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1. Introduccion

El futuro (inmediato) es, en su mayoria, inalambrico; la movilidad construye una
sociedad de la informacion y la tecnologia que puede ser revolucionaria cuando
es capaz de contribuir a los cambios sociales, culturales y econémicos. Las solu-
ciones inalambricas se convierten en una alternativa para democratizar el acceso
a los servicios de comunicacién, al reducir fronteras y ofrecer diversidad, calidad
y costo accesible.

Con la llegada de las aplicaciones multimedia de banda ancha y la creciente de-
manda de acceso a la red de informacién de los dispositivos moviles, resulta esencial
mejorar la eficiencia en la utilizacion del espectro electromagnético para cubrir las
necesidades de altas tasas de bits, proporcionales a los servicios multimedia.

Los resultados de los estudios de medicion de ocupacion de espectro muestran
que, por lo general, el espectro inalambrico es subutilizado en los dominios de
frecuencia, tiempo y espacio geografico. En la actualidad, existen resultados
de estudios de medicion de ocupacion de espectro en diversos lugares: en areas
urbanas de Estados Unidos, el Laboratorio de Innovacion Inalambrica del Instituto
Politécnico de Worcester tom6 mediciones en las ciudades de Buffalo, Pittsburgh,
Rochester y Worcester en el 2010 [1]; el Departamento de Ingenieria Eléctrica y
Computacion del Instituto de Tecnologia de Illinois las tom6 en Chicago entre los
afios 2008 y 2010 [2]; en el 4rea metropolitana de Los Angeles, el Departamento
de Comercio de EE. UU. realizdé mediciones entre marzo y mayo de 1995 [3]. En
Europa, el Departamento de Teoria de la Seiial y Comunicaciones, de la Universidad
Politécnica de Catalufia, hizo estudios en Barcelona entre 2009 y 2010 [4]; y el
Departamento de Redes Inalambricas de la Universidad de RWTH Aachen, en la
Escuela Internacional de Maastricht en Holanda, en el 2009 [5]. En Asia, el Centro
para la Infraestructura de Telecomunicaciones de la Universidad de Aalborg, en el
Ministerio de Comunicaciones de Mumbai, durante el 2010 [6]; y el Departamento
de Ingenieria de la Informacion y la Comunicacion, de la Universidad de Correos y
Telecomunicaciones de Beijing, en Guangdong provincia de China, durante febrero
de 2009 [7]. Y en Oceania, el Departamento de Ingenieria Eléctrica y Computacion
de la Universidad de Auckland, en Auckland, en el 2007 [8]. Estas campanas de
mediciéon muestran que el espectro radioeléctrico esta subutilizado en los dominios
de frecuencia, tiempo y espacio geografico [5], [6], [8], [9].
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En Colombia y en el mundo, las politicas para la regulaciéon del espectro
radioeléctricoaplicadastradicionalmente conciernen, porunaparte, alaasignacion
exclusiva de bandas del espectro a operadores de tecnologias inalambricas; y
por otra, a la concesion de bandas del espectro para el uso libre por parte de
operadores y usuarios particulares. Estas politicas de asignacidon espectral (SA)
han permitido el desarrollo del sector de las telecomunicaciones. Sin embargo,
el elevado costo de las licencias para la asignacion del espectro concesionado, la
escasez de espectro para la asignacién a nuevos operadores, el bajo porcentaje
de uso (por ejemplo, un 0,3% para frecuencias entre 4-5 GHz) que le dan en
su mayoria los operadores al espectro licenciado [10] y los elevados niveles de
interferencia en las bandas libres del espectro han hecho poner en consideracién
estrategias novedosas, como la radio cognitiva (CR), para contrarrestar estas
deficiencias en el desarrollo de futuras politicas gubernamentales.

De acuerdo con lo anterior, el espectro radioeléctrico es el principal recurso
para las redes de radio cognitiva (CRN), y se percibe como un bien escaso. En el
tiempo actual, el uso de buena parte de las bandas licenciadas esta mal distribui-
do, ya que, normalmente, se pueden encontrar bandas de frecuencia muy conges-
tionadas y otras bandas poco utilizadas [11]. La CR se ha convertido en uno de
los paradigmas mas investigados en las comunicaciones de radio para optimizar
el uso del espectro radioeléctrico [12]. Una CR es una radio inteligente, conscien-
te de su medio, capaz de reconfigurarse de manera autonoma para aprender y
adaptarse al entorno de radio que la rodea [13]. La investigacion en CR ha sido
motivada por los resultados de las campafias de medicion de espectro realizadas
en todo el mundo [1-4], [6-8], [14-17]. Estas campafias de medicidon muestran que
el espectro radioeléctrico esta subutilizado en los dominios de frecuencia, tiempo
y espacio geografico [2],[6],[8],[9],[16],[17].

El principio para el funcionamiento de la CR se basa en que los usuarios
secundarios (SU) aprovechen de forma oportunista el espectro licenciado disponible,
sin interferir con los usuarios primarios (PU), a través del denominado “handoff” o
cambio de canal. Para enfrentar este problema, los SU deben detectar la ocupacién
del espectro en diferentes localizaciones como funcién del entorno considerado, lo
cual proporciona una valiosa herramienta para el disefio, el dimensionamiento y la
evaluacién del rendimiento en redes de radio cognitiva [4]. A partir de aqui, existen
cuatro estrategias para desarrollar el kandoff: (1) No realizar un cambio de canal,
sino esperar en el mismo canal hasta que esté disponible de nuevo; esta estrategia
es denominada “no Aandoff’. (2) Esperar hasta que llegue un PU al canal que se
esta utilizando y realizar una deteccion de canal para encontrar otro disponible al
cual pueda cambiarse el SU; se denomina “handoff reactivo”. (3) Tratar de predecir
la llegada del SU y cambiarse antes a un canal seleccionado con anticipacidn; se
denomina “handoff proactivo”. (4) Esperar hasta que un PU llegue al canal que
esta siendo utilizado y cambiarse a un canal seleccionado previamente; es llamado
“handoff hibrido”.

De las anteriores estrategias, el handoff proactivo es el mas beneficioso para
el PU, dado que no existe periodo de interferencia en el cual coexistan los dos
usuarios (PU y SU). Sin embargo, la problematica de esta estrategia radica en la
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precision de la prediccion de la llegada del PU, es decir, en la prediccion de la
ocupacion espectral de la banda licenciada.

Lo anterior conduce a plantearse los siguientes interrogantes:

e /Como es el comportamiento de ocupacion espectral en una banda GSM (sistema
global para las comunicaciones moéviles) para una red mévil en un entorno urbano?

*  (Como disenar un modelo para la prediccién de la ocupacion espectral?

e (Como evaluar el desempenio del modelo disefiado para la prediccion de la
ocupacion espectral?

La solucidn a estos interrogantes implica el desarrollo de un modelo de prediccion
de la ocupacioén espectral que tenga en cuenta las caracteristicas relevantes del com-
portamiento del espectro a partir de mediciones realizadas en un entorno urbano;
esto podria contribuir al mejoramiento del Zandoff proactivo y del desempefio de las
CRN. Sin embargo, es importante mencionar que esta investigacion se centrard en
el analisis y disefio de un modelo de prediccion de la ocupacion espectral para una
banda licenciada de telefonia movil, y no en el desarrollo de un modelo de asigna-
cion de canal para SU, lo que llevaria a un trabajo que requiere de mas tiempo y
mayores recursos.

La CR es un tema que actualmente se encuentra en investigacion con pruebas
piloto. Los fabricantes y operadores de telefonia celular a nivel mundial estan finan-
ciando este tema de investigacion en aras de lograr la implementacion fisica de estas
redes. En Colombia, este es un tema nuevo en el que se desea profundizar, a través
de entidades como la Agencia Nacional del Espectro (ANE). Por tanto, es necesa-
rio continuar con esta investigacion y llevarla hacia el despliegue de esta tecnologia
emergente, de modo que se logren superar de forma eficiente problemas como los
elevados costos asociados a la construccion de dispositivos de alta frecuencia; o el
problema de degradacion debido a portadoras mas altas, frente a la escasez e inade-
cuada distribucién del espectro radioeléctrico. Este trabajo no solo beneficiaria a los
operadores de redes inalambricas, sino también a los usuarios de estas tecnologias,
pues podrian tener mas servicios, lo que redundaria en mas operadores, mas compe-
tencia y, por lo tanto, menor costo.

Con el objeto de argumentar la relevancia de esta propuesta de investigacion, se
podria mencionar que sus resultados impactarian el campo de la informacién y las
comunicaciones en la region de aplicacion, es decir, en Bogota D. C. Un ejemplo
claro lo constituyen las redes celulares y las redes inalambricas de malla (también
llamadas redes mesh), las cuales han surgido como tecnologias con una buena re-
lacion beneficio-costo. No obstante, el incremento en la densidad de la red y el
requerimiento de un alto rendimiento por parte de sus aplicaciones han degradado
su calidad de servicio. Con las ventajas de la CR, es posible habilitar el acceso a un
mayor segmento del espectro, por ejemplo, una red backbone mesh puede incremen-
tar el area de cobertura basada en puntos de acceso cognitivos (CAP).

Otra de las potenciales aplicaciones de la CR son las redes militares, ya que
permiten que la radio militar escoja frecuencia, ancho de banda, modulacion y
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codificacién de manera arbitraria, adaptandose al ambiente de radio variable del
campo de batalla y permitiendo una encriptacién de la informacion y un ahorro
energético mas eficiente.

Como conclusion, las caracteristicas de reconfigurabilidad dinamica de cada
uno de los parametros de operacion en una CRN podran garantizar integridad de la
informacion, interoperabilidad, fiabilidad, flexibilidad, redundancia, escalabilidad,
seguridad, eficiencia y acceso en todo tiempo y espacio, lo cual beneficia de modo
significativo el manejo de la informacién y las comunicaciones tanto en Bogota
como en toda Colombia.

1.1. Objetivos del proyecto de investigacion

El objetivo general de este proyecto de investigacion es desarrollar un modelo de pre-
diccion de la ocupacion espectral en un entorno urbano, que sirva como herramienta
para el analisis y el disefio de redes de radio cognitiva. Este objetivo fue alcanzado a
través de los siguientes objetivos especificos:

1. Analizar estadisticamente las tendencias de ocupacion espectral con base
en mediciones de ocupacion espectral realizadas en redes moviles para un
entorno urbano.

2. Disefar un modelo de prediccion de la ocupacion espectral con base en medi-
ciones de ocupacioén espectral realizadas.

3. Evaluar y validar el modelo desarrollado a través de datos de ocupacion es-
pectral reales.

1.2. Financiamiento del proyecto de investigacion

El presente libro de investigacion es producto de los resultados alcanzados en el pro-
yecto de investigacion “Modelo de prediccion de la ocupacion espectral para el anali-
sis y disefio de redes de radio cognitiva”, financiado por el Centro de Investigaciones
y Desarrollo Cientifico de la Universidad Distrital Francisco José de Caldas, en la
Convocatoria 3 de 2016.

1.3. Organizacion del libro de investigacion

El libro esta estructurado como sigue: en el capitulo 2, se realiza una descripcion de
los fundamentos tedricos de la CR y de la teoria de series de tiempo; en el capitulo 3,
se describe la metodologia de la investigacion realizada; en el capitulo 4, se presen-
tan los resultados alcanzados en la investigacion; y en el capitulo 5, se presentan las
conclusiones.
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2. Radio cognitiva

En gran parte del mundo hoy, las redes y las aplicaciones inalambricas se caracte-
rizan por una politica de asignacion fija del espectro de radiofrecuencia regulada
por el Estado. Esta asignacion fija provoca que las frecuencias asignadas a servicios
especificos estén casi en desuso y no puedan ser aprovechadas por los SU, incluso si
estos no provocan ninguna interferencia [18], [19].

Segun estudios realizados por la Comision Federal de Comunicaciones (FCC) de
Estados Unidos [20], se ha evidenciado que gran parte del espectro de radiofrecuencia
esta siendo utilizado de manera ineficaz. Basado en las variaciones temporales y geogra-
ficas, la utilizacion del espectro asignado es ineficiente [10], [21]. Incluso las mediciones
mas actuales muestran que mas del 70% del espectro no se esta utilizando [22], [23].

Esta utilizacion ineficiente y esporadica del espectro, junto al incremento de la de-
manda de espectro, han hecho que se degrade la calidad de servicio (QoS) en varias
redes y aplicaciones inalambricas, como las comunicaciones moviles. Lo anterior
ha motivado el desarrollo de investigaciones recientes que en el acceso dinamico al
espectro (DSA) han encontrado la solucién al problema. La tecnologia clave que
permite materializar las técnicas de DSA es la CR [18], [24].

El concepto de CR fue creado en 1999 por Joseph Mitola III, como “el punto en el
cual las PDA (Personal Digital Assistant) inalambricas y las redes relacionadas son, en
términos computacionales, lo suficientemente inteligentes con respecto a los recursos
de radio y las correspondientes comunicaciones de ordenador a ordenador como para
detectar las necesidades eventuales de comunicacién del usuario como una funcion
del contexto de uso y proporcionarle los recursos de radio y servicios inalambricos
mas adecuados a ese mismo instante” [25]. Sin embargo, varias entidades importan-
tes han dado su punto de vista al respecto; segiin la Administraciéon Nacional de la
Informacién y las Comunicaciones (NTIA), la CR “es una radio o sistema que detecta
su entorno electromagnético de operacidn y puede ajustar de forma dinamica y auto-
noma sus parametros de operacién de radio para modificar la operacion del sistema
como: maximizar el rendimiento, reducir la interferencia y/o facilitar la interopera-
bilidad”. Segun la Unidn Internacional de Telecomunicaciones (ITU), la CR “es una
radio o sistema que detecta y esta al tanto de su entorno y se puede ajustar de forma
dindmica y autonoma de acuerdo con sus parametros de funcionamiento de radio”.
Segun el Instituto de Ingenieros Eléctricos y Electronicos (IEEE), la CR “es un tipo de
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radio que puede detectar de forma auténoma y razonar sobre su entorno y adaptarse
de acuerdo a este” [10]. Y de acuerdo con la FCC, la CR es una radio que “puede
cambiar los parametros del transmisor basado en la interaccion con su entorno” [20].

La CR tiene la capacidad de proveer un gran ancho de banda (BW) a usuarios
moviles, a través de arquitecturas inalambricas heterogéneas que aumentan significa-
tivamente la eficiencia espectral, debido a que permite que SU compartan el espectro
con PU de manera oportunista [18], a partir de las oportunidades espectrales (SO),
como se muestra en la Figura 2.1; es decir, que utilicen las porciones del espectro que
no estan siendo usadas en ese momento [26], [27].

