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1. Introducción

El crecimiento de las aplicaciones inalámbricas plantea nuevos desafíos a los 

futuros sistemas de comunicación. Según CISCO, el tráfico de datos móviles 

ha crecido 18 veces en los últimos cinco años y se espera que el tráfico total de 

datos móviles crezca a 49 exabytes por mes en 2021 (CISCO, 2021; Hernández 

et al., 2017; Hernández et al., 2015d; Kumar et al., 2016; Tahir et al., 2017; 

Wang y Liu, 2011). Lo anterior, sumado al hecho de que las políticas de asig-

nación actuales son fijas y reguladas por el estado (Cruz-Pol et al., 2018), han 

generado que el espectro radioeléctrico presente problemas de escasez.

Sin embargo, estudios temporales y geográficos realizados por la Comisión 

Federal de Comunicaciones de Estados Unidos (Federal Communications 

Commission, 2003) muestran que gran parte del espectro de radiofrecuencia 

está siendo ineficientemente utilizado. Adicionalmente, mediciones realiza-

das en investigaciones recientes (CISCO, 2021; Tahir et al., 2017) evidencian 

que más del 70 % del espectro está disponible (Federal Communications 

Commission, 2003; IEEE, 2008). Como resultado del uso ineficiente del 

espectro radioeléctrico existen bandas saturadas y otras poco utilizadas.

El uso ineficiente del espectro ha promovido estrategias para mitigar este 

problema (Abbas et al., 2015). La Radio Cognitiva (CR) surge como una tec-

nología para resolverlo mediante acceso dinámico al espectro, caracterizada 

por percibir, aprender, planificar (toma de decisiones) y actuar de acuerdo 

con las condiciones actuales de la red.

La Administración Nacional de la Información y las Comunicaciones 

define la CR como un sistema que detecta su entorno electromagnético de 

operación y ajusta, modifica de forma dinámica y autónoma sus parámetros 
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para maximizar el rendimiento, reducir la interferencia y facilitar la inte-

roperabilidad. A diferencia de las redes tradicionales, en la CR existen dos 

tipos de usuarios: el usuario que de forma licenciada accede a las bandas de 

frecuencia, denominado licenciado o Usuario Primario (PU), y el usuario 

no licenciado o Usuario Secundario (SU) que utiliza el espectro de forma 

oportunista (Akyildiz et al., 2008; Akyildiz et al., 2006).

El objetivo general de una Red de Radio Cognitiva (CRN) consiste en que 

el SU acceda de manera oportunista a un canal de frecuencia disponible en 

una banda licenciada, sin generar interferencia al PU (Akyildiz et al., 2008; 

Akyildiz et al., 2006; Cheng et al., 2016). Lo anterior se logra a partir de un 

modelo de gestión denominado ciclo cognitivo, el cual es una estructura de 

radio que puede reconfigurarse mediante un proceso continuo de conciencia 

(tanto de sí mismo como del mundo exterior), percepción, razonamiento 

y toma de decisiones (Haykin, 2005). El ciclo cognitivo se caracteriza por 

cuatro funciones principales: detección del espectro, decisión de espectro, 

movilidad espectral y compartición de espectro.

La decisión del espectro es el núcleo de una CRN; de forma eficiente y 

sin causar ningún tipo de interferencia establece mediante un conjunto de 

técnicas el proceso para seleccionar la oportunidad espectral más adecuada 

de acuerdo con los requerimientos del SU y las condiciones del ambiente de 

radio. Un incorrecto proceso de toma de decisiones afecta los parámetros de 

la red, como por ejemplo, la tasa de cambios de canal o handoff  espectral. 

Sin embargo, a pesar de su relevancia no es una función tan explorada como 

la detección de espectro.

En las CRN, el proceso de toma de decisiones se desarrolla de acuerdo 

con la arquitectura de la red, la cual se divide en arquitectura con o sin in-

fraestructura (Hasegawa et al., 2014; Páez et al., 2017). En general, las CRN 

basadas en infraestructura se clasifican a su vez en centralizadas o descentra-

lizadas, mientras las CRN sin infraestructura se denominan redes distribuidas 

(Masonta et al., 2013). De acuerdo con lo anterior, las CRN pueden operar 

con varios enfoques, cada uno de los cuales presenta ventajas y desventajas; 

su utilización radica en función de la aplicación (Darak et al., 2014).
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Las Redes de Radio Cognitivas Descentralizadas (DCRN) son un mo-

delo híbrido caracterizado por utilizar en conjunto las ventajas de las redes 

centralizadas y distribuidas. Las arquitecturas descentralizadas cuentan con 

infraestructura y su implementación es sencilla, entre otras ventajas (Darak 

et al., 2014) por lo cual, son opciones eficientes para redes de gran tamaño 

(Darak et al., 2017).

1.1 Problema y motivación del proyecto de investigación
Durante la última década las investigaciones sobre CRN centraron sus 

esfuerzos en función de detección del espectro, razón por la cual, existen 

diversos desarrollos al respecto en la literatura actual (Al-Amidie et al., 
2019; Ali y Hamouda, 2017; Bhowmik y Malathi, 2019; Youssef  et al., 2018; 

Zhang et al., 2017). Por el contrario, la decisión de espectro (toma de deci-

siones) ha sido poco estudiada a pesar de su importancia en el mejoramiento 

del desempeño de las redes inalámbricas (Martins y Andrade, 2018; Rizk et 
al., 2018; Tripathi et al., 2019). Debido a la relevancia dentro de las CRN, 

se requiere proponer metodologías que orienten sus objetivos al proceso de 

toma de decisiones.

El componente básico de una decisión cognitiva está en función del apren-

dizaje del ambiente, el razonamiento y la conciencia. Las técnicas de decisión 

buscan maximizar de forma global —o por lo menos local— el uso del espec-

tro y los parámetros de funcionamiento (Tabassam y Suleman, 2012). Los 

modelos de toma de decisión cuentan con múltiples técnicas, algunas de-

terminísticas y otras probabilísticas, sus aplicaciones son diversas y abarcan 

grandes áreas de las ciencias. En redes de telecomunicaciones, las teorías de 

toma de decisión permiten solucionar problemas de asignación, sin embar-

go, como muchas áreas de la ingeniería se ven limitadas por el sistema de 

aplicación. En el caso de las CRN, los modelos desarrollados se esfuerzan 

por solucionar problemas de arquitecturas centralizadas (Deng et al., 2018; 

Iftikhar et al., 2019; Salgado et al., 2016a; Tripathi et al., 2019), por tanto, es 

necesario identificar modelos que mejoren el proceso de toma de decisiones 

para otro tipo de arquitecturas con infraestructura como las descentralizadas.

Las redes centralizadas son arquitecturas con infraestructura que ope-

ran bajo un coordinador central; la información observada por cada SU 
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alimenta la base central, de forma que esta pueda tomar decisiones para 

maximizar los parámetros de comunicación. Aunque la observación y co-

nocimiento global de la red presenta ventajas, para sistemas a gran escala y 

aplicaciones en redes de seguridad pública no es la mejor opción: el aumento 

en los costos de medición, la complejidad del sistema, la cantidad de infor-

mación que debe controlar sumado al desequilibrio y potencial caos si la 

estación base llega a fallar (vulnerabilidad), la convierte en una arquitectura 

no factible para todas las estructuras de CRN (Pankratev et al., 2019). Las 

redes distribuidas, como por ejemplo, las redes móviles ad hoc o Mobile ad 
hoc network (MANET), se caracterizan por su alta movilidad, autonomía, 

adaptación e independencia; sus aplicaciones se encuentran en escenarios 

que involucran redes ad hoc vehiculares (VANET) (Bujari et al., 2018), vehí-

culos aéreos no tripulados (Bujari et al., 2018), vigilancia urbana y misiones 

de búsqueda o rescate (Dhamodharavadhani, 2015). Sin embargo, la falta 

de infraestructura, la topología dinámica, la implementación rápida y los 

entornos hostiles de aplicación hacen que la MANET sea vulnerable a una 

amplia gama de ataques de seguridad (Abass et al., 2017; Kongsiriwattana 

y Gardner-Stephen, 2017; Vasudeva y Sood, 2018). Además, el consumo 

de energía y retardo es alto (Kongsiriwattana y Gardner-Stephen, 2017), el 

ancho de banda (BW) es bajo al igual que su rendimiento por las frecuentes 

fallas de enlace (Dhamodharavadhani, 2015; Goswami, 2017). La anterior 

problemática puede ser solucionada si se distribuye la responsabilidad de la 

información en diferentes puntos de control, criterio base de las DCRN.

En las CRN, los SU deben tomar decisiones inteligentes en función de la 

variación del espectro y de las acciones adoptadas por otros SU. Desde esta 

dinámica, la probabilidad de que dos o más SU elijan el mismo canal es alta, 

especialmente cuando el número de SU es mayor que el número de canales 

disponibles —debido a la externalidad negativa de la red, cuantos más SU 

seleccionen el mismo canal, menor será la utilidad que cada SU pueda obte-

ner y el número de interferencias por acceso simultaneo será mayor (Abbas 

et al., 2015)—. Para modelar la red bajo parámetros prácticos en la realidad 

es necesario analizar el acceso de múltiples usuarios de forma simultánea.

El proceso de toma de decisiones entre usuarios que interactúan en un 

mismo entorno (multiusuario) es un problema de optimización multiobjetivo 
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que generalmente es difícil de analizar y resolver con los modelos clásicos 

de optimización (Kaur et al., 2018a; 2018b). Para redes centralizadas y dis-

tribuidas (redes ad hoc), se encuentran metodologías con buenos resultados 

(Masonta et al., 2013; Roy et al., 2017; Yu y Xue, 2018); sin embargo, para 

las DCRN son pocos los trabajos de investigación realizados (Joda y Zorzi, 

2015; Rizk et al., 2018) y las propuestas disponibles suponen que no existe 

externalidad de red, es decir, que la recompensa de un SU no se ve afectada 

por las acciones de otros SU. Por tanto, para obtener un modelo de red más 

práctico en la realidad, es necesario tener en cuenta cómo afectan las deci-

siones tomadas por un SU, a los demás usuarios de la red.

De acuerdo con lo relevante del proceso de toma de decisiones, los múl-

tiples inconvenientes de las arquitecturas centralizadas y distribuidas (que 

pueden ser solucionados al descentralizar la responsabilidad en diferentes 

puntos de control) y la necesidad de incluir el efecto de las decisiones de 

los usuarios sobre la utilidad de los otros (para poder obtener validaciones 

reales más útiles), este proyecto tiene como desafío dotar los nodos de una 

red descentralizada con la capacidad de aprender del entorno, proponiendo 

estrategias que permita a los SU tomar decisiones e intercambiar informa-

ción de forma cooperativa o competitiva. De acuerdo con cada uno de los 

elementos y problemas expuestos, la pregunta de investigación planteada es 

¿cómo y en qué medida se puede reducir la tasa de handoff espectral en redes 

de radio cognitiva descentralizadas con un enfoque multiusuario?

1.2 Justificación
A medida que aumenta la demanda de tecnologías inalámbricas las polí-

ticas tradicionales de regulación del espectro van quedando obsoletas. El 

número de dispositivos conectados a internet ha aumentado en los últimos 

años y se proyecta que superará los 20 mil millones de dispositivos para 

2020 (Boorstin, 2016; CISCO, 2021). Adicionalmente, el uso de bandas de 

frecuencia como ISM (industrial, científica y médica) y las asignadas a co-

municaciones móviles han experimentado una fuerte demanda de servicios, 

como unidades remotas, internet de las cosas y sistemas de audio y video 

(Martins y Andrade, 2018).
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Las CRN surgieron como una solución a los problemas de asignación 

fija y escasez de espectro a partir del uso eficiente del recurso espectral. La 

decisión espectral es una función clave en los sistemas cognitivos dado que 

proporciona herramientas para seleccionar la oportunidad espectral (canal 

de frecuencia) más adecuada de acuerdo con los requerimientos del usuario, 

las restricciones del ambiente de radio y los efectos producidos por las accio-

nes adoptadas por otros usuarios de la red.

El proceso de toma de decisiones se desarrolla de acuerdo con la arquitec-

tura de implementación —centralizada, distribuida y descentralizada—. Las 

redes descentralizadas surgen como un modelo híbrido entre redes centrali-

zadas y distribuidas. A pequeña escala se comportan como una arquitectura 

centralizada al formar redes individuales con infraestructura; a gran escala 

generan una red distribuida, conectando a través de enlaces adicionales las 

diferentes redes individuales. Estas características permiten configurar una 

red con infraestructura segura y de fácil implementación (Darak et al., 2017; 

Pankratev et al., 2019). En general, la red descentralizada es una opción efi-

ciente para aplicaciones de gran tamaño y, además, es la mejor alternativa 

para redes de seguridad pública, servicios de redes sociales y redes de senso-

res inteligentes, entre otras (Darak et al., 2017; Pankratev et al., 2019).

Actualmente las investigaciones se enfocan en modelos con un único SU, 

lo cual no resulta práctico en la realidad. Por tal razón, se hace imperativo 

involucrar un enfoque multiusuario tanto en el diseño como en la evaluación 

y validación de esta propuesta.

1.3 Objetivos
El objetivo general del proyecto de investigación es desarrollar un modelo de 

decisión espectral multiusuario para mejorar el desempeño de redes de radio 

cognitiva descentralizadas, a partir de los siguientes objetivos específicos:

1.	 Desarrollar un ambiente de simulación para redes de radio cognitiva 

descentralizadas basado en datos reales de ocupación espectral.

2.	 Diseñar un modelo de decisión espectral multiusuario que integre las 

características y el comportamiento de las redes de radio cognitiva 

descentralizadas.
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3.	 Validar el modelo de decisión espectral multiusuario propuesto por me-

dio de simulaciones que integren las características de las redes de radio 

cognitiva descentralizadas y datos reales de ocupación espectral, para 

confrontarlo con modelos actuales.

1.4 Alcance y limitaciones
Son diversas las características; fenómenos, indicadores o métricas que se 

pueden analizar en el proceso de toma de toma de decisiones para DCRN. 

El análisis particular de algunas de ellas corresponde a tesis de doctorado, 

por tanto, a continuación, describimos las principales limitaciones y alcan-

ces del presente proyecto de investigación.

Toma de decisiones cooperativa
•	 La decisión sobre el espectro implica tres funciones principales: ca-

racterización, selección y reconfiguración. Nuestra investigación está 

enfocada en realizar y evaluar un modelo para selección del espectro. 

Caracterización y reconfiguración son temas para otros proyectos.

•	 Los criterios en el proceso de toma de decisiones corresponden a indicado-

res asociados a Calidad de Servicio (QoS), los parámetros iniciales serán: 

Probabilidad de disponibilidad (AP), Tiempo medio de disponibilidad 

(ETA), Relación señal a ruido más interferencia (SINR) y BW (Ancho 

de banda). Posteriormente, se analizará si se incluyen otros parámetros.

•	 Tuvimos en cuenta modelos de tipo cooperativo (colaborativo) sin dejar 

de considerar, al menos, una de las propuestas de tipo no cooperativo.

•	 La colaboración también puede llegar a darse entre los algoritmos utiliza-

dos dentro del modelo.

Modelos multiusuario
•	 Con el objetivo de mejorar el algoritmo de toma de decisiones, la infor-

mación a los datos de ocupación espectral registrada por cada SU durante 

los últimos k períodos.
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•	 El número de usuarios incluidos dentro del ambiente de simulación esta-

rá en función de las capacidades de cómputo de los equipos con los que 

se cuenten para la investigación.

Características de la red y métricas de desempeño
•	 El número de nodos de la red propuesta se determinará a partir del nivel 

de procesamiento del equipo de cómputo con el que se cuente.

•	 No se cuenta con una red descentralizada para la medición de datos, por 

tanto, y teniendo en cuenta que a pequeña escala un modelo descentra-

lizado se comporta como una arquitectura centralizada, la información 

será tomada de una red centralizada, se caracterizarán los nodos indivi-

duales, y posteriormente se conectarán entre sí.

•	 Solo se utilizará en el ambiente de simulación redes con infraestructura. 

Esta investigación no involucrará en su análisis estructuras de tipo distri-

buido como las redes ad hoc.

•	 Los canales de frecuencia se dividirán en n canales con el mismo BW.

•	 Se espera mejorar un número considerable de problemas para el proceso 

de toma de decisiones en DCRN; sin embargo, por la magnitud, comple-

jidad del proyecto y por el requerimiento computacional exponencial que 

se requiere, esta investigación se compromete a mejorar el indicador de al 

menos una característica relevante en el desempeño de la red.

•	 La metodología propuesta para el análisis de toma de decisiones no con-

templa modelos de propagación. Se asume que la distancia entre SU es lo 

suficientemente cercana para que el desvanecimiento no afecte la señal.

•	 La metodología propuesta para el análisis de toma de decisiones no con-

templa enrutamiento.

•	 El análisis de pérdida de paquetes se tendrá en cuenta para los time step 
en donde el algoritmo no encuentra un canal objetivo para transmitir la 

información dentro del total de canales. No corresponde a un indicador 

del proceso de toma de decisiones, sin embargo, si esta característica se 

presenta frecuentemente, se incluirá una métrica que la describa.
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•	 Para analizar el desempeño del modelo de toma de decisiones implementa-

do, se utilizarán parámetros asociados a la QoS. La evaluación de calidad 

de experiencia (QoE) aunque es relevante, hace parte de una propuesta de 

trabajo futuro.

•	 Inicialmente se 1establece como métricas de desempeño parámetros de 

QoS tales como: número de handoffs, número de handoffs fallidos, retardo 

promedio, ancho de banda promedio y throughput promedio.

Campaña de medición
•	 Debido a la magnitud y complejidad de implementar una red piloto con 

equipos de CR, la validación del modelo de decisión espectral multiu-

suario propuesto se realizará por medio de simulaciones con datos de 

ocupación espectral experimentales que permitan emular el comporta-

miento real del PU, y su posterior confrontación con otras técnicas de 

decisión espectral. A partir de una metodología que considere zonas con 

alto nivel de demanda tráfico alto (HT) y con bajo nivel de demanda trá-

fico bajo (LT), para la ciudad de Bogotá.

•	 Las técnicas de detección de espectro filtro coincidente y detección ci-

cloestacionario son, teóricamente, mejores que la de detección de energía, 

sin embargo, necesitan un conocimiento previo del PU y de la red, lo que 

significa mayor complejidad y aumento en la carga computacional. Dado 

que ésta última no contempla conocimiento previo del PU, es fácil de 

implementar por sus bajos costos computacionales, y baja complejidad. 

Para el presente proyecto de investigación se asume que la técnica de de-

tección de energía entrega resultados efectivos; contemplar otra técnica o 

mejorarla sería otra propuesta de trabajo, como se identifica en las inves-

tigaciones actuales.

•	 Las bandas de frecuencia seleccionadas corresponden a la tecnología 

GSM, Wi-Fi e ISM, dado que resultan más sencillas de trabajar con la 

técnica de detección de energía.

Estructura de programación
•	 La simulación del modelo de toma de decisiones se desarrollará en uno 

de los siguientes softwares: Matlab, NS3 u OPNET, que será seleccionado 
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a partir de un análisis comparativo que determine cual se ajusta mejor a 

los requerimientos de la estrategia inteligente desarrollada.

1.5 Modelo propuesto
La figura 1.1 presenta un modelo de asignación espectral multiusuario para 

redes de radio cognitiva descentralizadas conformado por módulos colabo-

rativo; multiusuario, predictivo y aprendizaje profundo (Deep Learning).

Para la asignación del espectro utilizando Deep Learning se requiere ana-

lizar la información de entrada; la cantidad de usuarios y sensibilidad de 

la aplicación que se está ejecutando. El módulo colaborativo es el encarga-

do de gestionar la información de entrada. Si hay múltiples SU se utiliza 

el módulo multiusuario; si la aplicación que se está ejecutando tiene una 

sensibilidad alta al retardo se implementa el módulo predictivo. Si no hay 

múltiples usuarios y tampoco se presenta alta sensibilidad al retardo, la co-

municación se realiza de forma directa entre el módulo colaborativo y el 

módulo aprendizaje profundo.

Figura 1.1. Modelo propuesto.
Fuente: elaboración propia.
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1.6 Metodología
El desarrollo del presente proyecto de investigación se realizó secuencial-

mente por medio de cuatro enfoques metodológicos. El primero, de tipo 

descriptivo, permitió detallar cada una de las características de las estrate-

gias de interés. El segundo, de tipo analítico, permitió definir la influencia 

de cada uno de los modelos de interés en el desempeño de la movilidad 

espectral. El tercero, de tipo predictivo, buscó aplicar soluciones de otras 

situaciones al contexto de interés, y finalmente, un cuarto tipo de enfoque 

experimental permitió la realización de pruebas de comprobación y validez 

a los desarrollos efectuados (Hernández-Sampieri et al., 2006).

La metodología de la presente investigación se estructuró de la siguiente 

forma. Primero, se realizó un estudio del estado del arte que permitió iden-

tificar los aspectos más importantes para el tema de asignación espectral 

multiusuario en las DCRN, así como sus algoritmos más relevantes en la 

literatura actual. Con base en el análisis de la información anterior se diseñó 

una metodología para la evaluación del desempeño de la movilidad en redes 

móviles de CR. Luego, se realizó la captura de datos de ocupación espec-

tral reales tanto en la banda GSM como en la banda Wi-Fi, para analizar 

el comportamiento de dichas bandas y del PU. A continuación, se realizó 

procesamiento de los datos capturados para construir bases de datos con in-

formación organizada sobre el comportamiento del PU y las características 

de los recursos espectrales de las bandas mencionadas—dichas bases de da-

tos fueron clasificadas por tipo de red (GSM y Wi-Fi) y nivel de tráfico (HT 

y LT)—. Posteriormente, se determinaron criterios de decisión para la se-

lección de las mejores oportunidades espectrales y se calcularon sus valores 

históricos a partir de la información de las bases de datos, complementando 

las mismas. Consecuentemente, se seleccionaron y desarrollaron los algo-

ritmos de asignación espectral multiusuario más relevantes en la literatura 

actual. Luego, se diseñaron y desarrollaron varios algoritmos para cada uno 

de los módulos del modelo de asignación espectral multiusuario propuesto.

Con base en los resultados de desempeño de los algoritmos se construyó 

el modelo de asignación espectral multiusuario propuesto. Gracias al análi-

sis del estado del arte de las CRN se diseñaron ocho métricas de evaluación 



38

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

para evaluar el desempeño de los algoritmos propuestos en esta investigación, 

así como los seleccionados de la literatura actual, y se propusieron varios 

escenarios de evaluación. Luego, se diseñó y desarrolló un simulador que 

permite evaluar cuantitativamente el desempeño de los algoritmos, conside-

rando el comportamiento real del PU. Con los resultados obtenidos a partir 

de los simuladores se realizó una evaluación comparativa de desempeño en 

cada una de las métricas de evaluación. Por último, se realizaron ajustes y 

modificaciones al modelo propuesto con base en el análisis comparativo.

1.7 Contribuciones
•	 Diseño y desarrollo de un modelo de asignación espectral multiusuario 

para mejorar el desempeño de las redes de radio cognitiva descentralizadas.

•	 Diseño y desarrollo de un módulo colaborativo para el intercambio de 

información entre SU con el objetivo de realizar una asignación espectral 

multiusuario inteligente.

•	 Diseño y desarrollo de un módulo multiusuario para acceso simultáneo 

de varios SU a las oportunidades espectrales.

•	 Diseño y desarrollo de un módulo predictivo que reduce el nivel de inter-

ferencia entre los SU y los PU.

•	 Evaluación y validación de los algoritmos de decisión espectral desarrolla-

dos, con datos de ocupación espectral reales capturados en una campaña 

de medición realizada en la ciudad de Bogotá, Colombia.

•	 Evaluación y validación de los algoritmos desarrollados en una red GSM.

•	 Evaluación y validación de los algoritmos desarrollados, con dos niveles 

de tráfico de PU: HT y LT.

•	 Evaluación y validación de los algoritmos desarrollados, en cuatro 

diferentes escenarios de evaluación: GSM-LT-Convencional, GSM-HT-

Convencional, GSM-LT-Real, GSM-HT-Real.

•	 Evaluación y validación de los algoritmos desarrollados bajo ocho métri-

cas de evaluación:

•	 Retardo promedio acumulado (AAD)
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•	 Handoff  fallidos promedio acumulado (AAFH)

•	 Handoff  promedio acumulado (AAH)

•	 Handoff  con interferencia promedio acumulado (AAIH)

•	 Handoff  perfecto promedio acumulado (AAPH)

•	 Throughput promedio acumulado (AAT)

•	 Handoff  anticipado promedio acumulado (AAUH)

•	 Ancho de banda promedio (ABW)

•	 Determinación de cuatro criterios de decisión seleccionados cuidadosa-

mente para elegir la mejor oportunidad espectral. Todos los algoritmos 

desarrollados trabajaron con los mismos cuatro criterios. Cada criterio de 

decisión es calculado a partir de los datos de ocupación espectral reales.

•	 Diseño y desarrollo de una herramienta de simulación novedosa para 

evaluar el desempeño de algoritmos de asignación espectral multiusuario 

para DCRN, basada en datos de ocupación espectral reales, que permite 

modificar varios parámetros de interés para analizar el comportamiento 

y desempeño de cada algoritmo bajo diferentes situaciones, donde des-

taca el nivel de colaboración y número de SU simultáneos, denominada 

“MultiColl-DCRN”.

1.8 Financiamiento
El presente libro es producto de los resultados alcanzados con el proyecto de 

investigación “Modelo inteligente de asignación espectral con enfoque mul-

tiusuario para mejorar la eficiencia y desempeño en redes de radio cognitiva 

descentralizadas”, auspiciado por el Centro de Investigaciones y Desarrollo 

Científico de la Universidad Distrital Francisco José de Caldas.

1.9 Organización del libro
A partir de este punto el lector encontrará, en el segundo capítulo, los funda-

mentos teóricos de la CR; la decisión espectral, los algoritmos de asignación 

espectral, acceso multiusuario, estructuras colaborativas y una revisión de 

la literatura actual sobre modelos de asignación espectral multiusuarios 
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colaborativos para DCRN. El tercer capítulo describe la metodología desa-

rrollada; los equipos, la red, el tratamiento de los datos, el modelo propuesto, 

los algoritmos seleccionados y la metodología de evaluación. El capítulo 

cuatro describe en detalle el software de simulación desarrollado. La quin-

ta sección presenta los resultados: los módulos no predictivo, predictivo, 

colaborativo y multiusuario; la evaluación integral y el modelo propuesto de-

finitivo. El sexto capítulo aborda la discusión de los resultados. Finalmente, 

la última sección, expone conclusiones.
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2. Fundamentos teóricos

El desarrollo de este proyecto de investigación está totalmente enfocado en 

la radio cognitiva. Por tal razón, el presente capítulo se subdivide en cinco 

secciones. La primera sección aborda los fundamentos de la CR; la segunda, 

se enfoca en los aspectos teóricos de la decisión espectral, la tercera, presenta 

los algoritmos más relevantes de la asignación espectral. La cuarta sección 

presenta una revisión de la literatura actual sobre modelos de decisión es-

pectral para CRN, y finalmente, la quinta, muestra algunas herramientas de 

simulación de handoff espectral.

2.1 Radio cognitiva
Actualmente las redes y aplicaciones inalámbricas en gran parte del mundo 

se caracterizan por contar con una política de asignación fija de espectro de 

radiofrecuencia regulada por el Estado. Por tal razón, las frecuencias asig-

nadas a servicios específicos estén prácticamente en desuso y no puedan ser 

aprovechadas por usuarios secundarios (SU), incluso si estos no provocan 

interferencia (Ahmed et al., 2016; Akyildiz et al., 2008; Márquez et al., 2017).

Según estudios realizados por la Comisión Federal de Comunicaciones 

de Estados Unidos (Federal Communications Commission, 2003) se ha 

evidenciado que gran parte del espectro de radiofrecuencia está siendo in-

eficazmente utilizado. Basado en variaciones temporales y geográficas, la 

utilización del espectro asignado es ineficiente (Federal Communications 

Commission, 2003; IEEE Standards Coordinating Committee 41 on 

Dynamic Spectrum, 2008). Incluso mediciones más actuales muestran 

que más del 70 % del espectro no está siendo utilizado (Hoven et al., 2005; 

Pedraza et al., 2016).
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La utilización ineficiente y esporádica del espectro, junto a su incremento 

de demanda, han hecho que se degrade la QoS en varias redes y aplicacio-

nes inalámbricas, como las comunicaciones móviles, lo cual ha motivado 

el desarrollo de investigaciones recientes que han encontrado solución al 

problema: la tecnología clave que permite materializar las técnicas de acceso 

dinámico al espectro es la radio cognitiva (Akyildiz et al., 2008; Tsiropoulos 

et al., 2016).

El concepto fue creado por Joseph Mitola III en 1999: “punto en el cual 

las Personal Digital Assistant inalámbricas y las redes relacionadas son, en 

términos computacionales, lo suficientemente inteligentes con respecto a 

los recursos de radio y las correspondientes comunicaciones de ordenador 

a ordenador como para detectar las necesidades eventuales de comunica-

ción del usuario como una función del contexto de uso y proporcionarle los 

recursos de radio y servicios inalámbricos más adecuados a ese mismo ins-

tante” (Mitola y Maguire, 1999). Sin embargo, varias entidades importantes 

han dado su punto de vista al respecto. Según la Administración Nacional 

de la Información y las Comunicaciones, la CR “es una radio o sistema 

que detecta su entorno electromagnético de operación y puede ajustar de 

forma dinámica y autónoma sus parámetros de operación de radio para mo-

dificar la operación del sistema como: maximizar el rendimiento, reducir 

la interferencia o facilitar la interoperabilidad”; de acuerdo con la Unión 

Internacional de Telecomunicaciones, “es una radio o sistema que detecta 

y está al tanto de su entorno y se puede ajustar de forma dinámica y autóno-

ma de acuerdo con sus parámetros de funcionamiento de radio”. Según el 

Instituto de Ingenieros Eléctricos y Electrónicos (IEEE) “es un tipo de radio 

que puede detectar de forma autónoma y razonar sobre su entorno y adaptar-

se acorde a este” (IEEE Standards Coordinating Committee 41 on Dynamic 

Spectrum, 2008). Según la Comisión Federal de Comunicaciones, CR es una 

radio que “puede cambiar los parámetros del transmisor basado en la interac-

ción con su entorno” (Federal Communications Commission, 2003).

La radio cognitiva tiene la capacidad de proveer un gran ancho de ban-

da a usuarios móviles a través de arquitecturas inalámbricas heterogéneas, 

aumentando significativamente la eficiencia espectral, debido a que permi-

te que usuarios secundarios compartan el espectro con usuarios primarios 
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(Akyildiz et al., 2008) a partir de la oportunidad como se muestra en la figura 

2.1; es decir, utilizan las porciones del espectro que no están siendo usadas 

en ese momento (Delgado y Rodríguez, 2016; Ozger y Akan, 2016).

La figura 2.1 describe el concepto de oportunidad espectral a través de 

una gráfica en tres dimensiones cuyos ejes son potencia, frecuencia y tiem-

po. Cada bloque gris de la figura es un PU haciendo uso de una porción del 

espectro de frecuencia dado por el eje de frecuencia, a un nivel de potencia 

dado por el eje de potencia, y durante un determinado período dado por el 

eje de tiempo. Sin embargo, existen porciones del espectro de frecuencia que 

no son utilizadas durante determinado interva1o de tiempo, dichos espacios 

son denominados oportunidades espectrales, que pueden ser aprovechados 

por los SU (Ozger y Akan, 2016).

Potencia

Tiempo

Frecuencia

Espectro en uso

Acceso dinámico 
del espectro

Oportunidad espectral

Figura 2.1. Concepto de oportunidades espectrales.
Fuente: adaptada de Akyildiz et al. (2009).

2.1.1 Características de la radio cognitiva
Las principales características de la CR, que le confieren todas las capacida-

des descritas anteriormente, son la capacidad cognitiva y reconfigurabilidad.

2.1.1.1 Capacidad cognitiva
Tecnología capaz de capturar la información de su entorno de radiofrecuen-

cia para identificar los segmentos del espectro que no están siendo utilizados, 
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seleccionar el mejor espectro posible y definir los parámetros de operación 

más adecuados con el objetivo de evitar la interferencia con otros usuarios 

(Pedraza et al., 2016).

2.1.1.2 Reconfigurabilidad
Capacidad de cambiar, de forma dinámica, los diferentes parámetros de 

operación relacionados con la transmisión o recepción —como frecuencia, 

potencia y modulación— con miras a habilitar la radio para ser programa-

da, transmitir y recibir en una gran variedad de frecuencias, en función del 

ambiente de radio, así como usar diferentes tecnologías de acceso a la trans-

misión (Pedraza et al., 2016).

2.1.2 Gestión de espectro en radio cognitiva
Para que se pueda hacer uso del espectro de manera oportunista, las CRN 

trabajan con un modelo de gestión que se denomina ciclo cognitivo (figura 

2.2). El modelo se caracteriza por cuatro funciones principales: detección, 

decisión, movilidad y compartición de espectro. En la etapa de detección los 

SU monitorean de manera continua el espectro para poder determinar las 

oportunidades espectrales; luego, con la función decisión de espectro, los SU 

deben seleccionar la oportunidad espectral más adecuada de acuerdo con 

sus requerimientos de QoS. En la tercera función, movilidad de espectro, el 

SU puede tener que realizar el cambio de su frecuencia actual para conti-

nuar su comunicación en otro canal, debido a causas tales como: llegada de 

un PU, no disponibilidad del canal; interferencia al PU, degradación de la 

calidad del canal, variación del tráfico y movimiento del SU. Por último, en 

la función de compartición de espectro, el ciclo cognitivo proporciona la ca-

pacidad de compartir el recurso espectral con múltiples SU, coordinando sus 

transmisiones para evitar colisiones e interferencias, debido a que múltiples 

usuarios de CR pueden intentar acceder al espectro de manera simultánea 

(Pedraza et al., 2016; Ramzan et al., 2017).
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Entorno de Radio

Detección de 
espectro

Decisión de  
espectro

Compartir                      
espectro

Movilidad de            
espectro

Estímulo 
RF

Detección de 
usuario primario

Oportunidad 
espectral

Capacidad de 
canal

Señal                           
transmitida

Solicitud de 
decisión

Caracterización de 
espectro

Figura 2.2. Ciclo cognitivo.
Fuente: adaptada de Akyildiz et al. (2009).

2.1.2.1 Monitorización de espectro
La detección del espectro es la función encargada de identificar oportunida-

des espectrales. Los SU monitorean el espectro capturando información que 

permita determinar disponibilidad de canales. Actualmente existen varias 

técnicas para monitorizar el espectro, las cuales se clasifican como se mues-

tra en la figura 2.3, siendo detección de energía la más básica de ellas (Páez 

et al., 2017).

Detección de espectro

Detección de 
receptor

Detección de 
transmisor

Detección de 
energía

Detección de 
�ltro adaptado

Detección de 
Características ciclo 

estacionarias

Temperatura de 
interferencia

Figura 2.3. Clasificación de las técnicas de detección de espectro.
Fuente: adaptada de Akyildiz et al. (2009).
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2.1.2.2 Decisión de espectro
La decisión del espectro o proceso de toma de decisiones determina cual es 

el mejor canal de frecuencia entre los disponibles, según los requisitos de 

QoS de las aplicaciones (Alias y Ragesh, 2016; Páez et al., 2017; Pedraza et 
al., 2016; Ramzan et al., 2017).

2.1.2.3 Compartición de espectro
Debido a que varios SU pueden intentar acceder al espectro, la función 

de compartición proporciona la capacidad de distribuir este recurso e in-

formación con múltiples SU, coordinando sus transmisiones para evitar 

colisiones e interferencias. Las soluciones existentes para el uso compartido 

del espectro se clasifican en función de la arquitectura —centralizada, des-

centralizada y distribuida—; de acuerdo con el comportamiento del acceso 

al medio —cooperativo o no cooperativo— y por la forma como se accede al 

medio —superposición o subyacente— (Lertsinsrubtavee y Malouch, 2016; 

Pedraza et al., 2016).

2.1.2.4 Movilidad de espectro
La movilidad espectral da lugar al concepto de handoff espectral, mediante 

el cual, el SU cambia de una oportunidad espectral a otra. Durante el mo-

vimiento es inevitable que la comunicación se rompa temporalmente, por 

tanto, resulta ser un aspecto clave en el desempeño de las CRN. La función 

de decisión espectral juega un papel muy importante para mejorar dicho 

desempeño, determinando cuando y donde realizar un handoff espectral me-

diante un conjunto de reglas (Hernández et al., 2016a; López et al., 2015; 

Oyewobi y Hancke, 2017; Páez et al., 2017)

2.1.3 Arquitectura de la radio cognitiva
El proceso de toma de decisiones en la CRN se clasifica según su arquitectu-

ra, de acuerdo con la figura 2.4.
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Arquitectura

Infraestructura

Centralizada Descentralizada

Sin infraestructura

Distribuida

Figura 2.4. Arquitectura de una CRN.
Fuente: adaptado de Masonta et al. (2013) y Pedraza et al. (2016).

2.1.3.1 Centralizada
En las arquitecturas centralizadas — figura 2.5a — existe un coordinador 

llamado entidad central o estación base que se encarga de acomodar, asignar 

y tomar las decisiones de los canales y además, almacena y procesa la infor-

mación entregada por los PU y SU (Ahmed et al., 2016). Su vulnerabilidad 

radica en que la destrucción del nodo central provoca una pérdida general 

del sistema.

En la arquitectura centralizada, la coordinación de los nodos entre sí se 

mantiene mediante la difusión de mensajes a través de un canal de control 

común (CCC) de coordinación del espectro, independiente del canal de da-

tos. Cada usuario determina el canal que puede utilizar para la transmisión 

de datos, de tal manera que evite interferencias. En caso de que la selección 

de canal no sea suficiente para eludirlas, se implementa la adaptación de 

potencia. Las evaluaciones de las alternativas anteriores revelan que el CCC 

mejora el rendimiento entre 35 % y 160 % a través de la frecuencia como de 

la adaptación de potencia (Akyildiz et al., 2006; Tsiropoulos et al., 2016).

