodología con plataformas de fuerzas, la cual 

emplea equipo electrónico para registrar los puntos de presión o la locali-

zación de vectores de fuerza que se generan con el cuerpo al estar de pie en 

forma estática o dinámica. La otra, son las baterías de registro observacio-

nal, donde se evalúa al sujeto por medio de tareas motrices estandarizadas 

y validadas por personal experto en el área (Collado, 2005). Para seleccio-

nar qué tipo de metodología emplear para evaluar el equilibrio, es necesario 

conocer bien cada una de las técnicas, analizar sus ventajas y desventajas, 

determinar cuál aplica mejor según el propósito del estudio, las variables a 

medir, las gráficas y los valores que se pueden generar con las pruebas y el 

costo e infraestructura que se necesita para su realización.

Existen diferentes instrumentos para la evaluación del equilibrio de niños 

y jóvenes; por ejemplo, para la evaluación de la coordinación corporal de 

niños (equilibrio dinámico), se emplea el Körper Koordinations Test Für 

Kinder (KTK), el cual permite identificar las capacidades individuales de 

integración sensorio-motoras de los pequeños. Existen también unas bate-

rías o pruebas para evaluar el equilibrio estático y dinámico; por ejemplo, la 

Batería de Competencia Motriz (BOTMP), fácil de utilizar para identificar 

habilidades motrices; la Escala de Desarrollo Motor (EDM), que permite 
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identificar procesos de crecimiento y control de equilibrio en función de 

la edad; el Test Funtional Movement Screen (FMS), que evalúa la calidad 

del movimiento de manera general por medio del desempeño motor de 

los patrones de movimiento fundamentales de una persona; la Batería de 

Movimiento ABC (MABC), muy útil para medir el índice de dificultad mo-

triz en equilibrio estático y dinámico, y la Batería Psicomotora (BPM), para 

valorar el equilibrio mediante la observación e identificar el grado de madu-

rez/inmadurez psicomotora del niño (Villalobos et al., 2020).

Para hacer una completa evaluación del equilibrio en personas con altera-

ciones del equilibrio, se debe valorar su anamnesis, elaborar un cuestionario 

de valoración subjetiva, valoración del estado general físico, valoración clí-

nica de su equilibrio mediante la marcha y el Test de Romberg (Agrawal et 

al., 2011), realizar una videonistagmografía y una posturografía, así como 

pruebas calóricas y rotatorias, entre otras (García et al., 2017). Asimismo, 

se deben hacer otras pruebas clínicas, tales como el Test de Dundan, el Test 

de Berg (Leddy et al., 2011), Apoyo monopodal, el Test de Wolfson, el Test 

de Podsiadlo, la Standing Stork Test (SST) (figura 24) y el de Tinetti para la 

escala de equilibrio y movilidad; evaluación en apoyo monopodal, Escala 

de Berg (Leddy et al., 2011) y el sistema de errores (Balance Error Scoring 

Sistemns [BESS]) (figura 24) (Phillip y Hertel Jay, 2009). La velocidad de os-

cilación postural es un buen indicador del esfuerzo que necesita una persona 

para mantener el equilibrio en situaciones perturbadoras (García et al., 2017).

Figura 24. Prueba de equilibrio estático monopodal basado en 
la Standing Stork. Test con ojos abiertos y cerrados

Fuente: García et al. (2017).
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En la prueba SST, se mide con un cronómetro la cantidad de tiempo en se-

gundos (s) que el paciente puede mantenerse en la posición monopodal con 

ojos abiertos y ojos cerrados, lo cual es un indicativo del rendimiento de su 

equilibrio. Para las evaluaciones clínico-funcionales del movimiento corpo-

ral del ser humano, se hacen una serie de pruebas de equilibrio estático y 

dinámico (figura 25, tabla 1).

Figura 25. Ejemplo de un Balance Error Scoring System (BESS) 
desarrollado sobre superficie firme (A-C) y sobre superficie (D-F)

Fuente: Ellemberg et al. (2009).
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Tabla 1. Pruebas para valorar el equilibrio estático y dinámico del ser humano

Pruebas de Equilibrio en Marcha Protésica

Equilibrio Estático Equilibrio Dinámico

•	 Mantenimiento de posición sedente corta.
•	 Mantenimiento de posición sedente larga.
•	 Desplazamiento del centro de gravedad en 

posición sedente.
•	 Mantenimiento de posición bípeda con pies 

juntos.
•	 Mantenimiento en posición bípeda con pies 

separados al ancho de los hombros.
•	 Apoyo monopodal izquierdo y derecho.
•	 Desplazamiento del centro de gravedad en 

posición bípeda.
•	 Flexión anterior del tronco en bipedestación.
•	 Flexión lateral del tronco en bipedestación.
•	 En cuclillas.

•	 El paciente con los ojos abiertos y el 
cuerpo erguido camina con apoyo 
plantar en línea recta y en círculos hacia 
adelante, atrás, a lado derecho, y al 
izquierdo. El paciente debe hacer cada 
prueba colocando las manos mirando 
al frente, en un total de seis pasos para 
obtener el máximo puntaje, durante seis 
pasos se examina la marcha en puntas y 
en talones.

•	 Para aplicar la prueba se utiliza una 
línea guía (cinta de enmascarar de 2,4 
mm de largo) con la cual camina el 
paciente.

Fuente: Silva Artunduaga (2012).

Estabilometría
Dado que los movimientos posturales de una persona no son completa-

mente percibidos por el ojo humano en un examen clínico, se necesita de 

instrumentos de medida que permitan hacer evaluaciones cualitativas y 

cuantitativas de este fenómeno; es así como la estabilometría permite una 

medición de los fenómenos de control de la postura corporal de un paciente 

sobre un estabilómetro o baropodómetro, utilizando plataformas de fuerza 

que generan coordenadas en el plano sagital y coronal del centro de presión, 

según las oscilaciones o variaciones del cuerpo en el espacio.

La estabilometría o estatocinesiografía es el campo de investigación clí-

nica y experimental encargado de estudiar, medir y registrar el equilibrio, la 

oscilación y el balance corporal del ser humano y su relación con la estabili-

dad en posición bípeda, ya que entre más alineado un cuerpo, menos gasto de 

energía se requiere para mantenerse en equilibrio y entre menos movimientos 

del CoP, mejor es el control postural del individuo. La valoración de las des-

viaciones de los segmentos corporales, puede ser de forma estática mediante 

el Test de Romberg o de forma dinámica, mediante un Test de Marcha, el 

Test de Unterberger o el Test de Fukuda (Lafuente y Belda, 1997).
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Para la evaluación se miden las variaciones en el tiempo y el espacio del 

centro de presión (CoP) en direcciones anterior-posterior en el plano sagi-

tal sobre el eje Y, y medial-lateral en el plano coronal sobre el eje X (figura 

26), la velocidad instantánea del CoP que corresponde a las oscilaciones del 

CoP en los dos planos sobre el tiempo y valora los eventos para conservar el 

equilibrio, tales como el control postural y la estabilidad. Durante un apoyo 

bipodal, el CoP neto en cada uno de ambos planos (anterior-posterior y me-

dial-lateral), puede calcularse con la ecuación 3 (García, 2016):

para conservar el equilibrio, tales como el control postural y la estabilidad. Durante un apoyo 

bipodal, el CoP neto en cada uno de ambos planos (anterior-posterior y medial-lateral), puede 

calcularse con la ecuación 3 (García, 2016):

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑
� +  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 �
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑

�

Ecuación 3

Donde:

CoPizq: centro de presión correspondiente al pie izquierdo.

CoPder: centro de presión correspondiente al pie derecho.

RVizq: fuerza de reacción vertical debajo del pie izquierdo.

RVder: fuerza de reacción vertical debajo del pie derecho.

Figura 26. Ejemplo de un estabilograma o registro gráfico de los resultados de una 

estabilometría

Fuente: elaboración propia.

El CoP de cada pie está relacionado con la activación de los grupos musculares inversores o 

eversores en cada pie. Las fuerzas de reacción RV (izq-der) representan la carga soportada 

por cada pie y expresan una fracción variable en el tiempo del peso total corporal del 

individuo, el cual puede variar biomecánicamente dependiendo de la actividad realizada.

(3)

Donde:

CoP
izq

: centro de presión correspondiente al pie izquierdo.

CoP
der

: centro de presión correspondiente al pie derecho.

RV
izq

: fuerza de reacción vertical debajo del pie izquierdo.

RV
der

: fuerza de reacción vertical debajo del pie derecho.

Figura 26. Ejemplo de un estabilograma o registro gráfico 
de los resultados de una estabilometría

Fuente: elaboración propia.
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El CoP de cada pie está relacionado con la activación de los grupos 

musculares inversores o eversores en cada pie. Las fuerzas de reacción RV 

(izq-der) representan la carga soportada por cada pie y expresan una fracción 

variable en el tiempo del peso total corporal del individuo, el cual puede 

variar biomecánicamente dependiendo de la actividad realizada.

El control incluye la unificación de la información sensorial proveniente 

de la periferia corporal, específicamente de los mecano-receptores presentes 

en la superficie plantar de los pies y de los receptores que comunican tanto 

la posición como la orientación corporal. La coordinación de la informa-

ción sensorial se lleva a cabo con modulaciones efectuadas por el tobillo 

por medio de torques que ajustan la longitud de los flexores plantares, para 

así realizar la compensación continua y refleja del balance del cuerpo que 

permite conservar la posición estática bípeda; por ello, en la estabilometría 

se registran las coordenadas X y Y del CoP que corresponden a la ubicación 

de la fuerza de reacción en la superficie plantar que está en contacto con la 

zona de apoyo (Cifuentes et al., 2017; Petrocci y Cárdenas, 2011).

La estabilometría requiere el uso de herramientas de alta tecnología que 

permiten medir y evaluar (cualitativa y cuantitativamente) la estabilidad del 

equilibrio (figura 27); para esto, hace uso de plataformas de fuerzas estáticas 

y dinámicas, las cuales varían en términos de su tamaño, el número de sen-

sores, los rangos de medida, la precisión, la frecuencia en la toma de datos 

de los sensores, la versatilidad del software con el que trabaja la plataforma 

(variedad de cálculos y gráficos que puede generar), entre otras cosas.

Algunos ejemplos de empresas fabricantes de plataformas son: Tekscan, 

MIDI_CAPTEURSS.A., BJL Group, Biodex Medical Systems Inc., AMTI 

Advanced Medical Technology Inc., Physical Support, Anima Corporation, 

Kristler, Diasu Company, Guy Capron, Neurocom International y SMS 

Healthcare (Petrocci y Cárdenas, 2011). Con esta técnica se generan regis-

tros gráficos del desplazamiento de la proyección del centro de gravedad 

(CG) corporal sobre una superficie, se realizan mediante un estabilógrafo.

Los elementos del control postural que pueden ser manipulados en las 

pruebas de estabilometría (Visser Jasper et al., 2008), son:
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•	 El tamaño de la base de soporte

•	 La retroalimentación visual y propioceptiva

•	 Las aferencias sensoriales

•	 La “gravicepción”

•	 La carga cognitiva

En la figura 27 se presentan los principales tipos de perturbaciones externas 

que se aplican en las pruebas de estabilometría:

Figura 27. Tipos de perturbaciones externas empleadas en pruebas de estabilometría

Fuente: adaptado de Petrocci y Cárdenas (2011).

Existen diferentes protocolos de estabilometría, desde los más básicos 

hasta los más completos, dependiendo del tipo de tecnología con el que se 

cuente. Los convencionales utilizan una plataforma de fuerzas estática y 

se hacen protocolos de apoyo monopodal y bipodal con ayuda de barras o 

arneses para apoyo. Algunos test se hacen con los ojos abiertos o cerrados 

para evaluar la importancia de la contribución del sentido de la vista en la 

estabilidad del equilibrio mediante el cociente de Romberg, otros alteran las 

condiciones de la superficie de la plataforma para cuantificar la contribución 

del sistema somatosensorial, otros introducen a la prueba información 

visual errónea y analizan los efectos en la estabilidad del equilibrio, otros 

protocolos con biofeedback cambian la ubicación del CoP hasta una dianas 

que se van encendiendo en una pantalla, intentando permanecer en ellas el 

mayor tiempo posible y el protocolo mixto, en donde se utilizan plataformas 

móviles, las cuales pueden llevar a cabo los anteriores protocolos de 

forma estática y dinámica, valorando con mayor profundidad el tipo de 
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intervención que tienen los sistemas visual, somatosensorial y vestibular en 

la estabilidad del equilibrio.

La estabilometría sola o acompañada de otros instrumentos como video-

metría digital y electromiografía, es utilizada para el desarrollo de diferentes 

estudios científicos y clínicos en distintos grupos poblaciones y con condi-

ciones diversas; por ejemplo, personas sanas, en deportistas, en niños, en 

adultos mayores, pacientes bariátricos, personas con prótesis u órtesis en sus 

extremidades inferiores, pacientes en procesos de rehabilitación muscular 

o tendinoligamentosa y en personas con diferentes alteraciones neuroló-

gicas, como enfermedades cerebro-vasculares, migraña, ataxia cerebelosa, 

Parkinson, resección de tumor, vértigo, estrabismo, extropía, desorden vesti-

bular, cefalea, mielopatía cervical, entre otras.

Estabilidad postural
La estabilidad puede ser considerada como un ajuste postural y una habi-

lidad motora compleja que resulta de la interacción de múltiples procesos 

sensoriomotores que buscan permitir la marcha, el equilibrio postural, la 

orientación postural y la interacción con el entorno de manera segura y efi-

ciente (Horak, 2006). Ahora bien, la orientación postural implica el control 

activo de la alineación y el tono del cuerpo con respecto a la gravedad, la 

superficie de apoyo, el entorno visual y las referencias internas del individuo 

dentro de un entorno. En un contexto bien iluminado con una base firme 

de apoyo, las personas sanas dependen de la información somatosensorial 

(70 %), visual (10 %) y vestibular (20 %) (Fort Vanmeerhaeghe y Romero 

Rodríguez, 2013).

Este control postural es la capacidad que tiene una persona de orientar las 

partes de su cuerpo con respecto a la gravedad, la superficie de apoyo, el en-

torno visual y las referencias internas. Los sistemas nerviosos sanos alteran 

automáticamente la orientación del cuerpo en el espacio, según el contexto 

y la tarea. Además, las personas sanas pueden identificar la vertical gravita-

cional en la oscuridad con una precisión de 0,5 grados (Fort Vanmeerhaeghe 

y Romero Rodríguez, 2013).

Por tanto, el equilibrio no es una posición particular, sino un espacio 

determinado por el tamaño de la base de apoyo (los pies en posición) y las 
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limitaciones en el rango articular, la fuerza muscular y la información sen-

sorial disponible para detectar los límites que se tienen. Para evaluar los 

desequilibrios neuromusculares entre la pierna dominante y la pierna no 

dominante (PND), se utiliza el índice de asimetría (ASI), ecuación 4, y para 

medir las asimetrías entre la extremidad inferior dominante y no dominante 

se emplean pruebas isocinéticas (Arboix-Alió et al., 2018).

tendinoligamentosa y en personas con diferentes alteraciones neurológicas, como 

enfermedades cerebro-vasculares, migraña, ataxia cerebelosa, Parkinson, resección de tumor, 

vértigo, estrabismo, extropía, desorden vestibular, cefalea, mielopatía cervical, entre otras. 

[T1] Estabilidad postural

La estabilidad puede ser considerada como un ajuste postural y una habilidad motora 

compleja que resulta de la interacción de múltiples procesos sensoriomotores que buscan 

permitir la marcha, el equilibrio postural, la orientación postural y la interacción con el 

entorno de manera segura y eficiente (Horak, 2006). Ahora bien, la orientación postural 

implica el control activo de la alineación y el tono del cuerpo con respecto a la gravedad, la 

superficie de apoyo, el entorno visual y las referencias internas del individuo dentro de un 

entorno. En un contexto bien iluminado con una base firme de apoyo, las personas sanas 

dependen de la información somatosensorial (70 %), visual (10 %) y vestibular (20 %) (Fort 

Vanmeerhaeghe y Romero Rodríguez, 2013).

Este control postural es la capacidad que tiene una persona de orientar las partes de su 

cuerpo con respecto a la gravedad, la superficie de apoyo, el entorno visual y las referencias 

internas. Los sistemas nerviosos sanos alteran automáticamente la orientación del cuerpo en 

el espacio, según el contexto y la tarea. Además, las personas sanas pueden identificar la 

vertical gravitacional en la oscuridad con una precisión de 0,5 grados (Fort Vanmeerhaeghe 

y Romero Rodríguez, 2013).

Por tanto, el equilibrio no es una posición particular, sino un espacio determinado por 

el tamaño de la base de apoyo (los pies en posición) y las limitaciones en el rango articular, 

la fuerza muscular y la información sensorial disponible para detectar los límites que se 

tienen. Para evaluar los desequilibrios neuromusculares entre la pierna dominante y la pierna 

no dominante (PND), se utiliza el índice de asimetría (ASI), ecuación 4, y para medir las 

asimetrías entre la extremidad inferior dominante y no dominante se emplean pruebas

isocinéticas (Arboix-Alió et al., 2018).

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 −  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝
 𝑥𝑥𝑥𝑥 100

Ecuación 4

(4)

La estabilidad es considerada como la capacidad que tiene un individuo 

para mantenerse en posición bípeda, moverse en el espacio y regresar su 

cuerpo de una postura inestable a una estable, gracias al procesamiento 

combinado de informaciones sensoriales provenientes de los receptores 

posturales en el SNC (una mejor altura del centro de gravedad para una 

misma base de sustentación aumenta la estabilidad del equilibrio, porque 

la fuerza o fuerzas que necesita para generar el desequilibrio también 

aumentan). Por lo que la función de equilibrio depende de las estrategias 

que utilizan los individuos para lograr la estabilidad en una tarea en 

particular dadas sus deficiencias (Horak, 2006).

La estabilidad también es considerada como la respuesta postural dada 

por el sistema de control postural ante una perturbación externa para que el 

cuerpo evite perder su equilibrio (Chaudhry et al., 2011). En la estabilidad, 

el centro de gravedad del cuerpo se mantiene dentro de la base de sustenta-

ción, para ello se establece un funcionamiento sincronizado complejo entre 

los sistemas musculoesquelético y neurológico. Durante la posición de bi-

pedestación estática y mientras se realizan diversas tareas (como caminar), 

la estabilidad está controlada por las estrategias de estabilización de la ca-

dera y el tobillo principalmente (figura 27); se debe tener en cuenta que, en 

la posición de bipedestación estática, no se aplica perturbación externa al 

cuerpo (Kamali et al., 2013). En la figura 28 se presentan los seis recursos 

más importantes necesarios para la estabilidad y orientación postural del 

ser humano.
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Figura 28. Principales recursos necesarios para la estabilidad y orientación postural

Fuente: elaboración propia.

Desde el punto de vista de la biomecánica, las respuestas dinámicas de la 

musculatura se pueden dar en cualquier punto del rango de movimiento 

articular, en cualquiera de los tres planos anatómicos (sagital, frontal y 

transverso) y según la variación de parámetros dinámicos como trayectorias, 

velocidades y aceleraciones lineales y angulares de las articulaciones, las 

cargas externas, las fuerzas de reacción internas, la gravedad y el dolor, 

entre otros.

Existen estrategias motrices cuyo propósito es mantener el control postu-

ral tanto estático como dinámico; estas son: las estrategias de estabilización 

por segmento, que fija con relación al espacio la referencia sensorial depen-

diendo del segmento estabilizado; por ejemplo, la cabeza puede estabilizarse 

con relación a un punto en el espacio o en relación con el tronco y las es-

trategias multisegmentarias de reequilibración, cuyo propósito es evitar una 

caída y mantener el CM en el interior de la base de sustentación. La estra-

tegia de tobillo, en donde la gestión del equilibrio la realiza la movilización 

y ajuste de las articulaciones tibiotarsianas. La estrategia de la cadera, en 

donde se asocian los movimientos de las articulaciones del tobillo y de la 

articulación coxofemoral. La estrategia de descenso del cuerpo para descen-

der el CM o la estrategia del paso adelante o el paso detrás y la estrategia 

de paso donde el desplazamiento del centro de gravedad va más allá de los 
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límites de estabilidad, generando movimientos en los pies para evitar una 

caída (Cordero-Civantos y Calle-Cabanillas, 2017).

Para el control o equilibrio postural, se pueden utilizar tres tipos prin-

cipales de estrategias de movimiento que permiten devolver el cuerpo al 

equilibrio en una posición de apoyo: dos estrategias mantienen los pies en 

su lugar y la otra estrategia cambia la base de apoyo por medio del paso 

o estiramiento individual. La estrategia del tobillo, en la que el cuerpo se 

mueve a la altura del tobillo como un péndulo invertido flexible, es apro-

piada para mantener el equilibrio para pequeñas cantidades de balanceo 

cuando está parado sobre una superficie firme. La estrategia de la cadera, 

en la que el cuerpo ejerce un torque en las caderas para mover rápidamente 

el CoM del cuerpo, se utiliza cuando las personas se paran en superficies 

estrechas o flexibles que no permiten una torsión adecuada del tobillo o 

cuando el CoM debe moverse rápidamente (Fort Vanmeerhaeghe y Romero 

Rodríguez, 2013).

Un paciente “sano” utiliza diferentes estrategias según el contexto en el 

que se encuentre para mantener su equilibrio (estrategias de movimiento, 

la orientación postural, el control dinámico, uso de recursos cognitivos y 

sensoriales, restricciones de tareas biomecánicas, uso de la experiencia, en-

tre otras) (Horak, 2006). Una de las estrategias más usadas para superficies 

estables es la estrategia de tobillo y a medida que la superficie se hace más 

irregular, va empleando la estrategia de cadera para no caer. En cualquie-

ra de estas estrategias, lo que se busca es estabilizar al máximo la postura 

minimizando el movimiento del centro de masas corporal. Con los análisis 

de estrategias se obtienen diagramas de porcentajes de estabilidad, de la 

cantidad de movimientos en el tobillo o en la cadera, que utiliza el paciente 

en cada condición sensorial analizada (de 0 % a 100 %). En la figura 29, 

en el eje vertical se representa la estabilidad o equilibrio, siendo el 100 % 

la mayor estabilidad y 0 % la caída; en el eje horizontal se representan las 

estrategias de tobillo (hacia la derecha) y de cadera (hacia la izquierda). En 

este sentido, es importante comprender que el límite de estabilidad es la 

distancia en la que una persona puede mantener el equilibrio sin tener que 

cambiar su base de sustentación.
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Figura 29. Diagrama de análisis de estrategia (izq., paciente con un 
patrón de normalidad – der., paciente con un patrón vestibular)

Fuente: Cordero-Civantos y Calle-Cabanillas (2017).

Algunas de las pruebas básicas (sin uso de equipos tecnológicos) de condición 

física, motricidad y equilibrio corporal, son los test de equilibrio estático 

(figura 30), tales como:

•	 El Test de Unterberger, conocido como marcha sobre el sitio, ya que hace mar-

char al paciente en el mismo lugar con los ojos cerrados (Araya et al., 2013).

•	 Prueba de Barany, en la cual el paciente está sentado con los ojos cerrados 

y apunta con sus índices a los del examinador; en condiciones normales 

los índices no se desvían (Araya et al., 2013).

•	 Prueba de equilibrio flamenco (Batería Eurofit) o el “Test de Oseretsky” 

(Bruininks-Oseretkky Test of  Motor Proficiency) (figura 24), cuyo pro-

pósito es medir el equilibrio estático de un sujeto. Se basa en contabilizar 

el número de ensayos que ha necesitado el sujeto de estudio para lograr 

mantener el equilibrio durante un minuto (Martínez López, 2003).

•	 Test de Romberg, para evaluar el equilibrio estático de un paciente, también 

es usado para identificar trastornos del equilibrio en estadios tempranos o 

asintomáticos, por medio de la valoración de la propiocepción consciente 

en nervios periféricos (Cifuentes et al., 2017).

•	 Prueba de equilibrio en forma de “T” o también conocido como Test de 

la Balanza. Esta prueba consiste en hacer la forma de una balanza, 
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adelantando el tronco y colocándolo paralelo al suelo, a la vez que se eleva 

una pierna por detrás, mirando siempre al frente. El objetivo es mantener 

la posición diez segundos (Gutiérrez de Tena Ramos et al., 2010).

•	 Test de Apoyo Estático, consiste en visualizar y comprobar si las presio-

nes ejercidas por un sujeto de pie son correctas o tienden a ser anómalas 

o con daños en su patrón de presión (Arévalo Márquez y Sangurima 

Tenepaguay, 2020).

Figura 30. Tests de equilibrio estático

Fuente: García-López y Rodríguez-Marroyo (2015).

En cuanto a las pruebas básicas para el equilibrio dinámico, se tiene:

•	 Prueba de equilibrio dinámico, consiste en pasar caminando lo más rápido 

posible sobre una barra (de un lado al otro), descalzo y con las manos en 

la cintura sin caerse. Se mide el número de intentos exitosos realizados en 

30 segundos (Gutiérrez de Tena Ramos et al., 2010).

•	 Prueba de la barra de equilibrio, consiste en caminar dando giros sobre la 

barra de equilibrio o un banco invertido hasta una marca situada a 2 m. 

Se mide la distancia recorrida por el sujeto desde el inicio hasta el punto 

de bajada (Martín-Casado et al., 2010).

•	 La prueba Timed Up and Go, en la cual el sujeto está sentado en una silla 

apoyando su espalda y con los brazos cruzados, luego de una señal audi-

tiva debe caminar lo más rápido posible hasta un cono que se encuentra a 

3 m, darle la vuelta y volver a sentarse con la espalda apoyada (figura 31). 

Se mide el tiempo que tarda en efectuar la actividad (Gutiérrez de Tena 

Ramos et al., 2010).
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Figura 31. Ejemplo de prueba Timed Up

Fuente: Gutiérrez de Tena Ramos et al. (2010).

Otros son el “Test de Oseretski” (Batetería Ozeretski-Guilmain) y el Test 

de “Excursión en Estrella” (García-López y Rodríguez-Marroyo, 2015). En 

la figura 32, lado izquierdo, el paciente debe recorrer en línea recta 2 m 

apoyando alternadamente el talón de un pie contra la punta del otro sin 

salirse de la línea; en el lado derecho, el test (Star Excursion Balance Test), 

8 líneas de 120 cm se colocan en una superficie lisa en forma de estrella con 

angulaciones de 45° entre ellas, y el paciente desde el centro del círculo, debe 

llegar la mayor distancia posible en cada una de las direcciones, y obtiene 

una puntuación.

Figura 32. Test de equilibrio dinámico  
(izq., Test Oseretski – der., Test Excursión en Estrella)

Fuente: García-López y Rodríguez-Marroyo (2015).
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El grado de estabilidad también es conocido como el Equilibrium Score, que 

es un porcentaje que se obtiene de comparar el ángulo de desplazamiento 

anteroposterior máximo, con el esperado en una persona sana de su mismo 

sexo, edad y altura, para cada intento de cada condición. El resultado es un 

valor de 0 a 100, en el que 0 es la caída o la peor condición de equilibrio y 100 

es el balanceo mínimo (Cordero-Civantos y Calle-Cabanillas, 2017; García-

López y Rodríguez-Marroyo, 2015). Estos valores se representan en diagramas 

de barras que hacen más sencilla su interpretación (véase figura 33).

Figura 33. Test de organización sensorial en paciente sano  
(izq., resultados gráficos – der., resultados numéricos)

Fuente: Cordero-Civantos y Calle-Cabanillas (2017).
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Capítulo 2

Análisis lineal en el tiempo 
y la frecuencia

Actualmente, para analizar el control postural e identificar diferencias entre 

grupos de estudio, se han empleado una infinidad de parámetros que permi-

ten cuantificarlo por medio del CoP, algunos enfocados principalmente en el 

análisis lineal (tiempo y frecuencia). Pero hoy, en la literatura se encuentran 

diversos estudios en donde se utilizan parámetros de análisis no lineal, como 

son la entropía, la teoría de la información, clustering, la transformada de 

Wavelet, entre otros, ya que se indica que el CoP es un proceso estocástico, 

métodos que se tratarán en el siguiente capítulo.

El cálculo de los parámetros derivados del CoP mediante un análisis li-

neal, proporciona diversos tipos de información sobre el comportamiento del 

sistema del control postural, lo que ha permitido, por ejemplo, diferenciar 

entre grupos por sujetos, evaluar la efectividad de programas de entrena-

miento, hacer modelos para predecir la probabilidad de sufrir una caída, 

entre otros (Moghadam et al., 2011). Siendo una conclusión a nivel general 

en la mayoría de los autores: la asociación entre el aumento de la amplitud 

del CoP con la inestabilidad postural. Resultados que no son ajenos a los 

obtenidos en los participantes de la presente investigación, como se ha re-

portado en la literatura.

Los parámetros obtenidos mediante un análisis lineal por medio del es-

tudio del comportamiento del CoP, permiten determinar diferentes criterios 

como área, velocidad o distancia evaluadas en el dominio del tiempo, es 
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decir, que posibilitan la caracterización de la trayectoria o recorrido del CoP 

y para el dominio de la frecuencia se obtiene la distribución espectral calcu-

lada generalmente con la densidad espectral de potencia.

De acuerdo con lo anterior y para tener un panorama amplio y claro 

sobre los diversos parámetros que se pueden emplear para el análisis de tiem-

po-frecuencia, y cómo algunos de estos se utilizaron para evaluar el control 

postural en la población de estudio de la presente investigación, a continua-

ción, se discriminan los más utilizados.

Tiempo
Algunas de las mediciones de parámetros lineales que se realizan dentro de un 

estudio de estabilidad postural asociadas al dominio del tiempo y que han sido 

reportadas por autores en varios artículos de investigación (Baig et al., 2012; 

Cavalheiro et al., 2009) en el campo de la estabilidad, son:

•	 Desplazamiento promedio

•	 Velocidad promedio

•	 Área del 95 % de la elipse de confianza

•	 Desviación estándar en la dirección ML y AP

•	 Rango

•	 Desplazamiento total del CoP

•	 Raíz de la media cuadrática (valor RMS)

En los párrafos siguientes se presenta la explicación de cómo se calculan 

algunos de estos parámetros lineales asociados a la estabilidad postural 

para el mantenimiento de la posición bípeda, en función del tiempo du-

rante una prueba de posturografía (N es el total del número de muestras o 

pruebas realizadas).

Rango

El rango es un valor que resulta de la diferencia entre el valor máximo y el 

valor mínimo de una señal, registro o medida. Para este caso, puede ser calcu-

lado como se presenta en la ecuación 5:



75

Herramientas de análisis para la estabilidad estática postural. Caso de aplicación: personas con amputación transtibial

en varios artículos de investigación (Baig et al., 2012; Cavalheiro et al., 2009) en el campo 

de la estabilidad, son:

• Desplazamiento promedio

• Velocidad promedio

• Área del 95 % de la elipse de confianza

• Desviación estándar en la dirección ML y AP

• Rango

• Desplazamiento total del CoP

• Raíz de la media cuadrática (valor RMS)

En los párrafos siguientes se presenta la explicación de cómo se calculan algunos de estos 

parámetros lineales asociados a la estabilidad postural para el mantenimiento de la posición 

bípeda, en función del tiempo durante una prueba de posturografía (𝑃𝑃𝑃𝑃 es el total del número 

de muestras o pruebas realizadas).

[T2] Rango

El rango es un valor que resulta de la diferencia entre el valor máximo y el valor mínimo de 

una señal, registro o medida. Para este caso, puede ser calculado como se presenta en la 

ecuación 5:

 

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶 = (𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) − (𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 

Ecuación 5

[T2] Desplazamiento radial promedio

El desplazamiento radial promedio, 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, se puede calcular mediante la ecuación 6:

𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 =  
∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1
𝑃𝑃𝑃𝑃

Ecuación 6

(5)

Desplazamiento radial promedio
El desplazamiento radial promedio, 𝑅𝐷𝑝𝑟𝑜𝑚, se puede calcular mediante la 

ecuación 6:

en varios artículos de investigación (Baig et al., 2012; Cavalheiro et al., 2009) en el campo 

de la estabilidad, son:

• Desplazamiento promedio

• Velocidad promedio

• Área del 95 % de la elipse de confianza

• Desviación estándar en la dirección ML y AP

• Rango

• Desplazamiento total del CoP

• Raíz de la media cuadrática (valor RMS)

En los párrafos siguientes se presenta la explicación de cómo se calculan algunos de estos 

parámetros lineales asociados a la estabilidad postural para el mantenimiento de la posición 

bípeda, en función del tiempo durante una prueba de posturografía (𝑃𝑃𝑃𝑃 es el total del número 

de muestras o pruebas realizadas).

[T2] Rango

El rango es un valor que resulta de la diferencia entre el valor máximo y el valor mínimo de 

una señal, registro o medida. Para este caso, puede ser calculado como se presenta en la 

ecuación 5:

 

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶 = (𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) − (𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 

Ecuación 5

[T2] Desplazamiento radial promedio

El desplazamiento radial promedio, 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, se puede calcular mediante la ecuación 6:

𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 =  
∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1
𝑃𝑃𝑃𝑃

Ecuación 6

(6)

Donde: 𝑁 es el número total de datos; 𝑟𝑖 =             corresponde al despla-

zamiento radial para cada i-ésima muestra (prueba); 𝑥𝑖 y 𝑦𝑖, son los valores 

de las coordenadas en X (dirección ML) y en Y (dirección AP), respectiva-

mente.

Desplazamiento total
El desplazamiento total (DT) puede calcularse sumando todas las distancias 

de dos muestras consecutivas 𝑑(𝐶𝑜𝑃), con la ecuación 7:

Donde: 𝑃𝑃𝑃𝑃 es el número total de datos; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = √𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝2 + 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝2 corresponde al desplazamiento radial 

para cada i-ésima muestra (prueba); 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, son los valores de las coordenadas en X 

(dirección ML) y en Y (dirección AP), respectivamente.

[T2] Desplazamiento total

El desplazamiento total (DT) puede calcularse sumando todas las distancias de dos muestras 

consecutivas 𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), con la ecuación 7:

𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷 =  � |𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝 + 1) −  𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝)|
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

Ecuación 7

[T2] Velocidad promedio

La velocidad promedio del desplazamiento (Vprom), puede calcularse mediante la ecuación 

8:

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 =
𝐿𝐿𝐿𝐿

𝑃𝑃𝑃𝑃 ∗  ∆𝑑𝑑𝑑𝑑
Ecuación 8

Donde 

es la frecuencia de muestreo; 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, son los valores de las coordenadas en X (dirección ML) 

y en Y (dirección AP), respectivamente.

La velocidad instantánea 𝑣𝑣𝑣𝑣(𝑃𝑃𝑃𝑃) puede calcularse mediante la ecuación 9:

𝑣𝑣𝑣𝑣(𝑁𝑁𝑁𝑁) =  
|𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝 + 1) − 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝)|

𝑑𝑑𝑑𝑑

Ecuación 9

(7)

Velocidad promedio
La velocidad promedio del desplazamiento (Vprom), puede calcularse me-

diante la ecuación 8:

Donde: 𝑃𝑃𝑃𝑃 es el número total de datos; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = √𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝2 + 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝2 corresponde al desplazamiento radial 

para cada i-ésima muestra (prueba); 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, son los valores de las coordenadas en X 

(dirección ML) y en Y (dirección AP), respectivamente.

[T2] Desplazamiento total

El desplazamiento total (DT) puede calcularse sumando todas las distancias de dos muestras 

consecutivas 𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), con la ecuación 7:

𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷 =  � |𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝 + 1) −  𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝)|
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

Ecuación 7

[T2] Velocidad promedio

La velocidad promedio del desplazamiento (Vprom), puede calcularse mediante la ecuación 

8:

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 =
𝐿𝐿𝐿𝐿

𝑃𝑃𝑃𝑃 ∗  ∆𝑑𝑑𝑑𝑑
Ecuación 8

Donde 

es la frecuencia de muestreo; 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, son los valores de las coordenadas en X (dirección ML) 

y en Y (dirección AP), respectivamente.

La velocidad instantánea 𝑣𝑣𝑣𝑣(𝑃𝑃𝑃𝑃) puede calcularse mediante la ecuación 9:

𝑣𝑣𝑣𝑣(𝑁𝑁𝑁𝑁) =  
|𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝 + 1) − 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝)|

𝑑𝑑𝑑𝑑

Ecuación 9

(8)

Donde  

es la frecuencia de muestreo; 𝑥𝑖 y 𝑦𝑖, son los valores de las coordenadas en X 

(dirección ML) y en Y (dirección AP), respectivamente. L = Ʃ

Donde: 𝑃𝑃𝑃𝑃 es el número total de datos; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = √𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝2 + 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝2 corresponde al desplazamiento radial 

para cada i-ésima muestra (prueba); 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, son los valores de las coordenadas en X 

(dirección ML) y en Y (dirección AP), respectivamente.

[T2] Desplazamiento total

El desplazamiento total (DT) puede calcularse sumando todas las distancias de dos muestras 

consecutivas 𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), con la ecuación 7:

𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷 =  � |𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝 + 1) −  𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝)|
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

Ecuación 7

[T2] Velocidad promedio

La velocidad promedio del desplazamiento (Vprom), puede calcularse mediante la ecuación 

8:

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 =
𝐿𝐿𝐿𝐿

𝑃𝑃𝑃𝑃 ∗  ∆𝑑𝑑𝑑𝑑
Ecuación 8

Donde 

es la frecuencia de muestreo; 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, son los valores de las coordenadas en X (dirección ML) 

y en Y (dirección AP), respectivamente.

La velocidad instantánea 𝑣𝑣𝑣𝑣(𝑃𝑃𝑃𝑃) puede calcularse mediante la ecuación 9:

𝑣𝑣𝑣𝑣(𝑁𝑁𝑁𝑁) =  
|𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝 + 1) − 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝)|

𝑑𝑑𝑑𝑑

Ecuación 9
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La velocidad instantánea 𝑣(𝑁) puede calcularse mediante la ecuación 9:

Donde: 𝑃𝑃𝑃𝑃 es el número total de datos; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = √𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝2 + 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝2 corresponde al desplazamiento radial 

para cada i-ésima muestra (prueba); 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, son los valores de las coordenadas en X 

(dirección ML) y en Y (dirección AP), respectivamente.

[T2] Desplazamiento total

El desplazamiento total (DT) puede calcularse sumando todas las distancias de dos muestras 

consecutivas 𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), con la ecuación 7:

𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷 =  � |𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝 + 1) −  𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝)|
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=1

Ecuación 7

[T2] Velocidad promedio

La velocidad promedio del desplazamiento (Vprom), puede calcularse mediante la ecuación 

8:

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 =
𝐿𝐿𝐿𝐿

𝑃𝑃𝑃𝑃 ∗  ∆𝑑𝑑𝑑𝑑
Ecuación 8

Donde 

es la frecuencia de muestreo; 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, son los valores de las coordenadas en X (dirección ML) 

y en Y (dirección AP), respectivamente.

La velocidad instantánea 𝑣𝑣𝑣𝑣(𝑃𝑃𝑃𝑃) puede calcularse mediante la ecuación 9:

𝑣𝑣𝑣𝑣(𝑁𝑁𝑁𝑁) =  
|𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝 + 1) − 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝)|

𝑑𝑑𝑑𝑑

Ecuación 9

(9)

Otra forma de calcular la velocidad promedio empleando la ecuación 10:

Otra forma de calcular la velocidad promedio es por medio de la ecuación 10:

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 =  
1

𝑃𝑃𝑃𝑃 − 1
�𝑣𝑣𝑣𝑣(𝑖𝑖𝑖𝑖)

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖_=1

Ecuación 10

[T2] Raíz de la media cuadrática (valor RMS)

La raíz de la media cuadrática (RMS), es una medida estadística de la magnitud de la cantidad 

de variación en una medida; este valor se puede calcular mediante la ecuación 11:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 =  �
∑ (𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝))2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

𝑃𝑃𝑃𝑃

Ecuación 11

Donde 𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) son las distancias de dos muestras consecutivas.

[T2] Desviación estándar del 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪��𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙, 𝒚𝒚𝒚𝒚𝒚𝒚𝒚𝒚

La desviación estándar de CoP en el eje 𝑥𝑥𝑥𝑥, es decir, para movimientos ML (𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥), se puede 

calcular con la ecuación 12:

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =  �
1
𝑃𝑃𝑃𝑃
�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 12

Ahora bien, la desviación estándar de CoP en el eje 𝑦𝑦𝑦𝑦, es decir, para movimientos AP (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦), 

se puede calcular con la ecuación 13:

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 =  �
1
𝑃𝑃𝑃𝑃
�(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

(10)

Raíz de la media cuadrática (valor RMS)
La raíz de la media cuadrática (RMS) es una medida estadística de la mag-

nitud de la cantidad de variación en una medida; este valor se puede calcular 

mediante la ecuación 11:

Otra forma de calcular la velocidad promedio es por medio de la ecuación 10:

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 =  
1

𝑃𝑃𝑃𝑃 − 1
�𝑣𝑣𝑣𝑣(𝑖𝑖𝑖𝑖)

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖_=1

Ecuación 10

[T2] Raíz de la media cuadrática (valor RMS)

La raíz de la media cuadrática (RMS), es una medida estadística de la magnitud de la cantidad 

de variación en una medida; este valor se puede calcular mediante la ecuación 11:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 =  �
∑ (𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝))2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

𝑃𝑃𝑃𝑃

Ecuación 11

Donde 𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) son las distancias de dos muestras consecutivas.