La Figura 2.1 describe el concepto de SO a través de una grafica en tres dimen-
siones, cuyos ejes son: potencia, frecuencia y tiempo. Cada bloque gris de la figura
es un PU haciendo uso de una porcion del espectro de frecuencia dado por el eje de
frecuencia, a un nivel de potencia dado por el eje de potencia, y durante un determi-
nado periodo dado por el eje de tiempo. Sin embargo, existen porciones del espectro
de frecuencia que no son utilizadas durante determinado intervalo de tiempo; dichos
espacios son denominados SO, que pueden ser aprovechados por los SU [26], [28].

Potencia
A Espectro en uso

Frecuencia/

B Acceso
( dinamico
al espectro

»
'

2 ¢ Tiempo

Hueco espectral

Figura 2.1: Concepto de SO.
Fuente: adaptada de [29]

2.1. Caracteristicas de la radio cognitiva

Las principales caracteristicas de la CR, que le confieren todas las capacidades des-
critas antes, son la capacidad cognitiva y la reconfigurabilidad [28].

2.1.1. Capacidad cognitiva

La capacidad cognitiva es la tecnologia capaz de capturar la informacion de su entorno
de radiofrecuencia para identificar los segmentos del espectro que no estan siendo utili-
zados, y asi seleccionar el mejor espectro posible y definir los parametros de operacion
mas adecuados con el objetivo de evitar la interferencia con otros usuarios [13], [30].
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2.1.2. Reconfigurabilidad

La reconfigurabilidad es la capacidad de cambiar de forma dindmica los diferentes
parametros de operacién relacionados con la transmisién y/o recepcion (como la
frecuencia, la potencia y la modulacién); esto con el fin de habilitar la radio para que
sea programada dindmicamente para transmitir y recibir en una gran variedad de
frecuencias en funcion del ambiente de radio, y usar diferentes tecnologias de acceso
a la transmision [13], [29], [30].

2.2. Gestion de espectro en radio cognitiva

Las CRN también imponen retos en la gestion del espectro, debido a la naturale-
za fluctuante del espectro disponible y a los requerimientos de calidad del servicio
(QoS) de varias aplicaciones. Las cuatro principales funciones en la gestion del espec-
tro son: monitorizacion del espectro, decisién de espectro, comparticion de espectro
y movilidad de espectro; todas conforman el ciclo cognitivo [18], [28], [29].

La Figura 2.2 describe el ciclo cognitivo iniciando con la monitorizaciéon del es-
pectro para detectar las SO; luego, la decision de espectro selecciona una de ellas para
que sea utilizada por el SU;. Si un PU arriba a la misma SO, el SU debe realizar la
movilidad espectral y seleccionar una nueva SO. En el caso de varios SU, se puede
realizar una comparticion del espectro.

2.2.1. Monitorizacion de espectro

En las bandas licenciadas, los SU solo pueden ser asignados a SO para que no
interfieran con los PU. Por tanto, es necesario que los SU estén monitorizando las
bandas de espectro disponibles para detectar dichas SO [29]. Actualmente, existen
varias técnicas para monitorizar el espectro, que se clasifican como se muestra en
la Figura 2.3; la deteccion de energia es la mas basica de ellas.

2.2.2. Decision de espectro

Después de que las SO han sido identificadas, los SU deben seleccionar la mas ade-
cuada de acuerdo con sus requerimientos de QoS. Para tomar la anterior decision,
se han desarrollado algoritmos que tienen en cuenta las caracteristicas del canal de
radio, el comportamiento estadistico de los PU, la frecuencia y potencia de transmi-
sidn, entre otros factores [29].

2.2.3. Comparticion de espectro

Debido a que multiples SU pueden intentar acceder al espectro, la funciéon de com-
particion de espectro proporciona la capacidad de utilizar este recurso con multiples
SU, coordinando sus transmisiones para evitar colisiones e interferencias [29], [31].
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Entorno de radio

Estimulo
RF

Seifial
transmitida Movilidad de Deteccion de
espectro usuario primario
Deteccion de
espectro
Solicitud de Caracterizacién de
decisién espectro -
Compartir el Hueco 5
espectro espectral K
Capacidad de e
canal o
Decisién de o
espectro B -
Figura 2.2: Ciclo cognitivo.
Fuente: Adaptada de [29]
Deteccion de Espectro
Deteccién de Deteccién de Temperatura de
transmisor receptor interferencia
Deteccién de Deteccién de Deteccién de
filtro adaptado energia caracteristicas

ciclo estacionarias

Figura 2.3: Clasificacion de las técnicas de deteccion de espectro.
Fuente: Adaptada de [29]

2.2.4. Movilidad de espectro

La movilidad espectral se da cuando el SU debe dejar el canal de frecuencia que esta
utilizando y continuar su comunicacion en otra SO, debido a la llegada deun PU 0 a
la degradacion de la calidad del canal [29], [32].

2.3. Arquitectura de la radio cognitiva

2.3.1. Arquitectura centralizada

Enlaarquitectura centralizada, la coordinacion de los nodos entre si se mantiene mediante
la difusién de mensajes a través de un canal de control comiin (CCC) de coordinacion del
espectro, independiente del canal de datos. Cada usuario determina el canal que puede
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utilizar para la transmision de datos, de tal manera que se evite la interferencia. En el caso
de que la seleccion de canal no sea suficiente para evitar la interferencia, se implementa
la adaptacion de potencia. Las evaluaciones de las alternativas anteriores revelan que el

CCC mejora el rendimiento entre 35% y 160% a través tanto de la frecuencia como de la
adaptacion de potencia [13], [24].

2.3.2. Arquitectura distribuida

En la arquitectura distribuida, la coordinacion entre nodos utiliza una “reserva de
canal dinamica distribuida” basada en la QoS (D-QDCR). El concepto basico detras
de D-QDCR es que una estacion base (BS) compite con su interferente BS de acuerdo
con los requisitos de QoS de los usuarios para asignar una porcion del espectro. De
forma similar al protocolo CCC, los canales de control y datos se separan [13], [24].

La Figura 2.4 muestra un ejemplo de una arquitectura de CR centralizada (con
infraestructura) y distribuida ad Aoc (sin infraestructura).

Banda de
frecuencia
A == =

5 . % A Agente
. ‘ .
. . g

Banda no licenciada

espectral
. o4 .
. .
Al .
. . . = .
o e .
?  Usuario { B
i CR
'

'
'
4 g ‘- l| \‘Olrasredes
' ' ' E tp-de radio
_______________________ e e e A
Banda licenciada | LR \
"-- =

-

ptimaria

Estacion
base '
primaria

Acceso a la Estacion
red CR base de
Banda licenciada Il

Acceso
ad hoc
_______ e

o
R R )

<
<
.
.
'
)

Redes primarias Red de radio cognitiva

(sin infraestructura )

Red de radio cognitiva
(con infraestructura )

Figura 2.4: Arquitectura de una red de radio cognitiva.
Fuente: Adaptada de [13].
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2.4. Aplicaciones de la radio cognitiva

Para argumentar la relevancia de esta investigacion, cabe mencionar el modo en que
sus resultados pueden impactar el campo de la informacion y las comunicaciones en
la region de aplicacion de los resultados de dicha indagacion, como puede ser no solo
Bogota D. C., sino toda Colombia y el mundo entero. Un ejemplo muy claro son las
redes mesh; sin embargo, el incremento en la densidad de la red y el requerimiento
de una alta tasa de datos por parte de sus aplicaciones han degradado su QoS. Con
las ventajas de la CR, una red backbone mesh puede incrementar el area de cobertura
basada en los CAP [13].

Es sabido que un desastre natural podria deshabilitar temporalmente, o incluso
destruir, la infraestructura de comunicaciones, lo que haria necesario establecer redes
de emergencia que requieren una gran cantidad de espectro para poder manejar el
volumen de trafico de video, voz y datos. La CR tiene la capacidad de proporcionar
dicho espectro sin necesidad de una gran infraestructura. Es asi como la seguridad
publica y las redes de emergencia también se pueden beneficiar de las ventajas de la
radio cognitiva [13].

Otra de las potenciales aplicaciones de la CR son las redes militares, ya que
permite a la radio militar escoger arbitrariamente su frecuencia, BW, modulacion y
codificacion, adaptandose al ambiente de radio variable del campo de batalla [13].

Como conclusion, las caracteristicas de reconfigurabilidad dinamica de cada
uno de los parametros de operacién en una CRN pueden garantizar integridad de la
informacion, interoperabilidad, fiabilidad, flexibilidad, redundancia, escalabilidad,
seguridad, eficiencia y acceso en todo tiempo y espacio, beneficiando de modo signi-
ficativo el manejo de la informacién y las comunicaciones en Colombia [28].

2.5. Desafios y futuras investigaciones en radio cognitiva

Los desafios de la CR pueden ser varios, debido a que abarca temas que van desde
la monitorizacion del espectro hasta las decisiones de movilidad en este, teniendo en
cuenta esquemas de acceso al medio y tipo de redes en las cuales interactda la CR.
Por lo tanto, en este apartado se describiran brevemente estos desafios [28].

2.5.1. Monitorizacion del espectro

El proceso de monitorizacion no se puede realizar al tiempo en que se envia la infor-
macion entre SU; por consiguiente, si es necesario desarrollar acciones de monitori-
zacion, los usuarios deben detener las trasmisiones, afectando asi la eficiencia del es-
pectro. Con base en esto, seria deseable desarrollar algoritmos de monitorizacidén que
reduzcan su tiempo, mientras mejoran la precision en el proceso de deteccion de SO.

Ec132



Modelo de prediccion de la ocupacion espectral para el analisis y disefio de redes de radio cognitiva

2.5.2. Espectro compartido

En trabajos realizados en CR, se hacen suposiciones como que los SU conocen de
antemano la localizacion y el nivel de potencia de la trasmision de los PU, lo cual permite
realizar los calculos de interferencia de manera facil. Sin embargo, esta suposicion
no siempre es cierta para algunas CRN [31].

2.5.3. Procesos de aprendizaje

Debido a las complejidades inherentes a la CR, seria deseable que en los dispositivos
que hagan uso de CR se habilitara un proceso de aprendizaje que tome en cuenta las
decisiones tomadas en el pasado para mejorar su comportamiento dentro de la red,
y asi mejorar sus decisiones futuras. El disefio de este tipo de algoritmos representa
un gran desafio, debido a que se debe determinar qué mediciones son necesarias para
desarrollar este proceso de aprendizaje [27].

2.5.4. Esquemas de control de acceso al medio

Aungque el grupo de investigacion del estandar IEEE 802.22 esta trabajando en el
desarrollo de un protocolo de control de acceso al medio (MAC), otras investiga-
ciones han desarrollado esquemas que no se adecuan al estandar. Por ejemplo, los
esquemas MAC distribuidos para redes de radio cognitiva ad hoc (CRAHN) no
estan del todo cubiertas.
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3. Metodologia y analisis
estadistico para las mediciones
de la red movil

A partir de la campafia de mediciones de espectro realizadas durante seis meses en
Bogota, Colombia, para el estudio de ocupacion del espectro [16], [11], [33], se deci-
di6 analizar la banda GSM de 850 MHz, puesto que es una banda en constante uso
y viable de analizar en funcion del tiempo, con equipos de medida convencionales,
como el analizador de espectro. Sin embargo, algunos estudios [4] indican que una
opcion razonable para obtener resultados representativos, sin ninguna informaciéon
a priori de la banda de frecuencia que se va a medir, es considerar periodos de me-
dicién de por lo menos 24 horas, a fin de no subestimar o sobrestimar la ocupacion
de bandas de frecuencia con algunos patrones temporales; y aunque un periodo de
medicion de 24 horas puede considerarse adecuado para caracterizar correctamente
la actividad de las bandas del espectro determinado, esta investigacion decidio traba-
jar con los datos correspondientes a 7 dias, lo que incluye patrones de uso en los dias
entre semana y el fin de semana (un tiempo suficiente para medir la ocupacion hasta
en redes moéviles de poco uso, tal como se indica en ITU-R [34], [35]).

De acuerdo con lo anterior, las medidas usadas en este estudio corresponden a
las de una semana (seleccionadas de los datos capturados durante la campafia de
medicion). Fueron el resultado de un estudio estadistico que demostro la correlacion y
estacionariedad de los datos por dias, y que permitio tener una muestra de un canal de
ocupacion alta, media y baja. En dicho estudio estadistico se analiz6 la estacionariedad
de los canales, y se observo que la media y la varianza son constantes y similares entre
si, en cada uno de los dias, desde el lunes hasta el viernes; para el canal de ocupacioén
baja, la media oscila entre —96.17 y — 96.01 dBm, y la varianza entre 6.6 y 7.17; para
el canal de ocupacién media, la media oscila entre —94.97 y —94.8 dBm, y la varianza
entre 18.8 y 21.02; para el canal de ocupacién alta, la media oscila entre —-94.75 y
—94.18 dBm, y la varianza entre 29.36 y 31.46. Las mediciones del fin de semana no se
tienen en cuenta para el entrenamiento en los modelos analizados, debido a que no son
similares y cambian de modo considerable con respecto a las mediciones de lunes a
viernes; para el canal bajo se encuentra entre —96.34 y —96.24 dBm, y la varianza entre
3.62 y 4.37; para el canal medio, la media se encuentra entre —95.76 y —95.35 dBm, y
la varianza entre 8.67 y 10.79; para el canal alto, la media se encuentra entre —95.43 y
—95.34 dBm, y la varianza entre 13.82 y 15.68.
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3.1. Seleccion de software y equipos

Para desarrollar la presente investigacion, se utilizaron diversos recursos. Entre ellos,
un sistema de monitorizacion del espectro (descrito por la Tabla 3.1) para realizar el
proceso de captura de los datos de potencia espectral en la banda GSM; se destaca
el analizador de espectro MS2721B Anritsu, por sus caracteristicas y funciones.
También se usaron multiples bases de datos electronicas para realizar la consulta y
construccion de la revision literaria sobre SH (handoff espectral) para CRN. El software
Matlab se empled para desarrollar el simulador y los correspondientes algoritmos
de SH. Y, finalmente, se utilizd6 un computador de escritorio cuyas caracteristicas
estan descritas por la Tabla 3.2, para realizar el procesamiento de la informacion, el
disenio del modelo propuesto, el desarrollo de la experimentacion, el analisis de los
resultados y la documentacion de esta investigacion.

Tabla 3.1: Especificaciones de los equipos para la monitorizacion del espectro.