2.1.3.2 Distribuida
Las redes distribuidas forman una malla (figura 2.5c) donde los nodos de 

cada subsistema comparten información entre sí, se pueden mover libre-

mente y no existe un responsable en la coordinación global de los usuarios 

licenciados y no licenciados, lo que permite que este tipo de estrategias 

tenga una alta aplicación en redes donde no es viable la implementación 



48

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

de infraestructura (Brik et al., 2005; Cao y Zheng, 2005; Krishnamurthy et 
al., 2005; Pedraza et al., 2016; Salgado et al., 2016b). La desventaja de este 

modelo es su baja seguridad. Los protocolos distribuidos que no requieren 

infraestructura son ampliamente utilizados en redes de radio cognitiva ad 
hoc (CRAHN) (Wang et al., 2016).

En la arquitectura distribuida la coordinación entre nodos utiliza una 

reserva de canal dinámica distribuida basada en la QoS —es decir, una esta-

ción base compite con su interferente estación base (BS) de acuerdo con los 

requisitos de QoS de los usuarios para asignar una porción del espectro. De 

forma similar al protocolo CCC, los canales de control y datos se separan— 

(Akyildiz et al., 2006; Tsiropoulos et al., 2016).

2.1.3.3 Descentralizada
Las redes descentralizadas son arquitecturas formadas por un conjunto de 

redes centralizadas conectadas por enlaces adicionales que crean una malla. 

Cuentan con una infraestructura de implementación sencilla; tienen buenos 

niveles de seguridad, ausencia de sobrecarga de comunicación, menor retar-

do, baja complejidad, entre otras (Darak et al., 2014). Su estructura incorpora 

atributos de redes centralizadas y distribuidas. El enfoque descentralizado es 

una opción eficiente para redes de gran tamaño, además, es la mejor alter-

nativa para redes de seguridad pública y servicios de redes sociales (Darak 

et al., 2017). La figura 2.5b presenta la jerarquía de una red descentralizada.

(a) (c)(b)

Figura 2.5. Arquitectura de una red. a. Centralizada; b. Descentralizada; c. Distribuida.
Fuente: adaptado de Baran (1964) y Pankratev et al. (2019).
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2.1.4 Aplicaciones de la radio cognitiva
Los resultados de esta investigación pueden impactar el campo de la in-

formación y las comunicaciones en la región, no solo Bogotá D.C. sino 

Colombia y el mundo entero. Un ejemplo claro son las redes Mesh, las cuales 

han emergido como una tecnología con relación beneficio-costo muy buena; 

sin embargo, el incremento en la densidad de la red y el requerimiento de 

un alto throughput por parte de sus aplicaciones han degradado su QoS. Con 

las ventajas de la CR es posible habilitar el acceso a un mayor segmento del 

espectro; por otro lado, una red backbone mesh puede incrementar el área de 

cobertura basada en puntos de acceso cognitivos (Akyildiz et al., 2006).

Un desastre natural podría deshabilitar temporalmente o incluso destruir 

la infraestructura de comunicaciones, por lo que sería necesario establecer 

redes de emergencia que requieren una gran cantidad de espectro para po-

der manejar el volumen de tráfico de video, voz y datos. La CR tiene la 

capacidad de proporcionar dicho espectro sin la necesidad de una gran in-

fraestructura. Es así, como la seguridad pública y las redes de emergencia 

también se pueden beneficiar de sus ventajas (Akyildiz et al., 2006).

Otra de las potenciales aplicaciones de la CR son las redes militares, ya 

que le permite a la radio militar escoger arbitrariamente su frecuencia, BW, 

modulación, codificación, adaptándose al ambiente de radio variable del 

campo de batalla (Akyildiz et al., 2006).

En suma, las características de reconfigurabilidad dinámica de cada uno 

de los parámetros de operación en una CRN puede garantizar integridad 

de información, interoperabilidad, fiabilidad, flexibilidad; redundancia, 

escalabilidad, seguridad, eficiencia y acceso en todo tiempo y espacio, 

beneficiando significativamente el manejo de la información y las comuni-

caciones en Colombia.

2.1.5 Desafíos y futuras investigaciones en radio cognitiva
La radio cognitiva abarca aspectos que van desde la monitorización del 

espectro hasta las decisiones de movilidad en este, teniendo en cuenta esque-

mas de acceso al medio y tipo de redes en las cuales interactúa.
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2.1.5.1 Monitorización del espectro
El proceso de monitorización no puede realizarse al mismo tiempo en que 

se envía información entre SU, por consiguiente, si hay que monitorear los 

usuarios deben detener las trasmisiones, afectando la eficiencia del espectro. 

Con base en esto, sería deseable desarrollar algoritmos de monitorización 

que reduzcan su tiempo mientras mejoran la precisión en el proceso de de-

tección de oportunidades espectrales.

2.1.5.2 Espectro compartido
En trabajos realizados en CR se hacen suposiciones como que los SU co-

nocen de antemano la localización y el nivel de potencia de la trasmisión 

de los PU, lo cual permite realizar los cálculos de interferencia de manera 

fácil. Sin embargo, esta suposición no siempre es cierta para algunas CRN 

(Lertsinsrubtavee y Malouch, 2016).

2.1.5.3 Procesos de aprendizaje
Debido a sus complejidades inherentes sería deseable habilitar en los dispo-

sitivos que hagan uso de CR un proceso de aprendizaje que tome en cuenta 

las decisiones tomadas en el pasado para mejorar su comportamiento den-

tro de la red, y por tanto, sus decisiones futuras. El diseño de este tipo de 

algoritmos representa un gran desafío, debido a que se debe determinar 

que mediciones son necesarias para desarrollar este proceso de aprendizaje 

(Delgado y Rodríguez, 2016).

2.1.5.4 Esquemas de control de acceso al medio
Aunque el grupo de investigación del estándar IEEE 802.22 está trabajando 

en el desarrollo de un protocolo de control de acceso al medio (MAC), otras 

investigaciones han desarrollado esquemas que no se adecuan al estándar. 

Por ejemplo, los esquemas MAC distribuidos para CRAHN no están del 

todo cubiertas.

2.2 Decisión espectral
Después de realizar la detección del espectro los SU deben decidir cuál es la 

mejor oportunidad espectral. Este proceso debe satisfacer los requerimientos 
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de QoS e incluir como criterio de parametrización las acciones adoptadas 

por otros usuarios (Alias y Ragesh, 2016; Pedraza et al., 2016; Ramzan et 
al., 2017). Una inadecuada toma de decisiones afecta parámetros de QoS 

tales como: latencia, throughput, confiabilidad, señalización, interferencia, 

eficiencia energética, ancho de banda, SINR y tasa de error (Hernández et 
al., 2016a; López et al., 2015; Oyewobi y Hancke, 2017; Páez et al., 2017). 

De acuerdo con lo anterior, la decisión espectral es una función clave en las 

CRN, sin embargo, no ha sido tan investigada en comparación con otras 

funciones del ciclo cognitivo (Akyildiz et al., 2008; Masonta et al., 2013).

La toma de decisiones es un proceso que busca seleccionar la mejor alter-

nativa espectral entre un conjunto finito de posibilidades, permitiendo a los 

SU generar una secuencia de acciones que conducirá al logro de sus objetivos 

(Rizk et al., 2018; Tripathi et al., 2019). Para realizar estructuras de decisión 

es necesario implementar modelos con altos desafíos: los algoritmos deben 

ser escalables y eficientes debido a los altos volúmenes de información que 

se requieren para el entrenamiento y validación, a la complejidad de las ta-

reas y a los estándares de evaluación mínimos de cada aplicación particular 

(Rizk et al., 2018).

La decisión espectral incluye tres funciones principales: (1) caracteriza-

ción del espectro, (2) selección del espectro y (3) reconfiguración. Como se 

muestra en la figura 2.6, una vez que los canales se identifican —utilizando 

sensores de espectro, bases de datos de geolocalización u otras técnicas— 

cada banda del espectro es caracterizada (actividad del PU) a partir de la 

base de observaciones locales y de la información estadística; culminada 

esta etapa los SU proceden a seleccionar la banda espectral más apropiada. 

A partir de la decisión tomada el SU reconfigura sus parámetros de transmi-

sión y continúa el envío de datos (López, 2017; Masonta et al., 2013).

A continuación presentamos la descripción de las funciones: carac-

terización del espectro, decisión de espectro (selección de espectro) y 

reconfiguración.
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Figura 2.6. Marco de decisión del espectro.
Fuente: López (2017).

2.2.1 Caracterización del espectro
Para determinar la banda espectral más adecuada, en primer lugar, y de 

acuerdo con las observaciones de la red, se requiere identificar las caracterís-

ticas de cada una de las bandas espectrales disponibles, teniendo en cuenta la 

intensidad de la señal recibida, interferencia y número de usuarios actuales. 

Adicionalmente, para realizar un correcto proceso de toma de decisiones 

los SU deben observar la disponibilidad de espectro heterogéneo que varía 

con el tiempo y el espacio. La disponibilidad heterogénea hace referencia a 

la disponibilidad de los huecos espectrales que fluctúan con el tiempo y la 

ubicación. En general, la caracterización del espectro debe incluir tanto las 

condiciones actuales del entorno de radio frecuencia como el modelo de 

actividades del PU. La caracterización del entorno de radiofrecuencia es un 

proceso que implica: identificación del canal, capacidad del canal, retardo 

de conmutación del espectro, interferencia del canal, tiempo de retención del 

canal, tasa de error del canal, ubicación del abonado y pérdida de trayecto.
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La caracterización del espectro determina y describe el comportamiento 

de los canales permitiendo distinguir unos de otros, de acuerdo con su tráfi-

co, ocupación y configuración. Al seleccionar un canal es importante tener 

en cuenta que dentro de sus características de transmisión existen paráme-

tros que influyen en su comportamiento. Por tal motivo, se deben estudiar 

estos factores con el fin de identificar algunos beneficios que permitan obte-

ner una mejora en el desempeño de estas redes. Algunas características son 

(Masonta et al., 2013):

•	 Identificar el canal.

•	 Capacidad del canal.

•	 Retardo de conmutación de espectro.

•	 Interferencia del canal.

•	 Canal de tiempo.

•	 Tasa de error del canal.

•	 Posición del abonado.

2.2.1.1 Identificar el canal
La utilización del canal por parte del PU es quizás el factor más importante 

ya que define los espacios y tiempos libres en un canal para ser ocupados por 

un SU. Esta ocupación se realiza de manera aleatoria, donde los tiempos de 

utilización no son determinísticos sino impredecibles y varían en diferen-

tes aplicaciones. Esta actividad de ocupación del canal puede ser modelada 

como un proceso estocástico aplicando técnicas de inteligencia artificial 

como redes neuronales, modelos de Markov y Máquinas de soporte vecto-

rial (SVM) (Wang et al., 2011).

2.2.1.2 Capacidad del canal
Cada banda del espectro en un sistema de multiplexación por división de 

frecuencia ortogonal tiene un ancho de banda diferente, el cual está com-

puesto por varias subportadoras que estiman una capacidad normalizada del 

canal. Las investigaciones se han enfocado en estimar la capacidad de BW 
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mediante el estudio de otros parámetros como el nivel de interferencia, tasa 

de errores y propagación (Lee y Akyildiz, 2011).

Se ha demostrado que el método tradicional de estimación de capacidad 

del canal utilizando la relación señal a ruido (SNR) conduce a una decisión de 

espectro no óptima (Masonta et al., 2013).

Las capacidades de BW de un canal licenciado están limitadas por la enti-

dad reguladora, haciendo que el SU requiera analizar recursos cuando el BW 

del PU sea menor que el requerido por el SU. Para el modelo propuesto, el BW 

no es utilizado.

2.2.1.3 Retardo de conmutación de espectro
Esta característica nace como consecuencia de la intervención de un PU cuan-

do está operando el SU en un canal licenciado. En ese momento, el SU debe 

detectar nuevos canales con diferentes frecuencias y conmutar reconfigurando 

sus parámetros de transmisión. En ese proceso de conmutación hay una dura-

ción considerable que afecta el desempeño de las CRN (3GPP, 2011).

El desafío radica en reducir el retardo de detección del canal; el tiempo 

que tarda el SU en configurar sus parámetros de transmisión y disminuir el 

tiempo que gasta el SU en acceder al nuevo canal, con el fin de mejorar el 

rendimiento de retardo en CRN.

2.2.1.4 Interferencia del canal
La interferencia es la mayor consecuencia generada en el proceso de interac-

ción entre usuarios en una red. Al acceder al espectro, un SU puede afectar 

la señal alterando los servicios de PU, por tanto, la interferencia está definida 

como la perturbación de la señal debido a la coexistencia entre PU y SU en 

un área de cobertura del PU (Amir et al., 2011).

Existen diferentes estudios para evitar interferencias entre PU y SU en 

áreas de cobertura específica, donde es importante que el SU no transmita 

mientras haya presencia de un PU.
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2.2.1.5 Tiempo de retención del canal
Esta característica es importante al momento de modelar el acceso al canal 

debido a que estudia los tiempos de activación y de inactividad de los PU 

y SU permitiendo acceder a canales ranurados, regulando y sincronizando 

este acceso (Akyildiz et al., 2006).

Inicialmente, se estudian los tiempos de duración de activación de los 

usuarios y tiempos en que el canal permanece libre, luego se definen bloques 

de tiempo que serán recursos libres que pueden ser utilizados por los SU 

con bloques de similar tamaño, para finalmente, acceder al canal que más se 

ajuste con las mediciones realizadas, reduciendo interferencias en la interac-

ción (Akyildiz et al., 2006).

2.2.1.6 Tasa de error de canal
Este factor está directamente relacionado con el nivel de interferencia, BW 

y la banda de frecuencia disponible, los cuales influyen directamente en la 

recepción o transmisión de errores de bit en un canal. Esta Tasa de error de 

bit (BER) es indicada con la SNR (Höyhtyä et al., 2008).

2.2.1.7 Localización del abonado
Dentro del funcionamiento y proceso de detección, el SU debe obtener 

información geográfica y del ambiente de radio frecuencia, mediante una 

función del sistema de posicionamiento global, para coordinar información 

entre los nodos o servidores centrales que identifiquen la ubicación de cada 

SU y poder construir un mapa de actualización mundial. Este proceso per-

mitirá predecir situaciones futuras de intervenciones de los PU (Azarfar et 
al., 2012).
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Figura 2.7. Caracterización del ambiente de radio.
Fuente: adaptada de Masonta et al. (2013).

La figura 2.7 sintetiza los componentes que debe tener en cuenta un modelo 

de decisión de espectro para cumplir con el objetivo de acceder al espectro 

oportunamente. Aunque diseñar un modelo que evalúe todas las caracterís-

ticas puede ser robusto, complejo y computacionalmente poco eficaz, si es 

misión del ingeniero idear un modelo que utilice las características principa-

les y necesarias, y que también reduzca su tiempo de ejecución.

2.2.2 Selección – decisión del espectro
La decisión del espectro o proceso de toma de decisiones determina cual es el 

mejor canal de frecuencia entre los disponibles, según los requisitos de QoS 

de las aplicaciones. Para esta función se han desarrollado algoritmos que 

tienen en cuenta las características del canal de radio y el comportamiento 

estadístico de los PU (Alias y Ragesh, 2016; Páez et al., 2017; Pedraza et al., 
2016; Ramzan et al., 2017).

2.2.3 Reconfiguración CR
En las redes inalámbricas tradicionales los terminales de radio están confi-

gurados estáticamente para operar sobre canales de frecuencia predefinidos 

con parámetros y características predefinidas del transceptor. Las CR son 

capaces de adaptarse rápidamente a los cambios (Masonta et al., 2013).

La tarea de reconfiguración de la CR requiere una clara comprensión de 

cómo interactúan los parámetros de comunicación dentro de las diferentes 

capas de protocolo. Sin embargo, aunque estos sistemas pueden emplear 
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técnicas adaptativas para ajustar diversos parámetros de transmisión, su 

arquitectura basada en hardware limita su flexibilidad para adaptarse al en-

torno externo (López, 2017).

2.2.4 Tipos de enfoque de la decisión espectral
Las CRN pueden operar de acuerdo con varios enfoques básicos, cada uno 

de los cuales presenta ventajas y desventajas frente a su enfoque opuesto. En 

esta sección se analizará el enfoque con infraestructura frente al enfoque ad 
hoc; el enfoque centralizado frente al distribuido, el enfoque de asignación 

multicanal frente al de asignación única, inclusión o no del PU, inclusión o 

no del SU, CCC dedicado o dinámico, y segmentación o agrupamiento.

2.2.4.1 Infraestructura vs ad hoc
De acuerdo con la arquitectura de la red, las CRN pueden clasificarse en 

redes basadas en infraestructura o CRAHN (Ahmed et al., 2016; Akyildiz 

et al., 2006). Las CRN basadas en infraestructura tienen una entidad de red 

central similar a una estación base en redes celulares o un punto de acceso 

en las redes inalámbricas de área local. Por otro lado, las CRAHN no tienen 

ninguna infraestructura, por tanto, un SU se comunica con otro SU a través 

de una conexión ad hoc, tanto en bandas espectrales licenciadas como no 

licenciadas. (Akyildiz et al., 2009).

En las redes con infraestructura, la información observada por cada SU 

alimenta la base de datos de la entidad central, de forma que esta pueda 

tomar decisiones inteligentes con el fin de maximizar los parámetros de co-

municación, como el throughput, el BW, SINR, el balanceo de carga, entre 

otros, y eliminar o minimizar la interferencia hacia los PU (Akyildiz et al., 
2009). En el caso de las CRAHN, los SU son responsables de tomar sus 

propias decisiones con base en observaciones locales únicamente, lo cual 

les impide realizar un uso eficiente de los recursos de la red entera. Para 

compensar el caso anterior, los SU pueden hacer uso de esquemas de cola-

boración, en los cuales cada SU intercambia su información de observación 

del espectro local, permitiéndoles tener un conocimiento aproximado de la 

red completa (Akyildiz et al., 2009).
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2.2.4.2 Centralizado vs distribuido
Si las CRN cuentan con infraestructura, pueden operar tanto con un enfoque 

centralizado como distribuido. En el primero existe una entidad encargada 

de coordinar las funciones necesarias para la decisión y asignación del ca-

nal de frecuencia durante una decisión espectral conocida como estación 

base central que cumple, además, con la función de almacenar y procesar la 

información del ambiente de radio y del espectro recibida por los SU perió-

dicamente o por demanda (Ahmed et al., 2016; Tragos et al., 2013).

Debido a que la estación base central tiene un nivel mucho más elevado 

de procesamiento y autonomía energética que los SU, desarrolla también 

funciones de monitorización del espectro de forma periódica. Esta infor-

mación junto a la proporcionada por los SU actualiza dinámicamente la 

base de datos central. La estación base central procesa periódicamente esta 

información y calcula valores estimados de algunos parámetros de interés 

del espectro como la AP, la SINR, el ETA y BW de los canales, entre otros, 

los cuales permiten tomar decisiones más acertadas para la asignación es-

pectral. Lo anterior libera a los SU de la carga computacional requerida para 

ejecutar un algoritmo robusto de asignación espectral.

La principal ventaja en el enfoque centralizado es la observación y cono-

cimiento global de la red lo cual permite maximizar el throughput, minimizar 

la interferencia entre los SU, una asignación multicanal justa y, en general, 

mejorar el nivel de desempeño de la red (Alnwaimi et al., 2011; Byun et al., 
2008). Sin embargo, su mayor desventaja es la cantidad de información de 

señalización que se introduce a la red para coordinar los procedimientos de 

intercambio de información entre la estación base central y los SU. Además, 

si la estación base central llegara a fallar se perdería el control sobre la asig-

nación espectral creando desequilibrio y un potencial caos en el sistema. 

(Tragos et al., 2013).

En el enfoque distribuido no existe una estación base central responsa-

ble de coordinar la asignación espectral a los SU. Por tanto, los SU toman 

decisiones por ellos mismos o de forma colaborativa con otros SU vecinos, 

a través de intercambio de información y medidas dentro de un rango de-

terminado (i.e. 2-3 saltos). Lo anterior hace que el enfoque distribuido sea 
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más flexible y eficiente que el centralizado ya que puede adaptarse rápida-

mente a los posibles cambios o variaciones del ambiente de radio o de la red; 

solamente los SU en el área afectada tendrán que hacer modificaciones e 

intercambiar información. Otra ventaja significativa del enfoque distribuido 

es la baja información de señalización requerida ya que solo los nodos veci-

nos intercambian información. Entre las desventajas del enfoque distribuido 

destaca que las decisiones tomadas no son óptimas debido a que los nodos 

solo tienen información de sus vecinos y no de la red completa, adicionando 

el hecho de que es posible que la información intercambiada no sea suficien-

te (Tragos et al., 2013). También, la falta de un soporte centralizado impide 

obtener información completa de la topología de la red provocando coli-

siones entre SU e interferencia al PU (Giupponi y Pérez-Neira, 2008). En 

conclusión, en lo que respecta a la asignación espectral, el enfoque distribui-

do puede tomar decisiones adecuadas en casos de baja carga de tráfico, pero 

para los casos contrarios, el enfoque centralizado toma mejores decisiones 

(Tragos et al., 2013).

Una solución híbrida entre el enfoque centralizado y el distribuido es el 

enfoque descentralizado —cluster—, el cual intenta eliminar las desventajas 

de cada uno. La red es dividida en M clusters, cada uno con un enrutador 

principal —cluster head—. Cada SU envía la información de espectro de-

tectada a su correspondiente cluster head, el cual se encarga de combinar 

la información completa y generar un vector de asignación espectral final. 

Todos los cluster head intercambian su respectivo vector y de esta manera 

cada uno conoce el estado general de la red. Con la información completa 

de la red cada enrutador principal decide que canal de frecuencia asignar 

y transmite esta información a todos los demás cluster head de la red. Este 

enfoque es más robusto contra fallas; hace un uso más eficiente del ancho 

de banda disponible, logra una mejor distribución de los usuarios en clusters 
y de la carga en múltiples canales y reduce la sobrecarga de información de 

control ya que los mensajes se intercambian a nivel del cluster y no de la red 

completa. (Alsarhan y Agarwal, 2009; Chen et al., 2007; Tragos et al., 2013).
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2.2.4.3 Canal único vs multicanal
El enfoque de asignación de canal único, como se hace tradicionalmente, 

consiste en la asignación de una frecuencia central y un BW específico alre-

dedor de esa frecuencia. Lo anterior implica que los canales son contiguos 

en el espectro.

El caso de la asignación multicanal consiste en la agrupación de varios 

canales disponibles que no son adyacentes, para formar un solo canal. Este 

enfoque permite aumentar el BW del SU aprovechando las oportunidades 

espectrales con baja capacidad de canal. Una de las técnicas que permite el 

acceso simultáneo a varios canales de frecuencia es la Multiplexación por 

División de Frecuencia Ortogonal Discontinua (Chen et al., 2008). Lo ante-

rior permite un uso más eficiente del espectro ya que aprovecha los canales 

que por sí solos no son adecuados debido a su restringido BW, pero que en 

conjunto con otros canales similares puede satisfacer los requerimientos de 

un SU. La asignación multicanal puede incrementar significativamente la 

capacidad de la red y la tasa de datos de los SU. (Dadallage et al., 2016; 

Tragos et al., 2013).

Sin embargo, la asignación multicanal también tiene limitaciones debido 

a que los transreceptores no pueden agregar canales de frecuencia que se 

encuentran muy distanciados entre sí. En otras palabras, el Span de agrega-

ción no es ilimitado, ya que generalmente cada transreceptor tiene un Span 

máximo especificado, por ejemplo 12MHz. Esto significa que, si dos canales 

están separados más de 12MHz, no pueden unirse en un solo canal. Por 

tanto, los algoritmos de asignación espectral deben evitar crear pequeños 

canales de frecuencia que posteriormente no puedan agregarse. También es 

necesario analizar que la utilización de múltiples canales por parte de un 

solo SU no deje sin oportunidad espectral a otros SU, por tanto, el algoritmo 

de asignación espectral debería manejar alguna métrica de justicia para estos 

casos. (Tragos et al., 2013).

2.2.4.4 Incluir modelos de PU y SU vs no incluirlos
De acuerdo con algunos trabajos (Akter et al., 2008; Chen y Hee-Seok, 2016; 

Csurgai-Horvath y Bito, 2011; Rahimian et al., 2014; Rodríguez et al., 2015; 

Wu et al., 2016) la precisión y exactitud en el modelado de la actividad de los 
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PU y SU es relevante para lograr un buen desempeño en las CRN. Un buen 

modelo de actividad del PU y SU permite asignar inteligentemente cada ca-

nal de frecuencia disponible, optimizando el uso del espectro, maximizando 

los parámetros de comunicación —como la tasa de datos, el BW, la SINR y 

el balanceo de carga, entre otros—, eliminando o minimizando la interferen-

cia entre PU y SU. Sin embargo, la validez de dichos modelos generalmente 

está restringida a un determinado tiempo y lugar, para los cuales se diseñó.

Una estrategia de handoff espectral reactiva provoca interferencia tempo-

ral con el PU debido a que durante el tiempo que tome realizar la movilidad 

del SU coexistirán los dos en el mismo recurso espectral. Un buen modelo 

de PU puede evitar o minimizar esta interferencia, a través de una estrategia 

de handoff espectral proactiva (Wu et al., 2016). Sin embargo, el problema 

radica en que dichos modelos están basados en procesos estocásticos que 

utilizan las observaciones pasadas del canal para predecir la disponibilidad 

del espectro futuro, lo que puede llevar a tener que hacer muchas conmuta-

ciones de canal innecesarias si el modelo de predicción es imperfecto. Pero 

no solo el modelo de actividad del PU es relevante; en (Akter et al., 2008) se 

propone un modelo de predicción para el SU, ya que, en muchas oportuni-

dades, múltiples SU compiten por el mismo recurso de espectro, degradando 

la QoS. A través de la implementación de un filtro Kalman se logró realizar 

una significativa estimación del número de SU en el futuro instantáneo.

2.2.4.5 CCC dedicado vs CCC dinámico
El CCC es un requerimiento común en la asignación espectral de CRN, el 

cual permite la coordinación entre SU para la concesión del canal. El CCC 

es un canal predefinido para el intercambio de información de señalización, 

control y espectro entre los SU, el cual puede ser global o local dependiendo 

del operador de red (Kumar et al., 2016). A continuación, se presentan las 

ventajas y desventajas de tener un CCC dedicado para la asignación del ca-

nal de frecuencia o dinámico.

En la literatura son más los trabajos de investigación que defienden la 

necesidad o existencia de un CCC dedicado (Ding et al., 2010; Kim et al., 
2010; Ma et al., 2007). El enfoque con CCC dedicado se divide en dos situa-

ciones: (1) cuando el CCC y el canal de datos del SU son el mismo, y (2) 
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cuando el CCC se encuentra en un canal independiente del canal de datos 

del SU (Akyildiz et al., 2009). Cuando el canal de datos del SU y del CCC 

son el mismo su utilización se comparte por períodos fijos y no es necesario 

un transreceptor adicional, ni se requiere cambiar la frecuencia para recibir o 

transmitir los mensajes. Sin embargo, cuando sea necesario realizar un han-
doff espectral, el CCC desaparecerá. Aunque este enfoque proporciona una 

mayor eficiencia espectral al utilizar un solo canal de frecuencia, la cantidad 

de información del CCC reduce el throughput de la transmisión de datos del 

SU (Akyildiz et al., 2009).

Cuando el canal de datos del SU y el CCC son independientes el CCC no 

se ve afectado por la realización de un handoff espectral; sin embargo, el costo 

de tener dos canales implica la necesidad de un transreceptor adicional y un 

incremento en el retardo. El CCC independiente puede ser global —si es el 

mismo para todos los SU en una CRN—, o local —dedicado solamente a 

una pequeña área geográfica—. En ambos casos es necesario contar con un 

algoritmo de asignación de CCC que permita encontrar el canal óptimo del 

área geográfica de la CRN. (Akyildiz et al., 2009). Con respecto al enfoque 

del CCC dinámico existen muy pocos trabajos (Almasaeid y Kamal, 2010; 

Kondareddy et al., 2008). Aunque hace un uso más eficiente del espectro es 

vulnerable al problema del nodo escondido, que puede llevar a un decremento 

del nivel de conectividad. Además, la selección dinámica de un CCC puede 

incrementar el nivel de retardo en la transmisión del SU (Tragos et al., 2013).

2.2.5 Criterios de decisión espectral
En la asignación espectral existen múltiples criterios que ayudan a tomar 

decisiones inteligentes. Sin embargo, cuantos y cuales criterios utilizar, de-

pende del objetivo en cada toma de decisiones. En aras de imparcialidad, se 

analizaron todas las variables que intervienen durante la toma de decisiones 

y que pueden afectar el desempeño de la red. Esto se logró a partir del aná-

lisis de cada una de las investigaciones consultadas alrededor del tema de 

decisión espectral en CRN (Ahmed et al., 2014; Masonta et al., 2013; Tragos 

et al., 2013).

Estos criterios proporcionan información necesaria para alimentar los al-

goritmos de toma de decisiones con base en los criterios de evaluación para 
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la asignación espectral a los SU en las CRN. Estos criterios varían de acuer-

do con los objetivos de cada esquema de handoff espectral.

Calidad de Servicio (QoS)
La QoS es uno de los criterios más relevantes en los algoritmos de toma de 

decisión para la asignación espectral de los SU en las CRN. Permite dife-

renciar entre aplicaciones sensitivas y no al retardo; en otras palabras, las 

clasifica de acuerdo con el tipo de servicio: tiempo real (RT) y mejor esfuer-

zo (BE). Con esta información se puede tomar la decisión más adecuada en 

términos de las oportunidades espectrales.

Aplicaciones que no son sensibles al retardo pueden ser asignadas a 

oportunidades espectrales con nivel de disponibilidad intermedio. Mientras 

que aplicaciones sensibles al retardo pueden ser asignadas a oportunidades 

espectrales con un nivel alto de disponibilidad a través de estrategias proacti-

vas que minimicen el valor del retardo global, aquí el throughput resulta más 

relevante que la BER. Lo anterior permite mejorar la eficiencia espectral.

Calidad del enlace
La calidad del enlace es otro criterio importante que normalmente se refleja 

a través de la BER y SRN, los cuales también afectan la QoS de la red. Esta 

última a veces se trabaja como SINR.

BER
Es el número de bits recibidos que han sido alterados debido al ruido y la 

interferencia, divididos por el número total de bits transmitidos durante un 

período de tiempo (Ahmed et al., 2014). La BER promedio del canal es un 

parámetro útil para estimar la caracterización del ambiente de radio en las 

CRN (Masonta et al., 2013). El nivel de BER está relacionado con el nivel 

de SNR, esto causa que la energía por bit transmitido sea una métrica im-

portante en la estimación del error (Höyhtyä et al., 2008). A mayor SNR 

menor BER, sin embargo, es importante tener en cuenta que un mayor nivel 

de SNR generalmente implica un mayor nivel de potencia, lo cual causa ma-

yor interferencia al PU. Por tanto, es necesario estimar un mínimo nivel de 
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SNR que garantice cierto nivel de BER que no perjudique la comunicación 

(Tragos et al., 2013).

Calidad del enlace de comunicación
En CRN puede variar dinámicamente en el tiempo y espacio. Por ello, es 

importante para el SU, monitorizar y analizar periódicamente la calidad del 

canal que está siendo utilizado, por ejemplo, a través de la SNR. La SNR 

define la relación entre la potencia de la señal y la potencia del ruido. Es otro 

parámetro importante que afecta y refleja la QoS de la red. Usualmente la 

fuerza de la señal recibida (RSS) y la SINR son consideradas similares, sin 

embargo, la primera está más inclinada a proveer conectividad y la segunda, 

QoS de la red (Ahmed et al., 2014).

AP del canal
La disponibilidad de canal estima la probabilidad de que un canal de frecuen-

cia esté disponible. Algunos trabajos lo expresan como ocupación de canal, 

en cuyo caso se busca estimar la probabilidad de ocupación de un canal de 

frecuencia. Es un criterio muy relevante en la asignación espectral ya que pue-

de determinar las posibilidades de que una oportunidad espectral esté libre 

para ser utilizada por un SU. Su valor es proporcional a la media aritmética 

de las medidas de disponibilidad obtenidas anteriormente por cada canal. 

Aquí resulta interesante determinar el de tiempo a partir del cual se debe 

actualizar el valor promedio de la disponibilidad por canal. Un análisis de la 

serie de tiempo para esta variable podría estimar un intervalo de confianza 

para el período de tiempo de actualización. Lo anterior permite lograr una 

mejor eficiencia de energía, al no tener que correr el algoritmo de estimación 

del criterio de disponibilidad de canal continuamente (Ahmed et al., 2016).

ETA del canal
El tiempo estimado de disponibilidad es un criterio que busca determinar el 

valor promedio que un canal de frecuencia permanece disponible para un 

SU o PU. A diferencia del criterio de disponibilidad de canal, donde se de-

termina la probabilidad de encontrar cierto canal libre, el criterio de tiempo 

estimado de disponibilidad estima el tiempo medio durante el cual el canal 
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permanece libre, una vez está disponible. Estos dos criterios no son sustitu-

tos sino complementarios, ya que dos canales pueden tener la misma AP, 

pero con distribuciones de tiempo de disponibilidad distintas. Seleccionar 

un canal con un tiempo estimado de disponibilidad alto, garantiza un me-

nor número de handoff espectral. Los autores en (Pla et al., 2010) proponen 

un modelo Markoviano para determinar la duración de las oportunidades 

espectrales. Una vez se ha modelado el tiempo ocioso del PU, se aplican 

técnicas de matriz analítica para determinar la duración de las oportunida-

des espectrales para ser ocupadas por los SU. La principal desventaja de esta 

técnica radica en su complejidad.

Patrón de tráfico del PU y SU
No hay ninguna garantía de que el canal de frecuencia seleccionado esté 

disponible durante toda la comunicación, por ello es beneficioso contar con 

un modelo que estime la actividad del PU en la CRN. En algunos trabajos se 

asume que se puede conocer el patrón de llegadas del PU, ya que no es alea-

torio estadísticamente, debido a que depende del comportamiento humano. 

De esta forma se puede estimar la AP y la ETA (Ahmed et al., 2016; Akyildiz 

et al., 2009; Christian et al., 2012; Wu et al., 2016).

Los autores en (Wang et al., 2010) exponen varios trabajos que argumen-

tan que el comportamiento de ocupación de los canales exhibe patrones que 

pueden ser modelados estadísticamente. Sin embargo, diferentes modelos 

pueden aplicar a diferentes aplicaciones como voz, video y paquetes de datos 

generales. Varios modelos asumen que la actividad del PU se puede modelar 

con interllegadas distribuidas exponencialmente (Chou et al., 2007; Kim y 

Shin, 2008; Lee y Akyildiz, 2008). En (Sriram y Whitt, 1986) el patrón de 

tráfico se modela como un proceso de dos estados ON-OFF; nacimiento y 

muerte, con sus respectivas tasas. Otros modelan la actividad del PU a partir 

del tiempo entre arribos; longitud y cantidad de paquetes.

Algunos trabajos se esfuerzan en modelar el comportamiento del PU en 

bandas específicas a partir de datos experimentales (Pedraza et al., 2014). 

Los autores en (Willkomm et al., 2008) utilizan medidas reales de una red 

celular para modelar características de uso del espectro por parte del PU. 

El análisis realizado muestra que el modelo de llegadas exponencialmente 
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distribuidas es adecuado para capturar el tiempo de actividad del PU en 

llamadas no inalámbricas. Mientras que para las llamadas móviles dicho 

modelo no resulta útil, siendo más efectivo el uso de un modelo de caminata 

aleatoria aun en condiciones de tráfico alto. Los autores en (Hernández et 
al., 2009) validan el uso de series de tiempo —modelos Autorregresivo (AR); 

Media móvil (MA) y Autorregresivo integrado de media móvil (ARIMA)— 

para el modelamiento y predicción de tráfico en redes Wi-Fi, obteniendo 

un alto nivel de precisión en el pronóstico de rango corto. En (Li y Zekavat, 

2008) se presenta un trabajo sobre la predicción del patrón de tráfico para 

CRN.

Los autores en (Wei et al., 2006) almacenan información de interés 

para una CRN —pasada y presente— en un repositorio, incluyendo la in-

formación de localización y tráfico del SU y PU. Es importante validar la 

información almacenada para asegurarse de que no es obsoleta. Esta colec-

ción de datos debe ser estadísticamente analizada y usada para modelar la 

actividad del PU en un canal de frecuencia dado (Issariyakul et al., 2009). De 

acuerdo con el aprendizaje maquinal, los SU deberían ser hábiles para recor-

dar las lecciones aprendidas en el pasado y actuar rápidamente en el futuro 

(Marinho y Monteiro, 2012). Idealmente el SU debería conocer el patrón de 

tráfico del PU, observar el cambio y seleccionar la estrategia de handoff más 

adecuada (Akyildiz et al., 2009; Christian et al., 2012). Las estrategias de 

handoff espectral futuras deberían considerar un factor de aprendizaje.

Fecha y hora
La utilización del espectro depende del tiempo y del espacio. El criterio de 

fecha y hora puede ser un buen dato de información para estimar el nivel de 

tráfico y congestión de la red, a partir de las estadísticas de la historia de in-

formación pasada (Hernández et al., 2009, 2013; Issariyakul et al., 2009; Wei 

et al., 2006; Zhang et al., 2016). Una base de datos de estadísticas pasadas 

y recientes permite estimar la disponibilidad y acceso al espectro con cierto 

nivel de precisión. Las series de tiempo son una herramienta muy útil en este 

contexto (Hernández et al., 2009).
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Geo-localización
De acuerdo con la naturaleza de las redes inalámbricas, la disponibilidad de 

espectro no solamente cambia con el tiempo sino también con la movilidad 

espacial (Duan y Li, 2011; Zhang et al., 2016). Conocer la posición exacta de 

los SU y PU es una ventaja en la toma de decisiones para la asignación espec-

tral. Esta información puede mejorar las estrategias para evitar interferencias 

al PU y reducir la tasa de handoff espectral, al determinar una distancia um-

bral a partir de la cual se deba realizar el cambio de canal. En zonas rurales, 

debido a la baja demanda de espectro, es posible utilizar un BW más amplio. 