[T2] Desviación estándar del 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪��𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙, 𝒚𝒚𝒚𝒚𝒚𝒚𝒚𝒚

La desviación estándar de CoP en el eje 𝑥𝑥𝑥𝑥, es decir, para movimientos ML (𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥), se puede 

calcular con la ecuación 12:

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =  �
1
𝑃𝑃𝑃𝑃
�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 12

Ahora bien, la desviación estándar de CoP en el eje 𝑦𝑦𝑦𝑦, es decir, para movimientos AP (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦), 

se puede calcular con la ecuación 13:

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 =  �
1
𝑃𝑃𝑃𝑃
�(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

(11)

Donde 𝑑(𝐶𝑜𝑃) son las distancias de dos muestras consecutivas.

Desviación estándar del CoP𝒙, 𝒚
La desviación estándar de CoP en el eje 𝑥, es decir, para movimientos ML (𝜎𝑥), 
se puede calcular con la ecuación 12:

Otra forma de calcular la velocidad promedio es por medio de la ecuación 10:

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 =  
1

𝑃𝑃𝑃𝑃 − 1
�𝑣𝑣𝑣𝑣(𝑖𝑖𝑖𝑖)

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖_=1

Ecuación 10

[T2] Raíz de la media cuadrática (valor RMS)

La raíz de la media cuadrática (RMS), es una medida estadística de la magnitud de la cantidad 

de variación en una medida; este valor se puede calcular mediante la ecuación 11:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 =  �
∑ (𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝))2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

𝑃𝑃𝑃𝑃

Ecuación 11

Donde 𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) son las distancias de dos muestras consecutivas.

[T2] Desviación estándar del 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪��𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙, 𝒚𝒚𝒚𝒚𝒚𝒚𝒚𝒚

La desviación estándar de CoP en el eje 𝑥𝑥𝑥𝑥, es decir, para movimientos ML (𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥), se puede 

calcular con la ecuación 12:

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =  �
1
𝑃𝑃𝑃𝑃
�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 12

Ahora bien, la desviación estándar de CoP en el eje 𝑦𝑦𝑦𝑦, es decir, para movimientos AP (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦), 

se puede calcular con la ecuación 13:

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 =  �
1
𝑃𝑃𝑃𝑃
�(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

(12)

Ahora bien, la desviación estándar de CoP en el eje 𝑦, es decir, para movi-

mientos AP (𝜎𝑦), se puede calcular con la ecuación 13:

Otra forma de calcular la velocidad promedio es por medio de la ecuación 10:

𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 =  
1

𝑃𝑃𝑃𝑃 − 1
�𝑣𝑣𝑣𝑣(𝑖𝑖𝑖𝑖)

𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖_=1

Ecuación 10

[T2] Raíz de la media cuadrática (valor RMS)

La raíz de la media cuadrática (RMS), es una medida estadística de la magnitud de la cantidad 

de variación en una medida; este valor se puede calcular mediante la ecuación 11:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 =  �
∑ (𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝))2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

𝑃𝑃𝑃𝑃

Ecuación 11

Donde 𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) son las distancias de dos muestras consecutivas.

[T2] Desviación estándar del 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪��𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙, 𝒚𝒚𝒚𝒚𝒚𝒚𝒚𝒚

La desviación estándar de CoP en el eje 𝑥𝑥𝑥𝑥, es decir, para movimientos ML (𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥), se puede 

calcular con la ecuación 12:

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 =  �
1
𝑃𝑃𝑃𝑃
�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 12

Ahora bien, la desviación estándar de CoP en el eje 𝑦𝑦𝑦𝑦, es decir, para movimientos AP (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦), 

se puede calcular con la ecuación 13:

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 =  �
1
𝑃𝑃𝑃𝑃
�(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

(13)
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En donde, 𝑅𝐷𝑝𝑟𝑜𝑚 es el desplazamiento radial promedio y 𝑟𝑖 =           co-

rresponde al desplazamiento radial para cada i-ésima muestra (prueba). 𝑥𝑖 y 

𝑦𝑖, son los valores de las coordenadas en X (dirección ML) y en Y (dirección 

AP), respectivamente.

Área transversal o elipse de confianza
El área de elipse de confianza del 95 % es un método empleado para estimar 

el área de confianza de la trayectoria del CoP, que encierra aproximadamen-

te el 95 % de los puntos registrados del CoP en su movimiento y es calculada 

mediante la ecuación 14:

Ecuación 13

En donde, 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 es el desplazamiento radial promedio y 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = √𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝2 + 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝2 corresponde al 

desplazamiento radial para cada i-ésima muestra (prueba). 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, son los valores de las 

coordenadas en X (dirección ML) y en Y (dirección AP), respectivamente.

[T2] Área transversal o elipse de confianza

El área de elipse de confianza del 95 % es un método empleado para estimar el área de 

confianza de la trayectoria del CoP, que encierra aproximadamente el 95 % de los puntos 

registrados del CoP en su movimiento y es calculada mediante la ecuación 14:

Á𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 = (2𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹)�𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 − 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦2

Ecuación 14

Donde 𝐹𝐹𝐹𝐹 = 3,00 de la tabla de F estadística para un nivel de confianza de 1 − 𝛼𝛼𝛼𝛼 con: 𝛼𝛼𝛼𝛼 = 0,05 

cuando el tamaño de la muestra es >120. Por otro lado, 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 es el coeficiente de correlación 

entre 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, se puede calcular mediante la ecuación 15:

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 =  
1
𝑃𝑃𝑃𝑃
�

(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ∗ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)
(𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 ∗ 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦)

𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 15

Existe otra forma de calcular esta área de la elipse de confianza del 95 % del CoP y es 

mediante la ecuación 16 a la ecuación 20:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑃𝑃𝑃𝑃
�𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝) ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝𝑝𝑝)
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 16

(14)

Donde 𝐹 = 3,00 de la tabla de F estadística para un nivel de confianza de 

1 − 𝛼 con: 𝛼 = 0,05 cuando el tamaño de la muestra es >120. Por otro lado, 

𝜎𝑥𝑦 es el coeficiente de correlación entre 𝑥𝑖 y 𝑦𝑖, se puede calcular mediante 

la ecuación 15:

Ecuación 13

En donde, 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 es el desplazamiento radial promedio y 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = √𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝2 + 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝2 corresponde al 

desplazamiento radial para cada i-ésima muestra (prueba). 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, son los valores de las 

coordenadas en X (dirección ML) y en Y (dirección AP), respectivamente.

[T2] Área transversal o elipse de confianza

El área de elipse de confianza del 95 % es un método empleado para estimar el área de 

confianza de la trayectoria del CoP, que encierra aproximadamente el 95 % de los puntos 

registrados del CoP en su movimiento y es calculada mediante la ecuación 14:

Á𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 = (2𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹)�𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 − 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦2

Ecuación 14

Donde 𝐹𝐹𝐹𝐹 = 3,00 de la tabla de F estadística para un nivel de confianza de 1 − 𝛼𝛼𝛼𝛼 con: 𝛼𝛼𝛼𝛼 = 0,05 

cuando el tamaño de la muestra es >120. Por otro lado, 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 es el coeficiente de correlación 

entre 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, se puede calcular mediante la ecuación 15:

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 =  
1
𝑃𝑃𝑃𝑃
�

(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ∗ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)
(𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 ∗ 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦)

𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 15

Existe otra forma de calcular esta área de la elipse de confianza del 95 % del CoP y es 

mediante la ecuación 16 a la ecuación 20:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑃𝑃𝑃𝑃
�𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝) ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝𝑝𝑝)
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 16

(15)

Existe otra forma de calcular esta área de la elipse de confianza del 95 % del 

CoP y es mediante la ecuación 16 a la ecuación 20:

Ecuación 13

En donde, 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 es el desplazamiento radial promedio y 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = √𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝2 + 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝2 corresponde al 

desplazamiento radial para cada i-ésima muestra (prueba). 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, son los valores de las 

coordenadas en X (dirección ML) y en Y (dirección AP), respectivamente.

[T2] Área transversal o elipse de confianza

El área de elipse de confianza del 95 % es un método empleado para estimar el área de 

confianza de la trayectoria del CoP, que encierra aproximadamente el 95 % de los puntos 

registrados del CoP en su movimiento y es calculada mediante la ecuación 14:

Á𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 = (2𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹)�𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 − 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦2

Ecuación 14

Donde 𝐹𝐹𝐹𝐹 = 3,00 de la tabla de F estadística para un nivel de confianza de 1 − 𝛼𝛼𝛼𝛼 con: 𝛼𝛼𝛼𝛼 = 0,05 

cuando el tamaño de la muestra es >120. Por otro lado, 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 es el coeficiente de correlación 

entre 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝, se puede calcular mediante la ecuación 15:

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦 =  
1
𝑃𝑃𝑃𝑃
�

(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ∗ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)
(𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 ∗ 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦)

𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 15

Existe otra forma de calcular esta área de la elipse de confianza del 95 % del CoP y es 

mediante la ecuación 16 a la ecuación 20:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑃𝑃𝑃𝑃
�𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝) ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝𝑝𝑝)
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 16

(16)

𝑃𝑃𝑃𝑃 =  ��𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2� − 4 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 ∗ 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 )

Ecuación 17

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �2 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 + 𝑃𝑃𝑃𝑃)

Ecuación 18

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �2 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝑃𝑃𝑃𝑃)

Ecuación 19

𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝜋𝜋𝜋𝜋 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Ecuación 20

Donde 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 y 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 son las desviaciones estándar del desplazamiento del CoP en la dirección AP 

y ML, respectivamente (ecuaciones 12 y 13) y 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, es la covarianza entre los 

desplazamientos de CoP en AP y ML.

[T2] Desviación estándar del desplazamiento radial

La desviación estándar asociada al desplazamiento radial del CoP (SD-RD), puede calcularse 

mediante la ecuación 21:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 = �
1

𝑃𝑃𝑃𝑃 − 1
�(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 21

En donde, 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 es el desplazamiento radial promedio y 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = √𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝2 + 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝2 corresponde al 

desplazamiento radial para cada i-ésima muestra (prueba). 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 son los valores de las 

coordenadas en X (dirección ML) y en Y (dirección AP), respectivamente.

(17)

𝑃𝑃𝑃𝑃 =  ��𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2� − 4 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 ∗ 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 )

Ecuación 17

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �2 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 + 𝑃𝑃𝑃𝑃)

Ecuación 18

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �2 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝑃𝑃𝑃𝑃)

Ecuación 19

𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝜋𝜋𝜋𝜋 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Ecuación 20

Donde 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 y 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 son las desviaciones estándar del desplazamiento del CoP en la dirección AP 

y ML, respectivamente (ecuaciones 12 y 13) y 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, es la covarianza entre los 

desplazamientos de CoP en AP y ML.

[T2] Desviación estándar del desplazamiento radial

La desviación estándar asociada al desplazamiento radial del CoP (SD-RD), puede calcularse 

mediante la ecuación 21:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 = �
1

𝑃𝑃𝑃𝑃 − 1
�(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 21

En donde, 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 es el desplazamiento radial promedio y 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = √𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝2 + 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝2 corresponde al 

desplazamiento radial para cada i-ésima muestra (prueba). 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 son los valores de las 

coordenadas en X (dirección ML) y en Y (dirección AP), respectivamente.

(18)
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𝑃𝑃𝑃𝑃 =  ��𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2� − 4 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 ∗ 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 )

Ecuación 17

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �2 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 + 𝑃𝑃𝑃𝑃)

Ecuación 18

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �2 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝑃𝑃𝑃𝑃)

Ecuación 19

𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝜋𝜋𝜋𝜋 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Ecuación 20

Donde 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 y 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 son las desviaciones estándar del desplazamiento del CoP en la dirección AP 

y ML, respectivamente (ecuaciones 12 y 13) y 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, es la covarianza entre los 

desplazamientos de CoP en AP y ML.

[T2] Desviación estándar del desplazamiento radial

La desviación estándar asociada al desplazamiento radial del CoP (SD-RD), puede calcularse 

mediante la ecuación 21:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 = �
1

𝑃𝑃𝑃𝑃 − 1
�(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 21

En donde, 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 es el desplazamiento radial promedio y 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = √𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝2 + 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝2 corresponde al 

desplazamiento radial para cada i-ésima muestra (prueba). 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 son los valores de las 

coordenadas en X (dirección ML) y en Y (dirección AP), respectivamente.

(19)

𝑃𝑃𝑃𝑃 =  ��𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2� − 4 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 ∗ 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 )

Ecuación 17

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �2 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 + 𝑃𝑃𝑃𝑃)

Ecuación 18

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �2 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝑃𝑃𝑃𝑃)

Ecuación 19

𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝜋𝜋𝜋𝜋 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Ecuación 20

Donde 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 y 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 son las desviaciones estándar del desplazamiento del CoP en la dirección AP 

y ML, respectivamente (ecuaciones 12 y 13) y 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, es la covarianza entre los 

desplazamientos de CoP en AP y ML.

[T2] Desviación estándar del desplazamiento radial

La desviación estándar asociada al desplazamiento radial del CoP (SD-RD), puede calcularse 

mediante la ecuación 21:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 = �
1

𝑃𝑃𝑃𝑃 − 1
�(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 21

En donde, 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 es el desplazamiento radial promedio y 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = √𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝2 + 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝2 corresponde al 

desplazamiento radial para cada i-ésima muestra (prueba). 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 son los valores de las 

coordenadas en X (dirección ML) y en Y (dirección AP), respectivamente.

(20)

Donde 𝜎𝑦 y 𝜎𝑥 son las desviaciones estándar del desplazamiento del CoP en 

la dirección AP y ML, respectivamente (ecuaciones 12 y 13) y 𝑆𝐴𝑃𝑀𝐿, es la 

covarianza entre los desplazamientos de CoP en AP y ML.

Desviación estándar del desplazamiento radial
La desviación estándar asociada al desplazamiento radial del CoP (SD-RD), 

puede calcularse mediante la ecuación 21:

𝑃𝑃𝑃𝑃 =  ��𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2� − 4 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 ∗ 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 )

Ecuación 17
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Ecuación 18

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �2 ∗ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦2 + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥2 − 𝑃𝑃𝑃𝑃)
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Ecuación 20

Donde 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 y 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 son las desviaciones estándar del desplazamiento del CoP en la dirección AP 

y ML, respectivamente (ecuaciones 12 y 13) y 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, es la covarianza entre los 

desplazamientos de CoP en AP y ML.

[T2] Desviación estándar del desplazamiento radial

La desviación estándar asociada al desplazamiento radial del CoP (SD-RD), puede calcularse 

mediante la ecuación 21:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 = �
1

𝑃𝑃𝑃𝑃 − 1
�(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝)2
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

Ecuación 21

En donde, 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 es el desplazamiento radial promedio y 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = √𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝2 + 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝2 corresponde al 

desplazamiento radial para cada i-ésima muestra (prueba). 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 son los valores de las 

coordenadas en X (dirección ML) y en Y (dirección AP), respectivamente.

(21)

En donde, 𝑅𝐷𝑝𝑟𝑜𝑚 es el desplazamiento radial promedio y 𝑟𝑖 =                    co-

rresponde al desplazamiento radial para cada i-ésima muestra (prueba). 𝑥𝑖 y 

𝑦𝑖 son los valores de las coordenadas en X (dirección ML) y en Y (dirección 

AP), respectivamente.

Frecuencia
El análisis del dominio de la frecuencia es útil para evaluar las alteracio-

nes posturales causadas por enfermedades o condiciones específicas; dos 

ejemplos: los pacientes afectados por un dolor de cabeza crónico de tipo 

tensional, quienes presentan un aumento de la frecuencia de CoP, en com-

paración con un grupo de sujetos sanos y los niños con mielomeningocele 

que muestran una tendencia opuesta caracterizada por valores de frecuencia 

media reducidos (Vieira et al., 2009), entre otros.

En esta área de investigación, la identificación de los parámetros utiliza-

dos para el análisis del CoP en el tiempo-frecuencia, se realizó mediante una 

búsqueda exhaustiva en la literatura actual, con un tiempo de publicación 
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no mayor de seis años, en donde se encontró la aplicación de los siguientes 

parámetros:

•	 Transformada de Fourier a corto plazo (STFT)

•	 Densidad espectral de potencia (PSD)

•	 Relación de potencia de frecuencia entre bandas: frecuencia baja (0-0,3 

Hz), frecuencia media (0,3-1 Hz) y frecuencia alta (1-5 Hz)

•	 Frecuencia media (MPF) y frecuencia mediana (MDF)

•	 Ancho de banda del 99 %

•	 Ancho de banda de 3 dB

•	 Relación de potencia espectral (SPR)

Para una mejor comprensión de su desarrollo y aplicación, a continuación, 

se hace una breve descripción de cada uno de ellos.

Transformada de Fourier a corto plazo (STFT)
La transformada de Fourier (TF) transforma una señal en el dominio del 

tiempo en su correspondiente dominio de frecuencia y se puede obtener uti-

lizando la ecuación 22, en donde 𝑆(𝑛) corresponde a la señal de entrada en 

el dominio del tiempo (𝑛), 𝑆(𝑘) es la señal transformada en el dominio de 

la frecuencia (𝑘), N = total de número de muestras (Borisagar et al., 2019).

𝐴𝐴𝐴𝐴(𝑘𝑘𝑘𝑘) = �𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝) ∙ 𝑝𝑝𝑝𝑝−2𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗 , 𝑘𝑘𝑘𝑘 = 0,1, … ,𝑃𝑃𝑃𝑃 − 1
𝑁𝑁𝑁𝑁−1

𝑛𝑛𝑛𝑛=0

Ecuación 22

Pero la TF tiene algunas limitaciones dentro de las cuales se encuentran: no puede 

proporcionar localización simultánea de tiempo y frecuencia; no es apropiado para 

representar discontinuidades en las señales y no es muy útil para analizar señales no 

estacionarias variables en el tiempo, como es el caso para la señal CoP; motivos por los cuales 

para esos casos se utiliza la transformada de Fourier a corto plazo (STFT, por sus siglas en 

inglés).

Para señales no estacionarias, como lo es el CoP y para poder usar la TF, se aplica la 

STFT, en donde la serie de tiempo debe ser dividida en ventanas de tiempo relativamente 

cortas, con el objetivo de que la señal sea invariante en el tiempo durante cada ventana para 

luego aplicar la TF. Este uso de la TF aplicada a segmentos cortos de la señal de cada ventana 

es lo que se conoce como la STFT (figura 34).

Figura 34. Segmentación de la voz usando la ventana de Hamming para STFT

Fuente: Vaseghi (2007).

Lo que hace la STFT es segmentar el CoP en intervalos de tiempo cortos y calcular la TF 

para cada uno de ellos. Así, se obtiene el espectro de la señal para cada intervalo con la 

información de tiempo y frecuencia de forma simultánea; por eso, un punto crítico para este 

análisis es la longitud de la ventana que debe tener una buena relación entre la resolución del 

tiempo y la resolución de la frecuencia.

La STFT se puede calcular con la ecuación 23, en donde 𝑑𝑑𝑑𝑑 corresponde al tiempo de la 

señal, 𝑢𝑢𝑢𝑢 es el parámetro de la frecuencia de la señal, 𝑓𝑓𝑓𝑓(𝑑𝑑𝑑𝑑) es una señal de entrada y 𝑊𝑊𝑊𝑊 es una 

función de ventana (Borisagar et al., 2019):

(22)

Pero la TF tiene algunas limitaciones dentro de las cuales se encuentran: 

no puede proporcionar localización simultánea de tiempo y frecuencia; no 

es apropiado para representar discontinuidades en las señales y no es muy 

útil para analizar señales no estacionarias variables en el tiempo, como es el 

caso para la señal CoP; motivos por los cuales para esos casos se utiliza la 

transformada de Fourier a corto plazo (STFT, por sus siglas en inglés).

Para señales no estacionarias, como lo es el CoP y para poder usar la TF, 

se aplica la STFT, en donde la serie de tiempo debe ser dividida en ventanas 

de tiempo relativamente cortas, con el objetivo de que la señal sea invariante 
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en el tiempo durante cada ventana para luego aplicar la TF. Este uso de la TF 

aplicada a segmentos cortos de la señal de cada ventana es lo que se conoce 

como la STFT (figura 34).

Figura 34. Segmentación de la voz usando la ventana de Hamming para STFT

Fuente: Vaseghi (2007).

Lo que hace la STFT es segmentar el CoP en intervalos de tiempo cortos y 

calcular la TF para cada uno de ellos. Así, se obtiene el espectro de la señal 

para cada intervalo con la información de tiempo y frecuencia de forma 

simultánea; por eso, un punto crítico para este análisis es la longitud de la 

ventana que debe tener una buena relación entre la resolución del tiempo y 

la resolución de la frecuencia.

La STFT se puede calcular con la ecuación 23, en donde 𝑡 corresponde 

al tiempo de la señal, 𝑢 es el parámetro de la frecuencia de la señal, 𝑓(𝑡) es 

una señal de entrada y 𝑊 es una función de ventana (Borisagar et al., 2019):

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢(𝑑𝑑𝑑𝑑′,𝑢𝑢𝑢𝑢) = � [𝑓𝑓𝑓𝑓(𝑑𝑑𝑑𝑑) ∙ 𝑊𝑊𝑊𝑊(𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑′)] ∙ 𝑝𝑝𝑝𝑝−𝑒𝑒𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑒𝑒𝑒𝑒

Ecuación 23

En la STFT, la función de ventana cumple un papel muy importante —como se dijo 

anteriormente—. La ventana debe ser adecuadamente corta para que esa porción de señal 

pueda estar dentro de la ventana estacionaria. Pero una ventana corta tiene como desventaja 

de que no proporciona una buena localización de la señal en el dominio de la frecuencia, pero 

sí en el tiempo; y si la ventana es muy grande, la STFT se convierte en TF con una buena 

localización de frecuencia, pero no en el tiempo (Borisagar et al., 2019). Por tanto, es 

inminente una buena selección de la función de ventana.

Para esta aplicación en específico, se utilizó la ventana Hanning o Hann que tiene una 

forma sinusoidal, con un pico amplio, pero lóbulos laterales bajos, llegando al cero en ambos 

extremos, eliminando toda discontinuidad (figura 35). En general, este tipo de ventana es 

satisfactoria en el 95 % de los casos, dado que tiene buena resolución de frecuencia y pocas 

pérdidas espectrales, característica importante para la señal CoP. Igualmente, la ventana 

Hann se basa en una combinación de dos ventanas más simples: la suma de una rectangular 

y una coseno.

Figura 35. Ventanas de tiempo

Fuente: Camacho-Navarro et al. (2016).

(23)

En la STFT, la función de ventana cumple un papel muy importante —como 

se dijo anteriormente—. La ventana debe ser adecuadamente corta para que 

esa porción de señal pueda estar dentro de la ventana estacionaria. Pero 

una ventana corta tiene como desventaja de que no proporciona una buena 

localización de la señal en el dominio de la frecuencia, pero sí en el tiempo; 

y si la ventana es muy grande, la STFT se convierte en TF con una buena 

localización de frecuencia, pero no en el tiempo (Borisagar et al., 2019). Por 

tanto, es inminente una buena selección de la función de ventana.

Para esta aplicación en específico, se utilizó la ventana Hanning o Hann 

que tiene una forma sinusoidal, con un pico amplio, pero lóbulos laterales 
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bajos, llegando al cero en ambos extremos, eliminando toda discontinuidad 

(figura 35). En general, este tipo de ventana es satisfactoria en el 95 % de los 

casos, dado que tiene buena resolución de frecuencia y pocas pérdidas espec-

trales, característica importante para la señal CoP. Igualmente, la ventana 

Hann se basa en una combinación de dos ventanas más simples: la suma de 

una rectangular y una coseno.

Figura 35. Ventanas de tiempo

Fuente: Camacho-Navarro et al. (2016).

Densidad espectral de potencia (PSD)
Como definición, se puede indicar que la PSD (por sus siglas en inglés) des-

cribe la composición de la frecuencia en forma general de una señal, en 

términos de la densidad espectral de su valor cuadrático medio. Es decir, 

es la respuesta de frecuencia de una señal aleatoria o periódica (figura 36) 

(Rajaguru y Prabhakar, 2017; Zaknich, 2005) y esto nos da la distribución de 

la potencia media de la señal en función de la frecuencia. Generalmente, la 

amplitud de la PSD se normaliza mediante la resolución espectral empleada 

para digitalizar la señal.
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Figura 36. Densidad espectral de potencia de una señal

Fuente: Rajaguru y Prabhakar (2017).

De forma general, la PSD de una señal de tiempo aleatoria 𝑥(𝑡) se puede expre-

sar de dos formas que son equivalentes entre sí (Rajaguru y Prabhakar, 2017):

•	 Promedio de la magnitud de la transformada de Fourier al cuadrado, du-

rante un gran intervalo de tiempo (ecuación 24).

[T2] Densidad espectral de potencia (PSD)

Como definición, se puede indicar que la PSD (por sus siglas en inglés) describe la 

composición de la frecuencia en forma general de una señal, en términos de la densidad 

espectral de su valor cuadrático medio. Es decir, es la respuesta de frecuencia de una señal 

aleatoria o periódica (figura 36) (Rajaguru y Prabhakar, 2017; Zaknich, 2005) y esto nos da 

la distribución de la potencia media de la señal en función de la frecuencia. Generalmente, la 

amplitud de la PSD se normaliza mediante la resolución espectral empleada para digitalizar 

la señal.

Figura 36. Densidad espectral de potencia de una señal

Fuente: Rajaguru y Prabhakar (2017).

De forma general, la PSD de una señal de tiempo aleatoria 𝑥𝑥𝑥𝑥(𝑑𝑑𝑑𝑑) se puede expresar de dos 

formas que son equivalentes entre sí (Rajaguru y Prabhakar, 2017):

• Promedio de la magnitud de la transformada de Fourier al cuadrado, durante un gran 

intervalo de tiempo (ecuación 24).

𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝑓𝑓𝑓𝑓) = 𝑅𝑅𝑅𝑅 �
1

2𝐷𝐷𝐷𝐷
�� 𝑥𝑥𝑥𝑥(𝑑𝑑𝑑𝑑)𝑝𝑝𝑝𝑝−𝑒𝑒𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑇𝑇𝑇𝑇

−𝑇𝑇𝑇𝑇
�
2

�

Ecuación 24

(24)

•	 La transformada de Fourier de la función de autocorrelación (ecuaciones 

25 y 26).
• La transformada de Fourier de la función de autocorrelación (ecuaciones 25 y 26).

𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝑓𝑓𝑓𝑓) = � 𝑅𝑅𝑅𝑅𝑥𝑥𝑥𝑥(𝜏𝜏𝜏𝜏)𝑝𝑝𝑝𝑝−𝑒𝑒𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑇𝑇

−𝑇𝑇𝑇𝑇

Ecuación 25

𝑅𝑅𝑅𝑅𝑥𝑥𝑥𝑥(𝜏𝜏𝜏𝜏) = 𝑅𝑅𝑅𝑅{𝑥𝑥𝑥𝑥(𝑑𝑑𝑑𝑑)𝑥𝑥𝑥𝑥 ∗ (𝑑𝑑𝑑𝑑 + 𝜏𝜏𝜏𝜏)}

Ecuación 26

Actualmente, para el cálculo de la PSD, se encuentran dos enfoques principales para obtener 

la estimación espectral: el clásico (no paramétrico) y el no clásico (paramétrico). El enfoque 

clásico implica el uso de la TF de la estimación de la secuencia de autocorrelación hecha a 

partir de un conjunto de datos dado, que proporciona la transformación del dominio del 

tiempo al dominio de la frecuencia —como se indicó en las ecuaciones anteriores—. Y el 

enfoque paramétrico o no clásico, se basa en el uso de un modelo de proceso conocido o a

priori (Zaknich, 2005).

Algunos métodos de estimación espectral no paramétricos (clásico) importantes 

incluyen:

1. Método del periodograma

2. Método de periodograma modificado (ventanas)

3. Método de Bartlett: promedio de periodograma

4. Método de Welch

5. Método Blackman-Tukey

Siendo este último enfoque, especialmente el método de Welch, el más utilizado en el análisis 

de la señal del CoP. Inicialmente, diversos estudios utilizaron la TF para obtener la PSD, 

pero esta supone que la señal es estacionaria, y su comportamiento no es el mejor con una 

señal como la del CoP, que es considerada, no estacionaria. Asimismo, Bendat y Piersol 

(2012) y Shiavi (2007) indicaron que su aplicación conduce a una estimación del espectro 

(25)

• La transformada de Fourier de la función de autocorrelación (ecuaciones 25 y 26).

𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥(𝑓𝑓𝑓𝑓) = � 𝑅𝑅𝑅𝑅𝑥𝑥𝑥𝑥(𝜏𝜏𝜏𝜏)𝑝𝑝𝑝𝑝−𝑒𝑒𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑇𝑇

−𝑇𝑇𝑇𝑇

Ecuación 25

𝑅𝑅𝑅𝑅𝑥𝑥𝑥𝑥(𝜏𝜏𝜏𝜏) = 𝑅𝑅𝑅𝑅{𝑥𝑥𝑥𝑥(𝑑𝑑𝑑𝑑)𝑥𝑥𝑥𝑥 ∗ (𝑑𝑑𝑑𝑑 + 𝜏𝜏𝜏𝜏)}

Ecuación 26

Actualmente, para el cálculo de la PSD, se encuentran dos enfoques principales para obtener 

la estimación espectral: el clásico (no paramétrico) y el no clásico (paramétrico). El enfoque 

clásico implica el uso de la TF de la estimación de la secuencia de autocorrelación hecha a 

partir de un conjunto de datos dado, que proporciona la transformación del dominio del 

tiempo al dominio de la frecuencia —como se indicó en las ecuaciones anteriores—. Y el 

enfoque paramétrico o no clásico, se basa en el uso de un modelo de proceso conocido o a

priori (Zaknich, 2005).

Algunos métodos de estimación espectral no paramétricos (clásico) importantes 

incluyen:

1. Método del periodograma

2. Método de periodograma modificado (ventanas)

3. Método de Bartlett: promedio de periodograma

4. Método de Welch

5. Método Blackman-Tukey

Siendo este último enfoque, especialmente el método de Welch, el más utilizado en el análisis 

de la señal del CoP. Inicialmente, diversos estudios utilizaron la TF para obtener la PSD, 

pero esta supone que la señal es estacionaria, y su comportamiento no es el mejor con una 

señal como la del CoP, que es considerada, no estacionaria. Asimismo, Bendat y Piersol 

(2012) y Shiavi (2007) indicaron que su aplicación conduce a una estimación del espectro 

(26)

Actualmente, para el cálculo de la PSD, se encuentran dos enfoques 

principales para obtener la estimación espectral: el clásico (no paramétrico) 

y el no clásico (paramétrico). El enfoque clásico implica el uso de la TF de la 

estimación de la secuencia de autocorrelación hecha a partir de un conjunto 
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de datos dado, que proporciona la transformación del dominio del tiempo al 

dominio de la frecuencia —como se indicó en las ecuaciones anteriores—. 

Y el enfoque paramétrico o no clásico, se basa en el uso de un modelo de 

proceso conocido o a priori (Zaknich, 2005).

Algunos métodos de estimación espectral no paramétricos (clásico) im-

portantes incluyen:

1.	 Método del periodograma

2.	 Método de periodograma modificado (ventanas)

3.	 Método de Bartlett: promedio de periodograma

4.	 Método de Welch

5.	 Método Blackman-Tukey

Siendo este último enfoque, especialmente el método de Welch, el más 

utilizado en el análisis de la señal del CoP. Inicialmente, diversos estudios 

emplearon la TF para obtener la PSD, pero esta supone que la señal es 

estacionaria, y su comportamiento no es el mejor con una señal como la 

del CoP, que es considerada, no estacionaria. Asimismo, Bendat y Piersol 

(2012) y Shiavi (2007) indicaron que su aplicación conduce a una estimación 

del espectro del CoP que no converge, dado que el algoritmo de Fourier no 

tiene en cuenta el sesgo de estimación y la varianza.

Por tanto, sugieren el método de Welch que es una ampliación del método 

de Bartlett, también llamado el “método de segmentación y promediado”, 

en donde la función de muestra debe dividirse en 𝐾 segmentos que contienen 

𝑀 puntos de muestra. Este método permite superponer segmentos y cada 

segmento está separado por 𝐷 unidades de tiempo (figura 37).

Figura 37. Segmentos de una señal con 𝑀 puntos superpuestos por 𝑀−𝐷 puntos

Fuente: Shiavi (2007).
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Como se observa en la figura 37, se tiene una superposición de 𝑀−𝐷 puntos 

de la muestra, lo que hace que se formen 𝐾 = (𝑁−𝑀)/𝐷+1 segmentos, cuyo 

porcentaje de la superposición está dado por 100𝑀−𝐷/𝑀. La superposición 

lo que hace es crear más segmentos y permite tener más puntos dentro 

del segmento para un número determinado de segmentos, lo que permite 

reducir el sesgo, aunque estos no son estrictamente independientes y el 

factor de reducción de la varianza depende netamente de la ventana de 

datos (Shiavi, 2007).

Para cualquier ventana de datos, se define la función 𝑝(𝑙) como:

del CoP que no converge, dado que el algoritmo de Fourier no tiene en cuenta el sesgo de 

estimación y la varianza.

Por tanto, sugieren el método de Welch que es una ampliación del método de Bartlett, 

también llamado el “método de segmentación y promediado”, en donde la función de muestra 

debe dividirse en 𝐾𝐾𝐾𝐾 segmentos que contienen 𝑅𝑅𝑅𝑅 puntos de muestra. Este método permite 

superponer segmentos y cada segmento está separado por 𝑃𝑃𝑃𝑃 unidades de tiempo (figura 37).

Figura 37. Segmentos de una señal con 𝑅𝑅𝑅𝑅 puntos superpuestos por 𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃 puntos

Fuente: Shiavi (2007).

Como se observa en la figura 37, se tiene una superposición de 𝑅𝑅𝑅𝑅−𝑃𝑃𝑃𝑃 puntos de la muestra, 

lo que hace que se formen 𝐾𝐾𝐾𝐾 = (𝑃𝑃𝑃𝑃−𝑅𝑅𝑅𝑅)/𝑃𝑃𝑃𝑃+1 segmentos, cuyo porcentaje de la superposición 

está dado por 100𝑅𝑅𝑅𝑅−𝑃𝑃𝑃𝑃/𝑅𝑅𝑅𝑅. La superposición lo que hace es crear más segmentos y permite 

tener más puntos dentro del segmento para un número determinado de segmentos, lo que 

permite reducir el sesgo, aunque estos no son estrictamente independientes y el factor de 

reducción de la varianza depende netamente de la ventana de datos (Shiavi, 2007).

Para cualquier ventana de datos, se define la función 𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙) como:

𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙) =
(∑ 𝑑𝑑𝑑𝑑(𝑝𝑝𝑝𝑝)𝑑𝑑𝑑𝑑(𝑝𝑝𝑝𝑝 + 𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃)𝐴𝐴𝐴𝐴−1

𝑛𝑛𝑛𝑛=0 )2

(∑ 𝑑𝑑𝑑𝑑2(𝑝𝑝𝑝𝑝)𝐴𝐴𝐴𝐴−1
𝑛𝑛𝑛𝑛=0 )2

Ecuación 27

El factor de reducción de la varianza es:

(27)

El factor de reducción de la varianza es:

𝐾𝐾𝐾𝐾

1 + 2∑ 𝐾𝐾𝐾𝐾 − 1
𝑘𝑘𝑘𝑘 𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙)𝐾𝐾𝐾𝐾−1

𝑙𝑙𝑙𝑙=1

Ecuación 28

El grado equivalente de libertad es el doble de este factor. Diversas investigaciones, en donde 

hacen estimaciones de la PSD con señales simuladas, sugieren que se pueden obtener buenos 

resultados con una superposición entre el 50 % y el 65 % con una ventana de datos de Hann 

o Parzen. Igualmente, en trabajos doctorales han utilizado el periodograma de Welch, con 

una ventana tipo Hamming de longitud 512, para estimar la densidad espectral (Guimarães, 

2015).

Finalmente, es importante indicar que con el solapamiento, overlap o superposiciones, 

se incrementa el número de las secuencias que van a ser promediadas, lo que hace que de 

esta forma se genere una reducción en la varianza, siempre con un compromiso en la 

resolución del método de estimación espectral; es decir, que el método de Welch utiliza 

ventanas superpuestas para reducir el ruido, lo que puede ser una desventaja, ya que se puede 

perder algo de resolución de frecuencia, que puede significar un problema para ciertas 

señales, específicamente para aquellas cuya frecuencia es alta, que no es el caso para la serie 

de tiempo del centro de presión.

[T2] Relación de potencia de frecuencia entre bandas: frecuencia baja (0-0,3 Hz), media 

(0,3-1 Hz) y alta (1-5 Hz)

Esta relación de diferentes bandas de frecuencia, lo que hace es proporcionarnos información 

sobre la distribución de potencia en la estabilidad postural en el dominio de la frecuencia. 

Para este caso, los límites definidos de las bandas de frecuencia para comparar son: 

frecuencia baja (0-0,3 Hz), frecuencia media (0,3-1 Hz) y frecuencia alta (1-5 Hz) (Nagymáté 

et al., 2019).

Se lleva a cabo este tipo de análisis, en vista de que varios estudios han indicado que 

diferentes circuitos neurofisiológicos subyacen en distintas frecuencias durante la estabilidad 

postural, para la regulación de la postura bípeda. Igualmente, se indica que el componente 

frecuencial (90 % de la energía total) para el mantenimiento de esa postura, se encuentra por 

(28)

El grado equivalente de libertad es el doble de este factor. Diversas investiga-

ciones, en donde hacen estimaciones de la PSD con señales simuladas, su-

gieren que se pueden obtener buenos resultados con una superposición entre 

el 50 % y el 65 % con una ventana de datos de Hann o Parzen. Igualmente, 

en trabajos doctorales han utilizado el periodograma de Welch, con una 

ventana tipo Hamming de longitud 512, para estimar la densidad espectral 

(Guimarães, 2015).

Finalmente, es importante indicar que con el solapamiento, overlap o 

superposiciones, se incrementa el número de las secuencias que van a ser 

promediadas, lo que hace que de esta forma se genere una reducción en 

la varianza, siempre con un compromiso en la resolución del método de 

estimación espectral; es decir, que el método de Welch utiliza ventanas su-

perpuestas para reducir el ruido, lo que puede ser una desventaja, ya que se 

puede perder algo de resolución de frecuencia, que podría significar un pro-

blema para ciertas señales, específicamente para aquellas cuya frecuencia es 

alta, que no es el caso para la serie de tiempo del centro de presión.
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Relación de potencia de frecuencia entre bandas: frecuencia 
baja (0-0,3 Hz), media (0,3-1 Hz) y alta (1-5 Hz)
Esta relación de diferentes bandas de frecuencia, lo que hace es proporcionar-

nos información sobre la distribución de potencia en la estabilidad postural 

en el dominio de la frecuencia. Para este caso, los límites definidos de las ban-

das de frecuencia para comparar son: frecuencia baja (0-0,3 Hz), frecuencia 

media (0,3-1 Hz) y frecuencia alta (1-5 Hz) (Nagymáté et al., 2019).

Se lleva a cabo este tipo de análisis, en vista de que varios estudios han 

indicado que diferentes circuitos neurofisiológicos subyacen en distintas 

frecuencias durante la estabilidad postural, para la regulación de la postu-

ra bípeda. Igualmente, se indica que el componente frecuencial (90 % de la 

energía total) para el mantenimiento de esa postura, se encuentra por debajo 

de 2 Hz, y se distribuye normalmente en eventos como la respiración y los 

latidos del corazón (Vieira et al., 2009).

Hay algunos ejemplos de subdivisión del espectro de potencia en venta-

nas de frecuencia que se han propuesto hace varios años, como se describe 

a continuación:

•	 En la investigación de Golomer et al. (1997), dividieron la energía total 

del espectro de potencia en tres bandas: 0-0,5 Hz, 0,5-2 Hz y 2-20 Hz.

•	 Oppenheim et al. (1999) analizaron diferentes bandas de frecuencia: 

0-0,1 Hz, 0,1-0,5 Hz, 0,5-1 Hz y >1 Hz, en donde sugirieron que las 

frecuencias bajas están vinculadas con el control visual, las medias-bajas 

con los reflejos vestibulares, la media-alta con actividad somatosenso-

rial y la alta frecuencia con función del sistema nervioso central. De 

acuerdo con lo anterior, los autores hicieron la siguiente distribución: 

0,01-0,1 Hz para el sistema visual, 0,1-0,5 Hz para el vestibular, 0,5-1 Hz 

el propioceptivo y mayor a 1 Hz para el sistema nervioso central. Las 

cuales también fueron analizadas por Prieto et al. (1996), Ferdjallah et al. 

(1997) y Loughlin y Redfern (2001).

En cuanto a las bandas de frecuencia, se puede indicar que no existe un 

acuerdo universal sobre la especificidad de estas para identificar alteraciones 

en los sistemas de control postural, pero sí puede indicar que la banda de 
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baja frecuencia está relacionada con el control visual, la banda de frecuencia 

media es sensible a la información vestibular y somatosensorial, y las altas 

frecuencias son producto de la actividad muscular y el control propioceptivo.

