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1.	 Introducción 

El futuro (inmediato) es, en su mayoría, inalámbrico; la movilidad construye una 
sociedad de la información y la tecnología que puede ser revolucionaria cuando 
es capaz de contribuir a los cambios sociales, culturales y económicos. Las solu-
ciones inalámbricas se convierten en una alternativa para democratizar el acceso 
a los servicios de comunicación, al reducir fronteras y ofrecer diversidad, calidad 
y costo accesible.

Con la llegada de las aplicaciones multimedia de banda ancha y la creciente de-
manda de acceso a la red de información de los dispositivos móviles, resulta esencial 
mejorar la eficiencia en la utilización del espectro electromagnético para cubrir las 
necesidades de altas tasas de bits, proporcionales a los servicios multimedia. 

Los resultados de los estudios de medición de ocupación de espectro muestran 
que, por lo general, el espectro inalámbrico es subutilizado en los dominios de 
frecuencia, tiempo y espacio geográfico. En la actualidad, existen resultados 
de estudios de medición de ocupación de espectro en diversos lugares: en áreas 
urbanas de Estados Unidos, el Laboratorio de Innovación Inalámbrica del Instituto 
Politécnico de Worcester tomó mediciones en las ciudades de Buffalo, Pittsburgh, 
Rochester y Worcester en el 2010 [1]; el Departamento de Ingeniería Eléctrica y 
Computación del Instituto de Tecnología de Illinois las tomó en Chicago entre los 
años 2008 y 2010 [2]; en el área metropolitana de Los Ángeles, el Departamento 
de Comercio de EE. UU. realizó mediciones entre marzo y mayo de 1995 [3]. En 
Europa, el Departamento de Teoría de la Señal y Comunicaciones, de la Universidad 
Politécnica de Cataluña, hizo estudios en Barcelona entre 2009 y 2010 [4]; y el 
Departamento de Redes Inalámbricas de la Universidad de RWTH Aachen, en la 
Escuela Internacional de Maastricht en Holanda, en el 2009 [5]. En Asia, el Centro 
para la Infraestructura de Telecomunicaciones de la Universidad de Aalborg, en el 
Ministerio de Comunicaciones de Mumbai, durante el 2010 [6]; y el Departamento 
de Ingeniería de la Información y la Comunicación, de la Universidad de Correos y 
Telecomunicaciones de Beijing, en Guangdong provincia de China, durante febrero 
de 2009 [7]. Y en Oceanía, el Departamento de Ingeniería Eléctrica y Computación 
de la Universidad de Auckland, en Auckland, en el 2007 [8]. Estas campañas de 
medición muestran que el espectro radioeléctrico está subutilizado en los dominios 
de frecuencia, tiempo y espacio geográfico [5], [6], [8], [9]. 
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En Colombia y en el mundo, las políticas para la regulación del espectro 
radioeléctrico aplicadas tradicionalmente conciernen, por una parte, a la asignación 
exclusiva de bandas del espectro a operadores de tecnologías inalámbricas; y 
por otra, a la concesión de bandas del espectro para el uso libre por parte de 
operadores y usuarios particulares. Estas políticas de asignación espectral (SA) 
han permitido el desarrollo del sector de las telecomunicaciones. Sin embargo, 
el elevado costo de las licencias para la asignación del espectro concesionado, la 
escasez de espectro para la asignación a nuevos operadores, el bajo porcentaje 
de uso (por ejemplo, un 0, 3% para frecuencias entre 4-5 GHz) que le dan en 
su mayoría los operadores al espectro licenciado [10] y los elevados niveles de 
interferencia en las bandas libres del espectro han hecho poner en consideración 
estrategias novedosas, como la radio cognitiva (CR), para contrarrestar estas 
deficiencias en el desarrollo de futuras políticas gubernamentales.

De acuerdo con lo anterior, el espectro radioeléctrico es el principal recurso 
para las redes de radio cognitiva (CRN), y se percibe como un bien escaso. En el 
tiempo actual, el uso de buena parte de las bandas licenciadas está mal distribui-
do, ya que, normalmente, se pueden encontrar bandas de frecuencia muy conges-
tionadas y otras bandas poco utilizadas [11]. La CR se ha convertido en uno de 
los paradigmas más investigados en las comunicaciones de radio para optimizar 
el uso del espectro radioeléctrico [12]. Una CR es una radio inteligente, conscien-
te de su medio, capaz de reconfigurarse de manera autónoma para aprender y 
adaptarse al entorno de radio que la rodea [13]. La investigación en CR ha sido 
motivada por los resultados de las campañas de medición de espectro realizadas 
en todo el mundo [1-4], [6-8], [14-17]. Estas campañas de medición muestran que 
el espectro radioeléctrico está subutilizado en los dominios de frecuencia, tiempo 
y espacio geográfico [2],[6],[8],[9],[16],[17].

El principio para el funcionamiento de la CR se basa en que los usuarios 
secundarios (SU) aprovechen de forma oportunista el espectro licenciado disponible, 
sin interferir con los usuarios primarios (PU), a través del denominado “handoff ” o 
cambio de canal. Para enfrentar este problema, los SU deben detectar la ocupación 
del espectro en diferentes localizaciones como función del entorno considerado, lo 
cual proporciona una valiosa herramienta para el diseño, el dimensionamiento y la 
evaluación del rendimiento en redes de radio cognitiva [4]. A partir de aquí, existen 
cuatro estrategias para desarrollar el handoff: (1) No realizar un cambio de canal, 
sino esperar en el mismo canal hasta que esté disponible de nuevo; esta estrategia 
es denominada “no handoff”. (2) Esperar hasta que llegue un PU al canal que se 
está utilizando y realizar una detección de canal para encontrar otro disponible al 
cual pueda cambiarse el SU; se denomina “handoff reactivo”. (3) Tratar de predecir 
la llegada del SU y cambiarse antes a un canal seleccionado con anticipación; se 
denomina “handoff proactivo”. (4)  Esperar hasta que un PU llegue al canal que 
está siendo utilizado y cambiarse a un canal seleccionado previamente; es llamado 
“handoff híbrido”. 

De las anteriores estrategias, el handoff proactivo es el más beneficioso para 
el PU, dado que no existe periodo de interferencia en el cual coexistan los dos 
usuarios (PU y SU). Sin embargo, la problemática de esta estrategia radica en la 
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precisión de la predicción de la llegada del PU, es decir, en la predicción de la 
ocupación espectral de la banda licenciada. 

Lo anterior conduce a plantearse los siguientes interrogantes:

•	 ¿Cómo es el comportamiento de ocupación espectral en una banda GSM (sistema 
global para las comunicaciones móviles) para una red móvil en un entorno urbano?

•	 ¿Cómo diseñar un modelo para la predicción de la ocupación espectral?

•	 ¿Cómo evaluar el desempeño del modelo diseñado para la predicción de la 
ocupación espectral?

La solución a estos interrogantes implica el desarrollo de un modelo de predicción 
de la ocupación espectral que tenga en cuenta las características relevantes del com-
portamiento del espectro a partir de mediciones realizadas en un entorno urbano; 
esto podría contribuir al mejoramiento del handoff proactivo y del desempeño de las 
CRN. Sin embargo, es importante mencionar que esta investigación se centrará en 
el análisis y diseño de un modelo de predicción de la ocupación espectral para una 
banda licenciada de telefonía móvil, y no en el desarrollo de un modelo de asigna-
ción de canal para SU, lo que llevaría a un trabajo que requiere de más tiempo y 
mayores recursos. 

La CR es un tema que actualmente se encuentra en investigación con pruebas 
piloto. Los fabricantes y operadores de telefonía celular a nivel mundial están finan-
ciando este tema de investigación en aras de lograr la implementación física de estas 
redes. En Colombia, este es un tema nuevo en el que se desea profundizar, a través 
de entidades como la Agencia Nacional del Espectro (ANE). Por tanto, es necesa-
rio continuar con esta investigación y llevarla hacia el despliegue de esta tecnología 
emergente, de modo que se logren superar de forma eficiente problemas como los 
elevados costos asociados a la construcción de dispositivos de alta frecuencia; o el 
problema de degradación debido a portadoras más altas, frente a la escasez e inade-
cuada distribución del espectro radioeléctrico. Este trabajo no solo beneficiaría a los 
operadores de redes inalámbricas, sino también a los usuarios de estas tecnologías, 
pues podrían tener más servicios, lo que redundaría en más operadores, más compe-
tencia y, por lo tanto, menor costo.

Con el objeto de argumentar la relevancia de esta propuesta de investigación, se 
podría mencionar que sus resultados impactarían el campo de la información y las 
comunicaciones en la región de aplicación, es decir, en Bogotá D. C. Un ejemplo 
claro lo constituyen las redes celulares y las redes inalámbricas de malla (también 
llamadas redes mesh), las cuales han surgido como tecnologías con una buena re-
lación beneficio-costo. No obstante, el incremento en la densidad de la red y el 
requerimiento de un alto rendimiento por parte de sus aplicaciones han degradado 
su calidad de servicio. Con las ventajas de la CR, es posible habilitar el acceso a un 
mayor segmento del espectro, por ejemplo, una red backbone mesh puede incremen-
tar el área de cobertura basada en puntos de acceso cognitivos (CAP).

Otra de las potenciales aplicaciones de la CR son las redes militares, ya que 
permiten que la radio militar escoja frecuencia, ancho de banda, modulación y 
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codificación de manera arbitraria, adaptándose al ambiente de radio variable del 
campo de batalla y permitiendo una encriptación de la información y un ahorro 
energético más eficiente. 

Como conclusión, las características de reconfigurabilidad dinámica de cada 
uno de los parámetros de operación en una CRN podrán garantizar integridad de la 
información, interoperabilidad, fiabilidad, flexibilidad, redundancia, escalabilidad, 
seguridad, eficiencia y acceso en todo tiempo y espacio, lo cual beneficia de modo 
significativo el manejo de la información y las comunicaciones tanto en Bogotá 
como en toda Colombia.

1.1.	 Objetivos del proyecto de investigación 
El objetivo general de este proyecto de investigación es desarrollar un modelo de pre-
dicción de la ocupación espectral en un entorno urbano, que sirva como herramienta 
para el análisis y el diseño de redes de radio cognitiva. Este objetivo fue alcanzado a 
través de los siguientes objetivos específicos:

1.	 Analizar estadísticamente las tendencias de ocupación espectral con base 
en mediciones de ocupación espectral realizadas en redes móviles para un 
entorno urbano.

2.	 Diseñar un modelo de predicción de la ocupación espectral con base en medi-
ciones de ocupación espectral realizadas. 

3.	 Evaluar y validar el modelo desarrollado a través de datos de ocupación es-
pectral reales.

1.2.	 Financiamiento del proyecto de investigación 
El presente libro de investigación es producto de los resultados alcanzados en el pro-
yecto de investigación “Modelo de predicción de la ocupación espectral para el análi-
sis y diseño de redes de radio cognitiva”, financiado por el Centro de Investigaciones 
y Desarrollo Científico de la Universidad Distrital Francisco José de Caldas, en la 
Convocatoria 3 de 2016.

1.3.	 Organización del libro de investigación 
El libro está estructurado como sigue: en el capítulo 2, se realiza una descripción de 
los fundamentos teóricos de la CR y de la teoría de series de tiempo; en el capítulo 3, 
se describe la metodología de la investigación realizada; en el capítulo 4, se presen-
tan los resultados alcanzados en la investigación; y en el capítulo 5, se presentan las 
conclusiones.
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2.	Radio cognitiva

En gran parte del mundo hoy, las redes y las aplicaciones inalámbricas se caracte-
rizan por una política de asignación fija del espectro de radiofrecuencia regulada 
por el Estado. Esta asignación fija provoca que las frecuencias asignadas a servicios 
específicos estén casi en desuso y no puedan ser aprovechadas por los SU, incluso si 
estos no provocan ninguna interferencia [18], [19]. 

Según estudios realizados por la Comisión Federal de Comunicaciones (FCC) de 
Estados Unidos [20], se ha evidenciado que gran parte del espectro de radiofrecuencia 
está siendo utilizado de manera ineficaz. Basado en las variaciones temporales y geográ-
ficas, la utilización del espectro asignado es ineficiente [10], [21]. Incluso las mediciones 
más actuales muestran que más del 70 % del espectro no se está utilizando [22], [23].

Esta utilización ineficiente y esporádica del espectro, junto al incremento de la de-
manda de espectro, han hecho que se degrade la calidad de servicio (QoS) en varias 
redes y aplicaciones inalámbricas, como las comunicaciones móviles. Lo anterior 
ha motivado el desarrollo de investigaciones recientes que en el acceso dinámico al 
espectro (DSA) han encontrado la solución al problema. La tecnología clave que 
permite materializar las técnicas de DSA es la CR [18], [24]. 

El concepto de CR fue creado en 1999 por Joseph Mitola III, como “el punto en el 
cual las PDA (Personal Digital Assistant) inalámbricas y las redes relacionadas son, en 
términos computacionales, lo suficientemente inteligentes con respecto a los recursos 
de radio y las correspondientes comunicaciones de ordenador a ordenador como para 
detectar las necesidades eventuales de comunicación del usuario como una función 
del contexto de uso y proporcionarle los recursos de radio y servicios inalámbricos 
más adecuados a ese mismo instante” [25]. Sin embargo, varias entidades importan-
tes han dado su punto de vista al respecto; según la Administración Nacional de la 
Información y las Comunicaciones (NTIA), la CR “es una radio o sistema que detecta 
su entorno electromagnético de operación y puede ajustar de forma dinámica y autó-
noma sus parámetros de operación de radio para modificar la operación del sistema 
como: maximizar el rendimiento, reducir la interferencia y/o facilitar la interopera-
bilidad”. Según la Unión Internacional de Telecomunicaciones (ITU), la CR “es una 
radio o sistema que detecta y está al tanto de su entorno y se puede ajustar de forma 
dinámica y autónoma de acuerdo con sus parámetros de funcionamiento de radio”. 
Según el Instituto de Ingenieros Eléctricos y Electrónicos (IEEE), la CR “es un tipo de 
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radio que puede detectar de forma autónoma y razonar sobre su entorno y adaptarse 
de acuerdo a este” [10]. Y de acuerdo con la FCC, la CR es una radio que “puede 
cambiar los parámetros del transmisor basado en la interacción con su entorno” [20]. 