Este conocimiento puede ser útil para futuras predicciones de oportunidades 

espectrales y la caracterización del ambiente de radiofrecuencia.

Capacidad del canal o BW disponible
Muchos trabajos se enfocan en parámetros como tasa de datos, retardo, 

nivel de interferencia, BER o tasa de handoff espectral, los cuales son rele-

vantes para la eficiencia espectral. Sin embargo, la capacidad de canal es otra 

variable de interés en la asignación espectral, ya que algunas aplicaciones 

requieren un mínimo BW para mantener sus parámetros de BW (Kumar 

et al., 2016). En los sistemas de multiplexación por división de frecuencia 

ortogonal cada banda espectral tiene un diferente BW que consiste de varias 

subportadoras (Masonta et al., 2013).

Fuerza de la señal recibida (RSS)
También conocida como Indicador de fuerza de la señal recibida (RSSI) y 

Fuerza relativa de la señal recibida (RRSS), es un factor tradicional e impor-

tante para tomar decisiones de handoff espectral. RSS provee información 

acerca del nivel de potencia que está siendo recibido por la antena, el cual 

decrementa cuando el usuario se aleja del actual punto de acceso de la red. 

(Ahmed et al., 2014). Este criterio permite determinar el momento en el que 

se hace necesario realizar un cambio de canal.

Costo monetario
Las redes que funcionan sobre bandas de espectro licenciadas proveen cier-

tos servicios a los usuarios a cambio de un costo monetario. El valor del 
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costo monetario dependerá principalmente del recurso de BW y del tiempo 

durante el cual se utilizó. Si dos redes proveen la misma QoS entonces la 

red con el costo más bajo será la preferida por los SU (Ahmed et al., 2014). 

Debido a lo anterior, el valor del costo monetario es una variable de informa-

ción de interés para el algoritmo de asignación espectral.

Preferencias de usuario
Las preferencias de los usuarios pueden ser definidas con base en la red 

preferida dentro de las disponibles, para ejecución de aplicaciones. Las pre-

ferencias de los usuarios también se pueden definir a partir de las prioridades 

asignadas a cada aplicación, las cuales pueden ser alta o baja. Usualmente 

los usuarios prefieren conexiones con alto BW, bajo costo y amplia cober-

tura, entre otras (Ahmed et al., 2014). La mayoría de trabajos que analizan 

preferencias de los usuarios, utilizan funciones de utilidad que permiten des-

cribirlas y manipularlas matemáticamente para encontrar óptimos.

Seguridad de la red
La seguridad es uno de los temas más relevantes en la convergencia de redes 

debido a que cada red tiene sus propias opciones de seguridad. El proceso de 

handoff espectral requiere proveer seguridad y privacidad contra intercepcio-

nes ilegales o ataques de denegación de servicio (Ahmed et al., 2014).

2.3 Técnicas y algoritmos para la asignación espectral
La asignación espectral —y por ende la decisión espectral— es un aspecto 

clave en las CRN para reducir latencia, incrementar la tasa de datos, aumen-

tar el BW, mejorar la capacidad y cobertura, y optimizar el uso del espectro, 

garantizando la QoS necesaria para aplicaciones de RT y BE.

Seleccionar un canal con las características requeridas sobre el cual un 

SU pueda continuar su sesión de transmisión de datos es un asunto apre-

miante en las CRN (Christian et al., 2012). Una pobre selección de canal 

puede causar múltiples handoff  espectral, degradando el desempeño de 

todo el conjunto (Christian et al., 2012; Hernández, Salgado et al., 2015; 

Hernández-Guillén et al, 2012).
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Esta sección tiene por objetivo presentar una revisión sobre los algoritmos 

de asignación espectral en CRN, describiendo los algoritmos más relevantes 

y su clasificación de acuerdo con la literatura actual. El desarrollo de esta re-

visión se realizó a partir del análisis de publicaciones recientes de corriente 

principal con sus respectivas citas, tratando de proveer un marco referencial 

completo de la literatura actual sobre los algoritmos de asignación espectral en 

CRN. Los principales resultados determinan la importancia de una asignación 

espectral inteligente teniendo en cuenta la carga de tráfico, el comportamiento 

del usuario, los niveles de interferencia, la caracterización del espectro, el tipo 

de aplicación y la necesidad de múltiples canales de frecuencia. Como conclu-

sión es importante diseñar algoritmos adaptativos que permitan hacer un uso 

eficiente de las porciones disponibles del espectro licenciado.

Una vez que todas las oportunidades espectrales se detectan y caracterizan 

se debe seleccionar la oportunidad espectral más cercana a los requerimientos 

para la transmisión, teniendo en cuenta los requisitos de QoS y las caracte-

rísticas del espectro. Por tanto, se deben conocer los requisitos de QoS del 

usuario. Con base en las necesidades de los usuarios se puede determinar: la 

velocidad de datos, la BER aceptable, el retardo máximo permitido, el modo 

de transmisión y el BW para la transmisión. Entonces, puede ser elegido 

el conjunto de bandas del espectro apropiado, de acuerdo con las reglas de 

decisión y los algoritmos que evalúan las posibles soluciones. En (Zheng y 

Cao, 2005) se presentan cinco reglas para asignar espectro que se centran en 

la equidad y el costo de la comunicación. Sin embargo, este método asume 

que todos los canales tienen una capacidad de rendimiento similar (Akyildiz 

et al., 2006). Lo ideal es ajustarse a los requerimientos que imponen las dis-

tintas aplicaciones. En (Kanodia et al., 2004) se propone un protocolo de 

saltos de canal de frecuencia oportunista para la búsqueda de un canal de 

mejor calidad, basada en la SNR.

La figura 2.8 propone una clasificación de algoritmos para la selección de 

oportunidades espectrales. Esta clasificación agrupa los algoritmos de asig-

nación espectral en seis clases: (1) toma de decisiones multicriterio (MCDM), 

(2) algoritmos inteligentes, (3) técnicas de aprendizaje, (4) funciones de 

decisión, (5) contexto, y (6) estadísticos. A continuación, se describen los 

algoritmos más relevantes dentro de cada clase de la clasificación propuesta.
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2.3.1 Algoritmo de asignación aleatoria
Es la forma más básica para la asignación espectral y la que peor desempe-

ño provee, por esta razón no se encuentra en la clasificación propuesta de 

la figura 2.8. Sin embargo, se ha convertido en el algoritmo más utilizado 

para contrastar los resultados obtenidos por otros de asignación espectral 

propuestos en la literatura actual al seleccionar de forma completamente 

aleatoria las oportunidades espectrales, por lo cual es utilizado como punto 

de referencia y comparación para la evaluación de algoritmos propuestos.

Clasi�cación de Algoritmos para Asignación de Espectro

Algoritmos 
Inteligentes

Técnicas de
Aprendizaje

Funciones de
Decisión EstadísticosMCDM

SAW

MEW

ELECTRE

GRA

TOPSIS

VIKOR

AHP

FAHP

FFAHP

Aprendizaje 
por Refuerzo

Redes 
Neuronales

Función de 
Utilidad

Función de 
Costo

No 
Supervisado

SVM

Supervisado

Teoría de 
Juegos

Lógica 
Difusa

Algoritmos 
Genéticos

Sistemas 
Multiagentes

Colonia 
Arti�cial de 

Abejas

Redes
Bayesianas

Cadenas de 
Markov

Arboles de 
Decisión

Figura 2.8. Clasificación de los algoritmos para la asignación de espectro.
Fuente: elaboración propia.

2.3.2 Algoritmos MCDM
El problema de asignación espectral tiene múltiples variables a analizar para 

seleccionar una sola oportunidad espectral, por tanto, los algoritmos basados 
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en MCDM son ampliamente usados en este tipo de problemas, donde la re-

lación entre los criterios de decisión es medida a través de pesos ajustados de 

acuerdo con los requerimientos del diseñador. Al cabo de un cierto número 

de iteraciones el algoritmo determinará la mejor solución (Hernández et al., 
2015a).

2.3.2.1 Simple Additive Weighting–SAW
Este algoritmo desarrolla una matriz de decisión conformada por criterios 

y alternativas (oportunidades espectrales). Para cada intersección de la ma-

triz el algoritmo asigna un peso de acuerdo con los criterios del diseñador. 

Esto permite establecer una calificación para cada una de las oportunidades 

espectrales evaluadas, y obtener así un ranking de todas las alternativas. La 

oportunidad espectral con mayor puntaje será la seleccionada (Hernández et 
al., 2015a; Ramírez y Ramos, 2010).

La alternativa Ai está definida por la ecuación (2.1) (Ramírez y Ramos, 

2013).

(2.1)

Donde r
i,j 

pertenece a la matriz y la suma de los pesos es 1.

Los pasos para desarrollar este algoritmo son: (1) identificar los objetivos 

y alternativas; (2) evaluar las alternativas; (3) determinar los pesos de cada 

combinación; (4) adicionar los valores agregados según las preferencias; y 

(5) analizar la sensibilidad (Hernández et al., 2015a; Hübner, 2007; Ramírez 

y Ramos, 2013; Ramírez y Ramos, 2010).

En Hernández et al., (2015c) se utiliza SAW para seleccionar la me-

jor oportunidad espectral en una banda de frecuencia GSM, evaluando la 

cantidad de handoff realizados y comparando los resultados con otros dos 

algoritmos de asignación espectral.

2.3.2.2 Multiplicative Exponent Weighting–MEW
MEW es otro algoritmo MCDM, muy similar a SAW. La principal diferen-

cia es que en MEW en lugar de suma hay multiplicación. Fue propuesto 
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para asignación espectral en (Stevens y Wong, 2006). En MEW la califica-

ción de las oportunidades espectrales es determinada por el producto de los 

pesos de los criterios de decisión. El puntaje Si de la oportunidad espectral i 
es determinada por la ecuación (2.2) (Hernández et al., 2015a; Hernández et 
al., 2015c; Hübner, 2007; Ramírez y Ramos, 2013; Ramírez y Ramos, 2010; 

Stevens et al., 2012; Stevens y Wong, 2006).

(2.2)

Donde X
ij 
denota el criterio j de la oportunidad espectral i, W

j
 denota el peso 

del criterio j, y 
1

1
N

j
j
w

=

=  
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Es necesario tener en cuenta que en (2.2) W
j
 es una potencia positiva para 

métrica de beneficio y negativa para una métrica de costo. Debido a que la 

normalización de parámetros no es requerida sino opcional, el puntaje de la 

oportunidad espectral asignado por MEW no tiene una cota superior (Yoon 

y Hwang, 1995).

En Hernández et al. (2015a) se utiliza MEW para seleccionar la mejor 

oportunidad espectral en una banda de frecuencia de comunicaciones móvi-

les, evaluando el nivel de throughput y BW, y comparando los resultados con 

otros dos algoritmos de asignación espectral.

2.3.2.3 Elimination and Choice Expressing the Reality – ELECTRE
comparaciones entre parejas de alternativas utilizando cada uno de los 

criterios por separado para establecer relaciones (Valenta et al., 2010). Se 

propuso, inicialmente, para la asignación espectral en Christian et al. (2012). 

En general, ELECTRE utiliza un vector de criterios de referencia para ajus-

tar los valores iniciales antes de compararlos. El valor de cada uno de estos 

en la matriz de decisión se compara con el correspondiente valor de criterio 

de referencia Xjref. La diferencia entre ambos se calcula de acuerdo con la 

ecuación (2.3) (Stevens et al., 2012).

re f
ij ij jr x x= −  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.3)
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Con el objetivo de comparar las alternativas espectrales se introduce el con-

cepto de concordancia y discordancia, que son medidas de satisfacción e 

insatisfacción del algoritmo cuando una alternativa es comparada con otra. 

La alternativa con el valor más alto de concordancia neta y el valor más bajo 

de discordancia neta será la preferida (Stevens et al., 2012).

2.3.2.4 Grey Relational Analysis – GRA
“El objetivo de este algoritmo es establecer las redes candidatas y seleccionar 

las que tengan más alta puntuación de acuerdo con unos parámetros definidos. 

Para lograr esto se establecen relaciones de Grey entre elementos de dos series: 

la primera contiene las mejores cualidades, mientras que la otra contiene en-

tidades comparativas. Acá es parte importante el coeficiente de Grey, que se 

usa para describir las relaciones entre las series calculado a partir del nivel de 

similitud y variabilidad” (Hernández, Giral, y Páez, 2015; Hernández, Giral, y 

Santa, 2015; Hübner, 2007; Páez et al., 2015; Ramírez y Ramos, 2013; Ramírez 

y Ramos, 2010; Stevens et al., 2012; Stevens y Wong, 2006).

“En GRA primero se genera el vector de referencia Xo, de la matriz X, a 

través de la escogencia de los valores mínimos para los costos y los valores 

máximos para los criterios de beneficios. Después, la secuencia de datos debe 

ser normalizada para X de acuerdo con tres situaciones: más grande el mejor, 

más pequeño el mejor o nominal el mejor. Luego, se calcula el coeficiente 

relacional de Grey” como lo describe la ecuación (2.4) (Páez et al., 2015).

(2.4)

Donde,

∆�,�= �𝑥𝑥��𝑖𝑖� − 𝑥𝑥��𝑖𝑖�� 
∆���= min��� �min��� ��𝑥𝑥��𝑖𝑖� − 𝑥𝑥��𝑖𝑖����   

∆���= 𝑚𝑚𝑚𝑚𝑚𝑚��� �𝑚𝑚𝑚𝑚𝑥𝑥��� ��𝑥𝑥��𝑖𝑖� − 𝑥𝑥��𝑖𝑖���� 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donde el coeficiente que pertenece [0,1] compensa el efecto de max, que 

generalmente es 0,5.
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Finalmente, se calcula el grado relacional de Grey para cada una de las 

diferentes series de datos, como lo describe la ecuación (2.5), donde Γ(xo,xi) 

representa el grado relacional de Grey para las j-ésimas alternativas.

( ) ( ) ( )( )0 0
1

Γ , ,
M

j i j
i

x x x i x iωγ
=

=  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(2.5)

Donde ω
i
 es el peso de la importancia de los i-ésimos criterios.

En Páez et al. (2015) se utiliza GRA para seleccionar la oportunidad es-

pectral en el enlace ascendente de la banda de frecuencia GSM, evaluando 

el nivel de bloqueos de handoff, y comparando los resultados con otros dos 

algoritmos de asignación espectral.

2.3.2.5 Technique for Order Preference by Similarity to Ideal Solution–TOPSIS
El desarrollo de este algoritmo se basa en la determinación de dos compo-

nentes: la solución ideal del sistema y la solución que no puede ser aceptada 

en ninguna situación. Aquí es necesario comparar los resultados obtenidos 

para determinar qué solución es la más cercana posible a la ideal, y cual la 

más lejana (la cual no será aceptada). Dicha métrica se obtiene a partir de 

la distancia euclidiana, entre los criterios y los pesos (Hernández, Giral, y 

Páez, 2015; Ramírez y Ramos, 2010).

El procedimiento del algoritmo TOPSIS está descrito en Hernández, 

Giral, y Páez (2015), Ramírez y Ramos (2013) y Ramírez y Ramos (2010). 

Inicialmente, se construye la matriz de decisión X y se normaliza usando el 

método de raíz cuadrada —ecuación (2.6)—.
Capítulo 2. Fundamentos Teóricos 49 

 

11 1 1 11 1

1 1 1

M M M
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X
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     

   
   = =   
   
   

 (2-6) 

 

Donde ωi es el peso asignado al criterio i, y la suma de estos debe ser 1.  

Luego se determina la solución ideal y la peor solución, como lo describen las Ecuaciones (2-7) y 

(2-8).   

 

( ) ( )   ij ij 1 MA max |j X , min |j  X , ,   + + − + +=   =   (2-7) 

 

( ) ( )   ij ij 1 MA min |j X , max |j  X  , ,   − + − − −=   =   (2-8) 

 

Donde i = 1, …N, y X+ y X- son el conjunto de beneficios y costos, respectivamente.  

 

Posteriormente, para cada alternativa se calcula la distancia Euclidiana D, como se observa en las 

Ecuaciones (2-9) y (2-10).  

 

( )
M 2

i ij j
j 1

D         i 1, , N + +

=

= − =   (2-9) 

 

( )
M 2

i ij j
j 1

D         i 1, , N − −

=

= − =   (2-10) 

 

Finalmente, las alternativas son organizadas en orden descendente de acuerdo con el índice de 

preferencia dado por la Ecuación (2-11). 

 

i
i

i i

DC ,     i 1, , N.
D D

−
+

+ −= = 
+

 (2-11) 

 

En (Hernández, Vasquez, et al., 2015) se utiliza TOPSIS para seleccionar la mejor oportunidad 

espectral evaluando el nivel de interferencia por canal adyacente y el número promedio de handoff 

(2.6)

Donde ω
i
 es el peso asignado al criterio i, y la suma de estos debe ser 1.

Luego se determina la solución ideal y la peor solución, como lo descri-

ben las ecuaciones (2.7) y (2.8).
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(2.7)

(2.8)

Donde i = 1, …N, y X+ y X- son el conjunto de beneficios y costos, 

respectivamente.

Posteriormente, para cada alternativa se calcula la distancia euclidiana D, 

como se observa en las ecuaciones (2.9) y (2.10).

(2.9)

(2.10)

Finalmente, las alternativas son organizadas en orden descendente de acuer-

do con el índice de preferencia dado por la ecuación (2.11).

(2.11)

En Hernández et al. (2015f) se utiliza TOPSIS para seleccionar la mejor 

oportunidad espectral evaluando el nivel de interferencia por canal adyacen-

te y el número promedio de handoff realizados. Los resultados son compara-

dos con otro algoritmo y sus respectivas versiones, al combinarlos, con tres 

algoritmos de predicción basados en series de tiempo.

2.3.2.6 Multi-Criteria Optimization and Compromise Solution–VIKOR
“El método VIKOR asume que cada alternativa es evaluada de acuerdo con 

cada función de criterio, y la clasificación puede ser desarrollada a través de 

la comparación de las medidas que estén más cercanas a la alternativa ideal” 

(Hernández, Vásquez, et al., 2015; Páez et al., 2015; Tanino et al., 2003). 

VIKOR fue desarrollado para lograr la optimización de sistemas complejos 

con múltiples criterios, por tanto, es hábil para determinar el compromiso en 
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una lista de ranking, aun en presencia de criterios en conflicto, lo que lo hace 

un algoritmo adecuado para la toma de decisiones en la asignación espectral 

(Gallardo-Medina et al., 2009).

El algoritmo VIKOR sigue los pasos descritos en Hernández et al. (2015a), 

Páez et al. (2015), Ramírez y Ramos (2010) y Stevens et al. (2012).

Para cada parámetro j = 1, 2, 3,…, N, se determina el mejor y peor valor, 

dados por las ecuaciones (2.12) y (2.13).
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( ) ( ) j ij b ij ci Mi M
F max x |j N , min x |j N+


=    (2-12) 

 

( ) ( ) j ij b ij ci M i M
F min x |j N , max x |j N−

 
=    (2-13) 

 

Donde bN  que pertenece a N, es el conjunto de parámetros de beneficios y cN  que pertenece a N, 

es el conjunto de parámetros de costos. 

 

Luego se calculan los valores de iS  y iR  para i= 1,2,3,…,M, como lo describen las Ecuaciones 

(2-14) y (2-15). 

 

(2.12)
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(2.13)

Donde Nb que pertenece a N, es el conjunto de parámetros de beneficios y 

 que pertenece a N, es el conjunto de parámetros de costos.

Luego se calculan los valores de Si y Ri para i = 1,2,3,…,M, como lo des-

criben las ecuaciones (2.14) y (2.15).
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(2.15)

Donde Wj es la importancia del peso del parámetro j.

Posteriormente, se calculan los valores de Qi  para i = 1, 2, 3, …, M, 

dados por la ecuación (2.16).

( )i i
i

S S R RQ γ 1 γ
S S R R

+ +

− + − +

   − −= + −   − −   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.16)

Dónde, i ii M i M
S minS ,   S maxS+ −

∈ ∈
= = ,S = min S , S- = max S , i ii M i M

R min R ,   R max R+ −

∈ ∈
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Dados los valores de Q para todos los i pertenecientes a M, se clasifican 

de mayor a menor las oportunidades espectrales candidatas. Finalmente, la 

oportunidad espectral seleccionada está dada por el Q óptimo, como lo des-

cribe la ecuación (2.17).

* *
VIK ii M

A argminQ
∈

=  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.17)

En (Páez et al., 2015) se utiliza VIKOR para seleccionar la mejor oportu-

nidad espectral en el enlace ascendente de la banda de frecuencia GSM, 

evaluando el nivel de bloqueos de handoff, y comparando los resultados con 

otros dos algoritmos de asignación espectral.

2.3.2.7 Analytical Hierarchical Process–AHP
AHP se basa en comparaciones sobre la importancia entre los criterios de 

decisión escogidos para la selección de una alternativa, siendo más una me-

dida relativa que un valor absoluto (Saaty, 1990).

En la metodología de diseño del algoritmo AHP, el primer paso es definir 

el problema, descomponiéndolo a su vez en objetivo, criterios y alternativas. 

El objetivo es la decisión que se ha de tomar, que para el presente trabajo 

corresponde a la selección de la mejor oportunidad espectral. Los criterios 

son los factores que afectan la preferencia de una alternativa. Las alterna-

tivas son todas las oportunidades espectrales, de las cuales hay que escoger 

solo una.

El segundo paso es la construcción de la jerarquía de acuerdo con la de-

finición del problema. El tercer paso es la realización de las matrices de 

juicios, las cuales corresponden a evaluaciones comparativas que definen el 

nivel de importancia relativa entre cada combinación posible de parejas de 

criterios —ver ecuación (2.18)—.
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(2-18) 

 

Donde i = j = 1, 2,..., n, corresponden al número de criterios.  

 

En el cuarto paso se procede a calcular los pesos normalizados para cada criterio, como lo describe 

la Ecuación (2-19) (Hernández, Giral, & Paéz, 2015). 

 

1 2

1

, , ....., i
n i n

jj

vr r r r con r
v

=

 = = 
  

(2-19) 

 

Donde, r es el vector de valores propios, 1 2, ,..., nr r r  es el valor de los pesos de cada subcriterio, iV  

es la media geométrica de la fila i, y 
jV es la media geométrica de la columna j. 

 

Finalmente, el quinto paso evalúa la validez del algoritmo AHP a través del índice de consistencia, 

como se muestra en la Ecuación (2-20) (Miranda, 2001). De acuerdo con (Saaty, 1990) si el índice 

de consistencia es menor que 0,1 el desarrollo del algoritmo es satisfactorio.  

(2.18)

Donde i = j = 1, 2,..., n, corresponden al número de criterios.
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El cuarto paso procede a calcular los pesos normalizados para cada crite-

rio, como lo describe la ecuación (2.19) (Hernández et al., 2015a).

1 2
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, , ....., i
n i n

jj

vr r r r con r
v
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 = = 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.19)

Donde r es el vector de valores propios; r
1
, r

2
, ..., rn es el valor de los pesos 

de cada subcriterio, Vi es la media geométrica de la fila i, y Vj es  la media 

geométrica de la columna j.

Finalmente, el quinto paso evalúa la validez del algoritmo AHP a través 

del índice de consistencia, como se muestra en la ecuación (2.20) (Miranda, 

2001). De acuerdo con Saaty (1990) si el índice de consistencia es menor que 

0,1 el desarrollo del algoritmo es satisfactorio.
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(2.20)

Donde CI es el índice de consistencia, n el número de subcriterios y  es el 

valor del elemento de la fila i y columna j.

En Hernández, Giral y Páez (2015) se utiliza AHP para seleccionar la 

mejor oportunidad espectral en la banda de frecuencia GSM, calculando el 

desempeño del algoritmo con base en cinco métricas de evaluación y com-

parando los resultados con otros cinco algoritmos de asignación espectral.

2.3.2.8 Algoritmo multivariable difuso–FAHP
El algoritmo AHP para la toma de decisiones basada en múltiples criterios, 

tanto cuantitativos como cualitativos, ha demostrado ser una alternativa efi-

caz para la selección del canal objetivo (Kibria et al., 2005; Lahby et al., 
2011; Rodríguez et al., 2011; Song y Jamalipour, 2005; Stevens et al., 2012; 

Stevens et al., 2008). El algoritmo AHP se basa en juicios subjetivos, a través 

de comparaciones de la importancia entre criterios usados para la selección 

de una alternativa, como consecuencia es más una medida relativa que un 

valor absoluto (Saaty, 1990).
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Sin embargo, el método AHP propuesto en Saaty (1990) tiene algunas 

limitaciones como: (1) trabajar con una escala de juicios muy desbalancea-

da, (2) no manejar información con incertidumbre y ambigüedad asociada 

a la asignación de un número a cada evaluación, (3) el ranking de AHP es 

bastante impreciso, (4) la subjetividad del juicio, selección y preferencia de 

quienes toman las decisiones tiene gran influencia en los resultados. Estas 

limitaciones se pueden corregir a través de la integración de la lógica difusa 

en el algoritmo AHP, mejorando el manejo de subjetividad e incertidumbre 

en la información y en las evaluaciones de criterios, obteniendo de esta for-

ma el algoritmo FAHP (Mehbodniya et al., 2012; Patil y Kant, 2014; Zapata 

et al., 2012).

Aunque el método FAHP tenga en esencia la misma metodología del 

algoritmo AHP, la lógica difusa ayuda a tratar la subjetividad y la incerti-

dumbre en las evaluaciones de criterios, ya que con la lógica difusa, mediante 

un proceso matemático, permite utilizar un rango en la respuesta en lugar de 

un número puntual (Cortés, 2011).

El algoritmo FAHP propuesto adaptado a la CR, se desarrolló a través de 

cuatro pasos: (1) definición del problema, (2) construcción de la jerarquía, (3) 

construcción de la matriz de juicios, y (4) cálculo de los pesos normalizados.

Definición del problema
El problema puede ser dividido en cuatro niveles jerárquicos: objetivo, 

criterios, subcriterios y alternativas. El objetivo es la selección de la me-

jor oportunidad espectral en una CRN. Los criterios y subcriterios son los 

factores que afectan la preferencia de una alternativa. Las alternativas son 

todas las oportunidades espectrales presentes en la banda de frecuencia 

seleccionada.

El procedimiento para determinar los criterios y subcriterios fue realiza-

do a través de una modificación del método Delphi (Green et al., 2007) que 

es relativamente simple de implementar y ha sido adoptado para diversas 

aplicaciones, como pronósticos, estimaciones y problemas de toma de deci-

siones (Green et al., 2007). El método consiste, generalmente, en un panel de 

expertos respondiendo cuestionarios en dos o más rondas. Después de cada 

ronda un moderador provee un resumen anónimo de los juicios y razones 
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de cada experto en la ronda previa. Para esta investigación, los criterios de 

decisión para el algoritmo FAHP fueron propuestos inicialmente a partir de 

todos los parámetros reportados en la literatura actual sobre handoff espec-

tral para CRN, y finalmente seleccionados con una modificación del método 

Delphi, propuesto en (Hernández et al., 2015). La contribución al método 

Delphi es la definición de experto por sí misma, definida como el profesional 

inmerso en la administración y operación de red, así como la propuesta del 

método Delphi modificado, la cual consiste en considerar dos entradas en 

lugar de una para cada ronda. Para la primera ronda y siguientes, se consi-

deraron dos entradas, la decisión de un Consejo de Administradores de Red 

compuesto por nueve expertos seleccionados aleatoriamente, y el ranking del 

impacto de las variables que influyen en el proceso de handoff espectral, re-

portadas en la literatura.

La segunda ronda del método Delphi implementado consideró 13 va-

riables seleccionadas durante la primera ronda del proceso y el ranking del 

impacto de las variables actualizado. El Consejo de Administradores de Red 

determinó cuales de las 13 variables eran significativas, si debía adicionarse 

nuevas variables, o si había que modificar o descartar variables seleccionadas 

inicialmente, lo cual se combinó con las estadísticas del ranking del impacto 

de las variables y se actualizó. En caso de desacuerdo entre miembros del 

Consejo de Administradores de Red, se desarrolla un análisis global com-

binado con las estadísticas del ranking del impacto de las variables, luego 

un segundo conjunto de variables es propuesto para la tercera ronda, con el 

mismo procedimiento. Este proceso se repite iterativamente hasta alcanzar 

consenso general por parte del Consejo de Administradores de Red com-

binado con las estadísticas del ranking del impacto de las variables. En el 

método Delphi propuesto, si el consenso no se da antes de la quinta ronda, 

la decisión final es tomada con base en las estadísticas finales del ranking del 

impacto de las variables. Para este caso, el consenso se logró en la tercera 

ronda, en la cual se descartaron ocho variables.

Después de tres rondas del método Delphi modificado, cinco variables 

fueron seleccionadas por la combinación del Consejo de Administradores 

de Red y las estadísticas del ranking del impacto de las variables. Estas son, 

clase de servicio del SU (RT y BE); AP, ETA, SINR y BW. El próximo paso 
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fue organizar los criterios de decisión en criterios y subcriterios para el obje-

tivo de seleccionar la mejor oportunidad espectral para el SU. Se consideró 

que la variable clase de servicio es más general que las otras variables, por lo 

que se decidió seleccionarla como criterio, clasificándola como alta sensibi-

lidad al retardo y baja sensibilidad al retardo, y considerando las otras cuatro 

variables seleccionadas como subcriterios de la clase de servicio. En esta in-

vestigación el criterio clase de servicio es determinado por la aplicación del 

SU. Se considera que el objetivo es el mismo tanto para alta como baja sensi-

bilidad al retardo (seleccionar la mejor oportunidad espectral), sin embargo, 

la importancia (ponderación) de cada subcriterio es diferente, y corresponde 

al enfoque de la sensibilidad al retardo de las aplicaciones.

Los cuatro subcriterios fueron medidos y calculados a partir de datos ex-

perimentales de ocupación espectral, capturados en la banda GSM y Wi-Fi.

Estructura jerárquica
La estructura jerárquica del algoritmo FAHP se construyó con base en el 

objetivo, los criterios, subcriterios y las alternativas seleccionadas. Dicha es-

tructura se puede observar en la figura 2.9.

Oportunidad 
Espectral

Seleccionar la mejor
Oportunidad Espectral

Objetivo

Subcriterio

Criterio

Alternativa

AP

Alta Sensibilidad al Retardo Baja Sensibilidad al Retardo 

ETA SINR BW

Figura 2.9. Estructura propuesta para el algoritmo FAHP.
Fuente: elaboración propia.
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Matrices de juicio
De acuerdo con el método AHP, una vez diseñada la jerarquía se construyen 

las matrices de juicios, las cuales corresponden a las evaluaciones compa-

rativas que definen el nivel de importancia relativa entre cada combinación 

posible de parejas de criterios, subcriterios y alternativas, de forma indepen-

diente. Sin embargo, debido a que solo se tienen dos únicos criterios: alta y 

baja sensibilidad al retardo (cada uno con los mismos cuatro subcriterios), 

los cuales son mutuamente excluyentes, no tiene sentido realizar una matriz 

de juicios para este nivel. En el caso de las alternativas, debido a que las 

oportunidades espectrales modifican sus características (subcriterios) diná-

micamente en el tiempo, tampoco tendría sentido realizar una matriz de 

juicios a este nivel, por tal razón se decidió que el algoritmo FAHP evaluara 

dinámicamente el conjunto de alternativas.

De acuerdo con Büyüközkan et al. (2004) “las personas encargadas de la 

toma de decisiones usualmente encuentran que se sienten mejor presentan-

do sus juicios como un intervalo, en vez de dar un valor puntual y fijo. Esto 

se debe a que él, ella o ellos, son incapaces de explicar sus preferencias, dado 

la naturaleza difusa de los procesos de comparación humana”, por ello se 

decidió trabajar con una escala de Números Difusos Triangulares (TFN), 

presentados en la tabla 2.1. La escala de importancia difusa se obtuvo de 

la conversión de la escala de importancia fundamental de nueve niveles a 

números difusos presentada en (Büyüközkan et al., 2004).

Tabla 2.1. TFN y TFN reciproco para la escala de importancia de FAHP.

Nomenclatura Escala de Importancia TFN TFN Reciproco

EI Igualmente, Importante (1/2, 1, 3/2) (2/3, 1, 2)

MI
Moderadamente Más 
Importante

(1, 3/2, 2) (1/2, 2/3, 1)

SI
Fuertemente Más 
Importante

(3/2, 2, 5/2) (2/5, 1/2, 2/3)

VSI
Muy Fuertemente Más 
Importante

(2, 5/2, 3) (1/3, 2/5, 1/2)

XI
Extremadamente Más 
Importante

(5/2, 3, 7/2) (2/7, 1/3, 2/5)

Fuente: Büyüközkan et al. (2004); Büyüközkan y Çifçi (2012), Choudhary y 
Shankar (2012) Cortés (2011), Giupponi y Pérez-Neira (2008), Kaya y Kahraman 

(2010), Mehbodniya et al. (2012) Patil y Kant (2014), Zadeh (1965).
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1

II

0
1/20/1 1/1 3/2 2/1 5/2 3/1 7/2

DMAI FMAI MFMAI AMAI

Figura 2.10. TFN para la escala de importancia de FAHP.
Fuente: elaboración propia.

Una matriz de juicios de n criterios o subcriterios esta descrita por la ecua-

ción (2.21).
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Donde i = j = 1, 2,..., n y n es el número de criterios o subcriterios.

Para el caso del algoritmo FAHP, las matrices de juicios de que contie-

nen los TFN representan las comparaciones por parejas entre subcriterios 

(Mehbodniya et al., 2012), como lo describe la ecuación (2.22).
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Con base en la escala de importancia difusa presentada en la tabla 2.1 y la 

figura 2.10, y el método Delphi modificado, se determinó el nivel de importan-

cia relativa de cada par de subcriterios y se construyeron las matrices de juicios 

para los subcriterios. La matriz de juicios preliminar se construyó de los resul-

tados de la primera ronda del método Delphi modificado. Los resultados de 

la primera ronda fueron usados en la segunda ronda tanto para el enfoque 

de alta sensibilidad como el de baja sensibilidad al retardo. El proceso de 

decisión se repite hasta que los resultados convergen, los cuales se presentan 

en las matrices de juicio para los subcriterios con el enfoque de alta sensibi-

lidad al retardo (ver tabla 2.2) y la matriz de juicios para los subcriterios con 

el enfoque de baja sensibilidad al retardo (ver tabla 2.3).

Tabla 2.2. Matriz de juicios para los subcriterios de alta sensibilidad al retardo.

Subcriterios AP ETA SINR BW

AP
(1/2,1,3/2)

EI
(1,3/2,2)

MI
(3/2,2,5/2)

SI
(3/2,2,5/2)

SI

ETA
(1/2,2/3,1)

1/MI
(1/2,1,3/2)

EI
(3/2,2,5/2)

SI
(3/2,2,5/2)

SI

SINR
(2/5,1/2,2/3)

1/SI
(2/5,1/2,2/3)

1/SI
(1/2,1,3/2)

EI
(1,3/2,2)

MI

BW
(2/5,1/2,2/3)

1/SI
(2/5,1/2,2/3)

1/SI
(1/2,2/3,1)

1/MI
(1/2,1,3/2)

EI

Fuente: elaboración propia.

Tabla 2.3. Matriz de juicios para los subcriterios de baja sensibilidad al retardo.

Subcriterios AP ETA SINR BW

AP
(1/2,1,3/2)

EI
(1,3/2,2)

MI
(1/3,2/5,1/2)

1/VSI
(1/3,2/5,1/2)

1/VSI

ETA
(1/2,2/3,1)

1/MI
(1/2,1,3/2)

EI
(2/5,1/2,2/3)

1/SI
(2/5,1/2,2/3)

1/SI

SINR
(2,5/2,3)

VSI
(3/2,2,5/2)

SI
(1/2,1,3/2)

EI
(3/2,2,5/2)

SI

BW
(2,5/2,3)

VSI
(3/2,2,5/2)

SI
(2/5,1/2,2/3)

1/SI
(1/2,1,3/2)

EI

Fuente: elaboración propia.

Las aplicaciones de alta y baja sensibilidad al retardo, tienen diferentes en-

foques. Para el primero, los subcriterios con más alta prioridad son los que 
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reducen el retardo, como AP y ETA. Para el segundo, los subcriterios con más 

alta prioridad son los que incrementan la tasa de datos, como BW y SINR.

Cálculo de los pesos normalizados
Con las matrices de juicios definidas, se procedió a calcular los pesos nor-

malizados para cada subcriterio, con base en el modelo propuesto por 

Mehbodniya et al. (2012). Estos resultados están basados en el análisis difu-

so extendido presentado en Chang (1996), como se describe a continuación.

El valor del i-ésimo objeto del análisis extendido es definido como se 

muestra en la ecuación (2.23):
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subcriterio, con base en el modelo propuesto por (Mehbodniya et al., 2012). Estos resultados están 

basados en el análisis difuso extendido presentado en (Chang, 1996), como se describe a 

continuación. 

 

El valor del i-ésimo objeto del análisis extendido es definido como se muestra en la Ecuación (2-23). 
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La matriz inversa de la ecuación (2.23) se calcula a partir de la ecuación 

(2.24):
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El grado de posibilidad de que un número difuso convexo sea más grande que k números difusos 

convexos, está dado por la Ecuación (2-25). 
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Donde el grado de posibilidad de que 𝑆̃𝑆1 ≥ 𝑆̃𝑆2 y 𝑆̃𝑆2 ≥ 𝑆̃𝑆1 esta dado por las Ecuaciones (2-26) y (2-27) 

respectivamente. 
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Ahora asumiendo que 𝑑𝑑1′ = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑉𝑉(𝑆̃𝑆1 ≥ 𝑆̃𝑆2)}  el vector de pesos es   𝑤𝑤′ = (𝑑𝑑1′ , 𝑑𝑑2′ , … , 𝑑𝑑𝑛𝑛′ ). 
 