Por tanto, para el presente estudio se utilizarán las bandas de frecuencia 

propuestas en el artículo de Nagymáté et al. (2019), calculando el espectro de 

potencia con el método del periodograma:

•	 Frecuencia baja: 0-0,3 Hz

•	 Frecuencia media: 0,3-1 Hz

•	 Frecuencia alta: 1-5 Hz

El periodograma calcula los espectros de potencia para toda la señal de 

entrada, como se observa en la ecuación 29 (Rajaguru y Prabhakar, 2017).

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
|𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐹𝐹𝐹𝐹(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎))|2

𝑃𝑃𝑃𝑃

Ecuación 29

𝐹𝐹𝐹𝐹(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) es la transformada de Fourier de la señal y 𝑃𝑃𝑃𝑃 es el factor de normalización, en 

donde se toma por defecto el número de muestras de la señal. El cálculo del periodograma se 

mejora mediante el uso de ventanas espectrales.

El resultado del periodograma a menudo se normaliza mediante un factor de 

multiplicación para que el resultado satisfaga el teorema de Parseval (ecuación 30), lo que 

supone que el resultado de la transformada rápida de Fourier (FFT) en el dominio de la 

frecuencia se calcula a partir de los datos de la señal en el dominio del tiempo, y donde 𝑃𝑃𝑃𝑃 es 

nuevamente el número de valores en el dominio del tiempo de la señal (Rajaguru y Prabhakar, 

2017).

1
𝑃𝑃𝑃𝑃
� |𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑝𝑝𝑝𝑝]|2
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=0

= � |𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑝𝑝𝑝𝑝]|2
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=0

Ecuación 30

[T2] Frecuencia de potencia media (MPF) y mediana (MDF)

La frecuencia de potencia media (MPF) es la frecuencia a la que se alcanza la potencia media; 

por ejemplo, para una señal puramente sinusoidal, la frecuencia de potencia media 

corresponde a la frecuencia de la señal.

Para su cálculo, se utiliza lo propuesto por Nagymáté y Kiss (2016), quienes se basaron 

en la investigación de Oskoei y Hu (2008). La MPF corresponde a la frecuencia media 

ponderada en la que los componentes de frecuencia 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 están ponderados por su potencia 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

y 𝑅𝑅𝑅𝑅 es el número de intervalos de frecuencia (ecuación 31).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ 𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴
𝑒𝑒𝑒𝑒=1

∑ 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴
𝑒𝑒𝑒𝑒=1

Ecuación 31

(29)

𝐹(𝑠𝑖𝑔𝑎𝑛𝑙) es la transformada de Fourier de la señal y 𝑁 es el factor de norma-

lización, en donde se toma por defecto el número de muestras de la señal. El 

cálculo del periodograma se mejora mediante el uso de ventanas espectrales.

El resultado del periodograma a menudo se normaliza mediante un fac-

tor de multiplicación para que el resultado satisfaga el teorema de Parseval 

(ecuación 30), lo que supone que el resultado de la transformada rápida de 

Fourier (FFT) en el dominio de la frecuencia se calcula a partir de los datos 

de la señal en el dominio del tiempo, y donde 𝑁 es nuevamente el número de 

valores en el dominio del tiempo de la señal (Rajaguru y Prabhakar, 2017).

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
|𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐹𝐹𝐹𝐹(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎))|2

𝑃𝑃𝑃𝑃

Ecuación 29

𝐹𝐹𝐹𝐹(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) es la transformada de Fourier de la señal y 𝑃𝑃𝑃𝑃 es el factor de normalización, en 

donde se toma por defecto el número de muestras de la señal. El cálculo del periodograma se 

mejora mediante el uso de ventanas espectrales.

El resultado del periodograma a menudo se normaliza mediante un factor de 

multiplicación para que el resultado satisfaga el teorema de Parseval (ecuación 30), lo que 

supone que el resultado de la transformada rápida de Fourier (FFT) en el dominio de la 

frecuencia se calcula a partir de los datos de la señal en el dominio del tiempo, y donde 𝑃𝑃𝑃𝑃 es 

nuevamente el número de valores en el dominio del tiempo de la señal (Rajaguru y Prabhakar, 

2017).

1
𝑃𝑃𝑃𝑃
� |𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑝𝑝𝑝𝑝]|2
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=0

= � |𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑝𝑝𝑝𝑝]|2
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=0

Ecuación 30

[T2] Frecuencia de potencia media (MPF) y mediana (MDF)

La frecuencia de potencia media (MPF) es la frecuencia a la que se alcanza la potencia media; 

por ejemplo, para una señal puramente sinusoidal, la frecuencia de potencia media 

corresponde a la frecuencia de la señal.

Para su cálculo, se utiliza lo propuesto por Nagymáté y Kiss (2016), quienes se basaron 

en la investigación de Oskoei y Hu (2008). La MPF corresponde a la frecuencia media 

ponderada en la que los componentes de frecuencia 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 están ponderados por su potencia 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

y 𝑅𝑅𝑅𝑅 es el número de intervalos de frecuencia (ecuación 31).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ 𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴
𝑒𝑒𝑒𝑒=1

∑ 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴
𝑒𝑒𝑒𝑒=1

Ecuación 31

(30)

Frecuencia de potencia media (MPF) y mediana (MDF)
La frecuencia de potencia media (MPF) es la frecuencia a la que se alcanza 

la potencia media; por ejemplo, para una señal puramente sinusoidal, la fre-

cuencia de potencia media corresponde a la frecuencia de la señal.

Para su cálculo, se utiliza lo propuesto por Nagymáté y Kiss (2016), 

quienes se basaron en la investigación de Oskoei y Hu (2008). La MPF 
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corresponde a la frecuencia media ponderada en la que los componentes de 

frecuencia 𝑓𝑗 están ponderados por su potencia 𝑃𝑗 y 𝑀 es el número de inter-

valos de frecuencia (ecuación 31).

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
|𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐹𝐹𝐹𝐹(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎))|2

𝑃𝑃𝑃𝑃

Ecuación 29

𝐹𝐹𝐹𝐹(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) es la transformada de Fourier de la señal y 𝑃𝑃𝑃𝑃 es el factor de normalización, en 

donde se toma por defecto el número de muestras de la señal. El cálculo del periodograma se 

mejora mediante el uso de ventanas espectrales.

El resultado del periodograma a menudo se normaliza mediante un factor de 

multiplicación para que el resultado satisfaga el teorema de Parseval (ecuación 30), lo que 

supone que el resultado de la transformada rápida de Fourier (FFT) en el dominio de la 

frecuencia se calcula a partir de los datos de la señal en el dominio del tiempo, y donde 𝑃𝑃𝑃𝑃 es 

nuevamente el número de valores en el dominio del tiempo de la señal (Rajaguru y Prabhakar, 

2017).

1
𝑃𝑃𝑃𝑃
� |𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑝𝑝𝑝𝑝]|2
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=0

= � |𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑝𝑝𝑝𝑝]|2
𝑁𝑁𝑁𝑁−1

𝑖𝑖𝑖𝑖=0

Ecuación 30

[T2] Frecuencia de potencia media (MPF) y mediana (MDF)

La frecuencia de potencia media (MPF) es la frecuencia a la que se alcanza la potencia media; 

por ejemplo, para una señal puramente sinusoidal, la frecuencia de potencia media 

corresponde a la frecuencia de la señal.

Para su cálculo, se utiliza lo propuesto por Nagymáté y Kiss (2016), quienes se basaron 

en la investigación de Oskoei y Hu (2008). La MPF corresponde a la frecuencia media 

ponderada en la que los componentes de frecuencia 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 están ponderados por su potencia 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

y 𝑅𝑅𝑅𝑅 es el número de intervalos de frecuencia (ecuación 31).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ 𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴
𝑒𝑒𝑒𝑒=1

∑ 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴
𝑒𝑒𝑒𝑒=1

Ecuación 31

(31)

Por otro lado, la frecuencia de potencia mediana (MDF), es la frecuencia para 

la cual la mitad de la potencia está por encima y la mitad por debajo, es decir, es 

el valor de frecuencia que separa el espectro de potencia en dos áreas de igual 

energía. Como para el cálculo anterior (ecuación 32), la MDF fue calculada 

según lo propuesto por Oskoei y Hu (2008) y Nagymáté y Kiss (2016).

Por otro lado, la frecuencia de potencia mediana (MDF), es la frecuencia para la cual la mitad 

de la potencia está por encima y la mitad por debajo, es decir, es el valor de frecuencia que 

separa el espectro de potencia en dos áreas de igual energía. Como para el cálculo anterior 

(ecuación 32), la MDF fue calculada según lo propuesto por Oskoei y Hu (2008) y Nagymáté 

y Kiss (2016).

� 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑒𝑒𝑒𝑒=1

= � 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

𝐴𝐴𝐴𝐴

𝑒𝑒𝑒𝑒=𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

=
1
2
�𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

𝐴𝐴𝐴𝐴

𝑒𝑒𝑒𝑒=1

Ecuación 32

[T2] Ancho de banda ocupado del 99 %

Este término corresponde al ancho de banda que contiene el 99 % de la potencia total, tal 

como lo indica su nombre. Y se calcula la frecuencia angular normalizada del ancho de banda 

ocupado del 99 %, tal como lo propusieron Luengas y Toloza (2020a). Este se obtiene “a 

partir del espectro de potencia de la señal del CoP en el dominio del tiempo, empleando una 

ventana rectangular y considerando la frecuencia de muestreo” (Luengas y Toloza, 2020a).

Para obtenerlo, inicialmente se evalúa la estimación de la DSP con el método del 

periodograma (introducido anteriormente), pero utilizando una ventana de Kaiser y 

seguidamente, la DSP se integra con una aproximación rectangular. Por tanto, el ancho de 

banda del 99 % se obtiene de las interceptaciones de frecuencia, en donde la potencia se 

encuentra entre el 0,5 % y el 99,5 % del total en el espectro de la frecuencia (Luengas y 

Toloza, 2020a).

Actualmente, algunos algoritmos de análisis espectral incluyen la FFT, el 

correlograma, el periodograma de Welch, la técnica de modelado paramétrico autorregresivo, 

entre otros. Y además se pueden emplear diversas funciones de ventana del dominio del 

tiempo para aplicarlas a la señal de tiempo discreto, como, por ejemplo, las familias de las 

ventanas Bartlett, Blackman, Hamming, Hann, Kaiser y la rectangular. Siendo la ventana de 

Kaiser, también llamada ventana de Kaiser- Bessel, la empleada para la obtención del ancho 

de banda ocupado del 99 %.

(32)

Ancho de banda ocupado del 99 %
Este término corresponde al ancho de banda que contiene el 99 % de la po-

tencia total, tal como lo indica su nombre. Y se calcula la frecuencia angular 

normalizada del ancho de banda ocupado del 99 %, tal como lo propusieron 

Luengas y Toloza (2020a). Este se obtiene “a partir del espectro de potencia 

de la señal del CoP en el dominio del tiempo, empleando una ventana rectan-

gular y considerando la frecuencia de muestreo” (Luengas y Toloza, 2020a).

Para obtenerlo, inicialmente se evalúa la estimación de la DSP con el 

método del periodograma (introducido anteriormente), pero utilizando una 

ventana de Kaiser y seguidamente, la DSP se integra con una aproximación 

rectangular. Por tanto, el ancho de banda del 99 % se obtiene de las intercep-

taciones de frecuencia, en donde la potencia se encuentra entre el 0,5 % y el 

99,5 % del total en el espectro de la frecuencia (Luengas y Toloza, 2020a).

Actualmente, algunos algoritmos de análisis espectral incluyen la FFT, 

el correlograma, el periodograma de Welch, la técnica de modelado pa-

ramétrico autorregresivo, entre otros. Y además se pueden emplear diversas 

funciones de ventana del dominio del tiempo para aplicarlas a la señal de 
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tiempo discreto, como, por ejemplo, las familias de las ventanas Bartlett, 

Blackman, Hamming, Hann, Kaiser y la rectangular. Siendo la ventana de 

Kaiser, también llamada ventana de Kaiser-Bessel, la empleada para la ob-

tención del ancho de banda ocupado del 99 %.

La función viene dada por la ecuación 33, en donde La función viene dada por la ecuación 33, en donde 𝛼𝛼𝛼𝛼 = 𝐴𝐴𝐴𝐴−1
2

 𝑝𝑝𝑝𝑝 𝐴𝐴𝐴𝐴0 es la función de Bessel 

modificada de orden cero de primer tipo; 𝛽𝛽𝛽𝛽 es el parámetro de la forma; 𝐿𝐿𝐿𝐿 corresponde al 

orden del filtro. Por tanto, modificando 𝐿𝐿𝐿𝐿 y 𝛽𝛽𝛽𝛽, se ajusta la amplitud de los lóbulos laterales y 

el ancho del lóbulo principal (Oppenheim y Schafer, 2012).

𝜔𝜔𝜔𝜔𝐾𝐾𝐾𝐾(𝑝𝑝𝑝𝑝) =

⎩
⎪
⎨

⎪
⎧𝐴𝐴𝐴𝐴0 �𝛽𝛽𝛽𝛽�1 − �𝑝𝑝𝑝𝑝 − 𝛼𝛼𝛼𝛼
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Es importante indicar que cuando 𝛽𝛽𝛽𝛽 = 0, la ventana de Kaiser se convierte en una ventana 

rectangular. En la figura 38 se observa la ventana de Kaiser cuando se modifica el valor 𝛽𝛽𝛽𝛽.

Figura 38. Ventana de Kaiser con L = 8 y con variaciones de β

Fuente: Poularikas (2006).
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Ecuación 33

Es importante indicar que cuando 𝛽𝛽𝛽𝛽 = 0, la ventana de Kaiser se convierte en una ventana 

rectangular. En la figura 38 se observa la ventana de Kaiser cuando se modifica el valor 𝛽𝛽𝛽𝛽.

Figura 38. Ventana de Kaiser con L = 8 y con variaciones de β

Fuente: Poularikas (2006).

[T2] Ancho de banda de 3 dB

(33)

Es importante indicar que cuando 𝛽 = 0, la ventana de Kaiser se convierte 

en una ventana rectangular. En la figura 38 se observa la ventana de Kaiser 

cuando se modifica el valor 𝛽.

Figura 38. Ventana de Kaiser con L = 8 y con variaciones de β

Fuente: Poularikas (2006).
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Ancho de banda de 3 dB
También llamado ancho de banda o punto de media potencia, corresponde 

al punto en donde la salida de la energía se ha disminuido a la mitad de su 

valor pico, que corresponde a un nivel de 3 dB, aproximadamente.

Como para el ítem anterior, primero se obtiene el espectro de potencia con 

el método del periodograma y con la ventana de Kaiser. Posteriormente, se 

debe calcular un nivel de referencia que corresponde a un nivel máximo de 

potencia del espectro, que también es llamada la “frecuencia pico”. El ancho 

de banda se calcula a partir de las intercepciones de frecuencia donde el es-

pectro cae por debajo del nivel de referencia en 3 dB, o se encuentra hacia el 

final del espectro (es decir, el que esté más cerca) (Luengas y Toloza, 2020a).

Relación de potencia espectral (SPR)
El cálculo de este término ha sido propuesto por Gergely Nagymáté en su te-

sis doctoral denominada Stabilometric parameter analyses and optical based motion 
analysis (Nagymáté, 2019) y fue implementado en la presente investigación.

El autor indica que la SPR es la relación de la potencia espectral total 

entre las dos direcciones del CoP: ML y AP, lo que permite caracterizar la 

tasa de distribución o la relación de potencia de la frecuencia presente en el 

balanceo postural.
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Capítulo 3

Análisis no lineal

Hasta hace unos años, las señales biomédicas se habían venido caracterizan-

do y analizando con técnicas de análisis lineal, es decir, se usaban parámetros 

de orden temporal y frecuencial o de tiempo-frecuencia con el supuesto de 

que las series de tiempo eran estacionarias; pero actualmente se conoce que 

las señales biomédicas son no estacionarias, lo que implica que presentan 

un comportamiento que puede variar a lo largo del tiempo, producto de las 

múltiples entradas de información que puede contener un sistema, lo que 

hace que presenten un comportamiento no lineal.

Recientemente, se conocen diversos métodos para analizar las señales 

que presentan un comportamiento no estacionario, siendo la medida de la 

entropía uno de ellos. Para el caso de las señales biomédicas, la entropía se 

ha utilizado con el objetivo de caracterizar la regularidad o periodicidad de 

la señal, lo que permitiría caracterizar, diferenciar o predecir un estado pato-

lógico de uno normal. Lo que finalmente se busca con la entropía, es evaluar 

la similitud de una señal a lo largo del tiempo y, para ello, en la literatura se 

propone la utilización de la entropía aproximada, la entropía muestral y la 

entropía multiescala, las cuales se describirán en este capítulo.

Entre otras técnicas existentes para analizar comportamientos biomédi-

cos, se encuentra la teoría matemática de la información (TI) promulgada 

por Shannon en 1948 (Shannon, 1948), la cual toma como base la entro-

pía desde el punto de vista de la información, es decir, la probabilidad de 

ocurrencia de eventos. A partir de allí, establece la existencia de relación 

entre variables de entrada y salida, sin tener en cuenta el tipo de relación y 
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determina los valores ideales de cantidad de información que se debe tener 

en un sistema. En este apartado se da a conocer la manera de aplicar TI para 

estudiar la estabilidad estática postural.

Un tercer tipo de análisis no lineal que se trata es el principio de agru-

pación o clustering, donde se separan los datos en agrupaciones de acuerdo 

con las características que presentan. Las particularidades de los datos para 

agruparlos se obtienen usando diferentes medidas. La descripción del méto-

do de agrupamiento se aborda en este capítulo.

Entropía
Hace pocos años, el análisis del sistema del control postural se limitaba a 

condiciones lineales, porque la mayoría de los métodos disponibles para 

analizar estas series de tiempo no estacionarias dependían del análisis de 

Fourier y, a menudo, se limitaban al sistema lineal. Cuando se utilizan méto-

dos que se basan en el análisis de Fourier, el cálculo del espectro de potencia 

se presenta como una distribución en el tiempo-frecuencia a medida que la 

ventana se mueve en el eje del tiempo, lo que hace que este método no sea el 

más apropiado para las series de tiempo no estacionarias.

Debido a esas falencias, recientemente, se han desarrollado los algorit-

mos de análisis basados en entropía para analizar sistemas no lineales y 

no estacionarios, incluida la salida de datos fisiológicos del cuerpo humano 

(Costa et al., 2002; Peng et al., 2009).

Actualmente, se utilizan medidas de entropía para evaluar la regularidad 

o previsibilidad dentro de las series temporales del CoP, recopiladas en dife-

rentes condiciones de prueba o en distintos grupos experimentales (Jiang et 

al., 2013; Rhea et al., 2014).

De acuerdo con lo anterior, uno de los objetivos de esta investigación es 

ver si los métodos basados en entropía se pueden aplicar para analizar los 

datos del CoP en la población de estudio: personas con amputación transti-

bial unilateral en comparación con un grupo de individuos sin amputación.

El análisis de la entropía permite cuantificar cómo los cambios en la salud 

fisiológica afectan la regulación de las fluctuaciones posturales, en este caso 

por medio del análisis del CoP. En cuanto al concepto de la entropía, los 
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autores Lipsitz y Goldberger (1992) y Lipsitz (2002) proponen la “hipótesis 

de la pérdida de complejidad”, la cual indica cómo la ruptura de la función 

fisiológica, asociada con la enfermedad y el envejecimiento es provocada por 

una reducción en la capacidad de la compleja red de interacciones involucra-

das en la regulación de las salidas fisiológicas. La hipótesis anterior insinúa 

que el deterioro de la salud es producto de la reducción de los sistemas para 

generar soluciones que se adapten a las actividades de la vida diaria.

En la figura 39, los autores presentan lo que propusieron, en donde a 

medida que se envejece se refleja en una función fisiológica deteriorada, 

haciendo que las interacciones entre los elementos del sistema se deterioren, 

lo que produce una reducción en la variabilidad, que se manifiesta en una 

menor complejidad general.

Figura 39. Relación de la función fisiológica, la variabilidad y la complejidad

Fuente: Busa y Van Emmerik (2016).

Los cambios en los procesos fisiológicos que acompañan a las enfermedades 

y al envejecimiento pueden afectar este sistema en múltiples niveles; por 

tanto, la identificación de la relación entre el déficit fisiológico y las escalas 
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de tiempo en las que afectan el control postural proporcionarán información 

fundamental para evaluar tanto la gravedad de la enfermedad como la 

eficacia de los tratamientos.

Por tanto, la entropía es un método de extracción de características que 

mide la complejidad del sistema en el dominio del tiempo y se ha aplicado 

con rigurosidad en el diagnóstico de fallas y la detección de señales patológi-

cas (Hornero et al., 2007; Howedi et al., 2019; Lake et al., 2002; Li et al., 2019; 

Nicolaou y Georgiou, 2011).

El primer algoritmo de entropía lo propuso Pincus (1991), con la entro-

pía aproximada (ApEn), que se basa en la teoría de la entropía de Shannon. 

Para su cálculo se utiliza la ecuación 34.

Figura 39. Relación de la función fisiológica, la variabilidad y la complejidad

Fuente: Busa y Van Emmerik (2016).

Los cambios en los procesos fisiológicos que acompañan a las enfermedades y al 

envejecimiento pueden afectar este sistema en múltiples niveles; por tanto, la identificación 

de la relación entre el déficit fisiológico y las escalas de tiempo en las que afectan el control 

postural proporcionarán información fundamental para evaluar tanto la gravedad de la 

enfermedad como la eficacia de los tratamientos.

Por tanto, la entropía es un método de extracción de características que mide la 

complejidad del sistema en el dominio del tiempo y se ha aplicado con rigurosidad en el 

diagnóstico de fallas y la detección de señales patológicas (Hornero et al., 2007; Howedi et 

al., 2019; Lake et al., 2002; Li et al., 2019; Nicolaou y Georgiou, 2011).

El primer algoritmo de entropía lo propuso Pincus (1991), con la entropía aproximada 

(ApEn), que se basa en la teoría de la entropía de Shannon. Para su cálculo se utiliza la 

ecuación 34.

𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑𝑑𝑑, 𝑝𝑝𝑝𝑝,𝑃𝑃𝑃𝑃) = ∅𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝) − ∅𝑝𝑝𝑝𝑝+1(𝑝𝑝𝑝𝑝)

Ecuación 34

(34)

Donde, 𝑚 corresponde a la distancia entre los puntos de la serie de tiempo 

que se van a comparar. 𝑟 es el radio de similitud. 𝑁, es la longitud de la serie 

de tiempo. 𝜙 corresponde a la probabilidad de que los puntos a 𝑚 distancia 

estén dentro de la distancia 𝑟.

Pero la entropía ApEn en su cálculo presenta términos autocomparables 

presentando un sesgo en su resultado. Este tipo de sesgo da como resultado 

dos desventajas: 1) el cálculo de la ApEn depende, en gran medida, de la 

longitud de los datos y 2) falta de correlación entre el resultado de ApEn y 

la complejidad de la señal.

Debido a esas desventajas, esta técnica ha sido desplazada por la entropía 

muestral (SampEn) que presentó una mayor sensibilidad y confiabilidad en 

sus resultados. SampEn fue introducida por Richman y Moorman (2000), 

quienes eliminaron el sesgo de autoajuste presente en el algoritmo de ApEn.

Este cambio se lleva a cabo mediante la alteración de la forma en que la 

𝑚 y 𝑚 + 1 ventanas se comparan (ecuación 35). Los parámetros de 𝑚, 𝑟, 𝑁 

y 𝜙 conservan su significado de la ecuación 34.

Donde, 𝑑𝑑𝑑𝑑 corresponde a la distancia entre los puntos de la serie de tiempo que se van a 

comparar. 𝑝𝑝𝑝𝑝 es el radio de similitud. 𝑃𝑃𝑃𝑃, es la longitud de la serie de tiempo. 𝜙𝜙𝜙𝜙 corresponde a 

la probabilidad de que los puntos a 𝑑𝑑𝑑𝑑 distancia estén dentro de la distancia 𝑝𝑝𝑝𝑝.

Pero la entropía ApEn en su cálculo presenta términos autocomparables presentando 

un sesgo en su resultado. Este tipo de sesgo da como resultado dos desventajas: 1) el cálculo 

de la ApEn depende, en gran medida, de la longitud de los datos y 2) falta de correlación 

entre el resultado de ApEn y la complejidad de la señal.

Debido a esas desventajas, esta técnica ha sido desplazada por la entropía muestral 

(SampEn) que presentó una mayor sensibilidad y confiabilidad en sus resultados. SampEn 

fue introducida por Richman y Moorman (2000), quienes eliminaron el sesgo de autoajuste 

presente en el algoritmo de ApEn.

Este cambio se lleva a cabo mediante la alteración de la forma en que la 𝑑𝑑𝑑𝑑 y 𝑑𝑑𝑑𝑑 + 1 

ventanas se comparan (ecuación 35). Los parámetros de 𝑑𝑑𝑑𝑑, 𝑝𝑝𝑝𝑝,𝑃𝑃𝑃𝑃 y 𝜙𝜙𝜙𝜙 conservan su significado 

de la ecuación 34.
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∅𝑝𝑝𝑝𝑝+1(𝑝𝑝𝑝𝑝)
∅𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝)

�

Ecuación 35

En el algoritmo de SampEn, en donde se elimina el vector que se compara consigo mismo, 

lo hace más confiable estadísticamente para identificar las variaciones en las fluctuaciones 

punto a punto presentes en las señales biomédicas; por ejemplo, en el ritmo cardíaco y en el 

control postural (Richman y Moorman, 2000; Yentes et al., 2013). Esa confiabilidad de 

SampEn permite hacer inferencias sobre la naturaleza de las fluctuaciones de punto a punto 

en una sola escala de tiempo.

Para comprender mejor el proceso de su cálculo, se describe utilizando la figura 40, en 

donde se tiene una serie de tiempo {𝑥𝑥𝑥𝑥(𝑝𝑝𝑝𝑝): 1 ≤ 𝑝𝑝𝑝𝑝 ≤ 50}. Para este ejemplo, 𝑑𝑑𝑑𝑑 = 2 y 𝑝𝑝𝑝𝑝 = 0.15 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(SD = desviación estándar).

Figura 40. Ejemplo de la entropía SampEn

(35)
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En el algoritmo de SampEn, en donde se elimina el vector que se compara 

consigo mismo, lo hace más confiable estadísticamente para identificar 

las variaciones en las fluctuaciones punto a punto presentes en las señales 

biomédicas; por ejemplo, en el ritmo cardíaco y en el control postural 

(Richman y Moorman, 2000; Yentes et al., 2013). Esa confiabilidad de 

SampEn permite hacer inferencias sobre la naturaleza de las fluctuaciones 

de punto a punto en una sola escala de tiempo.

Para comprender mejor el proceso de su cálculo, se describe utilizando la 

figura 40, en donde se tiene una serie de tiempo {𝑥(𝑖): 1 ≤ 𝑖 ≤ 50}. Para este 

ejemplo, 𝑚 = 2 y 𝑟 = 0.15 𝑆𝐷 (SD = desviación estándar).

Figura 40. Ejemplo de la entropía SampEn

Fuente: Li et al. (2019).

Las líneas discontinuas cerca de los puntos 𝑥(1), 𝑥(2) y 𝑥(3) corresponden a 

𝑥(1) ± 𝑟, 𝑥(2) ± 𝑟 y 𝑥(3) ± 𝑟 (en el caso que la diferencia absoluta entre los 2 

puntos sea menor que 𝑟, estos 2 puntos coinciden).

En la figura 41, {(1), 𝑥(2)} son secuencia con 2 puntos y {𝑥(1), 𝑥(2), 𝑥(3)} 

son secuencia con 3 puntos. Si se observa toda la serie de tiempo {(𝑖): 1 ≤ 𝑖 ≤ 

50} se ven otras dos secuencias que coinciden con la secuencia {𝑥(1), 𝑥(2)}, 

las cuales son {𝑥(22), 𝑥(23)} y {𝑥(29), 𝑥(30)}. Y para la secuencia de 3 puntos 

{(1), 𝑥(2), 𝑥(3)}, se observa una secuencia que coincide: {𝑥(29), 𝑥(30), 𝑥(31)}.

Lo que hace el algoritmo, inicialmente es contar el número de secuencias 

que coinciden con {𝑥(1), 𝑥(2)} y {𝑥(1), 𝑥(2), 𝑥(3)}, luego repite los pasos 
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anteriores para la siguiente secuencia de 2 puntos que corresponde a {𝑥(2), 

𝑥(3)} y para la secuencia de 3 puntos que sería {𝑥(2), 𝑥(3), 𝑥(4)}. El proceso 

anteriormente descrito se repite hasta que todas las demás secuencias posibles 

sean consideradas en la señal ({(1), 𝑥(2), 𝑥(3)}, . . . , {𝑥(48), 𝑥(49), 𝑥(50)}).

Finalmente, se obtiene la relación entre la suma de coincidencias de la 

señal de 2 y 3 puntos. Por tanto, 𝑆𝑎𝑚𝑝𝐸𝑛 (𝑚, 𝑟, 𝑁) es el logaritmo natural 

de esta relación y está relacionado con los parámetros 𝑚 y 𝑟, lo que hace 

que la elección de los valores para estos dos parámetros sea muy importante. 

Diversos autores indican que 𝑚 puede ser 1 y 2 y 𝑟 = 0,1~0,25 𝑆𝐷 (Chen et al., 

2013; Li et al., 2019).

Aunque SampEn tiene muchas ventajas, en algunas circunstancias no 

puede reflejar con precisión las diferencias de complejidad entre diferentes 

señales, dado que la estructura de las señales generadas a partir de algunos 

sistemas complejos puede exhibir múltiples características de escala tempo-

ral; por tanto, la SampEn, como es un método basado en una sola escala, no 

tiene en cuenta la interrelación entre entropía y escalas múltiples.

Para subsanar esta desventaja, Costa et al. (2002) introdujeron la entro-

pía muestral multiescala (MSE). La MSE se basa en la técnica SampEn en 

donde se integra el procedimiento de granulado grueso o “coarse grained 

series” (ecuación 36 y figura 41), que permite comprender las fluctuaciones 

de punto a punto en un rango de escalas de tiempo; es decir, el proceso 

de granulado grueso se basa en promediar las muestras dentro de ventanas 

móviles, pero no superpuestas (Busa y Van Emmerik, 2016; Yamamoto y 

Hughson, 1991).

de las señales generadas a partir de algunos sistemas complejos puede exhibir múltiples 

características de escala temporal; por tanto, la SampEn, como es un método basado en una 

sola escala, no tiene en cuenta la interrelación entre entropía y escalas múltiples.

Para subsanar esta desventaja, Costa et al. (2002) introdujeron la entropía muestral 

multiescala (MSE). La MSE se basa en la técnica SampEn en donde se integra el 

procedimiento de granulado grueso o “coarse grained series” (ecuación 36 y figura 41), que 

permite comprender las fluctuaciones de punto a punto en un rango de escalas de tiempo; es 

decir, el proceso de granulado grueso se basa en promediar las muestras dentro de ventanas 

móviles, pero no superpuestas (Busa y Van Emmerik, 2016; Yamamoto y Hughson, 1991).

𝑦𝑦𝑦𝑦𝑒𝑒𝑒𝑒𝜏𝜏𝜏𝜏 =
1
𝜏𝜏𝜏𝜏

� 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 1 ≤ 𝑦𝑦𝑦𝑦𝑒𝑒𝑒𝑒 ≤
𝑃𝑃𝑃𝑃
𝜏𝜏𝜏𝜏

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖𝑖𝑖=(𝑒𝑒𝑒𝑒−1)𝜏𝜏𝜏𝜏+1

Ecuación 36

Para la ecuación anterior, 𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐 corresponde a la serie construida de “granulado grueso” 

consecutivas, 𝑝𝑝𝑝𝑝 corresponde a la escala de tiempo de interés, 𝑓𝑓𝑓𝑓 es un punto de datos en la serie 

de tiempo recién construida, 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 es un punto de datos en la serie de tiempo original y 𝑃𝑃𝑃𝑃, es la 

longitud de la serie de tiempo original.

Figura 41. Procedimiento de “coarse grained series” o de granulado grueso

Fuente: Busa y Van Emmerik (2016).

En la figura 41 se presenta el procedimiento que hace la MSE, en donde A corresponde a una 

escala de tres puntos y B de tres puntos, 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 es la serie de tiempo original y 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 corresponde a 

la nueva serie de tiempo que se construye a partir del promedio de los puntos de los datos.

(36)

Para la ecuación anterior, 𝑦𝑐 corresponde a la serie construida de “granu-

lado grueso” consecutivas, 𝑟 corresponde a la escala de tiempo de interés, 𝑗 
es un punto de datos en la serie de tiempo recién construida, 𝑥𝑖 es un punto 

de datos en la serie de tiempo original y 𝑁, es la longitud de la serie de tiem-

po original.
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Figura 41. Procedimiento de “coarse grained series” o de granulado grueso

Fuente: Busa y Van Emmerik (2016).

En la figura 41 se presenta el procedimiento que hace la MSE, en donde A 

corresponde a una escala de tres puntos y B de tres puntos, 𝑥𝑖 es la serie de 

tiempo original y 𝑦𝑖 corresponde a la nueva serie de tiempo que se construye 

a partir del promedio de los puntos de los datos.

La inclusión de estas múltiples mediciones de la MSE permite dos venta-

jas principales: 1) la evaluación de la complejidad en escalas de tiempo más 

cortas y más largas y 2) la cuantificación de la complejidad general de un sis-

tema, calculada como la suma de los valores de entropía en todas las escalas 

de tiempo individuales. La unión de estas características permite identificar 

las escalas de tiempo en donde se encuentra una ruptura de la complejidad, 

así como identificar la complejidad general en donde se tiene en cuenta to-

das las escalas de tiempo (Busa y Van Emmerik, 2016).

En la literatura se evidencia que se ha utilizado la entropía MSE para 

identificar cambios en la complejidad de las fluctuaciones posturales entre 

grupos de individuos con diversas patologías, como la esclerosis múltiple 

(Busa et al., 2016), la escoliosis idiopática adolescente (Gruber et al., 2011), 

los cambios relacionados con la edad en la función sensorial (Kang et al., 
2009; Manor et al., 2010), así como un método para evaluar la eficacia de las 

ayudas posturales (Costa et al., 2007), entre otros.

Debido a las ventajas y desventajas que tiene cada una de las entropías 

indicadas anteriormente, para la presente investigación se calculó cada una 

de ellas para observar su comportamiento e impacto en cada uno de los gru-

pos de estudio.
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Teoría de la información
Los enfoques de la teoría de la información (TI) se han utilizado ampliamen-

te en diferentes campos, en biología y medicina varios autores han reportado 

las ventajas al utilizarlos en sus investigaciones. Harte y Newman (2014) 

dan a conocer en su trabajo “Maximum information entropy: A foundation 

for ecological theory”, que la TI aplicada en ecología ha permitido generar 

patrones predictivos de relaciones entre área y especies, así como distribu-

ciones en macroecología. Por su parte, Straitand y colaboradores (Strait y 

Dewey, 1996) la vincularon en discusiones sobre la evolución molecular. 

Zielińska y Katanaev (2019) muestran las bondades de usar TI para la seña-

lización intracelular, puesto que en la señalización se encuentran aspectos 

de robustez, redundancia, amplificación de la señal y otros, que tocan el do-

minio de la teoría de la información; ellos muestran cómo la visualización de 

la mecánica de la señalización oncogénica previamente intacta por medio 

de las aplicaciones de la teoría de la información, puede evolucionar hacia 

nuevas formas de descubrimiento de fármacos contra el cáncer. Wimmer et 

al. (2008), en su trabajo “Adaptation and selective information transmission 

in the cricket auditory neuron AN2”, abordan el estudio de sistemas senso-

riales, específicamente la forma de adaptación en una interneurona auditiva 

de primer orden (AN2) de los grillos, para predecir cómo la adaptación cam-

bia la curva de entrada-respuesta cuando se presentan señales con dos o tres 

picos en sus distribuciones de amplitud; esto fue posible con codificación 

selectiva y TI, puesto que predicen cambios conflictivos.

Waltermann y Klipp (2011) estudiaron las vías de señalización en células 

individuales y celulares, desde la perspectiva de la teoría de la información, y 

encontraron que la TI proporciona un nuevo ángulo para la comprensión de 

la señalización celular, con la promesa de ofrecer avances en la farmacología 

de receptores, los mecanismos de transformación oncogénica y el descubri-

miento de fármacos.

Luengas (2016) empleó TI para evaluar la incidencia de la alineación está-

tica de prótesis en los parámetros biomecánicos de personas con amputación, 

y encontró que se puede predecir el comportamiento de las articulaciones de 

segmento corporal inferior, así como el centro de presión y la distribución 
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de peso sobre los pies al variar la ubicación angular del encaje de la prótesis. 

La evaluación de la estabilidad postural ha sido ampliamente investigada por 

diferentes métodos (Schubert et al., 2012), pero con teoría de la información 

su exploración ha sido limitada.

Elementos de un sistema de comunicación
Al analizar un sistema empleando teoría de la información —como se dijo—, 

se debe considerar el trabajo de Claude Shannon sobre el planteamiento 

matemático de la teoría de la información y el concepto de obtención de in-

formación. En un sistema de comunicación, el asunto primordial consiste en 

poder transcribir en una localización, de manera casi puntual, un mensaje 

enviado desde otra localización. Frecuentemente los mensajes poseen signi-

ficado; en otras palabras, se refieren o se correlacionan según algún sistema 

con determinadas entidades físicas o conceptuales; es imperante determinar 

el mensaje con mayor contenido de información del conjunto de mensajes a 

transmitir. El sistema debe poder analizar todo el conjunto de mensajes para 

establecer el mensaje en cuestión. Cuando el conjunto de mensajes tiene un 

número finito de elementos, este valor o una función monótona del mismo 

puede usarse para medir la información generada al seleccionar uno de los 

mensajes del conjunto, considerando que las selecciones son equiprobables 

(Cover y Thomas, 1991; Shannon, 1948). Al trasladar este propósito a un 

sistema general, lo que se requiere es tener la información (datos) a partir de 

muestras de variables que represente un sistema. De allí que se debe exami-

nar el conjunto de datos para seleccionar aquellos datos más representativos 

del sistema estudiado.

Un sistema de comunicación contiene tres bloques esenciales: el trans-

misor, el receptor y el canal (figura 42). Cada bloque contiene módulos que 

permiten el flujo de información. El transmisor posee información que desea 

hacer llegar a un receptor. La información puede ser algún mensaje discreto 

representado por medio de una cadena de caracteres, de allí que se emplee 

en el transmisor un codificador de origen para convertir la información en 

la serie de caracteres. Además, el transmisor debe entregar la señal al canal 

para su transmisión. El canal es el medio por donde la señal transmitida se 

propaga del emisor al receptor. El canal puede introducir ruido en el sistema, 
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es decir, distorsión que resulte en la degradación de la señal en el receptor. 

Cuando la señal transmitida llega al receptor, el receptor estima qué infor-

mación ha enviado el transmisor (Farsad et al., 2013).

Figura 42. Elementos de un sistema de comunicación

Fuente: adaptado de Shannon (1948).

Con base en los criterios mencionados, se presenta un sistema en general 

visto desde la teoría de la información.

•	 La fuente de información produce un mensaje o secuencia de mensajes 

para ser enviados al terminal receptor. El mensaje puede ser una serie de 

datos, ya sea recolectados de un experimento o una construcción de ca-

racteres. Al considerar una serie de variables de tipo temporal se tendrá 

una función (𝑥; 𝑡), donde 𝑥 será el conjunto de datos dependientes del 

tiempo. Estos datos contienen información del conjunto de salida. Los 

datos de entrada pueden estar contenidos en una tabla, los datos repre-

sentan distintos casos, cada fila de la tabla es un caso y cada columna 

una variable que toma diferentes valores según los atributos del caso; 

estos datos se pueden representar mediante un espacio cuya dimensión 

está dada por la cantidad de variables, de esta forma cada caso es un 

punto en el espacio y casos similares se situarán en una región próxima 

del espacio (figura 43).
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Figura 43. Distribución de datos en el espacio

Fuente: elaboración propia.

1.	 El transmisor opera en el conjunto de mensajes para producir una señal 

adecuada para la transmisión por el canal. Los datos de entrada son 

revisados y seleccionados para obtener la mejor representación posible 

del conjunto de entrada.

2.	 El canal es el medio utilizado para transmitir la señal del transmisor al 

receptor, es decir, la vía a través de la cual se transporta la señal. Da a 

conocer la relación existente entre entrada y salida. El inconveniente 

del canal es la reducción de la fuerza de la señal (atenúa la señal) que 

transporta la información, se debe principalmente a la adición de ruido.

3.	 El receptor recoge la información del canal y reconstruye el mensaje a 

partir de la señal.

4.	 El destino es la salida del sistema, muestra la respuesta del sistema a las 

entradas.

5.	 El ruido es un error aleatorio o una variación en una variable medida. 

Esta señal no deseada ingresa al sistema de comunicación a través del 

canal de comunicación e interfiere con la señal transmitida, haciendo 

que esta señal se degrade.