La CR tiene la capacidad de proveer un gran ancho de banda (BW) a usuarios 
móviles, a través de arquitecturas inalámbricas heterogéneas que aumentan significa-
tivamente la eficiencia espectral, debido a que permite que SU compartan el espectro 
con PU de manera oportunista [18], a partir de las oportunidades espectrales (SO), 
como se muestra en la Figura 2.1; es decir, que utilicen las porciones del espectro que 
no están siendo usadas en ese momento [26], [27].

La Figura 2.1 describe el concepto de SO a través de una gráfica en tres dimen-
siones, cuyos ejes son: potencia, frecuencia y tiempo. Cada bloque gris de la figura 
es un PU haciendo uso de una porción del espectro de frecuencia dado por el eje de 
frecuencia, a un nivel de potencia dado por el eje de potencia, y durante un determi-
nado periodo dado por el eje de tiempo. Sin embargo, existen porciones del espectro 
de frecuencia que no son utilizadas durante determinado intervalo de tiempo; dichos 
espacios son denominados SO, que pueden ser aprovechados por los SU [26], [28].

Figura 2.1: Concepto de SO. 
Fuente: adaptada de [29]

2.1.	 Características de la radio cognitiva
Las principales características de la CR, que le confieren todas las capacidades des-
critas antes, son la capacidad cognitiva y la reconfigurabilidad [28].

2.1.1.	 Capacidad cognitiva
La capacidad cognitiva es la tecnología capaz de capturar la información de su entorno 
de radiofrecuencia para identificar los segmentos del espectro que no están siendo utili-
zados, y así seleccionar el mejor espectro posible y definir los parámetros de operación 
más adecuados con el objetivo de evitar la interferencia con otros usuarios [13], [30].
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2.1.2.	 Reconfigurabilidad
La reconfigurabilidad es la capacidad de cambiar de forma dinámica los diferentes 
parámetros de operación relacionados con la transmisión y/o recepción (como la 
frecuencia, la potencia y la modulación); esto con el fin de habilitar la radio para que 
sea programada dinámicamente para transmitir y recibir en una gran variedad de 
frecuencias en función del ambiente de radio, y usar diferentes tecnologías de acceso 
a la transmisión [13], [29], [30].

2.2.	 Gestión de espectro en radio cognitiva
Las CRN también imponen retos en la gestión del espectro, debido a la naturale-
za fluctuante del espectro disponible y a los requerimientos de calidad del servicio 
(QoS) de varias aplicaciones. Las cuatro principales funciones en la gestión del espec-
tro son: monitorización del espectro, decisión de espectro, compartición de espectro 
y movilidad de espectro; todas conforman el ciclo cognitivo [18], [28], [29].

La Figura 2.2 describe el ciclo cognitivo iniciando con la monitorización del es-
pectro para detectar las SO; luego, la decisión de espectro selecciona una de ellas para 
que sea utilizada por el SU;. Si un PU arriba a la misma SO, el SU debe realizar la 
movilidad espectral y seleccionar una nueva SO. En el caso de varios SU, se puede 
realizar una compartición del espectro.

2.2.1.	 Monitorización de espectro
En las bandas licenciadas, los SU solo pueden ser asignados a SO para que no 
interfieran con los PU. Por tanto, es necesario que los SU estén monitorizando las 
bandas de espectro disponibles para detectar dichas SO [29]. Actualmente, existen 
varias técnicas para monitorizar el espectro, que se clasifican como se muestra en 
la Figura 2.3; la detección de energía es la más básica de ellas.

2.2.2.	 Decisión de espectro
Después de que las SO han sido identificadas, los SU deben seleccionar la más ade-
cuada de acuerdo con sus requerimientos de QoS. Para tomar la anterior decisión, 
se han desarrollado algoritmos que tienen en cuenta las características del canal de 
radio, el comportamiento estadístico de los PU, la frecuencia y potencia de transmi-
sión, entre otros factores [29].

2.2.3.	 Compartición de espectro
Debido a que múltiples SU pueden intentar acceder al espectro, la función de com-
partición de espectro proporciona la capacidad de utilizar este recurso con múltiples 
SU, coordinando sus transmisiones para evitar colisiones e interferencias [29], [31].
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Figura 2.2: Ciclo cognitivo.
Fuente: Adaptada de [29]

Figura 2.3: Clasificación de las técnicas de detección de espectro.
Fuente: Adaptada de [29]

2.2.4.	 Movilidad de espectro
La movilidad espectral se da cuando el SU debe dejar el canal de frecuencia que está 
utilizando y continuar su comunicación en otra SO, debido a la llegada de un PU o a 
la degradación de la calidad del canal [29], [32].

2.3.	 Arquitectura de la radio cognitiva

2.3.1.	 Arquitectura centralizada
En la arquitectura centralizada, la coordinación de los nodos entre sí se mantiene mediante 
la difusión de mensajes a través de un canal de control común (CCC) de coordinación del 
espectro, independiente del canal de datos. Cada usuario determina el canal que puede 
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utilizar para la transmisión de datos, de tal manera que se evite la interferencia. En el caso 
de que la selección de canal no sea suficiente para evitar la interferencia, se implementa 
la adaptación de potencia. Las evaluaciones de las alternativas anteriores revelan que el 
CCC mejora el rendimiento entre 35 % y 160 % a través tanto de la frecuencia como de la 
adaptación de potencia [13], [24].

2.3.2.	 Arquitectura distribuida
En la arquitectura distribuida, la coordinación entre nodos utiliza una “reserva de 
canal dinámica distribuida” basada en la QoS (D-QDCR). El concepto básico detrás 
de D-QDCR es que una estación base (BS) compite con su interferente BS de acuerdo 
con los requisitos de QoS de los usuarios para asignar una porción del espectro. De 
forma similar al protocolo CCC, los canales de control y datos se separan [13], [24].

La Figura 2.4 muestra un ejemplo de una arquitectura de CR centralizada (con 
infraestructura) y distribuida ad hoc (sin infraestructura).

Figura 2.4: Arquitectura de una red de radio cognitiva.
Fuente: Adaptada de [13].
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2.4.	 Aplicaciones de la radio cognitiva
Para argumentar la relevancia de esta investigación, cabe mencionar el modo en que 
sus resultados pueden impactar el campo de la información y las comunicaciones en 
la región de aplicación de los resultados de dicha indagación, como puede ser no solo 
Bogotá D. C., sino toda Colombia y el mundo entero. Un ejemplo muy claro son las 
redes mesh; sin embargo, el incremento en la densidad de la red y el requerimiento 
de una alta tasa de datos por parte de sus aplicaciones han degradado su QoS. Con 
las ventajas de la CR, una red backbone mesh puede incrementar el área de cobertura 
basada en los CAP [13].

Es sabido que un desastre natural podría deshabilitar temporalmente, o incluso 
destruir, la infraestructura de comunicaciones, lo que haría necesario establecer redes 
de emergencia que requieren una gran cantidad de espectro para poder manejar el 
volumen de tráfico de video, voz y datos. La CR tiene la capacidad de proporcionar 
dicho espectro sin necesidad de una gran infraestructura. Es así como la seguridad 
pública y las redes de emergencia también se pueden beneficiar de las ventajas de la 
radio cognitiva [13].

Otra de las potenciales aplicaciones de la CR son las redes militares, ya que 
permite a la radio militar escoger arbitrariamente su frecuencia, BW, modulación y 
codificación, adaptándose al ambiente de radio variable del campo de batalla [13].

Como conclusión, las características de reconfigurabilidad dinámica de cada 
uno de los parámetros de operación en una CRN pueden garantizar integridad de la 
información, interoperabilidad, fiabilidad, flexibilidad, redundancia, escalabilidad, 
seguridad, eficiencia y acceso en todo tiempo y espacio, beneficiando de modo signi-
ficativo el manejo de la información y las comunicaciones en Colombia [28].

2.5.	 Desafíos y futuras investigaciones en radio cognitiva
Los desafíos de la CR pueden ser varios, debido a que abarca temas que van desde 
la monitorización del espectro hasta las decisiones de movilidad en este, teniendo en 
cuenta esquemas de acceso al medio y tipo de redes en las cuales interactúa la CR. 
Por lo tanto, en este apartado se describirán brevemente estos desafíos [28].

2.5.1.	 Monitorización del espectro
El proceso de monitorización no se puede realizar al tiempo en que se envía la infor-
mación entre SU; por consiguiente, si es necesario desarrollar acciones de monitori-
zación, los usuarios deben detener las trasmisiones, afectando así la eficiencia del es-
pectro. Con base en esto, sería deseable desarrollar algoritmos de monitorización que 
reduzcan su tiempo, mientras mejoran la precisión en el proceso de detección de SO.
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2.5.2.	 Espectro compartido
En trabajos realizados en CR, se hacen suposiciones como que los SU conocen de 
antemano la localización y el nivel de potencia de la trasmisión de los PU, lo cual permite 
realizar los cálculos de interferencia de manera fácil. Sin embargo, esta suposición 
no siempre es cierta para algunas CRN [31].

2.5.3.	 Procesos de aprendizaje
Debido a las complejidades inherentes a la CR, sería deseable que en los dispositivos 
que hagan uso de CR se habilitara un proceso de aprendizaje que tome en cuenta las 
decisiones tomadas en el pasado para mejorar su comportamiento dentro de la red, 
y así mejorar sus decisiones futuras. El diseño de este tipo de algoritmos representa 
un gran desafío, debido a que se debe determinar qué mediciones son necesarias para 
desarrollar este proceso de aprendizaje [27].

2.5.4.	 Esquemas de control de acceso al medio
Aunque el grupo de investigación del estándar IEEE 802.22 está trabajando en el 
desarrollo de un protocolo de control de acceso al medio (MAC), otras investiga-
ciones han desarrollado esquemas que no se adecuan al estándar. Por ejemplo, los 
esquemas MAC distribuidos para redes de radio cognitiva ad hoc (CRAHN) no 
están del todo cubiertas. 
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3.	Metodología y análisis  
estadístico para las mediciones  
de la red móvil

A partir de la campaña de mediciones de espectro realizadas durante seis meses en 
Bogotá, Colombia, para el estudio de ocupación del espectro [16], [11], [33], se deci-
dió analizar la banda GSM de 850 MHz, puesto que es una banda en constante uso 
y viable de analizar en función del tiempo, con equipos de medida convencionales, 
como el analizador de espectro. Sin embargo, algunos estudios [4] indican que una 
opción razonable para obtener resultados representativos, sin ninguna información 
a priori de la banda de frecuencia que se va a medir, es considerar periodos de me-
dición de por lo menos 24 horas, a fin de no subestimar o sobrestimar la ocupación 
de bandas de frecuencia con algunos patrones temporales; y aunque un periodo de 
medición de 24 horas puede considerarse adecuado para caracterizar correctamente 
la actividad de las bandas del espectro determinado, esta investigación decidió traba-
jar con los datos correspondientes a 7 días, lo que incluye patrones de uso en los días 
entre semana y el fin de semana (un tiempo suficiente para medir la ocupación hasta 
en redes móviles de poco uso, tal como se indica en ITU-R [34], [35]).

De acuerdo con lo anterior, las medidas usadas en este estudio corresponden a 
las de una semana (seleccionadas de los datos capturados durante la campaña de 
medición). Fueron el resultado de un estudio estadístico que demostró la correlación y 
estacionariedad de los datos por días, y que permitió tener una muestra de un canal de 
ocupación alta, media y baja. En dicho estudio estadístico se analizó la estacionariedad 
de los canales, y se observó que la media y la varianza son constantes y similares entre 
sí, en cada uno de los días, desde el lunes hasta el viernes; para el canal de ocupación 
baja, la media oscila entre –96.17 y – 96.01 dBm, y la varianza entre 6.6 y 7.17; para 
el canal de ocupación media, la media oscila entre –94.97 y –94.8 dBm, y la varianza 
entre 18.8 y 21.02; para el canal de ocupación alta, la media oscila entre –94.75 y 
–94.18 dBm, y la varianza entre 29.36 y 31.46. Las mediciones del fin de semana no se 
tienen en cuenta para el entrenamiento en los modelos analizados, debido a que no son 
similares y cambian de modo considerable con respecto a las mediciones de lunes a 
viernes; para el canal bajo se encuentra entre –96.34 y –96.24 dBm, y la varianza entre 
3.62 y 4.37; para el canal medio, la media se encuentra entre –95.76 y –95.35 dBm, y 
la varianza entre 8.67 y 10.79; para el canal alto, la media se encuentra entre –95.43 y 
–95.34 dBm, y la varianza entre 13.82 y 15.68.
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3.1.	 Selección de software y equipos
Para desarrollar la presente investigación, se utilizaron diversos recursos. Entre ellos, 
un sistema de monitorización del espectro (descrito por la Tabla 3.1) para realizar el 
proceso de captura de los datos de potencia espectral en la banda GSM; se destaca 
el analizador de espectro MS2721B Anritsu, por sus características y funciones. 
También se usaron múltiples bases de datos electrónicas para realizar la consulta y 
construcción de la revisión literaria sobre SH (handoff espectral) para CRN. El software 
Matlab se empleó para desarrollar el simulador y los correspondientes algoritmos 
de SH. Y, finalmente, se utilizó un computador de escritorio cuyas características 
están descritas por la Tabla 3.2, para realizar el procesamiento de la información, el 
diseño del modelo propuesto, el desarrollo de la experimentación, el análisis de los 
resultados y la documentación de esta investigación. 

Tabla 3.1: Especificaciones de los equipos para la monitorización del espectro.

Equipo
Especificaciones

Rango de frecuencia Referencia

Antena tipo discono 25 MHz - 6 GHz Super-M Ultra Base 

Cable de banda ancha 0 - 18 GHz CBL-6FT SMNM+

Amplificador de bajo ruido 20 MHz - 8 GHz ZX60-8008E-S+

Analizador de espectro 9 kHz - 7.1 GHz MS2721B Anritsu

Tabla 3.2: Especificaciones del equipo de cómputo.