Especificaciones
Equipo
Rango de frecuencia Referencia
Antena tipo discono 25 MHz - 6 GHz Super-M Ultra Base
Cable de banda ancha 0-18 GHz CBL-6FT SMNM+
Amplificador de bajo ruido 20 MHz - 8 GHz ZX60-8008E-S+
Analizador de espectro 9kHz-7.1 GHz MS2721B Anritsu

Tabla 3.2: Especificaciones del equipo de computo.

Caracteristica Valor de referencia
Procesador AMD FX 9590 de 8 ntcleos y 4.71 GHz
Memoria RAM DDR 3 de 16 GB
Disco de estado solido Kingston SV300S37A de 240 GB
Tarjeta de video AMD Radeon R7 200
Tarjeta de red 10 7/ 100 / 1000 Mbps
Monitor LG IPS Full HD
Sistema operativo Windows 7 de 64 bits

3.2. Metodologia para medicion del espectro radioeléctrico

El procedimiento de medicién del espectro radioeléctrico es descrito a continuacion
y los resultados de medicion de las bandas moviles son usados para el analisis de esta
investigacion.
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Los rangos de medicion de las bandas se basaron en aspectos como: el tiempo de
barrido, el ancho de banda de resolucién (RBW) y el span, con el fin de garantizar una
adecuada medida en funcion del piso de ruido y del ancho de banda del canal de la
tecnologia por medir [9]. La configuracion de la medicién se muestra en la Figura 3.1
y las especificaciones técnicas de los dispositivos usados estan descritas antes, en la
Tabla 3.1. Como se espera, el analizador de espectro proporciona la deteccién basada
en energia, a fin de indicar si las sefales estan presentes o ausentes [11], [33], [35].

Antena MP
ultra base super-M
25 MHz - 6 GHz
8 dBmp

Amplificador de
bajo ruido

CBL - 6FT SMNM+(DC-18 GHz)
7

Ganancia: 8 - 11.5dB
Figura de ruido: 4 - 4.45 dB

20/~ 8000 M= Analizador de espectro

9kHz - 7 GHz

Figura 3.1: Configuracion de la medicion [33].

A continuacion, se describen las variables caracteristicas que se consideraron en este
estudio [9].

3.2.1. Frecuencia

La ocupacion del espectro se midio en el intervalo de 54 MHz a 6 GHz. El span para
cada medicion fue menor a 100 MHz y fue calculado a partir de las Ecuaciones (3.1)
y (3.2), cuando la tecnologia a medir es conocida, con el fin de garantizar un estima-
do preciso de ocupacion.

AB >, 3.1
_ SPAN
5= ops1 3.2)

Donde 4B, es el ancho de banda del canal de la tecnologia que se va a medir, £, es
el bin de frecuencia, y pps es el nimero de puntos por span del analizador, que para
este caso es 551. Dichos segmentos menores que 100 MHz permitieron escoger el
RBW < AB,, el cual estuvo alrededor de 3 kHz < RBW < 100 kHz, con tiempos de
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barrido que oscilaron entre 290 milisegundos y 5,124 segundos [11]. Las mediciones
de la banda movil se realizaron en un sitio residencial del norte de Bogota; las coor-
denadas de dicho estudio son: latitud = 4°43’51” norte, longitud = 74°3’°24” oeste,
altitud = 2578 metros. Este sitio fue seleccionado por sus caracteristicas urbanas,
puesto que presenta no solo edificaciones, sino también zonas verdes, descritas en el
Capitulo 4. A su vez, en este lugar se facilitd el almacenamiento de las mediciones
durante las 24 horas del dia.

3.2.2. Amplitud

Los niveles de potencia se ajustaron en cada segmento del analizador de espectro, sin
exceder los niveles de sefial que permite el analizador; de lo contrario, se producen
espurios mayores que la variacion promedio de piso de ruido para cada medida.
Estudios de espectro previos [9] sugieren que un buen criterio para configurar el ran-
go dinamico de un analizador de espectro al que se le conecta un amplificador a la
entrada es ajustar los niveles de potencia, para que las sefiales se encuentren dentro
del margen dinamico libre de espurios (SFDR), el cual se calcula como:

SFDR(dB)=P, (dBm)-P,, (dBm) (3.3)

Donde P, es la potencia de la sefial a la entrada y P, es la potencia de ruido equi-
valente a la entrada. El objetivo es tener tanta sensibilidad como sea posible en el
receptor, con el uso del amplificador, evitando que los niveles de espurios puedan ser
detectados como actividad de un PU. El ruido promedio del instrumento para cada
medida es determinado con la ubicacién de una impedancia de 50Q a la entrada del
analizador de espectro, con una atenuacién de 0 dB, deteccion de valor cuadratico
medio (RMS) y un tiempo de medicion de 6 h [33].

3.3. Analisis de bandas moviles

Enla Figura 3.2, se presentan los resultados de las mediciones de potencias de tres ca-
nales del enlace de bajada realizadas durante una semana. Los canales se escogieron
con distintos niveles de ocupacion: alto, con una frecuencia central de 828.73 MHz
(canal alto); medio, con una frecuencia central de 830.13 MHz (canal medio); y bajo,
con una frecuencia central de 828.93 MHz (canal bajo), respecto a los 60 canales me-
didos en esta banda. La configuracion del analizador de espectro para esta banda fue
la siguiente: RBW de 100 kHz, con un tiempo de barrido de 290 ms, lo que garantiza
la deteccién de sefiales GSM, las cuales tienen un ancho de banda de 200 kHz. Los
ciclos de trabajo por dia de los canales seleccionados se muestran en la Figura 3.3;
y el umbral (1) utilizado, que para este caso es de -89 dBm, se obtiene a partir de la
Ecuacion (3.4), para una probabilidad de falsa alarma (Pfa) del 1% [35], [36]:

_T(m%)

= Ton) (3.4)
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Donde I'(.) y I'(. , .) son la funcidon gamma completa e incompleta, respectivamente,
y m es el producto del tiempo por el ancho de banda.
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Figura 3.2: Potencias medidas para tres canales del enlace de bajada de la banda GSM.
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Figura 3.3: Ciclos de trabajo de tres canales del enlace de bajada de la banda GSM.

Las Figuras 3.4, 3.5 y 3.6 presentan los histogramas correspondientes a la distribu-
cién de oportunidades en periodos de tiempo para los canales de la banda GSM; aqui
se observa que dichas oportunidades tienen un comportamiento exponencial, cuyas
ecuaciones aproximadas se exhiben en cada una de las figuras. A medida que aumen-
ta la ocupacién del canal, se observa que la ocurrencia se presenta en los periodos
de tiempo mas cortos, especialmente. Para los canales de ocupacion baja, media y
alta, los tiempos totales de oportunidades son de alrededor de 84 horas, 81 horas y
78 horas, respectivamente, lo que indica una relativa baja ocupacion.
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Figura 3.4: Distribucion de oportunidades de periodos de tiempo del canal bajo.
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Figura 3.5: Distribucion de oportunidades de periodos de tiempo
del canal de ocupacion media.
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Figura 3.6: Distribucion de oportunidades de periodos de tiempo
del canal de ocupacion alta.

A continuacion, se analizan las series de tiempo de los canales medidos durante una
semana, lo que equivale a 1062 514 muestras. Para ello se presenta la autocorrelacion
simple, como se observa en la Figura 3.7. Los diagramas de autocorrelaciéon presen-
tan una forma alternadamente positiva y negativa para los tres canales, y decaen
lentamente a cero, sus valores estan por encima del intervalo de confianza, lo que
indica la existencia de correlacion [11].

Autocorrelaciéon de canal de ocupacién baja
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Figura 3.7: Autocorrelacion para los tres canales del enlace de bajada
de la banda GSM [11].
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Al analizar la estacionariedad de los canales de la Figura 3.7, se observa que la me-
dia y la varianza son constantes y similares entre si, en cada uno de los dias, desde
el lunes hasta el viernes; es asi que, para el canal de ocupacion baja, la media oscila
entre —96.17 y —96.01 dBm, y la varianza entre 6.6 y 7.17; para el canal de ocupacion
media, la media oscila entre —94.97 y —94.8 dBm, y la varianza entre 18.8 y 21.02;
para el canal de ocupacion alta, la media oscila entre —94.75 y —-94.18 dBm, y la va-
rianza entre 29.36 y 31.46. Por tanto, las mediciones del fin de semana no se toman
en cuenta para el entrenamiento en los modelos analizados, debido a que la media
para el canal bajo se encuentra entre —96.34 y —96.24 dBm, y la varianza entre 3.62
y 4.37; para el canal medio, la media se encuentra entre —95.76 y —=95.35 dBm, y la
varianza entre 8.67 y 10.79; para el canal alto, la media se encuentra entre —95.43 y
—95.34 dBm, y la varianza entre 13.82 y 15.68; lo que indica que no son similares y
cambian de manera considerable con respecto a las mediciones de lunes a viernes.

Adicionalmente, se analiza el parametro de autosimilitud H = 1+a/2, denomina-
do parametro de Hurst (H), el cual se utiliza como medida de dependencia a largo
plazo de la serie de tiempo, para comprobar su posibilidad de prondstico. En este
parametro, a es una pendiente de la linea de regresion [37]. En las Figuras 3.8, 3.9
y 3.10, se estima el parametro de Hurst para los canales medidos. Los tres canales
tienen un alto grado de autosimilitud, puesto que H > 0.5; no obstante, el canal
de ocupacion baja presenta una mejor probabilidad de prondstico que los canales
restantes, debido a que su H es mas cercano a 1.

Método tiempo-varianza canal de ocupacion baja
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Figura 3.8: Estimacion del parametro de Hurst para el canal de ocupacion baja.
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Método tiempo-varianza canal de ocupacion media
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Figura 3.9: Estimacion del parametro de Hurst para el canal de ocupacion media.

Método tiempo-varianza canal de ocupacioén alta

1:5
1 . :
*
05 h
* % * b *
0 ................. A“' -
...... H_086
-05 |
*
-1
*
15
0 2 | 5

Figura 3.10: Estimacion del parametro de Hurst para el canal de ocupacion alta.
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3.4. Modelos propuestos para predecir la ocupacion espectral

A continuacioén se describen los modelos para pronosticar el comportamiento de las
sefiales medidas, a partir de un analisis del estado de la cuestioén para la prediccion
del espectro en redes de CR [38]. Para esto, los modelos se clasifican en dos, segin
el analisis de la serie de tiempo: andlisis lineal, entre los que se usan el modelo auto-
rregresivo integrado de media movil estacional (SARIMA) y el modelo de heteroce-
dasticidad condicional autorregresiva generalizada (GARCH); y el andlisis no lineal,
basado en el estudio de los modelos como Markov, el de “descomposicion de modo
empirico-vector de soporte para regresion” (EMD-SVR) y el neuronal de wavelet.

3.4.1. Modelo SARIMA

Distintos estudios han demostrado que el modelo autorregresivo integrado de media
movil estacional (SARIMA) es adecuado para analizar series de tiempo con estacio-
nalidad [39]-[41]. En los sistemas cognitivos, se ha utilizado SARIMA para modelar
el ciclo de trabajo de un canal GSM [42]. Igualmente, el ciclo de trabajo en [43] fue
pronosticado usando el modelo autorregresivo con transformaciones logit; mientras
que para la investigacion de la presente tesis, se usa SARIMA para modelar la poten-
cia recibida en tres canales GSM, con diferentes niveles de ocupacion.

En general, si una serie de tiempo exhibe una estacionalidad potencial (indicada
por s), entonces es ventajoso utilizar un modelo ARIMA estacional (p, d, q)(P, D, Q)s.
Donde d es el nivel de diferenciacion no estacional; p es el orden autorregresivo (AR)
no estacional; g es el orden de la media movil (MA) no estacional; P es el numero de
términos autorregresivos estacionales; D es el numero de diferencias estacionales; y
Q es el namero de términos de media movil estacional.

El modelo de media movil integrado autorregresivo estacional de Box-Jenkins
[44] esta dado por:

0 (B)® (B)VIV'x=0 (B) OB, (3.5)

Donde B es el operador de desplazamiento hacia atrds; x, es la serie de tiempo obser-
vada de la carga en el tiempo £, y €, es el error distribuido normalmente, idéntico e in-
dependiente (shock aleatorio) en el periodo z. Ademas, Vox, = (1- BS)D x> Op(Bs)
y ®Q(Bs) son los operadores AR(p) y MA(q) estacionales, respectivamente, los cuales
se definen como:

O (B)=1-0 B-0,B*...—® B" (3.6)
0, (B) = 1-0, B-0, B*~...-0Q B (3.7)

Donde ¢1, $2,..., dp son los parametros del modelo AR(p) estacional, ®1, ©2,..., @Q
son los parametros de la MA(q) estacional [40].
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La metodologia de Box-Jenkins [44] se aplica al modelo ARIMA (autorregresivo
integrado de media moévil) para encontrar el mejor ajuste de una serie de tiempo a
sus valores anteriores, con el fin de hacer previsiones. La metodologia de Box-Jenkins
consta de cuatro pasos iterativos [45]:

Paso 1: Identificacion

Este paso se enfoca en la selecciéon de d, D, p, P, q y Q. El nimero de orden se
puede identificar mediante la observacion de las muestras de la FAC (funcién de
autocorrelacion) y de la FACP (uncién de autocorrelacion parcial).

Paso 2: Estimacion

Los datos historicos se utilizan para estimar los parametros del modelo tentativo
del Paso 1.

Paso 3: Diagnéstico de verificacion

La prueba de diagnostico se utiliza para comprobar la idoneidad del modelo
tentativo.

Paso 4: Prondstico

El modelo final del Paso 3 se utiliza para pronosticar los valores [33].

3.4.2. Modelo GARCH

El modelo de heterocedasticidad condicional autorregresiva generalizada (GARCH)
ha sido usado para modelar el ruido aditivo en un método de deteccion de espectro
de banda ancha para redes de radio cognitiva [46]; también se ha aplicado amplia-
mente en el modelamiento y pronoéstico del trafico para diferentes redes de comuni-
cacion [47]-[50]. Varios modelos han sido sugeridos para la captura de las caracteris-
ticas especiales de datos, y la mayoria de estos modelos tienen la propiedad de que
la varianza condicional depende del pasado. Los modelos utilizados para estos casos
son: heterocedasticidad condicional autorregresiva (ARCH), introducido por [51],
y el ARCH generalizada (GARCH) dado por [52]. El modelado ARCH-GARCH
considera la varianza del error condicional como una funcién de la comprension del
pasado de la serie.

El modelamiento ARCH puede requerir un gran valor de retrasos ¢, por tanto, un
considerable nimero de parametros. Esto puede resultar en un modelo con muchos
parametros, lo que va en contra del principio de parsimonia; esto implica muchas ve-
ces dificultades cuando se utiliza el modelo para describir los datos en forma adecua-
da. Un modelo GARCH puede contener menos parametros en comparacion con un
modelo ARCH; esto hace que el modelo GARCH pueda ser preferible al ARCH [53],
[54]. Este hecho no es analizado en esta investigacion, aunque es discutido en [55].