Cuando el canal contiene altos niveles de ruido, por lo general, la recons-

trucción del mensaje original no se puede llevar a cabo, impidiendo conocer 
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con certeza la información enviada, a pesar de emplear diferentes operacio-

nes sobre la señal recibida. Sin embargo, existen formas de transmitir la in-

formación que son óptimas para combatir el ruido; por ejemplo, incluir por 

conveniencia una entropía condicional llamada equivocación, la cual mide 

la ambigüedad promedio de la señal recibida. Este es un elemento adicional 

en todo sistema de información (Farsad et al., 2013; Witten et al., 2017).

Medición de la información
En la medición del contenido de la información se considera el bit como 

unidad de medida; el bit representa la mínima cantidad de información 

posible, un bit tiene solo dos estados, por ello la base de logaritmos utiliza-

da es 2 (ecuación 37). La medida de información mide una característica 

del contenido de información de un conjunto de datos llamada entropía 

(Shannon, 1948).

(37)

La entropía, desde el punto de vista de TI, es la complejidad descriptiva 

mínima de una variable aleatoria, es la medición de la incertidumbre en 

un sistema. La entropía es menor en la medida que los estados de un siste-

ma se apartan de la máxima incertidumbre. Cuando el valor de la entropía 

disminuye, comparado con el valor teórico más alto del sistema en explora-

ción, es posible que el conjunto de datos se encuentre sesgado y que algu-

nos estados del sistema no se representen de forma adecuada. Las mediciones 

entrópicas son la base para evaluar y comparar el contenido de información 

en varios aspectos de un conjunto de datos, permiten determinar la estructura 

de dependencia multivariada entre las variables, elemento fundamental para 

comprender la organización de un sistema. Todo conjunto de datos tiene una 

entropía máxima teórica cuando se encuentra en un estado de incertidum-

bre máxima, en este caso todos los resultados significativos son igualmente 

probables; se debe considerar que la gran mayoría de los conjuntos de datos 

contienen ruido, lo cual incrementa la entropía (Cover y Thomas, 1991).

Como se estableció, la entropía 𝐻(𝐴) permite representar el valor espera-

do del contenido de información; esto es, el número mínimo de bits (costo) 

5. El destino es la salida del sistema, muestra la respuesta del sistema a las entradas.

6. El ruido es un error aleatorio o una variación en una variable medida. Esta señal no 

deseada ingresa al sistema de comunicación a través del canal de comunicación e 

interfiere con la señal transmitida, haciendo que esta señal se degrade.

Cuando el canal contiene altos niveles de ruido, por lo general, la reconstrucción del mensaje 

original no se puede llevar a cabo, impidiendo conocer con certeza la información enviada, 

a pesar de emplear diferentes operaciones sobre la señal recibida. Sin embargo, existen 

formas de transmitir la información que son óptimas para combatir el ruido; por ejemplo, 

incluir por conveniencia una entropía condicional llamada equivocación, la cual mide la 

ambigüedad promedio de la señal recibida. Este es un elemento adicional en todo sistema de 

información (Farsad et al., 2013; Witten et al., 2017).

[T2] Medición de la información

En la medición del contenido de la información se considera el bit como unidad de medida; 

el bit representa la mínima cantidad de información posible, un bit tiene solo dos estados, por 

ello la base de logaritmos utilizada es 2 (ecuación 37). La medida de información mide una 

característica del contenido de información de un conjunto de datos llamada entropía 

(Shannon, 1948).

𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ó𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2(𝑝𝑝𝑝𝑝ú𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

Ecuación 37

La entropía, desde el punto de vista de TI, es la complejidad descriptiva mínima de una 

variable aleatoria, es la medición de la incertidumbre en un sistema. La entropía es menor en 

la medida que los estados de un sistema se apartan de la máxima incertidumbre. Cuando el 

valor de la entropía disminuye, comparado con el valor teórico más alto del sistema en 

exploración, es posible que el conjunto de datos se encuentre sesgado y que algunos estados 

del sistema no se representen de forma adecuada. Las mediciones entrópicas son la base para 

evaluar y comparar el contenido de información en varios aspectos de un conjunto de datos, 

permiten determinar la estructura de dependencia multivariada entre las variables, elemento 
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requeridos en promedio para la transmisión de un mensaje (ecuación 38) 

(Shannon, 1948).

fundamental para comprender la organización de un sistema. Todo conjunto de datos tiene 

una entropía máxima teórica cuando se encuentra en un estado de incertidumbre máxima, en 

este caso todos los resultados significativos son igualmente probables; se debe considerar 

que la gran mayoría de los conjuntos de datos contienen ruido, lo cual incrementa la entropía 

(Cover y Thomas, 1991).

Como se estableció, la entropía 𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴) permite representar el valor esperado del 

contenido de información; esto es, el número mínimo de bits (costo) requeridos en promedio 

para la transmisión de un mensaje (ecuación 38) (Shannon, 1948).

𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴) = −�𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖). 𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖

Ecuación 38

Donde 𝐴𝐴𝐴𝐴 es la variable aleatoria y 𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) la probabilidad de ocurrencia de cada uno de sus 

valores, ya que la información se representa en bits se hace uso del logaritmo en base 2 —

como ya se dijo—. Al no presentarse incertidumbre la entropía tendrá un valor mínimo de 

cero (0), el valor máximo se obtiene cuando todos los estados posibles tienen la misma 

probabilidad de ocurrencia (Shannon, 1948).

La entropía también se emplea en conjunto de variables. Al tener las variables 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵 que 

presentan la distribución de probabilidad conjunta (𝑝𝑝𝑝𝑝, 𝑎𝑎𝑎𝑎), la entropía conjunta se establece 

con la ecuación 39 (Cover y Thomas, 1991).

𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) = − � 𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝, 𝑎𝑎𝑎𝑎). 𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝, 𝑎𝑎𝑎𝑎)
𝑎𝑎𝑎𝑎∈𝐴𝐴𝐴𝐴,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

Ecuación 39

La entropía condicional hace alusión al conocimiento de la incertidumbre de una variable al 

conocer otra; es decir, la entropía que tiene la variable 𝐵𝐵𝐵𝐵 conociendo la información de 𝐴𝐴𝐴𝐴

(ecuación 40), de allí que resulta en una medida de información mutua. El mínimo valor de 

la entropía condicional es 0, esto indica que conociendo 𝐵𝐵𝐵𝐵 no se tiene incertidumbre sobre el 

valor de 𝐴𝐴𝐴𝐴 (Cover y Thomas, 1991).

(38)

Donde 𝐴 es la variable aleatoria y 𝑝(𝑎𝑖) la probabilidad de ocurrencia de cada 

uno de sus valores; ya que la información se representa en bits se hace uso del 

logaritmo en base 2 —como ya se dijo—. Al no presentarse incertidumbre 

la entropía tendrá un valor mínimo de cero (0), el valor máximo se obtiene 

cuando todos los estados posibles tienen la misma probabilidad de ocurrencia 

(Shannon, 1948).

La entropía también se emplea en conjunto de variables. Al tener las va-

riables 𝐴, 𝐵 que presentan la distribución de probabilidad conjunta (𝑎, 𝑏), la 

entropía conjunta se establece con la ecuación 39 (Cover y Thomas, 1991).

fundamental para comprender la organización de un sistema. Todo conjunto de datos tiene 

una entropía máxima teórica cuando se encuentra en un estado de incertidumbre máxima, en 

este caso todos los resultados significativos son igualmente probables; se debe considerar 

que la gran mayoría de los conjuntos de datos contienen ruido, lo cual incrementa la entropía 

(Cover y Thomas, 1991).

Como se estableció, la entropía 𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴) permite representar el valor esperado del 

contenido de información; esto es, el número mínimo de bits (costo) requeridos en promedio 

para la transmisión de un mensaje (ecuación 38) (Shannon, 1948).

𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴) = −�𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖). 𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖

Ecuación 38

Donde 𝐴𝐴𝐴𝐴 es la variable aleatoria y 𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) la probabilidad de ocurrencia de cada uno de sus 

valores, ya que la información se representa en bits se hace uso del logaritmo en base 2 —

como ya se dijo—. Al no presentarse incertidumbre la entropía tendrá un valor mínimo de 

cero (0), el valor máximo se obtiene cuando todos los estados posibles tienen la misma 

probabilidad de ocurrencia (Shannon, 1948).

La entropía también se emplea en conjunto de variables. Al tener las variables 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵 que 

presentan la distribución de probabilidad conjunta (𝑝𝑝𝑝𝑝, 𝑎𝑎𝑎𝑎), la entropía conjunta se establece 

con la ecuación 39 (Cover y Thomas, 1991).

𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) = − � 𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝, 𝑎𝑎𝑎𝑎). 𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝, 𝑎𝑎𝑎𝑎)
𝑎𝑎𝑎𝑎∈𝐴𝐴𝐴𝐴,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

Ecuación 39

La entropía condicional hace alusión al conocimiento de la incertidumbre de una variable al 

conocer otra; es decir, la entropía que tiene la variable 𝐵𝐵𝐵𝐵 conociendo la información de 𝐴𝐴𝐴𝐴

(ecuación 40), de allí que resulta en una medida de información mutua. El mínimo valor de 

la entropía condicional es 0, esto indica que conociendo 𝐵𝐵𝐵𝐵 no se tiene incertidumbre sobre el 

valor de 𝐴𝐴𝐴𝐴 (Cover y Thomas, 1991).

(39)

La entropía condicional hace alusión al conocimiento de la incertidumbre 

de una variable al conocer otra; es decir, la entropía que tiene la variable 𝐵 

conociendo la información de 𝐴 (ecuación 40), de allí que resulta en una 

medida de información mutua. El mínimo valor de la entropía condicional 

es 0, esto indica que conociendo 𝐵 no se tiene incertidumbre sobre el valor 

de 𝐴 (Cover y Thomas, 1991).

𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = − � 𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝, 𝑎𝑎𝑎𝑎). 𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝|𝑎𝑎𝑎𝑎)
𝑎𝑎𝑎𝑎∈𝐴𝐴𝐴𝐴,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

Ecuación 40

La información mutua 𝐴𝐴𝐴𝐴(𝐴𝐴𝐴𝐴; 𝐵𝐵𝐵𝐵) (ecuación 41), mide exactamente la cantidad de información 

disponible para determinar un valor de salida específico dado un valor de entrada, luego es 

la velocidad de comunicación en presencia de ruido, y hace referencia al aumento de la tasa 

de duplicación de la información general dada la información específica. En general, la 

información mutua da a conocer la existencia de relación entre entradas y salidas (Cover y 

Thomas, 1991).

𝐴𝐴𝐴𝐴(𝐴𝐴𝐴𝐴;𝐵𝐵𝐵𝐵) = 𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴) + 𝐻𝐻𝐻𝐻(𝐵𝐵𝐵𝐵) − 𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵)
Ecuación 41

Entre las aplicaciones que se pueden hacer con la teoría de la información, se encuentra el 

análisis de datos, ya sea como instancias o variables; asimismo, examinar todo un conjunto 

de datos o partes de un conjunto en un sistema. La evaluación de los datos utiliza la entropía 

y la información mutua haciendo uso de (Farsad et al., 2013; Pyle, 2003):

• Estimación de áreas problema, verificando la calidad del conjunto de datos de entrada 

como un todo o el conjunto de datos de salida como un todo.

• Evaluación de la calidad y las áreas problema de los subconjuntos de datos (por 

ejemplo, prueba y verificación) dentro de su propio conjunto.

• Verificación de las condiciones individuales que ostentan cada una de las variables 

en su rango de valores.

• Valoración de la independencia de las variables (midiendo la entropía entre entradas).

• Selección de las variables de entrada más independientes entre sí que poseen la 

máxima información predictiva o inferencial sobre la(s) salida(s).

• Estimación del máximo rendimiento posible de un modelo al considerar todas las 

entradas y salidas de los diferentes subconjuntos (entrenamiento, prueba, validación).

(40)

La información mutua 𝐼(𝐴; 𝐵) (ecuación 41), mide exactamente la canti-

dad de información disponible para determinar un valor de salida específico 

dado un valor de entrada, luego es la velocidad de comunicación en presen-

cia de ruido, y hace referencia al aumento de la tasa de duplicación de la 

información general dada la información específica. En general, la informa-

ción mutua da a conocer la existencia de relación entre entradas y salidas 

(Cover y Thomas, 1991).
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𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = − � 𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝, 𝑎𝑎𝑎𝑎). 𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝐶𝐶𝐶𝐶(𝑝𝑝𝑝𝑝|𝑎𝑎𝑎𝑎)
𝑎𝑎𝑎𝑎∈𝐴𝐴𝐴𝐴,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

Ecuación 40

La información mutua 𝐴𝐴𝐴𝐴(𝐴𝐴𝐴𝐴; 𝐵𝐵𝐵𝐵) (ecuación 41), mide exactamente la cantidad de información 

disponible para determinar un valor de salida específico dado un valor de entrada, luego es 

la velocidad de comunicación en presencia de ruido, y hace referencia al aumento de la tasa 

de duplicación de la información general dada la información específica. En general, la 

información mutua da a conocer la existencia de relación entre entradas y salidas (Cover y 

Thomas, 1991).

𝐴𝐴𝐴𝐴(𝐴𝐴𝐴𝐴;𝐵𝐵𝐵𝐵) = 𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴) + 𝐻𝐻𝐻𝐻(𝐵𝐵𝐵𝐵) − 𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵)
Ecuación 41

Entre las aplicaciones que se pueden hacer con la teoría de la información, se encuentra el 

análisis de datos, ya sea como instancias o variables; asimismo, examinar todo un conjunto 

de datos o partes de un conjunto en un sistema. La evaluación de los datos utiliza la entropía 

y la información mutua haciendo uso de (Farsad et al., 2013; Pyle, 2003):

• Estimación de áreas problema, verificando la calidad del conjunto de datos de entrada 

como un todo o el conjunto de datos de salida como un todo.

• Evaluación de la calidad y las áreas problema de los subconjuntos de datos (por 

ejemplo, prueba y verificación) dentro de su propio conjunto.

• Verificación de las condiciones individuales que ostentan cada una de las variables 

en su rango de valores.

• Valoración de la independencia de las variables (midiendo la entropía entre entradas).

• Selección de las variables de entrada más independientes entre sí que poseen la 

máxima información predictiva o inferencial sobre la(s) salida(s).

• Estimación del máximo rendimiento posible de un modelo al considerar todas las 

entradas y salidas de los diferentes subconjuntos (entrenamiento, prueba, validación).

(41)

Entre las aplicaciones que se pueden hacer con la teoría de la información, se 

encuentra el análisis de datos, ya sea como instancias o variables; asimismo, 

examinar todo un conjunto de datos o partes de un conjunto en un sistema. 

La evaluación de los datos utiliza la entropía y la información mutua 

haciendo uso de (Farsad et al., 2013; Pyle, 2003):

•	 Estimación de áreas problema, verificando la calidad del conjunto de datos 

de entrada como un todo o el conjunto de datos de salida como un todo.

•	 Evaluación de la calidad y las áreas problema de los subconjuntos de 

datos (por ejemplo, prueba y verificación) dentro de su propio conjunto.

•	 Verificación de las condiciones individuales que ostentan cada una de las 

variables en su rango de valores.

•	 Valoración de la independencia de las variables (midiendo la entropía 

entre entradas).

•	 Selección de las variables de entrada más independientes entre sí que po-

seen la máxima información predictiva o inferencial sobre la(s) salida(s).

•	 Estimación del máximo rendimiento posible de un modelo al considerar 

todas las entradas y salidas de los diferentes subconjuntos (entrenamien-

to, prueba, validación).

•	 Identificación de señales problema, así como de áreas problema o mal 

definidas en un modelo.

Otro concepto utilizado en TI hace referencia a la señal, es un estado del 

sistema que indica una comunicación definida y un sistema puede tener 

cualquier número de señales. La menor señal posible es un estado del 

sistema que está presente o no está presente; este sistema de información de 

señales de dos estados alude al bit de información. La redundancia mide la 

información duplicada en los estados del sistema y permite la compresión de 

conjuntos de datos una vez se elimina parte de la redundancia. Un conjunto 

de señales es un conjunto de datos (Pyle, 2003).

El conjunto de datos de un sistema, por lo general, contiene dos par-

tes: la entrada y la salida. La entrada comprende todas las variables que 
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estadísticamente son independientes; estas variables contienen la informa-

ción a mapear. La salida contiene la información a predecir, sobre ella se 

extraen inferencias de las variables de entrada. Habitualmente se recopilan 

los datos tanto de la entrada como de la salida en un solo conjunto, pero los 

subconjuntos de datos de entrada y salida deben examinarse de forma inde-

pendiente para determinar sus niveles de entropía (Pyle, 2003).

Tipo de variables
Las colecciones de valores de características particulares recogidas en proce-

sos de mediciones se agrupan en variables; cuando las mediciones se toman 

aparecen patrones al considerar en conjunto las instancias de valores de una 

variable, revelando peculiaridades. Como todos los datos se recolectan al 

tiempo, es posible indagar en patrones sobre la forma de comportamiento de 

las variables, observando los cambios exhibidos al modificar características 

de validación del conjunto, de la misma variable o de otras. Existe diversidad 

en el tipo de variables, cada uno se distingue por la cantidad de información 

que codifican; sin embargo, los datos no siempre se pueden catalogar en una 

única clase. Es acostumbrada la descripción de las variables del mismo tipo 

que la escala, o características de la escala, como se miden, de allí proviene 

una variable categórica o una variable continua. Un valor medido en una 

escala es, por supuesto, un solo punto y, como tal, no puede mostrar ningún 

patrón. Las variables son las que muestran patrones o atributos reconocibles 

y son estos atributos comunes de las variables los que pueden describirse 

como existentes en un continuo (Chakrabarti et al., 2009; Pyle, 2003).

Según Pyle (2003), entre los tipos de variables se tiene, por ejemplo:

•	 Nominales, contienen la menor cantidad de información de un sistema, 

ya que, por lo general, solo nombran cosas usando etiquetas con fines de 

identificación. No existe un orden inherente en estas variables, por ello 

no pueden agruparse de forma significativa. Sin embargo, sí contienen 

información definida, por muy pequeña que sea.

•	 Categóricas, son etiquetas de grupo para identificar conjuntos de entidades 

que comparten un conjunto de características implícitas en la categoría, 

contienen baja cantidad de información de un sistema, pero permiten la 
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agrupación de valores de manera significativa. Las diferentes categorías 

se pueden diferenciar usando etiquetas, tal como un número de valor me-

dido categóricamente. Las medidas categóricas denotan la presencia de 

una diferencia, pero no son capaces de cuantificar la diferencia.

•	 Ordinales, permite colocar un orden significativo a la lista de etiquetas, 

de allí que contienen más información que las nominales o las categóri-

cas. La clasificación de las categorías debe hacerse sujeta a la condición 

particular llamada transitividad. La transitividad significa que, si A está 

clasificado por encima de B, y B por encima de C, entonces A debe estar 

clasificado por encima de C. Es decir: si A > B y B > C, entonces A > C. 

Las variables ordinales contienen bastante información, pero no permiten 

comparar la magnitud de las diferencias entre las categorías.

•	 Intervalos, contiene información sobre el orden de clasificación de los va-

lores medidos y sobre las diferencias de tamaño entre los valores. Esto 

significa que la escala lleva consigo los medios para indicar la distancia 

que separa los valores medidos. Las variables de intervalo casi siempre se 

miden utilizando números, por ello forman parte de las mediciones cuan-

titativas, es decir, valores que capturan diferencias, cambios o la cantidad 

de algún atributo de un objeto.

•	 Escala de relación, es el tipo de variable con mayor contenido de información; 

da a conocer la posición para cualquier valor en una escala mediante una 

relación acordada, que se convierte en una medida significativa de las pro-

piedades de la escala; los valores en la escala de relación son cuantitativos.

Las series de variables tienen características suficientes para generar patro-

nes consistentes de comportamiento, como mínimo son bidimensionales, 

aunque una de las dimensiones puede estar implícita. El tipo más común de 

serie de variable es una serie temporal, donde se registran valores de alguna 

característica o evento durante un período de tiempo. La serie puede constar 

únicamente de una lista de medidas, dando la apariencia de una sola dimen-

sión, pero el orden es por tiempo, que, para una serie de tiempo, es la varia-

ble implícita. Los valores de la serie siempre se miden en una de las escalas 

ya nombradas, nominal a través de la relación, y se presentan como una lista 

ordenada. Por su naturaleza, una serie tiene algún patrón implícito dentro 
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del ordenamiento, el cual puede repetirse durante un período. A menudo, 

las series de tiempo se consideran por defecto repetitivas o cíclicas, pero no 

hay ninguna razón por la que deba existir un patrón repetitivo; no obstante, 

existe un patrón en los datos en serie, aunque no es repetitivo (Chakrabarti 

et al., 2009; Pyle, 2003).

Uno de los objetivos del análisis de datos de series empleando teoría de 

la información es describir el patrón que caracteriza la serie, identificarlo y 

encontrar la parte repetitiva. La preparación de datos de series para modelar, 

entonces, debe preservar la naturaleza del patrón que existe; asimismo, colo-

car los datos en una forma tal que la información deseada se exponga a una 

herramienta de modelado (Chakrabarti et al., 2009; Pyle, 2003).

Agrupación de valores numéricos
Debido a la alta cantidad de datos que se pueden tener luego de hacer las me-

diciones numéricas, la dimensionalidad de un conjunto de datos (recuento 

del número de variables que contiene) es primordial, pues los datos pueden 

estar repetidos y, por tanto, existir redundancia de información; además, 

necesitan alta capacidad de almacenamiento y de procesamiento, de allí que 

los datos se agrupen en conjuntos donde exhiben características similares. 

Este proceso de agrupación (en inglés, binning) implica dividir el rango de 

valores (conjunto de datos) en subrangos (subconjuntos) y usar etiquetas 

de intervalo como sustitutos de los valores reales; estos subconjuntos son 

representativos de toda la población y reducen la variabilidad (eliminación 

de parte de la estructura fina) interna. Existen diversos métodos de agrupa-

ción: uno de ellos, es empleando la cantidad de información de cada dato, 

para así transferir conocimiento y comprensión del sistema. Se debe conside-

rar que la teoría de la información concede la descripción de la información 

tanto de un objeto como de un proceso (Chakrabarti et al., 2009).

La técnica supervisada de agrupación de menor pérdida de información 

(en inglés, least information lost —LIL—) divide el espacio de estado en áreas 

con datos que contienen cantidad de información similar. Para cualquier 

conjunto de datos existe una cantidad óptima de agrupaciones donde mejor 

se preserva el contenido de información del conjunto de datos. Sin embargo, 

cualquier estrategia de agrupamiento pierde algo de información, pues las 
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variables numéricas transportan información en las relaciones de distancia 

entre los valores (su distribución) y siempre hay menos agrupaciones que 

valores; pero algunas herramientas de modelado requieren agrupamien-

to y otras son enormemente más rápidas con datos agrupados en lugar de 

datos continuos. Las compensaciones de rendimiento y capacidad frente a 

la información perdida (por lo general pequeña, particularmente si se usa 

una estrategia de agrupamiento óptima) con frecuencia favorecen el agru-

pamiento como una estrategia práctica que vale la pena. Cuando se utiliza 

el óptimo generador de agrupaciones, se describe como la agrupación con 

menor pérdida de información (Pyle, 2003).

El algoritmo LIL utiliza la información mutua entre dos variables de da-

tos (variables individuales) para conocer la cantidad de información que se 

tiene en un conjunto de variables; para ello, calcula la entropía de una varia-

ble menos la entropía de la segunda dada la primera. Así, el primer paso del 

algoritmo, es encontrar la entropía de todos los valores de “la entropía del 

segundo, dado el primero” para cada valor discreto del primero; esto produ-

ce medidas de entropía condicional para todos los valores de una variable. 

Dado que se examina la entropía condicional directa y la inversa, se debe 

calcular la entropía condicional de A dada B y, viceversa, para los valores 

de A y B. El segundo paso, es reemplazar los valores de las variables por su 

respectivo valor de entropía condicional. El tercer paso, es agrupar los datos 

según los valores entrópicos calculados y determinar el punto de división; 

para ello, se examina cada partición de forma recursiva hasta que se cumpla 

el criterio de detención de información mínima en todos los puntos de divi-

sión candidatos, lo que es equivalente al par atributo-valor con la máxima 

ganancia de información. Esto hace que sea más probable que los límites 

del intervalo (puntos de división) estén definidos para ocurrir en lugares que 

pueden mejorar la precisión de la clasificación, por lo que el conjunto inicial 

de datos se reduce (Ferreyra, 2011; Pyle, 2003).

Metodología para el análisis de datos usando la teoría de la información
El análisis de un sistema empleando teoría de la información requiere de 

una serie de etapas para lograr descubrir la relación existente entre las varia-

bles de entrada y las de salida (figura 44).
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Figura 44. Etapas de la metodología para el análisis de 
datos usando la teoría de la información

Fuente: elaboración propia.

Ferreyra (2011) estima que las etapas consideradas en la construcción de un 

modelo son:

1.	 Revisión de datos y verificación de variables tipo categóricas. En caso de no ser 

categóricas, llevar a cabo la técnica de agrupamiento de menor pérdida 

de información.

2.	 Selección de variables. Un método efectivo en la elección de variables es 

usando la teoría de la información, ya que permite tener aquellas varia-

bles que transmiten mayor cantidad de información; esto conlleva tener 

un conjunto de variables con alta cantidad de información del sistema, 

excelente relación señal/ruido, variables no colineales, pero consideran-

do la interacción entre ellas.

3.	 Análisis entrópico. Cómputo de valores entrópicos para observar la exis-

tencia de información suficiente en las entradas que permitan predecir 

las salidas, así como comprobar la existencia de relación entre entradas 

y salidas, determinar la existencia de independencia entre variables de la 

entrada, entre otros. Los valores entrópicos son:

a.	 La entropía total presente con las variables de entrada que han sido 

seleccionadas, es decir, la información entrante H(X) (ecuación 38).

b.	 La entropía total presente en la salida, es decir, la información reque-

rida H(Y) (ecuación 38).

c.	 La equivocación H(X|Y), cantidad de información de diferentes pa-

trones de entrada que especifican iguales señales de salida del sistema 

de estabilidad.
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d.	 El ruido H(Y|X), cantidad de entropía en la salida que permanece 

después de transmitir toda la información de entrada (ecuación 42).

a. La entropía total presente con las variables de entrada que han sido seleccionadas, 

es decir, la información entrante H(X) (ecuación 38).

b. La entropía total presente en la salida, es decir, la información requerida H(Y) 

(ecuación 38).

c. La equivocación H(X|Y), cantidad de información de diferentes patrones de 

entrada que especifican iguales señales de salida del sistema de estabilidad.

d. El ruido H(Y|X), cantidad de entropía en la salida que permanece después de 

transmitir toda la información de entrada (ecuación 42).

𝑅𝑅𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝐻𝐻𝐻𝐻(𝑌𝑌𝑌𝑌|𝑋𝑋𝑋𝑋)/𝐻𝐻𝐻𝐻(𝑌𝑌𝑌𝑌)

Ecuación 42

e. La información transmitida o información mutua (X:Y) es la cantidad de 

información o señal en los datos de entrada que reduce la entropía de la señal de 

salida (ecuación 41). Entre mayor sea la relación entre entradas y salidas es más 

fuerte.

f. La redundancia permite que los datos erróneos sean corregidos, de allí que se 

muestra la cantidad de información redundante en los datos de entrada.

g. La confianza es el grado de seguridad de que la distribución multivariable de las 

agrupaciones generadas representa la población total del sistema.

4. Construcción del modelo. Verificación de comportamiento del sistema por medio de 

un modelo explicativo; asimismo, se puede comprobar con datos no explorados 

observando la predicción del modelo. Un modelo que se basa en TI es el MAXIT, 

donde se busca maximizar la transferencia de información entre entradas y salidas; 

para ello, la información se transmite en modo disjunto y se abarca toda la 

información a transmitir, ya sea lineal, funcional o discontinua. Utiliza reglas para 

describir el funcionamiento del sistema, cada una de las reglas mapea la relación 

existente entre entradas y salidas. La obtención de maximizar la información implica 

la reducción del nivel de ruido; por ello, al usar MAXIT se debe ajustar el nivel de 

sensibilidad acorde con el nivel de confianza, de esta forma el modelo será lo más 

(42)

e.	 La información transmitida o información mutua (X:Y) es la can-

tidad de información o señal en los datos de entrada que reduce la 

entropía de la señal de salida (ecuación 41). Entre mayor sea la rela-

ción entre entradas y salidas es más fuerte.

f.	 La redundancia permite que los datos erróneos sean corregidos, de 

allí que se muestra la cantidad de información redundante en los da-

tos de entrada.

g.	 La confianza es el grado de seguridad de que la distribución multi-

variable de las agrupaciones generadas representa la población total 

del sistema.

4.	 Construcción del modelo. Verificación de comportamiento del sistema por 

medio de un modelo explicativo; asimismo, se puede comprobar con 

datos no explorados observando la predicción del modelo. Un modelo 

que se basa en TI es el MAXIT, donde se busca maximizar la transferen-

cia de información entre entradas y salidas; para ello, la información se 

transmite en modo disjunto y se abarca toda la información a transmi-

tir, ya sea lineal, funcional o discontinua. Utiliza reglas para describir 

el funcionamiento del sistema, cada una de las reglas mapea la rela-

ción existente entre entradas y salidas. La obtención de maximizar la 

información implica la reducción del nivel de ruido; por ello, al usar 

MAXIT se debe ajustar el nivel de sensibilidad acorde con el nivel de 

confianza, de esta forma el modelo será lo más representativo posible 

del conjunto de entrenamiento; asimismo, su rendimiento será acepta-

ble en conjuntos de datos nuevos.

Clustering
Los datos de un sistema se pueden representar como puntos en el espacio 

en un mapa de densidad; en esta representación gráfica de dos dimensiones 
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se proyectan todos los puntos, aquellos con características similares se es-

tablecen de forma cercana entre ellos, caso contrario, los puntos disimiles 

se ubicarán distanciadamente, así se forman grupos; este es el principio de 

agrupación o clustering (figura 45). Un mapa de densidad es una representa-

ción gráfica de dos dimensiones donde se proyectan.

La técnica de agrupamiento (clúster) permite dividir instancias en grupos 

naturales y así distinguir, en el conjunto de datos analizados, los grupos 

denominados clúster; estos grupos representan los estados preferidos del sis-

tema de variables que describen el espacio de estados. El análisis de clustering, 

además de ser una herramienta cognitiva importante, es también un método 

para reducir grandes conjuntos de datos, ya que permite el reemplazo de un 

grupo de datos por su caracterización compacta; de allí que se han utilizado 

en diversos campos, tales como biología, medicina, entre otros, donde no se 

tienen clasificación exacta de los datos, un ejemplo es la caracterización del 

centro de gravedad de un grupo dado (Chakrabarti et al., 2009; Pyle, 2003; 

Rao, 1971; Wierzchón y Kłopotek, 2018).

Figura 45. Datos agrupados en dos clústeres

Fuente: elaboración propia.

El término data clustering, traduce agrupación de datos, apareció por primera 

vez en 1954 en el título de un artículo sobre el análisis de datos antropoló-

gicos, luego se dieron a conocer nombres equivalentes entre los que están 
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Q-análisis, tipología, clumping y taxonomía, que dependían del dominio 

donde se aplicaba el agrupamiento; se debe aclarar que continúan existiendo 

múltiples sinónimos o conceptos estrechamente relacionados para el térmi-

no análisis de clúster (Chakrabarti et al., 2009). Como lo explican Witten et 

al. (2017), el empleo de esta técnica es variado, se tiene la segmentación de 

clientes, de imágenes, de patrones, entre otros.

La segmentación de imágenes busca una estructura particular en los datos 

de la imagen, ya sea un rastro de uno o más objetos físicos para separarlos 

del fondo; para ello, se establecen criterios de pertenencia donde se inclu-

yen propiedades: locales, como continuidad de color, sombreado, textura; 

globales, como alineación a lo largo de una línea de curvatura limitada, por 

ejemplo. La segmentación del cliente intenta dividir la población en seccio-

nes homogéneas concentradas en torno a algún concepto, haciendo que los 

criterios de agrupamiento sean predominantemente globales; de esta mane-

ra, se consigue la representatividad de la población de clientes a través de la 

división en categorías, lo que permite ejecutar diferentes acciones; por ejem-

plo, conocer las características predominantes de los clientes pertenecientes 

a determinada categoría, determinar la rentabilidad al asignar recursos a 

cada clúster desde el punto de negocio, etc.

En la investigación biomédica su uso se ha extendido en varios sectores, así 

como lo muestran Xu y Wunsch (2010) en su artículo “Clustering algorithms 

in biomedical research: A review”, los autores expresan que la técnica de 

clustering se ha utilizado en la investigación de expresión génica y secuencias 

genómicas, la exploración de documentación biomédica, el estudio de imáge-

nes de resonancia magnética, entre otros. Por ejemplo, Ulfenborg et al. (2020) 

utilizaron algoritmos de agrupación en la exploración de datos molecula-

res para congregar los genes que contienen perfiles de expresión semejantes, 

pues se supone que son partícipes de procesos moleculares comunes; de este 

modo, la agrupación de las moléculas permite interpretar los descubrimien-

tos biológicos (Ulfenborg et al., 2020; Wierzchón y Kłopotek, 2018).

Por su parte, Baig et al. (2012) examinaron el comportamiento de seis 

medidas convencionales del CoP utilizadas para caracterizar la estabilidad 

postural, estas son: desplazamiento radial promedio, velocidad prome-

dio, área de la elipse de confianza del 95 %, desviación estándar de CoP 
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en dirección medial-lateral, desviación estándar de CoP en dirección ante-

ro-posterior y desviación estándar del desplazamiento radial. Las medidas se 

compararon en cuatro condiciones que presentaban los sujetos: pies juntos 

y ojos abiertos, pies juntos y ojos cerrados, una pierna y ojos abiertos, y una 

pierna y ojos cerrados, y se encontró que el uso de clúster permite verificar 

que la media es la mejor medida para evaluar la estabilidad postural.

Las agrupaciones (clúster) reflejan un mecanismo que funciona en el do-

minio donde se extraen las instancias; este mecanismo hace que algunas 

instancias se parezcan más entre sí que con las restantes de otras agrupacio-

nes. Los clústeres son subconjuntos disjuntos del conjunto de datos con la 

propiedad, tal que los datos pertenecientes a diferentes grupos difieren entre 

sí mucho más que los datos que pertenecen al mismo grupo. El propósito del 

agrupamiento (clustering) es descubrir una estructura natural en el conjunto 

de datos para así reunir los datos en subconjuntos; el medio que permite rea-

lizar esa tarea suele ser una medida de similitud o disimilitud (Chakrabarti 

et al., 2009; Wierzchón y Kłopotek, 2018).

El resultado de la agrupación en clústeres se puede expresar de diferentes 

formas, ya sea que los grupos identificados sean exclusivos para que cual-

quier instancia pertenezca a un solo grupo, o pueden estar superpuestos de 

modo que una instancia se encuentra en varios grupos; también pueden ser 

probabilísticos, cuando una instancia pertenece a un grupo con una cierta 

probabilidad. Además, pueden ser jerárquicos con una división de instancias 

en grupos en un nivel superior y cada uno de estos grupos se va refinando 

hasta llegar a las instancias individuales. La elección de agrupación se da 

por la condición de la mecánica presente en el interior del grupo de estudio. 

Sin embargo, generalmente estos mecanismos se desconocen, la elección se 

da por las herramientas de clustering disponibles (Chakrabarti et al., 2009).

Definición
Dado un conjunto de objetos de datos (entidades, patrones de entrada, ins-

tancias, observancias, unidades) que constituyen una matriz con los objetos 

y sus propiedades, se pretende dividir los objetos en un cierto número de 

agrupaciones (categorías, grupos o subconjuntos, clúster) para explorar la es-

tructura subyacente y proporcionar información útil en análisis posteriores; 
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estas agrupaciones presentan cohesión interna ya que contienen elementos 

similares entre sí, además existe aislamiento entre grupos, pues los objetos 

incluidos en cada grupo difieren en características en relación con las varia-

bles de análisis (figura 46). Lo descrito es la finalidad del agrupamiento, ya 

que no existe una definición precisa y universalmente acordada del térmi-

no agrupamiento (clustering), en parte debido a la subjetividad inherente del 

clustering que impide un juicio absoluto sobre la eficacia relativa de todas las 

técnicas de agrupamiento; la definición puede diferir de un problema a otro 

dependiendo del objetivo deseado y de las propiedades de los datos. A pesar 

de esta dificultad, algunos autores han propuesto definiciones donde está 

presente la homogeneidad interna y la separación externa; sin embargo, las 

descripciones de similitud y distancia en estas definiciones no están claras 

(Gallardo, 2021; Xu y Wunsch, 2010):

1.	 Un clúster es una agrupación de datos con similitudes entre ellos, los 

datos entre clústeres son disímiles.

2.	 Un clúster es una agrupación de datos con un centroide. Se define cen-

troide como un punto que se ubica en el centro de un clúster, por lo 

general corresponde al promedio de la suma de las coordenadas de un 

conjunto de datos, en ocasiones es un punto imaginario situado dentro 

del clúster. Los datos de un clúster presentan una distancia al centroide 

de su agrupación menor que la distancia del dato al centroide de cual-

quier otra agrupación. Se tiene en cuenta la distancia intra-clúster, es la 

distancia existente entre los diferentes datos ubicados al interior de un 

mismo clúster.

3.	 Un clúster es una agrupación de datos con un valor de distancia entre 

dos objetos del mismo grupo siempre menor que el valor de distancia 

entre datos que pertenecen a diferente grupo. Se observa la distancia 

inter-clúster, es decir, es la distancia entre los diferentes clústeres.

4.	 Un clúster es una porción de un espacio continuo con alta concentra-

ción de datos que se encuentra alejada de otras partes también con alta 

concentración; estas porciones están separadas por regiones con baja 

concentración.
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Figura 46. Representación de un algoritmo de agrupamiento

Fuente: adaptado de Maravall (1993).

Tipos de agrupamiento

Dado el conjunto 𝑋 de N datos 𝑋 = {𝑥1, …, 𝑥𝑗, …, 𝑥𝑁}, donde 𝑥𝑗 = (𝑥𝑗1, 

𝑥𝑗2, …, 𝑥𝑗𝑑), con cada medida 𝑥𝑗𝑖 denominada característica, ya sea atributo, 

dimensión o variable, se pueden crear agrupaciones usando diversos métodos 

para hacer el agrupamiento. A continuación, se abordan algunos de estos.

Clustering iterativo basado en distancia

También llamado “método no jerárquico, partitivo o de optimización”. Este 

método consiste en realizar agrupamiento particional directo por división 

directa de los objetos de datos en cierto número de grupos (Gallardo, 2021).

Chakrabarti et al. (2009) sugieren que la técnica clásica de agrupamiento 

basado en k-medias emplea varias fases:

1.	 Se especifica, de antemano, cuántas agrupaciones (clústeres) se buscan, 

es decir, se determina el parámetro k.

2.	 Se seleccionan arbitrariamente k puntos definidos como los centroides 

de las agrupaciones.

Los objetos (datos) se designan a la agrupación con menor distancia euclídea 

común (distancia común entre dos puntos). Sean dos datos 𝐶 y 𝐷 dentro 

de un clúster, con coordenadas 𝐶 = (𝑐1, 𝑐2) y D = (𝑑1, 𝑑2), la distancia 

euclidiana 𝑑(𝐶, 𝐷) entre estos puntos está dada por la ecuación 43:

Figura 46. Representación de un algoritmo de agrupamiento

Fuente: adaptado de Maravall (1993).

[T2] Tipos de agrupamiento

Dado el conjunto 𝑋𝑋𝑋𝑋 de N datos 𝑋𝑋𝑋𝑋 = {𝑥𝑥𝑥𝑥1, …, 𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓, …, 𝑥𝑥𝑥𝑥𝑃𝑃𝑃𝑃}, donde 𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓 = (𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓1, 𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓2, …, 𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), con 

cada medida 𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 denominada característica, ya sea atributo, dimensión o variable, se pueden 

crear agrupaciones usando diversos métodos para hacer el agrupamiento. A continuación, se 

abordan algunos de estos.

[T3] Clustering iterativo basado en distancia

También llamado “método no jerárquico, partitivo o de optimización”. Este método consiste 

en realizar agrupamiento particional directo por división directa de los objetos de datos en 

cierto número de grupos (Gallardo, 2021).

Chakrabarti et al. (2009) sugieren que la técnica clásica de agrupamiento basado en k-

medias emplea varias fases:

1. Se especifica, de antemano, cuántas agrupaciones (clústeres) se buscan, es decir, se 

determina el parámetro k.

2. Se seleccionan arbitrariamente k puntos definidos como los centroides de las 

agrupaciones.

Los objetos (datos) se designan a la agrupación con menor distancia euclídea común 

(distancia común entre dos puntos). Sean dos datos 𝐶𝐶𝐶𝐶 y 𝑃𝑃𝑃𝑃 dentro de un clúster, con 

coordenadas 𝐶𝐶𝐶𝐶 = (𝑐𝑐𝑐𝑐1, 𝑐𝑐𝑐𝑐2) y D = (𝑑𝑑𝑑𝑑1, 𝑑𝑑𝑑𝑑2), la distancia euclidiana 𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶, 𝑃𝑃𝑃𝑃) entre estos puntos 

está dada por la ecuación 43:

𝑑𝑑𝑑𝑑𝐸𝐸𝐸𝐸(𝐶𝐶𝐶𝐶,𝑃𝑃𝑃𝑃) = �(𝑐𝑐𝑐𝑐1 − 𝑑𝑑𝑑𝑑1)2 + (𝑐𝑐𝑐𝑐2 − 𝑑𝑑𝑑𝑑2)2

Ecuación 43

 

 

ALGORITMO DE  
AGRUPACIÓN 

(43)
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3.	 Se computa el centro o el valor de la media de los datos de cada agrupa-

ción; el valor del centro será el nuevo valor central para cada agrupación.