Característica Valor de referencia

Procesador AMD FX 9590 de 8 núcleos y 4.71 GHz

Memoria RAM DDR 3 de 16 GB

Disco de estado solido Kingston SV300S37A de 240 GB

Tarjeta de video AMD Radeon R7 200

Tarjeta de red 10 / 100 / 1000 Mbps

Monitor LG IPS Full HD

Sistema operativo Windows 7 de 64 bits

3.2.	 Metodología para medición del espectro radioeléctrico 
El procedimiento de medición del espectro radioeléctrico es descrito a continuación 
y los resultados de medición de las bandas móviles son usados para el análisis de esta 
investigación. 
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Los rangos de medición de las bandas se basaron en aspectos como: el tiempo de 
barrido, el ancho de banda de resolución (RBW) y el span, con el fin de garantizar una 
adecuada medida en función del piso de ruido y del ancho de banda del canal de la 
tecnología por medir [9]. La configuración de la medición se muestra en la Figura 3.1 
y las especificaciones técnicas de los dispositivos usados están descritas antes, en la 
Tabla 3.1. Como se espera, el analizador de espectro proporciona la detección basada 
en energía, a fin de indicar si las señales están presentes o ausentes [11], [33], [35].

Figura 3.1: Configuración de la medición [33].

A continuación, se describen las variables características que se consideraron en este 
estudio [9].

3.2.1.	 Frecuencia
La ocupación del espectro se midió en el intervalo de 54 MHz a 6 GHz. El span para 
cada medición fue menor a 100 MHz y fue calculado a partir de las Ecuaciones (3.1) 
y (3.2), cuando la tecnología a medir es conocida, con el fin de garantizar un estima-
do preciso de ocupación. 

ABT>fb (3.1)

pps-1
span

fb = (3.2)

Donde ABT es el ancho de banda del canal de la tecnología que se va a medir, fb es 
el bin de frecuencia, y pps es el número de puntos por span del analizador, que para 
este caso es 551. Dichos segmentos menores que 100 MHz permitieron escoger el 
RBW ≤ AB

T
, el cual estuvo alrededor de 3 kHz ≤ RBW ≤ 100 kHz, con tiempos de 
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barrido que oscilaron entre 290 milisegundos y 5,124 segundos [11]. Las mediciones 
de la banda móvil se realizaron en un sitio residencial del norte de Bogotá; las coor-
denadas de dicho estudio son: latitud = 4°43’51” norte, longitud = 74°3’24” oeste, 
altitud  =  2578 metros. Este sitio fue seleccionado por sus características urbanas, 
puesto que presenta no solo edificaciones, sino también zonas verdes, descritas en el 
Capítulo 4. A su vez, en este lugar se facilitó el almacenamiento de las mediciones 
durante las 24 horas del día.

3.2.2.	 Amplitud
Los niveles de potencia se ajustaron en cada segmento del analizador de espectro, sin 
exceder los niveles de señal que permite el analizador; de lo contrario, se producen 
espurios mayores que la variación promedio de piso de ruido para cada medida. 
Estudios de espectro previos [9] sugieren que un buen criterio para configurar el ran-
go dinámico de un analizador de espectro al que se le conecta un amplificador a la 
entrada es ajustar los niveles de potencia, para que las señales se encuentren dentro 
del margen dinámico libre de espurios (SFDR), el cual se calcula como:

SFDR(dB)=PI (dBm)-PN (dBm) (3.3)

Donde PI es la potencia de la señal a la entrada y PN es la potencia de ruido equi-
valente a la entrada. El objetivo es tener tanta sensibilidad como sea posible en el 
receptor, con el uso del amplificador, evitando que los niveles de espurios puedan ser 
detectados como actividad de un PU. El ruido promedio del instrumento para cada 
medida es determinado con la ubicación de una impedancia de 50Ω a la entrada del 
analizador de espectro, con una atenuación de 0 dB, detección de valor cuadrático 
medio (RMS) y un tiempo de medición de 6 h [33].

3.3.	 Análisis de bandas móviles
En la Figura 3.2, se presentan los resultados de las mediciones de potencias de tres ca-
nales del enlace de bajada realizadas durante una semana. Los canales se escogieron 
con distintos niveles de ocupación: alto, con una frecuencia central de 828.73 MHz 
(canal alto); medio, con una frecuencia central de 830.13 MHz (canal medio); y bajo, 
con una frecuencia central de 828.93 MHz (canal bajo), respecto a los 60 canales me-
didos en esta banda. La configuración del analizador de espectro para esta banda fue 
la siguiente: RBW de 100 kHz, con un tiempo de barrido de 290 ms, lo que garantiza 
la detección de señales GSM, las cuales tienen un ancho de banda de 200 kHz. Los 
ciclos de trabajo por día de los canales seleccionados se muestran en la Figura 3.3; 
y el umbral (λ) utilizado, que para este caso es de –89 dBm, se obtiene a partir de la 
Ecuación (3.4), para una probabilidad de falsa alarma (Pfa) del 1 % [35], [36]:

λ
2Pfa = Г(m)

Г(m,   )
(3.4)
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Donde Г(.) y Γ(. , .) son la función gamma completa e incompleta, respectivamente, 
y m es el producto del tiempo por el ancho de banda.

Figura 3.2: Potencias medidas para tres canales del enlace de bajada de la banda GSM.

Figura 3.3: Ciclos de trabajo de tres canales del enlace de bajada de la banda GSM.

Las Figuras 3.4, 3.5 y 3.6 presentan los histogramas correspondientes a la distribu-
ción de oportunidades en periodos de tiempo para los canales de la banda GSM; aquí 
se observa que dichas oportunidades tienen un comportamiento exponencial, cuyas 
ecuaciones aproximadas se exhiben en cada una de las figuras. A medida que aumen-
ta la ocupación del canal, se observa que la ocurrencia se presenta en los periodos 
de tiempo más cortos, especialmente. Para los canales de ocupación baja, media y 
alta, los tiempos totales de oportunidades son de alrededor de 84 horas, 81 horas y 
78 horas, respectivamente, lo que indica una relativa baja ocupación.
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Figura 3.4: Distribución de oportunidades de periodos de tiempo del canal bajo.

Figura 3.5: Distribución de oportunidades de periodos de tiempo  
del canal de ocupación media.
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Figura 3.6: Distribución de oportunidades de periodos de tiempo  
del canal de ocupación alta.

A continuación, se analizan las series de tiempo de los canales medidos durante una 
semana, lo que equivale a 1 062 514 muestras. Para ello se presenta la autocorrelación 
simple, como se observa en la Figura 3.7. Los diagramas de autocorrelación presen-
tan una forma alternadamente positiva y negativa para los tres canales, y decaen 
lentamente a cero, sus valores están por encima del intervalo de confianza, lo que 
indica la existencia de correlación [11].

Figura 3.7: Autocorrelación para los tres canales del enlace de bajada  
de la banda GSM [11].
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Al analizar la estacionariedad de los canales de la Figura 3.7, se observa que la me-
dia y la varianza son constantes y similares entre sí, en cada uno de los días, desde 
el lunes hasta el viernes; es así que, para el canal de ocupación baja, la media oscila 
entre –96.17 y –96.01 dBm, y la varianza entre 6.6 y 7.17; para el canal de ocupación 
media, la media oscila entre –94.97 y –94.8 dBm, y la varianza entre 18.8 y 21.02; 
para el canal de ocupación alta, la media oscila entre –94.75 y –94.18 dBm, y la va-
rianza entre 29.36 y 31.46. Por tanto, las mediciones del fin de semana no se toman 
en cuenta para el entrenamiento en los modelos analizados, debido a que la media 
para el canal bajo se encuentra entre –96.34 y –96.24 dBm, y la varianza entre 3.62 
y 4.37; para el canal medio, la media se encuentra entre –95.76 y –95.35 dBm, y la 
varianza entre 8.67 y 10.79; para el canal alto, la media se encuentra entre –95.43 y 
–95.34 dBm, y la varianza entre 13.82 y 15.68; lo que indica que no son similares y 
cambian de manera considerable con respecto a las mediciones de lunes a viernes.

Adicionalmente, se analiza el parámetro de autosimilitud H = 1+a/2, denomina-
do parámetro de Hurst (H), el cual se utiliza como medida de dependencia a largo 
plazo de la serie de tiempo, para comprobar su posibilidad de pronóstico. En este 
parámetro, a es una pendiente de la línea de regresión [37]. En las Figuras 3.8, 3.9 
y 3.10, se estima el parámetro de Hurst para los canales medidos. Los tres canales 
tienen un alto grado de autosimilitud, puesto que H  >  0.5; no obstante, el canal 
de ocupación baja presenta una mejor probabilidad de pronóstico que los canales 
restantes, debido a que su H es más cercano a 1. 

Figura 3.8: Estimación del parámetro de Hurst para el canal de ocupación baja.
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Figura 3.9: Estimación del parámetro de Hurst para el canal de ocupación media.

Figura 3.10: Estimación del parámetro de Hurst para el canal de ocupación alta.
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3.4.	 Modelos propuestos para predecir la ocupación espectral
A continuación se describen los modelos para pronosticar el comportamiento de las 
señales medidas, a partir de un análisis del estado de la cuestión para la predicción 
del espectro en redes de CR [38]. Para esto, los modelos se clasifican en dos, según 
el análisis de la serie de tiempo: análisis lineal, entre los que se usan el modelo auto-
rregresivo integrado de media móvil estacional (SARIMA) y el modelo de heteroce-
dasticidad condicional autorregresiva generalizada (GARCH); y el análisis no lineal, 
basado en el estudio de los modelos como Markov, el de “descomposición de modo 
empírico-vector de soporte para regresión” (EMD-SVR) y el neuronal de wavelet.

3.4.1.	 Modelo SARIMA 
Distintos estudios han demostrado que el modelo autorregresivo integrado de media 
móvil estacional (SARIMA) es adecuado para analizar series de tiempo con estacio-
nalidad [39]-[41]. En los sistemas cognitivos, se ha utilizado SARIMA para modelar 
el ciclo de trabajo de un canal GSM [42]. Igualmente, el ciclo de trabajo en [43] fue 
pronosticado usando el modelo autorregresivo con transformaciones logit; mientras 
que para la investigación de la presente tesis, se usa SARIMA para modelar la poten-
cia recibida en tres canales GSM, con diferentes niveles de ocupación.

En general, si una serie de tiempo exhibe una estacionalidad potencial (indicada 
por s), entonces es ventajoso utilizar un modelo ARIMA estacional (p, d, q)(P, D, Q)s. 
Donde d es el nivel de diferenciación no estacional; p es el orden autorregresivo (AR) 
no estacional; q es el orden de la media móvil (MA) no estacional; P es el número de 
términos autorregresivos estacionales; D es el número de diferencias estacionales; y 
Q es el número de términos de media móvil estacional. 

El modelo de media móvil integrado autorregresivo estacional de Box-Jenkins 
[44] está dado por:

∅p (B) Φp (B
s) ∇d ∇s xt = θq (B) ΘQ(Bs)εt

(3.5)

Donde B es el operador de desplazamiento hacia atrás; xt es la serie de tiempo obser-
vada de la carga en el tiempo t; y ε

t
 es el error distribuido normalmente, idéntico e in-

dependiente (shock aleatorio) en el periodo t. Además, , ɸp(Bs) 
y ΘQ(Bs) son los operadores AR(p) y MA(q) estacionales, respectivamente, los cuales  
se definen como:

Φp (B
s) = 1–Φ1B

s-Φ2 B
2s–  –Φp B

Ps (3.6)

ΘQ (Bs) = 1–Θ1 B
s–Θ2 B

2s–  –ΘQ BQs (3.7)

Donde ɸ1, ɸ2,..., ɸp son los parámetros del modelo AR(p) estacional, Θ1, Θ2,…, ΘQ 
son los parámetros de la MA(q) estacional [40].
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La metodología de Box-Jenkins [44] se aplica al modelo ARIMA (autorregresivo 
integrado de media móvil) para encontrar el mejor ajuste de una serie de tiempo a 
sus valores anteriores, con el fin de hacer previsiones. La metodología de Box-Jenkins 
consta de cuatro pasos iterativos [45]:

Paso 1: Identificación

Este paso se enfoca en la selección de d, D, p, P, q y Q. El número de orden se 
puede identificar mediante la observación de las muestras de la FAC (función de 
autocorrelación) y de la FACP (unción de autocorrelación parcial).

Paso 2: Estimación

Los datos históricos se utilizan para estimar los parámetros del modelo tentativo 
del Paso 1.

Paso 3: Diagnóstico de verificación

La prueba de diagnóstico se utiliza para comprobar la idoneidad del modelo 
tentativo.

Paso 4: Pronóstico

El modelo final del Paso 3 se utiliza para pronosticar los valores [33].

3.4.2.	 Modelo GARCH 
El modelo de heterocedasticidad condicional autorregresiva generalizada (GARCH) 
ha sido usado para modelar el ruido aditivo en un método de detección de espectro 
de banda ancha para redes de radio cognitiva [46]; también se ha aplicado amplia-
mente en el modelamiento y pronóstico del tráfico para diferentes redes de comuni-
cación [47]-[50]. Varios modelos han sido sugeridos para la captura de las caracterís-
ticas especiales de datos, y la mayoría de estos modelos tienen la propiedad de que 
la varianza condicional depende del pasado. Los modelos utilizados para estos casos 
son: heterocedasticidad condicional autorregresiva (ARCH), introducido por [51], 
y el ARCH generalizada (GARCH) dado por [52]. El modelado ARCH-GARCH 
considera la varianza del error condicional como una función de la comprensión del 
pasado de la serie.

El modelamiento ARCH puede requerir un gran valor de retrasos q, por tanto, un 
considerable número de parámetros. Esto puede resultar en un modelo con muchos 
parámetros, lo que va en contra del principio de parsimonia; esto implica muchas ve-
ces dificultades cuando se utiliza el modelo para describir los datos en forma adecua-
da. Un modelo GARCH puede contener menos parámetros en comparación con un 
modelo ARCH; esto hace que el modelo GARCH pueda ser preferible al ARCH [53], 
[54]. Este hecho no es analizado en esta investigación, aunque es discutido en [55]. 

El modelo GARCH (p,q) emplea la Ecuación (3.17) para los retornos logarítmi-
cos x

t
; pero la ecuación de desviación estándar incluye nuevos términos para q, es 

decir [54]:
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xt = σtεt, εt ~ N (0,1) (3.8)

σt = α0 + α1xt-1 +  + αqxt-q + β1σt-1 +  + βpσt-p
(3.9)

Donde, ahora t > max(p,q) y los componentes restantes son como los del modelo 
ARCH. Los parámetros del modelo son: α

0
, α

1
,…, α

q
, β

1
,…, β

p
 para algunos enteros 

positivos p, q. 