El modelo GARCH (p,q) emplea la Ecuacion (3.17) para los retornos logaritmi-
cos x; pero la ecuacion de desviacion estdndar incluye nuevos términos para g, €s
decir [54]:
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x=0g,~N(0,1) 3.8)

2 2 4. 2 2 2
o =o,tax, ttoax + ot B 3.9

Donde, ahora t>max(p,q) y los componentes restantes son como los del modelo
ARCH. Los pardametros del modelo son: a, o,,..., o, By Bp para algunos enteros
positivos p, q.

3.4.2.1. Modelo ARCH(q)

Si g, es el ruido blanco gaussiano con media igual a 0 (cero), la varianza es igual a la
unidad, y H, es la informacion establecida en el tiempo ¢ dada por H, = {x,x,...,X_,}.
Entonces, el proceso {x,} es ARCH(q) (propuesto por Engle en 1982) si:

X, = Gg, (3.10)
Donde:
E(x |H)=0 (3.11)
Var(x | Ht)zcsf:aOJrE?:](xixf_i (3.12)
Y el término de error ¢ esta dado por:
E(e,|H)=0 (3.13)
Var(e |[H) =1 (3.14)

Las Ecuaciones (3.13) y (3.14) muestran que el término de error ¢, es una diferencia
martingala, condicionalmente estandarizada, definida de la siguiente manera: una
serie estocdstica {x } es una diferencia martingala si sus expectativas con respecto a
los valores pasados de otra serie estocastica Y es 0 (cero), es decir que [54]:

B, |Y,Y,,..)=0 (3.15)

Para i=1, 2,.... En este tipo de impacto del pasado, la desviaciéon estandar se asume
como una funcion cuadratica de innovaciones retrasadas. El coeficiente (o, a,..., (xq),
consistentemente, puede estimarse mediante la regresion {x,} en X, , X, ..., Xy
Para asegurar que la desviacion estandar no sea negativa, se requiere a,,>0, 0,>0 para

todoi=1,2,...,q.

Basandose en la supuesta normalidad de ¢, se adopta el método de estimacion
de maxima verosimilitud. Si x, X,,..., X, €s un resultado de un proceso ARCH(1),
entonces la probabilidad de los datos puede ser escrita como un producto de las
condicionales [54]:
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fxx,,.. X, | 9;x1)=j(xr | xt_l)f(xt_l | xt_z). M, | x )%, 10) (3.16)

Donde 6=(a,, o).

3.4.2.2. Modelo GARCH (p,q)

El GARCH (p,q) es una generalizaciéon del GARCH(1,1), con p como el retraso
autorregresivo y ¢ como el retraso promedio movil.

Formalmente, un proceso {x,} es GARCH (p,q) si [54]:
X, = O,€, (3.17)

o/ =ay* L, axl+ L, f o= ayt aBu+ fB)o; (3.18)

Donde a(B) y B(B) son los polinomios en el operador dados por:

a(B)y=a,B++a B (3.19)

Y por
BB, Bt B (3.20)

Con las restricciones >0, 0.>0 y B]ZO parai=1, 2,..., qy para j=1, 2,..., p, im-
puestas con el fin de que la varianza condicional se mantenga positiva. La Ecuacién
(3.18) se puede expresar como [54]:

(1-B(B)) 0/= o, + a(B)x; (3.21)

El modelo GARCH(0,q) es el mismo modelo ARCH(q) y para p=q=0, se tiene un
modelo GARCH(0,0) que es un simple ruido blanco. Al igual que en el modelo
ARCH(q), la media condicional de {x} es 0 (cero), es decir, E(x,| H,) conlleva a que
la serie {x } sea una diferencia martingala y, al analizar {x }, se observa que no hay
correlacion [56]. Asumiendo que el proceso GARCH(p,q) es estacionario de segundo
orden [54], es decir:

%

Var(xt) = E(xtz) = W

(3.22)

La autocovarianza de un modelo GARCH (p,q) para k>1, donde & es el retraso [54], es:

E(x x

t “tk

)=0 (3.23)
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Ya que x, es una diferencia martingala [56]. Asi, el modelo GARCH (p,q) no mues-
tra autocorrelacion en la serie de retorno {x }. Sin embargo, los retornos cuadrados
muestran autocorrelacion, a pesar de que los retornos no estan correlacionados.

Expresando x,, en términos de vt=x ,-c,,, se tiene [54]:

xt2:0t2+vt :a0+ ziq:] (ai + ﬁi ) Xi/ 'ijl ,B.V +vt (3.24)

Jot

Donde 0.=0parai>q, BJ.=O parai>p,yv, esotra diferencia martingala, lo que signifi-
ca que E(v)=0. Para encontrar el proceso GARCH (p,q), se resuelve o, en la Ecuacion
(3.24) y, expresando la varianza de x, como o¢,, se tiene [54]:

a,=o (1-X a-2" B) (3.25)
Y sustituyendo la Ecuacion (3.25) en la (3.24), se llega a:

E[(xf . — 02)(xZ — 62)] = E[Zﬁ=1(“i +B;) (xk; — o) (i — )] —
(3.26)
E[Zﬁf:l ﬂjvt—j (xtz—k - Usz)] + E[Vt(x?—k - 052)]

La autocovarianza de los retornos cuadrados para el modelo GARCH (p,q) [54] viene
dada por:

cov(xf, xf_i) = E[X=1(ai + B;) (xi; — 02) (xf_y — 02)] (3.27)

Por tanto, la ACF (funcién de autocorrelaciéon) y la PACF (funcién de autocorre-
lacion parcial) de los retornos cuadrados en un proceso GARCH tienen el mismo
patron que las de un proceso ARIMA. Al igual que en un modelo ARIMA, la ACF
y la PACF son ttiles en la identificacion del orden p y ¢ del proceso GARCH (p,q).

A continuacion, se presentan otros modelos utilizados para describir el com-
portamiento de las series de tiempo no lineales. La no linealidad en la serie, me-
dida para la presente investigacion, se observa especialmente en el analisis a corto
plazo [23].

3.4.3. Modelo oculto de Markov

En redes de CR, los estados de ocupacion (ocupado o libre) estan ocultos, ya que nos
son directamente observables. Por tanto, el modelo de Markov se ha usado en redes
cognitivas para pronosticar los estados de ocupacién del canal [57]-[61]; también se
ha empleado una cadena de Markov en tiempo discreto para modelar los ciclos de
trabajo de canales de diferentes tecnologias inalambricas.
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Un modelo oculto de Markov (HMM) es un modelo matematico en el que el
sistema que esta siendo modelado contiene un proceso oculto de Markov. Los
parametros del modelo son desconocidos y deben determinarse a partir de un
conjunto de datos observables. La técnica tiene su origen en el reconocimiento
de voz y el procesamiento de sefiales, y su aplicacion se ha incrementado en las
series de tiempo. La idea principal detras de un HMM es que el estado latente del
sistema y otra informacion no observable se ocultan en un proceso de observa-
cion, que esta afectado por algo de “ruido”. Esta informacion oculta se supone
que sigue la dindmica de una cadena de Markov de estado finito en tiempo dis-
creto o continuo [62].

El modelo de Markov empleado en esta tesis hace uso de un cambio de medida de
probabilidad, de un filtrado recursivo y de un algoritmo de estimacion; esto con el fin
de pronosticar las diferentes potencias recibidas en canales GSM, y no los habituales
estados de ocupacion del canal (ocupado y libre) desarrollados en trabajos anteriores
[57]-[60]. A continuacidn, se describen los componentes usados en el modelo.

En un HMM, una cadena de Markov esta embebida en un proceso estocastico,
el cual corresponde a una serie de observaciones. La propia cadena de Markov no
es observable; se “oculta” en las observaciones y su objetivo es estimar la cadena de
Markov subyacente, es decir, filtrar la secuencia {x,} de las observaciones, por lo
que se asume que la cadena de Markov subyacente x, es homogénea con espacio de
estado finito en tiempo discreto.

Bajo la medida del mundo real P, la cadena de Markov sigue la dinamica
X, =IIX +V,,,, donde [I es la matriz de probabilidad de transicion y V,,, es un
incremento martingala. El proceso de observacion se denota por {y, } y puede seguir

diferentes tipos de dinamicas.

Se destaca la importancia del nimero de estados N de la cadena de Markov, ya
que la cadena de Markov es oculta, lo que conlleva a que el numero de estados no sea
observable. Una eleccidn razonable del numero de estados tiene que ser hecha sobre
la base del proceso observado.

El espacio de estado M es finito, mds especificamente M= {m , m,,..., m_}, v,
como se menciond antes, puede estar asociado con la base canonica de R,. En un
HMM ergodico, todos los estados estan interconectados; por lo tanto, cada estado
se puede alcanzar desde cualquier otro estado. Otra caracteristica importante de un
HMM es el nimero M de observaciones distintas. Cuando el proceso de observacion
es discreto, se selecciona un conjunto de observaciones distintas. La matriz de
probabilidad de transicion [[= {m,} es otro elemento de gran importancia en un
HMM vy define la distribucion de probabilidad de transicion de estado, mientras que
la distribucién de probabilidad del proceso de observacion es el siguiente elemento
clave. Por ultimo, el HMM se caracteriza por la distribucion del estado inicial
X=1{X;}, donde X, = P(x,= m), para todo 1<j<N[62].
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3.4.3.1. Cadenas de Markov

Un proceso de Markov es un proceso aleatorio sin memoria. El estado futuro del pro-
ceso solo depende de su estado actual; condicionalmente, esto es independiente del
pasado. Se tiene en cuenta la discusion en [63], y se asume que la cadena de Markov
tiene un conjunto finito y contable de estados.

3.4.3.2. Cadenas de Markov en tiempo discreto

Sea (@, F, P) un espacio de probabilidad y (X, )k€N una sucesion de variables aleato-
rias con valores en el espacio de estado M= {m , m,,..., m}, donde x es una funcion
x: Q—M y Nes el conjunto de nimeros naturales.

El proceso x es una cadena de Markov si satisface la propiedad de Markov [62].

X = M |x0 My s X, =m,) = P(xk+1 = meﬂl X, =m,)

(3.28)

La distribucion inicial de x esta definida por X =(X_:m€M), X _=P(x=m)=P ({w:x
(w)=m}). Ademas, la cadena de Markov (X )KEN se caracteriza por su matriz de
probabilidad de transicion [[. Para un elemento en particular n; de la matriz de pro-
babilidad de transicion [] se tiene [62]:

= Px,, =/ x=0),ij€ M (3.29)

i

Donde n,20V (,)EM? y Yl =1 ViEM.

Esta etapa de probabilidades de transicion m; para la cadena de Markov indica la
probabilidad de cambiar del estado 7 al estado j. La cadena de Markov es homogé-
nea, esto es, que las probabilidades de transicion n= Px,,,=j| x,=i) no dependen del
tiempo k.

Las probabilidades de transicion de % pasos adelante pueden calcularse multipli-
cando la matriz [ por si misma / veces. Esta matriz se denota por [1, y ;= (I1,); es
la (j,i) entrada en la matriz de probabilidad de transicién de / pasos [1,.

Los estados de una cadena de Markov pueden ser representados por la base ca-
nonica {e,e,,...,e,} de R, donde ei = (0,...,0, 1, 0,..., 0)T € R, donde T denota
la transpuesta del vector fila. Esto se asocia con el espacio de estados M. Cuando
m, =j, entonces la cadena de Markov X, se representa por un vector unitario con el

elemento 1 en la fila j, y 0 en otro lugar. La expectativa condicional de X, es, por
tanto, dada por la j, columna de la matriz de probabilidad de transicion [62]:
T[jl
EXpyrlmy =J) = [ ‘ ] (3.30)
an
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Por tanto, se tiene:

E(X,, | X)=E(X,, | X,X,_,..)=IIx, (3.31)

k+1

En la prediccién de los estados de una cadena de Markov representados por los vec-
tores unitarios se puede expresar la cadena de Markov [62] como:

X = HXk + Vi (3.32)

Donde V, es un incremento martingala [64]. No es posible predecir V, sobre la base
de los estados anteriores del proceso y V, ., puede encontrarse a partir de la siguiente
diferencia [62]:

k+1

V., =X, -EX, | X,X_,..) (3.33)

k+1 k+1

La dindmica de X en la Ecuacion (3.33) implica que X,,, = [[.X, +V _, + IV

k+h K+h-1

+ILV,,., ...+ II, V., Yaque V, esun incremento martingala, se deduce que la

prediccion del h-paso adelante de la cadena de Markov [62] esta dada por:

E(X,,, | X, X_,...) =T1X, (3.34)

k+h

3.4.3.3. Cambio de medida de probabilidad

A continuacién, se ofrece un resumen de un cambio de técnica de medicion de pro-
babilidad para el proceso de filtrado. El cambio de la técnica de medida se utiliza
ampliamente en aplicaciones de filtrado y se introdujo para el filtrado estocastico en
[65]. En [66], se utiliza este cambio, el cual se basa en una version de tiempo discreto
del teorema de Girsanov para derivar filtros Optimos. La técnica permite hacer calcu-
los bajo una medida matematicamente “ideal”, denominada medida de probabilidad
de referencia, y se usa en esta tesis para el pronostico de la potencia recibida de tres
distintos canales GSM.

Esta nueva medida de probabilidad “ideal” es equivalente a la medida del mundo
real, que es la medida bajo la cual se tiene el proceso de observacion. Las observa-
ciones bajo la nueva medida son variables independientes e idénticamente aleatorias.
La cadena de Markov sigue la misma dindmica tanto con la medida de probabilidad
de referencia como con la medida del mundo real. El cambio de la medida real a la
medida ideal conduce a formas mas faciles de calcular filtros, como los resultados de
tipo Fubini, los cuales se pueden emplear en lugar de calculos directos, que requieren
métodos dificiles de semimartingala [62].
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3.4.3.4. Cambio de técnicas de medicion

La teoria de la evolucion de las medidas se basa en la equivalencia de las dos medidas
de probabilidad enlazadas a través del teorema de Radon-Nikodym [66]. Si (Q2,F) es un
espacio medible, se supone a P como una medida de probabilidad sobre F. Para cons-
truir una medida de probabilidad equivalente P en (Q,F), se usa el siguiente teorema.

Si Py P son dos medidas de probabilidad con P <<P, entonces existe una funcion
no negativa ftal que [62]:

P()=], fdPfYAEF (3.35)

Para dos de estas funciones f 'y g se asume P(f# g) = 0, por lo que la funcién no ne-
gativa es Unica.