4.	 El procedimiento descrito se realiza nuevamente con el nuevo valor de 

centro de cada agrupación; el procedimiento se torna iterativo hasta 

conseguir los mismos datos asignados a las mismas agrupaciones, en 

ese momento los centroides se han fijado y su valor no variará.

Debido a la sencillez y efectividad de este procedimiento, su uso es amplio 

en diferentes aplicaciones. Este método hace que la distancia total al cua-

drado desde todos los puntos a sus centros de grupo se reduzca y entrega 

un mínimo local, sin garantizar que sea el mínimo global. Las agrupaciones 

finales se tornan sensibles a los centroides de la agrupación inicial, lo que 

puede ocasionar agrupaciones resultantes diferentes si se hacen pequeñas 

variaciones al elegir el valor inicial de agrupaciones. Para incrementar la 

posibilidad de hallar un mínimo global, el algoritmo funciona en repetidas 

ocasiones empleando varias selecciones iniciales de número de clústeres y se 

elige aquella con mejor resultado final, es decir, la que exhiba menor distan-

cia total al cuadrado (Chakrabarti et al., 2009).

Gallardo (2021) presenta cuatro métodos dentro del clustering iterativo:

1.	 Método de reasignación, concede la reasignación de los objetos; es decir, un 

objeto perteneciente a una agrupación puede ser asignado a otra siempre 

y cuando el criterio de selección se optimice; es un proceso iterativo que 

culmina una vez todos los objetos se reasignaron y se alcanzó un alto 

grado de optimización. Entre los algoritmos que usan este método están: 

K-Medias, el Quick-Cluster análisis, Forgy, nubes dinámicas, entre otros.

2.	 Método de búsqueda de la densidad. Es el método que entrega ya sea una 

aproximación tipológica o una probabilística. En la tipológica, las agru-

paciones se establecen en las zonas donde se obtenga alta concentración 

de objetos; se tienen: análisis modal de Wishart, Taxmap, Fortin. En la 

probabilística se observa la probabilidad de presencia de un parámetro 

dentro de un grupo, los objetos se ubican en la agrupación con distribu-

ción similar, un método representativo son las combinaciones de Wolf.
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3.	 Método directo. Permite catalogar paralelamente a los objetos y a las va-

riables, tal como lo ejecuta Block-Clustering.

4.	 Método de reducción de dimensiones, también llamado “Análisis Factorial 

tipo Q”, lleva a cabo la indagación de factores en el espacio de los obje-

tos; un factor corresponde a una agrupación.

Clustering jerárquico

El agrupamiento jerárquico considera agrupar objetos de datos con una 

secuencia de particiones anidadas, con el fin ya sea de minimizar la función 

de distancia o maximizar la similitud; todos los puntos de datos se proce-

san individualmente, a diferencia de k-medias donde los datos se procesan 

conjuntamente, lo que permite reducir el tiempo de procesamiento y, por 

ende, la obtención de clústeres adecuados. Se inicia suponiendo que cada 

uno de los datos es un centroide, luego cada dato se agrupa con otro con 

distancia mínima, para así formar los primeros clústeres, se continúa de 

forma iterativa hasta lograr el número de clústeres requerido. Se puede usar 

la construcción de un árbol KD o de bolas (balls) para todos los puntos de 

datos, con el fin de conseguir las agrupaciones; este árbol permanecerá es-

tático durante todo el procedimiento de agrupamiento. En cada iteración 

se desciende desde la raíz hasta llegar a una hoja, allí se comprueba cada 

punto individual para encontrar su centro de racimo más cercano; existe la 

posibilidad de que un nodo interior superior esté completamente dentro del 

dominio de un solo centro de clúster, en tal caso, todos los puntos de datos 

debajo de ese nodo se procesan en una sola iteración.

Según Gallardo (2021), se tienen dos tipos de este método:

1.	 Aglomerativos, usan un proceso ascendente que inicia con igual número 

de agrupaciones y objetos para realizar asociaciones que permitan abar-

car todos los objetos. Cada iteración calcula la distancia entre los grupos 

existentes y los dos grupos con mayor similitud se reúnen; se termina 

una vez se tiene el clúster con todos los objetos.

2.	 Disociativos, contrario al caso anterior, se inicia con una agrupación don-

de se encierran todos los objetos, para luego hacer divisiones sucesivas 
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que permitan tener agrupaciones pequeñas, finalmente se tendrá igual 

número de agrupaciones que de individuos.

Sin importar el tipo de asociación usado, existen variados criterios em-

pleados en la generación de agrupaciones basados ya sea en distancia o en 

similitud. En el método aglomerativo se tiene: amalgamamiento simple, 

amalgamamiento completo, promedio entre grupos, centroide, mediana, 

cantidad de información contenida, Ward. En el método disociativo, están: 

análisis de asociación, detector automático de interacción, además de los 

nombrados en aglomerativo.

Procedimiento de agrupamiento
Independiente del tipo de método para agrupar, el análisis de clúster es una 

serie de ensayos y repeticiones en lugar de un proceso de una sola vez, que, 

según Xu y Wunsch (2010), consta de cuatro pasos, todos igualmente impor-

tantes y estrechamente interrelacionados:

1.	 Selección o extracción de características. La selección permite elegir las ca-

racterísticas propias de un conjunto de datos, mientras que la extracción 

hace uso de transformaciones para generar características nuevas toman-

do como base las originales. Las características derivadas de la extracción 

pueden presentar mejor desempeño en el descubrimiento de la estruc-

tura del conjunto de datos; pese a esta ventaja, es viable que las nuevas 

características sean difíciles de interpretar de forma física y, por tanto, 

difíciles de mostrar. Por el contrario, la selección de características confir-

ma la conservación de la significación física original de las características 

elegidas. Ocasionalmente, los dos términos son empleados de manera 

indiferente sin tener en cuenta sus diferencias, causando así confusión.

2.	 Diseño o elección del algoritmo para la agrupación. La generación de un al-

goritmo nuevo para la agrupación acostumbra a estar asociado con la 

contestación a dos interrogantes claves: cuál es el tipo de medida de 

proximidad a ser usada y cuál clase de función de criterio debe ser 

optimizada. De manera intuitiva, los datos se congregan en diversos 

clústeres según se asemejan teniendo en cuenta el grado de similitud 

o distancia, tomando de forma general el término ‘proximidad’. La 
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mayoría de los algoritmos de agrupamiento en clústeres se encuentran 

vinculados explícita o implícitamente a un concepto específico de me-

dida de proximidad, otros algoritmos trabajan de forma directa en una 

matriz de proximidad. Luego de determinar la medida de proximidad, 

el procedimiento para agrupar se podría interpretar como un problema 

de optimización con una función de criterio establecida.

3.	 Validación de clústeres. Al operar en un conjunto de datos, cualquier al-

goritmo para la agrupación en clúster siempre realiza mínimo una 

partición, incluso si los datos no contienen una estructura. Asimismo, 

diferentes algoritmos para la agrupación pueden llevar a generar dis-

tintas agrupaciones de datos; incluso, usando un mismo algoritmo, la 

elección de un parámetro o el orden de exposición de los patrones de 

entrada logran influir en los resultados finales. Por tanto, los estándares 

y criterios de evaluación eficaces son de vital importancia para brindar 

a los usuarios un grado de confianza en los resultados de la agrupación.

4.	 Interpretación de resultados. Este paso puede ser ignorado expeditamen-

te al realizar agrupación en clústeres; no obstante, es tan valioso como 

los tres pasos nombrados, pues permite generar conocimientos rele-

vantes del conjunto original de datos de tal forma que se desarrolle un 

entendimiento conciso del comportamiento del conjunto y así proveer 

resultados eficaces a problemas planteados, cumpliendo de esta forma 

con la finalidad de la agrupación en clústeres. El especialista en el área 

de aplicación del algoritmo de agrupamiento es el indicado para inter-

pretar los resultados de las agrupaciones.

Estos pasos están acordes con el planteamiento de Rao (1971), quien aborda 

el problema de agrupamiento desde dos vertientes: una matemática, dada 

por las restricciones para el clúster que permiten elegir el tipo de agrupación 

deseada y especificar restricciones adicionales en los grupos (si las hubiera); 

además, seleccionar el criterio (puede existir más de uno) para expresar ho-

mogeneidad o separación de los conglomerados en el conglomerado que 

se va a agrupar. Otra, desde un punto de vista estadístico sobre la agrupa-

ción, puesto que se selecciona una muestra de entidades, entre las cuales se 

encuentran los clústeres, para observar o medir las características de estas 
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entidades y calcular las diferencias entre entidades; la selección final de los 

agrupamientos se basa en la aplicación de pruebas que permiten describir 

los clústeres por sus entidades y estadísticas descriptivas.

Medidas de asociación
Las medidas de asociación permiten medir el grado de similitud entre dos 

objetos, considerando tanto a Xu y Wunsch (2010) como a Gallardo (2021), 

se tienen dos clases:

1.	 Medida de proximidad también llamada “de similitud o semejanza” 

𝑠(𝑥), permite medir el grado de similitud entre dos objetos (𝑥𝑖) y (𝑥𝑗), de 

manera que al aumentar la semejanza entre estos objetos este valor se in-

crementa, incrementando así la probabilidad de pertenecer a una misma 

agrupación. La similitud cumple las ecuaciones 44, 45 y 46.

entidades; la selección final de los agrupamientos se basa en la aplicación de pruebas que 

permiten describir los clústeres por sus entidades y estadísticas descriptivas.

[T2] Medidas de asociación

Las medidas de asociación permiten medir el grado de similitud entre dos objetos, 

considerando tanto a Xu y Wunsch (2010) como a Gallardo (2021), se tienen dos clases:

1. Medida de proximidad también llamada “de similitud o semejanza” 𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥), permite 

medir el grado de similitud entre dos objetos (𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝) y (𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓), de manera que al aumentar 

la semejanza entre estos objetos este valor se incrementa, incrementando así la 

probabilidad de pertenecer a una misma agrupación. La similitud cumple las 

ecuaciones 44, 45 y 46.

𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖�

Ecuación 44

𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ≤ 𝑎𝑎𝑎𝑎0

Ecuación 45

Donde 𝑎𝑎𝑎𝑎0 es un número real finito arbitrario.

𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) = 𝑎𝑎𝑎𝑎0
Ecuación 46

Se tendrá similitud métrica si adicional a las anteriores ecuaciones se cumplen las ecuaciones 

47 y 48. La máxima similitud se da cuando los dos objetos son idénticos.

𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 𝑎𝑎𝑎𝑎0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎ó𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =  𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒

Ecuación 47

(44)

entidades; la selección final de los agrupamientos se basa en la aplicación de pruebas que 

permiten describir los clústeres por sus entidades y estadísticas descriptivas.

[T2] Medidas de asociación

Las medidas de asociación permiten medir el grado de similitud entre dos objetos, 

considerando tanto a Xu y Wunsch (2010) como a Gallardo (2021), se tienen dos clases:

1. Medida de proximidad también llamada “de similitud o semejanza” 𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥), permite 

medir el grado de similitud entre dos objetos (𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝) y (𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓), de manera que al aumentar 

la semejanza entre estos objetos este valor se incrementa, incrementando así la 

probabilidad de pertenecer a una misma agrupación. La similitud cumple las 

ecuaciones 44, 45 y 46.

𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖�

Ecuación 44

𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ≤ 𝑎𝑎𝑎𝑎0

Ecuación 45

Donde 𝑎𝑎𝑎𝑎0 es un número real finito arbitrario.

𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) = 𝑎𝑎𝑎𝑎0
Ecuación 46

Se tendrá similitud métrica si adicional a las anteriores ecuaciones se cumplen las ecuaciones 

47 y 48. La máxima similitud se da cuando los dos objetos son idénticos.

𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 𝑎𝑎𝑎𝑎0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎ó𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =  𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒

Ecuación 47

(45)

Donde 𝑠0 es un número real finito arbitrario.

entidades; la selección final de los agrupamientos se basa en la aplicación de pruebas que 

permiten describir los clústeres por sus entidades y estadísticas descriptivas.

[T2] Medidas de asociación

Las medidas de asociación permiten medir el grado de similitud entre dos objetos, 

considerando tanto a Xu y Wunsch (2010) como a Gallardo (2021), se tienen dos clases:

1. Medida de proximidad también llamada “de similitud o semejanza” 𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥), permite 

medir el grado de similitud entre dos objetos (𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝) y (𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓), de manera que al aumentar 

la semejanza entre estos objetos este valor se incrementa, incrementando así la 

probabilidad de pertenecer a una misma agrupación. La similitud cumple las 

ecuaciones 44, 45 y 46.

𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖�

Ecuación 44

𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ≤ 𝑎𝑎𝑎𝑎0

Ecuación 45

Donde 𝑎𝑎𝑎𝑎0 es un número real finito arbitrario.

𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) = 𝑎𝑎𝑎𝑎0
Ecuación 46

Se tendrá similitud métrica si adicional a las anteriores ecuaciones se cumplen las ecuaciones 

47 y 48. La máxima similitud se da cuando los dos objetos son idénticos.

𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 𝑎𝑎𝑎𝑎0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎ó𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =  𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒

Ecuación 47

(46)

Se tendrá similitud métrica si adicional a las anteriores ecuaciones se cum-

plen las ecuaciones 47 y 48. La máxima similitud se da cuando los dos ob-

jetos son idénticos.

entidades; la selección final de los agrupamientos se basa en la aplicación de pruebas que 

permiten describir los clústeres por sus entidades y estadísticas descriptivas.

[T2] Medidas de asociación

Las medidas de asociación permiten medir el grado de similitud entre dos objetos, 

considerando tanto a Xu y Wunsch (2010) como a Gallardo (2021), se tienen dos clases:

1. Medida de proximidad también llamada “de similitud o semejanza” 𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥), permite 

medir el grado de similitud entre dos objetos (𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝) y (𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓), de manera que al aumentar 

la semejanza entre estos objetos este valor se incrementa, incrementando así la 

probabilidad de pertenecer a una misma agrupación. La similitud cumple las 

ecuaciones 44, 45 y 46.

𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖�

Ecuación 44

𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ≤ 𝑎𝑎𝑎𝑎0

Ecuación 45

Donde 𝑎𝑎𝑎𝑎0 es un número real finito arbitrario.

𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) = 𝑎𝑎𝑎𝑎0
Ecuación 46

Se tendrá similitud métrica si adicional a las anteriores ecuaciones se cumplen las ecuaciones 

47 y 48. La máxima similitud se da cuando los dos objetos son idénticos.

𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 𝑎𝑎𝑎𝑎0 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎ó𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =  𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒

Ecuación 47

(47)

�𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� + 𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗��𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗) ≥ 𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒�𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗)
Ecuación 48

Debido al agrupamiento que se puede dar en diferentes tipos de datos, existen variadas formas 

de calcular la medida de proximidad. Entre las clases de datos están: de intervalo, los datos 

son cuantitativos y se presentan en forma matricial; frecuencias, las variables para analizar 

son de tipo categórico; por ello, en las filas se tienen objetos o categorías de objetos y en las 

columnas las variables con las distintas categorías, dentro de la tabla están las frecuencias; 

binarios, los datos binarios se encuentran en forma matricial (objetos y variables), el valor 

“0” revela la no existencia de una característica y “1” la existencia, etc.

2. Las medidas de disimilitud 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥), desemejanza o distancia computan la distancia entre 

dos objetos (𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝) y (𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓), de tal manera que al aumentar este valor la diferencia entre 

objetos aumenta y la probabilidad de pertenecer al mismo grupo disminuye. Según 

Xu y Wunsch (2010), la función de distancia o disimilitud en el conjunto 𝑋𝑋𝑋𝑋 debe 

satisfacer mínimo las siguientes dos condiciones: simetría (ecuación 49) y positividad 

(ecuación 50).

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖�

Ecuación 49

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ≥ 0,∀ 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒
Ecuación 50

Si además se cumple la condición de desigualdad triangular (ecuación 51) y de reflexividad 

(ecuación 52), la función de distancia se llama “métrica”. Si solo se viola la desigualdad del 

triángulo, la función de distancia se llama “semimétrica”.

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ≤ 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗) + 𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ∀ 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒  𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

Ecuación 51

(48)
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Debido al agrupamiento que se puede dar en diferentes tipos de datos, existen 

variadas formas de calcular la medida de proximidad. Entre las clases de 

datos están: de intervalo, los datos son cuantitativos y se presentan en forma 

matricial; frecuencias, las variables para analizar son de tipo categórico; por 

ello, en las filas se tienen objetos o categorías de objetos y en las columnas las 

variables con las distintas categorías, dentro de la tabla están las frecuencias; 

binarios, los datos binarios se encuentran en forma matricial (objetos y 

variables), el valor “0” revela la no existencia de una característica y “1” la 

existencia, etc.

2.	 Las medidas de disimilitud 𝐷(𝑥), desemejanza o distancia computan la 

distancia entre dos objetos (𝑥𝑖) y (𝑥𝑗), de tal manera que al aumentar este 

valor la diferencia entre objetos aumenta y la probabilidad de pertenecer 

al mismo grupo disminuye. Según Xu y Wunsch (2010), la función de dis-

tancia o disimilitud en el conjunto 𝑋 debe satisfacer mínimo las siguientes 

dos condiciones: simetría (ecuación 49) y positividad (ecuación 50).

�𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� + 𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗��𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗) ≥ 𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒�𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗)
Ecuación 48

Debido al agrupamiento que se puede dar en diferentes tipos de datos, existen variadas formas 

de calcular la medida de proximidad. Entre las clases de datos están: de intervalo, los datos 

son cuantitativos y se presentan en forma matricial; frecuencias, las variables para analizar 

son de tipo categórico; por ello, en las filas se tienen objetos o categorías de objetos y en las 

columnas las variables con las distintas categorías, dentro de la tabla están las frecuencias; 

binarios, los datos binarios se encuentran en forma matricial (objetos y variables), el valor 

“0” revela la no existencia de una característica y “1” la existencia, etc.

2. Las medidas de disimilitud 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥), desemejanza o distancia computan la distancia entre 

dos objetos (𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝) y (𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓), de tal manera que al aumentar este valor la diferencia entre 

objetos aumenta y la probabilidad de pertenecer al mismo grupo disminuye. Según 

Xu y Wunsch (2010), la función de distancia o disimilitud en el conjunto 𝑋𝑋𝑋𝑋 debe 

satisfacer mínimo las siguientes dos condiciones: simetría (ecuación 49) y positividad 

(ecuación 50).

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖�

Ecuación 49

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ≥ 0,∀ 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒
Ecuación 50

Si además se cumple la condición de desigualdad triangular (ecuación 51) y de reflexividad 

(ecuación 52), la función de distancia se llama “métrica”. Si solo se viola la desigualdad del 

triángulo, la función de distancia se llama “semimétrica”.

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ≤ 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗) + 𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ∀ 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒  𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

Ecuación 51

(49)

�𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� + 𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗��𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗) ≥ 𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒�𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗)
Ecuación 48

Debido al agrupamiento que se puede dar en diferentes tipos de datos, existen variadas formas 

de calcular la medida de proximidad. Entre las clases de datos están: de intervalo, los datos 

son cuantitativos y se presentan en forma matricial; frecuencias, las variables para analizar 

son de tipo categórico; por ello, en las filas se tienen objetos o categorías de objetos y en las 

columnas las variables con las distintas categorías, dentro de la tabla están las frecuencias; 

binarios, los datos binarios se encuentran en forma matricial (objetos y variables), el valor 

“0” revela la no existencia de una característica y “1” la existencia, etc.

2. Las medidas de disimilitud 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥), desemejanza o distancia computan la distancia entre 

dos objetos (𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝) y (𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓), de tal manera que al aumentar este valor la diferencia entre 

objetos aumenta y la probabilidad de pertenecer al mismo grupo disminuye. Según 

Xu y Wunsch (2010), la función de distancia o disimilitud en el conjunto 𝑋𝑋𝑋𝑋 debe 

satisfacer mínimo las siguientes dos condiciones: simetría (ecuación 49) y positividad 

(ecuación 50).

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖�

Ecuación 49

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ≥ 0,∀ 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒
Ecuación 50

Si además se cumple la condición de desigualdad triangular (ecuación 51) y de reflexividad 

(ecuación 52), la función de distancia se llama “métrica”. Si solo se viola la desigualdad del 

triángulo, la función de distancia se llama “semimétrica”.

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ≤ 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗) + 𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ∀ 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒  𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

Ecuación 51

(50)

Si además se cumple la condición de desigualdad triangular (ecuación 51) 

y de reflexividad (ecuación 52), la función de distancia se llama “métrica”. 

Si solo se viola la desigualdad del triángulo, la función de distancia se llama 

“semimétrica”.

�𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� + 𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗��𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗) ≥ 𝑎𝑎𝑎𝑎�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒�𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗)
Ecuación 48

Debido al agrupamiento que se puede dar en diferentes tipos de datos, existen variadas formas 

de calcular la medida de proximidad. Entre las clases de datos están: de intervalo, los datos 

son cuantitativos y se presentan en forma matricial; frecuencias, las variables para analizar 

son de tipo categórico; por ello, en las filas se tienen objetos o categorías de objetos y en las 

columnas las variables con las distintas categorías, dentro de la tabla están las frecuencias; 

binarios, los datos binarios se encuentran en forma matricial (objetos y variables), el valor 

“0” revela la no existencia de una característica y “1” la existencia, etc.

2. Las medidas de disimilitud 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥), desemejanza o distancia computan la distancia entre 

dos objetos (𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝) y (𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓), de tal manera que al aumentar este valor la diferencia entre 

objetos aumenta y la probabilidad de pertenecer al mismo grupo disminuye. Según 

Xu y Wunsch (2010), la función de distancia o disimilitud en el conjunto 𝑋𝑋𝑋𝑋 debe 

satisfacer mínimo las siguientes dos condiciones: simetría (ecuación 49) y positividad 

(ecuación 50).

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖�

Ecuación 49

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ≥ 0,∀ 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒
Ecuación 50

Si además se cumple la condición de desigualdad triangular (ecuación 51) y de reflexividad 

(ecuación 52), la función de distancia se llama “métrica”. Si solo se viola la desigualdad del 

triángulo, la función de distancia se llama “semimétrica”.

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ≤ 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗) + 𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� ∀ 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒  𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

Ecuación 51

(51)

𝑃𝑃𝑃𝑃�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒� = 0 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 =  𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒

Ecuación 52

Según lo explicado en párrafos anteriores, todo algoritmo de agrupación en clústeres toma 

como base la proximidad de los datos, cada dato está descrito por medio de un conjunto de 

características expresadas como un vector multidimensional. Las características pueden ser 

cuantitativas o cualitativas, continuas o discretas, esto conlleva tener diversos tipos de 

medida. Por ende, el conjunto de datos con características específicas se inscribe como una 

matriz donde las filas denotan los datos y las columnas las características; de esta manera, la 

matriz de datos puede designarse de dos formas, considerando que sus índices de fila y 

columna presentan diferentes significados. Esto disiente de la matriz de proximidad, que es 

una matriz simétrica con elementos para representar la similitud o la medida de la distancia 

de un par de datos en el conjunto de datos; en esta matriz las dos dimensiones presentan igual 

significado (Xu y Wunsch, 2010).

[T2] Mapas de calor

Los mapas de calor (en inglés, heat maps —HM—) son una representación gráfica que 

permiten medir la proporción de un acontecimiento en dos dimensiones haciendo uso de 

colores. Dependiendo del valor otorgado a un dato de una variable en un sistema, el color se 

altera ya sea en tono o intensidad, de tal forma que el comportamiento del sistema se 

manifiesta claramente y la lectura es inmediata (Pyle, 2003; Xu y Wunsch, 2010).

La distribución de los valores de cada variable en el mapa de densidad se exhibe de 

forma gráfica en mapas de calor (figura 47); el fin de emplear estos mapas es permitir la 

comparación de las relaciones reveladas entre las variables, las cuales no se limitan a ser 

exclusivamente lineales. En un sistema con varias variables, cada variable tiene un propio 

mapa de calor, la distribución de los datos es la misma que se representa en el mapa de 

densidad y los colores simbolizan los valores de la variable; de esta forma, el rojo representa 

alto valor, el verde valor de rango medio, el azul bajo valor; en la parte inferior de cada mapa

se tiene la escala de valores de medición de cada variable.

(52)

Según lo explicado en párrafos anteriores, todo algoritmo de agrupación en 

clústeres toma como base la proximidad de los datos, cada dato está descrito 

por medio de un conjunto de características expresadas como un vector 
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multidimensional. Las características pueden ser cuantitativas o cualitativas, 

continuas o discretas, esto conlleva tener diversos tipos de medida. Por ende, el 

conjunto de datos con características específicas se inscribe como una matriz 

donde las filas denotan los datos y las columnas las características; de esta 

manera, la matriz de datos puede designarse de dos formas, considerando que 

sus índices de fila y columna presentan diferentes significados. Esto disiente 

de la matriz de proximidad, que es una matriz simétrica con elementos para 

representar la similitud o la medida de la distancia de un par de datos en 

el conjunto de datos; en esta matriz las dos dimensiones presentan igual 

significado (Xu y Wunsch, 2010).

Mapas de calor
Los mapas de calor (en inglés, heat maps —HM—) son una representación 

gráfica que permiten medir la proporción de un acontecimiento en dos 

dimensiones haciendo uso de colores. Dependiendo del valor otorgado a 

un dato de una variable en un sistema, el color se altera ya sea en tono o 

intensidad, de tal forma que el comportamiento del sistema se manifiesta 

claramente y la lectura es inmediata (Pyle, 2003; Xu y Wunsch, 2010).

La distribución de los valores de cada variable en el mapa de densidad se 

exhibe de forma gráfica en mapas de calor (figura 47); el fin de emplear estos 

mapas es permitir la comparación de las relaciones reveladas entre las varia-

bles, las cuales no se limitan a ser exclusivamente lineales. En un sistema con 

varias variables, cada variable tiene un propio mapa de calor, la distribución 

de los datos es la misma que se representa en el mapa de densidad y los co-

lores simbolizan los valores de la variable; de esta forma, el rojo representa 

alto valor, el verde valor de rango medio, el azul bajo valor; en la parte infe-

rior de cada mapa se tiene la escala de valores de medición de cada variable.

Por ejemplo, en la figura 47 se tienen los datos de valor entre uno y dos, 

los cuales se ubican en los dos clústeres mostrados.
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Figura 47. Mapa de calor

Fuente: elaboración propia.
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Capítulo 4

Aplicación de técnicas de análisis 
lineal y no lineal en la determinación 
de la estabilidad postural estática. 
Caso de aplicación: personas con 
amputación transtibial unilateral

Descripción del estudio
Con el fin de examinar los métodos de análisis de estabilidad expuestos en 

capítulos anteriores de este texto, se desarrolló un estudio observacional des-

criptivo donde participaron 74 sujetos, ellos se distribuyeron en dos grupos 

de estudio: un grupo de personas con amputación transtibial unilateral con 

37 sujetos y un grupo control (personas sin amputación transtibial) con 37 

sujetos. Los valores promedio y la desviación estándar de las características 

de los grupos se muestran en la tabla 2. Se reclutaron los sujetos utilizando 

un enfoque de tipo a conveniencia no probabilístico. Los sujetos con en-

fermedades neurológicas, cardiovasculares y otras afecciones ortopédicas se 

excluyeron del estudio. Todos los participantes tenían una visión normal. 

Los participantes dieron su consentimiento informado.



126

Daissy Carola Toloza Cano, Lely Adriana Luengas Contreras, Yolanda Torres Pérez

Tabla 2. Características de los sujetos que participaron en el estudio

Grupo Edad (años) Talla (cm) Peso (kg)

PAT 31,625 ± 3,42 171 ± 7,348 78,875 ± 8,675

CONTROL 56,7 ± 5,3 161,03 ± 9,68 69,3 ± 11,3

Valores promedio. PAT: personas con amputación transtibial.

 Fuente: elaboración propia.

Las personas con amputación transtibial examinadas eran todos hombres, 

con amputación transtibial unilateral, usaban igual tipo de prótesis exoes-

quelética marca Ottobock, de liner y pin, con pie dinámico en carbono 

(figura 48). El lado amputado difería entre las personas con amputación 

transtibial, por ello se optó por dejar como el lado no amputado (contra-

lateral) el izquierdo y amputado (ipsilateral) el derecho. Las personas con 

amputación transtibial han utilizado la prótesis por más de dos años, pueden 

adoptar postura estática tanto bípeda como unipodal y hacer marcha.

Figura 48. Tipo de prótesis usada por todos los sujetos con amputación transtibial

Fuente: elaboración propia.

Equipo de medición
La ubicación del CoP se midió con plantillas capacitivas instrumentadas 

marca Pedar (Novel.de 2019) (figura 49), con una frecuencia de muestreo de 

50 Hz. El registro y almacenamiento de los datos medidos se hizo con el sis-

tema de adquisición de datos del sistema Pedar (tabla 3). Las plantillas han 
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sido ampliamente utilizadas en la medición de presión plantar (Giacomozzi 

y Uccioli, 2013; Klimiec et al., 2016; Martínez-Nova et al., 2007; Xiaohong 

et al., 2005), ya que se encuentran certificadas como dispositivo médico de 

clase I con función de medición de acuerdo con las directivas de la Unión 

Europea, según lo registran Giacomozzi y Uccioli (2013).

Figura 49. Sistema Pedar

Fuente: Novel.de (2019).

Tabla 3. Características técnicas del equipo y de los sensores usados

Características técnicas del sistema

Dimensión (mm) 150 × 100 × 40

Peso (gramos) 400

Número de sensores (máx.) 256 (1024)

Frecuencia de medición 20 000 sensores / segundo

Interfaz con el computador Fibra óptica / USB y Bluetooth®

Opción de sincronización Fibra óptica / TTL, entrada y salida / inalámbrica

Fuente de alimentación Batería NIMh

Especificaciones técnicas del sensor

Tamaño del zapato 22 a 49 (europeo)

Espesor (mm) 1,9 (mínimo 1)

Número de sensores 85 - 99

Rango de presión (kPa) 15 - 600 o 30 - 1200



128

Daissy Carola Toloza Cano, Lely Adriana Luengas Contreras, Yolanda Torres Pérez

Características técnicas del sistema

Histéresis (%) < 7

Resolución (kPa) 2,5 o 5

Radio de curvatura mínimo (mm) 20

Fuente: Novel.de (2019).

Experimento
La tarea fijada en el protocolo se realizó con los ojos abiertos, cada sujeto 

se ubicó de pie sobre las plantillas, mirando una pared blanca situada a 2 m 

frente a él, debía estar lo más quieto posible y en silencio durante 30 s, en po-

sición relajada anatómica de bipedestación. Las plantillas se colocaron sobre 

una superficie plana, con un espacio de separación de 15 cm entre puntos 

medios de talón, teniendo en cuenta las indicaciones de pruebas anteriores 

(Luengas y Toloza, 2019). Durante la prueba, los participantes usaban su 

calzado diario (figura 50) y se realizó la toma de medición tres veces para 

garantizar la confiabilidad de los resultados.

Figura 50. Medición del CoP

Fuente: elaboración propia.
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Protocolo de análisis
Se recogieron 220 520 datos para cada grupo, en total 441 040. Estos se al-

macenaron en archivo plano, posteriormente se etiquetaron, normalizaron y 

se filtraron. El filtro usado fue un pasa-bajo de 4 orden tipo Butterworth con 

frecuencia de corte de 10 Hz, siguiendo las sugerencias de Ihlen et al. (2013).

Cada posición de CoP se representa por un par de coordenadas carte-

sianas numéricas (X, Y) que corresponden a las direcciones anatómicas 

medial-lateral (ML) y antero-posterior (AP). Luego, se usaron las siguientes 

etiquetas para los valores de los datos medidos: APL ubicación antero-pos-

terior lado izquierdo, MLL ubicación medial-lateral lado izquierdo, APR 

ubicación antero-posterior lado derecho, MLR para ubicación medial-lateral 

lado derecho, obteniendo así cuatro variables.

A cada una de las variables se le realizó la prueba de normalidad de bon-

dad de ajuste de Kolmogorov-Smirnoff  de una muestra, y se encontró que se 

rechaza la hipótesis de normalidad (p < 0,05).

A partir de los datos normalizados y filtrados, se procedió a realizar el 

análisis tanto en tiempo como en frecuencia empleando las técnicas des-

critas en capítulos anteriores del presente texto. Todo el análisis lineal y 

parte del no lineal se desarrolló en el software Matlab®, el cual también se 

utilizó para el análisis estadístico de datos, el análisis no lineal empleando 

teoría de la información y clustering se realizó con el software Powerhouse™. 

Matlab® es una plataforma de programación y cálculo numérico utilizada 

para analizar datos, desarrollar algoritmos y crear modelos (Hunt et al., 
2006). Powerhouse™ es una herramienta de software para minería de datos 

basada en la teoría de la información, es compatible con todas las versiones 

de Windows y requiere de 4 GB de memoria RAM para su funcionamiento 

(Dataxplore, 2006).

Análisis lineal

Análisis en el tiempo
A continuación, se presentan los resultados obtenidos para los dos grupos de 

estudios, en la dirección AP y ML para ambas piernas: izquierda (contrala-

teral - no amputada) y derecha (ipsilateral - amputada).
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En la tabla 4 se presentan los parámetros lineales de la excursión, la velo-

cidad, el rango, el valor RMS, la amplitud promedio, la amplitud máxima y 

mínima, obtenidos en la dirección ML para ambas piernas: izquierda (XL) 

y derecha (XR). Todos los parámetros presentaron diferencias estadística-

mente significativas entre ambos grupos de estudio, con un valor-p de 0,05.

Tabla 4. Parámetros lineales del CoP en la dirección ML

Parámetros
XL* XR*

PAT Controles Valor-p PAT Controles Valor-p

Excursión 
(mm)

343,97 
(248,67 
597,69)

175,03 
(71,74 
261,39)

0,00006
548,80 
(253,75 

1115,20)

226,45 
(95,90 

315,04)
0,00002

Velocidad
(mm/s)

0,81
(0,48 1,30)

0,16
(0,07 0,28)

< 
0,00001

0,66
(0,44 0,89)

0,23
(0,10 0,42)

< 
0,000001

Rango (mm)
1,33

(0,91 2,20)
0,62

(0,28 1,12)
0,00009

1,90
(0,95 3,53)

0,77
(0,39 1,22)

0,00004

RMS (mm)
0,28

(0,22 0,49)
0,14

(0,06 0,23)
0,00005

0,44
(0,20 0,94)

0,19
(0,08 0,26)

0,00002

Amp 
promedio
(mm)

0,23
(0,17 0,40)

0,12
(0,05 0,18)

0,00006
0,37

(0,17 0,75)
0,15

(0,06 0,21)
0,00002

Amp máx
(mm)

0,63
(0,45 1,08)

0,29
(0,11 0,60)

0,00015
0,78

(0,51 1,44)
0,40

(0,20 0,70)
0,00003

Amp mín 
(mm)

-0,60 
(-1,11 - 
0,46)

-0,34 
(-0,47 - 
0,17)

0,00008
-0,95
(-1,73 
-0,40)

-0,49 
(-0,65 -0,18)

0,00014

Los valores corresponden a la mediana e intervalo de confianza. *Se presentaron 
diferencias estadísticamente significativas (p < 0,05). X: dirección ML. L: pierna izquierda. 

R: pierna derecha. Amp: amplitud. PAT: personas con amputación transtibial.

Fuente: elaboración propia.

En la tabla 5 se presentan los parámetros obtenidos en la dirección AP para 

ambas piernas: izquierda (YL) y derecha (YR). Como en la dirección ML, 

todos los parámetros presentaron diferencias estadísticamente significativas 

entre ambos grupos de estudio, con un valor-p de 0,05.
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Tabla 5. Parámetros lineales del CoP en la dirección AP

Parámetros
YL* YR*

PAT Controles Valor-p PAT Controles Valor-p

Excursión 
(mm)

6915,52 
(4137,11 

10 435,05)

750,49 
(458,06 
1176,29)

<
0,00001

2305,42 
(1217,42 
4833,70)

1110,11 
(600,22 

1736,07)
0,00018

Velocidad
(mm/s)

6,59
(4,93 8,50)

0,78
(0,40 1,31)

<
0,00001

2,08
(1,43 2,98)

1,05
(0,66 1,77)

0,00005

Rango (mm)
23,17 
(16,02 
29,39)

2,95 
(1,88 4,69)

<
0,00001

6,91 
(4,25 

14,56)

4,35 
(2,52 6,68)

0,00295

RMS (mm)
5,49

(3,51 7,87)
0,63

(0,39 0,99)
<

0,00001
1,86

(1,00 3,95)
0,91

(0,52 1,43)
0,00026

Amp 
promedio
(mm)

4,64
(2,78 7,00)

0,50
(0,31 0,79)

<
0,00001

1,55
(0,82 3,24)

0,75
(0,40 1,17)

0,00018

Amp máx
(mm)

11,52
(6,58 
15,75)

1,45
(0,92 2,31)

<
0,00001

3,77
(1,97 6,91)

1,98
(1,07 3,33)

0,00137

Amp mín 
(mm)

-10,29 
(-15,61 - 

8,43)

-1,35 
(-2,34 -0,92)

<
0,00001

-4,07 
(-7,10 - 
2,22)

-2,06 
(-3,95 -1,37)

0,00889

Los valores corresponden a la mediana e intervalo de confianza.

*Se presentaron diferencias estadísticamente significativas (p < 0,05). Y: dirección AP. L: pierna 
izquierda. R: pierna derecha. Amp: amplitud. PAT: personas con amputación transtibial.

Fuente: elaboración propia.

Según los datos presentados en las tablas 4 y 5, se observa que el grupo 

de personas con amputación transtibial presentó los mayores valores con 

respecto al grupo control, lo que sugiere que las personas con amputación 

transtibial unilateral oscilan en mayor grado en ambas direcciones (ML y 

AP), en ambos miembros inferiores para poder mantener la estabilidad en 

posición bípeda. Las altas oscilaciones son consecuencia de la reducida res-

puesta efectora neuromuscular provocada por la baja integración sensorio-

motora, conducentes a afectaciones en el control del balance.
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En las figuras 51 a 57 se presentan los parámetros lineales mencionados 

anteriormente, pero de forma individual, donde se observa el comporta-

miento del CoP en ambas direcciones y para ambos miembros inferiores.

En la figura 51 se expone la excursión del CoP, en donde se observa que 

el grupo de las personas con amputación transtibial presentaron una ma-

yor excursión con respecto a los controles —como se mostró en las tablas 

anteriores—, pero la mayor amplitud se obtuvo en la dirección AP, específi-

camente en la pierna contralateral (no amputada).

En cuanto al parámetro de la velocidad, en la figura 52 se observa que 

la mayor velocidad se presentó en el grupo de las personas con amputación 

transtibial, sobresaliendo nuevamente en la dirección AP, en la pierna con-

tralateral (no amputada).

Figura 51. Excursión del CoP Figura 52. Velocidad del CoP

X: dirección ML. Y: dirección AP. L: pierna izquierda. R: pierna derecha.

Fuente: elaboración propia.

En las figuras 53 y 54, se evidencia que el parámetro del rango y del valor RMS 

fue mayor para el grupo de las personas con amputación transtibial con su 

máxima amplitud en la dirección AP y en la pierna contralateral (no amputa-

da), al igual que en la excursión y la velocidad presentados anteriormente.
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Figura 53. Rango del CoP Figura 54. Valor RMS del CoP

X: dirección ML. Y: dirección AP. L: pierna izquierda. R: pierna derecha.

Fuente: elaboración propia.

En la figura 55 se presenta el desplazamiento o amplitud promedio, la ampli-

tud máxima en la figura 56 y la amplitud mínima en la figura 57. Observan-

do el mismo comportamiento de los demás parámetros, se obtuvo el mayor 

valor en la dirección AP, pierna izquierda en el grupo de las personas con 

amputación transtibial.

Figura 55. Amplitud promedio del CoP Figura 56. Amplitud máxima del CoP
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Figura 57. Amplitud mínima del CoP

X: dirección ML. Y: dirección AP. L: pierna izquierda. R: pierna derecha.

Fuente: elaboración propia.

Con estos resultados, nuevamente es evidente que los participantes del gru-

po de personas con amputación transtibial presentan un mayor balanceo del 

cuerpo para lograr mantener su estabilidad en posición erguida durante 30 s, 

teniendo un compromiso mayor la pierna contralateral (izquierda). Por tanto, 

a la luz de los resultados lineales en el dominio del tiempo, se puede sugerir 

que el sistema de control postural utiliza el miembro no amputado como el 

principal actor para mantener la postura y evitar una posible caída.

Igualmente, se calculó el área de la elipse que es considerada como una 

medida de rendimiento de la postura y contiene el 95 % del movimiento del 

CoP. Para obtenerla, se calcularon los valores propios de la matriz de cova-

rianza entre las dos direcciones: AP y ML.