3.4.2.1.	 Modelo ARCH(q)
Si ɛt es el ruido blanco gaussiano con media igual a 0 (cero), la varianza es igual a la 
unidad, y H

t
 es la información establecida en el tiempo t dada por H

t
 = {x

1
,x

2
…,x

t-1
}. 

Entonces, el proceso {xt} es ARCH(q) (propuesto por Engle en 1982) si:

x
t
 = σ

t
ɛ

t
(3.10)

Donde:

E(x
t
|H

t
) = 0 (3.11)

Var(x
t
| H

t
)=σt

2=α0+ αixΣ (3.12)

Y el término de error ɛ
t
 está dado por:

E(ɛ
t
|H

t
) = 0 (3.13)

Var(ɛ
t
|H

t
) = 1 (3.14)

Las Ecuaciones (3.13) y (3.14) muestran que el término de error ɛ
t
 es una diferencia 

martingala, condicionalmente estandarizada, definida de la siguiente manera: una 
serie estocástica {x

t
} es una diferencia martingala si sus expectativas con respecto a 

los valores pasados de otra serie estocástica Yi es 0 (cero), es decir que [54]:

E(xt+i|Yi,Yi-1,…,)=0 (3.15)

Para i = 1, 2,…. En este tipo de impacto del pasado, la desviación estándar se asume 
como una función cuadrática de innovaciones retrasadas. El coeficiente (α

0
, α

1
,…, α

q
), 

consistentemente, puede estimarse mediante la regresión {x
t2
} en x

2t-1
, x

2t-2
,…, x

2t-q
. 

Para asegurar que la desviación estándar no sea negativa, se requiere α
0
 ≥ 0, α

i
 ≥ 0 para 

todo i = 1, 2,…, q.

Basándose en la supuesta normalidad de ɛ
t
, se adopta el método de estimación 

de máxima verosimilitud. Si x
1
, x

2
,…, x

t
, es un resultado de un proceso ARCH(1), 

entonces la probabilidad de los datos puede ser escrita como un producto de las 
condicionales [54]:
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f(x
1
,x

2
,…,xt|θ;x

1
)=f(xt|xt-1)f(xt-1

|xt-2)…f(x
2
|x

1
)f(x

1
|θ) (3.16)

Donde θ = (α
0
, α

1
)’.

3.4.2.2.	 Modelo GARCH (p,q)
El  GARCH (p,q) es una generalización del GARCH(1,1), con p como el retraso 
autorregresivo y q como el retraso promedio móvil. 

Formalmente, un proceso {x
t
} es GARCH (p,q) si [54]:

xt = σt ɛt (3.17)

σt = 
α0 + Σi=1 αixt-i + Σj=1 βj σt-j = α0 + α(B)xt + β(B)σt (3.18)

Donde α(B) y β(B) son los polinomios en el operador dados por:

α(B)=α1B+⋯+αq B
q (3.19)

Y por

β(B)=β1 B+⋯+βp B
p (3.20)

Con las restricciones α
0
>0, α

i
≥0 y β

j
≥0 para i = 1, 2,…, q y para  j = 1, 2,…, p, im-

puestas con el fin de que la varianza condicional se mantenga positiva. La Ecuación 
(3.18) se puede expresar como [54]:

(1-β(B)) σt = α0 + α(B)xt (3.21)

El modelo GARCH(0,q) es el mismo modelo ARCH(q) y para p=q=0, se tiene un 
modelo GARCH(0,0) que es un simple ruido blanco. Al igual que en el modelo 
ARCH(q), la media condicional de {x

t
} es 0 (cero), es decir, E(x

t
|H

t
) conlleva a que 

la serie {x
t
} sea una diferencia martingala y, al analizar {x

t
}, se observa que no hay 

correlación [56]. Asumiendo que el proceso GARCH(p,q) es estacionario de segundo 
orden [54], es decir:

Var(xt) = E(xt ) = 
α0

(3.22)

La autocovarianza de un modelo GARCH (p,q) para k ≥ 1, donde k es el retraso [54], es:

E(x
t
 x

t-k
)=0 (3.23)
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Ya que xt es una diferencia martingala [56]. Así, el modelo GARCH (p,q) no mues-
tra autocorrelación en la serie de retorno {x

t
}. Sin embargo, los retornos cuadrados 

muestran autocorrelación, a pesar de que los retornos no están correlacionados.

Expresando x
t2
 en términos de vt = x

t2
-σ

t2
, se tiene [54]:

xt =σt +vt =α0 + ∑i=1 (αi + βi ) xt-j -∑j=1  βjvt-j +vt (3.24)

Donde α
i
=0 para i > q, β

j
=0 para i > p, y v

t
 es otra diferencia martingala, lo que signifi-

ca que E(v
t
)=0. Para encontrar el proceso GARCH (p,q), se resuelve α

0
 en la Ecuación 

(3.24) y, expresando la varianza de x
t
 como σɛ

2
, se tiene [54]:

α0 = σε (1-∑i=1 αi -∑j=1 βj) (3.25)

Y sustituyendo la Ecuación (3.25) en la (3.24), se llega a:

(3.26)

La autocovarianza de los retornos cuadrados para el modelo GARCH (p,q) [54] viene 
dada por:

(3.27)

Por tanto, la ACF (función de autocorrelación) y la PACF (función de autocorre-
lación parcial) de los retornos cuadrados en un proceso GARCH tienen el mismo 
patrón que las de un proceso ARIMA. Al igual que en un modelo ARIMA, la ACF 
y la PACF son útiles en la identificación del orden p y q del proceso GARCH (p,q).

A continuación, se presentan otros modelos utilizados para describir el com-
portamiento de las series de tiempo no lineales. La no linealidad en la serie, me-
dida para la presente investigación, se observa especialmente en el análisis a corto 
plazo [23]. 

3.4.3.	 Modelo oculto de Markov
En redes de CR, los estados de ocupación (ocupado o libre) están ocultos, ya que nos 
son directamente observables. Por tanto, el modelo de Markov se ha usado en redes 
cognitivas para pronosticar los estados de ocupación del canal [57]-[61]; también se 
ha empleado una cadena de Markov en tiempo discreto para modelar los ciclos de 
trabajo de canales de diferentes tecnologías inalámbricas.
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Un modelo oculto de Markov (HMM) es un modelo matemático en el que el 
sistema que está siendo modelado contiene un proceso oculto de Markov. Los 
parámetros del modelo son desconocidos y deben determinarse a partir de un 
conjunto de datos observables. La técnica tiene su origen en el reconocimiento 
de voz y el procesamiento de señales, y su aplicación se ha incrementado en las 
series de tiempo. La idea principal detrás de un HMM es que el estado latente del 
sistema y otra información no observable se ocultan en un proceso de observa-
ción, que está afectado por algo de “ruido”. Esta información oculta se supone 
que sigue la dinámica de una cadena de Markov de estado finito en tiempo dis-
creto o continuo [62].

El modelo de Markov empleado en esta tesis hace uso de un cambio de medida de 
probabilidad, de un filtrado recursivo y de un algoritmo de estimación; esto con el fin 
de pronosticar las diferentes potencias recibidas en canales GSM, y no los habituales 
estados de ocupación del canal (ocupado y libre) desarrollados en trabajos anteriores 
[57]-[60]. A continuación, se describen los componentes usados en el modelo.

En un HMM, una cadena de Markov está embebida en un proceso estocástico, 
el cual corresponde a una serie de observaciones. La propia cadena de Markov no 
es observable; se “oculta” en las observaciones y su objetivo es estimar la cadena de 
Markov subyacente, es decir, filtrar la secuencia {x

k
} de las observaciones, por lo 

que se asume que la cadena de Markov subyacente x
k
 es homogénea con espacio de 

estado finito en tiempo discreto. 

Bajo la medida del mundo real P, la cadena de Markov sigue la dinámica 
X

k+1 
= ΠX

K
 + V

k+1
, donde Π es la matriz de probabilidad de transición y Vk+1 es un 

incremento martingala. El proceso de observación se denota por {y
k
} y puede seguir 

diferentes tipos de dinámicas.

Se destaca la importancia del número de estados N de la cadena de Markov, ya 
que la cadena de Markov es oculta, lo que conlleva a que el número de estados no sea 
observable. Una elección razonable del número de estados tiene que ser hecha sobre 
la base del proceso observado.

El espacio de estado M es finito, más específicamente M = {m
1
, m

2
,…, m

N
}, y, 

como se mencionó antes, puede estar asociado con la base canónica de RN. En un 
HMM ergódico, todos los estados están interconectados; por lo tanto, cada estado 
se puede alcanzar desde cualquier otro estado. Otra característica importante de un 
HMM es el número M de observaciones distintas. Cuando el proceso de observación 
es discreto, se selecciona un conjunto de observaciones distintas. La matriz de 
probabilidad de transición Π = {π

ji
} es otro elemento de gran importancia en un 

HMM y define la distribución de probabilidad de transición de estado, mientras que 
la distribución de probabilidad del proceso de observación es el siguiente elemento 
clave. Por último, el HMM se caracteriza por la distribución del estado inicial 
X = {X

ji
}, donde X

j
 = P(x

1
 = m

j
), para todo 1 ≤ j ≤ N [62].
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3.4.3.1.	 Cadenas de Markov
Un proceso de Markov es un proceso aleatorio sin memoria. El estado futuro del pro-
ceso solo depende de su estado actual; condicionalmente, esto es independiente del 
pasado. Se tiene en cuenta la discusión en [63], y se asume que la cadena de Markov 
tiene un conjunto finito y contable de estados.

3.4.3.2.	 Cadenas de Markov en tiempo discreto
Sea (Ω, F, P) un espacio de probabilidad y (X

k
)kЄN una sucesión de variables aleato-

rias con valores en el espacio de estado M = {m
1
, m

2
,…, m

N
}, donde x es una función 

x: Ω→M y N es el conjunto de números naturales.

El proceso x es una cadena de Markov si satisface la propiedad de Markov [62].

P(XK+1 = mx |x0 = m0, .....,xk =mk) = P(xk+1
 = mx | xk =mk)

∀k ≥ 1 y m0,m1,….,mk ∈ M
(3.28)

La distribución inicial de x está definida por X = (X
m
: mЄM), X

m
 = P(x = m) = P ({w: x 

(w) = m}). Además, la cadena de Markov (X
k
)kЄN se caracteriza por su matriz de 

probabilidad de transición Π. Para un elemento en particular π
ji
 de la matriz de pro-

babilidad de transición Π se tiene [62]:

πji= P(xk+1
=j| xk=i),i,j Є M (3.29)

Donde πji ≥ 0 ∀ (j,i)∈M2  y ∑j∈Mπji=1 ∀i∈M.

Esta etapa de probabilidades de transición π
ji
 para la cadena de Markov indica la 

probabilidad de cambiar del estado i al estado j. La cadena de Markov es homogé-
nea, esto es, que las probabilidades de transición πji= P(xk+1

=j| xk=i) no dependen del 
tiempo k.

Las probabilidades de transición de h pasos adelante pueden calcularse multipli-
cando la matriz Π por sí misma h veces. Esta matriz se denota por Π

h
 y π

ji(h) 
= (Π

h
)

ji
 es 

la (j,i) entrada en la matriz de probabilidad de transición de h pasos Π
h
.

Los estados de una cadena de Markov pueden ser representados por la base ca-
nónica {e

1
, e

2
,…, e

N
} de R

N
, donde ei = (0,…, 0, 1, 0,…, 0)T Є R

k
, donde T denota 

la transpuesta del vector fila. Esto se asocia con el espacio de estados M. Cuando 
m

k
 = j, entonces la cadena de Markov X

k
 se representa por un vector unitario con el 

elemento 1 en la fila j, y 0 en otro lugar. La expectativa condicional de X
k+1 

es, por 
tanto, dada por la j

th
 columna de la matriz de probabilidad de transición [62]:

(3.30)
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Por tanto, se tiene:

E(X
k+1 

| X
k
) = E(X

k+1 
| X

k
, X

k-1
, …) = Πx

k
(3.31)

En la predicción de los estados de una cadena de Markov representados por los vec-
tores unitarios se puede expresar la cadena de Markov [62] como:

X
k+1 

= ΠX
k
 + V

k+1
(3.32)

Donde V
k
 es un incremento martingala [64]. No es posible predecir V

k
 sobre la base 

de los estados anteriores del proceso y V
k+1

 puede encontrarse a partir de la siguiente 
diferencia [62]:

V
k+1

 = X
k+1

 – E(X
k+1

 | X
k
, X

k-1
,…) (3.33)

La dinámica de X en la Ecuación (3.33) implica que X
k+h

 = Π
h
X

k
 + V

k+h
 + ΠV

K+h-1
 

+ Π
2
V

k+h-2
 +…+ Π

h-1
V

K+1
. Ya que V

k
 es un incremento martingala, se deduce que la 

predicción del h-paso adelante de la cadena de Markov [62] está dada por:

E(X
k+h

 | X
k
, X

k-1
,…) = Π

h
X

k
(3.34)

3.4.3.3.	 Cambio de medida de probabilidad
A continuación, se ofrece un resumen de un cambio de técnica de medición de pro-
babilidad para el proceso de filtrado. El cambio de la técnica de medida se utiliza 
ampliamente en aplicaciones de filtrado y se introdujo para el filtrado estocástico en 
[65]. En [66], se utiliza este cambio, el cual se basa en una versión de tiempo discreto 
del teorema de Girsanov para derivar filtros óptimos. La técnica permite hacer cálcu-
los bajo una medida matemáticamente “ideal”, denominada medida de probabilidad 
de referencia, y se usa en esta tesis para el pronóstico de la potencia recibida de tres 
distintos canales GSM. 

Esta nueva medida de probabilidad “ideal” es equivalente a la medida del mundo 
real, que es la medida bajo la cual se tiene el proceso de observación. Las observa-
ciones bajo la nueva medida son variables independientes e idénticamente aleatorias. 
La cadena de Markov sigue la misma dinámica tanto con la medida de probabilidad 
de referencia como con la medida del mundo real. El cambio de la medida real a la 
medida ideal conduce a formas más fáciles de calcular filtros, como los resultados de 
tipo Fubini, los cuales se pueden emplear en lugar de cálculos directos, que requieren 
métodos difíciles de semimartingala [62].
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3.4.3.4.	 Cambio de técnicas de medición
La teoría de la evolución de las medidas se basa en la equivalencia de las dos medidas 
de probabilidad enlazadas a través del teorema de Radon-Nikodym [66]. Si (Ω,F) es un 
espacio medible, se supone a P como una medida de probabilidad sobre F. Para cons-
truir una medida de probabilidad equivalente  en (Ω,F), se usa el siguiente teorema.