Del anterior teorema se puede escribir [62]:

[,dp=1 2dPVvA€EF (3.36)

A dp

La funcién medible % es el teorema de Radon-Nikodym derivado de P con respecto
a P. La nueva medida de probabilidad P en (Q,F) se define a través del teorema de
Radon-Nikodym. Entonces:

o
9l =A (3.37)

De lo que se deduce que [62]:

P(4)=],4dPVAEF (3.38)

Es necesario realizar las derivaciones de filtro para los procesos de la cadena de
Markov, con el fin de considerar las expectativas condicionales que relacionan las
dos medidas equivalentes [66].

El teorema de Bayes condicional es fundamental en la obtencién de muchos resul-
tados importantes. Para las aplicaciones de filtrado que se analizan a continuacién,
se necesita una version modificada del teorema de Bayes, llamado teorema condicio-
nal de Bayes para procesos estocasticos [62].

Si se tiene:

A =E[A|F] (3.39)

Donde A es la derivada de Radon-Nikodym A := £. Entonces el proceso At es un
martingala.
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3.4.3.5. Cambio de medida para procesos de tiempo discreto

En el tiempo discreto, sea {X, }, k€ N una secuencia de variables aleatorias con fun-
ciones de densidad de probabilidad (pdf) positivas @, en (Q,F,P). Correspondiente a
esta secuencia, se tiene la filtracion {F,} generada por 6{X,,..., X }. Se define una
nueva medida de probabilidad P en (Q, U_>F,), de manera que {X } es independiente
e idénticamente distribuida (IID) con pdf positiva a.. Para alcanzar este objetivo, se

define ) .= 1, 2, =20 parq > 1y Ay =Tl A, [62)
@i(XD)
Considerando,

F W =0 (w) (3.40)

Las variables aleatorias A, k>0 son P-martingalas bajo F, y E[A,]=1. Ademas, de
acuerdo con P, {X,} es una secuencia de variables aleatorias IID con pdf a.[62].

3.4.3.6. Filtros recursivos y adaptativos

Los filtros adaptativos permiten que los coeficientes se ajusten a las situaciones ac-
tuales de la serie. Este ajuste se consigue con la ayuda de un algoritmo recursivo
dentro del filtro. En consecuencia, se crea un modelo de “autosintonizado”, el cual
se adapta a los cambios en los datos de la serie de tiempo. En un filtro recursivo, los
valores de salida del filtro anteriores se utilizan como entradas para los calculos.

Primero, se calculan los filtros recursivos para la expectativa condicional
E=E[Ax]JF/]. D,,, es una matriz diagonal cuyos elementos d, se definen
por [62].

o)

d =_Q——Zpaai=j 3.41
1= )00, (3-41)

0 para otro caso

Los elementos de la matriz diagonal D, ,, para el caso i=j son los elementos, com-
ponente a componente, del proceso A, definido por la derivada de Radon-Nikodym.

El filtro recursivo para Ek, de acuerdo con [62], es:

Ek+1=HDk+I E/e (342)

Con el fin de obtener estimadores recursivos Optimos para los parametros del mo-
delo, primero se analiza la cadena de Markov X, con la dinamica X, ,, = [1X +V, .
A continuacion, se consideran los siguientes procesos [62], [66]:
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Inicialmente, el niimero de saltos de una cadena de Markov, desde el estado r al
estado s en el tiempo % esta definida por:

I =3 (ks e xes) (3.43)

En segundo lugar, se tiene en cuenta el tiempo de ocupacion, el cual corresponde a
la longitud de tiempo x que lleva en el estado 7 hasta el instante k. Y esta dado por:

Of =3l 1(x,, &) (3.44)

También se necesita un proceso auxiliar para estimar los vectores w0,y y &y esto
tiene la forma:

T (@)= K 1(x,.1, e)8(y,) (3.45)

Donde g es una funcion, que es g(y)=y o g(y)=y2.

Para cualquier proceso H, F se escribe Hy:= E[Hi|F!]. La expectativa

y-adaptado
condicional de H, dado F} se denota por ng(Hy):= E [Akaley ] A continuacion,
se desarrollan relaciones recursivas para las expectativas condicionales de los proce-
sos definidos con anterioridad.

Aplicando el teorema de Bayes [62], se considera:

(sr)
jl((sr)_E[Jl(:r)lF ]_E[ ij\FLI; ] (3.46)

(ST) |F.'V

Aunque no se puede encontrar una expresion recursiva para £ [ ] se encuentra

una para el proceso vectorial E[,\k](")xk| £y ] nk(](") )

Las relaciones recursivas para Mk (] ,Esr)xk). Y)k(O,Er)xk) Y Mk (Tk(r)xk), tomadas de
[62], se presentan a continuacion.

Si D es la matriz diagonal definida anteriormente, entonces:

= P(or " 0n—f))
m ( l(sr) ) = HDl(yl)nl—l(]l(i?xl—l) e (al—l,er)(:.rq()—l(;l]l))ﬂsres (347)
P(or T
Ul(ol(r) ) 1D, (y)m- 1( e 1)+(~1 1er)(aa+(;l)f))ner (3.48)
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n,(Tl(r)(g)x,) = HDl(yl)r’l—l(Tl(Ii(g)xl—l) + (51—1,er)wi+(;;)fr))g()’t)ner (3.49)

3.4.3.7. Movimiento browniano

Este tipo de modelos se pueden expresar, segun [67], mediante la siguiente ecuacion
estocastica diferencial:

dx,=[0 -ax]dt +udW, (3.50)

W, es el movimiento browniano bajo una medida de probabilidad P, x, es un proceso
de Markov. Los parametros o, 0, y u, son funciones deterministas de tiempo z.

3.4.4.  Modelo de prondstico EMD-SVR

Como se presenta en la Figura 3.11, el modelo de pronéstico EMD-SVR utiliza, prin-
cipalmente, el algoritmo de la EMD para descomponer las series de datos {x,,...,X }
en un conjunto finito de funciones de modo intrinsecas (IMF); luego se realizan los
pronosticos de estas IMF con el modelo SVR para obtener el valor pronosticado
umf,(L+1); y por ultimo, el valor pronosticado 2(l + 1)se encuentra con la suma de los
resultados pronosticados con anterioridad [68].

Usando la EMD, las distintas caracteristicas de la informacion de los datos sin
procesar se pueden mostrar en diferentes escalas, por lo que este método permite
capturar mejor las fluctuaciones locales de los datos sin procesar; ademas, cada IMF
tiene caracteristicas de frecuencia similares, componentes de frecuencia mas simples
y una fuerte regularidad; por lo tanto, este modelo puede reducir la complejidad del
modelado SVR y mejorar la eficiencia y precision del pronéstico SVR [68].
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Entrada de la serie de datos
X o 0X,)

[  Descomposicion EMD |

A 4 A\ 4 A\ 4
imf, imf, r,

! ! !
Pronéstico Pronéstico Pronéstico
SVR SVR SVR
! ! !
mf (I + 1) imf(l+ 1) T+

X+ D) =Y imfy((F 1) +7, (+ 1)

i

Figura 3.11: Diagrama de flujo del modelo EMD-SVR [68].

El modelo de vector de soporte para regresion (SVR) es un método adecuado para
el pronostico de sefiales no estacionarias; a su vez, la descomposicion de modo em-
pirico (EMD) ha sido usada para el analisis de sefiales nolineales y no estacionarias.
Para sistemas cognitivos, en [68] se propone el uso de un nuevo algoritmo que com-
bina los métodos anteriores, llamado EMD-SVR, y que pronostica la sefial de un
sistema de monitorizacion de frecuencia de radar.

3.4.4.1. Descomposicion del modo empirico

El principio de la EMD es descomponer una sefial x(z) en una suma de funciones que
satisface dos condiciones [69]:

1. Elnamero de extremos y el numero de cruces por 0 (cero) debe ser igual o diferir
en mas de 1 (uno).

2. El valor medio de la envolvente definida por los maximos locales y los minimos
locales es 0 (cero) [69].
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Estas funciones se conocen como funciones de modo intrinsecas (IMF), y se denotan
imfi(t). Las IMF se obtienen utilizando el siguiente algoritmo [70]:

1. Inicializar: r(t)=x(t),i=1
2. Extraer el i-th IMF:
Inicializar: h (t)=r, (t),j=1
b.  Extraer los minimos y méaximos locales de h(t)

c. Interpolar los maximos locales y los minimos locales por un spline cubico
para formar envolventes superiores e inferiores de h, (t)

d. Calcular la media mj_l(t) de las envolventes superiores e inferiores
e. h(®=h_ (0-m_ ()

f.  Sial detenerse el criterio es satisfecho, establecer entonces
imﬁ(t)Ihj(t); sino, ir a (b) con j=j+1

r(t)=r, (t) - imfi(t)

4. Sir(t) todavia tiene al menos 2 extremos, entonces ir al paso 2 con i=i+1; de otra
forma, la descomposicion ha finalizado y 7,2) es el residuo.

Al final del algoritmo se obtiene:

x(t) =X, imf,(0) +r,(0) (3.51)

Donde 7 (2) es el residuo de la descomposicion, que puede ser la tendencia media o
una constante.

3.4.4.2. Vector de soporte para regresion

Se considera un conjunto de datos de entrenamiento {(xi;yi)}?l:h donde cada xi € R
denota un valor de entrada y tiene un valor objetivo correspondiente yi € R. El SVR gené-
rico construye una funcion lineal [71]:

Sx)=(w,&(x)) + b (3.52)

Donde ¢(-) es un mapeo no lineal de Rn a un mayor espacio dimensional llamado
“espacio de caracteristicas”. El vector de regresion w (w € R ) y el término de tenden-
cia b (b € R) dan las soluciones al siguiente problema de optimizacioén convexa [72]:

N
min, . - L=C Y, (§+E) +3 IwP (3.53)

Vi—w, @(x;)) —b<e+¢
w,ex)+b—y; <e+§ (3.53A)
§i,§i =0
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Donde el parametro ¢ ajusta el tamafo del error de aproximacion de la regresion para
controlar el numero del vector de soporte y la capacidad de generalizacion. Cuanto mas
grande es el valor de g, la precision es mas baja. La presencia de errores en el conjunto de
datos se mide por otros parametros internos & y &1* llamados “variables de holgura”, que
caracterizan la desviacion de muestras de entrenamiento fuera del e-margen [72].

El término C en la Ecuacién (3.53) es una constante que determina sanciones
a los errores de estimacion. Un término C considerable asigna grandes sanciones a
los errores, de forma que la regresion es entrenada para minimizar el error con una
menor generalizacién; mientras que un término C pequefio asigna un menor nimero
de sanciones a los errores [73]. En el estandar SVR, los valores de € y C se deben
especificar de antemano.

El problema de optimizacion anterior se puede resolver de manera mas facil con
esta doble formulacion [73]:

maxg,q; L= =33 (a; — a)(a] — ap) (), ¢(x)) - Ea(@i(vi— &) —a(vi+e)  (3.54)

Teniendo en cuenta que:
YN (a;—a) =0,a;a; €[0,C] (3.55)

Donde las variables a.y a." se determinan mediante técnicas de programacion cuadra-
tica. Entonces, la solucion del vector w y la funcion de regresién SVR se obtienen de
las siguientes expresiones [73]:

w =3, (a; — a))P(x;) (3.56)
) =X, (a; — a)){(P(x), 2(x)) + b (3.57)

Enla Ecuacion (3.57), el producto escalar en el espacio caracteristico «p(x,),p(x)> pue-
de ser remplazado por una funcion kernel k(x,,x). Las funciones kernel permiten que
el producto punto se realice en el espacio caracteristico de alta dimension, usando
datos de entrada del espacio, de bajas dimensiones, sin conocer la transformacion ¢
[73]. La funcion kernel mas utilizada es la funcién de base radial (RBF) gaussiana
con un ancho o [73]:

k(x,x;) = exp {— M} (3.58)

o2
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3.4.5. Modelo neuronal wavelet

Para sistemas cognitivos, en [74] se usa una red neuronal de propagacion hacia atras
para predecir el estado del espectro, y en [75], [76] se optimiza la red neuronal con
un algoritmo genético. De igual manera, en [77] se utiliza una red neuronal para
pronosticar la potencia en las bandas de television y GSM900. Finalmente, en [78] se
modela y pronostica el espectro utilizando las wavelets de Daubechies.

Lo anterior demuestra el caracter promisorio de las redes neuronales y de las wa-
velets en el pronostico de la potencia recibida en canales inalambricos. Por tanto, en
esta tesis se propone el uso de una teoria que combina las disciplinas wavelets y redes
neuronales [79] para pronosticar la potencia recibida en canales GSM. En seguida,
se detallan los métodos que componen el modelo neuronal wavelet.

3.4.5.1. Wavelet

Las wavelets son una clase de funciones usadas para localizar una determinada fun-
cién tanto en la posicién como en la escala. Las wavelets son la base de la transforma-
da wavelet que “divide los datos de las funciones u operadores en diferentes compo-
nentes de frecuencia, y entonces estudia cada componente con una resolucion igual
ala de su escala” [79], [80].

Una wavelet es una funcion de “pequeia sefal”, usualmente denotada y(:). Una
pequena sefial crece y decae en un periodo de tiempo finito, en oposiciéon a una “gran
sefial”, tal y como la sefial seno, la cual crece y decae en varias ocasiones durante un
periodo de tiempo infinito. Por lo general, la funcién y(-) es considerada como la
wavelet madre. Una familia de wavelets puede ser creada por traslacion y expansion de
esta wavelet madre [81].

La transformada wavelet discreta (DWT) usa wavelets madre como las de Haar,
Daubechies, Coefiman, entre otras. Con la DWT se analiza una sefial en diferentes
bandas de frecuencia, con diferentes resoluciones, para descomponer la sefial en
alta escala (componentes de baja frecuencia, llamados coeficientes aproximados) y
baja escala (componentes de alta frecuencia, llamados coeficientes detallados). Por
tanto, la transformada wavelet es una implementacion de un banco de filtros que
descompone una sefal en multiples sefiales [82]. Los coeficientes wavelet se pueden
expresar como [83]:

Woljo k] = \,%an [n]Pjox[n] (3.59)
Wyl k] = 2= % f 019 ln] j = jo (3.60)

Donde fJn] es la proyeccién de la muestra en el dominio del tiempo, 9,68 la funcion
de escala y vy, es la funcion de traslacion; estas son funciones dlscretas definidas
entre [0,M-1], para el total de M puntos. Los coeficientes de la Ecuacion (3.59) son
los coeficientes de aproximacién, mientras que los de la Ecuacion (3.60) son los
coeficientes detallados.
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3.4.5.2. Red neuronal

Una red neuronal artificial (ANN) es una red, distribuida en paralelo, de unidades de
procesamiento conectadas llamadas neuronas. Esta motivada por el proceso cognitivo
humano: el cerebro humano es muy complejo, no lineal y paralelo. La red tiene una
serie de entradas y salidas externas que toman o suministran informacion al entorno
circundante. Las conexiones interneuronas se llaman sinapsis, y tienen asociados
pesos sinapticos. Estos pesos se utilizan para almacenar el conocimiento que se
adquiere desde el entorno. El aprendizaje se logra ajustando estos pesos de acuerdo
con un algoritmo de aprendizaje. Para las neuronas también es posible evolucionar
mediante la modificacion de su propia topologia; esta evolucion esta motivada por
el hecho de que las neuronas en el cerebro humano pueden morir y pueden crecer
nuevas sinapsis [81].