En la figura 58 a la 61 se presenta la elipse encontrada para los dos gru-

pos de estudio en ambas direcciones. De estas gráficas, los dos parámetros 

más importantes asociados son el área y la inclinación del eje principal con 

respecto a la dirección ML o AP, siendo la AP que nos muestra la tendencia 

direccional del balance.

En cada una de las figuras ya mencionadas, el grupo de personas con am-

putación transtibial, independientemente del miembro inferior, presentó una 

mayor área de la elipse ya sea al 90 % o 95 %, producto del mayor balanceo 

que el cuerpo realiza para mantener su equilibrio, valor que está acorde con 

lo encontrado en el parámetro de la excursión.
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En cuanto al ángulo que presentaron para la pierna izquierda (contra-

lateral), el grupo de personas con amputación transtibial mostró un menor 

ángulo, lo que puede indicar la rigidez que el cuerpo debe hacer para mante-

ner el control postural, pues la oscilación es mayor en ese miembro, producto 

de la estrategia de tobillo. De forma contraria, se observó en la pierna dere-

cha (ipsilateral), que el grupo de personas con amputación transtibial mostró 

un mayor ángulo con respecto al otro grupo, producto del mayor recorrido 

que se obtuvo en la dirección ML.

Al comparar ambos grupos para la pierna derecha (figuras 58 y 60), se 

observa que las personas con amputación transtibial mostraron un mayor 

desplazamiento en ambas direcciones AP y ML, que igualmente se ve re-

flejado en el mayor ángulo y área. Incluso, si se observan las “flechas” que 

tienen las figuras, la azul corresponde al inicio del recorrido y la roja el final 

de este. Para las personas con amputación transtibial (figura 58), se observa 

una distancia amplia entre ellas producto de la mayor oscilación corporal en 

el lado amputado, situación que no se presenta en las demás figuras.

Figura 58. Elipse para el grupo de personas con amputación transtibial, pierna derecha

Fuente: elaboración propia.

Al realizar la comparación para la pierna izquierda, contralateral (figuras 59 

y 61), el grupo de personas con amputación transtibial presentó una mayor 
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oscilación en el eje AP, pero los datos estuvieron más concentrados hacia el 

centro de la elipse, y se corrobora con el dato obtenido del valor del ángulo.

Figura 59. Elipse para el grupo de personas con amputación transtibial, pierna izquierda

Fuente: elaboración propia.

Figura 60. Elipse para el grupo control, pierna derecha

Fuente: elaboración propia.
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Figura 61. Elipse para el grupo control, pierna izquierda

Fuente: elaboración propia.

Discusión de los resultados del análisis lineal en el tiempo
Durante los últimos 20 años, el CoP ha sido utilizado como un índice para 

evaluar la estabilidad postural estática en posición bípeda, el cual puede ser 

obtenido por medio de una plataforma de fuerza o plantillas instrumentadas. 

En cuanto a su definición teórica, el CoP es el punto en donde se concen-

tra la presión del cuerpo referenciada en la planta de los pies; por tanto, se 

puede indicar que el CoP es una medida que registra la actividad del sistema 

motor por medio del control postural para mantener el equilibrio en diferen-

tes terrenos o actividades diarias.

Ese “balanceo” que se genera para mantener el equilibrio se debe a diver-

sos factores, como por ejemplo, las entradas propioceptivas, la información 

visual, el terreno en donde se pisa, entre otros, hasta se incluye el ruido 

inherente producido por el sistema neuromotor resultado de las respuestas 

que debe generar de forma anticipada para el mantenimiento de la postura 

(Baratto et al., 2002).

Asimismo, ese “balanceo” se puede ver alterado por diversos factores que 

afectan el sistema que controla el mantenimiento del equilibrio, como por 
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ejemplo, el proceso de envejecimiento, los trastornos neurológicos y las al-

teraciones músculo-esqueléticas (Madeleine et al., 2004; Ruhe et al., 2011). 

Alteración que presentan los participantes de la presente investigación, quie-

nes cuentan con disminución de la fuerza, así como la eliminación de la 

información somatosensorial de la extremidad protésica, haciendo que se 

altere la mecánica de la extremidad inferior (Howcroft et al., 2016).

Para las personas con amputación transtibial unilateral, mantener su es-

tabilidad postural, ya sea en estática o en dinámica (Svoboda et al., 2012), 

es de vital importancia porque se exponen a un mayor riesgo de presentar 

una caída en comparación con sujetos sin amputación (Miller et al., 2001). 

Cerca del 75 % de esta población indicó haber presentado al menos una 

caída, lo que está asociada a factores intrínsecos (edad, enfermedades, me-

dicamentos), factores ambientales y los factores asociados a la prótesis que 

comprenden la alineación y el ajuste (Miller et al., 2001).

La pérdida de esa parte del miembro inferior hace que las señales aferen-

tes provenientes de los propio-receptores se reduzcan, impactando de forma 

directa en el deterioro del equilibrio (Viton et al., 2000) y en la limitación de 

la funcionalidad de los músculos involucrados (Schmalz et al., 2001). Por 

eso, la persona debe generar y adaptarse a nuevos patrones de movimientos, 

involucrando la nueva estructura (prótesis), lo que aumenta el consumo de 

energía (Svoboda et al., 2012) para mantener la marcha y la estabilidad.

La literatura indica, que las personas con amputación transtibial pre-

sentan oscilaciones posturales más amplias o extensas en posición bípeda, 

lo que les permite tener un mayor control postural (Bonnet, 2012), situación 

que se reflejó en nuestros resultados, pues todos los parámetros lineales 

calculados presentaron un mayor valor con respecto al grupo control. Ese 

mayor balanceo del cuerpo se debe a la desigualdad en la distribución de 

la carga en los miembros inferiores que se concentra, en mayor medida, en la 

extremidad no amputada, generando así un incremento en la oscilación 

postural (Ku et al., 2014).

Igualmente, se ha evidenciado que se presenta una mayor oscilación en 

la dirección AP con respecto a la ML (Ku et al., 2014), como se observó en 

nuestros datos. Lo anterior puede ser producto del ajuste que debe realizar 
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el sistema del control postural para mantener la estabilidad, incrementando 

la contribución de la estrategia de tobillo y fuerza muscular. Conclusión a 

la que también llegaron Curtze et al. (2012), quienes indicaron que el mayor 

balanceo en la dirección AP se controla con la estrategia de tobillo, mientras 

que la estrategia de cadera contribuye en una menor medida.

Vrieling et al. (2008), en su investigación indicaron que las estrategias de 

ajuste que utilizaron las personas con amputación se generaron en el miem-

bro no amputado, razón por la cual los parámetros calculados del CoP se 

encuentran incrementados en el miembro sano. Aunque una buena fuerza 

muscular y un eficiente control en el tobillo, por parte de este miembro, pue-

den de alguna forma compensar la falta de estrategia del tobillo en la prótesis 

(Neptune y McGowan, 2011).

Por último, la información obtenida del área de la elipse, indica la can-

tidad de movimiento del CoP y la alineación de sus direcciones; es decir, 

la orientación, que finalmente viene siendo una medida de la dirección de 

movimiento predominante. En donde se observó, una vez más, que para el 

grupo de personas con amputación transtibial se presentó una mayor oscila-

ción que se evidenció con el ángulo obtenido, así como su área, lo que indica 

que su postura corporal se vaya más hacia la dirección AP para mantener el 

equilibrio en posición bípeda.

Lo anterior indica que nuestros resultados son coherentes con lo reportado 

en la literatura; se encontraron las mayores diferencias en los parámetros del 

desplazamiento o amplitud promedio, la excursión y la velocidad del CoP. 

Por tanto, estos parámetros deben tenerse en cuenta en el momento en que se 

realiza la alineación y ajuste de la prótesis, pues mantener estos parámetros en 

unos límites ideales permite una buena adaptabilidad al miembro protésico, 

un buen mantenimiento del equilibrio y desarrollo de las actividades cotidia-

nas y así reducir de forma significativa la probabilidad de sufrir una caída.

Frecuencia

Transformada de Fourier a corto plazo (STFT)

El cálculo de la STFT se hizo para cada una de las direcciones (AP y 

ML), para cada pierna (contralateral-lado no amputado e ipsilateral-lado 
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amputado) de los dos grupos de estudio con una ventana Hann. Para su 

registro gráfico se utilizó el espectrograma, que corresponde a un gráfico 

de superficie tridimensional, en donde el eje de las abscisas es el tiempo 

(sucesiones consecutivas de TF), la frecuencia en hercios se encuentra en 

el eje de ordenadas y los colores representan la energía expresada en dB. 

Para este caso, los niveles más claros que corresponde al amarillo indican la 

frecuencia con una mayor concentración de potencia y, en caso contrario, el 

color azul indica una muy baja potencia.

En la figura 62 se encuentran los espectrogramas en la dirección ML de 

la pierna izquierda (XL) para las personas con amputación transtibial y los 

controles, en donde se observa que, durante toda la muestra de 30 s, la poten-

cia más fuerte estuvo presente en frecuencias bajas aproximadamente hasta 

2 Hz para ambos grupos de estudio; pero se observa una leve presencia de 

potencia hasta los 10 Hz en el grupo de personas con amputación transtibial.

Figura 62. Espectrograma dirección ML, pierna izquierda

Fuente: elaboración propia.

La figura 63 corresponde al espectrograma en la dirección ML de la pierna 

derecha (XR) para ambos grupos de estudio, en donde hay predominio de 

baja frecuencia, hasta los 2 Hz, pero los controles presentaron un componente 

no muy fuerte hasta los 8 Hz para los controles.
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Figura 63. Espectrograma dirección ML, pierna derecha

Fuente: elaboración propia.

La figura 64 corresponde al espectrograma en la dirección AP de la pierna 

izquierda (YL) para ambos grupos de estudio, en donde igualmente se 

observa la predominancia de una baja frecuencia, hasta 3 Hz, con una 

presencia de potencia fuerte hasta los 10 Hz en ambos grupos, siendo más 

marcada para los controles.

Figura 64. Espectrograma dirección AP, pierna izquierda

Fuente: elaboración propia.

La figura 65 corresponde al espectrograma en la dirección AP de la pierna 

derecha (YR) para ambos grupos de estudio, en donde igualmente se observa 

la predominancia de una baja frecuencia, hasta 2 Hz, con una presencia de 

potencia fuerte hasta los 10 Hz en ambos grupos.
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Figura 65. Espectrograma dirección AP, pierna derecha

Fuente: elaboración propia.

Densidad espectral de potencia (PSD)
El cálculo de la PSD se realizó para cada una de las direcciones (AP y ML) 

para cada pierna (contralateral-lado no amputado e ipsilateral-lado amputa-

do) de los dos grupos de estudio, con un solapamiento del 25 %.

En las figuras 66 a 69, se presenta la PSD en donde se observa un pre-

dominio de la potencia a frecuencias menores; para este caso menor a 1 Hz 

para ambas direcciones y para ambas piernas. En la figura 66, que corres-

ponde a la dirección ML para la pierna izquierda (XL), se observa que la 

mayor potencia la presenta el grupo de las personas con amputación transti-

bial, específicamente en la frecuencia de 0,2 Hz.
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Figura 66. PSD dirección ML, pierna izquierda

Fuente: elaboración propia.

En la figura 67, que corresponde a la dirección ML para la pierna derecha 

(XR), se observa que la mayor potencia la presenta el grupo de las personas 

con amputación transtibial, específicamente en la frecuencia de 0,2 Hz.

Figura 67. PSD dirección ML, pierna derecha

Fuente: elaboración propia.

En la figura 68, que corresponde a la dirección AP para la pierna izquierda 

(YL), se observa que la mayor potencia la presenta el grupo de las personas 

con amputación transtibial, específicamente en la frecuencia de 0,2 Hz.
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Figura 68. PSD dirección AP, pierna izquierda

Fuente: elaboración propia.

En la figura 69, que corresponde a la dirección AP para la pierna derecha 

(YR), se observa que la mayor potencia la presenta el grupo de las personas 

con amputación transtibial, específicamente en la frecuencia de 0,2 Hz.

Figura 69. PSD dirección AP, pierna derecha

Fuente: elaboración propia.
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Para tener una mejor perspectiva sobre las PSD obtenidas, en la figura 

70 se presentan todos los resultados, en donde se observa que el principal 

componente frecuencial se encuentra en 0,2 Hz y las dos mayores potencias 

se presentaron en la dirección AP en el grupo de personas con amputación 

en la pierna izquierda (YL-Amp) y en la pierna derecha (YR-Amp).

Figura 70. PSD en la dirección AP y ML para ambas piernas y grupos

Amp: personas con amputación. ctrol: personas sin amputación.

Fuente: elaboración propia.

Relación de potencia de frecuencia entre bandas: frecuencia 
baja (0-0,3 Hz), media (0,3-1 Hz) y alta (1-5 Hz)
Como en las secciones anteriores, se hizo la relación de potencia de frecuen-

cia en las tres bandas: baja, media y alta, para ambas direcciones AP y ML 

y para ambas piernas de forma separada.

En la tabla 6 y en la figura 71 se observan los resultados obtenidos para 

cada una de las tres bandas de frecuencia con su respectivo valor-p entre los 

dos grupos de estudio: personas con amputación y controles, con diferen-

cias estadísticamente significativas entre los dos grupos en las tres bandas 

de frecuencia.
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Tabla 6. Relación de potencia de frecuencia en las tres bandas

Dirección 
y pierna Grupo Potencia Fr. 

baja*
Potencia Fr. 

media*
Potencia Fr. 

alta*

XL

Control 0,01379 0,00372 0,00037

Amputado 0,00288 0,00197 0,00016

Valor-p 0,00029 0,00003 < 0,00001

YL

Control 0,03754 0,01707 0,00101

Amputado 1,68623 0,23116 0,00775

Valor-p < 0,00001 < 0,00001 < 0,00001

XR

Control 0,00556 0,00057 0,00002

Amputado 0,03280 0,00096 0,00006

Valor-p 0,00001 < 0,00001 < 0,00001

YR

Control 0,11624 0,01697 0,00055

Amputado 0,25576 0,03163 0,00102

Valor-p 0,00063 0,00105 0,00118

* Se presentaron diferencias estadísticamente significativas (p < 0,05). Fr: frecuencia.

Fuente: elaboración propia.

En la figura 71 se observa que la frecuencia baja que corresponde a 0-0,3 Hz, 

es la que tiene más predominancia en todas las direcciones y en ambas 

piernas, con la mayor potencia con un valor de 1,69 en el grupo de personas 

con amputación en la dirección AP, pierna izquierda (YL). Igualmente, se 

puede ver que, en esta misma medición, se cuenta con una potencia de 0,23 

en la frecuencia media (0,3-1 Hz) que sobresale con respecto a los demás.
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Figura 71. Bandas de frecuencia entre los grupos de estudio

Fuente: elaboración propia.

Asimismo, se puede indicar que la potencia en todas las bandas de frecuencia 

en la dirección ML es muy baja, como se observa en las barras de XL 

(dirección ML, pierna izquierda) y XR (dirección ML, pierna derecha) (figura 

71); y, por consiguiente, la mayor potencia se encontró en la dirección AP 

(YL y YR), siendo más pronunciada en YL (dirección AP, pierna izquierda-

contralateral o no amputada).

Frecuencia de potencia media (MPF) y mediana (MDF)
En la tabla 7 se presentan los valores obtenidos de la frecuencia media y 

mediana con el respectivo valor-p obtenido. Se observaron diferencias es-

tadísticamente significativas en la dirección ML, pierna izquierda (XL) en 

ambas frecuencias (media y mediana) y en la dirección AP, pierna izquierda 

(YL) para la frecuencia media, las cuales se encuentran indicadas con un 

asterisco (*) en la tabla 7.
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Tabla 7. Frecuencia media y mediana entre los grupos de estudio

Dirección y pierna Grupo Frecuencia Media 
(Hz)

Frecuencia 
Mediana (Hz)

XL

Control 0,23161* 0,11801*

Amputado 0,23807* 0,13867*

Valor-p 0,000003 0,000141

YL

Control 0,11961* 0,04079

Amputado 0,15650* 0,06435

Valor-p 0,035022 0,238646

XR

Control 0,19621 0,11744

Amputado 0,16058 0,09149

Valor-p 0,061435 0,059950

YR0

Control 0,17477 0,13415

Amputado 0,19569 0,06578

Valor-p 0,066078 0,150468

*Se presentaron diferencias estadísticamente significativas (p < 0,05).

Fuente: elaboración propia.

Para una mejor comprensión de la tabla anteriormente descrita, en las 

figuras 72 y 73 se presenta de forma gráfica la frecuencia media obtenida en 

ambas direcciones, en donde se observa que la frecuencia a la que se alcanza 

la potencia media se encuentra alrededor de los 0,2 Hz para ambos grupos.
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Figura 72. Frecuencia media en la dirección ML

Fuente: elaboración propia.

Figura 73. Frecuencia media en la dirección AP

Fuente: elaboración propia.

En las figuras 74 y 75 se presenta de forma gráfica la frecuencia mediana 

obtenida en ambas direcciones, en donde se observa que el valor de frecuencia 

que separa el espectro de potencia en dos áreas de igual energía, se encuentra 

por debajo de los 0,2 Hz para ambos grupos; específicamente, con el valor 

mayor alrededor de 0,13 para XL del grupo de las personas con amputación 

transtibial y YR para el grupo de los controles.



150

Daissy Carola Toloza Cano, Lely Adriana Luengas Contreras, Yolanda Torres Pérez

Figura 74. Frecuencia mediana en la dirección ML

Fuente: elaboración propia.

Figura 75. Frecuencia mediana en la dirección AP

Fuente: elaboración propia.

Ancho de banda ocupado del 99 %
El cálculo de este parámetro corresponde al ancho de banda que contiene el 

99 % de la potencia total, el cual se encuentra descrito en la tabla 8, con dife-

rencias estadísticamente significativas en la dirección ML, pierna izquierda 

(XL) y pierna derecha (XR), y la dirección AP solo en la pierna derecha (YR).
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Tabla 8. Ancho de banda del 99 % y 3 dB

Dirección y 
pierna Grupo Ancho de banda 99 % Ancho de banda 3 dB

XL

Control 1,99390* 0,06384

Amputado 2,29786* 0,02943

Valor-p 0,000001* 0,705070

YL

Control 1,27800 0,00679

Amputado 3,07984 0,04305

Valor-p 0,130149 0,169761

XR

Control 1,44329* 0,02014

Amputado 1,27983* 0,06518

Valor-p 0,013294* 0,697123

YR

Control 1,04213* 0,00825

Amputado 4,19824* 0,04553

Valor-p 0,001782* 0,187183

*Se presentaron diferencias estadísticamente significativas (p < 0,05).

Fuente: elaboración propia.

En las figuras 76 y 77 se indica gráficamente hasta dónde se encuentra el 

ancho de banda ocupado del 99 % para ambas direcciones (ML y AP) y para 

ambas piernas (izquierda y derecha). Se observa que para la pierna derecha 

(XR y YR) el ancho de banda del 99 % superó los 3 Hz para el grupo de 

las personas con amputación transtibial, y el grupo control se mantuvo por 

debajo de los 2 Hz independientemente de la dirección.
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Figura 76. Ancho de banda del 99 % en la dirección ML

Fuente: elaboración propia.

Figura 77. Ancho de banda del 99 % en la dirección AP

Fuente: elaboración propia.

Ancho de banda de 3 dB
Como se indicó en el capítulo 2, este ancho de banda también llamado “an-

cho de banda de media potencia”, es el punto en el que la salida de energía 

se ha reducido a la mitad de su valor pico. Y los cálculos obtenidos se en-

cuentran registrados en la tabla 8, en donde no se encontraron diferencias 

estadísticamente significativas entre los grupos de estudio.

En las figuras 78 y 79 se presenta el ancho de banda de 3 dB obtenido, y 

se observa de igual manera que la frecuencia se encuentra por debajo de los 
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0,18 Hz obtenida en la dirección AP, pierna izquierda. Asimismo, se indica que 

la mayor potencia se observó en la pierna izquierda con respecto a la derecha.

Figura 78. Ancho de banda de 3 dB en la dirección ML

Fuente: elaboración propia.

Figura 79. Ancho de banda de 3 dB en la dirección AP

Fuente: elaboración propia.

Relación de potencia espectral (SPR)
Este nuevo término introducido por Nagymáté (2019), caracteriza la tasa de 

distribución de potencia de las frecuencias de balanceo postural en las direc-

ciones AP y ML. Para ello, se calcula la potencia media en la señal de entrada 

de cada una de las direcciones y posteriormente se calcula la 𝑆𝑃𝑅 = 𝐴𝑃/𝑀𝐿, 

para cada una de las piernas, como se indica en la tabla 9.
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Tabla 9. Relación de la potencia espectral (SPR)

SPR Control Amputado Valor-p control vs. 
amputado

Pierna derecha (PD) 0,77688 0,79095* 0,9053396

Pierna izquierda (PI) 0,79284* 0,61117* 0,0000001

Valor-p PD vs. PI 0,3871130 < 0,0000001

*Se presentaron diferencias estadísticamente significativas (p < 0,05).

Fuente: elaboración propia.

Se encontraron diferencias estadísticamente significativas entre el grupo 

control y el grupo de personas con amputación en la pierna izquierda que 

corresponde al lado contralateral (no amputado). También se encontraron 

diferencias entre ambas piernas (izquierda y derecha) en el grupo de perso-

nas con amputación, resultados que eran de esperarse, tal como se observa 

en la figura 80.

Figura 80. Relación de la potencia espectral (SPR)

Fuente: elaboración propia.
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Lo anterior indica que la potencia de frecuencia en la dirección AP es más 

fuerte con respecto a la dirección ML con una significancia en la pierna 

izquierda (contralateral - no amputada) y que esa misma relación de potencia 

de la frecuencia en la pierna derecha es igual para los controles y el grupo de 

personas con amputación.

Discusión de los resultados del análisis lineal en la frecuencia
El análisis de la frecuencia permite evaluar e identificar las alteraciones 

presentes en el mantenimiento de la estabilidad postural estática, como lo 

sugirieron Laufer et al. (2006), quienes indicaron que la medida de la frecuen-

cia permite reflejar los efectos del envejecimiento o realización de algunas 

tareas en específico. Y de igual forma, para esta investigación se pretende 

identificar esas diferencias entre un grupo de personas con amputación trans-

tibial unilaterales con respecto a un grupo control sano, con el fin de evaluar 

el comportamiento del CoP para mantener el equilibro con el uso de una pró-

tesis debidamente alineada, e identificar las diferentes bandas de frecuencia 

en donde se encuentra ese control postural.

De forma general y en concordancia con los resultados obtenidos en el 

análisis frecuencial, se puede indicar que el control postural evaluado por 

medio del CoP, se encuentra en una frecuencia inferior de 2 Hz para am-

bos grupos de estudio con una fuerte potencia alrededor de la frecuencia 

de 0,2 Hz, la cual fue mayor para el grupo de las personas con amputa-

ción. Situación que también ha sido identificada por Carpenter et al. (2001) 

y Maurer y Peterka (2005), quienes indicaron que, en la condición de bipe-

destación estática, la oscilación postural es de baja frecuencia. Igualmente, 

Bernard-Demanze et al. (2010) indicaron que, en sujetos jóvenes sanos, no 

encontraron potencias en frecuencias mayores a 1,5 Hz.

Aunque la STFT señaló que pueden existir componentes hasta los 10 Hz, 

como también lo propusieron Duarte y Freitas (2010), quienes indicaron 

que, para la postura estática bípeda, la serie de tiempo del CoP cuenta con 

componentes frecuenciales principales por debajo de 10 Hz.

Igualmente, se observó a través del parámetro del ancho de banda del 

99 % que la potencia espectral se encuentra por debajo de los 4,2 Hz para el 

grupo de las personas con amputación en la dirección AP, pierna derecha y 
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hasta los 2,3 Hz en la dirección ML, pierna izquierda. En la investigación 

realizada por Kirchner (2013), este indicó que para sujetos jóvenes sanos el 

99 % de la potencia espectral se encontró por debajo de los 3 Hz.

Incluso, algunas investigaciones proponen que la duración del registro 

CoP es importante; por ejemplo, en la investigación de Vieira et al. (2009), 

identificaron una disminución de la frecuencia, cuando se incrementó la du-

ración del tamaño de la serie del tiempo de 30 a 60 s, hasta 300 s. Lo que 

también indicó Carpenter et al. (2001), que con mediciones de un tiempo 

mayor se pueden tener más componentes de baja frecuencia. Lo anterior 

puede sugerir que se puede lograr una mejor resolución de la banda de fre-

cuencia baja con series de tiempo mayores; esto propone que con muestras 

cortas no se permite registrar oscilaciones posturales lentas, por tanto, se 

puede tener una sub o sobreestimación del valor de frecuencia real (Van der 

Kooij et al., 2011).

En cuanto a la diferenciación de los grupos, las personas con amputa-

ción presentaron estadísticamente una mayor potencia en la dirección AP, 

tanto en la pierna izquierda (contralateral) como en la derecha (ipsilateral). 

Resultados que son consistentes con los datos obtenidos en el capítulo del 

“Análisis lineal en el tiempo”. Lo anterior, puede indicar que las personas 

con amputación son más estables en la dirección ML que en la dirección AP; 

también puede deberse a que utilizan más la estrategia de cadera para man-

tener su estabilidad postural durante la posición bípeda, debido a la pérdida 

de la información somatosensorial del miembro amputado. Igualmente, la 

reducción en la potencia en la dirección ML con respecto a la AP, puede ser 

producto de las estructuras anatómicas del segmento amputado que incluye 

el tobillo, haciendo que la compensación del peso se produzca en la cadera 

(Luengas y Toloza, 2020b). Incluso, las personas con amputación transtibial 

unilateral para mantener su estabilidad postural estática utilizan, en gran 

medida, la parte posterior del muslo y los músculos del glúteo (Luengas y 

Toloza, 2019).

Incluso, las investigaciones de Arifin et al. (2014a, 2014b) y Nederhand 

et al. (2012), sugieren una asociación positiva entre el incremento de la rigi-

dez del pie protésico y el aumento en los parámetros para evaluar el control 
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postural, especialmente en la dirección AP, ya sea en posición estática o en 

la realización de tareas cotidianas y en el control dinámico del equilibrio.

Igualmente, se observó que, para el grupo de personas con amputación, 

la mayor potencia se encontró de forma significativa en la banda de frecuen-

cia baja (0-0,3 Hz), seguida en una menor proporción en la banda media 

(0,3-1 Hz), lo que nos puede indicar que el control postural de los partici-

pantes del estudio está utilizando, en gran medida, el sistema visual y los 

reflejos vestibulares para mantener la posición erguida estática, con respecto 

al grupo control sano (Ferdjallah et al., 1997; Maurer y Peterka, 2005).

Si comparamos los resultados obtenidos en el “análisis lineal en el tiem-

po”, se puede indicar que se encuentra en concordancia con los obtenidos en 

el frecuencial, pues las mayores potencias se encontraron en la dirección AP, 

específicamente en la pierna izquierda (contralateral-no amputada).

Aunque en todos los parámetros no se encontraron diferencias estadís-

ticamente significativas para ambas direcciones y ambas piernas, como es 

el caso de la frecuencia media (solo se encontraron diferencias en la pierna 

izquierda, ambas direcciones), frecuencia mediana (solo se encontraron di-

ferencias en la dirección ML, pierna izquierda), ancho de banda del 99 % 

(no se encontraron diferencias en la dirección AP, pierna izquierda) y de 3 

dB (no se encontraron diferencias). Se puede indicar que la frecuencia para 

los participantes del grupo de personas con amputación transtibial unilate-

rales se encuentra por debajo de los 2 Hz pero puede llegar hasta los 4,2 Hz, 

con su principal potencia alrededor de los 0,2 Hz. Se sugiere que en futuros 

estudios no se utilicen los parámetros anteriormente mencionados para ca-

racterizar a los participantes del presente estudio.

En cuanto a la inclusión del nuevo parámetro que corresponde a la rela-

ción de la potencia espectral, SPR, se observa que la potencia de frecuencia 

en la dirección AP es más fuerte con respecto a la dirección ML con una 

significancia en la pierna izquierda (contralateral-no amputada) y que esa 

misma relación de potencia de la frecuencia en la pierna derecha es igual 

para los controles y las personas con amputación.

Con todo lo anterior, se puede indicar que el análisis de frecuencia per-

mitió identificar varios cambios significativos en comparación con el grupo 
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control, lo que lo hace un método sensible para evaluar la estabilidad postural 

estática; por tanto, se sugiere que es importante la utilización de parámetros 

frecuenciales para establecer diferencias entre grupos de estudio.

Análisis no lineal

Entropía
En esta oportunidad, se utiliza la entropía como parámetro que permite de-

terminar la irregularidad de una serie de tiempo, y para el caso del CoP, 

permite cuantificar el control postural en las personas con amputación trans-

tibial unilateral en la posición bípeda estática.

En la tabla 10 se presentan los valores obtenidos de la entropía aproxima-

da (ApEn) y la muestral (SampEn); en el asterisco (*) se encuentran indicados 

los que presentaron diferencias estadísticamente significativas (p < 0,05) en-

tre los dos grupos de estudio.

Es importante indicar que, para poder realizar la comparación entre los 

dos grupos y las tres entropías (ApEn, SampEn - tabla 10, MSE - tabla 11), 

se utilizaron los mismos valores para 𝑚, 𝑟 y 𝑁, en las ecuaciones propuestas 

en el capítulo 3; por tanto, se establece 𝑚 = 2 y 𝑟 = 0,2 ∗ desviación estándar y 

𝑁 con un valor de 1515, tal como lo propuso Costa et al. (2005).

Tabla 10. Valores de la entropía aproximada y muestral

Dirección y pierna Grupo ApEn SampEn

XL

Controles 0,10151 ± 0,0626* 0,72489 ± 0,58163

PAT 0,21427 ± 0,01892* 0,58163 ± 0,06985

Valor-p 0,000003 0,713110

YL

Controles 0,09177 ± 0,00573 0,19310 ± 0,02116*

PAT 0,09214 ± 0,00788 0,02116 ± 0,00442*

Valor-p 0,566663 < 0,0000001
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Dirección y pierna Grupo ApEn SampEn

XR

Controles 0,10109 ± 0,00545 0,50906 ± 0,32775*

PAT 0,13889 ± 0,01992 0,32775 ± 0,04895*

Valor-p 0,965506 0,006875

YR

Controles 0,09047 ± 0,00400 0,12919 ± 0,10170*

PAT 0,10015 ± 0,01237 0,10170 ± 0,02485*

Valor-p 0,299331 0,001782

Los valores corresponden al promedio y al error estándar. Y: dirección AP. X: dirección 
ML. L: pierna izquierda. R: pierna derecha. Amp: amplitud. *Se presentaron diferencias 

estadísticamente significativas (p < 0,05). PAT: personas con amputación.

Fuente: elaboración propia.

La entropía permite cuantificar la regularidad o la predictibilidad de una 

serie de tiempo a partir de los valores obtenidos, y se asume que un valor 

bajo de entropía indica que la señal es predecible o periódica y un valor alto 

indica que la señal es impredecible o totalmente aleatoria (Gow et al., 2015).

De acuerdo con lo anterior, la entropía ApEn solo presentó diferencia 

estadísticamente significativa en dirección ML, pierna izquierda (XL), pero 

en general todos los valores obtenidos fueron bajos en ambos grupos, con 

un leve incremento en las personas con amputación, indicando que la señal 

CoP puede ser predecible o periódica, como se observa en la figura 81.

Para la entropía SampEn, mostró diferencias estadísticamente signifi-

cativas en la dirección AP, pierna izquierda (YL) y derecha (YR) y en la 

dirección ML, en la pierna derecha (XR), con valores aún bajos, pero siendo 

mayor en el grupo de los controles (figura 81).
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Figura 81. Entropía aproximada y muestral

*Diferencias estadísticamente significativas (p < 0,05).

Fuente: elaboración propia.

Para el caso de la entropía MSE, se utiliza el algoritmo de SampEn pero con 

diferentes escalas de tiempo, con las denominadas “coarse grained series” 

con un factor de escala de 1 hasta 10 por la longitud de los datos, tal como 

lo sugieren Pincus (2001) y Richman y Moorman (2000).

En la tabla 11 se presentan los valores obtenidos para la MSE en la direc-

ción ML, con las diferencias estadísticamente significativas marcadas con 

asterisco (*) para ambos grupos de estudio. Se observaron las mayores dife-

rencias en la pierna derecha (ipsilateral o amputada), con valores menores 

para el grupo de personas con amputación, lo que nos indica que la señal del 

CoP es predecible o periódica en esta dirección, lo cual puede deberse al uso 

de la prótesis, lo que genera una rigidez para mantener la estabilidad postural.
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Tabla 11. Valores de la entropía MSE para la dirección ML

Escala
XL XR

PAT Controles Valor-p PAT Controles Valor-p

1
0,71 ± 
0,072*

0,41 ± 0,047* 0,00185
0,36 ± 
0,058

0,44 ± 0,029 0,057055

2
0,86 ± 
0,079*

0,55 ± 0,053* 0,00403
0,44 ± 
0,065*

0,59 ± 0,029* 0,017378

3
0,87 ± 
0,078*

0,67 ± 0,058* 0,04787
0,48 ± 
0,065*

0,74 ± 0,029* 0,000460

4 0,97 ± 0,088 0,79 ± 0,063 0,11951
0,50 ± 
0,064*

0,88 ± 0,029* 0,000004

5 0,95 ± 0,091 0,91 ± 0,067 0,87969
0,59 ± 
0,092*

1,04 ± 0,029* 0,000000

6 0,99 ± 0,087 1,01 ± 0,076 0,79527
0,70 ± 
0,108*

1,14 ± 1,029* 0,000058

7 1,08 ± 0,112 1,15 ± 0,074 0,20589
0,59 ± 
0,069*

1,24 ± 0,029* < 0,0001

8 1,16 ± 0,113 1,38 ± 0,100 0,08860
0,68 ± 
0,107*

1,45 ± 1,029* < 0,0001

9
1,04 ± 
0,109*

1,39 ± 0,102* 0,01024
0,57 ± 
0,078*

1,48 ± 0,029* < 0,0001

10
1,07 ± 
0,116*

1,68 ± 0,114* 0,00022
0,75 ± 
0,132*

1,64 ± 1,029* < 0,0001

Los valores corresponden al promedio y al error estándar. *Se presentaron  
diferencias estadísticamente significativas (p < 0,05). X: dirección ML.  
L: pierna izquierda. R: pierna derecha. PAT: personas con amputación.

Fuente: elaboración propia.

En la figura 82 se representa gráficamente los resultados de la MSE en la 

dirección ML, los ejes X y Y son adimensionales, puesto que corresponden a 

una relación y una escala, respectivamente. En esta figura se observa que para 

el grupo control, tanto para la pierna izquierda (XL) como para la derecha 

(XR), a medida que se incrementa la escala de tiempo, varía la regularidad 

o la predictibilidad del CoP, haciendo que a escalas mayores la señal sea 

impredecible. Caso contrario con el grupo de personas con amputación, en 

donde a escalas mayores el valor de la entropía se mantiene en un rango, 

haciendo que la señal del CoP se vuelva predecible o periódica.
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Figura 82. Entropía MSE, dirección ML

Fuente: elaboración propia.

En la tabla 12 se presentan los valores obtenidos para la MSE en la dirección 

AP, con diferencias estadísticamente significativas para ambos grupos de 

estudio en todas las escalas. En cuanto al valor de la entropía, el grupo de los 

controles presentó los mayores valores con respecto al grupo de las personas 

con amputación, indicando una menor predictibilidad o regularidad del 

CoP de este último grupo con respecto al otro.

Tabla 12. Valores de la entropía MSE para la dirección AP

Escala
YL* YR*

PAT Controles Valor-p PAT Controles Valor-p

1 0,02 ± 0,055 0,23 ± 0,038 < 0,0001 0,14 ± 0,039 0,44 ± 0,020 0,002948

2 0,04 ± 0,055 0,36 ± 0,038 < 0,0001 0,19 ± 0,048 0,59 ± 0,020 0,001054

3 0,06 ± 0,055 0,46 ± 0,038 < 0,0001 0,23 ± 0,047 0,74 ± 0,020 0,001054

4 0,08 ± 0,055 0,55 ± 0,038 < 0,0001 0,27 ± 0,054 0,88 ± 0,020 0,000715

5 0,09 ± 0,055 0,65 ± 0,038 < 0,0001 0,27 ± 0,045 1,04 ± 0,020 0,000269

6 0,12 ± 0,155 0,73 ± 1,038 < 0,0001 0,32 ± 0,060 1,15 ± 0,020 0,000209

7 0,13 ± 0,155 0,81 ± 1,038 < 0,0001 0,29 ± 0,042 1,25 ± 0,020 0,000035



163

Herramientas de análisis para la estabilidad estática postural. Caso de aplicación: personas con amputación transtibial

Escala
YL* YR*

PAT Controles Valor-p PAT Controles Valor-p

8 0,14 ± 0,155 0,84 ± 1,038 < 0,0001 0,37 ± 0,069 1,46 ± 0,020 0,000071

9 0,16 ± 0,155 0,89 ± 1,038 < 0,0001 0,38 ± 0,073 1,49 ± 0,020 0,000012

10 0,17 ± 0,155 0,98 ± 1,038 < 0,0001 0,41 ± 0,083 1,64 ± 0,020 0,000007

Los valores corresponden al promedio y al error estándar. *Se presentaron 
diferencias estadísticamente significativas (p < 0,05). Y: dirección AP. L: pierna 

izquierda. R: pierna derecha. PAT: personas con amputación.

Fuente: elaboración propia.

En la figura 83 se representa gráficamente los resultados de la MSE en la 

dirección AP, los ejes X y Y son adimensionales, ya que corresponden a una 

relación y una escala, respectivamente. En esta figura se observa que para 

el grupo control, tanto para la pierna izquierda (YL) como para la derecha 

(YR), a medida que se incrementa la escala de tiempo, varía la regularidad 

o la predictibilidad del CoP, haciendo que a escalas mayores la señal sea 

impredecible; de igual manera que lo obtenido en la dirección ML. Caso 

contrario con el grupo de amputado, en donde a escalas mayores la señal 

del CoP se vuelve predecible o periódica; aunque se experimenta un leve 

aumento del valor de entropía a medida que las escalas aumentan, caso 

contrario a lo que se obtuvo en la dirección ML.

Figura 83. Entropía MSE, dirección AP

Fuente: elaboración propia.
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Análisis de los resultados de la entropía

La entropía es una medida para evaluar la complejidad de las señales y es 

una de las más aplicadas a las señales biomédicas. A modo de ejemplo, se 

puede indicar que la entropía ApEn ha sido empleada para analizar la varia-

bilidad del ritmo cardíaco y los registros RR de la señal del ECG en neonatos 

(Ferrario et al., 2006) con el objetivo de caracterizar el estado de salud.

De igual manera, la entropía SampEn también ha sido utilizada para dife-

renciar estados patológicos o sanos (Lake et al., 2002; Richman y Moorman, 

2000); para analizar el sufrimiento fetal a partir de la variación del ritmo 

cardíaco (Ferrario et al., 2006); para analizar la variabilidad del ritmo cardía-

co en aquellas personas que padecen de apnea obstructiva durante el sueño 

(Al-Angari y Sahakian, 2007); para evaluar la fibrilación auricular a partir de 

la señal ECG (Alcaraz y Rieta, 2009), entre otros.

La entropía MSE se ha utilizado para determinar si el feto se encuentra 

en sufrimiento fetal (Ferrario et al., 2006); en la caracterización de la señal 

del ECG en el embarazo, en personas con autismo (Catarino et al., 2011), 

con esquizofrenia (Takahashi et al., 2010), entre otros.

La aplicación de este parámetro apoya la idea de que una pérdida de re-

gularidad o de complejidad que experimenta un sistema biológico se debe a 

un cambio en su estado normal o sano, el cual se caracteriza por los factores 

de enfermedad o envejecimiento (Goldberger et al., 2002).

Actualmente, se ha venido aplicando el parámetro de la entropía para 

analizar el CoP, con el objetivo de determinar la irregularidad de la señal 

entre grupos de estudios y así estudiar y comprender el control postural para 

diversas poblaciones. Algunos ejemplos de las investigaciones son las de 

Chen y Jiang (2014), Gow et al. (2015), Haid y Federolf  (2018), Montesinos 

et al. (2018) y Sabatini (2000).

A modo de ejemplo, Sabatini (2000) utilizó la entropía MSE para evaluar 

el balanceo postural en dos grupos: 1) jóvenes y adultos mayores sanos y 

2) adultos mayores con antecedente de caídas, y encontró que la serie de 

tiempo fue más compleja en el primer grupo que aquellos que habían sufrido 

alguna caída.
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Para la interpretación de los valores obtenidos con la entropía, de forma 

general se ha indicado que valores altos en la señal del CoP indican una alta 

irregularidad, que puede ser ocasionada por los movimientos variables (Busa 

et al., 2016; Yang et al., 2010) o adaptables (Chen y Jiang, 2014) que usa el 

sistema del control postural para mantener el equilibrio, ya sea debido al te-

rreno que esté pisando o a las actividades cotidianas que está llevando a cabo.

Pero no se puede determinar si la alta irregularidad se debe a la coordi-

nación de las diversas estrategias de movimiento que usa el control postural 

para mantener su equilibrio o se debe a una irregularidad en el control neu-

romuscular (Haid y Federolf, 2018).