Si P y  son dos medidas de probabilidad con P << , entonces existe una función 
no negativa f tal que [62]:

P(A) = ∫A  f d  f ∀A ∈ F (3.35)

Para dos de estas funciones f  y g se asume (f ≠ g) = 0, por lo que la función no ne-
gativa es única.

Del anterior teorema se puede escribir [62]:

∫A  dp = ∫A   d  ∀A ∈ F (3.36)

La función medible  es el teorema de Radon-Nikodym derivado de P con respecto 
a . La nueva medida de probabilidad  en (Ω,F) se define a través del teorema de 
Radon-Nikodym. Entonces:

(3.37)

De lo que se deduce que [62]:

 (A) = ∫A ɅdP ∀A ∈ F (3.38)

Es necesario realizar las derivaciones de filtro para los procesos de la cadena de 
Markov, con el fin de considerar las expectativas condicionales que relacionan las 
dos medidas equivalentes [66].

El teorema de Bayes condicional es fundamental en la obtención de muchos resul-
tados importantes. Para las aplicaciones de filtrado que se analizan a continuación, 
se necesita una versión modificada del teorema de Bayes, llamado teorema condicio-
nal de Bayes para procesos estocásticos [62].

Si se tiene:

Ʌt ≔E[Ʌ|Ft] (3.39)

Donde ˄ es la derivada de Radon-Nikodym Ʌ ≔ . Entonces el proceso Ʌt es un 
martingala.
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3.4.3.5.	 Cambio de medida para procesos de tiempo discreto
En el tiempo discreto, sea {X

k
}, k Є N una secuencia de variables aleatorias con fun-

ciones de densidad de probabilidad (pdf) positivas Φ
k
 en (Ω,F,P). Correspondiente a 

esta secuencia, se tiene la filtración {F
k
} generada por σ{X

1
,…, X

k
}. Se define una 

nueva medida de probabilidad  en (Ω, U
k
≥F

k
), de manera que {X

k
} es independiente 

e idénticamente distribuida (IID) con pdf  positiva α.. Para alcanzar este objetivo, se 
define  [62].

Considerando,

 (w)| Fk ≔Ʌk (w) (3.40)

Las variables aleatorias Ʌ
k
, k>0 son P-martingalas bajo F

k
 y E[Ʌ

k
] = 1. Además, de 

acuerdo con , {X
k
} es una secuencia de variables aleatorias IID con pdf  α [62].

3.4.3.6.	 Filtros recursivos y adaptativos
Los filtros adaptativos permiten que los coeficientes se ajusten a las situaciones ac-
tuales de la serie. Este ajuste se consigue con la ayuda de un algoritmo recursivo 
dentro del filtro. En consecuencia, se crea un modelo de “autosintonizado”, el cual 
se adapta a los cambios en los datos de la serie de tiempo. En un filtro recursivo, los 
valores de salida del filtro anteriores se utilizan como entradas para los cálculos.

Primero, se calculan los filtros recursivos para la expectativa condicional  
Ξ

k
= E [Ʌkxk|Fk ]. Dk+1

 es una matriz diagonal cuyos elementos d
ij
 se definen  

por [62].

σi∅(y k+1)

∅
dij =

0 para otro caso

para i = j (3.41)

Los elementos de la matriz diagonal D
k+1

 para el caso i=j son los elementos, com-
ponente a componente, del proceso λ

l
 definido por la derivada de Radon-Nikodym.

El filtro recursivo para Ξk, de acuerdo con [62], es:

Ξk+1
=ΠDk+1

 Ξk (3.42)

Con el fin de obtener estimadores recursivos óptimos para los parámetros del mo-
delo, primero se analiza la cadena de Markov X

k
 con la dinámica X

k+1
 = ΠX

k
+V

k+1
. 

A continuación, se consideran los siguientes procesos [62], [66]:
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Inicialmente, el número de saltos de una cadena de Markov, desde el estado r al 
estado s en el tiempo k está definida por:

(3.43)

En segundo lugar, se tiene en cuenta el tiempo de ocupación, el cual corresponde a 
la longitud de tiempo x que lleva en el estado r hasta el instante k. Y está dado por:

(3.44)

También se necesita un proceso auxiliar para estimar los vectores π,α,γ  y  ξ y esto 
tiene la forma:

(3.45)

Donde g es una función, que es g(y)=y o g(y)=y2.

Para cualquier proceso H
k
 F

y-adaptado
 se escribe . La expectativa 

condicional de Hk dado  se denota por . A continuación, 
se desarrollan relaciones recursivas para las expectativas condicionales de los proce-
sos definidos con anterioridad.

Aplicando el teorema de Bayes [62], se considera:

(3.46)

Aunque no se puede encontrar una expresión recursiva para , se encuentra 
una para el proceso vectorial .

Las relaciones recursivas para  tomadas de 
[62], se presentan a continuación.

Si D es la matriz diagonal definida anteriormente, entonces:

(3.47)

(3.48)
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(3.49)

3.4.3.7.	 Movimiento browniano
Este tipo de modelos se pueden expresar, según [67], mediante la siguiente ecuación 
estocástica diferencial:

dxt =[θt - αtxt] dt + utdWt (3.50)

W
t
 es el movimiento browniano bajo una medida de probabilidad P, x

t
 es un proceso 

de Markov. Los parámetros α
t
, θ

t
 y u

t
 son funciones deterministas de tiempo t.

3.4.4.	  Modelo de pronóstico EMD-SVR 
Como se presenta en la Figura 3.11, el modelo de pronóstico EMD-SVR utiliza, prin-
cipalmente, el algoritmo de la EMD para descomponer las series de datos {x

1
,…,x

l
} 

en un conjunto finito de funciones de modo intrínsecas (IMF); luego se realizan los 
pronósticos de estas IMF con el modelo SVR para obtener el valor pronosticado 

; y por último, el valor pronosticado se encuentra con la suma de los 
resultados pronosticados con anterioridad [68].

Usando la EMD, las distintas características de la información de los datos sin 
procesar se pueden mostrar en diferentes escalas, por lo que este método permite 
capturar mejor las fluctuaciones locales de los datos sin procesar; además, cada IMF 
tiene características de frecuencia similares, componentes de frecuencia más simples 
y una fuerte regularidad; por lo tanto, este modelo puede reducir la complejidad del 
modelado SVR y mejorar la eficiencia y precisión del pronóstico SVR [68].
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Entrada de la serie de datos
{x1, ... ,xl}

Descomposición EMD

imf
1

Pronóstico
SVR

Pronóstico
SVR

Pronóstico
SVR

imfi rn... ...

imf
1 
(l + 1) imfl (l + 1) rn 

(l + 1)

x (l + 1) = ∑  imfl (l + 1) + rn (l + 1)

Figura 3.11: Diagrama de flujo del modelo EMD-SVR [68].

El modelo de vector de soporte para regresión (SVR) es un método adecuado para 
el pronóstico de señales no estacionarias; a su vez, la descomposición de modo em-
pírico (EMD) ha sido usada para el análisis de señales no lineales y no estacionarias. 
Para sistemas cognitivos, en [68] se propone el uso de un nuevo algoritmo que com-
bina los métodos anteriores, llamado EMD-SVR, y que pronostica la señal de un 
sistema de monitorización de frecuencia de radar.

3.4.4.1.	 Descomposición del modo empírico
El principio de la EMD es descomponer una señal x(t) en una suma de funciones que 
satisface dos condiciones [69]:

1.	 El número de extremos y el número de cruces por 0 (cero) debe ser igual o diferir 
en más de 1 (uno).

2.	 El valor medio de la envolvente definida por los máximos locales y los mínimos 
locales es 0 (cero) [69].
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Estas funciones se conocen como funciones de modo intrínsecas (IMF), y se denotan 
imfi(t). Las IMF se obtienen utilizando el siguiente algoritmo [70]:

1.	 Inicializar: r
0
(t)=x(t),i=1

2.	 Extraer el i-th IMF:

a.	 Inicializar: h
0
(t)=r

i-1
(t),j=1

b.	 Extraer los mínimos y máximos locales de h
j-1

(t) 

c.	 Interpolar los máximos locales y los mínimos locales por un spline cúbico 
para formar envolventes superiores e inferiores de h

j-1
(t)

d.	 Calcular la media m
j-1

(t) de las envolventes superiores e inferiores 

e.	 h
j
(t)= h

j-1
(t) - m

j-1
(t)

f.	 Si al detenerse el criterio es satisfecho, establecer entonces  
imfi(t)=h

j
(t); si no, ir a (b) con j=j+1

3.	 r
i
(t)=r

i-1
(t) - imfi(t)

4.	 Si r
i
(t) todavía tiene al menos 2 extremos, entonces ir al paso 2 con i=i+1; de otra 

forma, la descomposición ha finalizado y ri(t) es el residuo.

Al final del algoritmo se obtiene:

x(t) = ∑i=1 imfi (t) + rn(t) (3.51)

Donde rn(t) es el residuo de la descomposición, que puede ser la tendencia media o 
una constante.

3.4.4.2.	 Vector de soporte para regresión
Se considera un conjunto de datos de entrenamiento , donde cada xi Є Rn 
denota un valor de entrada y tiene un valor objetivo correspondiente yi ∈ R. El SVR gené-
rico construye una función lineal [71]:

f(x)=〈w,Φ(x)〉 + b (3.52)

Donde φ(⋅) es un mapeo no lineal de Rn a un mayor espacio dimensional llamado 
“espacio de características”. El vector de regresión w (w ⊂ R

n
) y el término de tenden-

cia b (b ∈ R) dan las soluciones al siguiente problema de optimización convexa [72]:

minw,  L=C ∑i=1 (ξi+ξi
*) +  ‖w‖2 (3.53)

(3.53A)
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Donde el parámetro ε ajusta el tamaño del error de aproximación de la regresión para 
controlar el número del vector de soporte y la capacidad de generalización. Cuanto más 
grande es el valor de ε, la precisión es más baja. La presencia de errores en el conjunto de 
datos se mide por otros parámetros internos ξi y ξi* llamados “variables de holgura”, que 
caracterizan la desviación de muestras de entrenamiento fuera del ε-margen [72].

El término C en la Ecuación (3.53) es una constante que determina sanciones 
a los errores de estimación. Un término C considerable asigna grandes sanciones a 
los errores, de forma que la regresión es entrenada para minimizar el error con una 
menor generalización; mientras que un término C pequeño asigna un menor número 
de sanciones a los errores [73]. En el estándar SVR, los valores de ε y C se deben 
especificar de antemano.

El problema de optimización anterior se puede resolver de manera más fácil con 
esta doble formulación [73]:

(3.54)

Teniendo en cuenta que:

(3.55)

Donde las variables αi y αi
* se determinan mediante técnicas de programación cuadrá-

tica. Entonces, la solución del vector w y la función de regresión SVR se obtienen de 
las siguientes expresiones [73]:

(3.56)

(3.57)

En la Ecuación (3.57), el producto escalar en el espacio característico ‹φ(x
i
),φ(x)› pue-

de ser remplazado por una función kernel k(x
i
,x). Las funciones kernel permiten que 

el producto punto se realice en el espacio característico de alta dimensión, usando 
datos de entrada del espacio, de bajas dimensiones, sin conocer la transformación φ 
[73]. La función kernel más utilizada es la función de base radial (RBF) gaussiana 
con un ancho σ [73]:

(3.58)
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3.4.5.	 Modelo neuronal wavelet
Para sistemas cognitivos, en [74] se usa una red neuronal de propagación hacia atrás 
para predecir el estado del espectro, y en [75], [76] se optimiza la red neuronal con 
un algoritmo genético. De igual manera, en [77] se utiliza una red neuronal para 
pronosticar la potencia en las bandas de televisión y GSM900. Finalmente, en [78] se 
modela y pronostica el espectro utilizando las wavelets de Daubechies.

Lo anterior demuestra el carácter promisorio de las redes neuronales y de las wa-
velets en el pronóstico de la potencia recibida en canales inalámbricos. Por tanto, en 
esta tesis se propone el uso de una teoría que combina las disciplinas wavelets y redes 
neuronales [79] para pronosticar la potencia recibida en canales GSM. En seguida, 
se detallan los métodos que componen el modelo neuronal wavelet.

3.4.5.1.	 Wavelet
Las wavelets son una clase de funciones usadas para localizar una determinada fun-
ción tanto en la posición como en la escala. Las wavelets son la base de la transforma-
da wavelet que “divide los datos de las funciones u operadores en diferentes compo-
nentes de frecuencia, y entonces estudia cada componente con una resolución igual 
a la de su escala” [79], [80].

Una wavelet es una función de “pequeña señal”, usualmente denotada ψ(·). Una 
pequeña señal crece y decae en un periodo de tiempo finito, en oposición a una “gran 
señal”, tal y como la señal seno, la cual crece y decae en varias ocasiones durante un 
periodo de tiempo infinito. Por lo general, la función ψ(·) es considerada como la 
wavelet madre. Una familia de wavelets puede ser creada por traslación y expansión de 
esta wavelet madre [81].