Porlo general, se necesita un nimero de entradas/destino para entrenar una red. Una
neurona recibe la informacién numérica a través de un nimero de nodos de entrada,
la procesa internamente y se obtiene una respuesta. Es usual que el procesamiento se
realice en dos etapas: primero, los valores de entrada se combinan linealmente; y luego, el
resultado se utiliza como argumento de una funcién de activacion no lineal. La combina-
cién utiliza los pesos atribuidos a cada conexién y un término constante. La Figura 3.12
muestra uno de los esquemas mas utilizados para representar una neurona [84].

Figura 3.12: Modelo de una neurona [84].

La salida de la neurona de la Figura 3.12 esta dada por:
y=fICLiwix; —60)],i=123..n (3.61)

Donde x7es la entrada a la neurona, wi es el peso, O es el offset y fes la funcidon de activacion.
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3.4.5.3. Redes multicapa de alimentacion hacia adelante

Las redes neuronales de alimentacidon hacia adelante contienen una o mas capas
ocultas, cuyos nodos de computo son llamados neuronas ocultas. Las neuronas ocultas
intervienen entre las capas de entrada y las de salida, lo que le permite a la red extraer
estadisticas de orden superior. Normalmente, en cada capa de la red, las neuronas
tienen como entradas Unicamente las sefiales de salida de las neuronas de la capa an-
terior. La Figura 3.13 muestra un ejemplo con una capa oculta. Esto se refiere a una
red 3-3-2, compuesta por 3 nodos de origen, 3 neuronas ocultas (en la primera capa
oculta) y 2 neuronas de salida [81].

Capa oculta
Capa de entrada de  de neuronas
los nodos de origen

Capa de salida
de neuronas

Figura 3.13: Red neuronal multicapa de alimentacion hacia adelante [81].

El modelo neuronal de esta investigacion hace uso de una red neuronal multicapa de
propagacién hacia atras, cuyo error en la salida se propaga hacia atras, para ajustar
los pesos que conllevan a minimizar el error. Las redes de propagacion hacia atras
aprenden con el método de gradiente descendente, el cual define como se realiza el
entrenamiento para los nodos de salida en una red multicapa [85].

3.4.5.4. Red neuronal wavelet

Las redes neuronales wavelet combinan la teoria de wavelets y redes neuronales. Para
el modelo propuesto en la presente investigacion, se lleva a cabo por separado el
procesamiento wavelet y de redes neuronales. La sefial de entrada primero se des-
compone usando una wavelet madre; luego, los coeficientes se envian a la entrada de
la red neuronal multicapa de propagacion hacia atras; finalmente, la salida de la red
neuronal es reconstruida usando el analisis wavelet para obtener el pronostico de la
potencia de los canales GSM.
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4. Resultados y analisis
de los resultados

Inicialmente, se hizo un analisis estadistico de las tendencias de ocupacién espectral
con base en mediciones de ocupacion espectral realizadas en redes moviles para un
entorno urbano. Luego se efectud la validacion de los modelos de series de tiempo a
través de la confrontacion, en un tiempo, de las medidas de potencia de recepciéon de
los canales de ocupacion baja, media y alta; lo mismo que del resultado pronosticado
por los modelos de series de tiempo.

La evaluaciéon de los resultados obtenidos en los pronosticos de los siguientes
modelos se hizo con el software Matlab®, en un computador de dos nucleos de
procesamiento de 2.4 GHz y 4 GB de memoria RAM, y con base en las siguien-
tes variables: tiempo de disponibilidad del canal; tiempo de ocupacién del canal; y
tiempo de observacion y andlisis de los criterios de error (error porcentual absoluto
medio simétrico [SMAPE]; error porcentual absoluto medio [MAPE] y error abso-
luto medio [MAE]) [86]. El tiempo de disponibilidad permitié analizar la precision
en el pronostico, con lo que los usuarios de CR podrian usar el tiempo disponible (o
hueco espectral) en los canales GSM, en un sistema de CR. Asimismo, el tiempo de
ocupacion examind la precisidn en el pronostico del tiempo en el que los PU utilizan
los canales GSM.

4.1. Analisis estadistico de las tendencias de ocupacion espectral
con base en mediciones de ocupacion espectral

La Figura 4.1 muestra una estimacion global del ciclo de trabajo desde 54 MHz hasta
6 GHz. Para cada frecuencia medida, el ciclo de trabajo se calcula como el cociente
entre el nimero de muestras de la densidad espectral de potencia (DEP) correspon-
dientes a canales ocupados (tiempo en el que los canales son usados por sus usuarios)
y el numero total de muestras de la DEP capturadas durante el periodo de medida.
Para cada frecuencia, esta métrica representa la fraccion de tiempo durante la cual
el canal permanece ocupado. Para una determinada banda, el ciclo de trabajo pro-
medio se calcula como la media aritmética de los ciclos de trabajo obtenidos para las
diversas frecuencias medidas dentro de dicha banda [9], [33]. En la Figura 4.1A, se
hace evidente que el espectro esta siendo subutilizado.

63 1EC



Luis Fernando Pedraza Martinez, César Augusto Hernandez Suérez, Lizet Camila Salgado Franco

Medicién del ciclo de trabajo desde 54MHz a 6GHz
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Figura 4.1: Ciclo de trabajo del rango completo de espectro
medido durante la Campafia [33].

La Figura 4.1A resume las estadisticas de ocupacion promedio de espectro en fun-
cion de los servicios de cada banda, utilizando los equipos de medida. Los resultados
obtenidos muestran que algunas bandas de espectro estan sujetas a moderados nive-
les de utilizacion (espectro que es usado; pero no durante todo el tiempo); mientras
que algunas otras exhiben escasa utilizacion y, en algunos casos, practicamente no
se usan [11], [35].
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Figura 4.1A: Porcentaje del ciclo de trabajo de acuerdo a los servicios ofrecidos
en las bandas medidas [33].
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4.2. Analisis y validacion del modelo SARIMA

En la Figura 4.2, se presenta la tendencia y estacionalidad en el nivel de ocupacion
de los tres canales; la estacionalidad tiene un periodo de 24 horas, practicamente sin
tendencia y con componentes estacionarios, lo cual hace viable el uso de un modelo
SARIMA para pronosticar el comportamiento del sistema GSM [33].

La diferencia del retardo s, que para este caso se selecciona como cinco (A5),
equivale al namero de dias de la semana en los que la sefal es estacionaria [42]. Al
aplicar la prueba aumentada de Dickey—Fuller [87] en las series de los tres canales
entre los dias lunes y viernes, se rechaza la hipdtesis nula de la raiz unitaria, lo que
indica que existe estacionariedad. Con el fin de encontrar los parametros del modelo
SARIMA (p,d,q)(P, D, Q)s, se calcula la autocorrelacion simple y parcial para A5 de
los respectivos canales, como se muestra en la Figura 4.2A.

Canal bajo Canal bajo
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-100 . k| .
24 48 T2 96 120 0 24 48 72 96 120
Tiempo(h) g Tiempo(h)
®© Canal medio - Canal medio
2 50 S
(] c
ge! 9
& -100 ‘ : ‘ , ; = ; : : :
— 0 24 48 72 96 120 % 0 24 48 72 96 120
Tiempo(h) Ll Tiempo(h)
Canal alto Canal alto
-50
-100 . . . . ] f A i :
0 24 48 72 96 120 0 24 48 72 96 120
Tiempo(h) Tiempo(h)
Figura 4.2: Componentes de tendencia y estacionalidad de los canales GSM [33].
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Figura 4.2A: Autocorrelacion simple y parcial para los canales GSM [33].
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Usando la metodologia de Box—Jenkins [44], la Figura 4.2A muestra que la autoco-
rrelacion parcial de AS decae a 0 (cero) con un patron estacional y cruza el nivel de
confianza, inicialmente, en el retraso 5 para el lado negativo; esto sugiere que podria
usarse un término AR(1) no estacional y que se podria adicionar MA(5) estacional.

A fin de evitar el sobreestimado para pronosticar (varianza pequeia y grandes
errores), se selecciona el criterio de informacién de Akaike (AIC) [88], con el que
se evaltian las diferentes combinaciones razonables, como se observa en la Tabla
4.1. De esta manera, los modelos seleccionados son SARIMA(1,0,5)x(1,0,1)5,
SARIMAC(1,0,5)x(0,0,1)5 y SARIMA(1,0,5)x(0,0,1)5, para los niveles de ocupacion
de los canales bajo, medio y alto, respectivamente; y las ecuaciones que los describen
en el mismo orden son:

(1-0.0135B)(1-0.55B%) (1-B)(1-B%)x =(1-0.997B%)(1-0.546B%)¢, (4.1)
(1-0.0192B)(1+0.996B%)(1-B)(1-B%)x, "=(1+0.0085B%)¢, (4.2)
(1-0.0199B)(1-0.016B%)(1-B)"(1-B)x =(1-0.994B%)¢, (4.3)

Tabla 4.1: Valores AIC para diferentes modelos.

<
< o <
o o & =
S8 S & UE 8
p | dfa | P | D} Q g S 28T
O Q0 O s
— — < [
< 8 < & B
o 8 o
o
1 0 5 0 0 1 -8.24 -30.6 -50.82
1 0 5 1 0 0 -8.3 -32.7 -51.7
1 1 5 0 0 1 -14.1 -46.9 -76.2
1 0 5 1 0 1 -8.19 -32.6 -50.9

La Figura 4.3 muestra la validacion de los pronosticos de los modelos obtenidos a
partir de las Ecuaciones (4.1), (4.2) y (4.3), en contraste con los datos medidos para
las potencias del dia viernes desde las 5p. m. hasta las 6 p. m.
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Figura 4.3: Series de los canales GSM vy series pronosticadas
para el modelo SARIMA.

En las Figuras 4.4 y 4.5, se presentan los tiempos de disponibilidad y ocupacion de los
canales medidos y los pronosticados. Las precisiones promedio obtenidas en el pro-
nostico de los tiempos disponibles son: 82 %, 54% y 60 %, y para los tiempos de ocu-
pacion equivalen a: 58%, 77% y 78 %, entre los datos reales y pronosticados corres-
pondientes a los canales de niveles de ocupacién baja, media y alta, respectivamente.
Ademas, como es de esperarse, existe una relacion inversamente proporcional entre
la ocupacion de canal y su tiempo de disponibilidad, y una relacion directamente pro-
porcional entre la probabilidad de ocupacion y el tiempo de ocupacion de los canales.
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Figura 4.4: Tiempo de disponibilidad de los canales para el modelo SARIMA.
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Figura 4.5: Tiempo de ocupacion de los canales para el modelo SARIMA.

En la Tabla 4.2, se comparan los datos pronosticados y los medidos con respecto a
diferentes métodos para estimar el error. De los resultados de la Tabla 4.2 se puede
observar que el modelo de canal de ocupacion baja presenta mejor comportamiento
frente al error que los modelos de los canales de ocupacion media y alta.

Tabla 4.2: Comparacion de variables de error para el modelo SARIMA.

Canal SMAPE MAPE MAE
Bajo -0.0170 0.0172 1.6042
Medio -0.0470 0.0466 4.2987
Alto -0.0488 0.0497 4.4195

En la Figura 4.6, se muestra la comparacion del rendimiento en el prondstico, des-
de uno hasta cinco dias de entrenamiento del modelo SARIMA. Aqui se observa
que mientras mayor es el tiempo de observacion, menor es el error de prediccion;
aunque no de una manera significativa. Por ejemplo, para el canal bajo, se logra
una reduccién del error del 2.5%, a costa de un aumento del 261 % en el tiempo de
observacion; para el canal medio, el error disminuye 7.8 %, con un incremento en el
tiempo de observacion de 158.6%; y para el canal alto, el error se mitiga un 7.8 %,
con un crecimiento del 177.1% para el tiempo de observacion. El primer tiempo de
observacion en los tres canales corresponde a un dia de entrenamiento, lo que indica
que, con este tiempo de entrenamiento, se alcanzan errores de prediccidén aceptables.
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Figura 4.6: Error de prediccion vs. tiempo de observacion para el modelo SARIMA.

4.3. Analisis y validacion del modelo GARCH

Al analizar en detalle la gran cantidad de informacion adquirida, se observa la exis-
tencia de una desviacidén estandar; por tanto, se utiliza el modelo GARCH con el
objeto de pronosticar el comportamiento de la serie medida.

Los modelos estocasticos ARIMA y SARIMA son métodos de modelamiento
univariante. La principal diferencia de los anteriores modelos con el modelo GARCH
es con respecto al supuesto de varianza constante.

Aunque para el modelo desarrollado se indica que existe estacionariedad en la
sefial original desde el dia lunes hasta el dia viernes, para este caso se desarrolla la
quinta diferencia, porque existe un mayor grado de estacionariedad. En la Figura 4.7,
se presenta la diferencia para cada canal; aca se convierten las medidas del canal a
retornos por transformacion logaritmica. Los retornos logaritmicos se definen como:

Py

x; = In (4.4)

P4

Donde P es el valor de la potencia en el tiempo ¢y P, es el valor de la potencia en el
tiempo #-1.
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Quinta diferencia de la medicién del canal bajo
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Figura 4.7: Quinta diferencia de las potencias medidas en los canales de la banda GSM.

A continuacidn, se presenta la prueba estadistica formal para establecer la presencia
de efectos ARCH en los datos y en la correlaciéon. H=0 implica que no existe una
correlacion significativa y H=1 indica que existe una correlacion significativa. En las
Tablas 4.3 y 4.4, todos los valores de p muestran que la Prueba-Q Ljung-Box-Pierce
y la prueba de ARCH en los retrasos 10, 15 y 20 son significativas; esto indica la

presencia de efectos ARCH.

(en 95% de confianza) para canales GSM.