Finalmente, después de la normalización, el vector de pesos no difuso está dado por la Ecuación 

(2-28). 

 

(2.24)

El grado de posibilidad de que un número difuso convexo sea más grande 

que k números difusos convexos, está dado por la ecuación (2.25):
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Donde el grado de posibilidad de que y está dado por las ecuaciones (2.26) 

y (2.27), respectivamente.
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Finalmente, después de la normalización, el vector de pesos no difuso 

está dado por la ecuación (2.28):
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(2.28)

A partir del procedimiento anterior, los resultados del vector de pesos, co-

rrespondientes al criterio de alta sensibilidad al retardo se observan en la 

tabla 2.4, mientras que los de baja sensibilidad se muestran en la tabla 2.5.

Tabla 2.4. Pesos normalizados de los subcriterios de alta sensibilidad al retardo.

Subcriterio alta 
sensibildad AP ETA SINR BW

Pesos normalizados 0,3593 0,2966 0,1970 0,1471

Fuente: elaboración propia.

Tabla 2.5. Pesos normalizados de los subcriterios de baja sensibilidad al retardo.

Subcriterio baja 
sensibilidad AP ETA SINR BW

Pesos normalizados 0,1607 0,1523 0,3949 0,2921

Fuente: elaboración propia.

Los pesos normalizados describen el grado de importancia relativa de cada 

subcriterio para la selección del canal de respaldo según el criterio de alta o 

baja sensibilidad al retardo.

Los pesos descritos en la tabla 2.4 y tabla 2.5 se utilizan para con-

figurar cada uno de los cuatro algoritmos de decisión espectral a evaluar 

comparativamente.
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2.3.2.9 Algoritmo multivariable difuso realimentado – FFAHP
En el algoritmo FFAHP, el puntaje de cada oportunidad espectral es calcula-

do a partir de los pesos obtenidos con FAHP, usando la ecuación (2.29) para 

el enfoque de alta sensibilidad al retardo y la ecuación (2.30) para el enfoque 

de baja sensibilidad al retardo. La oportunidad espectral con el puntaje más 

alto es la oportunidad espectral objetivo; la de segundo puntaje es la de res-

paldo y las siguientes — de mayor a menor puntaje— son las oportunidades 

espectrales candidatas.

_ 0,3593 0,2966 0,1970 0,1471iScore ASR AP ETA SINR BW= × + × + × + ×  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.29)

_ 0,1607 0,1523 0,3949 0,2921jScore BSR AP ETA SINR BW= × + × + × + ×  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.30)

El objetivo del algoritmo FFAHP es incrementar la precisión en la selección 

de oportunidad espectral. Para lograr esto, FFAHP realimenta la informa-

ción de las evaluaciones de las oportunidades espectrales realizadas ante-

riormente. La selección de la oportunidad espectral se realiza con base en la 

evaluación de la información actual del espectro y las evaluaciones pasadas.

Inicialmente, el proceso de detección de espectro captura la información 

de frecuencia, potencia y tiempo. La cantidad de datos capturados depen-

derá de los parámetros de resolución de BW, Span y tiempo de barrido, 

configurados en el analizador de espectro (Pedraza et al., 2016). Los datos 

capturados son almacenados en una base de datos. Periódicamente, la uni-

dad de procesamiento de información calcula el valor de los criterios de 

decisión: AP, ETA, SINR y BW, y los normaliza sobre una base de 100. El 

algoritmo FAHP recibe los valores actualizados de cada criterio de decisión 

y procede a evaluar cada oportunidad espectral. Si la aplicación es de alta 

sensibilidad al retardo se utiliza la ecuación (2.29), y si es una aplicación de 

baja sensibilidad al retardo se utiliza la ecuación (2.30), donde Score i es el 

puntaje asignado a la oportunidad espectral i para la aplicación RT y Score 

j es el puntaje asignado a la oportunidad espectral j para la aplicación BE. 

El rango del puntaje de evaluación puede estar entre 0 y 100, siendo 100 el 

mejor puntaje posible. La figura 2.11 ilustra el diseño del algoritmo FFAHP.
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Figura 2.11. Esquema del algoritmo FFAHP propuesto.
Fuente: elaboración propia.

Esta parte del proceso tiene un ranking de cada una de las oportunidades 

espectrales con base, únicamente, en la información actual de los criterios 

de decisión. Sin embargo, la oportunidad espectral con la mejor evaluación 

hasta el momento puede no ser la seleccionada finalmente, debido a que 

este valor de evaluación se pondera con las evaluaciones realizadas en el 

pasado. El proceso de realimentación recibe las evaluaciones actuales (PS) 

de cada oportunidad espectral y las pondera con el valor de la última eva-

luación reciente (LS) y el promedio de las evaluaciones (AS) realizadas en 

la última hora. Esta ponderación da como resultado el ranking definitivo de 

las oportunidades espectrales. El procedimiento anterior se describe en la 

ecuación (2.31).

  (1 )FinalScore PS LS ASα β α β= × + × + − − ×  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.31)

Donde α y β ϵ [0,1], y Score_final es el valor de la evaluación final de la 

oportunidad espectral i o j.
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La oportunidad espectral con la mejor evaluación final es la seleccionada 

para realizar la transmisión de los datos del SU. Posteriormente, el bloque 

de realimentación transfiere el valor de PS a LS y actualiza el valor de AS de 

acuerdo con el nuevo valor de LS. Si la oportunidad espectral seleccionada 

finalmente se encuentra ocupada, el algoritmo FFAHP sobrescribe el valor 

de LS en cero para la respectiva oportunidad espectral.

Para determinar los valores de α y β, se realizó un análisis experimental 

autorregresivo con diferentes combinaciones de α y β, para un conjunto de 

datos predeterminado. Se tomaron los valores de α y β para los cuales la 

precisión en la selección de la oportunidad espectral fue más alta. Dichos va-

lores corresponden a α=0.60 y β=0.35, con 87 % de precisión experimental.

2.3.3 Algoritmos inteligentes
La inteligencia artificial tiene como objetivo hacer que las máquinas realicen 

tareas de manera similar a un experto. La máquina inteligente percibirá la 

toma de decisiones y de esta manera maximizará su propia utilidad (Woods, 

1986). De tal manera, ésta tendrá que prever desafíos principales como 

deducción, razonamiento, representación de las problemáticas para, final-

mente, dar solución a problemas como fuentes de entradas principales de 

estudio (Abbas et al., 2015).

En relación con la CR, los principales retos para las subáreas de la inteli-

gencia artificial son: detección de la frecuencia disponible de radio, calidad 

del canal de comunicación, reconocimiento, predicción y anticipación en la 

toma de decisiones y por último, no menos importante, decisión sobre asig-

nación de recursos para ajuste de errores de trasmisión y recepción de datos 

(Abbas et al., 2015).

2.3.3.1 Lógica difusa
La lógica difusa está basada en la teoría de conjuntos difusos, propuesta por 

(Zadeh, 1965). Un conjunto difuso es definido por una función de membresía 

que mapea elementos a grados de membresía dentro de un cierto intervalo, 

el cual usualmente es [0,1]. Si el valor es cero, el elemento no pertenece al 

conjunto, si por el contrario es uno, el elemento pertenece completamen-

te al conjunto, y si el valor es una cantidad intermedia, el elemento tiene 
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cierto grado de pertenencia al conjunto (Patil y Kant, 2014). Los TFN son 

ampliamente usados como funciones de membresía debido a su eficiencia 

computacional.

Los TFN pueden ser denotados como parámetros l, m y u que represen-

tan el límite más bajo, el valor modal y el límite más alto, respectivamente, 

como se observa en la figura 2.12 y en la ecuación (2.32).

1

0
l m u

Figura 2.12. Número difuso triangular.
Fuente: adaptada de Cho y Lee (2013).
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(2.32)

La lógica difusa es una herramienta particularmente apropiada para tomar 

decisiones en situaciones donde las entradas disponibles son, en general, in-

ciertas e imprecisas o cualitativamente interpretadas. La lógica difusa tam-

bién puede transformar información cualitativa y heterogénea en valores 

de membresía homogéneos, los cuales pueden ser procesados a través de 

un conjunto de reglas de inferencia difusa apropiadas (Giupponi y Pérez-

Neira, 2008).
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La lógica difusa resulta ser una posición relativa desde el observador 

principal, sin embargo, las conclusiones de la técnica están respaldas por 

métricas iniciales que describen el conjunto de valores admisibles de una 

muestra. De tal manera, la lógica difusa —aunque con una tasa de estudio 

aleatoria— permite obtener valores diferentes a los supuestos de verdadero 

o falso (Gavrilovska et al., 2013).

La lógica difusa proporciona al sistema razonamiento aproximado me-

diante conjuntos de reglas, teniendo la capacidad de obtener condiciones de 

incertidumbre mediante la predicción de consecuencias, además de la capa-

cidad de adaptarse a nuevas situaciones (Abbas et al., 2015; Dadios, 2012; 

Gavrilovska et al., 2013).

Diferentes investigaciones (Abbas et al., 2015; Hernández et al., 2015; 

Matinmikko et al., 2013) han aplicado la teoría de lógica difusa en la CR 

para resolver problemas en función de la asignación del BW, estudiando de 

antemano la interferencia y la administración de la energía, los anteriores 

como métodos de evaluación en la correcta asignación espectral. No obstan-

te, diferentes resultados de estudios han detallado tópicos como la inferencia 

difusa centralizada, que asigna los BW correspondientes a la intensidad de 

tráfico y la prioridad del servicio. Así pues, esta última detalla como los SU 

tienen que presentar solicitudes de BW al administrador primario de la red 

(Abbas et al., 2015). Del mismo modo, el administrador analiza el tráfico 

desde la cola y verifica los retardos producidos por la demora en la trasmi-

sión de paquetes. En otras palabras, determina la latencia para el acceso a 

SU (Abbas et al., 2015).

2.3.3.2 Algoritmos genéticos
Su principal campo de acción se encuentra inmerso en la optimización y 

búsqueda de soluciones, inspirado en la evolución genética y la selección 

natural de las especies por naturaleza (Goldberg y Holland, 1988). Los 

algoritmos evolutivos hacen parte de las ciencias de la computación y su 

principal enfoque está determinado en la inteligencia artificial; siguiendo 

la terminología de la teoría de la evolución. Así pues, es común encontrar 

definiciones de los cromosomas y funciones de aptitud como descriptores de 

un algoritmo genético en donde los primeros son representaciones abstractas 
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de las soluciones candidatas y las segundas están estrechamente relacionadas 

con el objetivo del algoritmo para procesos de optimización (He et al., 2010).

La ventaja de utilizar algoritmos genéticos para solucionar el problema 

de optimización de la asignación espectral en CR es que pueden manejar 

restricciones y objetivos de forma arbitraria; por ejemplo, las soluciones in-

eficientes son simplemente descartadas por el algoritmo. En (Del-Ser et al., 
2010) se utiliza la técnica Búsqueda de Armonía para encontrar la asignación 

de canal óptima. El algoritmo genético construye un vector de asignación 

de canales, llamados armonías; inicialmente, se realizan combinaciones y 

mutaciones de forma inteligente, y posteriormente, en la evaluación, se al-

macenan las mejores (Tragos et al., 2013).

2.3.3.3 Sistemas multiagente
Los sistemas multiagente se consideran como una entidad inteligente y cons-

ciente del entorno que es capaz de actuar hábilmente y genera comunicación 

de forma independientemente. Los sistemas multiagente están relacionados 

con el ambiente, objetivos, otros agentes y las diferentes relaciones entre esas 

entidades, por lo que los sistemas multiagente son rápidos, confiables y flexi-

bles (Abbas et al., 2015; Ferber, 1999; Wooldridge, 2009).

En (Trigui et al., 2012) se introdujo un concepto novedoso para direccio-

nar el “espectro de transición” en CR, permitiendo a los terminales cambiar 

a una banda espectral que ofrezca mejores condiciones mediante una nego-

ciación usando sistemas multiagente. En Mir et al. (2011) usaron sistemas 

multiagente para compartir dinámicamente el espectro en CR. De acuerdo 

con las necesidades de SU, los agentes SU cooperan y se comunican con los 

agentes PU para compartir el espectro.

2.3.3.4 Colonia artificial de abejas
La colonia artificial de abejas está compuesta por tres grupos: abejas “em-

pleadas”, “exploradoras” y “observadoras”. El objetivo es determinar las 

ubicaciones de las mejores fuentes de alimento. Para ello, las “abejas em-

pleadas” buscarán las fuentes de alimento, y si la cantidad de néctar de la 

nueva fuente es mayor que una anterior, memorizarán las nuevas posiciones, 

olvidándose de la anterior. Las “abejas empleadas” son iguales al número 
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de fuentes de alimento; las “observadoras” comparten información de estas 

fuentes y las “exploradoras” buscan nuevas, abandonando la propia (Ahmed 

et al., 2016; Tragos et al., 2013).

En Cheng y Jiang (2011) el problema de asignación espectral se resuelve 

utilizando el algoritmo de colonia artificial de abejas. La ubicación de una 

abeja o espectador representa una posible asignación de canal y la cantidad 

de néctar es la utilidad que se maximiza.

2.3.4 Técnicas de aprendizaje
El objetivo principal del aprendizaje autónomo es el autoaprendizaje com-

putacional, en donde las técnicas de análisis pueden ser programadas de 

forma autónoma a través de la inducción del conocimiento, en donde la in-

formación objeto de estudio está disponible a partir de grandes conjuntos de 

datos, dispuestos a ser analizados para la consecución objetiva de resultados 

(Abbas et al., 2015).

2.3.4.1 No supervisado
El aprendizaje no supervisado puede ser adecuado para las CR que operen 

en entornos desconocidos de radiofrecuencia (Jayaweera y Christodoulou, 

2011). Para este caso, los algoritmos de aprendizaje sin supervisión autóno-

ma permiten explorar características del entorno y tomar acciones, por sí 

mismas, sin tener ningún conocimiento previo (Jayaweera y Christodoulou, 

2011). Sin embargo, si la CR tiene información previa sobre el medio am-

biente, puede aprovechar este conocimiento mediante uso de técnicas de 

aprendizaje supervisado (Bkassiny et al., 2013).

Aprendizaje por refuerzo
Es una técnica que permite a un agente modificar su comportamiento me-

diante la interacción con su entorno (Sutton y Barto, 1998). Este tipo de 

aprendizaje puede ser utilizado por los agentes para aprender de forma au-

tónoma y sin supervisión. En este caso, la única fuente de conocimiento es 

la retroalimentación que un agente recibe de su entorno después de ejecutar 

una acción. Dos características principales caracterizan el aprendizaje por 

refuerzo: (1) ensayo y error, y (2) recompensa retardada. Por ensayo y error 
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se supone que un agente no tiene ningún conocimiento previo sobre el medio 

ambiente, y ejecuta acciones ciegamente con el fin de explorar el entorno. 

La recompensa retardada es la señal de realimentación que un agente recibe 

del entorno después de la ejecución de cada acción (Bkassiny et al., 2013).

El aprendizaje por refuerzo ha sido incorporado en la CR, específicamen-

te, en las telecomunicaciones móviles. En Abbas et al. (2015) se muestra la 

capacidad de implementar un sistema de errores y recompensas en función 

de cada decisión, optimizando el desempeño en la toma de decisiones para 

la administración del espectro electromagnético.

Teoría de juegos
Herramienta matemática que pretende modelar el comportamiento de enti-

dades racionales en un entorno conflictivo (Fudenberg y Tirole, 1991). En 

las comunicaciones inalámbricas, la teoría de juegos se ha aplicado a redes 

de comunicación de datos para modelar y analizar encaminamiento y asig-

nación de recursos en entornos competitivos (Bkassiny et al., 2013).

La teoría de juegos es utilizada como una herramienta de toma de de-

cisiones en donde varios jugadores se enfrentan a una serie de situaciones 

donde deben tomar medidas que en la mayoría de los casos puede afectar 

los intereses de otros (Abbas et al., 2015). Una ventaja clave de la aplicación 

de soluciones de teoría de juegos a los protocolos CR es la reducción de 

complejidad de los algoritmos de adaptación en grandes redes cognitivas 

(Bkassiny et al., 2013). En la literatura actual existen varios trabajos (Ji y Liu, 

2007; Nisan et al., 2007; Zhao et al., 2009) sobre su aplicación.

2.3.4.2 Supervisado
El aprendizaje supervisado se usa cuando los datos de entrenamiento están 

etiquetados, es decir, se conoce información a priori acerca del ambiente. 

Algoritmos de entrenamiento tales como árboles de decisión, redes neuro-

nales, SVM y razonamiento basado en casos, funcionan bien para este caso. 

Difieren entre ellos en sus fortalezas y limitaciones, desafíos y aplicaciones 

referentes a la CR (Abbas et al., 2015).
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Redes neuronales
Las redes neuronales se asemejan al cerebro en dos aspectos (Haykin, 1998): 

1) el conocimiento es adquirido por la red, de su entorno, a través de un pro-

ceso de aprendizaje, y 2) las fuerzas de conexión inter-neuronas, conocidas 

como pesos sinápticos, se utilizan para almacenar el conocimiento adquiri-

do. Algunas de las capacidades y ventajas de las redes neuronales incluyen 

el modelado de comportamientos no lineales y la capacidad de adaptación 

ante cambios pequeños. Su principal desventaja es la necesidad de realizar un 

entrenamiento bajo diferentes condiciones del entorno (Bkassiny et al., 2013).

En (Taj y Akil, 2011) se presenta una metodología para predecir el com-

portamiento del espectro. La actividad del PU es modelada a través de una 

serie de tiempo caótica multivariable, la cual se convierte en una entrada 

a la red neuronal. Esta última predice la evolución de la serie de tiempo 

para decidir si el SU puede ocupar una oportunidad espectral determinada 

(Bkassiny et al., 2013).

Máquina de soporte vectorial
La SVM es un conjunto de algoritmos que tiene la capacidad de aprender 

bajo la supervisión de un agente de software. Su principal modo de operación 

está en función de la regresión y clasificación en el aprendizaje. Esta técnica 

es utilizada para llegar a márgenes de clasificación en un conjunto de datos, 

por tanto, el principal objetivo de la SVM consiste en establecer un modelo 

de predicción en donde una entrada incierta puede ser identificada en una 

categoría u otra (Abbas et al., 2015; Bkassiny et al., 2013; Dadios, 2012; Del-

Ser et al., 2010; Ferber, 1999; Fudenberg y Tirole, 1991; Goldberg y Holland, 

1988; Han et al., 2012; He et al., 2010; Ji y Liu, 2007; Matinmikko et al., 
2013; Mir et al., 2011; Nisan et al., 2007; Sutton y Barto, 1998; Taj y Akil, 

2011; Trigui et al., 2012; Wooldridge, 2009; Zhao et al., 2009).

En la literatura actual existen varios trabajos (Petrova et al., 2010; Xu y 

Lu, 2006) sobre la aplicación de la SVM en la CR.
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2.3.5 Funciones de decisión
En redes heterogéneas con facilidad de acceso ubicuo los procesos de decisión 

y selección se hacen más complejos debido a que las diferentes tecnologías, 

por lo general, ofrecen diversas características. De acuerdo con lo anterior, 

la asignación espectral llega a ser un problema con múltiples criterios y pa-

rámetros que incluyen complejos trade-offs entre criterios contradictorios. 

En estos casos resulta útil la aplicación de funciones de beneficio o costo 

(Ahmed et al., 2014).

2.3.5.1 Función de utilidad
La función de utilidad tiene por objetivo maximizar la satisfacción del 

usuario de acuerdo con ciertos parámetros y restricciones. En la asignación 

espectral y de gestión de decisiones, la utilidad mide el nivel de satisfacción 

del usuario correspondiente a un conjunto de características de una red ina-

lámbrica, incluyendo los parámetros de recursos asignados (Ahmed et al., 
2014). En Ormond et al. (2006) los autores examinan el nivel de satisfacción 

del usuario mediante el empleo de una función de utilidad para aplicacio-

nes de BE.

2.3.5.2 Función de costos
A diferencia de la función de utilidad esta busca minimizar el costo de 

ciertos parámetros teniendo en cuenta las restricciones del caso. En una 

oportunidad espectral el costo total se calcula mediante la suma del cos-

to de los parámetros de interés como QoS, BW, retardo y AP, entre otras 

(Ahmed et al., 2014). En Wei et al. (2008) se presenta una aplicación de la 

función de costo.

2.3.6 Algoritmos estadísticos
Existen otro tipo de técnicas que también se han utilizado para la asignación 

espectral en CRN, las cuales están basadas fundamentalmente en conceptos 

de estadística y probabilidad, tales como las redes bayesianas, cadenas de 

Markov y árboles de decisión.
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2.3.6.1 Redes bayesianas
Las redes bayesianas son modelos probabilísticos gráficos que dependen 

de la interacción de diferentes nodos para, así, generar aprendizaje en cada 

nodo involucrado en el proceso. El enfoque bayesiano —el cual es una téc-

nica de aprendizaje probabilístico— provee exactas inferencias y estima 

modelos de probabilidad completa donde el conocimiento a priori o los re-

sultados, son usados para construir un modelo actualizado (Bolstad, 2007; 

Yonghui, 2010).

En Jiang et al. (2014) usan un enfoque cooperativo para estimar el estado 

del canal usando aprendizaje bayesiano para resolver problemas de detec-

ción multicanal.

2.3.6.2 Cadenas de Markov
Los modelos de Markov son usados para modelar procesos aleatorios que 

cambian de un estado a otro en el tiempo. Son procesos aleatorios donde 

el estado futuro depende del estado presente y dichos estados son visibles 

al observador, en contraste con los modelos ocultos de Markov, donde los 

estados no son visibles (Fraser, 2008). Estas cadenas generan secuencias de 

observaciones entre transiciones de estado, ya sea en el tiempo o en el espa-

cio con probabilidades fijas. El estado actual depende de los eventos previos 

y las estructuras sucesivas determinan el éxito del proceso. Puede asignarse 

un solo paso o ser extendido a las probabilidades asociadas con cada una de 

las transiciones dependientes en múltiples eventos que lo preceden (Abbas 

et al., 2015).

En Yifei et al. (2013) usaron toma de decisiones de Markov para el acceso 

dinámico al espectro en CRN. Utilizaron modelos ocultos de Markov en un 

canal inalámbrico y predijeron el estado del canal. Las decisiones estuvieron 

basadas en: sensibilidad espectral, selección de canal, modulación, esque-

mas de codificación y potencia transmitida. En Pham et al. (2014) también 

los utilizan en el handoff espectral para que el SU estudie el comportamiento 

del PU, pueda predecir su futuro comportamiento y asegurar la transmisión.
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2.3.6.3 Árboles de decisión
El árbol de decisión es un modelo que predice el valor de una “clase obje-

tivo” basado en la diversidad de variables de entrada. En este cada nodo 

tiene un criterio; cada rama representa el resultado de una prueba y cada 

hoja representa o contiene información de la etiqueta de una clase. (Abbas 

et al., 2015; Ahmed et al., 2014; Bkassiny et al., 2013; Bolstad, 2007; Cheng 

y Jiang, 2011; Del-Ser et al., 2010; Ferber, 1999; Fraser, 2008; Fudenberg 

y Tirole, 1991; Gavrilovska et al., 2013; Goldberg y Holland, 1988; Han et 
al., 2012; Haykin, 1998; He et al., 2010; Ji y Liu, 2007; Jiang et al., 2014; 

Matinmikko et al., 2013; Mir et al., 2011; Nisan et al., 2007; Ormond et al., 
2006; Petrova et al., 2010; Pham et al., 2014; Safavian y Landgrebe, 1991; 

Sutton y Barto, 1998; Taj y Akil, 2011; Trigui et al., 2012; Wooldridge, 2009; 

Xu y Lu, 2006; Yifei et al., 2013; Yonghui, 2010; Zhao et al., 2009).

2.3.7 Análisis comparativo de las técnicas y algoritmos de handoff
La tabla 2.6 resume el análisis comparativo de las diferentes técnicas para la 

asignación espectral en CRN, en términos de fortalezas y limitaciones.

Tabla 2.6. Análisis comparativo de las técnicas de asignación espectral.

Algoritmo Fortalezas Limitaciones

MCDM
Simplicidad. Fácil implementa-
ción. Respuesta rápida. 

No hay una metodología analítica 
para estudiar su convergencia. 

Lógica difusa 

Decisiones rápidas basadas en 
reglas predefinidas. Técnicas de 
aprendizaje pueden mejorar la 
calidad de las decisiones. 

Funcionalidad limitada ya que las 
reglas son predefinidas. Necesita 
un gran número de reglas para 
considerar todos los parámetros. 

Algoritmos 
genéticos

Tiene optimización multi-objeti-
vo. Se configura dinámicamente 
dado los cambios del entorno. 

Requiere conocimiento previo 
del sistema. Proceso lento para 
encontrar una solución óptima.

Sistemas 
multiagente

Adecuados para problemas 
con múltiples jugadores. 
Aprendizaje y cooperación. 

La complejidad y el costo compu-
tacional pueden llegar a ser altos.

Colonia artificial de 
abejas

Búsqueda de soluciones en 
paralelo.

Requiere de conocimiento a priori 
del sistema y función de aptitud.
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Algoritmo Fortalezas Limitaciones

Aprendizaje por 
refuerzo

Aprendizaje autónomo usando 
retroalimentación y autoadapta-
ción progresiva en tiempo real. 

Necesita reglas de derivación por 
lo que la exactitud está basada en 
dichas reglas.

Teoría de juegos

Reduce la complejidad de la 
adaptación. Soluciones por 
medio de múltiples agentes. 
Enfoque cooperativo y no 
cooperativo. 

Requiere conocimiento previo de 
diferentes parámetros del sistema 
y que los datos de entrenamiento 
estén etiquetados.

Redes neuronales

Habilidad para adaptarse a los 
cambios menores. Excelente 
para clasificación. Puede identi-
ficar nuevos patrones.

El entrenamiento puede ser 
lento dependiendo del tamaño 
de la red. Poca capacidad para 
generalizar. Puede sufrir de sobre 
entrenamiento. Datos previos.

SVM

Capacidad de generalizar. 
Robustez contra el ruido de en-
trada y casos diferentes. Mejor 
desempeño con poco entrena-
miento en comparación con las 
redes neuronales. 

Requiere que los datos de entre-
namiento estén etiquetados. Hay 
que tener previo conocimiento del 
funcionamiento del sistema. Se 
vuelve complejo a medida que el 
problema es más grande.

Funciones de utili-
dad y costo

Permite encontrar óptimos 
con múltiples parámetros y 
restricciones.

Requiere que todos los paráme-
tros estén modelados con una 
función analítica.

Redes bayesianas
Se basa en modelos 
probabilísticos.

Requiere conocimiento a priori 
del sistema. Presenta complejidad 
computacional.

Modelos de Markov

Se basa en modelos estadísti-
cos y es fácilmente escalable. 
Puede predecir basado en la 
experiencia.

Requiere conocimiento previo del 
sistema. Presenta complejidad 
computacional.

Árboles de decisión
Simplicidad. Toma de 
decisiones mediante las configu-
raciones de sus ramas.

Requiere conocimiento previo 
del sistema. Puede sufrir sobre 
entrenamiento y requiere que 
los datos de entrenamiento estén 
etiquetados.

Fuente: Bkassiny et al. (2013), He et al. (2010), Tragos et al. (2013), Yifei et al. (2013).

2.3.8 Desafíos de investigación en la asignación espectral
Existen varias cuestiones de investigación abiertas que necesitan ser estu-

diadas para el desarrollo de la asignación espectral. Mencionamos algunas 

(Akyildiz et al., 2006):
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2.3.8.1 Modelo de decisión multivariado
La SNR no es suficiente para caracterizar las bandas espectrales en las CRN. 

Además de la SNR, muchos parámetros de caracterización del espectro 

afectan la calidad. Por tanto, la manera de combinar estos parámetros para 

el modelo de decisión del espectro sigue siendo una cuestión abierta.

2.3.8.2 Algoritmos adaptativos
Para desarrollar soluciones eficientes en la asignación espectral es necesario 

desarrollar algoritmos que logren adaptarse a diversas condiciones y esce-

narios, con el objetivo de satisfacer los requisitos de un entorno altamente 

dinámico. Todos los algoritmos hasta ahora se centran en un escenario y red 

estáticos; en tratar de encontrar una solución óptima de acuerdo con algunos 

criterios (Tragos et al., 2013).

2.3.8.3 Selección multicanal
En las CRN se pueden utilizar simultáneamente múltiples bandas de es-

pectro para la transmisión. Por otra parte, las CRN no requieren que las 

múltiples bandas seleccionadas sean contiguas. De este modo, un SU puede 

enviar paquetes a través de bandas de espectro no contiguas. Esta transmi-

sión sobre múltiples bandas muestra menos degradación de calidad durante 

el handoff espectral en comparación con la transmisión convencional sobre 

una sola banda del espectro (Akyildiz y Li, 2006). Por ejemplo, si un PU 

aparece en una banda de espectro en particular, el SU tiene que desalojar solo 

esa banda; en el resto de bandas de espectro mantendrá la comunicación, por 

lo cual la degradación de la QoS puede ser mitigada (Dadallage et al., 2016).

Adicionalmente, la transmisión en múltiples bandas de espectro permite 

menor consumo de energía en cada una. Como resultado, se consigue me-

nos interferencias con los PU, en comparación con la transmisión en una 

única banda del espectro (Akyildiz y Li, 2006). Por estas razones, el esque-

ma de gestión del espectro debe tener la capacidad de toma de decisión para 

múltiples bandas. La forma de determinar el número de bandas del espectro 

y cómo seleccionar el conjunto de bandas apropiadas siguen siendo temas de 

investigación abiertos en CRN.
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2.3.8.4 Selección cooperativa de espectro
El enfoque cooperativo tiene más ventajas que el no cooperativo. En la prime-

ra forma el SU vecino comparte su información de detección con el objetivo 

de aprovechar la diversidad espacial; el desafío allí es  combinar la informa-

ción de los usuarios cooperativos mientras se realiza la transmisión (Masonta 

et al., 2013). 

2.3.8.5 Selección de espectro en redes heterogéneas
En una determinada CRN puede haber requerimientos de QoS heterogé-

neos y el espectro disponible puede presentar fluctuaciones y cualidades 

variables. En las redes de tráfico heterogéneas el desafío consiste en seleccio-

nar las bandas de frecuencia apropiadas para satisfacer los requerimientos de 

QoS de cada SU (Masonta et al., 2013).

2.4 Multiusuario
Debido a la movilidad de los nodos y la dinámica de variación del canal 

la precisión de las decisiones de los usuarios es limitada y sigue siendo un 

desafío para utilizar plenamente los escasos recursos de espectro  (Jiang et 
al., 2014a). La mayoría de los enfoques suponen que la utilidad de un SU 

es independiente de las decisiones tomadas por otros SU, sin embargo, tal 

suposición no es cierta, especialmente cuando se consideran escenarios en 

los que las SU comparten o compiten por ciertos recursos (Masonta et al., 
2013). La comunicación inalámbrica entre múltiples usuarios es uno de los 

principales retos para el despliegue de sistemas de próxima generación.

Para poder recopilar información global y ampliar el conocimiento limi-

tado del usuario sobre el verdadero estado del sistema (señales y decisiones 

tomadas por otros nodos), los usuarios de una CR deben tener la capacidad 

de reconocer los cambios del entorno circundante. La información apren-

dida permitirá elaborar una descripción del estado desconocido del sistema 

y mejorar la precisión de las decisiones y, por tanto, la eficiencia de la red 

(Wang et al., 2017).

Al tomar la decisión de acceso al canal cada SU no solo debe considerar 

la calidad del mismo sino, también, tener en cuenta las decisiones de acceso 



102

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

del canal de otros SU; cuanto más SU acceden al mismo canal menor es el 

rendimiento que puede alcanzar cada uno debido a la interferencia entre 

ellos. Este fenómeno se conoce como externalidad negativa de la red (Jiang 

et al., 2014b; Zhang et al., 2012) o influencia negativa de los comportamien-

tos de otros usuarios en la recompensa de un usuario, debido a que cada uno 

tiende a evitar tomar la misma decisión de otro para maximizar su propia 

utilidad. 

Consideremos una CRN multiusuario con PU y pares de SU, como se 

muestra en la figura 2.13. Cada transmisor SU y su receptor SU correspon-

diente están dentro del rango de transmisión del otro. Por tanto, la existencia 

de comunicación entre dos SU depende de actividades que varían en el tiem-

po del PU. Como se ilustra, varios SU pueden acceder al mismo canal y un 

SU puede tener más de un canal para seleccionar (Hu et al., 2016).

SU

SU

SU

SU

SU

SU

SU

SU

Usuario Secundario Transmisor Usuario Secundario Receptor Usuario Primario

Figura 2.13. Escenario multiusuario.
Fuente: elaboración propia.

2.5 Estructuras colaborativas
El principal desafío de las redes CR es garantizar los requisitos de QoS sin 

causar degradación inaceptable de rendimiento de los PU. Son múltiples las 

técnicas disponibles para el análisis de las CR, sin embargo, actualmente, los 
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algoritmos cooperativos están tomando un fuerte impulso en aplicaciones 

de estructuras cognitivas. La CR y las estrategias colaborativas han brindado 

nuevos modelos para el uso eficiente de los recursos de radio (Hernández et 
al., 2020).

Las estructuras cooperativas son metodologías que utiliza múltiples rutas 

en el entorno de radio para evitar el desvanecimiento de la señal, maximi-

zando el rendimiento de los SU sin comprometer los requerimientos del PU 

(Ghanem et al., 2017; Huang et al., 2014).

A diferencia de los sistemas clásicos, el nodo cooperativo actúa como 

fuente de información y retransmisión; es una estructura bidireccional de 

información que permite ahorrar energía al combinar las señales recibidas 

de diferentes rutas espaciales y ranuras de tiempo consecutivas. Los sistemas 

CR cooperativos pueden aumentar la velocidad de transmisión y mejorar 

significativamente los parámetros de QoS, latencia, throughput, confiabili-

dad, señalización, interferencia PU, eficiencia energética, BW, SINR, y tasa 

de error (Hernández et al., 2017; Hernández et al., 2016a; Kumar et al., 2016; 

Lertsinsrubtavee y Malouch, 2016; López et al., 2015; Oyewobi y Hancke, 

2017; Páez et al., 2017).

En el contexto de CRN, las estrategias colaborativas permiten que los usua-

rios se comuniquen entre ellos para intercambiar mediciones de interferencia 

observadas localmente. El objetivo es aprovechar la diversidad espacial. Para 

lograrlo, el usuario no licenciado comparte su información de detección con 

los usuarios vecinos (Salgado et al., 2016b; Thakur et al., 2017).

Existen dos escenarios básicos: 1) transmisión cooperativa entre SU, que 

tiene como objetivo aumentar el rendimiento de las oportunidades espec-

trales; 2) transmisión cooperativa entre PU y SU, que tiene como objetivo 

aumentar las oportunidades de espectro de SU.

Otro tipo de clasificación es la manera como se comparte la información: 

centralizada, distribuida y retransmisión asistida (Akyildiz et al., 2011).

La figura 2.14a muestra la cooperación de manera centralizada. Existe 

una unidad central (UC) encargada de coordinar el proceso. La UC seleccio-

na la oportunidad espectral e informa a todos los SU que cooperan para que 

realicen individualmente la detección local y los resultados se envían a través 
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del canal de control. Finalmente, la UC analiza la información recibida, 

determina la presencia de PU y difunde la decisión a los SU que cooperan.

La figura 2.14b muestra la cooperación de manera distribuida. Después 

de la detección local los SU comparten resultados entre ellos. Cada SU en-

vía, combina sus datos con los datos de detección recibidos y decide si el PU 

está presente o no.

La figura 2.14c ilustra la cooperación de manera asistida. SU1 y SU4 

tienen un canal de informe débil y pueden sufrir pérdida de información. 

SU2 y SU3 tienen un canal de informe sólido, lo que les permite servir como 

retransmisores para ayudar a enviar los resultados de detección de SU1 y 

SU4 a la UC. Esta figura muestra una estructura centralizada, sin embargo, 

la detección cooperativa asistida puede implementar esquemas distribuidos.

SU1

SU2
SU3 SU3 SU3

SU4

SU0 (UC)

PU

Reporte de Canales

(a) Centralizado (b) Distribuido (c) Retransmisión asistida

Reporte de Canales

SU1

SU2

SU4

PU

SU1

SU2

SU4

SU0 (UC)

PU

Reporte de Canales

Detección de Canales Detección de Canales Detección de Canales

Relay
Relay

Figura 2.14. Clasificación de estrategias colaborativas.  
a. Centralizado; b.Distribuido; c. Retransmisión asistida.

Fuente: elaboración propia.

2.6 Trabajos relacionados
Con respecto a investigaciones previas, no se identificaron proyectos que 

relacionen todos los enfoques descritos en el presente trabajo: toma de 

decisiones, modelos multiusuario, modelos colaborativos y DCRN. Sin em-

bargo, se encuentran investigaciones relevantes de enfoques independientes 

o combinaciones de dos de ellos.

En el área de DCRN, se describen tres publicaciones que tienen rela-

ción con la presente investigación. Estas publicaciones están enfocadas en el 
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análisis de la QoS, el esquema de aprendizaje y acceso al espectro dinámico, 

utilizando estrategias como teoría de colas, cadenas de Markov, filtros di-

gitales, entre otras. En general, los modelos descritos caracterizan las redes 

utilizando aproximaciones basadas en funciones probabilísticas e implemen-

tan la red descentralizada dividiendo en N canales el espectro disponible; 

derivando medidas de desempeño para respaldar características de QoS, po-

lítica de toma de decisiones y limitaciones de hardware.