La transformada wavelet discreta (DWT) usa wavelets madre como las de Haar, 
Daubechies, Coefiman, entre otras. Con la DWT se analiza una señal en diferentes 
bandas de frecuencia, con diferentes resoluciones, para descomponer la señal en 
alta escala (componentes de baja frecuencia, llamados coeficientes aproximados) y 
baja escala (componentes de alta frecuencia, llamados coeficientes detallados). Por 
tanto, la transformada wavelet es una implementación de un banco de filtros que 
descompone una señal en múltiples señales [82]. Los coeficientes wavelet se pueden 
expresar como [83]:

(3.59)

(3.60)

Donde f[n] es la proyección de la muestra en el dominio del tiempo, φjo,k 
es la función 

de escala y ψj,k es la función de traslación; estas son funciones discretas definidas 
entre [0,M-1], para el total de M puntos. Los coeficientes de la Ecuación (3.59) son 
los coeficientes de aproximación, mientras que los de la Ecuación (3.60) son los 
coeficientes detallados.
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3.4.5.2.	 Red neuronal
Una red neuronal artificial (ANN) es una red, distribuida en paralelo, de unidades de 
procesamiento conectadas llamadas neuronas. Está motivada por el proceso cognitivo 
humano: el cerebro humano es muy complejo, no lineal y paralelo. La red tiene una 
serie de entradas y salidas externas que toman o suministran información al entorno 
circundante. Las conexiones interneuronas se llaman sinapsis, y tienen asociados 
pesos sinápticos. Estos  pesos se utilizan para almacenar el conocimiento que se 
adquiere desde el entorno. El aprendizaje se logra ajustando estos pesos de acuerdo 
con un algoritmo de aprendizaje. Para las neuronas también es posible evolucionar 
mediante la modificación de su propia topología; esta evolución está motivada por 
el hecho de que las neuronas en el cerebro humano pueden morir y pueden crecer 
nuevas sinapsis [81].

Por lo general, se necesita un número de entradas/destino para entrenar una red. Una 
neurona recibe la información numérica a través de un número de nodos de entrada, 
la procesa internamente y se obtiene una respuesta. Es usual que el procesamiento se 
realice en dos etapas: primero, los valores de entrada se combinan linealmente; y luego, el 
resultado se utiliza como argumento de una función de activación no lineal. La combina-
ción utiliza los pesos atribuidos a cada conexión y un término constante. La Figura 3.12 
muestra uno de los esquemas más utilizados para representar una neurona [84].

Figura 3.12: Modelo de una neurona [84].

La salida de la neurona de la Figura 3.12 está dada por:

(3.61)

Donde xi es la entrada a la neurona, wi es el peso, θ es el offset y f es la función de activación.
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3.4.5.3.	 Redes multicapa de alimentación hacia adelante
Las redes neuronales de alimentación hacia adelante contienen una o más capas 
ocultas, cuyos nodos de cómputo son llamados neuronas ocultas. Las neuronas ocultas 
intervienen entre las capas de entrada y las de salida, lo que le permite a la red extraer 
estadísticas de orden superior. Normalmente, en cada capa de la red, las neuronas 
tienen como entradas únicamente las señales de salida de las neuronas de la capa an-
terior. La Figura 3.13 muestra un ejemplo con una capa oculta. Esto se refiere a una 
red 3-3-2, compuesta por 3 nodos de origen, 3 neuronas ocultas (en la primera capa 
oculta) y 2 neuronas de salida [81].

Figura 3.13: Red neuronal multicapa de alimentación hacia adelante [81].

El modelo neuronal de esta investigación hace uso de una red neuronal multicapa de 
propagación hacia atrás, cuyo error en la salida se propaga hacia atrás, para ajustar 
los pesos que conllevan a minimizar el error. Las redes de propagación hacia atrás 
aprenden con el método de gradiente descendente, el cual define cómo se realiza el 
entrenamiento para los nodos de salida en una red multicapa [85].

3.4.5.4.	 Red neuronal wavelet
Las redes neuronales wavelet combinan la teoría de wavelets y redes neuronales. Para 
el modelo propuesto en la presente investigación, se lleva a cabo por separado el 
procesamiento wavelet y de redes neuronales. La señal de entrada primero se des-
compone usando una wavelet madre; luego, los coeficientes se envían a la entrada de 
la red neuronal multicapa de propagación hacia atrás; finalmente, la salida de la red 
neuronal es reconstruida usando el análisis wavelet para obtener el pronóstico de la 
potencia de los canales GSM.
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4.	Resultados y análisis  
de los resultados

Inicialmente, se hizo un análisis estadístico de las tendencias de ocupación espectral 
con base en mediciones de ocupación espectral realizadas en redes móviles para un 
entorno urbano. Luego se efectuó la validación de los modelos de series de tiempo a 
través de la confrontación, en un tiempo, de las medidas de potencia de recepción de 
los canales de ocupación baja, media y alta; lo mismo que del resultado pronosticado 
por los modelos de series de tiempo. 

La evaluación de los resultados obtenidos en los pronósticos de los siguientes 
modelos se hizo con el software Matlab®, en un computador de dos núcleos de 
procesamiento de 2.4 GHz y 4 GB de memoria RAM, y con base en las siguien-
tes variables: tiempo de disponibilidad del canal; tiempo de ocupación del canal; y 
tiempo de observación y análisis de los criterios de error (error porcentual absoluto 
medio simétrico [SMAPE]; error porcentual absoluto medio [MAPE] y error abso-
luto medio [MAE]) [86]. El tiempo de disponibilidad permitió analizar la precisión 
en el pronóstico, con lo que los usuarios de CR podrían usar el tiempo disponible (o 
hueco espectral) en los canales GSM, en un sistema de CR. Asimismo, el tiempo de 
ocupación examinó la precisión en el pronóstico del tiempo en el que los PU utilizan 
los canales GSM.

4.1.	 Análisis estadístico de las tendencias de ocupación espectral  
con base en mediciones de ocupación espectral

La Figura 4.1 muestra una estimación global del ciclo de trabajo desde 54 MHz hasta 
6 GHz. Para cada frecuencia medida, el ciclo de trabajo se calcula como el cociente 
entre el número de muestras de la densidad espectral de potencia (DEP) correspon-
dientes a canales ocupados (tiempo en el que los canales son usados por sus usuarios) 
y el número total de muestras de la DEP capturadas durante el periodo de medida. 
Para cada frecuencia, esta métrica representa la fracción de tiempo durante la cual 
el canal permanece ocupado. Para una determinada banda, el ciclo de trabajo pro-
medio se calcula como la media aritmética de los ciclos de trabajo obtenidos para las 
diversas frecuencias medidas dentro de dicha banda [9], [33]. En la Figura 4.1A, se 
hace evidente que el espectro está siendo subutilizado.
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Figura 4.1: Ciclo de trabajo del rango completo de espectro  
medido durante la Campaña [33].

La Figura 4.1A resume las estadísticas de ocupación promedio de espectro en fun-
ción de los servicios de cada banda, utilizando los equipos de medida. Los resultados 
obtenidos muestran que algunas bandas de espectro están sujetas a moderados nive-
les de utilización (espectro que es usado; pero no durante todo el tiempo); mientras 
que algunas otras exhiben escasa utilización y, en algunos casos, prácticamente no 
se usan [11], [35].

Figura 4.1A: Porcentaje del ciclo de trabajo de acuerdo a los servicios ofrecidos  
en las bandas medidas [33].
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4.2.	 Análisis y validación del modelo SARIMA 
En la Figura 4.2, se presenta la tendencia y estacionalidad en el nivel de ocupación 
de los tres canales; la estacionalidad tiene un periodo de 24 horas, prácticamente sin 
tendencia y con componentes estacionarios, lo cual hace viable el uso de un modelo 
SARIMA para pronosticar el comportamiento del sistema GSM [33].

La diferencia del retardo s, que para este caso se selecciona como cinco (∆5), 
equivale al número de días de la semana en los que la señal es estacionaria [42]. Al 
aplicar la prueba aumentada de Dickey–Fuller [87] en las series de los tres canales 
entre los días lunes y viernes, se rechaza la hipótesis nula de la raíz unitaria, lo que 
indica que existe estacionariedad. Con el fin de encontrar los parámetros del modelo 
SARIMA (p, d, q)(P, D, Q)s, se calcula la autocorrelación simple y parcial para ∆5 de 
los respectivos canales, como se muestra en la Figura 4.2A.

Figura 4.2: Componentes de tendencia y estacionalidad de los canales GSM [33].

Figura 4.2A: Autocorrelación simple y parcial para los canales GSM [33].
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Usando la metodología de Box–Jenkins [44], la Figura 4.2A muestra que la autoco-
rrelación parcial de ∆5 decae a 0 (cero) con un patrón estacional y cruza el nivel de 
confianza, inicialmente, en el retraso 5 para el lado negativo; esto sugiere que podría 
usarse un término AR(1) no estacional y que se podría adicionar MA(5) estacional. 

A fin de evitar el sobreestimado para pronosticar (varianza pequeña y grandes 
errores), se selecciona el criterio de información de Akaike (AIC) [88], con el que 
se evalúan las diferentes combinaciones razonables, como se observa en la Tabla 
4.1. De esta manera, los modelos seleccionados son SARIMA(1,0,5)x(1,0,1)5, 
SARIMA(1,0,5)x(0,0,1)5 y SARIMA(1,0,5)x(0,0,1)5, para los niveles de ocupación 
de los canales bajo, medio y alto, respectivamente; y las ecuaciones que los describen 
en el mismo orden son:

(1-0.0135B)(1-0.55B5) (1-B)(1-B5)xt=(1-0.997B5)(1-0.546B5)εt (4.1)

(1-0.0192B)(1+0.996B5)(1-B)(1-B5)xt "=(1+0.0085B5)εt (4.2)

(1-0.0199B)(1-0.016B5)(1-B)"(1-B5)xt=(1-0.994B5)εt (4.3)

Tabla 4.1: Valores AIC para diferentes modelos.

p d q P D Q
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1 0 5 0 0 1 –8.24 –30.6 –50.82

1 0 5 1 0 0 –8.3 –32.7 –51.7

1 1 5 0 0 1 –14.1 –46.9 –76.2

1 0 5 1 0 1 –8.19 –32.6 –50.9

La Figura 4.3 muestra la validación de los pronósticos de los modelos obtenidos a 
partir de las Ecuaciones (4.1), (4.2) y (4.3), en contraste con los datos medidos para 
las potencias del día viernes desde las 5 p. m. hasta las 6 p. m.
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Figura 4.3: Series de los canales GSM y series pronosticadas  
para el modelo SARIMA.

En las Figuras 4.4 y 4.5, se presentan los tiempos de disponibilidad y ocupación de los 
canales medidos y los pronosticados. Las precisiones promedio obtenidas en el pro-
nóstico de los tiempos disponibles son: 82 %, 54 % y 60 %, y para los tiempos de ocu-
pación equivalen a: 58 %, 77 % y 78 %, entre los datos reales y pronosticados corres-
pondientes a los canales de niveles de ocupación baja, media y alta, respectivamente. 
Además, como es de esperarse, existe una relación inversamente proporcional entre 
la ocupación de canal y su tiempo de disponibilidad, y una relación directamente pro-
porcional entre la probabilidad de ocupación y el tiempo de ocupación de los canales.

Figura 4.4: Tiempo de disponibilidad de los canales para el modelo SARIMA.
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Figura 4.5: Tiempo de ocupación de los canales para el modelo SARIMA.

En la Tabla 4.2, se comparan los datos pronosticados y los medidos con respecto a 
diferentes métodos para estimar el error. De los resultados de la Tabla 4.2 se puede 
observar que el modelo de canal de ocupación baja presenta mejor comportamiento 
frente al error que los modelos de los canales de ocupación media y alta.

Tabla 4.2: Comparación de variables de error para el modelo SARIMA.

Canal SMAPE MAPE MAE

Bajo –0.0170 0.0172 1.6042

Medio –0.0470 0.0466 4.2987

Alto –0.0488 0.0497 4.4195

En la Figura 4.6, se muestra la comparación del rendimiento en el pronóstico, des-
de uno hasta cinco días de entrenamiento del modelo SARIMA. Aquí se observa 
que mientras mayor es el tiempo de observación, menor es el error de predicción; 
aunque no  de una manera significativa. Por ejemplo, para el canal bajo, se logra 
una reducción del error del 2.5 %, a costa de un aumento del 261 % en el tiempo de 
observación; para el canal medio, el error disminuye 7.8 %, con un incremento en el 
tiempo de observación de 158.6 %; y para el canal alto, el error se mitiga un 7.8 %, 
con un crecimiento del 177.1 % para el tiempo de observación. El primer tiempo de 
observación en los tres canales corresponde a un día de entrenamiento, lo que indica 
que, con este tiempo de entrenamiento, se alcanzan errores de predicción aceptables.



69

Modelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitiva

Figura 4.6: Error de predicción vs. tiempo de observación para el modelo SARIMA. 

4.3.	 Análisis y validación del modelo GARCH
Al analizar en detalle la gran cantidad de información adquirida, se observa la exis-
tencia de una desviación estándar; por tanto, se utiliza el modelo GARCH con el 
objeto de pronosticar el comportamiento de la serie medida. 

Los modelos estocásticos ARIMA y SARIMA son métodos de modelamiento 
univariante. La principal diferencia de los anteriores modelos con el modelo GARCH 
es con respecto al supuesto de varianza constante. 

Aunque para el modelo desarrollado se indica que existe estacionariedad en la 
señal original desde el día lunes hasta el día viernes, para este caso se desarrolla la 
quinta diferencia, porque existe un mayor grado de estacionariedad. En la Figura 4.7, 
se presenta la diferencia para cada canal; acá se convierten las medidas del canal a 
retornos por transformación logarítmica. Los retornos logarítmicos se definen como:

(4.4)

Donde Pt es el valor de la potencia en el tiempo t y Pt-1 es el valor de la potencia en el 
tiempo t-1.
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Figura 4.7: Quinta diferencia de las potencias medidas en los canales de la banda GSM.

A continuación, se presenta la prueba estadística formal para establecer la presencia 
de efectos ARCH en los datos y en la correlación. H=0 implica que no existe una 
correlación significativa y H=1 indica que existe una correlación significativa. En las 
Tablas 4.3 y 4.4, todos los valores de p muestran que la Prueba-Q Ljung-Box-Pierce 
y la prueba de ARCH en los retrasos 10, 15 y 20 son significativas; esto indica la 
presencia de efectos ARCH.

Tabla 4.3: Prueba-Q Ljung-Box-Pierce de autocorrelación:  
(en 95 % de confianza) para canales GSM.

Retraso H Valor de p

Prueba estadística
Valor 
crítico

canal 
bajo

canal 
medio

canal 
alto

10 1 0 725124 731923 731240 18.3

15 1 0 725136 731956 731266 24.99

20 1 0 725138 731996 731313 31.41
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Tabla 4.4: Prueba de ARCH Engle de heterocedasticidad:  
(en 95 % de confianza) para canales GSM.