Tabla 4.3: Prueba-Q Ljung-Box-Pierce de autocorrelaciéon:

Prueba estadistica

Retraso Valor de p Vfll.or
critico

canal canal canal

bajo medio alto
10 0 725124 731923 731240 18.3
15 0 725136 731956 731266 24.99
20 0 725138 731996 731313 31.41
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Tabla 4.4: Prueba de ARCH Engle de heterocedasticidad:
(en 95% de confianza) para canales GSM.

Prueba estadistica
Retraso H Valor de p V’atl_or
canal canal medio canal Critico
bajo alto
10 1 0 574940 578554 576595 18.3
15 1 0 578008 581225 579079 24.99
20 1 0 578710 581829 579500 31.41

La dependencia en los datos x1,..., xn se determind mediante el calculo de las corre-
laciones. Esto se hace representando la ACF.

Si la serie de tiempo es el resultado de un fendmeno completamente aleatorio,
la autocorrelacion debe estar cerca de 0 (cero) para todas las separaciones de los
retrasos. De lo contrario, una o mas de las autocorrelaciones seran significativamente
diferentes de 0 (cero). Otra forma util para examinar las dependencias de la serie es
examinar la PACF, donde se elimina la dependencia de los elementos intermedios
(aquellos dentro de los retrasos). En la Figura 4.8, las graficas de ACF y PACF de los
retornos al cuadrado demuestran la existencia de correlaciéon en los datos de ocupa-
cion de los canales.
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Figura 4.8: Graficas de correlacion de los canales de la banda GSM.
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A continuacion, en las Tablas 4.5, 4.6 y 4.7, se procede a la evaluacion y seleccion del
modelo GARCH para cada canal.

Tabla 4.5: Comparacién de modelos GARCH para el canal bajo.

Error Logaritmo
Modelo | AIC BIC | _iidar de SMAPE | MAPE | MAE
a verosimilitud
Gﬁ)RSH 201838 | 201873 | 7.8¢10-4 | 961275 | —0.0249 | 0.0253 | 2.3606
GﬁRgH 192263 | 192309 | 7.82x104 |  96127.5 | -0.0249 | 0.0253 | 2.3604
Clon) | 192622 | 192649 | 7.8x10-4 | 961275 | -0.0248 | 0.0252 | 2.3492
GﬁRgH 192265 | 192299 | 00016 | 961275 | -0.0244 | 0.0248 | 2.3075
Gf(*zRgH 191587 | 191621 | 7.33x10-4 | 961275 | -0.0251 | 0.0255 | 2.3792
G/(*ZRZ(;H 191581 | 191622 | 0.0034 | 961275 | —0.0243 | 0.0247 | 2.3060
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Tabla 4.6: Comparacion de modelos GARCH para el canal medio.

Error Logaritmo
Modelo | AIC | BIC | Fror e SMAPE | MAPE | MAE
verosimilitud
Gf(*ORSH 876834 | 876854 | 7.6x10-4 | 422041 0.0374 | 0.0393 | 3.4198
Gﬁlﬁ():H 844089 | 844117 | 6.6x10-4 | 422041 0.0427 | 0.0440 | 3.8676
G/(*ORZSH 844984 | 845012 | 6.6x10-4 | 422041 0.0375 | 0.0395 | 3.4385
G‘aRZ()zH 844091 | 844125 | 0.0012 422041 ~0.0411 | 0.0429 | 3.7699
G’(*ZRIC):H 843470 | 843504 | 6.0x10-4 | 422041 0.0410 | 0.0427 | 3.7531
G‘éRz()zH 843472 | 843513 | 5.0x10-4 | 422041 00434 | 0.0452 | 3.9895
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Tabla 4.7: Comparacion de modelos GARCH para el canal alto.

G‘&ﬁ‘fH 1223114 | 1223135 | 7.8x10-4 | 608609 | —0.0514 | 0.0542 | 4.6565
G‘E‘fSH 1217225 | 1217252 | 6.6x10-4 | 608609 | —0.0551 | 0.0580 | 5.0138
G‘?B%H 1220306 | 1220333 | 6.7x10-4 | 608609 | —0.0534 | 0.0557 | 4.7957
GﬁRZC):H 1217227 | 1217261 | 5.3x10-4 | 608609 | —0.0566 | 0.0591 | 5.1279
G‘é{‘SH 1214308 | 1214343 | 6.5x10-4 | 608609 | —0.0540 | 0.0570 | 4.9224
G‘éf{ZC)H 1214310 | 1214352 | 5.4x10-4 | 608609 | —0.0620 | 0.0675 | 5.9397
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La seleccion del modelo GARCH para cada canal se realiza dandole cumplimiento
al criterio o,+B,<1 para que el modelo sea estacionario y, adicionalmente, teniendo
en cuenta los valores mas cercanos a 0 (cero) de MAE, MAPE y SMAPE de las
Tablas 4.5, 4.6 y 4.7. Por tanto, los modelos seleccionados para el canal bajo, medio
y alto son GARCH(2,2), GARCH(0,2) y GARCH(0,1), respectivamente.

EnlaTabla4.8, se estiman los parametros para el modelo de canal bajo, GARCH(2,2),
en el que se cumple o, +o,+f +p,<1.

Tabla 4.8: Estimacion de los parametros para el modelo de canal bajo.

Parametro Valor estimado Error estandar Valor ¢
u -96.112 0.0019308 —-49778.3308
a0 0.003516 0.00041447 8.4833
GARCH(1) 0.098255 0.19212 0.5114
GARCH(2) 0.90062 0.19201 4.6905
ARCH(1) 0.00029573 0.00018772 1.5753
ARCH(2) 0 0.00020886 0
Por tanto, el modelo segtin la Tabla 4.8 es:
X, =-96.112 + ¢ 4.5)
Jf: 0.003516 + 0.098255051 + 0.90062at_22+ 0.00029573 et_zl (4.5A)

Para el canal medio, GARCH(0,2), se estiman los valores del modelo presentados en

la Tabla 4.9.
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Tabla 4.9: Estimacion de los parametros para el modelo de canal medio.

Parametro Valor estimado Error estandar Valor t
u —-95.061 0.0024331 —-39069.8019
a0 5 0.012924 386.8834
ARCH(1) 0.085692 0.0010392 82.4572
ARCH(2) 0.088298 0.0010582 83.4378
Por tanto, se tiene:
x=-95.061+¢ ; ©’=5+0.085692 ¢’ +0.088298¢2, (4.6)

Para el canal alto, GARCH(0,1), se obtienen los siguientes parametros, mostrados
en la Tabla 4.10.

Tabla 4.10: Estimacion de los parametros para el modelo de canal alto.

Parametro Valor estimado Error estandar Valor t
n -94.585 0.0026236 -36051.8702
a0 5 0.015341 325.9324
ARCH(1) 0.86058 0.0044771 192.2169
Entonces, el modelo es:
x=-94.585+¢,; 0’=15+0.86058 af_l 4.7

El analisis del modelo ARCH-GARCH se basa en la evaluacion de los residuos es-
tandarizados [55]. Uno de los supuestos del modelo GARCH es que, para un buen
modelo, los residuos deben seguir un proceso de ruido blanco, es decir, se espera que
los residuos sean aleatorios, independientes e idénticamente distribuidos, siguiendo
una distribucién normal. La Figura 4.9 presenta la relacion entre las innovaciones
(residuales) derivadas del modelo ajustado, las correspondientes desviaciones estan-
dar condicionales y los retornos. En esta figura se observa que tanto las innovaciones
como los retornos exhiben variaciones.
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Figura 4.9: Innovaciones, desviaciones estandar condicionales
y retornos de los canales GSM.

La Figura 4.10 corresponde a la autocorrelacion de las innovaciones estandarizadas
al cuadrado, en la que no se observa correlacion.

Autocorrelacion del canal bajo de las innovaciones estandarizadas al cuadrado
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Figura 4.10: Autocorrelacion de las innovaciones
estandarizadas al cuadrado de los canales GSM.

En las Tablas 4.11 y 4.12, se presentan los resultados de la prueba-Q Ljung-Box-
Pierce y la prueba de ARCH para el analisis posterior, usando innovaciones estan-
darizadas. Estas pruebas indican que no existe presencia de correlacion ni de efectos
ARCH.
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Tabla 4.11: Prueba-Q Ljung-Box-Pierce en innovaciones estandarizadas
para canales GSM.

10 0 0.424 0.402 0.701 25787 26701 33455 18.3

15 0 0.7014 0.6883 0.8236 26447 28617 37143 24.99

20| O 0.947 0.876 0.9355 26945 30313 40772 31.41

Tabla 4.12: Prueba de ARCH Engle en innovaciones estandarizadas
para canales GSM.

10 0 0.539 0.479 0.6212 26930 27093 33757 18.3

15 0 0.776 0.7144 0.7697 27432 28443 36248 24.99

20 0 0.908 0.863 0.8841 27792 29443 38240 31.41

La comprobacion de la normalidad se realiza mediante el analisis del histograma de
los residuos y del grafico de probabilidad normal, como se observa en la Figura 4.11.
El histograma de los tres canales muestra que los residuos siguen una distribucion
normal. Asimismo, en el grafico de probabilidad se observa que la normalidad de los
residuos es una distribucion normal, ya que la mayor parte de los datos se encuentra
a lo largo de la linea recta.
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Figura 4.11: Histograma de residuos y de probabilidad normal para los canales GSM.

La Figura 4.12 presenta la validacion de los pronosticos de los modelos obtenidos
para el dia viernes, desde las 5p.m. hasta las 6 p. m., a partir de las Ecuaciones (4.5),
(4.6) y (4.7); 1o que es contrastado con los datos medidos.
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Figura 4.12: Series de los canales GSM vy series pronosticadas con el modelo GARCH.

En las Figuras 4.13 y 4.14, se presentan los tiempos de disponibilidad y ocupacion
de los canales medidos y los pronosticados. Las precisiones promedio obtenidas en
el pronostico de los tiempos de ocupacion son: 44%, 46.6% y 44.2%, y para los
tiempos de disponibilidad equivalen a: 31%, 30% y 43 %; entre los datos reales y
pronosticados correspondientes a los canales de niveles de ocupacién baja, media y
alta, respectivamente.
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Figura 4.13: Tiempo de ocupacion de los canales para el modelo GARCH.
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Figura 4.14: Tiempo de disponibilidad de los canales para el modelo GARCH.

En la Figura 4.15, se muestra la comparacion del rendimiento en el pronéstico, desde
uno hasta cinco dias de entrenamiento del modelo GARCH. Aqui se observa que,
para el canal bajo, el error de prediccidon permanece practicamente constante para los
diferentes tiempos de observacion; para el canal medio, se alcanza a reducir el error
maximo en un 5.7 % a costa de un aumento en el tiempo de observacion del 72.7 %j;
y para el canal alto, la reduccién maxima del error es del 15.3 %, con un incremento
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en el tiempo de observacion del 128.5%. Al igual que con el modelo SARIMA, basta
con un dia de entrenamiento del modelo GARCH para lograr errores de prediccion
tolerables en los tres canales GSM.
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Figura 4.15: Error de prediccion vs. tiempo de observacion para el modelo GARCH.

4.4. Analisis y validacion del modelo oculto de MARKOV

El disefo del algoritmo HMM utilizado para pronosticar la potencia recibida en los
canales GSM se basa en el diagrama de flujo propuesto en la Figura 4.16. Dado que
las estimaciones de los parametros se calculan a través del algoritmo EM (expectativa
de maximizacion), entonces se escogen los valores iniciales para la implementacion.
Estos valores deben ser razonables para que el algoritmo obtenga los maximos lo-
cales. Los valores iniciales para el algoritmo se encuentran mediante el empleo de
un método de minimos cuadrados en los primeros puntos de los datos. Las estima-
ciones de los parametros resultantes se usan como aproximaciones para los valores
iniciales de los parametros ; estos son: a= 1.53, y=-96.3192 y £ = 3.2551; a. = 0.09,
v =-81.8678 y £ = 6.7551; -0. = 0.05, y = 94.8265 y § = 8.7551, para los canales de
ocupacion baja, media y alta, respectivamente. Los - valores iniciales para la matriz
de probabilidad de transicion [] se establecen en 7/N, donde N indica el numero de
estados, como se define en la implementacion.
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Figura 4.16: Diagrama de flujo de modelo oculto de Markov.
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El valor de la potencia de recepcion que se va a predecir se calcula por:

E[yk+1|Fe] = Ela(a)yi + v (xx) + E)dWipa| Fil = (a, R )yi + (v, [1R) (4.8)

Donde 55k = E[xlek]

La Figura 4.17 muestra la serie de tiempo de los valores medidos y valida los re-
sultados pronosticados para una hora (viernes de 5p.m. a 6 p. m.), generados por un
modelo de 3 estados. El numero de estados se seleccion6 a partir del menor AIC; para
este caso, es el de 3 estados, comparado con respecto a los valores de 2 y 4 estados.

Enla Figura 4.18, se presenta la evolucion de los parametros a, v, & y la probabili-
dad de transicion después de 1440, 1654 y 1879 pasos, para los canales de ocupacién
baja, media y alta, respectivamente.
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Figura 4.17: Series de tiempo medidas y pronosticadas para los canales GSM
con el modelo de Markov.
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Las Figuras 4.19 y 4.20 presentan los tiempos de disponibilidad y ocupacion de los
canales medidos y los pronosticados para los modelos de Markov. Las precisiones
promedio obtenidas en el pronodstico de los tiempos de disponibilidad son: 31 %, 41 %
y 32%, y para los tiempos de ocupacién equivalen a: 79%, 46% y 60%, entre los
datos reales y pronosticados correspondientes a los canales de niveles de ocupacién
baja, media y alta, respectivamente.
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Figura 4.19: Tiempo de disponibilidad de canales para el modelo de Markov.
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Figura 4.20: Tiempo de ocupacion de canales para el modelo de Markov.
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En la Tabla 4.13, se presentan los errores entre los datos reales y los pronosticados
para los modelos de Markov. El modelo de canal de ocupacién media presenta erro-
res menores que los modelos de los canales de ocupacion baja y alta.

Tabla 4.13: Comparacion de variables de error para canales GSM
con base en el modelo de Markov.

Canal SMAPE MAPE MAE
Bajo -0.0231 0.0227 2.1336
Medio -0.02 0.0189 1.6016
Alto -0.1201 0.1117 4.3067

En la Figura 4.21, se evalua el rendimiento frente al prondstico, desde uno hasta
cinco dias de entrenamiento del modelo de Markov. Para el canal medio, el error de
prediccion tiene muy poca variacion para los diferentes tiempos de observacion; para
el canal bajo, se alcanza a reducir el error maximo en un 16.6%, a costa de un au-
mento en el tiempo de observacion del 349 %; y para el canal alto, la reduccién maxi-
ma del error es del 27 %, con un incremento en el tiempo de observacion del 391 %.
Para el canal medio, se recomienda usar un dia de entrenamiento; para el canal bajo,
es suficiente con el uso de dos dias de entrenamiento, y para el canal alto, se sugiere
emplear cinco dias de entrenamiento; ello, con el fin de obtener errores aceptables.
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Figura 4.21: Error de prediccion vs. tiempo de observacion
para el modelo de Markov.