Los resultados obtenidos en cada uno de los trabajos permiten identificar 

que las estrategias seleccionadas para el ajuste de los respectivos modelos 

cuentan con buenos rendimientos. Xenakis et al. (2014) destaca la posibi-

lidad de extender la estructura al uso compartido del espectro para redes 

descentralizadas, Darak et al. (2015) exalta la posibilidad de extender el mo-

delo a escenarios desafiantes de CRN multiusuario y Amjad et al. (2016) 

resuelve el problema de compartir el espectro mediante la adopción de un 

enfoque basado en teoría de juegos. Sin embargo, las investigaciones cuentan 

con una característica en común: no presentan evidencia de su desempeño 

bajo comportamientos del PU cercanos a la realidad; desde el modelo de 

la red hasta el análisis de los nodos utilizan comportamientos basados en 

procesos aleatorios. Aunque el modelo matemático es detallado, se basa en 

estimaciones de posible tráfico que pueden afectar el desempeño del modelo 

si se implementa en escenarios más prácticos (realistas). Existen otras va-

riables adicionales al comportamiento del PU que también pueden afectar 

el desempeño en aplicaciones prácticas y que los trabajos mencionados no 

contemplan. Ninguno aborda la consecuencia de los comportamientos de 

otros usuarios en la recompensa de un usuario. Aunque Darak et al. (2015) 

propone análisis multiusuario, no se evidencia de qué manera se pueden 

abordar los fenómenos asociados a interferencias y como las decisiones de 

un SU afectan otros usuarios.

A continuación describimos las tres publicaciones citadas para el área de 

DCRN.

El artículo “Multi-parameter performance analysis for decentralized cog-

nitive radio networks” de Xenakis et al. (2014) realiza un análisis del impacto 

de la actividad del PU y SU, el desvanecimiento de canales y las colas de lon-

gitud finita, en el rendimiento de las DCRN. Analiza también la teoría de 
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colas y deriva varias medidas de rendimiento en relación con la pérdida de 

paquetes, así como el rendimiento, la eficiencia espectral y la distribución de 

retardo de paquetes. Los resultados cuantifican el impacto de los parámetros 

y variables en el rendimiento del sistema y ponen de relieve las principales 

ventajas y desventajas del rendimiento en las DCRN.

El artículo “Low complexity and efficient dynamic spectrum learning 

and tunable bandwidth access for heterogeneous decentralized Cognitive 

Radio Networks” de Darak et al. (2015) propone un esquema de aprendizaje 

y acceso al espectro dinámico de baja complejidad y eficiencia para DCRN 

y heterogéneas de próxima generación. Consiste en una transformación de 

frecuencia de segundo orden, una técnica de interpolación basada en un 

filtro digital variable y una política de toma de decisiones sintonizable. Los 

resultados de la simulación verifican la superioridad del esquema propuesto 

sobre los demás existentes.

El artículo “Coexistence in heterogeneous spectrum through distributed 

correlated equilibrium in cognitive radio networks” de Amjad et al. (2016) 

analiza múltiples técnicas de cadenas de Markov para estudiar fenómenos 

de desigualdad en escenarios heterogéneos de CRN coexistentes. Propone 

una solución descentralizada que no limite la capacidad de hardware de un 

dispositivo de CR e introduce una capa MAC para la coexistencia (CCR-

MAC). Los resultados obtenidos muestran que el CCR-MAC propuesto 

mejora la ventaja competitiva y la equidad sin limitaciones de hardware.

En el área de toma de decisiones y arquitecturas descentralizadas hay 

dos publicaciones que trabajan en conjunto los dos enfoques y tienen rela-

ción con la presente investigación. Darak et al. (2017) diseña una política 

de toma de decisiones que permite, desde un punto de vista energético, im-

plementar redes inalámbricas descentralizadas eficientes. Hasegawa et al. 
(2014) analiza la toma de decisiones en redes cognitivas heterogéneas como 

un problema de flujo de costos mínimo solucionado a través de una red 

neuronal. Para la caracterización y posterior análisis de efectividad utiliza 

métricas exclusivas para los modelos realizados que pueden presentar un 

alto grado de dificultad al momento de extrapolar estas mediciones o indi-

cadores a otro tipo de estrategias que analicen casos equivalentes. Para el 

proceso de toma de decisiones, los autores no amplían las discusiones sobre 
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otras posibles métricas de desempeño, ni incluyen propuestas que permitan 

expandir los indicadores a escenarios multiusuario. Al igual que los trabajos 

citados previamente, los modelos utilizados para la caracterización de la red 

descentralizada utilizan tráficos estocásticos, lo que no permite evidenciar 

validaciones cercanas a la realidad.

A continuación, se describen dos publicaciones que trabajan en conjunto 

los enfoques de toma de decisiones y arquitecturas descentralizadas.

Darak et al. (2017) en su artículo “Decision making policy for RF ener-

gy harvesting enabled cognitive radios in decentralized wireless networks” 

propone una nueva política de toma de decisiones para DCRN basada en 

acceso oportunista al espectro con capacidades de recolección de energía 

por radiofrecuencia que consta de tres subunidades: un algoritmo de mues-

treo basado en un enfoque bayesiano, un esquema de acceso basado en el 

algoritmo de muestreo de Thompson, y un esquema de selección de modo. 

Los resultados de la simulación muestran que la política propuesta ofrece 

una mejora de 10-35 % en el rendimiento de la DCRN y una reducción de 

40-90 % en el número de conmutaciones de subbandas en comparación con 

las políticas de toma de decisiones existentes.

Hasegawa et al. (2014) en su artículo “Optimization for centralized and 

decentralized cognitive radio networks” analiza y propone algoritmos de 

optimización para la toma de decisiones en redes inalámbricas cognitivas 

heterogéneas. Para las DCRN, propone como estrategia una red neuronal 

Hopfield-Tank. La propuesta es validada mediante un conjunto de simulacio-

nes para finalmente ser implementada en un sistema cognitivo experimental.

En el área de toma de decisiones y CRN, describimos seis publicacio-

nes que trabajan en conjunto los dos enfoques y que tienen relación con la 

presente investigación. En general, para el proceso de toma de decisiones, 

los trabajos analizados utilizan como estrategias: modelos probabilísticos, 

de optimización y técnicas de machine learning. Tripathi et al. (2019) imple-

menta lógica difusa, Kaur y Sharma (2018a) optimización por enjambres de 

partículas, López (2017) redes neuronales, sistemas neurodifusos y SVM. Li 

et al. (2016) técnicas evolutivas y modelos bioinspirados; Martins y Andrade 

(2018) redes neurales, cadenas de Markov y árboles predictores y Joda y 
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Zorzi (2015) utiliza técnicas heurísticas. Cada una de estas propuestas argu-

menta la selección del modelo implementado en función de los resultados 

obtenidos en investigaciones previas.

Durante los últimos años se ha propuesto en la literatura un considerable 

número de técnicas, sin embargo, y como se identifica en los documentos 

que se citan a continuación, no hay ningún algoritmo que sea mejor para un 

problema general sí un algoritmo supera a otros en alguna función; habrá 

alguna tarea en la que otros algoritmos serán mejores. Una buena estrate-

gia para mejorar el rendimiento consiste en proponer algoritmos basados en 

estructuras híbridas, esto permite caracterizar las ventajas y desventajas de 

dos o más estrategias para luego combinarlas, de tal forma que el algoritmo 

global sea mejor que los individuales. Aunque los resultados obtenidos son 

buenos, los autores no evalúan el efecto en la carga computacional. Una 

característica relevante para este tipo de problemas es que los algoritmos 

para toma de decisiones no solo deben entregar buenos resultados y resolver 

tareas complejas: deben diseñarse para que sean eficientes; el objetivo final 

es poder evaluar el desempeño en escenarios reales.

Adicionalmente, las estrategias utilizadas tienen buenos esquemas de de-

cisión, lo cual se puede identificar en el análisis cuantitativo presentado en 

cada una de las respectivas investigaciones; sin embargo, desde la estructura 

del proceso de toma de decisiones, no cuentan con un módulo de inter-

cambio de información, por tanto, no es posible identificar el efecto de las 

decisiones de un usuario sobre los demás. Joda y Zorzi (2015) consideran 

esta característica como trabajo futuro, resaltando la importancia de imple-

mentar escenarios multiusuarios.

A continuación, describimos seis publicaciones que trabajan en conjunto 

los enfoques de toma de decisiones y CRN.

El artículo “Analysis and Comparison of  Different Fuzzy Inference 

Systems Used in Decision Making for Secondary Users in Cognitive Radio 

Network” de Tripathi et al. (2019) implementa un sistema basado en lógica 

difusa con un conjunto de parámetros de entrada y salida para la toma de 

decisiones de los SU, a través de un análisis comparativo entre Sugeno Fuzzy 
Inference System y Mamdani Fuzzy Inference System. El trabajo concluye con 
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una lista de ventajas y desventajas para cada una de las técnicas donde se 

obtiene una correlación mayor al 0,95 entre Mamdani y Sugeno, por tanto, 

la selección entre estrategias depende de los requisitos de aplicación. Desde 

una perspectiva computacional, Sugeno presenta una mayor eficiencia que 

Mamdani para más de 100 reglas.

El artículo “PSO based Multiobjective Optimization for parameter adap-

tation in CR based IoTs” de Kaur et al. (2018b) estudia las características de 

adaptación de las CRN al internet de las cosas. Para cumplir con los objeti-

vos de potencia mínima de transmisión, tasa mínima de error y el máximo 

throughput, los autores proponen un módulo de toma de decisiones basado 

en optimización multiobjetivo a partir de enjambres de partículas. Los resul-

tados son comparados con un algoritmo genético con codificación real. Para 

aplicaciones de email, voz y video el promedio de fitness para enjambres de 

partículas es de 0,8614; 0,7327 y 0,8597 respectivamente, comparado con 

el 0,8121; 0,5975 y 0,7183 obtenido para el algoritmo genético con codifi-

cación real. Se demuestra que el módulo de decisión cognitiva basado en 

enjambres de partículas supera la implementación basada en el algoritmo 

genético con codificación real en todos los escenarios, en términos de valor 

de la función fitness y los valores óptimos de métricas de decisión.

En su tesis de doctorado “Implementación de un modelo predictor para la 

toma de decisiones en redes inalámbricas de radio cognitiva” López (2017) 

desarrolla metodologías para mejorar la selección y asignación de canales 

a través de técnicas que aumentan la precisión en estimación de presencia/

ausencia de usuarios en canales licenciados. Utiliza los modelos LSTM, 

ANFIS-GRID-FCM y SVM para predecir el comportamiento de los PU; 

implementa una red neuronal perceptrón multicapa para gestionar anticipa-

damente las solicitudes de los SU en la base central, y SVM y ANFIS para 

generar esquemas de selección de canales eficientes. Los resultados mues-

tran disminución en el tiempo de selección y asignación de canales.

El artículo “Optimization spectrum decision parameters in CR using 

autonomously search algorithm” de Li et al. (2016) introduce el concepto 

de bioinspiración y su aplicación en la toma de decisiones. Se propone un 

algoritmo de búsqueda autónomo basado en la evolución de la población, 

reproducción, selección y mutación. La estrategia propuesta es comparada 
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con un algoritmo de optimización por enjambres de partículas y un algo-

ritmo genérico. Los resultados experimentales muestran que el algoritmo 

de búsqueda autónomo satisface la demanda de comunicación y tiene un 

buen rendimiento. Puede optimizar adaptablemente los parámetros de trans-

misión de acuerdo con las condiciones del canal y el tipo de cambio en el 

servicio al cliente, lo que le permite obtener un mejor esquema de decisión 

de parámetros.

El artículo “Analysis of  machine learning algorithms for spectrum deci-

sion in cognitive radios” de Martins y Andrade (2018) presenta un análisis 

de algoritmos de machine learning para desarrollo de CRN en hardware real. 

Se implementan en dos escenarios distintos tres métodos para la decisión del 

espectro: redes neuronales artificiales, bosques aleatorios y modelos ocultos 

de Markov. Los resultados muestran que el modelo oculto de Markov obtu-

vo la mejor tasa media de entrega en los dos escenarios evaluados —fue 4 % 

mejor que la red neuronal artificial y 16 % mejor que el bosque aleatorio en el 

patrón de tráfico alto; en el patrón medio fue 5,9 % mejor que la red neuronal 

artificial y 9,7 % mejor que el bosque aleatorio. En el patrón bajo fue 5,7 % 

mejor que la red neuronal artificial y 3 % mejor que el bosque aleatorio—.

El artículo “Decentralized Heuristic Access Policy Design for Two 

Cognitive Secondary Users under a Primary Type-I HARQ Process” de 

Joda y Zorzi (2015) propone políticas de acceso heurístico descentralizadas 

para dos SU cognitivos. Debido a la falta de unidad central, el problema se 

modela como un proceso de decisión descentralizado parcialmente observa-

ble de Markov. Por la complejidad del modelo se diseñan políticas de acceso 

que aprovechan la redundancia introducida por el protocolo Híbrido-ARQ 

de Tipo I. Los resultados muestran que las políticas heurísticas diseñadas 

aumentan el rendimiento, la flexibilidad y robustez, frente a los cambios de 

canal. Como trabajo futuro, los autores resaltan la importancia de imple-

mentar escenarios multiusuarios.

En el área de toma de decisiones y estructuras multiusuario mencionamos 

dos publicaciones que trabajan en conjunto los dos enfoques y que tienen 

relación con la presente investigación. Los trabajos analizados utilizan téc-

nicas heurísticas, metaheuristicas, estrategias probabilísticas basadas en 

cadenas de Markov y teoría de juegos. Ambos documentos utilizan modelos 
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de sistemas multiagente para establecer o analizar objetivos comunes de los 

usuarios a través de técnicas de cooperación. Rizk et al. (2018) presenta la 

revisión de los últimos cinco años en aplicaciones de sistemas inteligentes 

dentro de los cuales se incluye la CR, y Roy et al. (2017) estudia el conflicto 

entre dos niveles de SU utilizando teoría de juegos. Una característica gene-

ral de los documentos es que no analizan las consecuencias de las decisiones 

tomadas, lo que indica que las estrategias de cooperación parten del supues-

to de que la utilidad de un SU es independiente de las decisiones tomadas 

por otros SU, lo cual, no es la estrategia más viable si se consideran esce-

narios en los que los SU comparten o compiten por ciertos recursos. Para 

el caso particular de Roy et al. (2017) se limita a dos SU y un PU, con una 

arquitectura de tipo centralizada y tráfico emulado por Qualnet. Si bien un 

tráfico real no implica validaciones totalmente reales —ya que existen otras 

variables exógenas que pueden afectar el desempeño del modelo como el 

consumo de energía—, el hecho de utilizar tráfico real (capturado en campa-

ñas de medición) para las pruebas y validaciones garantiza un acercamiento 

a escenarios más prácticos en la realidad.

A continuación, se describen dos publicaciones que trabajan en conjunto 

los enfoques de toma de decisiones y estructuras multiusuario.

Rizk et al. (2018) en su artículo “Decision Making in Multiagent Systems: 

A Survey” realiza una revisión de los modelos cooperativos más relevantes 

para la toma de decisiones en sistemas multiagente. Presenta modelos basa-

dos en procesos de decisión de Markov, teoría de juegos, teoría de grafos e 

inteligencia de enjambres. Las diferentes técnicas son analizadas según su 

criterio de optimalidad y aplicación. Entre las aplicaciones más destacadas 

se incluyen diferentes sistemas cognitivos como redes de telecomunica-

ciones, sistemas eléctricos, sistemas de transporte, equipos de búsqueda y 

rescate; transporte de objetos, exploración y mapeo. Finalmente, el docu-

mento resalta avances y retos para los próximos años, la necesidad de incluir 

en el proceso de toma de decisiones avances en big data e internet de las cosas 

y la necesidad de desarrollar normas de evaluación que permitan la compa-

ración y faciliten su validación.

Roy et al. (2017) en su artículo “Optimized secondary user selection for 

quality of  service enhancement of  Two-Tier multi-user Cognitive Radio 
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Network: A game theoretic approach” utiliza la teoría de juegos para es-

tudiar el conflicto y la cooperación entre dos niveles de SU. El análisis 

comparativo muestra que la probabilidad de bloqueo, caída y saturación de 

canales se reduce en 81 %, 79 %, 84 %, respectivamente y la probabilidad de 

aceptación aumenta en 91 %.

En el área de toma de decisiones y escenarios colaborativos se identi-

ficaron dos trabajos. Giral et al. (2020b) proponen un modelo colaborativo 

a través de un nodo de información bidireccional con cinco niveles de cola-

boración. El proceso de toma de decisiones se realiza por medio de técnicas 

multicriterio implementando datos reales. Como métrica de desempeño se 

utiliza el número de handoff fallidos. De acuerdo con los resultados obte-

nidos se establece que el nivel de colaboración que conduce a resultados 

eficientes está entre 20 % y 50 %. Ye et al. (2017) analizan el costo de la 

interferencia para los modelos de decisión de interferencia cognitiva colabo-

rativa. Se propone un algoritmo de búsqueda tabú-colonia de abejas artificial 

para el proceso de toma de decisiones. Para verificar la solidez y capacidad 

del algoritmo propuesto se analiza el número de iteraciones en función del 

nivel de interferencia. Los resultados muestran que la solución propuesta 

presenta una mayor probabilidad de identificar el punto óptimo.

En el área de escenarios multiusuarios y escenarios colaborativos se 

identificaron dos trabajos. Khedkar y Patil (2019) proponen una técnica de 

toma de decisiones intra-coalition e inter-coalition para una CRN multiusuario. 

Para la asignación del espectro la estrategia utilizada es Pareto optimal coali-
tions, donde se utilizan métricas convencionales de toma de decisiones como 

OR/AND/máximum, voting/half  voting rules. Los resultados muestran una 

carga de trabajo reducida y un aumento en la velocidad del proceso de de-

cisión. Rizk et al. (2018) realizan una revisión de los modelos colaborativos 

más relevantes para la toma de decisiones en sistemas multiagentes (MAS), 

presentan modelos basados en procesos de decisión de Markov, teoría de 

juegos, teoría de grafos e inteligencia de enjambres. Las diferentes técnicas 

son analizadas según su criterio de optimalidad y su aplicación.

De acuerdo con los antecedentes, la tabla 2.7 presenta el análisis de los 

enfoques: toma de decisiones, modelos multiusuario y DCRN en función de 

las estrategias implementadas y las limitaciones identificadas.
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Tabla 2.7. Análisis de los enfoques de acuerdo con las 
estrategias implementadas y las limitaciones.

Enfoques Estrategias 
implementadas Limitaciones

DCRN
*Teoría de colas
*Cadenas de Markov
*Filtros digitales

*Estructura de la DCRN utilizando 
aproximaciones basadas en funciones 
probabilísticas.
*No se presenta evidencia de su desempe-
ño bajo comportamientos reales del PU.

Toma de deci-
siones y CRN

*Modelos probabilísticos: 
cadenas de Markov
*Técnicas optimización: 
técnicas heurísticas, técni-
cas evolutivas y modelos 
bioinspirados
*Técnicas de machine 
learning: lógica difusa, 
redes neuronales, árboles 
predictores

*Estructura de la DCRN utilizando 
aproximaciones basadas en funciones 
probabilísticas.
*No se evalúa el efecto en la carga 
computacional.
*No se presenta evidencia de su desempe-
ño bajo comportamientos reales del PU.
*No es posible identificar el efecto de las 
decisiones de un usuario sobre los demás.

Toma de deci-
siones y DCRN

*Propuestas de políticas de 
toma de decisiones
*Optimización a través de 
redes neuronales

*Estructura de la DCRN utilizando 
aproximaciones basadas en funciones 
probabilísticas.
*Métricas exclusivas para los modelos 
propuestos.
*No se presenta evidencia de su desempe-
ño bajo comportamientos reales del PU.

Toma de 
decisiones y 
estructuras 
multiusuario

*Técnicas heurísticas
*Técnicas metaheurísticas
*Estrategias probabilísticas: 
cadenas de Markov, teoría de 
juegos
*Sistemas multiagente

*Estructura de la DCRN utilizando 
aproximaciones basadas en funciones 
probabilísticas.
*No es posible identificar el efecto de las 
decisiones de un usuario sobre los demás.
*Las estrategias de cooperación parten del 
supuesto de que la utilidad de un SU es 
independiente de las decisiones tomadas 
por otros SU.

Toma de 
decisiones y 
escenarios 
colaborativos

*Técnicas multicriterio
*Nodo bidireccional
*Algoritmo de búsqueda ta-
bú-colonia de abejas artificial

*No es posible identificar el efecto de las 
decisiones.
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Enfoques Estrategias 
implementadas Limitaciones

Escenarios 
multiusuarios 
y escenarios 
colaborativos

*Sistemas multiagentes
*Cadenas de Markov 
*Teoría de juegos
*Teoría de grafos 
*Inteligencia de enjambres

*Métricas exclusivas para los modelos 
propuestos.
*No se presenta evidencia de su desempe-
ño bajo comportamientos reales del PU.
*No es posible identificar el efecto de las 
decisiones de un usuario sobre los demás.

Fuente: elaboración propia.

En conclusión, se evidencia que aún no hay estudios que relacionen en 

conjunto los cuatro enfoques: (1) decisión de espectro, (2) ambiente mul-

tiusuario, (3) ambiente colaborativo y (4) arquitectura descentralizada y, 

además, los oriente hacia las redes de radio cognitiva, lo cual se convierte en 

el principal aporte de este trabajo de investigación. Adicionalmente, el hecho 

de trabajar con datos de ocupación espectral reales obtenidos a partir de una 

campaña de medición le da al trabajo un mayor valor agregado y diferen-

ciador con respecto a las publicaciones descritas anteriormente, dado que en 

ellas se trabaja con datos espectrales generados aleatoriamente.
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3. Metodología

Debido a que la información de ocupación espectral tiene un papel relevante 

en esta investigación, enunciamos primero la metodología que se llevó a 

cabo para capturar, organizar y procesar los datos experimentales de ocupa-

ción espectral. Luego, presentamos el módulo colaborativo. Posteriormente, 

hay una descripción del módulo de selección de oportunidades espectrales 

junto con los resultados obtenidos para, finalmente, exponer el modelo de 

decisión espectral colaborativo definitivo, a partir de los resultados alcanza-

dos en cada uno de los cuatro módulos que lo conforman.

Con el objetivo de facilitar la comprensión y organización de este libro, la 

descripción del software desarrollado se dejó como un capítulo independien-

te, posterior al actual.

3.1 Selección de software y equipos
Para desarrollar la presente investigación se utilizaron los siguientes recursos:

•	 Un sistema de monitorización del espectro (descrito en la tabla 3.1) para 

realizar el proceso de captura de datos de potencia espectral en las bandas 

GSM y Wi-Fi, dentro de los cuales se destaca el analizador de espectro 

MS2721B Anritsu.

•	 Múltiples bases de datos electrónicas para realizar la consulta y construc-

ción de la revisión literaria sobre handoff espectral para CRN.

•	 El software Matlab para desarrollar el simulador y los correspondientes 

algoritmos de decisión espectral.

•	 Un computador de escritorio — cuyas características están descritas en la 

tabla 3.2— para realizar el procesamiento de la información, el diseño del 
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modelo propuesto, el desarrollo de la experimentación, el análisis de los 

resultados y la documentación de esta investigación.

Tabla 3.1. Especificaciones de los equipos para la monitorización del espectro.

Equipo
Especificaciones

Rango de frecuencia Referencia

Antena tipo discono 25 MHz – 6 GHz Super-M Ultra Base 

Cable de banda ancha DC – 18 GHz CBL-6FT SMNM+

Amplificador de bajo ruido 20 MHz – 8 GHz ZX60-8008E-S+

Analizador de espectro 9 kHz – 7.1 GHz MS2721B Anritsu

Fuente: elaboración propia.

Tabla 3.2. Especificaciones del equipo de cómputo.

Característica Valor de referencia

Procesador AMD FX 9590 de 8 núcleos y 4.71 GHz

Memoria RAM DDR 3 de 16 GB

Disco de estado sólido Kingston SV300S37A de 240 GB

Tarjeta de video AMD Radeon R7 200

Tarjeta de red 10 / 100 / 1000 Mbps

Monitor LG IPS Full HD

Sistema operativo Windows 7 de 64 bits

Fuente: elaboración propia.

3.2 Tipo de red
Para realizar un análisis comparativo más completo se decidió evaluar y 

validar el desempeño de cada algoritmo de decisión espectral en dos tipos 

de redes diferentes: GSM y Wi-Fi. La razón de escoger la banda GSM está 

basada en la alta demanda de telefonía celular y la baja QoS (Pedraza et al., 
2016). En el caso de la banda Wi-Fi, la razón obedece al interés de analizar 

el desempeño de los algoritmos en un ambiente más estocástico y la viabi-

lidad de la posible utilización de esta banda por parte de SU de telefonía 

móvil (Cárdenas et al., 2016).
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3.3 Captura y procesamiento de datos 
de ocupación espectral
Esta sección describe el procedimiento realizado para obtener la informa-

ción de ocupación espectral, la cantidad de información almacenada y su 

posterior procesamiento para servir de insumo a la herramienta de simula-

ción. El análisis se presenta para la red GSM; en el caso de Wi-Fi se sigue 

una metodología similar.

La figura 3.1 describe la configuración de los equipos para realizar el pro-

ceso de medición de la ocupación espectral en las bandas GSM (824 MHz 

– 874 MHz) y Wi-Fi (2,4 GHz – 2,5 GHz). Las especificaciones de los equi-

pos utilizados y la configuración de los parámetros técnicos del analizador 

de espectro para la banda GSM se exponen en la tabla 3.3.

Antena MP
Ultra base super-M

25 MHz - 6 GHz
8dBmp

Ampli�cador de Bajo Ruido
Ganancia: 8 - 11.5 dB

Figura de ruido: 4 - 4.5 dB
20 - 8000 MHz

CBL - 6FT SMNM + (DC - 18 GHz)

Analizador de Espectro
9 kHz - 7.1 GHz

Figura 3.1. Configuración experimental para medir la ocupación espectral.
Fuente: elaboración propia.

Tabla 3.3. Configuración de los parámetros técnicos 
del analizador de espectro para GSM.

Parámetro Valor

Banda de frecuencia 824 MHz a 874 MHz

Sistema de comunicación Móvil

Tecnología de comunicación GSM

Técnica de detección Detección de energía
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Parámetro Valor

Tiempo de captura 1 mes

Tiempo de barrido 290 ms

Resolución de BW 100 kHz

Span 50 MHz

Puntos por Span 500

Fuente: elaboración propia.

“Los rangos de medición de las bandas se basaron en aspectos como el tiem-

po de barrido, la Resolución de Ancho de Banda y el Span, con el fin de 

garantizar una adecuada medida en función del piso de ruido y el BW del 

canal de la tecnología a medir” (Pedraza et al., 2016). La técnica de detec-

ción utilizada fue la de energía debido a su factibilidad de implementación. 

La campaña de medición se realizó durante un mes en total, desde mayo 

hasta junio de 2018. Una explicación más detallada de la configuración de 

los parámetros técnicos del analizador de espectro se puede consultar en el 

capítulo tres de Pedraza et al. (2016).

El valor del Span corresponde al rango de frecuencia que está siendo 

analizado, en este caso 50 MHz (874 MHz – 824 MHz), y Puntos Por Span 

determina el número de canales de frecuencia (división uniforme de una 

porción de espectro) para los cuales el analizador de espectro midió el co-

rrespondiente nivel de potencia durante cada barrido. De acuerdo con lo 

anterior, en cada barrido, el analizador de espectro entrega la información 

del valor de potencia medido en dBm correspondiente a 500 canales de fre-

cuencia (potenciales oportunidades espectrales), con un BW de 100 kHz 

(50MHz / 500) cada uno.

El número de barridos que realiza el analizador de espectro depende del 

tiempo de barrido (290 ms) y la duración de la campaña de medición (un mes). 

De acuerdo con el tiempo de barrido se tiene, aproximadamente, 3,448 barri-

dos en un segundo. Por tanto, el número total de barridos realizados en un mes 

son: 8.937.216 (barridos/mes) = 3,448 (barridos/segundo) × 60 (segundos/

minuto) × 60 (minutos/hora) × 24 (horas/día) × 30 (días/mes), y el número 

total de datos de potencia son: 4.468.608.000 (dato de potencia del canal/mes) 

= 8.937.216 (barridos/mes) × 500 (dato de potencia del canal/barrido).
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A partir de la información anterior se construyó una matriz de potencia 

de 8.937.216 × 500, la cual contiene el valor de potencia de cada uno de los 

500 canales (comprendidos entre 824 MHz y 874 MHz) para 8.937.216 ins-

tantes de tiempo (cada instante de tiempo equivale a 290 ms). Sin embargo, 

debido a la gran cantidad de filas, dicha matriz tuvo que segmentarse en 240 

matrices de 37.238 × 500 para poder trabajar con ella.

3.4 Nivel de tráfico
Se realizó un análisis previo a la matriz de potencias para GSM basado en la 

AP. El resultado obtenido se muestra en la figura 3.2. De este análisis resalta 

la determinación de un rango de frecuencia en donde la disponibilidad de la 

matriz de potencia es alta. Para que el análisis de los modelos sea equitativo 

se requiere realizar ajustes previos a este rango de frecuencias.

Matriz de 
Potencia

GSM

Probabilidad de 
Disponibilidad

AP

Frecuencia (MHz)

Trá�co de disponibilidad = 62%
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Figura 3.2. Probabilidad de disponibilidad matriz de potencia.
Fuente: elaboración propia.
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Para realizar el ajuste al rango de frecuencia se implementa una estrategia 

que involucra todos los canales de la matriz de potencia; consiste en generar 

un conjunto de matrices para diferentes niveles de AP.

La metodología —descrita en la figura 3.3— toma la matriz de potencia 

medida. A través del nivel de threshold se obtiene la matriz de disponibilidad; 

a esta se le determina la AP actual y se compara con la AP objetivo. A partir 

de esta comparación se establece el ajuste que se debe realizar a la matriz de 

disponibilidad. El ajuste consiste en cambiar 0 por 1 si se requiere aumentar 

la AP actual o, 1 por 0 si se requiere disminuir la AP actual. Los cambios se 

realizan según un criterio de porcentaje para no afectar el ETA. El proceso 

previamente descrito es realizado en el bloque “Matriz de tráfico objetivo”, 

donde se analizan las múltiples matrices obtenidas. De acuerdo con los re-

sultados obtenidos se seleccionan los niveles de tráfico para la base de datos.

Threshold

AP Objetivo

Porcentaje de 
Selección 

Matriz de Disponibilidad

Ajustes por canal

Figura Throughput

Figura Hando� Fallidos

Figura Hando� 

Figura Retardo

Figura Ancho de Banda

Matriz Potencia Mod

Matriz de Tra�co 
Objetivo

Criterio de 
Decisión

Figura 3.3. Metodología para AP objetivo.
Fuente: elaboración propia.

3.4.1 Matriz de tráfico objetivo
Este bloque es el encargado de realizar todo el proceso de ajuste según los 

requerimientos de AP objetivo y criterio de porcentaje. El primer paso con-

siste en tomar la matriz de potencia medida y convertirla en disponibilidad 

—como se muestra en la figura 3.4 este proceso se realiza a través del nivel 

de threshold—; posteriormente se analiza el AP actual, calculando la AP por 

canal y a través de los datos obtenidos, la AP global.
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Figura 3.4. Probabilidad de disponibilidad actual.
Fuente: elaboración propia.

Se compara la información —la AP actual con la AP objetivo— y se de-

termina si se requiere aumentar la cantidad o disminuir la disponibilidad 

por canal. En el Algoritmo 1 se toman los criterios actuales, se comparan 

con los objetivos y se determina el factor que se debe agregar a cada canal 

—aditivo o sustractivo, depende si se quiere aumentar el nivel de tráfico 

o disminuir—. Para analizar los múltiples escenarios, se analizan nueve 

casos de AP objetivo: 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 % y 90 %.
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Algoritmo 1. Ajuste según criterios de AP objetivo.

Probabilidad de Disponibilidad Objetivo 

Variables de entrada: Traffic_goal, Available

AP_Old = mean( Available );

Mean_AP = mean(AP_Old );

if Traffic_goal < Mean_PD

Y = -( Traffic_goal*length(AP_Old)–sum(AP_Old) ) / 

length(AP_Old);

AP_Goal = AP_Old–Y;

else

Y = ( Traffic_goal*length(AP_Old)–sum(AP_Old) ) / 

length(AP_Old);

AP_Goal = AP_Old + Y;

end 

Fuente: elaboración propia.

De acuerdo con el factor que se debe agregar a cada canal se determina si 

se debe incrementar o reducir la cantidad de ceros —0 por 1 si se requiere 

aumentar la AP actual del canal o, 1 por 0 si se requiere disminuir el AP 

actual del canal—. Estos cambios se plantearon en dos escenarios; el pri-

mero, a través de cambios aleatorios, es decir, se toma la ubicación de los 

elementos a cambiar y de forma aleatoria se modifican hasta obtener la AP 

de interés. El problema de estos cambios aleatorios es que el criterio del ETA 

presentaba fuertes variaciones, por tanto, no fue viable su implementación. 

El segundo escenario incluye el ETA para realizar los cambios —se toman 

los conjuntos de 1 o 0 según el caso, y de forma porcentual se realizan las 

modificaciones—.

En la figura 3.5 se describe la metodología utilizada: la columna representa 

instantes de tiempo y la fila el canal de interés. Para el caso particular donde 

se requiere aumentar el tráfico del canal, se toma el conjunto de columnas 

(tiempo) disponibles consecutivas y se realizan cambios de acuerdo con el 

tamaño y al criterio de porcentaje de selección; como el tamaño de columnas 

consecutivas es de 10, si se requiere realizar un cambio en el 10 %, se toma 

1 canal y se modifica su estado; si se requiere realizar un cambio en el 40 %, 

se toman 4 columnas y se modifica su estado. Esto significa que los cambios 
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son proporcionales al tamaño del conjunto de columnas consecutivos. El 

proceso se realiza hasta cumplir con la AP objetivo. Los cambios se realizan 

desde los mayores conjuntos de columnas consecutivas hasta los menores. 

Porcentaje
10%  

time 1 time 2 ... ... ... ... ... ... ... ... ... ...

Porcentaje
20%  

Canal
No Disponible 

Canal
Disponible

Porcentaje
40%  

Porcentaje
80%  

Porcentaje
100%  

time n

Figura 3.5. Modificaciones porcentuales bajo criterios de ETA.
Fuente: elaboración propia. 

Según la metodología (figura 3.3) el porcentaje de selección es un parámetro 

de entrada del modelo. Para la presente investigación se tomaron diferentes 

porcentajes de selección: 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 % y 

90 %. Luego se combinaron con nueve casos de AP objetivo: 10 %, 20 %, 

30 %, 40 %, 50 %, 60 %, 70 %, 80 % y 90 %. Para cada caso de AP objetivo 

se analizaron nueve porcentajes de selección, por tanto, se obtuvieron 81 

matrices de disponibilidad.

3.4.2 Criterio de decisión
Para las 81 matrices de disponibilidad, se analizó el AAD, AAFH, AAH, AAT 

y ABW; se compararon los resultados, semejanzas y diferencias; finalmente, 

se seleccionó la AP objetivo de 40 % con porcentaje de selección de 50 % para 

tráfico alto y AP objetivo de 80 % con porcentaje de selección de 50 %. La 

figura 3.6 presenta el comportamiento de la AP para las matrices selecciona-

das; la gráfica de color verde es el comportamiento original.
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TRÁFICO ALTO: Disponibilidad = 40%
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Figura 3.6. Probabilidad de disponibilidad para tráfico alto y bajo GSM.
Fuente: elaboración propia. 

3.4.3 Base de datos de ocupación espectral
Para implementar las estrategias de toma de decisiones es necesario generar 

un grupo de datos que pueda entrenar los modelos y otro grupo de datos que 

los valide. Por tanto, se requieren dos bases de datos: una para entrenamien-

to y otra para evaluación. Adicionalmente, cada base de datos se clasifica de 
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acuerdo con el tipo de matriz (Potencia y Disponibilidad) y a los niveles de 

tráfico (HT y LT). Las tablas 3.4 y 3.5 describen la estructura de la base de 

datos generada para la matriz de potencia y disponibilidad.

La matriz de disponibilidad se obtiene a través del nivel de Umbral (−95 

dBm); este nivel se selecciona teniendo en cuenta la búsqueda de equilibrio 

entre la probabilidad de detección y la probabilidad de falsa alarma (Digham 

et al., 2007; Lehtomaki et al., 2005).

Tabla 3.4. Estructura de la base de datos para la matriz de potencia.

Matriz de Potencia Nivel de Tráfico Filas Columnas

Evaluación
HT

1800 500
LT

Entrenamiento
HT

10,800 500
LT

Fuente: elaboración propia.

Tabla 3.5. Estructura de la base de datos para la matriz de disponibilidad.

Matriz de Disponibilidad Nivel de Tráfico Filas Columnas

Evaluación
HT

1800 500
LT

Entrenamiento
HT

10,800 500
LT

Fuente: elaboración propia.

3.5 Modelo propuesto
La figura 3.7 presenta el modelo de asignación espectral multiusuario para 

redes de radio cognitiva descentralizadas donde se tiene un ambiente de radio 

que intercambia información de los SU de forma permanente con el módulo 

colaborativo. El módulo colaborativo es la estructura de comunicación entre 

los módulos propuestos y el ambiente de radio de forma permanente, este 

módulo se comunica con la base de datos para almacenar y actualiza la in-

formación sobre las solicitudes y requerimientos de los SU.
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El modelo propuesto está conformado por los módulos colaborativo, 

multiusuario, predictivo y Deep Learning. Cuando se realiza intercambio de 

información, la estrategia propuesta genera tres posibilidades de comuni-

cación con este último. La primera es a través del módulo multiusuario, el 

cual se realiza cuando hay múltiples SU; la segunda es a través del módulo 

predictivo, el cual se implementa si la aplicación que se está ejecutando tiene 

sensibilidad alta al retardo y se requiere disminuir la interferencia; finalmen-

te, si no hay múltiples usuarios y tampoco se presenta alta sensibilidad al 

retardo, la tercera posibilidad es generar comunicación directa entre el mó-

dulo colaborativo y el Deep Learning. Finalmente, se toma la información del 

módulo Deep Learning para la asignación del espectro.

En las secciones 3.5.1, 3.5.2, 3.5.3 y 3.5.4 describimos cada uno de estos 

módulos.