Según lo encontrado en esta investigación y tal como se indicó en el capí-

tulo 3, el resultado de la entropía ApEn cuenta con un sesgo que está ligado 

con la longitud de la serie de tiempo, situación que de pronto se pudo obser-

var en nuestros datos, pues no se encontraron diferencias estadísticamente 

significativas en la dirección ML (pierna derecha) y en AP (piernas derecha 

e izquierda), solo en la dirección ML, pierna izquierda, en comparación con 

los resultados obtenidos con SampEn y la MSE.

Estos resultados son coherentes con los encontrados por Cavanaugh et 

al. (2007), quienes con ApEn evaluaron el control postural con y sin la reali-

zación de una tarea cognitiva en 30 adultos jóvenes sanos, con valores altos 

en la dirección AP cuando se ejecutaba la tarea y sin diferencias estadística-

mente significativas en la dirección ML.

Esa situación de desventaja de la ApEn se pretende subsanar con la inclu-

sión de la entropía SampEn, aunque no lo logra hacer completamente, como 

lo indicó Pincus (2001), dando paso a la inclusión a la entropía MSE que 

valora las diferencias en la serie temporal a escalas mayores.

Para nuestros datos, en la entropía SampEn se observó diferencias estadís-

ticamente significativas en contraposición con lo que se encontró en ApEn; 

es decir, los parámetros no significativos en ApEn fueron significativos en 

SampEn, lo que indica que efectivamente los términos autocomparables en el 

cálculo de ApEn lo conduce a un sesgo del resultado. Asimismo, Montesinos 

et al. (2018), en su investigación con adultos con y sin antecedentes con caí-

das, indicaron que la entropía SampEn demostró una mejor consistencia de 
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los resultados que con ApEn; por tanto, sugieren que para analizar la serie 

de tiempo del CoP se debe utilizar la SampEn sobre la ApEn.

En la literatura se evidencia que con respecto al CoP, se ha utilizado la 

entropía de SampEn para caracterizar grupos de estudio en diferentes con-

diciones, en adultos jóvenes y mayores (Ramdani et al., 2009, 2011), pero 

a pesar de su solidez estadística, sus resultados han mostrado una falta de 

confiabilidad, sobre todo con respecto al efecto del envejecimiento (Borg y 

Laxåback, 2010; Ramdani et al., 2009). Estos resultados pueden deberse a que 

la entropía SampEn no es una medida multivariante, ni de multiescala; por 

tanto, se hace inminente el cálculo de la MSE a diferentes escalas de tiempo.

Con la entropía MSE, efectivamente se pudo observar cómo la regulari-

dad de la señal cambia a medida que se incrementan las escalas de tiempo 

en ambas direcciones (AP y ML) para ambas piernas (figuras 82 y 83). En 

cuanto a la regularidad del CoP, se indica que el grupo de personas con 

amputación presentaron una mayor regularidad o predictibilidad de la señal 

en las diferentes escalas de tiempo, lo que sugiere una mayor rigidez o menor 

balanceo postural para mantener la posición estática erguida, producto de 

utilización del miembro protésico y la utilización de la estrategia de cadera 

para mantener el control postural; lo anterior también indica la alta probabi-

lidad que tiene este grupo para sufrir una caída con respecto al grupo control.

Tal como lo indicaron Donker et al. (2007), cuando el CoP presenta un 

patrón más regular sugiere que la población de estudio tiene un comporta-

miento postural más rígido, lo que puede sugerir que el desplazamiento del 

CoP y la actividad generada por parte del control postural son dependientes 

(Donker et al., 2007; Vuillerme y Nafati, 2007). En consecuencia, una menor 

complejidad puede estar relacionada con una disminución funcional, lo que 

genera un control postural más rígido, impactando de manera negativa en la 

forma en que se puede perder el control del equilibrio durante alguna pertur-

bación (Schniepp et al., 2013).

Al comparar la regularidad del CoP en las direcciones ML y AP, se 

observó que los menores valores de la entropía MSE se obtuvieron en la 

dirección AP, lo que nos indica que la señal es más regular, mostrando una 

mayor rigidez en el comportamiento postural en la pierna izquierda, que 
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corresponde al lado izquierdo (contralateral o no amputado), lo que sugiere 

que ese miembro es quien proporciona un mayor soporte para mantener la 

estabilidad en posición erguida.

La entropía MSE y su inclusión de las escalas de tiempo permiten analizar 

la complejidad para escalas de tiempo cortas y largas, y así poder cuantificar 

la complejidad de forma general del sistema de control postural, dado que la 

MSE calcula la entropía en todas las escalas de tiempo en forma individual 

(Busa y Van Emmerik, 2016).

La combinación de estas características permite a los investigadores iden-

tificar las escalas de tiempo en las que se produce la ruptura de la complejidad, 

así como la complejidad general que tiene en cuenta todas las escalas de 

tiempo; por tanto, con lo encontrado en la presente investigación, se sugiere 

la utilización de esta entropía, la MSE, para estudiar el comportamiento del 

CoP en personas con amputación transtibial unilateral que cuentan con una 

alineación protésica.

Teoría de la información
La exploración de los datos del CoP, con el fin de obtener información útil 

del sistema (se define sistema como el conjunto de sucesos donde se relacio-

na el CoP y la estabilidad postural estática), se realizó mediante técnicas de 

análisis basadas en teoría de la información. Como se explicó en el capítulo 

3, apartado “Teoría de la información”, se debe realizar una serie de pasos 

entre los que se tiene: selección de los datos para trabajar; exploración, pre-

paración y selección de las variables; selección del algoritmo para crear el 

modelo; entre otros. Estos pasos se pueden realizar de forma independiente 

usando diferentes algoritmos; sin embargo, existe el software Powerhouse™ 

(Dataxplore, 2006) desarrollado como una herramienta de análisis de datos 

que permite obtener información de los datos realizando los pasos enume-

rados, es decir: prepara las variables; da a conocer el resumen estadístico 

de todas las variables; selecciona las variables más importantes; genera las 

medidas infométricas del sistema; crea modelos tanto explicativos como pre-

dictivos y muestra el rendimiento de estos.

Por las ventajas mostradas, se utilizó esta herramienta computacional 

para el análisis del sistema de estabilidad postural estática.
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Desplazamiento
En las mediciones se recogieron 441 040 datos, clasificados en cuatro varia-

bles de entrada al sistema, las cuales corresponden a la ubicación del CoP 

bajo cada pie (derecho e izquierdo) y en las direcciones antero-posterior y 

medial-lateral; de allí que las variables y la cantidad de datos de cada una 

de ellas se dan a conocer en la tabla 13. Además, se muestra la cantidad de 

valores para cada uno de los grupos estudiados, grupo de personas sin am-

putación transtibial o grupo control y grupo de personas con amputación.

Tabla 13. Datos analizados en el desplazamiento del CoP

Variable Definición Cantidad 
de datos total

Cantidad de 
datos control

Cantidad 
de datos PAT

dMLL
Ubicación 
medial-lateral del CoP 
del lado izquierdo

110 260 55 130 55 130

dAPL
Ubicación 
antero-posterior del CoP 
del lado izquierdo

110 260 55 130 55 130

dMLR
Ubicación medial-lateral 
del CoP del lado derecho

110 260 55 130 55 130

dAPR
Ubicación 
antero-posterior del CoP 
del lado derecho

110 260 55 130 55 130

PAT: Personas con amputación transtibial.

Fuente: elaboración propia.

Teniendo en cuenta que los datos son de tipo numérico y la teoría de la in-

formación (TI) requiere datos de tipo categórico, se efectúa la exploración 

de la cantidad de datos diferentes y se procede a la aplicación de un algo-

ritmo de agrupación basado en TI, como es menor pérdida de información 

(LIL), a lo cual se reduce la cantidad de datos diferentes en cada variable. 

Los límites de las agrupaciones y el porcentaje de datos que cada agrupación 

recoge se muestran en la tabla 14.



169

Herramientas de análisis para la estabilidad estática postural. Caso de aplicación: personas con amputación transtibial

Tabla 14. Agrupaciones (bins) de cada variable incluida 
en el análisis del desplazamiento del CoP

No. 
Agrup.

dMLL dAPL dMLR dAPR

Límite 
superior

%
filas

Límite 
superior

%
filas

Límite 
superior

%
filas

Límite 
superior

% 
filas

1 0,021 17,23 0,401 28,28 0,09 32,14 1,49 69,18

2 0,058 14,46 0,626 10,4 0,188 21,79 2,999 17,83

3 0,202 32,49 0,906 8,25 0,510 27,96 4,218 5,58

4 1,377 33,01 1,1 4,44 0,53 0,88 4,475 0,8

5 1,802 1,21 1,385 4,61 0,593 2,51 4,52 0,11

6 1,894 0,13 2,317 9,94 0,63 1,18 6,70 3,14

7 1,926 0,1 2,68 2,83 0,634 0,15 7,334 0,39

8 1,973 0,11 4,275 9,46 0,666 0,77 8,827 0,92

9 5,455 1,21 5,577 5,18 1,197 6,72 9,018 0,1

10 6,141 0,05 24,263 16,71 9,746 5,91 22,859 1,94

Agrup.: agrupaciones. d: desplazamiento. ML: dirección medial-lateral.  
AP: dirección antero-posterior. L: lado izquierdo. R: lado derecho.

Fuente: elaboración propia.

Con estas agrupaciones se exploran los valores promedio, máximo y mínimo 

de cada variable para observar los cambios presentados en la conversión de 

datos (tabla 15).

Tabla 15. Valores de los datos luego de la agrupación

Variable Distintos Valor 
máximo Promedio Valor 

mínimo
Número 

de Agrup.

dMLLC 1052 4,347 0,2 -0,341 10

dAPLC 753 5,951 0,6545 -1,345 10
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Variable Distintos Valor 
máximo Promedio Valor 

mínimo
Número 

de Agrup.

dMLRC 2201 1,364 0,1578 -0,495 10

dAPRC 2648 8,831 0,8825 -2,057 10

dMLLA 2029 6,261 0,3135 -0,600 10

dAPLA 4244 24,281 4,789 -10,287 10

dMLRA 1302 9,646 0,6177 -0,950 10

dAPRA 6348 22,893 2,1167 -4,072 10

Agrup: agrupaciones. d: desplazamiento. ML: dirección medial-lateral. AP: dirección antero-posterior. 
L: lado izquierdo. R: lado derecho. C: grupo control. A: grupo de personas con amputación.

Fuente: elaboración propia.

A partir de las agrupaciones, se revisan las variables para elegir aquellas que 

entregan máxima información del sistema, seleccionadas en orden por la 

cantidad de información de salida que contienen; así, las variables electas 

son aquellas que transmiten la mayor cantidad de información y las más 

representativas de la estabilidad postural estática. Esta selección reduce el 

número de variables y es altamente insensible al ruido de las señales. Se 

tienen en cuenta dos parámetros en la selección:

•	 Ganancia, es la representación del total de información transmitida por las 

variables electas, así la cantidad de información incrementa a medida que 

se adiciona una variable.

•	 Balance, da cuenta del equilibrio del sistema al incluir una nueva variable 

y la pérdida de confianza de representatividad.

Se realiza el cálculo de la entropía de cada variable H(X), así como la en-

tropía conjunta, examinada la incidencia de la variable al sistema de forma 

individual H(Y|x) y de forma conjunta H(Y|X) (tabla 16).
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Tabla 16. Entropía de cada variable observada en desplazamiento del CoP

Variable H(X) (bits) H(Y|x) (bits) H(Y|X) (bits)

dMLL 2,087 0,9 0,5

dAPL 3,005 0,553 0,553

dMLR 2,358 0,845 0,435

dAPR 1,481 0,911 0,387

d: desplazamiento. ML: dirección medial-lateral. AP: dirección 
antero-posterior. L: lado izquierdo. R: lado derecho.

Fuente: elaboración propia.

La selección de las variables del sistema de estabilidad estudiado, teniendo 

en cuenta los valores dados a conocer en la tabla 16, muestra las variables 

representativas, el aporte de cada una de ellas, la confianza y ganancia; las 

variables se ubican en la tabla según su aporte (tabla 17).

Tabla 17. Selección de variables en desplazamiento del CoP

Variable Ganancia 
acumulada (%)

Ganancia 
individual (%) Confianza (%) Balance

dAPL 44,61 44,61 96,11 0,4288

dMLL 49,98 5,37 95,24 0,476

dMLR 56,49 6,51 95,03 0,5368

dAPR 61,26 4,77 90,03 0,5515

d: desplazamiento. ML: dirección medial-lateral. AP: dirección 
antero-posterior. L: lado izquierdo. R: lado derecho.

Fuente: elaboración propia.
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Se seleccionaron las variables de acuerdo con la relación entre confianza, 

balance y ganancia individual de cada una de ellas; de allí que en la figura 

84 se observa de forma gráfica esta relación.

Figura 84. Gráfico de confianza de las variables para el desplazamiento del CoP

d: desplazamiento. ML: dirección medial-lateral. AP: dirección 
antero-posterior. L: lado izquierdo. R: lado derecho.

Fuente: elaboración propia.

Al examinar el sistema en conjunto, con las cuatro variables seleccionadas 

(dMLL, dAPL, dMLR, dAPR), se conocen las estadísticas infométricas del 

sistema (tabla 18), donde se tiene:

•	 La información entrante H(X)

•	 La información requerida H(Y)

•	 La equivocación H(X|Y)

•	 El ruido H(Y|X)

•	 La información transmitida (X:Y)

•	 La redundancia

•	 La confianza
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Tabla 18. Estadísticas infométricas del sistema considerando el desplazamiento del CoP

Parámetro Símbolo Valor

Información entrante (bits) H(X) 8,176

Información requerida (bits) H(Y) 0,999

Equivocación (bits) H(X|Y) 7,564

Ruido (bits) H(Y|X) 0,387

Información conjunta (bits) (X,Y) 8,564

Información transmitida (bits) T(X:Y) 0,612

Redundancia (bits) T(X) 1,916

Confianza de datos (%) 90,03

Fiabilidad 99,78

Fuente: elaboración propia.

Con el mapa de información se muestra de forma gráfica las estadísticas 

infométricas de una selección de variables (figura 85), donde se contempla:

•	 Información entrante (81 %), es la proporción de la información que contie-

nen las variables de entrada en comparación con el máximo teórico; este 

valor es el usado para el análisis del sistema. Las variables de entrada se 

nombran: entrada del sistema.

•	 Canal, por medio del cual se transmite la información desde la entrada 

hacia la salida.

•	 Información transmitida (61 %), es la cuantía de relación existente entre la 

entrada y la salida. A mayor valor, mayor relación y posibilidad de gene-

rar un modelo que represente el sistema.

•	 Información requerida (1,00 bits), es la cantidad de información necesaria 

para tener un modelo predictivo que pueda pronosticar el valor de la va-

riable de salida.

•	 Equivocación (93 %), hace referencia a la incertidumbre que se presenta en 

el mensaje enviado al conocer la señal recibida.
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•	 Ruido (39 %), es la información transmitida que no sirve para reducir la 

incertidumbre acerca de los estados de la variable de salida.

Figura 85. Mapa infométrico del sistema considerando el desplazamiento

Fuente: elaboración propia.

La información transmitida es del 61 %, lo cual asegura la creación y 

funcionamiento de un modelo que permita describir el sistema, así como 

predecir el comportamiento de un conjunto nuevo de datos. Por ello, 

se construyó un modelo de reglas de decisión, tomando como base las 

agrupaciones y fundamentado en teoría de la información. Este modelo 

MAXIT (Transferencia Máxima de Información; en inglés, MAXimum 

Information Transfer), permite generar un modelo predictivo en forma de 

conjunto de reglas, donde cada regla representa la información de una 

relación no lineal entre las variables de entrada y la variable de salida; las 

reglas generadas maximizan la información contenida en el sistema, son 

descubiertas en la tabla de datos y enumeradas en orden descendente, el cual 

está dado por la cantidad de registros que cumplen una regla (Dataxplore, 

2006). Los patrones del modelo emplean todas las variables seleccionadas 

para formar o descubrir las reglas y cada variable en la regla tiene asociado 

el medio de la variable en esa regla.

La figura 86 muestra la forma de generación del modelo predictivo que 

utiliza Powerhouse™; este modelo inicia con los Datos, son externos para 
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Powerhouse™, pueden estar en cualquier archivo plano que permite conec-

tarse directamente a través de ODBC u otro método de Data Link. Continúa 

con los Campos, son las columnas en una tabla de datos con objetos leíbles, 

cuyas propiedades no pueden ser cambiadas por Powerhouse™. Luego es-

tán las Variables, son campos importados a Powerhouse™, son parcialmente 

preparados para usarse en la generación de modelos. Sigue la Vista, permite 

seleccionar el método de interpretación de las variables a usar en la creación 

o descubrimiento de modelos. A continuación está la Selección, donde se 

elige un subconjunto de todas las variables para la generación de los mode-

los; la selección, por lo general, se hace para maximizar la señal y minimizar 

el ruido, pero asegurando representatividad del conjunto original de datos. 

El Modelo es la expresión de la relación entre las variables de entrada selec-

cionadas y la variable de salida, de tal manera que al expresarse da como 

resultado una salida estimada o una predicción. La Salida es una represen-

tación de las relaciones, patrones y estimaciones necesarias del sistema a 

estudiar (Dataxplore, 2006).

Figura 86. Estructura del modelo generado por Powerhouse

Fuente: Dataxplore (2006).

El modelo para el sistema estabilidad postural estática generó 175 reglas de 

decisión; su funcionamiento se verificó en tres conjuntos de datos: conjun-

to de entrenamiento, conjunto de prueba y conjunto de validación. Power-

house™ emplea la prueba de dos muestras de Kolmogorov-Smirnov (KS) 
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para observar el comportamiento de modelos; esta prueba pretende conocer 

la existencia significativa de diferencia entre dos muestras, es ampliamente 

usada en la verificación de desempeño de modelos por su ventaja de no im-

poner restricciones previas al tipo de distribución de los datos que se van a 

analizar. Para calcular el valor, se parte de la gráfica de ganancia acumulada 

de los tres conjuntos examinados (figura 87). De esta forma, el conjunto de 

entrenamiento presentó un estimado KS de 72,709 %, el conjunto de vali-

dación de 71,257 % y el de prueba de 75,244 %. Los valores de rendimiento 

para los diferentes conjuntos se muestran en la tabla 19.

Figura 87. Gráfica de ganancia acumulada para el modelo de estabilidad 
considerando el desplazamiento del CoP como entrada

C1 es la curva perfecta para el modelo. C2 es el conjunto de validación,  
C3 es el conjunto de entrenamiento, C4 es el conjunto de prueba.

Fuente: elaboración propia.

Tabla 19. Valores de rendimiento para el modelo MAXIT 
generado considerando el desplazamiento del CoP

Modelo Conjunto de 
entrenamiento

Conjunto 
de prueba

Conjunto 
de validación

Precisión (%) 87 86 88

Tasa de error (%) 13 14 12

Sensibilidad (%) 84 84 85

Especificidad (%) 89 89 91



177

Herramientas de análisis para la estabilidad estática postural. Caso de aplicación: personas con amputación transtibial

Modelo Conjunto de 
entrenamiento

Conjunto 
de prueba

Conjunto 
de validación

Razón de falsos positivos (%) 11 11 9

Razón de falsos negativos (%) 16 16 15

Exactitud (%) 90 89 92

Fuente: elaboración propia.

Velocidad

Para estudiar la velocidad del desplazamiento del CoP se analizaron 440 728 

datos, correspondientes a la dirección del CoP en cada pie y en las direccio-

nes estudiadas (antero-posterior y medial-lateral) (tabla 20).

Tabla 20. Datos analizados en la velocidad del desplazamiento del CoP

Variable Definición Cantidad de 
datos total

Cantidad de 
datos control

Cantidad de 
datos PAT

vMLL
Velocidad medial-lateral 
del CoP del lado izquierdo

110 182 55 090 55 090

vAPL
Velocidad antero-posterior 
del CoP del lado izquierdo

110 182 55 090 55 090

vMLR
Velocidad medial-lateral 
del CoP del lado derecho

110 182 55 090 55 090

vAPR
Velocidad antero-posterior 
del CoP del lado derecho

110 182 55 090 55 090

PAT: personas con amputación transtibial.

Fuente: elaboración propia.

Un requisito en TI es el uso de datos categóricos; de allí que los datos de 

velocidad al ser numéricos se transformaron en categóricos usando algoritmo 

LIL, generando diez agrupaciones en cada variable (tabla 21).
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Tabla 21. Agrupaciones (bins) de cada variable incluida en el análisis de velocidad del CoP

No. 
Agrup

vMLL vAPL vMLR vAPR

Límite 
superior

%
filas

Límite 
superior

%
filas

Límite 
superior

%
filas

Límite 
superior

%
filas

1 0,0205 10,92 0,552 28,4 0,12 28,11 0,407 21,49

2 0,0405 6,31 1,16 14,3 0,209 14,29 0,804 16,59

3 0,0825 8,8 1,267 2,96 0,256 5,86 0,949 4,98

4 0,1885 15,67 1,655 5,63 0,343 8,81 1,32 10,69

5 0,29 10,28 2,256 6,41 0,676 19,46 1,601 6,61

6 0,42 9,16 3,42 8,49 0,68 4,64 2,366 12,55

7 0,749 13,99 4,856 6,98 0,683 0,1 3,907 13,5

8 2,613 20,29 9,587 18,07 0,686 0,12 0,92 3,57

9 2,64 3,01 9,6 0,57 0,689 0,13 3,948 0,1

10 2,655 1,55 24,93 8,19 3,299 18,47 10,81 9,93

Agrup: agrupaciones. v: velocidad. ML: dirección medial-lateral. AP: dirección antero-posterior. 
L: lado izquierdo. R: lado derecho. C: grupo control. A: grupo de personas con amputación.

Fuente: elaboración propia.

Los valores de cantidad de datos distintos, así como el valor máximo, pro-

medio y mínimo de la velocidad del CoP se verificó (tabla 22).

Tabla 22. Valores de los datos de velocidad luego de la agrupación

Variable Distintos Valor 
máximo Promedio Valor 

mínimo No. Agrup

vMLLC 1164 2,66 0,295 0 10

vAPLC 2807 9,6 1,022 0 10

vMLRC 678 0,689 0,235 0 10

vAPRC 2855 3,925 1,212 0 10
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Variable Distintos Valor 
máximo Promedio Valor 

mínimo No. Agrup

vMLLA 2084 2,647 0,8 0 10

vAPLA 5394 24,932 5,846 0 10

vMLRA 2078 3,3, 0,727 0 10

vAPRA 4216 10,81 2,546 0 10

Agrup: agrupaciones. v: velocidad. ML: dirección medial-lateral. AP: dirección antero-posterior. 
L: lado izquierdo. R: lado derecho. C: grupo control. A: grupo de personas con amputación.

Fuente: elaboración propia.

Con el fin de conocer el comportamiento de cada variable considerada para 

el estudio de la velocidad del CoP, se computa la entropía de cada variable 

H(X), también la entropía conjunta tanto individual (considerando cada va-

riable independiente) H(Y|x) como de forma conjunta (considerando todas 

las variables) H(Y|X) (tabla 23).

Tabla 23. Entropía de cada variable observada en la velocidad del CoP

Variable H(X) (bits) H(Y|x) (bits) H(Y|X) (bits)

vMLL 3,091 0,748 0,382

vAPL 2,909 0,587 0,587

vMLR 2,614 0,717 0,456

vAPR 3,004 0,83 0,315

v: velocidad. ML: dirección medial-lateral. AP: dirección antero-posterior. L: lado 
izquierdo. R: lado derecho. C: grupo control. A: grupo de personas con amputación.

Fuente: elaboración propia.

Con los datos de entropía, se procede a seleccionar las variables representa-

tivas de velocidad del sistema de estabilidad; para ello se calcula la ganancia 

acumulada, la individual, la confianza y la ganancia, las variables se ubican 

en la tabla según su aporte (tabla 24).
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Tabla 24. Selección de variables al analizar la velocidad del CoP

Variable Ganancia 
acumulada (%)

Ganancia 
individual (%) Confianza (%) Balance

vAPL 41,23 41,23 96,11 0,396

vMLR 54,35 13,12 95,2 0,517

vMLL 61,77 7,42 95,02 0,587

vAPR 68,5 6,73 91,81 0,629

v: velocidad. ML: dirección medial-lateral. AP: dirección antero-posterior. L: lado 
izquierdo. R: lado derecho. C: grupo control. A: grupo de personas con amputación.

Fuente: elaboración propia.

El gráfico de relación entre ganancia individual, confianza y balance para 

cada una de las variables se observa en la figura 88.

Figura 88. Gráfico de confianza de las variables para la velocidad del CoP

v: velocidad. ML: dirección medial-lateral. AP: dirección antero-posterior. L: lado 
izquierdo. R: lado derecho. C: grupo control. A: grupo de personas con amputación.

Fuente: elaboración propia.

La revisión de los parámetros de entropía de las variables determinó que 

todas afectan directamente al sistema; de allí que se calcularon las estadísticas 

infométricas del sistema (tabla 25).
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Tabla 25. Estadísticas infométricas del sistema considerando la velocidad del CoP

Parámetro Símbolo Valor

Información entrante (bits) H(X) 10,813

Información requerida (bits) H(Y) 1,00

Equivocación (bits) H(X|Y) 10,128

Ruido (bits) H(Y|X) 0,315

Información conjunta (bits) (X,Y) 11,128

Información transmitida (bits) T(X:Y) 0,685

Redundancia (bits) T(X) 1,321

Confianza de datos (%) 91,81

Fiabilidad 99,76

Fuente: elaboración propia.

En el mapa de información se presentan gráficamente las estadísticas in-

fométricas de la selección de variables realizada (figura 89).

Figura 89. Mapa infométrico del sistema considerando la velocidad

Fuente: elaboración propia.
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La relación entre entradas y salidas es de 68 %, esto se conoce por el porcen-

taje de la información transmitida, lo cual permite aseverar que la generación 

de un modelo puede representar el comportamiento del sistema; asimismo, 

puede predecir el efecto ante un nuevo conjunto de datos. Por lo anterior, 

en el software Powerhouse™ se generó un modelo tipo MAXIT de 215 

reglas. El rendimiento de este modelo se validó en tres conjuntos de datos: 

conjunto de entrenamiento, conjunto de prueba y conjunto de validación, 

Powerhouse™ entregó un índice KS para el conjunto de entrenamiento de 

73,21 %, para prueba 72,23 % y para validación 62,06 %, valores que se va-

lidan en la figura 90.

Figura 90. Gráfica de ganancia acumulada para el modelo de 
estabilidad considerando la velocidad del CoP como entrada

C1 es la curva perfecta para el modelo, C2 es el conjunto de validación,  
C3 es el conjunto de entrenamiento, C4 es el conjunto de prueba.

Fuente: elaboración propia.

El desempeño del modelo se ratificó calculando los valores de rendimiento 

que se muestran en la tabla 26.

Tabla 26. Valores de rendimiento para el modelo MAXIT 
generado considerando velocidad del CoP

Modelo Conjunto de 
entrenamiento

Conjunto 
de prueba

Conjunto 
de validación

Precisión (%) 87 87 81

Tasa de error (%) 13 14 19

Sensibilidad (%) 91 90 83
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Modelo Conjunto de 
entrenamiento

Conjunto 
de prueba

Conjunto 
de validación

Especificidad (%) 84 83 79

Razón de falsos 
positivos (%)

16 17 21

Razón de falsos 
negativos (%)

9 10 17

Exactitud (%) 83 82 78

Fuente: elaboración propia.

Análisis de resultados
El análisis de estabilidad postural estática empleando la teoría de la informa-

ción es recomendado, pues muestra consistencia relativa y es poco sensible 

a las longitudes de las series de tiempo de datos en comparación con otros 

métodos de análisis. Pyle comenta que el empleo de TI en la indagación de 

fenómenos por medio de la exploración de sus datos es altamente confiable, 

detecta pequeños cambios que pasan desapercibidos en otros tipos de análi-

sis (Pyle, 2003).

Desplazamiento
Se analizaron 441 040 datos, correspondientes a cuatro variables de en-

trada: dMLL (desplazamiento medial-lateral del CoP del lado izquierdo), 

dAPL (desplazamiento antero-posterior del CoP del lado izquierdo), dMLR 

(desplazamiento medial-lateral del CoP del lado derecho) y dAPR (despla-

zamiento antero-posterior del CoP del lado derecho), cada una de ellas con 

igual cantidad de datos 110 260, de los cuales 55 130 pertenecen al grupo de 

personas con amputación e igual valor al control.

La más alta cantidad de valores distintos en los datos se encontró en la 

variable de entrada dAPRA con 6348 valores distintos, luego en dAPLA 

con 4244, dAPRC con 2648, dMLRC con 2201, dMLLA con 2029, dML-

RA con 1302, dMLLC con 1052 y dAPLC con 753; esto indica que en el 

grupo de personas con amputación el desplazamiento del CoP en dirección 

AP de ipsilateral presenta alta inestabilidad, con alto número de valores de 
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ubicaciones y alta proporción de balanceo (figura 91). Además, se observa 

que se tiene gran cantidad de valores distintos en el grupo de personas con 

amputación en dirección AP (dAPRA), lo cual se encuentra en correspon-

dencia con los resultados obtenidos por Kendell et al. (2010), Ku et al. (2014) 

y Seth y Lamberg (2017); ellos concluyeron que las personas con amputación 

presentan alta inestabilidad en comparación con personas sin amputación 

transtibial, observada en un alto valor del desplazamiento del CoP, además 

que las excursiones del CoP antero-posterior ocurren significativamente más 

debajo del lado no protésico durante la postura estática bipedestada.

Figura 91. Valores distintos de cada variable

d: desplazamiento. ML: dirección medial-lateral. AP: dirección 
antero-posterior. L: lado izquierdo. R: lado derecho.

Fuente: elaboración propia.

La técnica de agrupamiento de menor pérdida de información (LIL) permitió 

reducir la cantidad de datos diferentes en todas las variables, conformando 

diez agrupaciones (bins) para cada una de las variables, ya que de esta forma 

la pérdida de información sobre la variable de salida en cada agrupación 

es la mínima. Con las agrupaciones los valores máximo y mínimo de los 

datos no se vieron alterados; sin embargo, el valor promedio varió levemente 

(tabla 27), pero los datos agrupados son representativos de la población, ya 

que la confianza de representatividad es superior al 90 %.
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Tabla 27. Comparación de los valores de variables de 
desplazamiento sin agrupar y agrupados

Variable

Sin agrupar Agrupadas

Valor 
máximo Promedio Valor 

mínimo
Valor 

máximo Promedio Valor 
mínimo

dMLLC 4,347 0,208 -0,341 4,347 0,2 -0,341

dAPLC 5,951 0,650 -1,345 5,951 0,655 -1,345

dMLRC 1,365 0,160 -0,495 1,364 0,158 -0,495

dAPRC 8,831 0,893 -2,057 8,831 0,883 -2,057

dMLLA 6,261 0,321 -0,600 6,261 0,314 -0,600

dAPLA 24,281 4,816 -10,287 24,281 4,789 -10,287

dMLRA 9,762 0,613 -0,950 9,646 0,618 -0,950

dAPRA 22,968 2,139 -4,072 22,893 2,117 -4,072

d: desplazamiento. ML: dirección medial-lateral. AP: dirección 
antero-posterior. L: lado izquierdo. R: lado derecho.

Fuente: elaboración propia.

Con el valor de entropía de cada variable de entrada, se observó la ga-

nancia al sistema que aporta cada una de ellas, así como la confianza de 

representatividad y el balance, esto con el fin de seleccionar las variables 

influyentes en el sistema. Las variables de entrada se eligen de forma tal que 

la ganancia se aumente lo máximo posible, el orden de selección es descen-

dente y depende de la cantidad de información de la variable de salida que 

cada variable de entrada contenga, es decir, de la influencia que tiene sobre 

la salida. El parámetro de ganancia es el primer evaluado, pues representa la 

totalidad de información transmitida por la variable, una variable se agrega 

para maximizar el incremento de información sobre la salida, pero siempre 

teniendo en cuenta que aumenta el balance entre la información incorporada 

con la inclusión de esa variable y la pérdida de confianza de representación.
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Se obtuvo que todas las variables consideradas afectan la estabilidad pos-

tural (tabla 17); sin embargo, la variable que transmite la mayor cantidad de 

información, y es lo más representativa posible de la variable de salida, es 

el desplazamiento en dirección antero-posterior del lado izquierdo (dAPL); 

por ello, es la de mayor influencia en el sistema, seguida por el desplaza-

miento en dirección medial-lateral del lado izquierdo (dMLL), luego está 

el desplazamiento en dirección medial-lateral del lado derecho (dMLR), y 

finalmente, de mínimo aporte, el desplazamiento en dirección antero-poste-

rior del lado derecho (dAPR). Estos hallazgos concuerdan con Kendell et al. 

(2010) y Molero-Sánchez et al. (2015), quienes encontraron que el desplaza-

miento del CoP en individuos con amputación transtibial son más altos en 

comparación con personas sin amputación transtibial, cuando se encuen-

tran en posición bípeda, en caminata, entre otros. La alta influencia del 

lado no amputado sobre la estabilidad es un indicador del amplio uso de 

este lado para mantener la postura, y su papel en la corrección del control 

postural, además sugiere compensación por la pérdida de control del tobillo 

ipsilateral (Ku et al., 2014; Sinitski et al., 2016).

El conjunto de las variables de entrada contiene el 81 % de la máxima 

información posible de la salida, pero se tiene 93 % de información dupli-

cada entre las variables. La cantidad de entropía en la variable de salida 

que queda aún después de transmitir toda la información de entrada es de 

39 % y la relación entre las entradas y la salida es de 61 %; esta cuantía hace 

referencia a la cantidad de información contenida en la entrada que se ha 

transmitido provechosamente y reduce la incertidumbre acerca de la salida. 

El valor superior al 50 % es un indicador de la dependencia que presenta la 

estabilidad ante el desplazamiento del CoP, como se ha mostrado en varias 

investigaciones. Schubert y Kirchner expusieron que un sujeto ubicado sobre 

una plataforma de fuerza, en posición bipedestada estática, exhibe pequeñas 

oscilaciones del centro de presión (CoP) y la cuantificación de estas fluctua-

ciones es esencial en la posturografía y de gran utilidad clínica (Schubert et 

al., 2012; Schubert y Kirchner, 2014). Visser y colaboradores comentan que 

el CoP es un medida objetiva y cuantitativa del equilibrio y la inestabilidad 

postural (Visser Jasper et al., 2008).
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El modelo generado MAXIT traduce información presente en los datos 

de las variables de entrada en una forma que define los estados de la salida, 

en lo posible eliminando el ruido e ignorando la equivocación tanto como 

sea posible; para ello construyó 175 reglas de decisión con las variables 

seleccionadas, de tal manera que la mayor cantidad de información es trans-

mitida, así como representativa de la variable de salida. Lo anterior indica 

que el modelo predictivo será altamente preciso y fiable. Se considera que es 

preciso cuando el modelo predice un valor lo más similar posible al valor de 

la salida; y fiable cuando el modelo será tan preciso como sea posible al apli-

carlo a datos externos que han sido sacados de la misma población que los 

datos de entrenamiento. El modelo en cuestión al ser evaluado en tres con-

juntos de datos presentó un promedio en precisión de 87 %, tasa de error de 

13 %, sensibilidad de 84 %, especificidad de 90 %, razón de falsos positivos 

de 10 %, razón de falsos negativos de 16 %, exactitud de 90 %. El desempeño 

del modelo usando la prueba estadística de Kolmogorov-Smirnov fue, en 

promedio, 73,07 % para los tres conjuntos; se ratifica el excelente desempe-

ño del modelo generado con Powerhouse™. Luego, el modelo obtenido se 

puede usar para observar estabilidad, pues es válido en la representación del 

sistema investigado; el desplazamiento ha sido usado durante décadas para 

proveer información sobre la estabilidad postural (Janusz et al., 2016; Lemay 

et al., 2014; Schubert et al., 2012).

Velocidad
Se analizaron 440 728 datos concernientes a cuatro variables de entrada: 

vMLL (velocidad medial-lateral del CoP del lado izquierdo), vAPL (velocidad 

antero-posterior del CoP del lado izquierdo), vMLR (velocidad medial-late-

ral del CoP del lado derecho), vAPR (velocidad antero-posterior del CoP del 

lado derecho); cada variable con 110 182 datos, de los cuales 55 090 pertene-

cen al grupo de personas con amputación e igual valor al control.

La más alta cantidad de valores distintos en los datos se encontró en la 

variable de entrada vAPLA con 5394 valores distintos, luego en vAPRA con 

4216, seguido por vAPRC con 2855, vAPLC con 2807, vMLLA con 2084, 

vMLRA con 2078, vMLLC con 1164 y vMLRC con 678; estas puntuacio-

nes indican que la velocidad fue significativamente mayor en la dirección 
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antero-posterior para ambos grupos (figura 92). Además, que en el grupo de 

personas con amputación la velocidad del CoP en dirección AP de contrala-

teral presenta alta inestabilidad, el sujeto se mueve rápidamente para ubicar 

el CoP y prevenir caídas; también muestran que fue significativamente ma-

yor para los sujetos con amputación en ambas direcciones, se destaca que 

las diferencias entre los grupos fueron significativas. También, se observa 

la gran cantidad de valores distintos en el grupo de personas con amputa-

ción en dirección AP; en comparación con el grupo control, se fortalece la 

aseveración de Buckley et al. (2002), en consideración a que las personas 

con amputación tienen una estabilidad más deficiente comparados con los 

controles; asimismo, las personas con amputación presentan mayor esfuerzo 

para controlar el equilibrio en la dirección antero-posterior que en la di-

rección medial-lateral. Estos hallazgos resaltan la importancia del tobillo 

contralateral para mantener el equilibrio en situaciones que involucran mo-

vimientos corporales en el plano sagital.

Figura 92. Valores distintos de cada variable empleada en el análisis de velocidad del CoP

v: velocidad. ML: dirección medial-lateral. AP: dirección antero-posterior. L: lado 
izquierdo. R: lado derecho. C: grupo control. A: grupo de personas con amputación.

Fuente: elaboración propia.

La reducción del número de datos distintos llevada a cabo en la conversión 

de tipo de variable usando LIL, permitió obtener diez agrupaciones (bins) 

en cada variable, asegurando la mínima pérdida de información sobre la 

variable de salida. En las agrupaciones se alteraron los valores máximo, 

promedio y mínimo de los datos (tabla 28); sin embargo, las agrupaciones 
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representan las particularidades propias de los datos medidos, lo cual se 

corrobora con un valor superior al 91 % en la confianza (tabla 24).

Tabla 28. Comparación de los valores de variables de velocidad sin agrupar y agrupados

Variable

Sin agrupar Agrupadas

Valor 
máximo Promedio Valor 

mínimo
Valor 

máximo Promedio Valor 
mínimo

vMLLC 2,667 0,1572 0,016 2,666 0,292 0

vAPLC 9,609 0,7772 0,192 9,600 1,050 0

vMLRC 0,680 0,2260 0,057 0,690 0,234 0

vAPRC 3,924 1,0492 0,289 3,929 1,217 0

vMLLA 2,643 0,8136 0,217 2,650 0,830 0

vAPLA 24,744 6,5878 1,734 24,932 5,851 0

vMLRA 3,208 0,6642 0,194 3,300 0,728 0

vAPRA 10,857 2,0797 0,541 10,810 2,546 0

v: velocidad. ML: dirección medial-lateral. AP: dirección antero-posterior. L: lado 
izquierdo. R: lado derecho. C: grupo control. A: grupo de personas con amputación.

Fuente: elaboración propia.

Las cuatro variables de velocidad consideradas en la investigación afectan 

la estabilidad postural, de allí que en la selección de variables ninguna se 

descartó, pero la que incide mayormente sobre la estabilidad es la velocidad 

antero-posterior del CoP del lado izquierdo (vAPL), donde se encuentra 

el lado no amputado; luego está la velocidad medial-lateral del CoP del 

lado derecho (vMLR), sigue la velocidad medial-lateral del CoP del lado 

izquierdo (vMLL) y, por último, la velocidad antero-posterior del CoP 

del lado derecho (vAPR). Estos resultados sugieren que las personas con 

amputación difieren en las capacidades de control del equilibrio en un grado 

mayor que las personas sin amputación transtibial. La mayor variabilidad en 

el grupo de personas con amputación se debe a la modificación estructural 
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corporal como consecuencia de la amputación, también por la afectación 

de la propiocepción, por nombrar algunas causas que tienen un impacto en 

el control del equilibrio y también contribuyen a una menor homogeneidad 

(Tucker et al., 2015).

La amputación es un proceso multifactorial asociado con cambios en el 

cuerpo humano de naturaleza anatómica y fisiológica, que conlleva cambios 

en el sistema nervioso central, el sistema nervioso periférico y el sistema 

musculoesquelético. Los cambios físicos y fisiológicos, relacionados con la 

amputación, se manifiestan en una reducción para mantener la estabilidad 

interna en presencia de factores externos asociados con una capacidad dismi-

nuida para mantener el equilibrio corporal. Los problemas para mantener el 

equilibrio corporal en presencia de factores ambientales adversos, junto con 

cambios en los sistemas nervioso y muscular, pueden ser responsables del 

aumento de caídas en esta población. Las personas con amputación tienen 

un mayor riesgo de caídas en comparación con las personas sin amputación 

transtibial (Kolarova et al., 2013; Seth y Lamberg, 2017; Tucker et al., 2015).