Retraso H Valor de p

Prueba estadística 
Valor 
críticocanal  

bajo
canal medio canal  

alto

10 1 0 574940 578554 576595 18.3

15 1 0 578008 581225 579079 24.99

20 1 0 578710 581829 579500 31.41

La dependencia en los datos x1,…, xn se determinó mediante el cálculo de las corre-
laciones. Esto se hace representando la ACF.

Si la serie de tiempo es el resultado de un fenómeno completamente aleatorio, 
la autocorrelación debe estar cerca de 0 (cero) para todas las separaciones de los 
retrasos. De lo contrario, una o más de las autocorrelaciones serán significativamente 
diferentes de 0 (cero). Otra forma útil para examinar las dependencias de la serie es 
examinar la PACF, donde se elimina la dependencia de los elementos intermedios 
(aquellos dentro de los retrasos). En la Figura 4.8, las gráficas de ACF y PACF de los 
retornos al cuadrado demuestran la existencia de correlación en los datos de ocupa-
ción de los canales.

Figura 4.8: Gráficas de correlación de los canales de la banda GSM.
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A continuación, en las Tablas 4.5, 4.6 y 4.7, se procede a la evaluación y selección del 
modelo GARCH para cada canal.

Tabla 4.5: Comparación de modelos GARCH para el canal bajo.

Modelo AIC BIC Error  
estándar

Logaritmo  
de  

verosimilitud
SMAPE MAPE MAE

GARCH 
(0,1) 201838 201873 7.8x10-4 96127.5 –0.0249 0.0253 2.3606

GARCH 
(1,1) 192263 192309 7.82x10-4 96127.5 –0.0249 0.0253 2.3604

GARCH 
(0,2) 192622 192649 7.8x10-4 96127.5 –0.0248 0.0252 2.3492

GARCH 
(1,2) 192265 192299 0.0016 96127.5 –0.0244 0.0248 2.3075

GARCH 
(2,1) 191587 191621 7.33x10-4 96127.5 –0.0251 0.0255 2.3792

GARCH 
(2,2) 191581 191622 0.0034 96127.5 –0.0243 0.0247 2.3060
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Tabla 4.6: Comparación de modelos GARCH para el canal medio.

Modelo AIC BIC Error 
estándar

Logaritmo 
de 

verosimilitud
SMAPE MAPE MAE

GARCH 
(0,1) 876834 876854 7.6x10-4 422041 –0.0374 0.0393 3.4198

GARCH 
(1,1) 844089 844117 6.6x10-4 422041 –0.0427 0.0440 3.8676

GARCH 
(0,2) 844984 845012 6.6x10-4 422041 –0.0375 0.0395 3.4385

GARCH 
(1,2) 844091 844125 0.0012 422041 –0.0411 0.0429 3.7699

GARCH 
(2,1) 843470 843504 6.0x10-4 422041 –0.0410 0.0427 3.7531

GARCH 
(2,2) 843472 843513 5.0x10-4 422041 –0.0434 0.0452 3.9895
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Tabla 4.7: Comparación de modelos GARCH para el canal alto.

Modelo AIC BIC Error 
estándar

Logaritmo  
de 

verosimilitud
SMAPE MAPE MAE

GARCH 
(0,1) 1223114 1223135 7.8x10-4 608609 –0.0514 0.0542 4.6565

GARCH 
(1,1) 1217225 1217252 6.6x10-4 608609 –0.0551 0.0580 5.0138

GARCH 
(0,2) 1220306 1220333 6.7x10-4 608609 –0.0534 0.0557 4.7957

GARCH 
(1,2) 1217227 1217261 5.3x10-4 608609 –0.0566 0.0591 5.1279

GARCH 
(2,1) 1214308 1214343 6.5x10-4 608609 –0.0540 0.0570 4.9224

GARCH 
(2,2) 1214310 1214352 5.4x10-4 608609 –0.0620 0.0675 5.9397
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La selección del modelo GARCH para cada canal se realiza dándole cumplimiento 
al criterio α

i
+β

i
<1 para que el modelo sea estacionario y, adicionalmente, teniendo 

en cuenta los valores más cercanos a 0 (cero) de MAE, MAPE y SMAPE de las  
Tablas 4.5, 4.6 y 4.7. Por tanto, los modelos seleccionados para el canal bajo, medio 
y alto son GARCH(2,2), GARCH(0,2) y GARCH(0,1), respectivamente.

En la Tabla 4.8, se estiman los parámetros para el modelo de canal bajo, GARCH(2,2), 
en el que se cumple α

1
+α

2
+β

1
+β

2
<1.

Tabla 4.8: Estimación de los parámetros para el modelo de canal bajo.

Parámetro Valor estimado Error estándar Valor t

µ –96.112 0.0019308 –49778.3308

α0 0.003516 0.00041447 8.4833

GARCH(1) 0.098255 0.19212 0.5114

GARCH(2) 0.90062 0.19201 4.6905

ARCH(1) 0.00029573 0.00018772 1.5753

ARCH(2) 0 0.00020886 0

Por tanto, el modelo según la Tabla 4.8 es:

xt = -96.112 + εt (4.5)

σt = 0.003516 + 0.098255σt-1 + 0.90062σt-2 + 0.00029573 ϵt-1 (4.5A)

Para el canal medio, GARCH(0,2), se estiman los valores del modelo presentados en 
la Tabla 4.9.
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Tabla 4.9: Estimación de los parámetros para el modelo de canal medio.

Parámetro Valor estimado Error estándar Valor t

µ –95.061 0.0024331 –39069.8019

α0 5 0.012924 386.8834

ARCH(1) 0.085692 0.0010392 82.4572

ARCH(2) 0.088298 0.0010582 83.4378

Por tanto, se tiene:

xt=-95.061+εt ;    σt
2=5+0.085692 εt-1+0.088298εt-2 (4.6)

Para el canal alto, GARCH(0,1), se obtienen los siguientes parámetros, mostrados 
en la Tabla 4.10.

Tabla 4.10: Estimación de los parámetros para el modelo de canal alto.

Parámetro Valor estimado Error estándar Valor t

µ –94.585 0.0026236 –36051.8702

α0 5 0.015341 325.9324

ARCH(1) 0.86058 0.0044771 192.2169

Entonces, el modelo es:

xt= -94.585 + εt ;        σt = 5 + 0.86058 εt-1 (4.7)

El análisis del modelo ARCH-GARCH se basa en la evaluación de los residuos es-
tandarizados [55]. Uno de los supuestos del modelo GARCH es que, para un buen 
modelo, los residuos deben seguir un proceso de ruido blanco, es decir, se espera que 
los residuos sean aleatorios, independientes e idénticamente distribuidos, siguiendo 
una distribución normal. La Figura 4.9 presenta la relación entre las innovaciones 
(residuales) derivadas del modelo ajustado, las correspondientes desviaciones están-
dar condicionales y los retornos. En esta figura se observa que tanto las innovaciones 
como los retornos exhiben variaciones.
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Figura 4.9: Innovaciones, desviaciones estándar condicionales  
y retornos de los canales GSM.

La Figura 4.10 corresponde a la autocorrelación de las innovaciones estandarizadas 
al cuadrado, en la que no se observa correlación.

Figura 4.10: Autocorrelación de las innovaciones  
estandarizadas al cuadrado de los canales GSM.

En las Tablas 4.11 y 4.12, se presentan los resultados de la prueba-Q Ljung-Box-
Pierce y la prueba de ARCH para el análisis posterior, usando innovaciones estan-
darizadas. Estas pruebas indican que no existe presencia de correlación ni de efectos 
ARCH.
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Tabla 4.11: Prueba-Q Ljung-Box-Pierce en innovaciones estandarizadas  
para canales GSM.

R
et

ra
so

H

Valor de p Prueba estadística 

Valor 
crítico

canal 
bajo

canal 
medio

canal 
alto

canal 
bajo

canal 
medio

canal 
alto

10 0 0.424 0.402 0.701 25787 26701 33455 18.3

15 0 0.7014 0.6883 0.8236 26447 28617 37143 24.99

20 0 0.947 0.876 0.9355 26945 30313 40772 31.41

Tabla 4.12: Prueba de ARCH Engle en innovaciones estandarizadas  
para canales GSM.

R
et

ra
so

H

Valor de p Prueba estadística 

Valor 
crítico

canal 
bajo

canal 
medio

canal 
alto

canal 
bajo

canal 
medio

canal 
alto

10 0 0.539 0.479 0.6212 26930 27093 33757 18.3

15 0 0.776 0.7144 0.7697 27432 28443 36248 24.99

20 0 0.908 0.863 0.8841 27792 29443 38240 31.41

La comprobación de la normalidad se realiza mediante el análisis del histograma de 
los residuos y del gráfico de probabilidad normal, como se observa en la Figura 4.11. 
El histograma de los tres canales muestra que los residuos siguen una distribución 
normal. Asimismo, en el gráfico de probabilidad se observa que la normalidad de los 
residuos es una distribución normal, ya que la mayor parte de los datos se encuentra 
a lo largo de la línea recta. 
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Figura 4.11: Histograma de residuos y de probabilidad normal para los canales GSM. 

La Figura 4.12 presenta la validación de los pronósticos de los modelos obtenidos 
para el día viernes, desde las 5 p. m.  hasta las 6 p. m., a partir de las Ecuaciones (4.5), 
(4.6) y (4.7); lo que es contrastado con los datos medidos. 

Figura 4.12: Series de los canales GSM y series pronosticadas con el modelo GARCH.

En las Figuras 4.13 y 4.14, se presentan los tiempos de disponibilidad y ocupación 
de los canales medidos y los pronosticados. Las precisiones promedio obtenidas en 
el pronóstico de los tiempos de ocupación son: 44 %, 46.6 % y 44.2 %, y para los 
tiempos de disponibilidad equivalen a: 31 %, 30 % y 43 %; entre los datos reales y 
pronosticados correspondientes a los canales de niveles de ocupación baja, media y 
alta, respectivamente. 
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Figura 4.13: Tiempo de ocupación de los canales para el modelo GARCH.

Figura 4.14: Tiempo de disponibilidad de los canales para el modelo GARCH.

En la Figura 4.15, se muestra la comparación del rendimiento en el pronóstico, desde 
uno hasta cinco días de entrenamiento del modelo GARCH. Aquí se observa que, 
para el canal bajo, el error de predicción permanece prácticamente constante para los 
diferentes tiempos de observación; para el canal medio, se alcanza a reducir el error 
máximo en un 5.7 % a costa de un aumento en el tiempo de observación del 72.7 %; 
y para el canal alto, la reducción máxima del error es del 15.3 %, con un incremento 
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en el tiempo de observación del 128.5 %. Al igual que con el modelo SARIMA, basta 
con un día de entrenamiento del modelo GARCH para lograr errores de predicción 
tolerables en los tres canales GSM.

Figura 4.15: Error de predicción vs. tiempo de observación para el modelo GARCH.

4.4.	 Análisis y validación del modelo oculto de MARKOV
El diseño del algoritmo HMM utilizado para pronosticar la potencia recibida en los 
canales GSM se basa en el diagrama de flujo propuesto en la Figura 4.16. Dado que 
las estimaciones de los parámetros se calculan a través del algoritmo EM (expectativa 
de maximización), entonces se escogen los valores iniciales para la implementación. 
Estos valores deben ser razonables para que el algoritmo obtenga los máximos lo-
cales. Los valores iniciales para el algoritmo se encuentran mediante el empleo de 
un método de mínimos cuadrados en los primeros puntos de los datos. Las estima-
ciones de los parámetros resultantes se usan como aproximaciones para los valores 
iniciales de los parámetros ; estos son: α= 1.53, γ= –96.3192 y ξ = 3.2551; α = 0.09, 
γ = –81.8678 y ξ = 6.7551; -α = 0.05, γ = 94.8265 y ξ = 8.7551, para los canales de 
ocupación baja, media y alta, respectivamente. Los - valores iniciales para la matriz 
de probabilidad de transición Π se establecen en 1/N, donde N indica el número de 
estados, como se define en la implementación.
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Inicio

Fijar el número de estados

Crear el número de agrupación 
de datos y el número de pasos

Determinar los valores  
iniciales de π, α, γ, ξ

Se estima el EMV  
para obtener π, α, γ, ξ

Últimos valores de 
agrupación de datos y 

número de pasos

No

Sí

Fin

Definir una nueva medida usan-
do el teorema  

de Radon-Nikodym

Estimar los filtros  
recursivos 

Figura 4.16: Diagrama de flujo de modelo oculto de Markov.
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El valor de la potencia de recepción que se va a predecir se calcula por:

(4.8)

Donde  

La Figura 4.17 muestra la serie de tiempo de los valores medidos y valida los re-
sultados pronosticados para una hora (viernes de 5 p. m. a 6 p. m.), generados por un 
modelo de 3 estados. El número de estados se seleccionó a partir del menor AIC; para 
este caso, es el de 3 estados, comparado con respecto a los valores de 2 y 4 estados. 

En la Figura 4.18, se presenta la evolución de los parámetros α, γ, ξ y la probabili-
dad de transición después de 1440, 1654 y 1879 pasos, para los canales de ocupación 
baja, media y alta, respectivamente.

Figura 4.17: Series de tiempo medidas y pronosticadas para los canales GSM  
con el modelo de Markov.
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Figura 4.18: Evolución de los parámetros α,γ,ξ y la probabilidad de transición  
para los canales GSM; a) ocupación baja, b) ocupación media, c) ocupación alta.
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Las Figuras 4.19 y 4.20 presentan los tiempos de disponibilidad y ocupación de los 
canales medidos y los pronosticados para los modelos de Markov. Las precisiones 
promedio obtenidas en el pronóstico de los tiempos de disponibilidad son: 31 %, 41 % 
y 32 %, y para los tiempos de ocupación equivalen a: 79 %, 46 % y 60 %, entre los 
datos reales y pronosticados correspondientes a los canales de niveles de ocupación 
baja, media y alta, respectivamente.

Figura 4.19: Tiempo de disponibilidad de canales para el modelo de Markov.

Figura 4.20: Tiempo de ocupación de canales para el modelo de Markov.
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En la Tabla 4.13, se presentan los errores entre los datos reales y los pronosticados 
para los modelos de Markov. El modelo de canal de ocupación media presenta erro-
res menores que los modelos de los canales de ocupación baja y alta.

Tabla 4.13: Comparación de variables de error para canales GSM  
con base en el modelo de Markov.