Ambiente 
de Radio

Módulo 
Colaborativo

Módulo 
Multiusuario

Módulo 
PredictivoMódulo Aprendizaje 

Profundo

Base de 
Datos

Solicitud SU y 
Requerimientos

Actualización 
de Parámetros

Asignación 
Espectral

Ambiente 
de Radio

Módulo 
Colaborativo

Módulo 
Multiusuario

Módulo 
PredictivoMódulo Aprendizaje 

Profundo

Base de 
Datos

Solicitud SU y 
Requerimientos

Actualización 
de Parámetros

Asignación 
Espectral

Figura 3.7. Modelo de asignación espectral multiusuario 
para redes de radio cognitiva descentralizadas.

Fuente: elaboración propia.

3.5.1 Módulo colaborativo: intercambio de información entre SU
Una de las principales novedades de esta investigación es el hecho de 

contemplar la característica de colaboración entre SU para determinar la 
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mejor oportunidad espectral. Como se mencionó en los capítulos primero 

y segundo, la mayor parte de trabajos de investigación en radio cognitiva se 

fundamentan en una red centralizada donde toda la información está orga-

nizada en un solo lugar y acceder a ella resulta más fácil y beneficioso para 

la toma de decisiones. Sin embargo, aunque la observación y conocimiento 

global de la red presenta ventajas, para sistemas a gran escala y aplicacio-

nes en redes de seguridad pública no es la mejor opción: el aumento en los 

costos de medición, la complejidad del sistema, la cantidad de información 

que se debe controlar, sumado al desequilibrio y potencial caos si la estación 

base llega a fallar (vulnerabilidad), la convierte en una arquitectura no facti-

ble para todas las estructuras de CRN (Pankratev et al., 2019).

Las redes distribuidas —por ejemplo, MANET— se caracterizan por su 

alta movilidad, autonomía, adaptación e independencia. Sus aplicaciones se 

encuentran en escenarios que involucran redes VANET (Bujari et al., 2018), 

vehículos aéreos no tripulados (Bujari et al., 2018), vigilancia urbana y misiones 

de búsqueda o rescate (Dhamodharavadhani, 2015). Sin embargo, la falta de 

infraestructura, topología dinámica, implementación rápida y los entornos hos-

tiles de aplicación hacen que la MANET sea vulnerable a una amplia gama de 

ataques de seguridad (Abass et al., 2017; Kongsiriwattana y Gardner-Stephen, 

2017; Vasudeva y Sood, 2018); además, el consumo de energía y retardo es 

alto (Kongsiriwattana y Gardner-Stephen, 2017) y el BW es bajo al igual que 

su rendimiento por las frecuentes fallas de enlace (Dhamodharavadhani, 2015; 

Goswami, 2017). La anterior problemática puede ser solucionada si se dis-

tribuye la responsabilidad de la información en diferentes puntos de control, 

criterio base de las DCRN. Ahora, debido a que en las DCRN no se centraliza 

la información y gestión de la red, resulta realmente importante el concepto de 

colaboración entre SU para la toma de decisiones.

De acuerdo con lo anterior, la presente investigación implementó y adap-

tó la colaboración al modelo de decisión espectral propuesto, a través de un 

módulo de intercambio de información entre SU, el cual segmenta la ma-

triz de entrenamiento de acuerdo con un número establecido de usuarios. 

Adicionalmente, caracteriza niveles de colaboración a través del porcentaje 

de información que se comparte. A continuación, se realiza la descripción 

de la metodología utilizada para el módulo colaborativo.
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3.5.1.1 Estructura del módulo implementado
La figura 3.8 presenta el diagrama de bloques del módulo colaborativo. Los 

bloques donde convergen las señales de entrada y salida corresponden a la 

metodología que segmenta la matriz de potencia de acuerdo con los niveles 

de colaboración. La idea general del módulo es dividir la matriz de potencia 

(base de datos) en submatrices y caracterizar los niveles de colaboración de 

acuerdo con la cantidad de usuarios que serán parte del análisis del proceso 

de decisión espectral. Cada submatriz representa un usuario, por tanto, el 

total de submatrices corresponde al número total de usuarios. La cantidad 

de información a compartir se selecciona de acuerdo con los niveles de co-

laboración que son caracterizados por el tipo de segmentación, el método 

de división y el porcentaje de selección. La descripción de cada una de las 

variables de entrada y su respectivo ajuste se presenta en la tabla 3.6.

Base de 
Datos

Número de 
Usuarios

División de 
Usuarios

Usuarios Totales

Segmentación 
Aleatoria

Nivel de 
Colaboración

Porcentaje

División

Segmentación

Matriz de Potencia 
Segmentada

Usuarios 
Colaborativos

Usuarios 
Totales

Continua/Aleatoria

Segmentación 
Continua

Figura 3.8. Diagrama general del módulo colaborativo.
Fuente: elaboración propia.
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Tabla 3.6. Descripción de las variables de entrada para el módulo colaborativo.

Variable Ajuste Descripción

Nivel de 
colaboración

Segmentación

Aleatoria
La selección de usuarios para la simu-
lación, de acuerdo con el ajuste del 
porcentaje, se realiza se forma aleatoria.

Continua

La selección de usuarios para la simu-
lación, de acuerdo con el ajuste del 
porcentaje, se realiza en orden, por filas o 
por columnas.

División

Fila

* Si el número de usuarios es mayor o igual a 
10: Se dividen las filas de la matriz de po-
tencia en 10 partes iguales y las columnas 
se dividen en m partes hasta completar el 
número de usuarios (Usuarios Totales = 
10(m))
* Si el número de usuarios es menor a 2: Se di-
viden las filas de la matriz de potencia en 
2 partes iguales y las columnas se dividen 
en m partes hasta completar el número de 
usuarios (Usuarios Totales = 2(m)).

Columna

* Si el número de usuarios es mayor o igual a 
10: Se dividen las columnas de la matriz 
de potencia en 10 partes iguales y las filas 
se dividen en m partes hasta completar el 
número de usuarios (Usuarios Totales = 
10(m))
* Si el número de usuarios es menor a 2: Se 
dividen las columnas de la matriz de 
potencia en 10 partes iguales y las filas 
se dividen en m partes hasta completar el 
número de usuarios (Usuarios Totales = 
2(m)).

Porcentaje 10 %–100 %
Porcentaje de usuarios que participaran 
en el entrenamiento.

Número de 
usuarios

1-1000
Número de usuarios (submatrices) que 
segmentan la matriz de potencia.

Base de 
datos

Tipos de red (GSM o Wi-Fi) Matriz de tráfico.

Fuente: elaboración propia.

Una descripción particular omitiendo el tipo de segmentación y el método de 

división se presenta en la figura 3.9. Se toma la información de entrada (Base 

de datos) y se divide en n submatrices (Número de usuarios = n). Después 

de la división en submatrices se selecciona la cantidad de información a 
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compartir en el entrenamiento según el nivel de colaboración (Porcentaje). 

De acuerdo con la figura 3.9, para un número de usuarios igual a cuatro 

(n = 4), un nivel de colaboración de 25 % (Porcentaje = 25 %) corresponde 

a un entrenamiento basado en la información de un solo usuario (Usuarios 

colaborativos = 1); un nivel de colaboración de 50 % (Porcentaje = 50 %) 

corresponde a un entrenamiento basado en la información de dos usuarios 

(Usuarios colaborativos = 2), un nivel de colaboración de 75 % (Porcentaje 

= 75 %) corresponde a un entrenamiento basado en la información de tres 

usuarios (Usuarios colaborativos = 3), si el nivel es de 100 % (Porcentaje = 

100 %) el entrenamiento utiliza toda la información disponible (Usuarios 

colaborativos = 100).

Usuario 1 Usuario 2

Usuario 3 Usuario 4

Usuario 1 Usuario 2

Usuario 3

Usuario 1 Usuario 2

Usuario 3 Usuario 4

Usuario 1 Usuario 2Usuario 1

Nivel de Colaboración: 25%

Número de Usuarios (n)

Usuarios Totales
n = 4

Matriz Entrenamiento Segmentada

Nivel de Colaboración: 75% Nivel de Colaboración: 100%

Nivel de Colaboración: 50%

Base de 
Datos

Número de 
Usuarios

Nivel de 
Colaboración

Porcentaje

n

Figura 3.9. Operación particular del modelo colaborativo.
Fuente: elaboración propia.

Para una mejor comprensión de la estrategia, a continuación, se presentan 

dos ejemplos. En contraste con el caso descrito en la figura 3.9, estos dos es-

cenarios son más específicos ya que involucran todos los ajustes del modelo 

colaborativo. La figura 3.10 corresponde a la base de datos de entrada de los 

dos escenarios, representa una matriz de disponibilidad binaria con 36 da-

tos, obtenida a través de una matriz de potencia con un umbral de decisión. 

Cada columna representa un canal y cada fila representa el tiempo, donde 

un valor de “1” representa un canal disponible y “0” representa un canal no 

disponible.
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Figura 3.10. Base de datos de entrada para los dos escenarios.
Fuente: elaboración propia.

Los criterios de cada uno de los escenarios se presentan en la tabla 3.7 y 

tabla 3.8. Para los dos casos, la matriz de disponibilidad es segmentada 

en seis usuarios (equivalente a seis submatrices), el porcentaje es un valor 

seleccionado aleatoriamente, 50 % para el primer escenario y 67 % para el 

segundo escenario. Como se describió previamente, este parámetro indica 

el porcentaje de usuarios que serán parte del entrenamiento, equivalente a 

un nivel de colaboración de 50 % (caso 1) y 67 % (caso 2), por tanto, si 6 es 

el total de usuarios (100 %), 50 % corresponde a un entrenamiento basado 

en la información de 3 de usuarios, y 67 % corresponde a un entrenamiento 

basado en la información de 4 usuarios. Este porcentaje, es un parámetro 

ajustable que puede variar entre 10 % y 100 % según el caso de estudio a 

analizar. El modelo colaborativo está programado para adaptarse a cual-

quier parámetro de entrada. Si el nivel de colaboración ajusta un entrena-

miento basado en la información de un número de usuarios decimal, el 

modelo toma el entero más cercano. Las variaciones en el modelo por las 

variables División y Segmentación se describen en el análisis individual de 

cada uno de los casos de estudio.
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Tabla 3.7. Ajuste modelo colaborativo para el primer escenario.

Base de datos Matriz de disponibilidad figura 3.10

Número de usuarios 6

Nivel de colaboración

Segmentación Fila

División Aleatoria

Porcentaje 50 %

Fuente: elaboración propia.

Tabla 3.8. Ajuste modelo colaborativo para el segundo escenario.

Base de datos Matriz de disponibilidad figura 3.10

Número de usuarios 6

Nivel de colaboración

Segmentación Continua

División Columna

Porcentaje 67 %

Fuente: elaboración propia.

Primer escenario: Según la información presentada en la tabla 3.7, el primer 

escenario segmenta la matriz de disponibilidad en seis usuarios con división 

por filas. Como el número de usuarios es inferior a diez y la segmentación 

es por fila, el módulo toma la matriz de disponibilidad y la divide en dos 

columnas (para usuarios mayores a diez, consulte la tabla 3.6). El módulo 

determina que para segmentar la matriz de disponibilidad en seis submatri-

ces con una división de dos columnas, el número de filas debe ser tres. La 

figura 3.11 presenta la matriz de disponibilidad de acuerdo con el número 

de usuarios y la división.

De los seis usuarios, para el nivel de colaboración, solo 50 % serán parte 

de los usuarios colaborativos (Porcentaje = 50 %), lo que corresponde a tres 

usuarios (Usuarios colaborativos = 3). La selección de los tres usuarios se 

realiza de forma aleatoria. La figura 3.12 ilustra la matriz de entrenamiento 

de acuerdo con los ajustes descritos en la tabla 3.7.
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Figura 3.11. Matriz de disponibilidad seccionado para 6 usuarios con división por fila.
Fuente: elaboración propia. 

Figura 3.12. Matriz de entrenamiento para 3 usuarios, con 
50 % de nivel de colaboración y selección aleatoria.

Fuente: elaboración propia.
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Segundo escenario: Según la información presentada en la tabla 3.8, el se-

gundo escenario segmenta la matriz de disponibilidad en seis usuarios con 

división por columna. Como el número de usuarios es inferior a diez y la 

segmentación es por columna, el módulo toma la matriz de disponibilidad 

y la divide en dos filas (para usuarios mayores a diez, consulte la tabla 3.6). 

El módulo determina que para segmentar la matriz de disponibilidad en seis 

submatrices con una división de dos filas, el número de columnas debe ser 

tres. La figura 3.13 presenta la matriz de disponibilidad de acuerdo con el 

número de usuarios y la división.

Figura 3.13. Matriz de disponibilidad seccionado para 6 usuarios con división por columna.
Fuente: elaboración propia.

De los seis usuarios, para el nivel de colaboración, solo 67 % serán parte de 

los usuarios colaborativos (Porcentaje = 50 %), lo que corresponde a cuatro 

usuarios (Usuarios colaborativos = 4), la selección de los cuatro usuarios se 

realiza de forma continua. La figura 3.14 ilustra la matriz de entrenamiento 

de acuerdo con los ajustes descritos en la tabla 3.8.
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Figura 3.14. Matriz entrenamiento para 4 SU, con 67 % 
de colaboración y selección aleatoria.

Fuente: elaboración propia.

Finalmente, las variables de salida del módulo contienen la matriz segmen-

tada con la información de los usuarios colaborativos seleccionados para el 

proceso de toma de decisiones. Adicionalmente, como variable de salida se 

incluye la matriz de potencia dividida por el total de usuarios.

3.5.2 Módulo multiusuario
En las CRN, los usuarios deben tomar decisiones inteligentes en función de 

la variación del espectro y de las acciones adoptadas por otros usuarios. A 

partir de esta dinámica, la probabilidad de que dos o más usuarios elijan el 

mismo canal es alta, especialmente cuando el número de usuarios es mayor 

que el número de canales disponibles: cuantos más seleccionen el mismo 

canal, menor será la utilidad y mayor el número de interferencias por el ac-

ceso simultáneo (Abbas et al., 2015). Para modelar la red bajo parámetros de 

tráfico realistas es necesario analizar el acceso multiusuario.

Al tomar la decisión de acceso al canal cada SU no solo debe considerar 

la calidad del canal sino, también, tener en cuenta las decisiones de acceso 

al canal de otros SU; cuanto más acceden los SU al mismo canal menor es 
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el rendimiento que puede alcanzar cada SU debido a la interferencia entre 

ellos. Este fenómeno se conoce como externalidad negativa de la red (Jiang 

et al., 2014b; Zhang et al., 2012). La influencia negativa de los comporta-

mientos de otros usuarios en la recompensa de un usuario se debe a que cada 

usuario tiende a evitar tomar la misma decisión de otro para maximizar su 

propia utilidad. 

De acuerdo con lo relevante del proceso de toma de decisiones y la nece-

sidad de incluir el efecto de las decisiones de los usuarios sobre la utilidad 

de los otros (para de esta manera poder obtener validaciones más útiles en 

la realidad), la presente investigación implementó y adaptó un módulo mul-

tiusuarios al modelo de decisión espectral propuesto, el cual permite incluir 

múltiples usuarios seriales, para diferentes tipos de aplicaciones, con nive-

les de prioridad y bandas de canales de diferentes tamaño. Adicionalmente, 

para incluir otras características asociadas al comportamiento real de la 

banda espectral, el módulo cuenta con la posibilidad de agregar usuarios 

aleatorios que serán parte de la simulación en instantes de tiempos distintos 

con los mismos requerimientos. A continuación, se realiza la descripción de 

la metodología utilizada para el módulo multiusuario.

3.5.2.1 Estructura del módulo implementado
La figura 3.15 presenta el diagrama de bloques del módulo multiusuario 

donde convergen las señales de entrada y salida correspondientes a la ca-

racterización que se realiza de los diferentes usuarios. La idea general del 

módulo es analizar el comportamiento de los modelos de decisión espectral 

cuando se presenta acceso multiusuario. Para lograr este objetivo se generan 

múltiples usuarios con diferentes requerimientos.

El módulo permite manejar cuatro tipos de bandas (aplicaciones). Cada 

una de estas bandas tiene la posibilidad de solicitar prioridad y acceso a 

múltiples canales. Múltiples usuarios y sus respectivas características serán 

parte del modelo durante todo el tiempo de simulación. Esta metodología se 

denominó: “Modelo convencional”. El módulo cuenta con la posibilidad de 

incluir usuarios aleatorios, sin interés de análisis, que aparecen en tiempos 

aleatorios y que no estarán en todo el tiempo de simulación, sin embargo, 

con características similares a los usuarios que participan en todo el proceso. 
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Esta estructura se denominó: “Modelo real”. Para generar las métricas los 

múltiples usuarios se introducen en un algoritmo de búsqueda que analiza el 

comportamiento de los handoff espectral. La descripción de cada una de las 

variables de entrada y su respectivo ajuste se presentan en la tabla 3.9.

Tabla 3.9. Descripción de las variables de entrada para el módulo multiusuario.

Variable Ajuste Descripción

Bandas Multicanal 1–4
Número de aplicaciones selec-
cionados para la simulación.

Canales 1–10
Número de canales nece-
sarios para cada aplicación 
seleccionado.

Porcentaje 25 % – 50 % – 75 % – 100 %

Porcentaje de usuarios que 
adquieren la característica de la 
aplicación y de la cantidad de 
canales.

Número de 
Usuarios Seriales

1–30

Número de SU que de forma 
simultánea acceden al espectro. 
Estos usuarios se caracterizan 
por intercambiar información 
entre ellos antes de iniciar el 
proceso de acceso oportunista.

Modo de 
Simulación

Modo Real Se incluyen usuarios aleatorios.

Modo Convencional
No se incluyen usuarios 
aleatorios.

Fuente: elaboración propia.
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Figura 3.15. Diagrama general del módulo multiusuario.
Fuente: elaboración propia.

3.5.2.2 Características de los usuarios
Las características de los usuarios establecen la cantidad de bandas mul-

ticanales, el número de canales por banda, la prioridad y el porcentaje de 

usuarios que tendrán estas características. El objetivo es manejar diferentes 

escenarios de demanda de canales por usuario; las bandas multicanal repre-

sentan el tipo de aplicación y el número de canales la demanda de BW o el 

requerimiento de acuerdo con el tipo de aplicación, la cual puede ser de un 

solo canal o de múltiples canales. La asignación de la prioridad se realiza 

según el orden de ajuste de la información. La figura 3.16 muestra la estruc-

tura de parametrización de la información.
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Prioridad: 1

Prioridad: 2

Prioridad: 3

Prioridad: 4

Bandas Multicanal

Canales

Canales

Canales

Canales

Porcentaje

Porcentaje

Porcentaje

Porcentaje

Figura 3.16. Ajustes para características de los usuarios.
Fuente: elaboración propia.

Una descripción particular de las características de los usuarios se presenta 

en la figura 3.17. En este caso específico se seleccionaron tres bandas multi-

canal (tres tipos de aplicaciones). La banda con la mayor prioridad requiere 

de tres canales de BW; la banda con la segunda prioridad requiere de dos 

canales de BW y la banda con la tercera prioridad requiere de cuatro canales 

de BW. De acuerdo con esta información 25 % de los usuarios tendrá prio-

ridad 1; 50 % de los usuarios tendrá prioridad 2 y finalmente, 25 % de los 

usuarios tendrá prioridad 3.

Bandas Multicanal

Prioridad: 1

Canales Porcentaje

3

3 25

Prioridad: 2

Canales Porcentaje2 50

Prioridad: 3

Canales Porcentaje4 25

Figura 3.17. Descripción particular para las características de los usuarios.
Fuente: elaboración propia.
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3.5.2.3 Número de usuarios
El número de usuarios depende del modo simulación —convencional o 

real— como se muestra en la figura 3.18. Para establecer el total de usuarios 

se requiere un bloque de multiplexación; si se utiliza el modo convencional, 

la asignación de usuarios y tiempo aleatorio se deshabilita y por tanto el 

total de usuarios corresponde al número de usuarios. Si se utiliza el modo 

real, el bloque de usuarios y tiempo aleatorio se habilita y, por tanto, el total 

de usuarios aumenta con respecto al modo convencional. A continuación, 

se presenta la descripción de la metodología utilizada para los bloques de la 

figura 3.18.

Figura 3.18. Usuarios totales en modo convencional y en modo real.
Fuente: elaboración propia.

Usuarios totales
Se cuantifican en función del modo ajustado —convencional o real—. El 

Algoritmo 2 presenta la estructura de programación implementada. No es 

posible que los dos modos estén habilitados de forma simultánea. La salida 

“Tiempo aleatorio” solo estará disponible para el modo real.
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Algoritmo 2. Estructura para la asignación de usuarios totales.

Usuarios Totales 

 % Usuarios Totales Modo Real
If Modo Real == 1 && Modo Convencional == 0

Usuarios Totales = Número de Usuarios Seriales + Usuarios 

Aleatorios

Tiempo Aleatorio = Enable

end
 % Usuarios Totales Modo Convencional
If Modo Real == 0 && Modo Convencional == 1

Usuarios Totales = Número de Usuarios Seriales

Tiempo Aleatorio = Disable

end

Modo convencional
Este modo no genera usuarios aleatorios ni tiempo aleatorios. El total de 

usuarios, según describe el Algoritmo 2, corresponde al parámetro de usua-

rios que se ajusta a la entrada del modelo.

Modo real
Genera usuarios aleatorios, sin interés de análisis, que no estarán en todo el 

tiempo de simulación. Para el número de usuarios aleatorios se genera un 

número entero distribuido uniformemente entre uno y el valor máximo de 

usuarios que se ajusta a la entrada de modelo. Esto significa que el número de 

usuarios aleatorios nunca podrá ser superior a los usuarios convencionales. 

Si los usuarios aleatorios permanecen durante todo el tiempo de simulación, 

el modelo real tendría el mismo comportamiento del modelo convencional, 

por tanto, los usuarios aleatorios ingresan y salen en tiempos diferentes a los 

ajustados en el modelo convencional. 

Por criterio de diseño, un usuario aleatorio solo podrá ingresar cuando 

se supere el 30 % del tiempo de transmisión en minutos del SU, y podrá 

participar en el proceso de decisión espectral hasta alcanzar el 70 %. Para 

establecer el tiempo de permanencia con los criterios previamente descritos, 

por usuario aleatorio, se genera un vector entero aleatorio ascendente de dos 

posiciones con un rango entre 30 y 70, equivalente a los porcentajes de tiempo 
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para ingreso y salida. La figura 3.19 presenta el diagrama de asignación de 

usuarios y tiempo aleatorio, este corresponde a la descripción específica del 

bloque “Usuarios Aleatorios Tiempo Aleatorio” de la figura 31.8. Como se 

muestra en la figura 3.19, para obtener el número de usuarios aleatorios y 

su tiempo de permanencia se requiere de las variables de entrada “Número 

de Usuarios Seriales” y “Tiempo de simulación”, respectivamente. Además, 

se requieren tres constantes: valor mínimo de usuarios aleatorios —el cual 

corresponde a uno (1)— y límites de tiempo para ingreso (30 %) y salida 

(70 %) de los usuarios aleatorios. La distribución de probabilidad utilizada 

corresponde a una distribución uniforme (función randperm de Matlab).

Figura 3.19. Asignación de usuarios y tiempo aleatorio.
Fuente: elaboración propia.

3.5.2.4 Prioridad de los canales
Como se describió en la sección 3.5.2.2, la asignación de prioridad se realiza 

de acuerdo con el orden de ajuste de la información. Esta incluye infor-

mación asociada a la aplicación (banda) y a la cantidad de canales. Si se 

utiliza el modo convencional, el total de usuarios por cada prioridad está en 

función de la proporcionalidad —asignada en cada relación porcentual de 

las características del usuario—. El Algoritmo 3 presenta la estructura para 

prioridad de canales en modo convencional.
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Algoritmo 3. Prioridad de canales en modo convencional.

Modo Convencional 

 % Usuarios Totales Modo Convencional
If Modo Real == 0 && Modo Convencional == 1

Usuarios = Número de Usuarios Seriales

Usuarios_Prioridad_1 = Porcentaje_Prioridad_1 * 

Usuarios

Usuarios_Prioridad_2 = Porcentaje_Prioridad_2 * 

Usuarios

Usuarios_Prioridad_3 = Porcentaje_Prioridad_3 * 

Usuarios

Usuarios_Prioridad_4 = Porcentaje_Prioridad_4 * 

Usuarios

Tiempo Aleatorio = Disable

end

Para la prioridad de canales en modo real se requiere, primero, ubicar los 

usuarios aleatorios y a partir de este criterio realizar la asignación.

Ubicación de usuarios aleatorios
Es importante diferenciar el tiempo de permanencia y la ubicación de un 

usuario aleatorio en la estructura multiusuario. Por criterio de diseño, un 

usuario aleatorio solo podrá ingresar cuando se supere el 30 % de tiempo de 

transmisión en minutos del SU, y permanecer hasta alcanzar el 70 %. La ubi-

cación solo se analiza cuando el usuario aleatorio ingresa. Como se muestra 

en la figura 3.20, un usuario aleatorio puede ubicarse al inicio, final y en una 

posición intermedia de los usuarios convencionales. La ubicación se realiza 

a través de una estructura aleatoria. Como se muestra en la figura 3.20 la 

prioridad de los usuarios convencionales no se ve afectada.
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Usuarios Convencionales

Usuarios Aleatorios

Usuarios Prioridad 1

Usuarios Prioridad 2

Usuarios Prioridad 3

Figura 3.20. Ubicación de usuarios aleatorios.
Fuente: elaboración propia. 

Asignación de prioridad
Cada usuario aleatorio debe adquirir una prioridad, la cual es asignada 

según la ubicación y el porcentaje de usuarios de cada prioridad. Para com-

prender esta asignación, la figura 3.21 presenta un ejemplo: se cuenta con 

tres usuarios convencionales y un usuario aleatorio; el usuario aleatorio fue 

ubicado entre los usuarios con prioridad 1 y prioridad 2 —como se descri-

bió previamente, la ubicación fue seleccionada de forma aleatoria—. Por 

las características asignadas, 25 % de los usuarios tendrán prioridad 1, 50 % 

tendrán prioridad 2 y 25 % tendrán prioridad 3; por tanto, solo un usua-

rio tendrá prioridad 1 (se maneja el criterio del mayor entero ya que no es 

posible definir usuarios decimales), dos usuarios tendrán prioridad 2 y un 

usuario, prioridad 3. La selección de los usuarios se realiza en orden de ubi-

cación, por ende, como describe la figura 3.21, el usuario aleatorio adquiere 

las características de los usuarios con prioridad 2.
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Bandas Multicanal = 3
Número de Usuarios = 3
Usuario Aleatorios = 1
Total Usuarios = 4

Porcentaje = 25%
Usuarios = 0.25(4) 
Prioridad = 1
Requerimientos de Canales = 3

Porcentaje = 50%
Usuarios = 0.5(4) 
Prioridad = 2
Requerimientos de Canales = 2

Porcentaje = 25%
Usuarios = 0.25(4) 
Prioridad = 3
Requerimientos de Canales = 4

Figura 3.21. Asignación de prioridad.
Fuente: elaboración propia.

3.5.2.5 Algoritmo de búsqueda multicanal
Es el encargado del análisis de movilidad espectral. Según el vector de 

posiciones el algoritmo ranking realiza saltos de columna en la matriz de dis-

ponibilidad hasta encontrar un canal disponible; al encontrarlo, realiza un 

cambio de fila (instante de tiempo) en la matriz de disponibilidad. Los saltos 

de columna, de fila; el tiempo y la disponibilidad son almacenados en un 

vector y retroalimentados, al finalizar la simulación, en una base de datos.

El proceso es equivalente para un usuario con un canal y para múltiples 

usuarios con múltiples canales. La diferencia más relevante se presenta en 

el cambio de fila (instante de tiempo), la cual, para múltiples usuarios, solo 

se realiza cuando todos los usuarios encuentran oportunidades espectrales 

o cuando los requerimientos de canales son superiores a la disponibilidad.

La figura 3.22 presenta dos escenarios de movilidad espectral para múl-

tiples usuarios en modo convencional, o en modo real si la transmisión en 

minutos del SU es inferior a 30 % o superior a 70 %. Se cuenta con tres usua-

rios, para este caso particular. La prioridad 2 tiene un porcentaje de 50 % y la 

prioridad 1 y 3 de 25 %. Evidentemente, en números enteros, la asignación 

de usuarios para cada prioridad no es posible; el módulo se reconfigura y 

asigna a cada prioridad un porcentaje de 33 %, por tanto, cada prioridad 

tendrá un solo usuario. El objetivo del algoritmo de búsqueda es encontrar 
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las oportunidades espectrales (canales disponibles) de acuerdo con el vector 
ranking, donde, el valor más bajo en la posición corresponde a los canales 

con mayor AP.

En el primer escenario (figura 3.22) el usuario con prioridad 1 y requeri-

miento de 3 canales, encuentra oportunidades espectrales en las posiciones 

del vector ranking [1 2 3]. El usuario con prioridad 2 y con requerimiento 

de 2 canales, encuentra oportunidades espectrales en las posiciones del vec-

tor ranking [5 6] —no es posible ocupar la posición [4] ya que el canal se 

encuentra ocupado por un PU—; adicionalmente, el algoritmo no realiza 

la búsqueda en los canales [1 2 3] —previamente asignados a usuarios con 

prioridad 1—, el módulo se retroalimenta e informa que estos canales no es-

tán disponibles. Finalmente, el usuario con prioridad 3 y con requerimiento 

de 4 canales encuentra oportunidades espectrales en las posiciones del vec-

tor ranking [7 9 10 11] —no es posible ocupar la posición [4] ya que el canal 

se encuentra ocupado por un PU—. Como todos los usuarios encuentran 

oportunidades espectrales para todos los requerimientos de canales, el algo-

ritmo realiza un salto de fila e inicia nuevamente la búsqueda.

En el segundo escenario (figura 3.22) los requerimientos de canales son 

superiores a la disponibilidad. Al finalizar la búsqueda, los usuarios con 

prioridad 3 y requerimiento de 4 canales encuentran solamente dos oportuni-

dades espectrales de las 4 que requieren; para este caso particular, el módulo 

informa sobre el resultado, salta de fila e inicia nuevamente la búsqueda.

Los saltos de columna, de fila; el tiempo y la disponibilidad por usuario 

son almacenados en un vector y retroalimentados al finalizar la simulación 

en una base de datos.

La figura 3.23 presenta un escenario de movilidad espectral para múl-

tiples usuarios en modo real. Se cuenta con tres usuarios convencionales 

y uno aleatorio que adquiere las características de la prioridad 2 (ejemplo 

descrito en la asignación de prioridades de la sección 3.5.2.4), para este caso 

particular, la prioridad 2 tiene un porcentaje de 50 % y, la prioridad 1 y 3 de 

25 %, por tanto, la prioridad 2 tendrá dos usuarios y la prioridad 1 y 3 un 

solo usuario.
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7Ranking = 

Time < 0.3(Time)

Primer Escenario

Segundo Escenario

Time > 0.7(Time)

Time < 0.3(Time)
Time > 0.7(Time)

[ ]3 9 12 2 1 8 5 10 4 11 6

Porcentaje = 25%
Usuarios = 0.25(4) 
Prioridad = 1
Requerimientos de Canales = 3

Porcentaje = 50%
Usuarios = 0.5(4) 
Prioridad = 2
Requerimientos de Canales = 3

Porcentaje = 25%
Usuarios = 0.25(4) 
Prioridad = 3
Requerimientos de Canales = 3

Canal Disponible

Canal no Disponible

Figura 3.22. Movilidad espectral para múltiples usuarios en modo convencional.
Fuente: elaboración propia.

De acuerdo con el escenario descrito en la figura 3.23, el usuario con prio-

ridad 1 y con requerimiento de 3 canales encuentra oportunidades espectra-

les en las posiciones del vector ranking [1 2 3]. Para la prioridad 2 hay dos 

usuarios con requerimiento de dos canales por usuario, el aleatorio encuen-

tra oportunidades espectrales en las posiciones del vector ranking [4 6], y el 

convencional en las posiciones del vector ranking [7 8], no es posible ocupar 

la posición [5] ya que el canal se encuentra ocupado por un PU. Finalmente, 

el usuario con prioridad 3 y con requerimiento de cuatro canales, encuentra 

oportunidades espectrales para solo tres de los cuatro canales en las posicio-

nes del vector ranking [9 10 11], el módulo informa sobre el resultado, salta 

de fila e inicia nuevamente la búsqueda.

Los saltos de columna y fila, el tiempo y la disponibilidad por usuario son 

almacenados en un vector y retroalimentados al finalizar la simulación en 

una base de datos.



148

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

Canal Disponible

Canal no Disponible

Time > 0.3(Time)
Time < 0.7(Time)

Porcentaje = 25%
Usuarios = 0.25(4) 
Prioridad = 1
Requerimientos de Canales = 3

Porcentaje = 50%
Usuarios = 0.5(4) 
Prioridad = 2
Requerimientos de Canales = 2

Porcentaje = 25%
Usuarios = 0.25(4) 
Prioridad = 3
Requerimientos de Canales = 4

7Ranking = [ ]3 9 12 2 1 8 5 10 4 11 6

Figura 3.23. Movilidad espectral para múltiples usuarios en modo real.
Fuente: elaboración propia.

3.5.3 Módulo predictivo
Una alternativa para reducir los niveles de interferencia entre PU y SU es 

predecir el comportamiento del PU o las oportunidades espectrales. Los 

algoritmos de predicción pronostican la llegada del PU, minimizando los ni-

veles de interferencia al realizar el cambio de canal antes de su arribo. Estas 

estrategias son ampliamente utilizadas en aplicaciones con alta sensibilidad 

al retardo. Adicionalmente, reducen la degradación de la calidad del canal y 

mejoran el proceso de asignación de canales.

El propósito de este módulo es incluir estrategias y métricas para la pre-

dicción del comportamiento del usuario principal. La figura 3.24 presenta la 

estructura del módulo predictivo, que requiere información de los módulos 

colaborativo y multiusuario. Como modelos de predicción se utilizan las 

técnicas Naive Bayes y Regresión logística.
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Regresión Logística

Naive Bayes

Módulo
Predictivo

Construcción 
Figuras

Construcción 
Figuras para 
Predicción

Módulo 
Colaborativo

Módulo 
Multiusuario

Figura Throughput

Figura Hando� Fallidos

Figura Hando� 

Figura Retardo

Figura Ancho de Banda

Figura Hando� Interferencia

Figura Hando� Anticipados

Figura Hando� Perfecto

Figura 3.24. Estructura del módulo predictivo.
Fuente: elaboración propia.

A continuación, se presenta la descripción metodológica de los modelos 

Regresión logística y Naive Bayes.

Regresión logística
La regresión logística es un método estadístico que permite estimar la pro-

babilidad de una variable cualitativa binaria en función de una variable 

cuantitativa. La principal ventaja es que puede utilizar diversas variables 

explicativas al mismo tiempo. Aunque parezca trivial, esta característica es 

importante debido al gran interés en conocer el impacto de estas variables 

sobre la variable de respuesta.

Una regresión logística modelará la probabilidad del resultado en función 

de las características individuales y está dada por la ecuación (3.1).

Capítulo 3. Caracterización de los Usuarios Primarios 121 

 

121 
 

 

Figura 3-24: Estructura Módulo Predictivo 

 

A continuación, se presenta la descripción metodológica para los modelos Naive Bayes y 
Regresión Logística. 

 

• Regresión Logística 

La Regresión Logística es un método estadístico que permite estimar la probabilidad de una 

variable cualitativa binaria en función de una variable cuantitativa. La principal ventaja de la 

regresión lógica es que puede utilizar diversas variables explicativas al mismo tiempo. Aunque 

parezca trivial, esta característica es importante debido al gran interés en conocer el impacto de 

estas variables sobre la variable de respuesta. 

 

Una regresión logística modelará la probabilidad del resultado en función de las características 

individuales y está dada por la siguiente Ecuación (3-1). 
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(3-1) 

Regresión Logística

Naive Bayes

Módulo
Predictivo

Construcción
Figuras

Construcción
Figuras para
Predicción

Módulo
Colaborativo

Módulo
Multiusuario

FiguraThroughput

Figura Handoff Fallidos

Figura Handoff

FiguraRetardo

FiguraAncho de Banda

Figura Handoff Interferencia

Figura Handoff Anticipados

Figura Handoff Perfecto

(3.1)

Donde π indica la probabilidad de un evento, β son los coeficientes de re-

gresión asociados con el grupo de referencia y Xi las variables explicativas. 
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Para aplicaciones con una alta sensibilidad al retardo, el esquema genera 

una matriz de predicción de disponibilidad que requiere variables explicati-

vas que estén asociadas y se puedan analizar de forma simultánea. Por tanto, 

se definieron como variables explicativas: AP, ETA, PSINR. De acuerdo 

con las variables definidas, la ecuación (3.1) se expresa en términos de la 

ecuación (3.2).

( ) ( ) ( )0 1 2 3log AP ETA PSINR
1

π β β β β
π

  = + + + − 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.2)

El objetivo del algoritmo es utilizar una matriz dicotómica de entrenamiento 

para implementar una función h:XY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tal que h(x) sea un predictor eficaz de 

ocupación espectral respecto a los valores. La figura 3.25 muestra el proceso 

de entrenamiento.

Datos de entrenamiento Algoritmo de aprendizaje h

Figura 3.25. Proceso de entrenamiento de la regresión logística.
Fuente: elaboración propia.

Como se muestra en la figura 3.26, la estrategia propuesta contiene dos pro-

cesos: el primero, realiza el entrenamiento del modelo de predicción con las 

variables explicativas durante un período de tiempo establecido; el entrena-

miento estima el costo y gradiente de la estrategia de regresión, los cuales 

permiten ajustar el predictor. El segundo proceso asigna la ocupación de 

cada canal de acuerdo con la predicción, generando una matriz de disponi-

bilidad. Posteriormente, la información de la matriz de predicción es toma-

da por el algoritmo de búsqueda del modelo multiusuario para obtener las 

métricas de desempeño.
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Módulo 
Colaborativo

Módulo 
Multiusuario

Algoritmo 
Regresión Logística

Estrategia Propuesta

Predicción de 
Asignación de 

Canales

Matriz de 
Predicción de 

Ancho de Banda

Métricas de 
Desempeño

Indicadores de 
Predicción

Figura 3.26. Regresión logística para la predicción de disponibilidad.
Fuente: elaboración propia.