La relación entre entradas y salidas fue de 68 %; esto permite generar 

un modelo explicativo y predictivo. El modelo de estabilidad construido 

en Powerhouse™, usando la máxima transferencia de información y que 

considera como variables de entrada las velocidades del CoP en ambas pier-

nas y en dos direcciones, mostró alto desempeño, un valor promedio KS de 

69,166 % y precisión del 85 % (tabla 26). La construcción y el desempeño de 

este modelo están acordes con los estudios anteriores que recomiendan dife-

rentes procedimientos para obtener un conjunto de parámetros fiables para 

evaluar el comportamiento de las fluctuaciones posturales, entre los que se 

encuentran la velocidad del CoP. Algunos autores subrayan la importancia 

de la velocidad del CoP como el indicador más confiable de la migración 

del CoP, pues esta variable se correlaciona perfectamente con la longitud del 

CoP y proporciona información sobre la distribución de carga de peso en el 

pie (Janusz et al., 2016; Lemay et al., 2014; Schubert et al., 2012).

Agrupamiento o clustering
La exploración de datos con clustering tiene varios usos, como se abordó en 

el capítulo 3, apartado Clustering. En el presente libro se utilizó, en el estudio 
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del comportamiento de estabilidad estática postural, con el objeto de evaluar 

su efectividad al detectar las características propias de un grupo de personas 

con amputación transtibial unilaterales; para ello, se crearon patrones visua-

les a partir de la exploración gráfica del comportamiento y de las relaciones 

del conjunto de datos, conformado por los datos de las mediciones en los dos 

grupos analizados: grupo de personas con amputación y grupo de personas 

sin amputación transtibial (control).

Se empleó el software Powerhouse™ (Dataxplore, 2006) por la capaci-

dad que presenta para hallar los segmentos naturales existentes en los datos 

de forma completamente automática, pues posee algoritmos internos para 

calcular la información presente en cada dato y agruparlos en consideración 

a este valor. El software requiere conocer las variables de entrada única-

mente, pues su modelo es no supervisado. Los clústeres proporcionados 

por Powerhouse™ son descubiertos, ya que explora la estructura de la in-

formación, es decir, indaga el mapa de información interno para revelar la 

estructura implícita; este mapa es indagado para descubrir todas las confi-

guraciones posibles de clústeres y, en última instancia, determinar la mejor 

configuración. Mejor hace referencia a que la información contenida en 

cada grupo es lo más similar posible para todos los miembros del grupo, 

mientras que, al mismo tiempo, la diferencia entre grupos es lo más grande 

posible. De esta manera, se asegura que los miembros del clúster tengan lo 

más posible en común entre sí, en tanto que de manera simultánea los clús-

teres considerados en su conjunto tienen la máxima diferencia entre sí.

El estudio se realizó tanto para el desplazamiento del CoP como para la 

velocidad del desplazamiento del CoP.

Desplazamiento
En el análisis del desplazamiento del CoP se emplearon todos los datos recogi-

dos en las mediciones, 441 040 valores, correspondientes a las cuatro variables 

mencionadas en apartados anteriores; sin embargo, se recuerdan para mayor 

comprensión (tabla 29). A los dos grupos de estudio se les asignó un número 

identificador: grupo control 1, grupo de personas con amputación 2.



192

Daissy Carola Toloza Cano, Lely Adriana Luengas Contreras, Yolanda Torres Pérez

Tabla 29. Datos analizados en el desplazamiento del CoP

Variable Definición Cantidad de 
datos total

Cantidad de 
datos control

Cantidad de 
datos PAT

dMLL
Ubicación medial-lateral 
del CoP del lado izquierdo

110 260 55 130 55 130

dAPL
Ubicación antero-posterior 
del CoP del lado izquierdo

110 260 55 130 55 130

dMLR
Ubicación medial-lateral 
del CoP del lado derecho

110 260 55 130 55 130

dAPR
Ubicación antero-posterior 
del CoP del lado derecho

110 260 55 130 55 130

PAT: personas con amputación transtibial.

Fuente: elaboración propia.

Una vez los datos se cargaron en el software Powerhouse™, se creó el mapa 

de densidad donde se observa la distribución de los datos en un espacio 

bidimensional (figura 93). En este espacio de información, la distancia entre 

los datos es proporcional a la similitud del contenido de la información y la 

densidad de registros varía en la ubicación dentro del espacio. Los puntos 

negros representan la ubicación de los datos de las mediciones, cuando 

estas son similares, es decir, los valores que toman todas las variables que 

los identifican son parecidos, aparecen juntos. Cuanto más se parezcan más 

juntos estarán. Caso contrario, si dos datos son muy distintos ya no serán 

vecinos, sino que estarán situados en zonas separadas.

Cuando la densidad de puntos es alta, lo que quiere decir que en una 

misma zona se agrupa alta cantidad de datos con características similares, la 

zona toma el color rojo; el color azul resalta la zona con muy baja densidad; 

las zonas con densidades intermedias se indican con colores entre la escala 

del rojo y el azul. Con el fin de delimitar los distintos segmentos del espacio 

que contienen los datos, Powerhouse™ detecta las zonas de más baja densi-

dad y traza las líneas de delimitación, líneas de color blanco.

Basado en la cantidad de información que posee cada clúster, el software 

identificó dos segmentos o agrupaciones y una zona con alta concentración 

de datos (zona de color rojo) (figura 93).
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Figura 93. Representación gráfica de los datos de mediciones                                                  
de desplazamiento del CoP en un espacio bidimensional

Fuente: elaboración propia.

Indagando en los clústeres se tienen casos similares. Esto indica la existencia 

de variables con valores parecidos. Para detectar cuáles son las variables 

que más cambian sus valores a través de todos los clústeres, se construyó el 

diagrama de espectro (figura 94).

Figura 94. Diagrama de espectro de los clústeres para el desplazamiento del CoP

La línea roja indica el clúster 1 y la azul el clúster 2. dMLL: ubicación medial-lateral del CoP del lado 
izquierdo. dAPL: ubicación antero-posterior del CoP del lado izquierdo. dMLR: ubicación medial-

lateral del CoP del lado derecho. dAPR: ubicación antero-posterior del CoP del lado derecho.

Fuente: elaboración propia.
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El diagrama muestra una imagen general de qué tan bien los valores de las 

variables están proporcionalmente separados entre los grupos. Las variables 

se enumeran en orden de grado en el que los valores están separados por 

los grupos, desde la mayor separación a la izquierda (corresponde a la 

variable GRUPO) hasta la menor separación a la derecha. Cada agrupación 

está representada por una línea continua o trayectoria, que al inspeccionar 

proporciona una visión rápida e intuitiva de las diferencias en las características 

que describen a cada clúster. Para una variable, la separación entre los puntos 

de cada agrupación es proporcional a la distancia informativa (entrópica) 

entre los grupos; cuanto más separados estén los puntos para cualquier 

variable entre las agrupaciones, se pueden distinguir mejor los diferentes 

valores de la variable. El rango de una variable numérica se representa en el 

gráfico como un intervalo de 0 a 1, independientemente del valor real, con 

el fin de permitir la comparación entre las separaciones.

Adicional al diagrama, se generó una tabla donde se incluyen todas las 

variables, incluso la salida, y se representan como columnas de la tabla; 

allí se muestran los valores medios de las agrupaciones para cada variable 

(tabla 30).

Tabla 30. Valores medios de las variables de velocidad del CoP en los clústeres

Clúster Grupo dAPL dMLL dMLR dAPR

1 0,069 0,279 0,056 0,093 0,481

2 0,571 3,145 0,295 0,452 1,725

dMLL: ubicación medial-lateral del CoP del lado izquierdo. dAPL: ubicación antero- 
posterior del CoP del lado izquierdo. dMLR: ubicación medial-lateral del CoP del 

lado derecho. dAPR: ubicación antero-posterior del CoP del lado derecho.

Fuente: elaboración propia.

Tanto en el diagrama de espectro (figura 94) como en la tabla 30, se describen 

dos clústeres, los cuales corresponden a los dos grupos estudiados. La 

variable de mayor diferencia entre los clústeres es el desplazamiento antero-

posterior del lado izquierdo, que corresponde al contralateral (dAPL) y la 

de menor variación el desplazamiento antero-posterior del lado derecho, 

ipsilateral (dAPR).
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Para observar en detalle la distribución de las variables en los clústeres, 

se realizó una comparación de clústeres (tabla 31). Se muestra el valor pro-

medio, mínimo y máximo de cada variable en todo el conjunto de datos 

examinados, así como en cada uno de los clústeres.

Tabla 31. Comparación de clústeres evaluando el desplazamiento del CoP

Variable Valor Conjunto de datos Clúster 1 Clúster 2

dAPL

Promedio (mm) 2,692 0,279 3,145

Mínimo (mm) 0 0 0

Máximo (mm) 24,263 1,373 24,263

dMLL

Promedio (mm) 0,257 0,056 0,295

Mínimo (mm) 0 0 0

Máximo (mm) 6,141 3,816 6,141

dMLR

Promedio (mm) 0,396 0,093 0,452

Mínimo (mm) 0 0 0

Máximo (mm) 9,746 0,505 9,746

dAPR

Promedio (mm) 1,528 0,481 1,725

Mínimo (mm) 0 0 0

Máximo (mm) 22,859 1,487 22,859

dMLL: ubicación medial-lateral del CoP del lado izquierdo. dAPL: ubicación antero- 
posterior del CoP del lado izquierdo. dMLR: ubicación medial-lateral del CoP del 

lado derecho. dAPR: ubicación antero-posterior del CoP del lado derecho.

Fuente: elaboración propia.

Los histogramas de la distribución de cada variable para todo el conjunto de 

datos y para cada clúster se dan a conocer en la figura 95. El eje izquierdo 

exhibe los valores reales de las variables, las barras verdes corresponden a 

la distribución relativa en cada grupo y las barras rojas la distribución real 

en cada grupo en comparación con la distribución del conjunto de datos 

completo. Dado que cualquier grupo representa una fracción del conjunto 

de datos, las barras rojas son necesariamente más cortas que las barras 

verdes de cualquier grupo. Se observa de manera clara que la variable 
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desplazamiento antero-posterior del lado izquierdo (dAPL) presenta mayor 

diferencia de distribución entre los dos clústeres, en comparación con las 

otras tres variables. En el clúster 1, la variabilidad de todas las variables es 

baja, entre tanto que en el clúster 2 es alta.

Figura 95. Histograma de la distribución de los datos en todo el conjunto 
y en cada clúster evaluando el desplazamiento del CoP

dMLL: ubicación medial-lateral del CoP del lado izquierdo.  
dAPL: ubicación antero-posterior del CoP del lado izquierdo. dMLR: ubicación medial-lateral 

del CoP del lado derecho. dAPR: ubicación antero-posterior del CoP del lado derecho.

Fuente: elaboración propia.
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El mapa de calor de la variable dAPL revela que los datos están distribuidos 

en los dos clústeres; los valores altos de los datos están exclusivamente en 

el clúster 2; entretanto, los valores bajos se ubican en el clúster 1. En cuanto 

a la variable dMLL, los valores altos de los datos se reparten en los dos 

clústeres; existe superposición de valores de esta variable en los dos grupos 

de estudio. En la variable dMLR, los valores altos de los datos se concentran 

en el clúster 2, mientras que en el clúster 1 se agrupan los valores bajos; los 

valores medios se distribuyen en ambos clústeres. La variable dAPR exhibe 

aglomeraciones de valores altos de datos en el clúster 2, pero los valores 

bajos están distribuidos en los dos clústeres haciendo difícil la discriminación 

entre ellos (figura 96).

Figura 96. Mapas de calor de cada una de las variables 
considerando el desplazamiento del CoP

Las franjas inferiores muestran los valores de los datos. dMLL: ubicación medial-lateral del CoP 
del lado izquierdo. dAPL: ubicación antero-posterior del CoP del lado izquierdo. dMLR: ubicación 

medial-lateral del CoP del lado derecho. dAPR: ubicación antero-posterior del CoP del lado derecho.

Fuente: elaboración propia.
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Velocidad
El análisis de la velocidad del desplazamiento del CoP se realizó con 440 728 

datos, donde se incluye la velocidad en dos direcciones y en cada pie —como 

se mencionó en apartados anteriores—. No obstante, se recuerdan los datos 

(tabla 20). A cada uno de los dos grupos de estudio se les estipuló un número 

identificador: grupo control es el número 1, grupo de personas con amputa-

ción el 2.

Tabla 32. Datos analizados en la velocidad del desplazamiento del CoP

Variable Definición
Cantidad 
de datos 

total

Cantidad 
de datos 
control

Cantidad 
de datos 

PAT

vMLL
Velocidad 
medial-lateral del CoP 
del lado izquierdo

110 182 55 090 55 090

vAPL
Velocidad 
antero-posterior del 
CoP del lado izquierdo

110 182 55 090 55 090

vMLR
Velocidad 
medial-lateral del CoP 
del lado derecho

110 182 55 090 55 090

vAPR
Velocidad 
antero-posterior del 
CoP del lado derecho

110 182 55 090 55 090

PAT: personas con amputación transtibial.

Fuente: elaboración propia.

Con los datos de velocidad en el software Powerhouse™ se llevó a cabo la 

realización del mapa de densidad, para observar tanto la distribución de 

variables en el espacio como las zonas de concentración; asimismo, para 

identificar la cantidad de clústeres, agrupaciones o conglomerados que se 

pueden discriminar. Se utilizó el método de agrupación entrópico, ya que 

toma como base la teoría de la información para determinar la distancia 

entre puntos y entre clústeres (figura 97).
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Figura 97. Representación gráfica de los datos de velocidad 
del CoP en un espacio bidimensional

Fuente: elaboración propia.

Los datos se encuentran distribuidos por todo el espacio, pero no en forma 

regular, teniendo un punto fuerte de concentración en el clúster 2 y puntos 

medios y bajos en ambos clústeres. A partir de esta información, el software 

discrimina dos zonas, delimitadas con una línea blanca.

Con objeto de conocer el comportamiento de los clústeres se creó el dia-

grama de espectro (figura 98). El espectro organiza las variables de acuerdo 

con la mayor separación entre clústeres; el orden se muestra en forma des-

cendente. Se aprecia que la variable con mayor distancia entre los clústeres 

es GRUPO; de las variables de entrada, la velocidad antero-posterior del 

CoP del lado izquierdo (vAPL) presenta la mayor distancia de separación 

entre clústeres y la de menor distancia, la velocidad antero-posterior del CoP 

del lado derecho (vAPR).
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Figura 98. Diagrama de espectro de los clústeres para la velocidad del CoP

La línea roja indica el clúster 1 y la azul el clúster 2. vMLL: velocidad medial-lateral del CoP del lado 
izquierdo. vAPL: velocidad antero-posterior del CoP del lado izquierdo. vMLR: velocidad medial-

lateral del CoP del lado derecho. vAPR: velocidad antero-posterior del CoP del lado derecho.

Fuente: elaboración propia.

Los valores medios que presenta cada variable en cada uno de los dos 

clústeres se dan a conocer en la tabla 33. Los valores medios de las variables 

en cada uno de los clústeres se encuentran distanciados ampliamente y los 

dos grupos se distinguen perfectamente.

Tabla 33. Valores medios de las variables de desplazamiento del CoP en los clústeres

Clúster GRUPO vAPL vMLR vMLL vAPR

1 0 1,022 0,238 0,297 1,216

2 1 5,897 0,738 0,828 2,556

vMLL: velocidad medial-lateral del CoP del lado izquierdo. vAPL: velocidad antero- 
posterior del CoP del lado izquierdo. vMLR: velocidad medial-lateral del CoP del 

lado derecho. vAPR: velocidad antero-posterior del CoP del lado derecho.

Fuente: elaboración propia.

Se calcularon los valores promedio, máximo y mínimo de cada variable 

tanto en el conjunto de datos como en cada clúster, con el fin de visualizar 

en detalle el comportamiento de las variables (tabla 34).
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Tabla 34. Comparación de clústeres evaluando el desplazamiento del CoP

Variable Valor Conjunto de datos Clúster 1 Clúster 2

vAPL

Promedio (mm) 3,47 1,022 5,897

Mínimo (mm) 0 0 0

Máximo (mm) 24,898 9,6 24,898

vMLR

Promedio (mm) 0,489 0,238 0,738

Mínimo (mm) 0 0 0

Máximo (mm) 3,276 0,689 3,276

vMLL

Promedio (mm) 0,564 0,297 0,828

Mínimo (mm) 0 0 0

Máximo (mm) 2,666 2,666 2,647

vAPR

Promedio (mm) 1,889 1,216 2,556

Mínimo (mm) 0 0 0

Máximo (mm) 10,81 3,92 10,81

vMLL: velocidad medial-lateral del CoP del lado izquierdo. vAPL: velocidad antero- 
posterior del CoP del lado izquierdo. vMLR: velocidad medial-lateral del CoP del 

lado derecho. vAPR: velocidad antero-posterior del CoP del lado derecho.

Fuente: elaboración propia.

La distribución de datos de cada variable en los clústeres se observó a través 

de histogramas (figura 99). El clúster 2 presenta mayor cantidad de datos 

diferentes en todas las variables en comparación con el clúster 1, siendo 

la variable vMLL, velocidad medial-lateral del CoP del lado izquierdo, la 

de más alta variabilidad. En el clúster 1, la menor variabilidad la exhibe la 

variable vAPL, velocidad antero-posterior del CoP del lado izquierdo.

Se construyeron mapas de calor de las diferentes variables, para así com-

prender el comportamiento de las variables en los clústeres; en el mapa se 
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exhibe gráficamente la manera de agruparse los datos de las variables, luego 

se conoce la variación de los datos en el espacio (figura 100). En todas las va-

riables se presenta distinción entre clústeres; asimismo, los valores más altos 

se agrupan preferentemente en el clúster 2 y los valores bajos en el clúster 1; 

vMLR es la única variable que no presenta valores altos en el clúster 1.

Figura 99. Distribución de los datos en todo el conjunto y en 
cada clúster evaluando el desplazamiento del CoP

vMLL: velocidad medial-lateral del CoP del lado izquierdo. vAPL: velocidad antero- 
posterior del CoP del lado izquierdo. vMLR: velocidad medial-lateral del CoP del 

lado derecho. vAPR: velocidad antero-posterior del CoP del lado derecho.

Fuente: elaboración propia.
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Figura 100. Mapas de calor de cada una de las variables considerando la velocidad del CoP

Las franjas inferiores muestran los valores de los datos. vMLL: velocidad medial-lateral del CoP 
del lado izquierdo. vAPL: velocidad antero-posterior del CoP del lado izquierdo. vMLR: velocidad 

medial-lateral del CoP del lado derecho. vAPR: velocidad antero-posterior del CoP del lado derecho.

Fuente: elaboración propia.

Análisis de resultados

La estabilidad presentada por grupos de estudio analizando el CoP, ya sea 

en desplazamiento o velocidad, a través del uso de clustering requiere confor-

mar agrupaciones con distancias bajas al interior de los grupos; es decir, alta 

compacidad, pero a la vez ser capaz de discernir entre diferentes condiciones 

de estabilidad y ostentar distancias altas entre grupos (Baig et al., 2012). La 

validación de homogeneidad intraclúster y la separación interclúster de los 
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agrupamientos hacen uso de cantidades inherentes, tal como la cantidad de 

información que cada dato contiene, de esta forma se puede examinar la 

posibilidad de discriminar el comportamiento de condiciones establecidas 

de estabilidad.

Desplazamiento
La exploración con clustering reveló que dos agrupaciones caracterizan el 

contenido de información del conjunto de datos en términos de densidad, 

es decir, en las características comunes que presentan. Se observó la exis-

tencia de dos áreas con alta densidad de puntos, las cuales están claramente 

definidas. El mapa de calor de la variable GRUPO permite identificar el 

grupo de personas con amputación como el grupo dos, ya que 2 es el valor 

predominante en este grupo, mientras que el valor promedio del grupo uno 

es 1 que corresponde al grupo control. Así, los dos conglomerados identifi-

cados corresponden al grupo de personas con amputación y al grupo control 

(figura 101).

Figura 101. Clústeres de los grupos al analizar desplazamiento del CoP

El color azul corresponde al valor 1, con este número se identifican las personas del grupo control; 
mientras que el color rojo compete al número 2, con el cual se asocian las personas con amputación.

Fuente: elaboración propia.

El daño o la retroalimentación reducida a cualquiera de los sistemas senso-

riales como resultado de una enfermedad o trauma afecta la estabilidad pos-

tural (Seth y Lamberg, 2017). De allí que varios autores, entre ellos Claret 
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et al. (2019), reportan que las personas con amputación unilateral de seg-

mento inferior presentan un control postural deficiente en comparación con 

las personas sin amputación transtibial, exhibido en la dinámica del CoP 

durante la posición bipedestada estática, afirmación que se corrobora en el 

presente estudio, ya que el análisis con clustering reveló que existen diferen-

cias relevantes entre las personas con amputación y controles; por ello, se 

detectaron los dos clústeres representativos de cada grupo.

Molero-Sánchez et al. (2015) afirman que el desplazamiento del CoP es 

determinante para el estudio de estabilidad y la distinción entre grupos; en 

su investigación reportaron que las personas con amputación mostraron va-

lor alto de desplazamiento del CoP en comparación con las personas sin 

amputación transtibial. Igual resultado obtuvo el grupo de Kendell et al. 

(2010). Resultados acordes se obtuvieron en el análisis con clustering, pues 

los mapas de calor manifestaron que en tres de las variables (dAPL: des-

plazamiento antero-posterior en el lado izquierdo; dMLR: desplazamiento 

medial-lateral en el lado derecho; dAPR: desplazamiento antero-posterior 

en el lado derecho) los valores altos se ubican en la agrupación de personas 

con amputación.

Barnett et al. (2013) demostraron que los sujetos con amputación reducen 

el desplazamiento antero-posterior de ipsilateral en comparación con con-

tralateral. En la indagación empleando clustering se llegó a igual conclusión, 

pues el desplazamiento antero-posterior del lado izquierdo (contralateral) 

es la variable que mayor discriminación hace entre las dos agrupaciones; 

además, presenta alta variabilidad en las personas con amputación. Esto in-

dica que las personas con amputación ostentan menor estabilidad estática 

postural, en comparación con las personas sin amputación transtibial, y la 

compensación para mantener la estabilidad se da en el lado contralateral, 

ya que según Molero-Sánchez et al. (2015), la pierna intacta de las personas 

con amputación compensa las limitaciones mecánicas y la pérdida de soma-

tosensibilidad de ipsilateral; estos resultados son confirmados por Ku et al. 

(2014) y Sinitski et al. (2016).

Al analizar los desplazamientos en las dos direcciones, AP y ML, 

Gibbons et al. (2019) hallaron que, en posición de bipedestación estática, el 

desplazamiento del CoP es mayor en AP; iguales resultados se produjeron 
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en el presente análisis, los valores altos en cada pie se dan en dirección AP, 

así como las mayores variaciones.

Finalmente, se destaca que la variable que mejor permite la discriminación 

entre los dos grupos es el desplazamiento antero-posterior de contralateral 

(dAPL), confirmando hallazgos realizados con otras técnicas de análisis, tal 

como la descrita al usar teoría de la información.

Velocidad
Según Molero-Sánchez et al. (2015), en el estudio de estabilidad postural 

otra medida del CoP a considerar es la velocidad, pues permite caracteri-

zar grupos posturales. Esta opinión la comparten Baig et al. (2012), quienes 

concluyeron en su estudio que la velocidad del CoP es la mejor medida para 

evaluar la estabilidad postural.

En la exploración de la velocidad del CoP, al observar los clústeres para 

la variable de salida GRUPO, se distinguen claramente los dos grupos estu-

diados; asimismo, en los valores medios y el histograma. El mapa de calor 

presenta en el clúster 2 un valor de 2, mientras que en el clúster 1 se concen-

tran los datos con valores de 1, de allí que el clúster 1 corresponde al grupo 

control y el clúster 2 al grupo de personas con amputación (figura 102). Los 

clústeres están claramente definidos y delimitados para cada grupo.

Figura 102. Clústeres de los grupos al analizar la velocidad del CoP

Fuente: elaboración propia.

Una vez identificados los clústeres con los grupos de estudio, se pudo establecer 

el comportamiento de la velocidad tanto en personas con amputación como 
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en controles. Curtze et al. (2012) revelaron que los mayores valores de 

velocidad del CoP se presentan en las personas con amputación en relación 

con las personas sin amputación transtibial; de igual manera, la dirección con 

altos valores de velocidad del CoP es la antero-posterior y en contralateral. 

Ellos aducen que este comportamiento se debe a que la pierna no amputada 

compensa el tobillo faltante en dirección antero-posterior (AP), aumentando el 

movimiento del tobillo. En la dirección medial-lateral (ML), las personas con 

amputación experimentan menor valor de velocidad del CoP, luego el empleo 

de estrategia de cadera es limitado, ya que los movimientos en dirección ML 

se asocian con la estrategia de cadera, tal como lo demostró Winter (1995). 

Hlavackova et al. (2011) observaron que la velocidad del CoP y la variabilidad 

de esta en contralateral es mayor a ipsilateral; una causa probable es que las 

personas con amputación unilateral descargan mayormente su peso corporal 

en el lado no amputado. Barnett et al. (2013) notaron que la velocidad del 

CoP en las personas con amputación es mayor en la dirección ML que en la 

AP; ellos aducen que puede ser consecuencia de la reducción de los requisitos 

de control postural dada por la amputación o del temor a sufrir una caída.

Los reportes citados se encuentran acordes con los hallazgos de la in-

vestigación de la velocidad del CoP, empleando clustering como medida de 

discriminación inter-grupos, ya que el histograma de las variables muestra 

alta variabilidad en el grupo de personas con amputación, así como valores 

elevados. Adicional, en ipsilateral, lado derecho en el presente estudio, los 

valores en AP son menores que en contralateral; mientras que en dirección 

ML ipsilateral es un poco mayor que en contralateral, confirmando el uso de 

la cadera en este lado para mantener estabilidad (Buckley et al., 2002). Los 

ajustes de CoP presentes en contralateral son más bajos que en ipsilateral, 

esto refleja una señal de velocidad del CoP más regular.

Se resalta que los resultados de la influencia de la velocidad del CoP 

sobre la estabilidad analizados con la técnica descrita, se encuentran en con-

cordancia con los resultados hallados haciendo uso de otros métodos de 

análisis y que se exponen en el presente texto.
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Conclusiones

El análisis de la estabilidad postural estática se emplea en múltiples estudios, 

con el fin de entender las deficiencias del control postural en grupos de sujetos 

con patologías o dismetrías, como es el caso de las personas con amputación 

transtibial unilateral. En este grupo, en particular, los hallazgos de la presente 

investigación pueden ayudar proporcionando pautas para la alienación y fa-

bricación de prótesis transtibiales, puesto que entrega información útil sobre 

la importancia de la realimentación somatosensorial y sensoriomotora en la 

estabilidad postural estática, factor que a futuro se deberá considerar seria-

mente en el diseño y uso de prótesis de extremidades inferiores.

Los individuos que sufren una amputación de sus extremidades inferio-

res presentan un deterioro funcional que afecta múltiples facetas de la vida, 

entre las que están la movilidad, actividades físicas y lúdicas y las activi-

dades básicas de la vida diaria, por citar algunas. La capacidad de contar 

con una adecuada postura bípeda estática y una marcha estable resulta de 

gran importancia en la dinámica social y en la independencia personal para 

desarrollar actividades cotidianas, pues permite tener control postural. Para 

lograr estabilidad y autonomía es importante comprender todos los ele-

mentos que forman parte de la dinámica de la estabilidad en personas con 

amputación transtibial unilateral.

Existen numerosas medidas de centro de presión (CoP). Sin embargo, 

no se ha identificado una única medida óptima para su evaluación; entre las 

más empleadas está el desplazamiento y la velocidad del CoP, siendo esta 

última la medida más sensible, ya que permite diferenciar niveles de estabi-

lidad entre grupos y es repetible para el mismo nivel de estabilidad. Como 

el desplazamiento y la velocidad del CoP son factores fundamentales en la 
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exploración de la estabilometría, su estudio permitió encontrar patrones de 

comportamiento en un grupo de personas con amputación transtibial unila-

terales, como consecuencia de trauma por minas antipersonales.

Las series de tiempo del desplazamiento del CoP revelaron fluctuacio-

nes irregulares y no estacionarias, como consecuencia de la afectación de la 

amputación en las acciones de control para mantener la estabilidad postural 

estática bípeda. Como se sabe, el control normal del equilibrio surge como 

resultado de interacciones complejas y una realimentación de los sistemas 

vestibular, visual y somatosensorial; apoyados del sistema sensoriomotor que 

incorpora todos los componentes aferentes, el proceso de integración y pro-

cesamiento central y las respuestas eferentes, con el objetivo de mantener la 

estabilidad funcional, incluyendo el control de las perturbaciones internas/

externas para el mantenimiento del balance. Luego la capacidad de iniciar y 

modular una estrategia postural definida puede estar limitada en las personas 

con amputación, debido a la disponibilidad reducida de fuentes importantes 

de realimentación propioceptiva en su extremidad inferior amputada.

La estabilidad postural en diferentes situaciones de la vida se controla 

combinando estrategias posturales de tobillo y cadera, las cuales varían en 

magnitud y relación dependiendo de la necesidad que se tenga en el mo-

mento; en las personas con amputación unilateral de miembros inferiores, 

la capacidad de utilizar una estrategia de tobillo y de paso se ve gravemente 

afectada por la ausencia de la articulación natural, de allí la alta variabilidad 

tanto en el desplazamiento como en la velocidad del CoP en este grupo de 

pacientes durante la bipedestación estática. No obstante, a pesar de que la 

pierna protésica sirve para sostener el peso durante la bipedestación, la ex-

tremidad contralateral cobra vital importancia para realizar el control del 

equilibrio del individuo; de allí que la mayor variabilidad en el desplaza-

miento del CoP se da en el plano antero-posterior contralateral para accionar 

el control del tobillo anatómico, revelando una capacidad de equilibrio dis-

minuida; ipsilateral aporta a la estabilidad con el movimiento de cadera, 

detectando una pequeña pero significativa variación del desplazamiento del 

CoP en dirección medial-lateral.

La reducción de la sensación cutánea en el muñón junto con una reali-

mentación insuficiente del suelo (como resultado de la amputación), reduce 
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aún más la capacidad para controlar tanto el desplazamiento como la ve-

locidad del CoP. La velocidad AP del CoP es significativamente mayor en 

contralateral en comparación con la ipsilateral, como consecuencia de la 

naturaleza móvil y multiaxial de la articulación anatómica del tobillo. Las 

personas con amputación tienen un mayor balanceo en comparación con 

las personas sin amputación transtibial, lo cual se evidencia en la alta va-

riabilidad en las variables asociadas a la velocidad del CoP. Esta condición 

se puede reducir al realizar procesos de rehabilitación protésica, de allí la 

importancia de llevar a cabo investigaciones en el área de la estabilidad pos-

tural en personas con amputación transtibial.

Los parámetros derivados del análisis lineal del CoP indicaron que las 

personas con amputación transtibial unilateral exhibieron un mayor valor 

en todos los parámetros lineales en el dominio del tiempo calculados con 

respecto al grupo de personas sin amputación. Siendo la medida de la ex-

cursión, la velocidad y la amplitud promedio o desplazamiento del CoP que 

proporcionaron los datos más relevantes para la evaluación del manteni-

miento del equilibrio en los pacientes.

El aumento en el desplazamiento del CoP y en la velocidad del CoP en 

los pacientes con amputación en sus extremidades inferiores durante la pos-

tura bípeda estática, produce un momento ya sea en dirección AP o ML, 

lo que aumenta la probabilidad de una caída. Por lo anterior, este tipo de 

análisis de estas variables lineales y no lineales de la estabilidad postural 

puede ser una herramienta útil para predecir caídas, no solo en población 

amputada en sus extremidades inferiores, sino también en adultos mayores 

cuyo control postural es reducido con el paso de los años y nos hace más 

susceptibles a caídas.

Los resultados de los análisis empleando variadas técnicas sugieren que 

adicional a la redistribución de la carga asimétrica, los pacientes con amputa-

ción desarrollan adaptaciones en su extremidad colateral e incluso en todo el 

sistema musculoesquelético para mantener la estabilidad postural. Por ejem-

plo, el estudio en frecuencia muestra que en contralateral el sistema somato-

sensorial y sensoriomotor, predomina en el control de esta pierna.

Por otro lado, la alta cantidad de datos recolectados durante la toma de 

muestras hace que se requiera un software y una computadora capaz de hacer 
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el procesamiento de estos; de allí el uso de Powerhouse™, pues provee las he-

rramientas necesarias para el análisis empleando la teoría de la información, 

cumpliendo con los requisitos necesarios para esta investigación.

En cuanto al análisis no lineal, los hallazgos sugieren que la entropía 

MSE representa una herramienta eficaz para el análisis de series de tiempo 

del centro de presión (CoP), que se encuentran afectadas por la alteración 

del sistema del control postural; lo anterior, dada su relativa consistencia y 

capacidad para discriminar entre los grupos de estudio, debido a que esta 

herramienta permite evaluar la regularidad o previsibilidad de las series tem-

porales. Aunque el análisis con la entropía MSE no se ha utilizado de forma 

amplia en las personas con amputación transtibial unilateral, los resultados 

aquí presentados sugieren que este parámetro es una medida fuerte y con-

sistente que permite cuantificar la disfunción clínicamente relevante de los 

pacientes participantes del estudio.

El uso de la técnica de clustering demostró que la velocidad del CoP es 

el mejor discriminante en la caracterización de grupos en comparación con el 

desplazamiento del CoP; igual situación se presenta en el análisis con teoría de 

la información, lo cual es un gran aporte para futuros estudios relacionados 

con el tema abordado en este libro y que, además, se puede emplear en otro 

tipo de poblaciones.

La presente investigación expone que las medidas de entropía y otras no 

lineales discriminan, de mejor manera, el desplazamiento del CoP para el 

mantenimiento de la estabilidad postural estática con respecto a las medidas 

clásicas en el dominio tiempo-frecuencia para las personas con amputa-

ción transtibial unilateral, ya que la información brindada por el dominio 

del tiempo solo indica que la oscilación o balanceo es mayor, en especial, 

hacia el lado contralateral; información que se hace evidente y que hace 

muchos años se ha indicado, pero con los parámetros no lineales se tiene 

información más completa y cuantitativa del fenómeno. Aunque es eviden-

te que para obtener las series de tiempo del CoP, se requieren laboratorios 

con personal experto en el área para realizar los análisis no lineales; se hace 

necesario, en investigaciones futuras, proponer soluciones que permitan ob-

tener e incluir este tipo de análisis en el ámbito clínico para su aplicabilidad 

en la población de interés. Lo anterior, se debe a los sistemas no lineales que 
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permiten generar modelos predictivos que pueden ser empleados para pro-

nosticar situaciones de afectación de la estabilidad asociados con problemas 

de equilibrio, tales como la enfermedad de Parkinson, consumo de drogas, 

enfermedades neurológicas, mal alineación de prótesis de miembro inferior, 

por citar algunas.

En general, las técnicas empleadas y analizadas en este caso de estudio 

son complementarias entre sí, todas entregan información valiosa sobre la 

estabilidad postural estática y los resultados arrojados por cada una de ellas 

se asemejan, lo cual evidencia la consistencia y veracidad de la investigación 

realizada.

Para el caso de estudio con el grupo de personas con amputación trans-

tibial, el control de la estabilidad estática postural es un factor primordial 

durante el proceso de adaptación de una persona con amputación a la pró-

tesis, pues permite que la persona con amputación se ponga de pie y realice 

actividades de desplazamiento de forma segura; por ello, este factor es tenido 

en cuenta en los programas de rehabilitación física. Establecer condiciones 

de estabilidad a partir del registro del CoP usando plantillas instrumenta-

das, así como llevar a cabo contrastaciones entre ambos segmentos inferiores 

para observar el nivel de adaptación protésica y verificar la alineación de la 

prótesis, haciendo uso de diversas técnicas de análisis, como las mostradas 

en este texto, brinda al personal de la salud e investigadores una excelente 

herramienta clínica para el diseño, desarrollo y mejoramiento de programas 

de rehabilitación, para que tengan mayor impacto y mejores resultados en 

las personas con amputación en sus extremidades inferiores.

A modo de resumen, se exponen aquellos parámetros que presentaron 

una mayor diferenciación entre los grupos de estudio, lo que permite carac-

terizar al grupo de personas con amputación y se sugieren sean tomadas en 

cuenta para su proceso de adaptación protésica y correcta rehabilitación:
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Tipo 
de análisis Parámetros Observaciones

Lineal

Excursión, 
velocidad y rango

El grupo de personas con amputación presenta una ma-
yor oscilación del centro de presión, en gran medida, en 
la dirección AP para mantener su estabilidad postural, 
lo cual se evidenció en general en todos los parámetros 
lineales explorados; pero la mayor diferenciación entre 
los grupos de estudio se encontró en la excursión del 
CoP, velocidad del CoP y el rango del CoP.
Lo anterior, producto de la eliminación de la in-
formación somatosensorial y sensoriomotora de la 
extremidad protésica, puesto que la respuesta neuro-
muscular desde la integración que se produce en la 
corteza motora se encuentra alterada, debido a la supre-
sión de la información de entrada sensorial de este lado.

Densidad 
espectral 
de potencia

La medida de la frecuencia permite reflejar los efectos 
del envejecimiento o la realización de algunas tareas en 
específico.
En cuanto al componente frecuencial, se observó que 
el CoP se encuentra en una frecuencia inferior de 2 Hz 
con una fuerte potencia alrededor de la frecuencia de 
0,2 Hz, la cual fue mayor para el grupo de personas 
con amputación en la dirección AP; lo anterior puede 
ser por la compensación que se debe hacer luego de la 
extirpación del segmento corporal.

No lineal
Entropía 
multiescala 
(MSE)

La aplicación de este parámetro apoya la idea de que 
una pérdida de regularidad o de complejidad que expe-
rimenta un sistema biológico se debe a un cambio en 
su estado normal o sano, el cual se caracteriza por los 
factores de enfermedad o envejecimiento.

Con la MSE se puede indicar que el grupo de personas 
con amputación presentaron una mayor regularidad y 
predictibilidad en el CoP en las diferentes escalas de 
tiempo, lo que sugiere una mayor rigidez en el balanceo 
postural para mantener la posición estática erguida. Lo 
anterior puede ser producto de la utilización del miem-
bro protésico y de la estrategia de cadera para mantener 
el control postural. Igualmente, puede indicar la alta 
probabilidad que tiene este grupo para sufrir una caída 
con respecto al grupo control.
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Tipo 
de análisis Parámetros Observaciones

No lineal

Teoría 
de la información

Se realizó el análisis de estabilidad postural estática 
del desplazamiento del CoP y la velocidad del CoP 
empleando teoría de la información (TI). Debido a lo 
anterior, la TI muestra consistencia relativa y es poco 
sensible a las longitudes de las series de tiempo de 
datos, en comparación con otros métodos de análisis. 
Se crearon modelos basados en reglas de decisión 
que permiten establecer la diferencia entre los grupos 
estudiados.
Al analizar el desplazamiento del CoP y la velocidad 
del CoP, los modelos generados permitieron distinguir 
patrones de la estabilidad en cada grupo, su rendimien-
to fue similar. Siendo la dirección AP de contralateral la 
de mayor impacto en cada modelo.
De esta forma, se comprueba que el desempeño postu-
ral se ve afectado por diferentes factores, en el caso de 
estudio por la amputación transtibial.

Clustering

La obtención de modelos tanto para el desplazamiento 
del CoP como para la velocidad del CoP, mediante la 
técnica de agrupamiento haciendo uso de cantidades 
inherentes de los datos, tal como la cantidad de infor-
mación que cada dato contiene, ha permitido que se 
pueda realizar la validación de homogeneidad intra-
clúster y la separación interclúster de los agrupamientos 
generados. De esta forma, se pudo discriminar el com-
portamiento de condiciones establecidas de estabilidad 
en los grupos de estudio.
Sin embargo, con esta técnica se evidenció que la velo-
cidad es mejor discriminante que el desplazamiento del 
CoP.
En cuanto a la variable de mayor impacto en los mode-
los, se tiene la relacionada con el lado no amputado en 
dirección antero-posterior.

Finalmente, es importante mencionar futuras investigaciones que permitan 

retroalimentar y complementar la presente investigación para el grupo de 

interés, dentro de las cuales se encuentran: la inclusión de la prueba del 

Test de Romberg con ojos cerrados, cuyo objetivo es eliminar la informa-

ción proveniente del sistema visual para poder evaluar completamente la 

respuesta del sistema somatosensorial; evaluación de la respuesta del control 

postural al balance dinámico en actividades cotidianas; la comparación de la 
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evaluación de la estabilidad postural con un grupo control emparejado por 

género, edad y estatura. Asimismo, se proponen futuros estudios en donde 

se obtenga la entropía de la señal del CoP con un tiempo de registro más 

largo, mayor a 60 segundos y que se enfoquen en el análisis en la dirección 

AP, lo cual dará una mayor comprensión del fenómeno estudiado.
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