Canal SMAPE MAPE MAE

Bajo –0.0231 0.0227 2.1336

Medio –0.02 0.0189 1.6016

Alto –0.1201 0.1117 4.3067

En la Figura 4.21, se evalúa el rendimiento frente al pronóstico, desde uno hasta 
cinco días de entrenamiento del modelo de Markov. Para el canal medio, el error de 
predicción tiene muy poca variación para los diferentes tiempos de observación; para 
el canal bajo, se alcanza a reducir el error máximo en un 16.6 %, a costa de un au-
mento en el tiempo de observación del 349 %; y para el canal alto, la reducción máxi-
ma del error es del 27 %, con un incremento en el tiempo de observación del 391 %. 
Para el canal medio, se recomienda usar un día de entrenamiento; para el canal bajo, 
es suficiente con el uso de dos días de entrenamiento, y para el canal alto, se sugiere 
emplear cinco días de entrenamiento; ello, con el fin de obtener errores aceptables.

Figura 4.21: Error de predicción vs. tiempo de observación  
para el modelo de Markov.
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4.5.	 Análisis y validación del modelo EMD-SVR
El modelo EMD-SVR presenta un mayor consumo en tiempo de procesamiento que 
los otros modelos presentados, lo que conduce a que los recursos de la máquina 
con la que se realizó la simulación sean insuficientes para un entrenamiento con 
el total de los datos de entrada (lunes a viernes); por tanto, este modelo se entrena 
con 152 000 datos, lo que corresponde a un día de mediciones, aproximadamente; 
además, se pronostican los siguientes 6351 valores que equivalen a la hora de 5 p. m. 
a 6 p. m. del día viernes; luego se validan los resultados. El procedimiento para el 
desarrollo del modelo EMD-SVR presentado en la Figura 4.22 se puede resumir en 
los siguientes pasos:

1.	 Se ejecuta el algoritmo EMD. En este paso se obtienen 10 datos de la serie de 
tiempo (9 IMF y 1 residuo), como se muestra en las Figuras 4.22, 4.23 y 4.24.

Figura 4.22: Resultados de los datos EMD para el canal de ocupación baja.

Figura 4.23: Resultados de los datos EMD para el canal de ocupación media.
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Figura 4.24: Resultados de los datos EMD para el canal de ocupación alta.

2.	 Se realiza el procesamiento normalizado de las series de datos de cada ramifica-
ción con el fin de mejorar la precisión del modelado.

3.	 Se dividen los datos en dos grupos. Los primeros 152.000 datos se utilizan como 
conjunto de datos de entrenamiento y los últimos 6350 datos son el conjunto de 
datos de prueba.

4.	 Se crea el modelo SVR para cada serie de la ramificación, con base en el con-
junto de datos de entrenamiento; en seguida, se reconstruyen y pronostican los 
datos correspondientes a 1 hora, tal y como se presenta en la Figura 4.25.

Figura 4.25: Series de tiempo medidas y pronosticadas de los canales GSM  
para el modelo EMD-SVR.
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Los tiempos de disponibilidad y ocupación de los canales medidos y pronosticados a 
través del modelo EMD-SVR se presentan en las Figuras 4.26 y 4.27. Las precisiones 
promedio obtenidas en el pronóstico de los tiempos de ocupación son: 81 %, 80 % y 
62 %, y para los tiempos de disponibilidad equivalen a: 30 %, 42 % y 44 %, entre los 
datos reales y pronosticados correspondientes a los canales de niveles de ocupación 
baja, media y alta, respectivamente.

Figura 4.26: Tiempo de disponibilidad de canales para el modelo EMD-SVR.

Figura 4.27: Tiempo de ocupación de canales para el modelo EMD-SVR.
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En la Tabla 4.14, se presentan los errores entre los datos reales y los pronostica-
dos para el modelo EMD-SVR. El modelo de canal de ocupación baja presenta una 
cuantía menor de los errores con respecto a los modelos de los canales de ocupación 
media y alta.

Tabla 4.14: Comparación de variables de error para canales GSM  
con base en el modelo EMD-SVR.

Canal SMAPE MAPE MAE

Bajo –0.0681 0.0556 5.296

Medio –0.0654 0.0598 5.411

Alto –0.0991 0.0890 8.022

En la Figura 4.28, se evalúa el rendimiento frente al pronóstico con 6 h, 12 h, 18 h y 
24 h de entrenamiento del modelo EMD-SVR. Aquí se observa poca variación del 
error para los tres canales; por ejemplo, para el canal bajo, en el escenario más op-
timista, el error de predicción se disminuye un 12.1 %, a expensas de un aumento 
en el tiempo de observación del 24.8 %; para el canal medio, se alcanza a reducir el 
error máximo en un 10.15 %, a costa de un aumento en el tiempo de observación del 
26.43 %; y para el canal alto, la reducción máxima del error es del 4.7 %, con un in-
cremento en el tiempo de observación del 35 %. Con 6 h de entrenamiento del mode-
lo EMD-SVR se consiguen errores de predicción adecuados en los tres canales GSM.

Figura 4.28: Error de predicción vs. tiempo de observación para el modelo EMD-SVR.
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4.6.	 Análisis y validación del modelo neuronal wavelet
La señal de entrada al modelo, correspondiente a la potencia recibida de los canales 
GSM, se descompone usando la wavelet madre, Discrete Meyer (dmey), que presentó 
un menor error al ser comparada con las wavelets madre Daubechies, Coiflet y Symlet 
[89]. El resultado son dos niveles que contienen cuatro coeficientes en total.

La red neuronal wavelet multicapa de propagación hacia atrás desarrollada se 
muestra en la Figura 4.29, expresada como:

(4.9)

Donde g es la función de activación de la red neuronal, que para este caso contiene: 
dos entradas, dos salidas y dos capas ocultas. La red fue adiestrada con los 714 952 
datos de la señal de entrada (medidos de lunes a viernes) y se aumentó el número 
de patrones de entrenamiento hasta que el error disminuyó y se hizo relativamente 
constante; esto se alcanzó para 1000 patrones de entrenamiento. Por último, la salida 
de la red neuronal se reconstruye usando un análisis wavelet para obtener la potencia 
pronosticada. 

Figura 4.29: Red neuronal wavelet.
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La Figura 4.30 valida los valores de potencia pronosticados con respecto a los medi-
dos durante una hora, que corresponden al día viernes de 5 p. m. a 6 p. m.

Figura 4.30: Series de tiempo medidas y pronosticadas para los canales GSM  
con el modelo neuronal wavelet.

Los tiempos de disponibilidad y ocupación de los canales medidos y pronosticados 
a través del modelo neuronal wavelet se presentan en las Figuras 4.31 y 4.32. Las 
precisiones promedio obtenidas en el pronóstico de los tiempos de ocupación son: 
100 %, 95.1 % y 99.9 %, y para los tiempos de disponibilidad equivalen a: 100 %, 97 % 
y 99.8 %, entre los datos reales y pronosticados correspondientes a los canales de 
niveles de ocupación baja, media y alta, respectivamente.

Figura 4.31: Tiempo de ocupación de canales para el modelo neuronal wavelet.
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Figura 4.32: Tiempo de disponibilidad de canales para el modelo neuronal wavelet.

En la Tabla 4.15, se presentan los errores entre los datos reales y los pronosticados para 
los modelos neuronales wavelet. El modelo de canal de ocupación baja presenta los 
menores errores con respecto a los modelos de los canales de ocupación media y alta.

Tabla 4.15: Comparación de variables de error para canales GSM  
con base en el modelo neuronal wavelet.

Canal SMAPE MAPE MAE

Bajo –0.0017 0.00089 0.0866

Medio –0.0020 0.0011 0.1

Alto –0.0019 0.0010 0.1005

En la Figura 4.33, se evalúa el rendimiento frente al pronóstico, desde uno hasta cin-
co días de entrenamiento del modelo neuronal wavelet. El error en el canal alto se re-
duce en un total de 1.75 %, en detrimento de un 31.24 % en el tiempo de observación; 
para el canal medio, el error se disminuye en total en un 3.29 %, a costa de un 23.8 % 
en el tiempo de observación; y para el canal bajo, el total del error es minimizado en 
un 5.45 % en menoscabo de un 47.5 % en el tiempo de observación. 
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Al validar el modelo neuronal wavelet, se presentó mayor precisión en el pronós-
tico de las potencias de recepción con respecto a los cuatro modelos restantes, tal 
y como se demostró a través de las variables evaluadas. La disminución del error 
del modelo neuronal wavelet llega a ser de 10 a 80 veces en relación con los otros 
modelos, sin contemplar un mejoramiento en el error de predicción mayor al 99 %. 

Figura 4.33: Error de predicción vs. tiempo de observación  
para el modelo neuronal wavelet.

Para completar el análisis del entrenamiento, se calcula el error cuadrático medio 
correspondiente al promedio del cuadrado de las desviaciones estándar de los valores 
estimados con respecto a los originales. En las Tablas 4.16, 4.17 y 4.18, se exhibe el 
error cuadrático medio en el pronóstico de las potencias de recepción para el modelo 
neuronal wavelet, con una cantidad de datos de entrenamiento de hasta cinco días. 
Estos resultados y la Figura 4.33 justifican que un día de entrenamiento en el modelo 
neuronal wavelet sea suficiente para obtener un error admisible. Además, el canal de 
ocupación baja presenta el menor error y la mayor precisión en los pronósticos de los 
tiempos de disponibilidad y ocupación del canal, tal como se concluyó en el análisis 
del parámetro de Hurst. 
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Tabla 4.16: Resultado de error cuadrático medio para el canal bajo,  
con diferentes días de entrenamiento del modelo neuronal wavelet.

Días de 
entrenamiento Error cuadrático medio Tiempo de procesamiento

1 2.3784 24.19 s

2 2.3402 27.21 s

3 2.3015 31.39 s

4 2.2851 34.92 s

5 2.2659 35.69 s

Tabla 4.17: Resultado de error cuadrático medio para el canal medio,  
con diferentes días de entrenamiento del modelo neuronal wavelet.

Días de 
entrenamiento Error cuadrático medio Tiempo de procesamiento

1 4.661 28.19 s

2 4.6133 29.55 s

3 4.5878 30.85 s

4 4.5549 34.27 s

5 4.5213 34.9 s

Tabla 4.18: Resultado de error cuadrático medio para el canal alto,  
con diferentes días de entrenamiento del modelo neuronal wavelet.

Días de 
entrenamiento Error cuadrático medio Tiempo de procesamiento

1 2.9262 26.47 s

2 2.8558 28.68 s

3 2.8110 29.64 s

4 2.7604 31.87 s

5 2.7339 34.76 s
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El pronóstico de la potencia recibida que se realizó durante esta sección no solo es 
importante para la determinación del estado de un canal; sino porque permite omitir 
la detección de algún canal cuando se pronostica que estará ocupado, lo que reduce 
el tiempo de detección y el consumo de energía.

4.7.	 Evaluación comparativa de la complejidad de los modelos desarrollados 
En las secciones anteriores, se evaluó el nivel de eficacia de los modelos desarrollados. 
Sin embargo, también es necesario valorar su nivel de complejidad. Para lo anterior, 
se calculó el promedio estadístico sobre varias mediciones del tiempo de ejecución de 
cada modelo para los tres canales; los resultados se muestran en la Tabla 4.19. 

Tabla 4.19: Tiempos de ejecución de los algoritmos desarrollados.

Modelo de predicción Tiempo de 
ejecución (s)

SARIMA 5

GARCH 18.9

MARKOV 73.3

EMD-SVR 492.8

Neuronal wavelet 30.8

En la Tabla 4.19, se observa que el modelo neuronal wavelet no es el de menor tiem-
po promedio de ejecución, puesto que este es  6  veces mayor que el modelo más 
rápido (SARIMA), pero 16 veces menor que el modelo más lento (EMD-SVR). Sin 
embargo, el modelo neuronal wavelet es seleccionado porque tiene el mejor error de 
predicción respecto a los cuatro modelos restantes. El tiempo promedio de ejecución 
de 30.8 segundos es un tiempo relativamente bajo para pronosticar con alto nivel de 
precisión el comportamiento de una hora del canal.
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5.	Conclusiones 

Se realizó un análisis estadístico a partir de las mediciones realizadas por una semana 
en un entorno urbano de Bogotá; se describieron al inicio los instrumentos utilizados, 
así como su configuración y los resultados generales de las mediciones. Luego se selec-
cionaron tres canales de diferentes niveles de ocupación, correspondientes a las bandas 
de la tecnología móvil GSM, en los que se analizó el ciclo de trabajo, la distribución de 
oportunidades y la autocorrelación. 

Posteriormente, se validó el pronóstico de la potencia recibida para una hora con 
los modelos SARIMA, GARCH, Markov, EMD-SVR y neuronal wavelet, con base 
en las variables: tiempo de disponibilidad del canal, tiempo de ocupación del canal, 
tiempo de observación, SMAPE, MAPE y MAE. Al final, se decidió que el modelo 
neuronal wavelet presentaba mejor desempeño frente a las variables evaluadas que los 
cuatro modelos restantes, y con una relativa baja complejidad computacional.

Los modelos analizados no solo pronostican la potencia de recepción, sino también 
los tiempos de ocupación y la disponibilidad para los canales GSM. El modelo neuronal 
wavelet diseñado muestra que, en sistemas prácticos de CR, sería viable usar un tiempo de 
observación entre 25 y 29 segundos, y los datos de entrenamiento de un día para pronosticar 
con precisión la potencia recibida en un usuario de CR desde una estación base primaria. 

La mayor parte de los esquemas de pronóstico se ha basado en la determinación de 
huecos espectrales, mientras que este trabajo se fundamenta en el conocimiento a priori de 
la potencia que se recibe por parte de los canales de los PU; esto permite evitar la selección 
de canales ruidosos y conduce a un mejor reparto del espectro entre los usuarios de CR, 
para así lograr parámetros de calidad de servicio superiores con menos recursos de radio.

5.1.	 Recomendaciones
Como trabajo futuro, se propone implementar y evaluar los modelos desarrollados en 
equipos de radio definido por software.

También analizar el rendimiento en la transmisión de los usuarios de CR a partir 
de los diferentes niveles de potencia recibida por parte de los PU.

Además, se sugiere tener varios equipos para medir las potencias en diferentes 
localizaciones del entorno durante un mismo tiempo y así verificar el rendimiento de 
los modelos desarrollados.
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