Naive Bayes
Una de las principales consideraciones para la selección de modelos de 

predicción es el manejo de múltiples clases o características con y sin correla-

ción. Un clasificador Naive Bayes supone que una característica en particular 

no se relaciona de ninguna manera con otra característica, en general. Las 

clases siempre se analizan de forma independiente. Adicionalmente, presen-

ta desempeños eficientes al operar sobre grandes conjuntos de datos.

El teorema de Bayes permite determinar la probabilidad posteriori  
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Donde:
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 es la probabilidad del predictor dada la clase c (c, objetivo).
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 es la probabilidad a posteriori de la clase c (c, objetivo) dado el 

predictor (x, atributos).

P(c) es la probabilidad previa de la clase.
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P(x) es la probabilidad del predictor.

Considerando el teorema de Naive Bayes se puede afirmar que las variables 

independientes (o predictores en el caso específico) serían la AP y el ETA, 

mientras que la variable dependiente será la disponibilidad del canal.

Considerando las variables independientes AP y ETA, como se describió 

en párrafos anteriores, así como la variable o clase dependiente —en el caso 

específico la disponibilidad del canal es lo que se indicará como occupied o 

available— se obtienen las ecuaciones (3.4), (3.5) y (3.6).

	
( ) ( ) ( ) ( )P occupied P ETA ocuppied P AP occupiedposterior occupied

evidence
⋅ ⋅= ∣ ∣
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La estrategia propuesta (figura 3.27) contiene dos procesos: el primero, reali-

za el entrenamiento del modelo de predicción utilizando las variables de AP 

y el tiempo promedio de disponibilidad. Durante un período de tiempo esta-

blecido en el proceso de entrenamiento, cada fila de datos se clasifica en una 

de las clases (ocupada, disponible). El segundo proceso asigna la ocupación 

de cada canal de acuerdo con la predicción, generando una matriz de dispo-

nibilidad donde los estados del canal están definidos por “1” (disponible) y 

“0” (ocupado). Posteriormente, la información de la matriz de predicción es 

tomada por el algoritmo de búsqueda del modelo multiusuario para obtener 

las métricas de desempeño.
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Módulo 
Colaborativo

Módulo 
Multiusuario

Algoritmo 
Naive Bayes

Estrategia Propuesta

Predicción de 
Asignación de 

Canales

Matriz de 
Predicción de 

Ancho de Banda

Métricas de 
Desempeño

Indicadores de 
Predicción

Figura 3.27. Naive Bayes para la predicción de disponibilidad.
Fuente: elaboración propia.

3.5.4 Deep Learning
El Deep Learning es un método que emula el aprendizaje humano. La ma-

yoría de estos métodos utilizan  arquitecturas de  redes neuronales que, a 

diferencias de las estructuras tradicionales, contienen múltiples capas ocul-

tas (redes profundas) para aprender diferentes características.

Los modelos Deep Learning utilizan grandes volúmenes de datos permi-

tiendo extraer características directamente de estos —no es necesario realizar 

o implementar metodologías para sacarlos manualmente—. Durante el pro-

ceso de entrenamiento los algoritmos de aprendizaje identifican el conjunto 

correcto de características; lo hacen de forma automática, sin necesidad de 

procesar los datos.

El Deep Learning se realiza jerárquicamente. Las capas inferiores caracte-

rizan estructuras básicas, mientras que las capas de nivel superior analizan 

estructuras más complejas. La red neuronal profunda más popular es la  

convolucional (CNN o ConvNet).
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Las tres formas más comunes de aplicar una red profunda para la clasifi-

cación de objetos son entrenando desde cero, aprendizaje de transferencia y 

extracción de características.

Entrenando desde cero: Se reúne un conjunto de datos etiquetados muy 

grande y se diseña una arquitectura de red que aprenderá las características 

y el modelo desde cero.

Aprendizaje de transferencia: Proceso de ajustar el modelo de redes pre-

viamente entrenadas, como AlexNet o GoogLeNet. Esta estrategia solo 

requiere ajustar los datos de entrada y posteriormente entrega nuevas clases. 

Una característica adicional de este tipo de estructuras es la reducción en los 

tiempos de procesamiento.

Extracción de características: Las capas de las redes neuronales profun-

das aprenden ciertas características de las imágenes, las cuales se pueden se 

extraer en cualquier momento. Estas características se pueden utilizar para 

el entrenamiento de clasificadores basados en estrategia de machine learning 

como SVM.

3.5.4.1 Estructura del modelo implementado
La metodología utilizando Deep Learning consiste en implementar el apren-

dizaje de transferencia para la extracción de características. El objetivo es 

utilizar una red neuronal convolucional para extraer de una de sus capas 

un conjunto acertado de características y, posteriormente, a través de estas 

características, entrenar una máquina de soporte vectorial que permita desa-

rrollar un proceso de clasificación.

La figura 3.28 presenta las variables de entrada y salida descritas de for-

ma general, adicional a la matriz entregada por el módulo colaborativo. 

Requiere de cuatro variables adicionales: el nivel de threshold, número de 

búsquedas para el nivel medio, tamaño de la segmentación para las figuras y 

tipo de división. Como salida el modelo entrega un vector de puntuaciones 

para cada canal.
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Deep Learning 
SVM

Collaborative 
Module 

Ranking

Busqueda de Nivel 
Medio

Segmentación de 
Figuras

División de 
Figuras

Threshold

Figura 3.28. Variables de entrada y salida modelo de aprendizaje 
de transferencia para la extracción de características.

Fuente: elaboración propia.

Es importante resaltar que los datos se analizan directamente de la matriz de 

potencia; la evaluación de acuerdo con la matriz de disponibilidad se tendrá 

en cuenta solo para determinar los indicadores basados en QoS. La estrate-

gia consiste en implementar un clasificador de tráfico. La tabla 3.10 presenta 

los niveles de tráfico a clasificar y su respectiva descripción.

Tabla 3.10. Descripción de los niveles de tráficos.

Nivel de tráfico Descripción

Alto
Escenario con oportunidades espectrales limitadas, el número 
de PU es alto.

Bajo
Escenario con altas oportunidades espectrales, el número de 
PU es bajo, con tendencia a cero.

Medio
Escenario con oportunidades espectrales intermedias, el 
número de PU no es alto ni bajo, lo que permite que puedan 
interactuar en un mismo espacio SU y PU.

Fuente: elaboración propia.

Por el alto rendimiento que tienen las redes neuronales profundas en el re-

conocimiento de imágenes el modelo propuesto clasifica un conjunto de 
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imágenes asociadas a los niveles de potencia. Las imágenes son obtenidas a 

partir de la conversión a RGB de la base de datos. Para el entrenamiento de 

la red neuronal se utilizan figuras con múltiples variaciones.

La figura 3.29 presenta la estructura general del modelo desarrollado. Como 

se mencionó previamente, el objetivo es clasificar un conjunto de imágenes 

asociadas a los niveles de potencia. La primera tarea del modelo consiste 

en realizar la conversión de la matriz de potencia a figuras, posteriormen-

te, estas figuras, mediante criterio de validación cruzada, son tomadas para 

entrenamiento y validación de la estrategia a implementar. Adicionalmente 

a las figuras obtenidas de la matriz de potencia se genera aleatoriamente un 

conjunto de figuras con otro tipo de comportamientos para asegurar un me-

jor proceso de entrenamiento. Las figuras tomadas para el entrenamiento son 

cargadas a la red AlexNet, y mediante el toolbox de Deep Learning de Matlab 

se calculan las activaciones de las capas de aprendizaje de la red profunda.

Validación

Medio

Bajo

Alto

Extracción de CaracterísticasEntrenamiento

AlexNet

Validación Nueva 
Zona

Búsqueda de Nivel 
Medio

Segmentación 
Figuras

Deep Figure
 Cognitive

Radio
Deep SVM 
Cognitive 

Radio

Nueva Zona

Ranking
Deep

División Figuras

Ranking

Collaborative 
Module 

Threshold

Matriz de 
Potencia Aleatoria

Figura 3.29. Diagrama de bloques general para el modelo basado en Deep Learning.
Fuente: elaboración propia.

Las características se extraen mediante las activaciones. Teniendo en cuenta 

la estructura jerárquica de las capas, se toma la capa de nivel superior fc7 de 

la red AlexNet; el criterio de selección se realiza debido a que las capas de 

nivel superior permiten analizan estructuras más complejas. Con la infor-

mación de la capa se entrena una SVM; como técnica de clasificación para 

verificar el funcionamiento del clasificador se utilizan las figuras de prueba, 
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previamente obtenidas en la validación cruzada. Posteriormente, estas serán 

reemplazadas por la figura de la matriz de potencia entregada por el módulo 

colaborativo del simulador.

El clasificador identificará las figuras con tráfico alto, medio y bajo; las fi-

guras con clasificación de tráfico alta serán almacenadas, sin analizar. En el 

proceso para determinar el ranking final, las figuras de tráfico medio tendrán 

un procesamiento adicional antes de ingresar al módulo de ranking —por la 

naturaleza asignada a estas figuras y con el objetivo de no perder posibles 

oportunidades espectrales, se filtran para identificar los segmentos locales 

que presenten tráficos bajos—. Para realizar este filtro, cada una de las figu-

ras de tráfico medio será dividida en un conjunto de subfiguras; la división, 

al igual que el número de búsquedas que se realicen, es un parámetro que se 

ajusta de acuerdo con los criterios de la matriz de potencia.

Finalmente, después del filtro aplicado al tráfico medio y de descartar el 

tráfico alto, la información, incluyendo la clasificación de tráfico bajo será 

entregada al bloque final del modelo; este tomará los datos de tiempo y fre-

cuencia para establecer el ranking de operación.

3.5.4.2 Generación de figuras
La generación de figuras se realiza en el bloque Deep Figure Cognitive Radio 

de la figura 3.29, el cual está dividido en dos procesos: el primero llamado 

“Potencia – Base de datos” convierte la base de datos de potencia espectral a 

una matriz RGB. La conversión se realiza a través de un ajuste lineal: el al-

goritmo determina los valores máximos y mínimos de potencia del rango de 

conversión —estos valores son tomados como base para un ajuste por uni-

dad de los demás valores—; se asume el origen como un punto de inflexión, 

y este valor corresponde al threshold ajustado por el usuario. Se selecciona 

la escala en verde para tráfico bajo y la escala en rojo para tráfico alto. La 

figura 3.30 presenta el modelo lineal implementado y las gráficas obtenidas 

para “Potencia – Base de datos”.

El segundo proceso del bloque se llama “Potencia – Aleatorio” se encar-

ga de generar un conjunto de figuras aleatorias para mejorar el proceso de 

entrenamiento. Sobre este bloque el usuario no tiene control, sin embargo, 

es indispensable para mejorar las características que se extraen de la red 
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neuronal profunda. Solo se requiere establecer un rango de threshold; el blo-

que realiza el ajuste lineal y gráfico.

Con las gráficas obtenidas en “Potencia – Base de datos” y “Potencia–

Aleatorio”, se utiliza la metodología de validación cruzada para entrena-

miento y validación del modelo.

max(Threshold)

min(Threshold)

Threshold min

Threshold max

Entrenamiento

Validación

min(Threshold)Threshold

[ 0   1   0 ]

[ 0   0   0 ]
max(Threshold) Threshold

[ 1   0   0 ]

[ 0   0   0 ]

min(Threshold)Threshold

[ 0   1   0 ][ 1   0   0 ]

[ 0   0   0 ]

max(Threshold)

Potencia - Aleatorio

Deep Figure Cognitive Radio

Threshold

Base de 
Datos

Potencia - Base de Datos

min(Power)  
max(Power)

min(Threshold)Threshold

[ 0   1   0 ][ 1   0   0 ]

[ 0   0   0 ]

max(Threshold)

Entrenamiento

Validación

Figura 3.30. Generación de figuras para la matriz de potencia.
Fuente: elaboración propia.

3.5.4.3 Red neuronal convolucional AlexNet
AlexNet es una red neuronal convolucional profunda que ha sido pre-

entrenada con más de un millón de imágenes, lo cual le permite generar 

características relevantes para una amplia gama de imágenes.

La figura 3.31 presenta la arquitectura de la red, que contiene ocho capas; 

las primeras cinco son convolucionales y las tres capas restantes están total-

mente conectadas. La salida de la última capa produce una distribución de 

1000 etiquetas de clases. La red maximiza el objetivo de regresión logística 

multinomial. Los núcleos de la segunda, cuarta y quinta capas convolucio-

nales están conectados solo a los mapas de Kernel en la capa anterior.
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La primera capa convolucional filtra la imagen de entrada. La segunda, 

toma como entrada la salida de la primera capa y filtra con 256 núcleos. Las 

capas convolucionales tercera, cuarta y quinta están conectadas entre sí sin 

cualquier agrupación intermedia o capas de normalización. La sexta capa 

convolucional tiene 384 núcleos conectados a las salidas de la segunda capa 

convolucional. La séptima capa convolucional tiene 384 núcleos, y la octava 

capa convolucional tiene 256 núcleos. Las capas completamente conectadas 

tienen 4096 neuronas cada una (Krizhevsky et al., 2012).

Figura 3.31. Arquitectura red neuronal convolucional AlexNet.
Fuente: elaboración propia.

Para obtener las características de entrenamiento y activación de las capas 

de la red AlexNet utilizando Matlab, se requiere establecer el tipo de red y 

realizar la respectiva instalación de la librería, disponible en la página web 

de Mathworks. Adicionalmente, se debe seleccionar la capa de interés y las 

respectivas imágenes. La figura 3.32 presenta la estructura de las variables 

de entrada y salida.

Entrenamiento

Red

Capas

Extracción de Características

Figura 3.32. Entradas y salidas red neuronal convolucional AlexNet.
Fuente: elaboración propia.
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3.5.4.4 Máquina de soporte vectorial
La técnica de machine learning utilizada para la clasificación de las imágenes 

es la SVM usa tres tipos de clasificadores, por tanto, se requiere una SVM 

multiclase. El bloque asociado se presenta en la figura 3.33.

De acuerdo con los criterios para técnicas de clasificación, los parámetros 

de entrada son las imágenes de entrenamiento y de validación; las imágenes 

para el proceso de validación corresponden al ajuste realizado a través de la 

técnica de validación cruzada —estas imágenes serán las entregadas por el 

módulo colaborativo—. Las salidas corresponden a la matriz de confusión, 

herramienta indispensable para determinar el desempeño del algoritmo y la 

clasificación de las imágenes.
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Medio

SVM Multiclase
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Validación

1 2 3
Predicted Class
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100

Matriz de Confusión
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Figura 3.33. Máquina de soporte vectorial multiclase para clasificación de imágenes.
Fuente: elaboración propia.

La figura 3.34 presenta un ejemplo para la clasificación de la figura según el 

tipo de tráfico. Como se puede observar, esta imagen tiene zonas con niveles 

de tráfico alto (color rojo) y niveles de tráfico bajo (color verde).



161

Modelo de asignación espectral multiusuario para redes de radio cognitiva descentralizadas

Trá�co Bajo Trá�co Bajo

Trá�co Bajo

Figura 3.34. Ejemplo de clasificación para tráfico alto y tráfico bajo.
Fuente: elaboración propia.

Como se muestra en la figura 3.33, se presenta una retroalimentación. Este 

proceso está directamente relacionado con las figuras de clasificación para 

tráfico medio y equivalen a escenarios con oportunidades espectrales inter-

medias. La figura 3.35 muestra un ejemplo para este tipo de tráfico: a mayor 

escala cuentan con zonas de tráfico bajo; el trabajo del bloque retroalimenta-

do es ajustar la escala para obtener la información de las zonas color verde.

Figura 3.35. Figuras con oportunidades espectrales intermedias.
Fuente: elaboración propia.
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3.5.4.5 Generación de nueva zona
Las figuras clasificadas con tráfico medio contarán con un procesamiento 

adicional que genera una nueva zona de análisis. El objetivo es poder realizar 

un conjunto de segmentaciones sobre la figura principal, de tal manera que 

se pueda obtener la información asociada a las zonas con tráfico bajo y alto.

La figura 3.36 presenta una descripción gráfica de la segmentación que 

se realiza a las figuras de tráfico medio. Se requiere de cuatro parámetros 

de entrada; el primero corresponde a la figura clasificada por la SVM que 

está siendo retroalimentada, los parámetros restantes son el tipo de división, 

número de búsquedas nivel medio a realizar y número de segmentaciones 

para la figura.

Medio

Busqueda de 
Nivel Medio

Division

Segmentación 
de Figuras

División: Fila

División: Columna

Validación 
Nueva Zona

Figura 3.36. Procesamiento para segmentar las figuras de tráfico medio.
Fuente: elaboración propia.
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En la tabla 3.11 se presenta la descripción de los parámetros que deben ser 

ajustados para la generación de la nueva zona cuando se presentan escena-

rios de tráfico medio.

Tabla 3.11. Descripción de los parámetros para la generación de la nueva zona.

División

Row: Se divide la figura en dos columnas y la segmentación se 
completa a través de múltiples divisiones por filas.

Column: Se divide la figura en dos filas y la segmentación se com-
pleta a través de múltiples divisiones por filas.

Segmentación Número de partes en que la figura será segmentada.

Búsqueda de nivel 
medio

El resultado de segmentar una figura no necesariamente permite 
obtener la información de las zonas con tráfico bajo y alto. La 
probabilidad de obtener una nueva clasificación de tráfico medio 
existe, por tanto, es posible realizar una nueva segmentación a 
una figura resultado de un proceso de segmentación. Este proceso 
se puede realizar un número finitos de veces, hasta asegurar que 
no existan zonas con tráfico medio, sin embargo, este proceso es 
computacionalmente alto y no necesariamente eficiente, por eso, 
corresponde a una variable de entrada y no se realiza de forma 
automática. De acuerdo con cada caso se puede decidir el número 
de veces que se va a realizar la búsqueda de tráfico medio en una 
figura.

Fuente: elaboración propia.

La salida del bloque corresponde a las figuras resultados del proceso de 

segmentación, la información es entregada al bloque “Deep SVM Cognitive 
Radio” para realizar la nueva clasificación. Este proceso se realiza el número 

de veces ajustado en “Búsqueda de nivel medio”.

3.5.4.6 Ranking
El resultado del filtro realizado a las figuras con tráfico medio puede generar 

dos escenarios para el bloque ranking. El primero corresponde a zonas sin 

tráfico medio y el segundo a zonas con tráfico medio y bajo. El primer caso 

es un escenario con menor probabilidad de ocurrencia; el segundo es más 

realista, por tanto, a diferencia del tráfico alto, no se descarta.

La información de tiempo y frecuencia de las figuras con tráfico bajo 

y medio se entregan al bloque ranking. Allí se realiza una clasificación de 

las figuras de acuerdo con el rango de frecuencias y tiempo, se comparan y 
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finalmente se asignan pesos a las zonas. La figura 3.37 presenta la estructura 

del bloque ranking.

Bajo

Medio

Clasi�cador

Tiempo

Rango de 
Frecuencia

Tiempo

Rango de 
Frecuencia

*Contador              
*Comparador                     
*Asignación de Pesos

Ranking

Figura 3.37. Ranking para el modelo de aprendizaje de transferencia utilizando Deep Learning.
Fuente: elaboración propia.

3.6 Otros algoritmos
Con el objetivo de realizar una evaluación comparativa del modelo propues-

to, se implementan los algoritmos multicriterio: FFAHP, SAW, TOPSIS, 

VIKOR. Esta selección se realizó teniendo en cuenta que los métodos 

MCDM son una herramienta matemática adecuada para modelar el proceso 

asignación espectral, por tanto, han sido ampliamente utilizados en trabajos 

de investigación (Lahby et al., 2011; Stevens et al., 2008; Yang y Wu, 2008; 

Yang y Tseng, 2013; Zapata et al., 2012). SAW (Hernández et al., 2015c; 

Zhang, 2004); TOPSIS (Hernández et al., 2015f; Zhang, 2004), VIKOR 

(Páez et al., 2015; Stevens et al., 2012) y FFAHP (Hernández et al., 2016a).

Dado que los métodos FFAHP, SAW, TOPSIS y VIKOR se explicaron en 

el segundo capítulo, en este exponemos la estructura de programación imple-

mentada. El Algoritmo 4 presenta las variables de entrada, salida y la estruc-

tura para FFAHP; el Algoritmo 5 para SAW, el Algoritmo 6 para TOPSIS y, 

finalmente, el Algoritmo 7 para VIKOR.
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Algoritmo 4. Feedback Fuzzy Analytical Hierarchical Process (FFAHP).

Variables de 
entrada

W Puntuación asignada a AP, ETA, ASINR y ABW.

AP Probabilidad de disponibilidad.

ETA Tiempo medio de disponibilidad.

ASINR Promedio de relación señal a ruido más interferencia.

ABW Ancho de banda promedio.

Ranking_Last
Canales ordenados de forma descendente de acuerdo 
con la primera puntuación (Sin retroalimentación).

Variables de 
salida

ScoreF Puntuación asignada a cada canal.

Ranking
Canales ordenados de forma descendente de acuerdo 
con el ScoreF (Con retroalimentación).

Average = [ AP ; ETA ; ASINR ; ABW ];

Ranking = W*Average;

[ ~ , Columnas] = size( Ranking );

 % % Algoritmo FFAHP
if Feedback == 0
 %Vector Ranking Inicial
ScoreF = sort( Ranking , ‘descend’ );  %Ordena de manera 

descendente
for i = 1 : Columnas

[Posicion]=find( Ranking == ScoreF(i) );

RankingF(1 , i)= Posicion;

end
elseif Feedback == 1
 %Vector Ranking Actualizado
Ranking = 0.6*Ranking + 0.4* Ranking _Last;

ScoreF = sort( Ranking , ‘descend’ ) ;  %Ordena de manera 
descendente

for i = 1 : Columnas
[Posicion] = find( Ranking == ScoreF(i) );

RankingF(1 , i) = Posicion;

end
end 
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Algoritmo 5. Simple Additive Weighting (SAW)

Variables de 
entrada

W Puntuación asignada a AP, ETA, ASINR y ABW.

AP Probabilidad de disponibilidad.

ETA Tiempo medio de disponibilidad.

ASINR Promedio de relación señal a ruido más 
interferencia.

ABW Ancho de banda promedio.

Variables de 
salida

ScoreF Puntuación asignada a cada canal.

Ranking
Canales ordenados de forma descendente de 
acuerdo con el ScoreF.

Average = [ AP ; ETA ; ASINR ; ABW ];

 % % Algoritmo SAW
[Row , ~] = size( Average );

for f = 1 : Row
X_m = max( Average(f , :) );

r(f , :) = Average(f , :) ./ X_m;

end
Ranking = W*r;

[ ~ , Columnas] = size( Ranking );

ScoreF = sort( Ranking , ‘descend’ ) ;  %Ordena de manera 
descendente

 %Vector Ranking Inicial
for i = 1 : Columnas

[Posicion] = find( Ranking == ScoreF(i) );

RankingF(1 , i) = Posicion;

end

Algoritmo 6. Technique for order preference by similarity to ideal solution (TOPSIS).

Variables de 
entrada

W Puntuación asignada a AP, ETA, ASINR y ABW.

AP Probabilidad de disponibilidad.

ETA Tiempo medio de disponibilidad.

ASINR Promedio de relación señal a ruido más 
interferencia.

ABW Ancho de banda promedio.

Variables de 
salida

ScoreF Puntuación asignada a cada canal.

Ranking
Canales ordenados de forma descendente de 
acuerdo con el ScoreF.
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Average = [ AP ; ETA ; ASINR ; ABW ];
 % % Algoritmo TOPSIS
[Row , Column] = size( Average );
B_C = [0 0 0 0];  % 1: Parámetro de costo–0: Parámetro de 

beneficio
 % 1. Normalizar la Matriz de Decisión
for f = 1 : Row

b = sqrt( sum( Average(f , :) . ^ 2 ) );
for c = 1 : Column

r(f , c) = Average(f , c) / b;
end

end
 % 2. Pesos Ponderados
for f = 1 : Column

V((1 : Row) , c) = r(: , c).*(W’);
end
 % 3: Solución ideal y solución ideal negativa
for f = 1 : Row

if B_C(1 , f) == 0
a1 = max( V(f , :) ); a2 = min( V(f , :) );

else
a1 = min( V(f , :) ); a2 = max( V(f , :) );

end
A1(1 , f) = a1; A2(1 , f) = a2;
end
 % 4: Medida de separación
for c = 1 : Column

S1(1 , c) = sqrt( sum( ( V(:,c)–A1’ ) .^ 2 ) );
S2(1 , c) = sqrt( sum( ( V(: , c)–A2’ ) .^ 2 ) );

end
 % 5: Relativa cercanía a la solución ideal
for c = 1 : Column

Ranking(1 , c) = S2(1 , c) / ( S1(1 , c) + S2(1 , c) );
end
[ ~ , Columnas] = size( Ranking );
ScoreF = sort( Ranking , ‘descend’ ) ;  %Ordena de manera 

descendente
 %Vector Ranking Inicial
for i = 1 : Columnas

[Posicion] = find( Ranking == ScoreF(i) );
RankingF(1 , i) = Posicion;

end
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Algoritmo 7. Multi-Criteria Optimization and Compromise Solution (VIKOR).

Variables de 
entrada

W
Puntuación asignada a AP, ETA, ASINR y 
ABW.

AP Probabilidad de disponibilidad.

ETA Tiempo medio de disponibilidad.

ASINR
Promedio de relación señal a ruido más 
interferencia.

ABW Ancho de banda promedio.

Variables de 
salida

ScoreF Puntuación asignada a cada canal.

Ranking
Canales ordenados de forma descendente de 
acuerdo con el ScoreF.

Average = [ AP ; ETA ; ASINR ; ABW ];
 % % Algoritmo VIKOR
[Row , Column] = size( Average );
B_C = [0 0 0 0];  % 1: Parámetro de costo–0: Parámetro de 

beneficio
 % 1. Normalizar la Matriz de Decisión
for f = 1 : Row

if B_C(1 , f) == 0
f1 = max( Average(f , :) ); f2 = min( Average(f 

, :) );
else

f1 = min( Average(f , :) ); f2 = max( Average(f 
, :) );

end
F1(1 , f) = f1; F2(1 , f) = f2;
end
 % 2. Calcula los valores Si y Ri
for f = 1 : Column

for i = 1 : row
s(1 , i) ( W(i) * ( ( F1(i)–Average(i , j) ) / ( F1(i)–

F2(i) ) ) );
end

S(1 , j) = sum(s); R(1 , j) = max(s);
end
 % 3: Calcula los valores Q (Q = Ranking)
S1 = min(S); S2 = max(S);
R1 = min(R); R2 = max(R);
Gamma = 0.5;
 %Step 5: relative closeness to the ideal solution
for c = 1 : column

Ranking(1 , c) = S2(1 , c) / ( S1(1 , c) + S2( 1, c) );
end
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[ ~ , Columnas] = size( Ranking );
ScoreF = sort( Ranking , ‘descend’ ) ;  %Ordena de manera 

descendente
 %Vector Ranking Inicial

for i = 1 : Columnas
[Posicion] = find( Ranking == ScoreF(i) );
RankingF(1 , i) = Posicion;

end

3.7 Criterios de decisión
Ahora, cada algoritmo seleccionado depende de los criterios de decisión que 

se seleccionen y de sus correspondientes valores. Para esta investigación se se-

leccionaron cuatro criterios de decisión: AP, ETA, SINR y BW, debido a que 

era posible determinar sus valores a partir de los datos de ocupación espectral 

experimentales. También se decidió que cada uno de los cuatro algoritmos de 

decisión espectral trabajen con los mismos cuatro criterios de decisión.

La variable AP corresponde al análisis del ciclo de trabajo normalizado 

de cada una de las 500 oportunidades espectrales potenciales. Por tanto, el 

resultado de AP es un vector de 1×500, donde cada elemento es equivalente 

al promedio de la correspondiente columna de la matriz de disponibilidad 

de entrenamiento para LT o HT.

La variable ETA corresponde al tiempo de disponibilidad promedio de 

cada canal. Primero se calculan todos los períodos en que cada canal estuvo 

disponible de forma continua y, luego, se toma el promedio sobre dichos pe-

ríodos para cada canal. El resultado de ETA también es un vector de 1×500 

para la matriz de disponibilidad de entrenamiento LT o HT.

La variable SINR corresponde al promedio de la diferencia entre la po-

tencia de la señal y el piso de ruido promedio. Primero, para cada elemento 

de la matriz disponibilidad de entrenamiento LT o HT, diferente de cero, se 

realiza la diferencia entre el elemento que tiene la misma posición en la ma-

triz de potencia de entrenamiento LT o HT y el valor promedio del piso de 

ruido; el resultado de la diferencia se almacena en la misma posición de una 

matriz temporal denominada matriz de entrenamiento SINR-LT o SINR-

HT. Segundo, se calcula el valor promedio de cada columna de la matriz 
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de entrenamiento SINR-LT o SINR-HT. Por tanto, el resultado de SINR 

también es un vector de 1×500.

La variable BW corresponde al BW promedio de cada canal. Sin embar-

go, debido a que son canales, todos tienen el mismo BW —equivalente a 

100kHz— por lo que el promedio será siempre el mismo, restándole impor-

tancia. Con el objetivo de que la variable BW tenga incidencia en el ranking 

de cada oportunidad espectral se decidió tomar, para cada potencial oportu-

nidad espectral, el BW agregado de hasta cuatro canales adyacentes, tanto a 

la izquierda como a la derecha, siempre y cuando estuvieran disponibles de 

forma consecutiva para formar un solo canal.

En la banda GSM todos los canales tienen un BW de 200kHz, sin embargo, 

debido a los parámetros técnicos configurados en el analizador de espectro, la 

campaña de medición arrojó datos de ocupación espectral para segmentos de 

frecuencia con un BW fijo de 100kHz. Aunque se habría podido medir el pro-

medio del nivel de potencia para cada dos segmentos a fin de obtener el valor 

correspondiente a cada canal GSM, se decidió trabajar con un BW de 100 kHz 

para realizar un uso oportunista más eficiente del espectro disponible.

Una vez calculados los valores de los criterios de decisión se normali-

zaron para que los puntajes que definen la posición de las oportunidades 

espectrales en el ranking siempre sean justos, tanto en la clase de aplicación 

RT como BE. La normalización de los valores para los cuatro criterios de 

decisión consistió en ajustar su rango de escala de 0 a 100; para ello se mul-

tiplicaron todos los valores de un mismo criterio por un factor de escala 

equivalente a 100 dividido por el valor más alto del criterio correspondiente.

3.8 Métricas de evaluación
Para evaluar el desempeño de los algoritmos se determinaron ocho métricas 

de evaluación, descritas en las tablas 3.12 y 3.13. Las métricas de la tabla 

3.12 se obtienen para modelos de predicción y no predicción, a diferencia 

de las descritas en la tabla 3.13, las cuales son adicionales y exclusivas para 

modelos de predicción. En dichas tablas se presenta la sigla, significado, 

descripción y tipo de métricas de evaluación —este último campo hace re-

ferencia a si la métrica es de beneficio (entre mayor mejor) o costo (entre 

menor mejor)—. La palabra promedio en las métricas de evaluación hace 
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referencia a que los resultados de estas corresponden al promedio de los 

valores arrojados por varios experimentos realizados.

Tabla 3.12. Métricas utilizadas en la evaluación de los modelos.

Sigla Nombre Descripción
Tipo de métrica 
de evaluación

AAH
Número de 
handoff promedio 
acumulado

Total de handoff realizados durante 
los nueve minutos de transmisión 
del SU.

Costo

AAFH

Número de 
handoff falli-
dos promedio 
acumulado

Cantidad de handoff que el SU no 
pudo materializar porque encontró 
las respectivas oportunidades espec-
trales objetivo ocupadas.

Costo

ABW
Ancho de banda 
promedio

BW promedio utilizado por el 
SU durante los 9 minutos de su 
transmisión.

Beneficio

AAD
Retardo promedio 
acumulado

Tiempo promedio total experimenta-
do por el SU durante la transmisión 
de una determinada cantidad de 
información.

Costo

AAT
Throughput prome-
dio acumulado

Tasa de datos efectiva transmitida 
por el SU durante los 9 minutos de 
comunicación.

Beneficio

Fuente: elaboración propia.

Tabla 3.13. Métricas adicionales para la evaluación de los modelos predictivos.

Sigla Nombre Descripción
Tipo de métrica 
de evaluación

AAIH

Número de 
handoff con inter-
ferencia promedio 
acumulado 

Cantidad total de handoff reactivos 
realizados una vez llega el PU, duran-
te el tiempo de transmisión del SU.

Costo

AAPH
Número de handoff 
perfecto promedio 
acumulado 

Cantidad de handoff sin interferencia 
realizados muy cerca de la llegada 
del PU, pero sin causar interferencia 
a este último, durante el tiempo de 
transmisión del SU.

Costo

AAUH
Número de handoff 
anticipado prome-
dio acumulado 

Cantidad de handoff sin interferencia 
realizados de forma muy anticipada 
a la llegada del PU, durante el tiempo 
de transmisión del SU.

Costo

Fuente: elaboración propia.
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Con el fin de facilitar el análisis comparativo de cada algoritmo se calcula-

ron los valores relativos (en porcentaje) de cada métrica de evaluación. Para 

las métricas tipo beneficio se calculó el valor relativo (Rel) del algoritmo i 

a partir del valor absoluto (Abs) y el valor máximo (Max) de la métrica de 

evaluación, como se describe en la ecuación (3.7). Para las métricas tipo cos-

to se calculó el valor relativo (Rel) del algoritmo i a partir del valor absoluto 

(Abs) y el valor mínimo (Min) de la métrica de evaluación, como se describe 

en la ecuación (3.8).  

e 100%
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4. Software de simulación desarrollado

La herramienta de simulación propuesta fue desarrollada en (Matlab, 2020), 

diseñada para permitir al usuario trabajar bajo un ambiente amigable y para-

metrizable según las pruebas que se requieran implementar, basada en datos 

de ocupación espectral reales capturados de las bandas de frecuencia GSM 

y Wi-Fi, a fin de incorporar el comportamiento real del PU en la evalua-

ción del desempeño del algoritmo de handoff espectral seleccionado. Consta 

de una arquitectura de siete módulos que incluye un análisis colaborativo, 

parametrización multiusuario y cuenta con siete posibles modelos, dos no 

predictivos y cinco predictivos.

4.1 Interfaz herramienta de simulación desarrollada
La figura 4.1 muestra el entorno principal de la herramienta de simulación 

denominada App MultiColl-DCRN. El software “Collaborative CRN” se 

desarrolló utilizando el entorno App Designer de Matlab, diseñado para 

permitir al usuario trabajar bajo un ambiente amigable y parametrizable se-

gún las pruebas que se requieran. El software está divido en siete módulos 

(1) Project Information, (2) Collaborative, (3) Multi-User, (4) Parameters, (5) No 
Prediction, (6) Prediction, (7) Output.
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Input 
Data

Availability

SINR

Bandwidth

Threshold

BW Fixed

Noise Floor

Multichannels

Collaborative 
Module

Project Name

Load Database

Save Folder

Setting Collaborative

Setting Multi-user

Traffic LevelInput Data

Time [minutes]

Collaborative Module

Multi-user Module

Threshold

Default Parameters

BW Fixed

Noise Floor

Multichannels

Multichannel Bands

Serial Users 

Simulation Mode 

Random User Figure

Setting Summary 

H M L

Setting Summary Segmentation

Division 

User Percentage

Number User

Help About

...

...

Multi-user 
Module

Collaborative Module

Project Information

Multi-user Module

Parameters Module

Prediction Module

CloseRun Update

Output

No                      
Prediction

Prediction

Default

Continuous

Default

1

Row 1

100

1

Conventional

Figura 4.1. Interfaz gráfica App MultiColl-DCRN.
Fuente: elaboración propia. 
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4.2 Descripción general
El software “App MultiColl-DCRN” —Application Multi-user Collaborative 
Spectral Decision for Decentralized Cognitive Radio Networks— está diseñado en 

la herramienta App Designer de Matlab; conformado por 106 funciones, tres 

interfaces gráficas y un manual de usuario. El simulador funciona a partir de 

las métricas de potencia de dos tipos de red: GSM y Wi-Fi, sin embargo, está 

desarrollado para que se puedan incluir otro tipo de métricas.

Run

Parámetros 
por Defecto

No Prediction 
Module

Prediction 
Module 

Parameters
Module

Multi-User
Module

Collaborative 
Module 

Project 
Information Module 

Input 
Data 

Figura 4.2. Arquitectura por módulos APP MultiColl-DCRN.
Fuente: elaboración propia.

La figura 4.2 presenta el diagrama de bloques general del simulador. Como ex-

pone la gráfica, trabaja con arquitectura por módulos, descritos en la tabla 4.1.



176

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

Tabla 4.1. Descripción módulos APP MultiColl-DCRN.

Módulo Descripción

Project Information
Permite parametrizar la información básica del proyecto y el tipo 
de red.

Collaborative
Permite parametrizar los escenarios colaborativos, ajustando la 
cantidad y el método de selección de información.

Multi-User
Permite parametrizar el número de usuarios seriales, usuarios 
aleatorios y características multicanal.

Parameters
Permite parametrizar las variables threshold, Noise floor, Bandwidth 
fixed y Multichannels. Adicionalmente, caracteriza el nivel de tráfico 
y tiempo de transmisión.

No Prediction
Permite parametrizar algoritmos de no predicción: Movilidad 
espectral y Feature Extraction. 

Prediction
Permite parametrizar algoritmos de predicción: Markov Chain, 
Genetic Algorithm, Naive Bayes, Logistic Regression y Time Series.

Output
Permite ejecutar el caso de estudio (Run), cerrar la ventana (Close) 
y actualizar una nueva interfaz (Update).

Fuente: elaboración propia.