Modelo de prediccion de la ocupacion espectral para el analisis y disefio de redes de radio cognitiva

4.5. Analisis y validacion del modelo EMD-SVR

El modelo EMD-SVR presenta un mayor consumo en tiempo de procesamiento que
los otros modelos presentados, 1o que conduce a que los recursos de la maquina
con la que se realizd la simulacion sean insuficientes para un entrenamiento con
el total de los datos de entrada (lunes a viernes); por tanto, este modelo se entrena
con 152000 datos, lo que corresponde a un dia de mediciones, aproximadamente;
ademas, se pronostican los siguientes 6351 valores que equivalen a la hora de 5p. m.
a 6p.m. del dia viernes; luego se validan los resultados. El procedimiento para el
desarrollo del modelo EMD-SVR presentado en la Figura 4.22 se puede resumir en
los siguientes pasos:

1. Se ejecuta el algoritmo EMD. En este paso se obtienen 10 datos de la serie de
tiempo (9 IMF y 1 residuo), como se muestra en las Figuras 4.22, 4.23 y 4.24.
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Figura 4.22: Resultados de los datos EMD para el canal de ocupacién baja.
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Figura 4.23: Resultados de los datos EMD para el canal de ocupacion media.
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Figura 4.24: Resultados de los datos EMD para el canal de ocupacién alta.

2. Serealiza el procesamiento normalizado de las series de datos de cada ramifica-
cion con el fin de mejorar la precision del modelado.

3. Sedividen los datos en dos grupos. Los primeros 152.000 datos se utilizan como
conjunto de datos de entrenamiento y los tltimos 6350 datos son el conjunto de
datos de prueba.

4. Se crea el modelo SVR para cada serie de la ramificacién, con base en el con-
junto de datos de entrenamiento; en seguida, se reconstruyen y pronostican los
datos correspondientes a 1 hora, tal y como se presenta en la Figura 4.25.

Medicién de ocupacién de canal bajo

Real T T T T
-50]{ ——EMD-SVR
-100
0 10 20 30 40 50 60
Tiempo (min)
Medicién de ocupacion de canal medio
-50 Real | T T T T

EMD-SVR '
ATy OmpmRmAE
000 10 20 30 40 50 60
Tiempo (min)
Medicion de ocupacion de canal alto

Real T T T T T
-50| ——EmD-sVR | H

i

100 ERp it o =
10 20 30 40 50 60
Tiempo (min)

Potencia (dBm) Potencia (dBm) Potencia (dBm)

Figura 4.25: Series de tiempo medidas y pronosticadas de los canales GSM
para el modelo EMD-SVR.
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Los tiempos de disponibilidad y ocupacion de los canales medidos y pronosticados a
través del modelo EMD-SVR se presentan en las Figuras 4.26 y 4.27. Las precisiones
promedio obtenidas en el prondstico de los tiempos de ocupacion son: 81%, 80% y
62 %, y para los tiempos de disponibilidad equivalen a: 30%, 42 % y 44 %, entre los
datos reales y pronosticados correspondientes a los canales de niveles de ocupacién
baja, media y alta, respectivamente.
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Figura 4.26: Tiempo de disponibilidad de canales para el modelo EMD-SVR.
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Figura 4.27: Tiempo de ocupacion de canales para el modelo EMD-SVR.
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En la Tabla 4.14, se presentan los errores entre los datos reales y los pronostica-
dos para el modelo EMD-SVR. El modelo de canal de ocupacion baja presenta una
cuantia menor de los errores con respecto a los modelos de los canales de ocupaciéon
media y alta.

Tabla 4.14: Comparacion de variables de error para canales GSM
con base en el modelo EMD-SVR.

Canal SMAPE MAPE MAE
Bajo -0.0681 0.0556 5.296
Medio -0.0654 0.0598 5.411
Alto -0.0991 0.0890 8.022

En la Figura 4.28, se evalua el rendimiento frente al pronostico con 6h, 12h, 18h y
24h de entrenamiento del modelo EMD-SVR. Aqui se observa poca variacion del
error para los tres canales; por ejemplo, para el canal bajo, en el escenario mas op-
timista, el error de prediccion se disminuye un 12.1%, a expensas de un aumento
en el tiempo de observacion del 24.8%; para el canal medio, se alcanza a reducir el
error maximo en un 10.15%, a costa de un aumento en el tiempo de observacion del
26.43%; y para el canal alto, la reduccién maxima del error es del 4.7 %, con un in-
cremento en el tiempo de observacion del 35%. Con 6h de entrenamiento del mode-
lo EMD-SVR se consiguen errores de prediccion adecuados en los tres canales GSM.
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Figura 4.28: Error de prediccion vs. tiempo de observacion para el modelo EMD-SVR.
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4.6. Analisis y validacion del modelo neuronal wavelet

La sefial de entrada al modelo, correspondiente a la potencia recibida de los canales
GSM, se descompone usando la wavelet madre, Discrete Meyer (dmey), que presentod
un menor error al ser comparada con las wavelets madre Daubechies, Coiflet y Symlet
[89]. El resultado son dos niveles que contienen cuatro coeficientes en total.

La red neuronal wavelet multicapa de propagacion hacia atras desarrollada se
muestra en la Figura 4.29, expresada como:

fin] = g S [ 7= e Woljo k1 @0 ] + = 252, Tu Wy i, kljln] | (4.9)

Donde g es la funcion de activacion de la red neuronal, que para este caso contiene:
dos entradas, dos salidas y dos capas ocultas. La red fue adiestrada con los 714952
datos de la sefial de entrada (medidos de lunes a viernes) y se aument6 el nimero
de patrones de entrenamiento hasta que el error disminuy6 y se hizo relativamente
constante; esto se alcanzo para 1000 patrones de entrenamiento. Por tltimo, la salida
de la red neuronal se reconstruye usando un analisis wavelet para obtener la potencia
pronosticada.

Red neuronal

Descomposicion

Reconstruccién
Wavelet

Error de propagacion hacia atras

Figura 4.29: Red neuronal wavelet.
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La Figura 4.30 valida los valores de potencia pronosticados con respecto a los medi-
dos durante una hora, que corresponden al dia viernes de 5p.m. a 6p.m.
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Figura 4.30: Series de tiempo medidas y pronosticadas para los canales GSM
con el modelo neuronal wavelet.

Los tiempos de disponibilidad y ocupacion de los canales medidos y pronosticados
a través del modelo neuronal wavelet se presentan en las Figuras 4.31 y 4.32. Las
precisiones promedio obtenidas en el prondstico de los tiempos de ocupacion son:
100%, 95.1% y 99.9%, y para los tiempos de disponibilidad equivalen a: 100 %, 97 %
y 99.8%, entre los datos reales y pronosticados correspondientes a los canales de
niveles de ocupacién baja, media y alta, respectivamente.
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Figura 4.31: Tiempo de ocupacion de canales para el modelo neuronal wavelet.
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Figura 4.32: Tiempo de disponibilidad de canales para el modelo neuronal wavelet.
En la Tabla 4.15, se presentan los errores entre los datos reales y los pronosticados para

los modelos neuronales wavelet. El modelo de canal de ocupacion baja presenta los
menores errores con respecto a los modelos de los canales de ocupacion media y alta.

Tabla 4.15: Comparacion de variables de error para canales GSM
con base en el modelo neuronal wavelet.

Canal SMAPE MAPE MAE
Bajo -0.0017 0.00089 0.0866
Medio -0.0020 0.0011 0.1
Alto -0.0019 0.0010 0.1005

En la Figura 4.33, se evalta el rendimiento frente al prondstico, desde uno hasta cin-
co dias de entrenamiento del modelo neuronal wavelet. El error en el canal alto se re-
duce en un total de 1.75 %, en detrimento de un 31.24 % en el tiempo de observacion;
para el canal medio, el error se disminuye en total en un 3.29%, a costa de un 23.8%
en el tiempo de observacion; y para el canal bajo, el total del error es minimizado en
un 5.45 % en menoscabo de un 47.5% en el tiempo de observacion.
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Al validar el modelo neuronal wavelet, se presentd mayor precision en el pronos-
tico de las potencias de recepcion con respecto a los cuatro modelos restantes, tal
y como se demostro a través de las variables evaluadas. La disminucion del error
del modelo neuronal wavelet llega a ser de 10 a 80 veces en relaciéon con los otros
modelos, sin contemplar un mejoramiento en el error de prediccion mayor al 99 %.

0.025

—&—Canal Bajo e
—o— Canal Medio I s pan = TR AU o
—¥— Canal Alto
&
=4 0.02
Q2
(3]
K]
=]
o B
s S S
)
©
§ 0.015
i
L S N |
o——o
0'0&4 26 28 30 32 34 36

Tiempo de Observacion(s)

Figura 4.33: Error de prediccion vs. tiempo de observacion
para el modelo neuronal wavelet.

Para completar el analisis del entrenamiento, se calcula el error cuadratico medio
correspondiente al promedio del cuadrado de las desviaciones estandar de los valores
estimados con respecto a los originales. En las Tablas 4.16, 4.17 y 4.18, se exhibe el
error cuadratico medio en el prondstico de las potencias de recepcion para el modelo
neuronal wavelet, con una cantidad de datos de entrenamiento de hasta cinco dias.
Estos resultados y la Figura 4.33 justifican que un dia de entrenamiento en el modelo
neuronal wavelet sea suficiente para obtener un error admisible. Ademas, el canal de
ocupacion baja presenta el menor error y la mayor precision en los pronosticos de los
tiempos de disponibilidad y ocupacion del canal, tal como se concluyé en el analisis
del parametro de Hurst.
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Tabla 4.16: Resultado de error cuadratico medio para el canal bajo,
con diferentes dias de entrenamiento del modelo neuronal wavelet.

1 2.3784 24.19s
2 2.3402 27.21s
3 2.3015 31.39s
4 2.2851 3492s
5 2.2659 35.69s

Tabla 4.17: Resultado de error cuadratico medio para el canal medio,
con diferentes dias de entrenamiento del modelo neuronal wavelet.

1 4.661 28.19s
2 4.6133 29.55s
3 4.5878 30.85s
4 4.5549 34.27s
5 4.5213 349s

Tabla 4.18: Resultado de error cuadratico medio para el canal alto,
con diferentes dias de entrenamiento del modelo neuronal wavelet.

1 2.9262 26.47s
2 2.8558 28.68 s
3 2.8110 29.64 s
4 2.7604 31.87s
5 2.7339 34.76 s
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El pronéstico de la potencia recibida que se realizé durante esta seccién no solo es
importante para la determinacion del estado de un canal; sino porque permite omitir
la deteccién de algun canal cuando se pronostica que estara ocupado, lo que reduce
el tiempo de deteccion y el consumo de energia.

4.7. Evaluacion comparativa de la complejidad de los modelos desarrollados

En las secciones anteriores, se evalud el nivel de eficacia de los modelos desarrollados.
Sin embargo, también es necesario valorar su nivel de complejidad. Para lo anterior,
se calcul6 el promedio estadistico sobre varias mediciones del tiempo de ejecucion de
cada modelo para los tres canales; los resultados se muestran en la Tabla 4.19.

Tabla 4.19: Tiempos de ejecucién de los algoritmos desarrollados.

Modelo de prediccion e}ggﬁ?gnd(i)
SARIMA 5
GARCH 18.9

MARKOV 73.3
EMD-SVR 492.8
Neuronal wavelet 30.8

En la Tabla 4.19, se observa que el modelo neuronal wavelet noes el de menor tiem-
po promedio de ejecucion, puesto que este es 6 veces mayor que el modelo mas
rapido (SARIMA), pero 16 veces menor que el modelo mas lento (EMD-SVR). Sin
embargo, el modelo neuronal wavelet es seleccionado porque tiene el mejor error de
prediccion respecto a los cuatro modelos restantes. El tiempo promedio de ejecucion
de 30.8 segundos es un tiempo relativamente bajo para pronosticar con alto nivel de
precision el comportamiento de una hora del canal.
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5. Conclusiones

Se realiz6 un andlisis estadistico a partir de las mediciones realizadas por una semana
en un entorno urbano de Bogota; se describieron al inicio los instrumentos utilizados,
asi como su configuracion y los resultados generales de las mediciones. Luego se selec-
cionaron tres canales de diferentes niveles de ocupacion, correspondientes a las bandas
de la tecnologia movil GSM, en los que se analizo el ciclo de trabajo, la distribucion de
oportunidades y la autocorrelacion.

Posteriormente, se validé el prondstico de la potencia recibida para una hora con
los modelos SARIMA, GARCH, Markov, EMD-SVR y neuronal wavelet, con base
en las variables: tiempo de disponibilidad del canal, tiempo de ocupacion del canal,
tiempo de observacion, SMAPE, MAPE y MAE. Al final, se decidi6o que el modelo
neuronal wavelet presentaba mejor desemperio frente a las variables evaluadas que los
cuatro modelos restantes, y con una relativa baja complejidad computacional.

Los modelos analizados no solo pronostican la potencia de recepcion, sino también
los tiempos de ocupacion y la disponibilidad para los canales GSM. El modelo neuronal
wavelet disenado muestra que, en sistemas practicos de CR, seria viable usar un tiempo de
observacion entre 25y 29 segundos, y los datos de entrenamiento de un dia para pronosticar
con precision la potencia recibida en un usuario de CR desde una estacién base primaria.

La mayor parte de los esquemas de pronodstico se ha basado en la determinacién de
huecos espectrales, mientras que este trabajo se fundamenta en el conocimiento a priori de
la potencia que se recibe por parte de los canales de los PU; esto permite evitar la seleccion
de canales ruidosos y conduce a un mejor reparto del espectro entre los usuarios de CR,
para asi lograr parametros de calidad de servicio superiores con menos recursos de radio.

3.1. Recomendaciones
Como trabajo futuro, se propone implementar y evaluar los modelos desarrollados en
equipos de radio definido por soffware.

También analizar el rendimiento en la transmisioén de los usuarios de CR a partir
de los diferentes niveles de potencia recibida por parte de los PU.

Ademas, se sugiere tener varios equipos para medir las potencias en diferentes
localizaciones del entorno durante un mismo tiempo y asi verificar el rendimiento de
los modelos desarrollados.
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