En las siguientes secciones se describe en detalle cada uno de los módu-

los, sus variables de entrada, salida y la respectiva metodología. Según el 

módulo, cada variable de salida se representa por un color, al igual que las 

variables internas, la información de entrada ajustada en la interfaz y la in-

formación que se visualiza. La figura 4.3 presenta la convención de colores 

utilizada para la descripción de los módulos.

Información de salida (Interfaz simulador)

Variables de salida Módulo Colaborativo

Variables de salida Módulo Multi-Usuario

Variables de salida Módulo Ajuste

Variables internas

Información de entrada (ajustada por usuario) 

Variables de salida Módulo Información del 
Proyecto 

Figura 4.3. Convención de colores para la descripción de los módulos.
Fuente: elaboración propia.
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4.3 Project Information Module
El simulador está diseñado para guiar al usuario en todo el proceso de 

parametrización. Inicialmente, con excepción de algunos controles, los 

parámetros comienzan en estado inhabilitado. El objetivo es disminuir la 

probabilidad de ajustes erróneos, por tanto, los módulos se habilitarán en 

forma ordenada si los ajustes se realizan correctamente. El primer módulo 

que se debe parametrizar es “Project Information”.

Dentro de las excepciones que no inician inhabilitadas se encuentran dos 

variables de este módulo. La figura 4.4 presenta la interfaz correspondiente. 

El módulo contiene los parámetros asociados al nombre y ruta de la carpeta 

donde se guardarán los resultados de las respectivas simulaciones y la base 

de datos de ocupación espectral. Como se identifica en la figura 4.4 las va-

riables habilitadas son “Project Name” y “Load Database”.

Project Name

Load Database

Save Folder

...

...

Project Information

Figura 4.4. Módulo “Project Information”.
Fuente: elaboración propia.

En las secciones 4.3.1, 4.3.2 y 4.3.3 se presenta la descripción detallada de las 

variables de entrada, salida y metodología del módulo “Project Information”.

4.3.1 Variables de entrada
La figura 4.5 presenta las variables de entrada para el módulo “Project 
Information”. El usuario debe definir un nombre para el proyecto, seleccionar 

entre dos posibles tipos de red (GSM, Wi-Fi) y la ruta donde se almacenarán 

los resultados de la simulación. El simulador cuenta con la posibilidad de 

cargar una base de datos personalizada “Custom”. La figura 4.5 incluye las 

funciones que se requieren para la información del proyecto, estas funciones 

serán analizadas en detalle en las secciones posteriores.
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Por defecto el simulador crea una carpeta con el nombre “App MultiColl-

DCRN” en la ruta definida en “Save folder”. Dentro de esta carpeta se crean 

los diferentes proyectos (subcarpetas) de acuerdo con los “Project name” 

generados.

Project Name

Save Folder

GSM

...

...

Wi-Fi

Custom

Load Database

Power Training

Power Evaluation

Project Name

Database

Save Folder

Project Path Folder

Database

Directory

Figura 4.5. Descripción variables de entrada y salida del módulo “Project Information”.
Fuente: elaboración propia.

La tabla 4.2 presenta la descripción de las variables de entrada que se requie-

ren para la parametrización del módulo “Project Information”.

Tabla 4.2. Variables de entrada del módulo “Project Information”.

Variable Descripción

Project Name

Los resultados de cada simulación son almacenados en un 
ruta y carpeta específica. La ruta se establece en la variable 
“Save Folder” y la carpeta se crea de forma automática con 
el nombre “App MultiColl-DCRN”. Dentro de esta carpeta 
el usuario tiene la posibilidad de almacenar los resultados 
de múltiples simulaciones. Para diferenciar los diferentes 
resultados se crean subcarpetas con diferentes nombres, 
estos corresponden a la asignación que realice el usuario en 
la variable “Project Name”.

Load Database

Se selecciona la base de datos asociada al tipo de red: GSM, 
Wi-Fi, el simulador tiene la posibilidad de cargar una base 
de datos diferente a las predefinidas. Esta característica se 
habilita al seleccionar la opción “Custom”.

Save Folder
Ruta donde se almacenan los resultados de cada 
simulación.

Fuente: elaboración propia.
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4.3.1.1 Base de datos
El simulador trabaja con dos bases de datos de ocupación espectral, una de 

entrenamiento “Power Training” y otra de evaluación “Power Evaluation”. Las 

bases de datos están conformadas por las potencias medidas experimental-

mente en las bandas GSM y Wi-Fi, —durante una campaña de medición 

previa esta información permite que los resultados de la evaluación de los 

algoritmos sean más confiables al trabajar con datos reales del comporta-

miento del usuario primario—. La base de datos de entrenamiento se utiliza 

para configurar los parámetros iniciales de los algoritmos de handoff  espectral, 
y la base de datos de evaluación se utiliza para calcular las métricas de los 

algoritmos seleccionados. Ambas bases de datos tienen información de 550 

canales de frecuencia, durante una hora para el caso de “Power Training” y 

nueve minutos para el caso de “Power Evaluation”, con una resolución de un 

tercio de segundo para las dos bases de datos. La cantidad de información 

correspondiente se muestra en la tabla 4.3; las filas representan el tiempo en 

segundos y las columnas los canales de frecuencia. El tiempo de muestreo 

para la toma de datos fue de 290ms.

Tabla 4.3. Bases de datos de ocupación espectral.

Tecnología Cantidad de datos capturados

Filas Columnas Total Datos

GSM 1.145.700
550

631.280.700

Wi-Fi 2.490.000 1.147.890.000

Fuente: elaboración propia.

Adicionalmente, la base de datos “Power Training” y “Power Evaluation” es 

clasificada de acuerdo con la AP, esto permite caracterizar la información 

de acuerdo con el nivel de tráfico: alto, medio y bajo. Según la clasificación 

realizada, el tamaño de la base de datos es modificada. En total el simulador 

cuenta con 12 bases de datos: seis para GSM y seis para Wi-Fi.

Las figuras 4.6 y 4.7 describen la AP para cada canal GSM de acuerdo 

con el tráfico de disponibilidad alto y bajo, respectivamente.
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Figura 4.6. AP para la caracterización de GSM en tráfico alto.
Fuente: elaboración propia.
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Figura 4.7. AP para la caracterización de GSM en tráfico bajo.
Fuente: elaboración propia.

4.3.2 Variables de salida
La figura 4.5 presenta las variables de salida para el módulo “Project 
Information”. Las variables “Power Training” y “Power Evaluation” correspon-

den a las bases de datos seleccionadas de acuerdo con el tipo de red y son 

indispensables para la simulación de diferentes casos de estudio. Como se 

identifica en la figura 4.5 y según el código de colores descrito en la figura 

4.3, son las variables de salida principales del módulo; las demás, están aso-

ciadas a variables de visualización.
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La tabla 4.4 presenta la descripción de las variables de entrada que se 

requieren para la parametrización del módulo “Project Information”.

Tabla 4.4. Variables de salida del módulo “Project Information”.

Variable Descripción

Project Name Interfaz donde se visualiza el nombre asignado al proyecto.

Database Interfaz donde se visualiza la tecnología seleccionada.

Save Folder
Interfaz donde se visualiza la ruta de almacenamiento de los 
resultados de la información.

Directory
Corresponde a la ruta donde accederán los módulos no predic-
tivos y predictivos para guardar la información resultado de las 
simulaciones.

Power Training
Corresponde a la matriz de entrenamiento de potencia para el 
tipo de red seleccionada.

Power Evaluation
Corresponde a la matriz de evaluación de potencia para el tipo 
de red seleccionada.

Fuente: elaboración propia.

4.3.3 Metodología módulo “Project Information”
La exposición específica del módulo requiere analizar dos funciones aso-

ciadas a la descripción del proyecto y a la selección de la base de datos. La 

figura 4.5 presenta el diagrama con las funciones del módulo: “Project Path 
Folder” y “Database”, cada una analizada en detalle en las figuras 4.8 y 4.9, 

respectivamente.

Función “Project Path Folder”
La figura 4.8 presenta el diagrama de bloques de la función que, como va-

riable externa, requiere la información de entrada “Project Name” y “Save 
Folder”. La función maneja tres variables de salida: dos corresponden a la 

información que se visualiza en el módulo de información del proyecto en la 

interfaz principal (figura 4.4). Estas variables son “Database”, “Save Folder”, y 

“Directory”, que contienen la información interna requerida por los módulos 

predictivos y no predictivos para guardar los resultados de las simulaciones.

La función “Project Path Folder” es la encargada de generar las carpetas 

asociadas al simulador. Por defecto, el simulador crea una carpeta con el 

nombre “App MultiColl-DCRN” en la ruta definida en “Salve Folder”; dentro 



182

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

de esta carpeta —siempre y cuando la ruta “Save Folder” se seleccione per-

manente— se podrán generar múltiples subcarpetas. Cada una representa 

un proyecto (simulación o caso de estudio). Para diferenciar los resultados, 

se le asigna un nombre a cada una, a través de la variable “Project Name”. 

La variable interna “Directory” contiene la información de ruta del proyecto.

C:\ ... \Save Folder\App MultiColl-DCRN\Project Name

Project Name

Save Folder

Project Path Folder

Project Name

...

Save Folder

... Directory

Figura 4.8. Función “Project Path Folder”.
Fuente: elaboración propia.

Función “Database”
La figura 4.9 presenta el diagrama de bloques de esta función. Como varia-

ble externa requiere la información de entrada “Load Database”. Maneja tres 

variables de salida: una corresponde a la información que se visualiza en 

el módulo de información del proyecto en la interfaz principal (figura 4.4); 

esta variable es “Database”. Las variables restantes contienen la información 

interna “Power Training” y “Power Evaluation”, que corresponden a la base de 

datos de acuerdo con el tipo de red seleccionada.

GSM

Wi-Fi

Power Training

Power Evaluation

Database

Database

GSM

Wi-Fi

Custom

Load Database

Figura 4.9. Función “Database”.
Fuente: elaboración propia.
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4.4 Módulo colaborativo
Las estrategias colaborativas han brindado nuevos modelos para el uso efi-

ciente de los recursos de radio y para el proceso de toma de decisiones en 

las CRN. En la decisión colaborativa, los usuarios se comunican entre sí 

para intercambiar mediciones de disponibilidad e interferencia; el objetivo 

es aprovechar la diversidad espacial. Para lograrlo, el usuario no licenciado 

comparte su información con los usuarios vecinos (Salgado et al., 2016b). 

El enfoque colaborativo tiene más ventajas que el enfoque no colaborativo. 

Un desafío en la selección del espectro corresponde a cómo combinar la 

información de los usuarios de forma colaborativa mientras se realiza la 

transmisión (Thakur et al., 2017).

Para analizar el proceso de toma de decisiones en escenarios colaborati-

vos, donde los usuarios comparten diferentes cantidades de información de 

ocupación espectral, “Collaborative Module” segmenta la matriz de potencia 

según un número establecido de usuarios y diferentes niveles de colabora-

ción. Cada nivel representa el porcentaje de información que será compartido 

para el entrenamiento y posterior validación del modelo. Los niveles son 

seleccionados de acuerdo con los límites de los datos: 10 % y 100 % corres-

ponden a criterios de pocos y muchos datos; 50 % a un valor intermedio 

entre los límites. Como elementos de salida se obtiene la matriz de potencia 

de entrenamiento segmentada.

La figura 4.10 presenta la interfaz correspondiente al resumen del módulo 

colaborativo disponible en la interfaz principal del simulador. Este módulo 

contiene dos botones; el primero, “Collaborative Module”, permite acceder a 

la ventana de parámetros del módulo, y el segundo, “Setting Summary”, ge-

nerar un archivo en formato .xlsx con el resumen de los ajustes realizados. 

Para acceder al módulo solo se requiere seleccionar la opción “Collaborative 
Module” que estará habilitada solo si el módulo “Project Information” se pa-

rametrizó correctamente. Se abrirá una nueva ventana (figura 4.11) donde 

estará disponible cada uno de los ajustes del módulo.
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Collaborative 
Module

Setting Collaborative

Collaborative Module

Setting Summary Segmentation

Division 

User Percentage

Number User

Collaborative Module

Default

Continuous

Row 1

100

Figura 4.10. Resumen de parámetros “Collaborative Module”, 
interfaz principal App MultiColl-DCRN.

Fuente: elaboración propia.

Inicialmente, como se muestra en la figura 4.11, el único parámetro habi-

litado en el “Collaborative Module” es la variable “Segmentation”. Cuando se 

ajuste este parámetro se habilitará “Division”, la cual habilita “User percenta-
ge” y, a su vez, esta última habilita “Number of  Users”. Además de los ajustes 

de habilitación de parámetros la ventana cuenta con un indicador color rojo 

que permanecerá si la información parametrizada está incompleta.

Load Information

Default Values
Segmentation

Number Users

1 - 10 User

10 - 100 User

100 - 200 User

200 - 1000 User

Division

User Percentage

Help About

Collaborative Module

User Relation Number of Users

Output Module

Figura 4.11. Interfaz “Collaborative Module” App MultiColl-DCRN.
Fuente: elaboración propia.

Si el módulo se ajusta correctamente, el botón “Load Information” se habili-

ta y el indicador cambia a color verde. Para regresar a la ventana principal 

solo se debe ejecutar el botón “Load Information”. En cualquier momento el 

usuario puede cargar los valores por defecto, solo se requiere seleccionar la 

opción “Default Values”.

El diagrama general del módulo colaborativo se presenta en la figura 

4.12. Cuenta con cuatro parámetros de entrada: tres corresponden a varia-

bles ajustadas por el usuario en la interfaz y la cuarta variable es la matriz de 

salida del módulo “Project Information”. La lógica del algoritmo consiste en 
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tomar la matriz de entrenamiento “Power Training” y segmentarla de acuer-

do con las entradas “User Relation” y “Number of  User”. Como salida del 

módulo se obtiene la matriz de potencia segmentada para el entrenamiento e 

información del ajuste del módulo que se visualizara en la interfaz principal.

Power Training
Power Segmentation Training

División

Collaborative Module

Number user

Segmentation

User Percentage

User Relation

Number of Users

Default Values
Collaborative 

Module 

Figura 4.12. Estructura general “Collaborative Module”.
Fuente: elaboración propia.

En las secciones 4.4.1, 4.4.2 y 4.4.3 se presenta la descripción detallada de 

las variables de entrada, salida y metodología de los “Collaborative Modules”.

4.4.1 Variables de entrada
La figura 4.13 presenta en detalle las variables de entrada para el “Collaborative 
Module”, elaborada con el fin de describir específicamente el control que tiene 

el usuario sobre las variables del módulo, además, de la relación en términos 

de interfaz gráfica de la figura 4.11. Adicionalmente, incluye las funciones 

que se requieren para la segmentación de la matriz de potencia —estas se-

rán analizadas en detalles en las secciones posteriores—. Como se mencionó 

previamente, en cualquier momento el usuario puede cargar los valores por 

defecto, solo se requiere seleccionar la opción “Default Values”. La figura 4.13 

describe la asignación de cada variable si se selecciona esta opción.
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Power Segmentation Training

Segmentation

Collaborative Module

Number User

User Percentage

Division

Division - Number Users

Power Training

Continuos Zone

Segmentation

Random Zone

Column

Division

Row

10 - 100

User Percentage

1 - 1000

Number User

Users Relation

Number of Users

Continuos Zone

Segmentation

Row

Division

100

User Percentage

Default Values

Segmentation - 
Users Percentage

Figura 4.13. Variables de entrada y funciones “Collaborative Module”.
Fuente: elaboración propia.

Como se identifica en la figura 4.13, el módulo tiene tres conjuntos de va-

riables de entrada: “User Relation”, “Number User” y “Power Training”. La 

descripción de cada una de las variables se presenta en las tablas 4.5, 4.6 y 

4.7. En la tabla 4.8 se describen los valores asignados por defecto si no se 

parametriza el módulo colaborativo.

Tabla 4.5. Relación de usuarios “Collaborative Module”.

Variable Elemento Descripción

Segmentation

Random Zone
El porcentaje de usuarios seleccionados para la 
simulación se toman de forma aleatoria.

Continuous Zone
El porcentaje de usuarios seleccionados para la 
simulación se toman en orden, por filas o por 
columnas.

Division

Column
Se dividen las filas de la matriz de potencia en 
10 partes iguales y las columnas se dividen en n 
partes hasta completar el número de usuarios.

Row
Se dividen las columnas de la matriz de poten-
cia en 10 partes iguales y las filas se dividen en 
n partes hasta completar el número de usuarios.

User percentage 10-100
Porcentaje de usuarios que participarán en el 
entrenamiento.

Fuente: elaboración propia.
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Tabla 4.6. Número de usuarios “Collaborative Module”.

Variable Elemento Descripción

Number of  users 1-1000 User
Número de usuarios que conforman (dividen) la 
matriz de potencia para el entrenamiento.

Fuente: elaboración propia.

Tabla 4.7. Matriz de potencia “Collaborative Module”.

Variable Tráfico Descripción

Power Training
High Matriz de tráfico de potencia para el entrena-

miento, correspondiente a la variable de salida 
del módulo “Project Information”.Low

Fuente: elaboración propia.

Tabla 4.8. Valores por defecto “Collaborative Module”.

Variable Descripción

Segmentation Continuous Zone

Division Row

User percentage 100

Fuente: elaboración propia.

4.4.2 Variables de salida
Como se identifica en la figura 4.13 el algoritmo tiene seis variables de sali-

da, la descripción de estas variables se presenta en la tabla 4.9.

Tabla 4.9. Variables de salida “Collaborative Module”.

Variable Descripción

Collaborative Module
Interfaz donde se visualiza si el módulo colaborativo 
fue parametrizado (Enable) o si utiliza valores por 
defecto (Default).

Division
Interfaz donde se visualiza el tipo de división para la 
selección de usuarios.

Number User
Interfaz donde se visualiza la cantidad de usuarios 
que segmentan la matriz de entrada.

Segmentation
Visualización de la metodología para la selección de 
los usuarios.

User Percentage
Visualización del porcentaje de usuarios que compar-
tirán información en la fase de entrenamiento.

Power Segmentation Training
Información de los usuarios seleccionados para el 
proceso de entrenamiento.

Fuente: elaboración propia.
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4.4.3 Metodología del módulo
La descripción específica del módulo colaborativo requiere analizar dos 

funciones que permiten segmentar la matriz. La figura 4.13 presenta el dia-

grama con las funciones del modelo colaborativo: “Division – Number Users” 

y “Segmentation–Users Percentage”. Cada una de estas funciones es analizada 

en detalle en las figuras 4.14 y 4.15, respectivamente.

Función “Division – Number Users”
La figura 4.14 presenta el diagrama de bloques de la función. Como varia-

ble externa requiere de la matriz “Power Training”, la cual corresponde a la 

variable de salida del módulo “Project Information”. Adicionalmente, requiere 

la información de entrada de “Number User” y “Division”. La función maneja 

cuatro variables de salida —tres corresponden a la información que se vi-

sualiza en el resumen de parámetros del módulo colaborativo en la interfaz 

principal (figura 4.10)—. Estas variables son “Collaborative module”, “Division” 

y “Number User”; “Power Segmentation” es la cuarta variable y contiene la in-

formación interna que requiere la función “Segmentation–Users Percentage”.

La función “Division – Number Users” es la encargada de dividir la matriz 

de entrada “Power Training” en submatrices. Cada submatriz corresponde a la 

información que caracteriza a un usuario, por tanto, el número de submatri-

ces responde al número de usuarios. La cantidad de usuarios (n) se ajusta de 

acuerdo con el parámetro “Number User” y “Division” establece la metodolo-

gía para realizar la división. Si el número de usuarios es mayor a diez (Number 
User ≥ 10) y la división se parametriza por filas (Division = Row), se dividen 

las filas de “Power Training” en 10 partes iguales y las columnas se dividen en 

m partes hasta completar el número de usuarios (Number User = 10(m)); si se 

realiza por columnas (Division = Column), se dividen las columnas de “Power 
Matrix” en 10 partes iguales y las filas se dividen en m partes hasta completar 

el número de usuarios (Number User = 10(m)). Para un número de usuarios 

menor a diez (Number User < 10), la división por filas (Division = Row) o 

por columnas (Division = Column) se realiza en dos partes iguales; la variable 

dependiente se divide en m partes hasta completar el número de usuarios 

(Number User = 2(m)). La variable interna “Power Segmentation” contiene la 

información de las n submatrices generadas en la división.
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Power Training

Power Segmentation 

 Division - Number Users

User 1 User 2 User 3

User n... ...

Column

Division

n

Number User

Row

Division

n

Number User

User 1 User 2

User 3 User 4

... User n
Number User

Division

Collaborative Module: Enable

Figura 4.14. Función “Division – Number Users”.
Fuente: elaboración propia.

Función “Segmentation–Users Percentage”
La figura 4.15 presenta el diagrama de bloques de la función. Como variable 

interna requiere de la matriz Power Segmentation la información de entrada 

de “Segmentation” y “User Percentage”. La función maneja tres variables de 

salida: dos corresponden a la información que se visualiza en el resumen de 

parámetros del módulo colaborativo en la interfaz principal (figura 4.10). 

Estas variables son “Segmentation” y “User Percentage”. “Power Segmentation 
Training” es la tercera variable y contiene la información de salida del 

“Collaborative Module”.

La función “Segmentation–Users Percentage” es la encargada de establecer 

los diferentes niveles de colaboración, seleccionando la cantidad de infor-

mación que se compartirá en la fase de entrenamiento de los modelos. Los 

niveles de colaboración se ajustan de acuerdo con el porcentaje ajustado 

en la variable “Users Percentage”: 10 % y 100 % corresponden a los criterios 

de mínimo nivel y total colaboración, respectivamente. Para seleccionar los 

usuarios que harán parte del proceso de colaboración, el módulo utiliza dos 

metodologías disponibles en la variable “Segmentation”. En la primera opción 

el simulador selecciona de forma aleatoria los usuarios (Segmentation = User 
Zone Random), y en la segunda opción elige de forma continua (Segmentation 



190

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

= User Zone Continuous). La figura 4.15 presenta las dos metodologías. La va-

riable de salida “Power Segmentation” contiene la información de los usuarios 

seleccionados para el proceso de entrenamiento, esta variable se requiere 

como parámetro de entrada del “Parameters Module”.

Power Segmentation 

Power Segmentation Training

Continuos Zone

Segmentation

k %

User 1 User 2

User 3 User 4

... User n

User Percentage

Continuos Zone

Segmentation

k %

User Percentage

Random Zone

Segmentation

k %

User 1 User 2

User 3 User 4

... User n

User Percentage

 Segmentation - Users Percentage

Power Segmentation Training = User Percentage*Power Segmentation 

User 1 User 2 User 3

User n... ...

Random Zone

Segmentation

k %

User Percentage

User 1 User 2 User 3

User n... ...

User Percentage

Segmentation

Figura 4.15. Función “Segmentation–Users Percentage”.
Fuente: elaboración propia.

4.5 Módulo multiusuario
Para analizar el proceso de toma de decisiones bajo escenarios multiusuario, 

“Multi-user Module” permite ajustar tres parámetros de escenarios realistas. 

El primero corresponde al número de SU que participarán en el proceso. El 

segundo permite asignar canales múltiples a los diferentes usuarios. El terce-

ro simula usuarios aleatorios en tiempo específicos.

La figura 4.16 presenta la visualización correspondiente al resumen 

del módulo multiusuario disponible en la interfaz principal del simulador. 

Este módulo contiene dos botones; el primero —Multi-user Module— per-

mite acceder a la ventana de parámetros del módulo, y el segundo —Setting 
Summary—, generar un archivo en formato .xlsx con el resumen de los ajus-

tes realizados. Para acceder solo se requiere seleccionar la opción “Multi-user 
Module”, que estará habilitada si el módulo “Project Information” se parame-

trizó correctamente. Se abrirá una nueva ventana (figura 4.17) donde estará 

disponible cada uno de los ajustes del módulo.
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Setting Multi-user

Multi-user Module

Multichannel Bands

Serial Users 

Simulation Mode 

Random User Figure

Setting Summary 

Multi-user 
Module

Multi-user Module

Default

1

1

Conventional

Figura 4.16. Resumen de parámetros “Multi-user Module”, 
interfaz principal App MultiColl-DCRN.

Fuente: elaboración propia.

Inicialmente, como se muestra en la figura 4.17, el único parámetro habi-

litado en “Multi-user Module” es la variable “Multichannel Bands”. Cuando 

se ajuste este parámetro se habilitarán los bloques “Channels” y “Percent”. 

Según el número de “Multichannel Bands”, “Channels” y “Percent” se habilita 

“Simulation Mode” y este último habilita “Serial Users”. Para incluir dentro de 

las gráficas el comportamiento de los usuarios aleatorios “Simulation Mode” 

se debe seleccionar “Real Mode”. Además de los ajustes de habilitación de 

parámetros la ventana cuenta con un indicador color rojo que permanecerá 

si la información parametrizada está incompleta.

Load Information

Default Values

Multichannel Bands

Channels
  Enable random user �gure

Channels

Channels

Channels

Percent

Percent

Percent

Percent

Simulation Mode

Serial Users1 - 10 User

10 - 20 User

20 - 30 User

Help About

Multi-user Module

User Relation Number of Users

Output Module

Figura 4.17. Interfaz “Multi-user Module” App MultiColl-DCRN.
Fuente: elaboración propia.

Si el módulo se ajusta correctamente, el botón “Load Information” se habilita y el 

indicador cambia a color verde. Para regresar a la ventana principal, solo se debe 

ejecutar “Load Information”. En cualquier momento el usuario puede cargar los 

valores por defecto, solo se requiere seleccionar la opción “Default Values”.

El diagrama general del módulo colaborativo se presenta en la figura 4.18. 

Cuenta con cuatro parámetros de entrada: tres corresponden a variables 
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ajustadas por el usuario en la interfaz y la cuarta a variable es la matriz de 

salida del módulo “Project Information”. La lógica del algoritmo consiste en 

tomar la matriz de entrenamiento “Power Training” y segmentarla de acuer-

do con las entradas “User Relation” y “Number of  User”. Como salida del 

módulo se obtiene la matriz de potencia segmentada para el entrenamiento e 

información del ajuste del módulo que se visualizará en la interfaz principal.

 

Multichannel Bands

Serial Users Multi-User 
Module

Multi-user Module

Random User Figure

Multichannel Bands

Serial Users

Simulation Mode

Figura 4.18. Estructura general “Multi-user Module”.
Fuente: elaboración propia.

En las secciones 4.5.1, 4.5.2 y 4.5.3 se presenta la descripción detallada de 

las variables de entrada, salida y metodología de “Multi-user Module”.

4.5.1 Variables de entrada
La figura 4.19 presenta en detalle las variables de entrada para el “Multi-
user Module”. Esta figura fue elaborada con el objetivo de describir 

específicamente el control que tiene el usuario sobre las variables del mó-

dulo, además, de la relación en términos de la interfaz gráfica, de la figura 

4.17. Adicionalmente, incluye las funciones que se requieren para el análi-

sis de escenarios multiusuario. Estas funciones serán analizadas en detalle 

en las secciones posteriores. Como se mencionó previamente, en cualquier 

momento el usuario puede cargar los valores por defecto, solo se requiere 

seleccionar la opción “Default Values”. En la figura 4.19 se describe la asig-

nación de cada variable si se selecciona esta opción.
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Random Time
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Simulation Mode

Enable random user �gure

1

Serial Users

1

Multichannel Bands Simulation Mode

Conventional Mode

Default Values

Figura 4.19. Variables de entrada y funciones “Multi-user Module”.
Fuente: elaboración propia.

Como se identifica en la figura 4.19, el módulo tiene dos conjuntos de variables 

de entrada: “User Relation”, “Number User”, la descripción de cada una de las 

variables se presenta en las tablas 4.10 y 4.11. En la tabla 4.12 se describen los 

valores asignados por defecto si no se parametriza el módulo multiusuario.

Tabla 4.10. Relación de usuarios “Multi-user Module”.

Variable Elemento Descripción

Multichannel Bands 1–4
Número de aplicaciones seleccionados para la 
simulación.

Channels 1–10
Número de canales necesarios para cada aplica-
ción seleccionado.

Percent 25 %–100 %
Porcentaje de usuarios que adquieren la carac-
terística de la aplicación y de la cantidad de 
canales.

Fuente: elaboración propia.

Tabla 4.11. Número de usuarios “Multi-user Module”.

Variable Elemento Descripción

Simulation Mode 

Conventional Mode
Simulación sin usuarios aleatorios en tiempos 
específicos.

Real Mode
Simulación con usuarios aleatorios en tiempos 
específicos.

Serial Users 1–30 Número de usuarios seriales.



194

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

Variable Elemento Descripción

Enable random 
user figure

Enable
La métrica de evaluación incluye a los usuarios 
aleatorios.

Disabled
La métrica de evaluación no incluye los usuarios 
aleatorios.

Fuente: elaboración propia.

Tabla 4.12. Valores por defecto “Multi-user Module”.

Variable Descripción

Multichannel Bands Continuous Zone

Serial Users Row

Simulation Mode Conventional Mode

Fuente: elaboración propia.

4.5.2 Variables de salida
Como se identifica en la figura 4.19 el algoritmo tiene cinco variables de 

salida, la descripción de estas variables se presenta en la tabla 4.13.

Tabla 4.13. Variables de salida “Multi-user Module”.

Variable Descripción

Multi-user Module
Visualización en la interfaz del módulo multiusua-
rio. Parametrizado (Enable) o valores por defecto 
(Default).

Multichannel Bands
Información de número de aplicaciones selecciona-
dos, adicionalmente, se visualiza en la interfaz.

Serial Users
Información de número de usuarios seriales, adicio-
nalmente, se visualiza en la interfaz.

Simulation Mode
Habilita o deshabilita los usuarios aleatorios, se 
visualiza en la interfaz.

Random User Figure
Visualiza en la interfaz si las métricas incluyen el 
comportamiento de los usuarios aleatorios.

Fuente: elaboración propia.

4.5.3 Metodología del módulo
La descripción específica del módulo multiusuario requiere analizar dos 

funciones que permiten caracterizar el comportamiento de los usuarios. La 

figura 4.19 presenta el diagrama con las funciones del modelo colaborativo: 
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“Multichannel Users” y “Segmentation–Users Percentage”, cada una de estas fun-

ciones es analizada en detalle en las figuras 4.20 y 4.21, respectivamente.

Función “Multichannel Users”
La figura 4.20 presenta el diagrama de bloques de la función: se requiere 

la información de entrada de “Multichannel Bands”, “Channels” y “Percent”. 

Maneja dos variables de salida: “Multi-user Module” y “Multichannel Bands”.

La función “Multichannel Users” es la encargada de parametrizar el núme-

ro de aplicaciones, el número de canales para cada aplicación y el porcentaje 

de usuarios que adquiere la caracteristíca de la aplicación y de la cantidad 

de canales.

 Multichannel Users

Multi-user Module: Enable

Multichannel Bands

Multichannel Bands Channels

1 k %

k %

k %

k %

10...

1 10...

1 10...

1 10...

Percent

k %1 - 101 - 4

Figura 4.20. Función “Multichannel Users”.
Fuente: elaboración propia.

Función “Random Users”
Es la encargada de seleccionar el número de usuarios seriales y si la simula-

ción cuenta con usuarios aleatorios. La figura 4.21 presenta el diagrama de 

bloques de esta función. Se requiere información de entrada de “Serial Users”, 

“Simulation Mode” y “Enable random user figure”. La función maneja tres va-

riables de salida: “Serial Users”, “Simulation Mode” y “Random User Figure”.
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Figura 4.21. Función “Random Users”.
Fuente: elaboración propia.

4.6 Parameters Module
La figura 4.22 presenta la interfaz correspondiente a “Parameters Modules”, 

en este módulo se parametriza el Threshold, Noise Floor, Bandwidth Fixed y 

Multichannels. Adicionalmente, se caracteriza el nivel de tráfico y tiempo de 

transmisión.

Input 
Data

Availability

SINR

Bandwidth

Threshold

BW Fixed

Noise Floor

Multichannels

Tra�c LevelInput Data

Time [minutes]

Threshold

Default Parameters

BW Fixed

Noise Floor

Multichannels

H M L

Parameters Module

Figura 4.22. “Parameters Modules” MultiColl-DCRN.
Fuente: elaboración propia.

“Parameters Modules” se habilita si “Project Information” es parametrizado co-

rrectamente, como se muestra en la figura 4.22. El diagrama general del mó-

dulo se presenta en la figura 4.23. Cuenta con cinco parámetros de entrada: 

cuatro corresponden a variables ajustadas por el usuario en la interfaz, y la 

quinta variable es la matriz de salida del “Collaborative Module”. No requiere 
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ajustes de “Multi-User Module”; el simulador asume valores por defecto si el 

caso de estudio no requiere incorporar análisis colaborativo.

La lógica del algoritmo es la elaboración de una nueva base de datos 

de variables de entrada y selección de información. Para la nueva base de 

datos se almacena la información de “Threshold”, “Noise Floor”, “Bandwidth 
Fixed”, “Multichannels” y “Time”. Posteriormente, esta nueva base de da-

tos se incorpora en las estrategias de predicción y no predicción. Para la 

selección de información, toma de la matriz “Power Segmentation Training” 

(generada a través del “Collaborative Module” o de los valores por defecto) la 

base de datos de entrenamiento. De acuerdo con el nivel de tráfico, se aplica 

el mismo proceso para la matriz “Power Evaluation” generada a través de 

“Project Information”. Como salida del módulo se obtiene la base de datos de 

las variables parametrizadas y la base de datos de potencia para el entrena-

miento y validación de acuerdo con el nivel de tráfico.

En las secciones 4.6.1, 4.6.2 y 4.6.3 se presenta la descripción detallada 

de las variables de entrada, salida y metodología de “Parameters Modules”.

Power Segmentation Training Tra�c 

Power Segmentation Training

Default Parameters

Input Data

Tra�c Level

Time [minutes]

Parameters
Module

Input 
Data 

Threshold

Fixed Bandwidth

Noise Floor

Multichannels

Tra�c Level

Time [minutes]

Power  Evaluation

Power Evaluation Tra�c 

Figura 4.23. Estructura general “Parameters Module”.
Fuente: elaboración propia.
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4.6.1 Variables de entrada
La figura 4.24 fue elaborada con el objetivo de describir específicamente 

el control que tiene el usuario sobre las variables del módulo, además, de 

la relación en términos de la interfaz gráfica de la figura 4.22. Incluye las 

funciones que se requieren para la construcción de la nueva base de datos 

y la selección de la matriz potencia para el entrenamiento y validación de 

las técnicas —estas funciones serán analizadas en detalles en las secciones 

posteriores—. En cualquier momento el usuario puede cargar los valores por 

defecto, solo se requiere seleccionar la opción “Default Values”. En la figura 

4.24 se describe la asignación de cada variable si se selecciona esta opción.

Power Segmentation Training Power Segmentation Training Tra�c 

Power  Evaluation Tra�cPower  Evaluation
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Multichannels
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Select Power Tra�c Level
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*Training
*Evaluation

Input Data
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Multichannels

...

...

...

...

Figura 4.24. Variables de entrada y funciones “Parameters Module”.
Fuente: elaboración propia.

Como se identifica en la figura 4.24, el módulo tiene cinco conjuntos de va-

riables de entrada: “Input Data”, “Traffic Level”, “Time”, “Power Segmentation 
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Training” y “Power Evaluation”. La descripción de cada una de las variables 

se presenta en las tablas 4.14, 4.15, 4.16, 4.17 y 4.18. En la tabla 4.19 se des-

criben los valores asignados por defecto.

Tabla 4.14. Datos de entrada “Parameters Module”.

Parámetros Descripción

Threshold
Umbral de decisión para determinar si una oportunidad espectral está 
disponible.

Noise Floor Piso de ruido promedio.

BW Fixed BW fijo para cada canal de frecuencia.

Multichannels
Número máximo de canales adyacentes disponibles que se pueden 
agrupar para formar un solo canal.

Fuente: elaboración propia.

Tabla 4.15. Nivel de tráfico “Parameters Module”.

Variable Elemento Descripción

Traffic Level

High Trazas de información que representan el com-
portamiento del espectro cuando la red tiene un 
nivel de tráfico alto, medio y bajo.

Medium

Low

Fuente: elaboración propia.

Tabla 4.16. Tiempo “Parameters Module”.

Variable Elemento Descripción

Time [minutes] 1-9 Tiempo de transmisión en minutos del SU.

Fuente: elaboración propia.

Tabla 4.17. Matriz de potencia segmentada para entrenamiento “Parameters Module”.

Variable Descripción

Power 
Segmentation 
Training

Contiene la información de la matriz segmentada de potencia de 
acuerdo con el nivel de tráfico para el entrenamiento de las técnicas de 
predicción y no predicción.

Fuente: elaboración propia.

Tabla 4.18. Matriz de potencia para evaluación “Parameters Module”.

Variable Descripción

Power Evaluation
Información de la matriz de potencia de acuerdo con el nivel de tráfico 
para la validación de las técnicas de predicción y no predicción.

Fuente: elaboración propia.
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Tabla 4.19. Valores por defecto “Parameters Module”.

Variable Descripción

Threshold -95

Noise Floor -100

BW Fixed 100

Multichannels 4

Fuente: elaboración propia.

4.6.2 Variables de salida
Como se identifica en la figura 4.24 el algoritmo tiene seis variables de salida 

para visualización en la interfaz, y ocho variables de salida del módulo que 

requieren los modelos de no predicción y predicción, la descripción de las 

variables se presenta en la tabla 4.20.

Tabla 4.20. Variables de salida “Parameters Module”.

Variable Descripción

Threshold
Visualización asociada al umbral de decisión 
parametrizado. 

Noise Floor
Visualización asociada al piso de ruido promedio 
parametrizado.

BW Fixed Visualización asociada al BW fijo parametrizado.

Multichannels
Visualización asociada al número máximo de 
canales adyacentes disponibles parametrizado.

Traffic Level
Visualización asociada al nivel de tráfico 
seleccionado.

Time [minutes]
Visualización asociada al tiempo de transmisión 
en minutos del SU seleccionado.

Power Segmentation Training Traffic
Corresponde a la matriz de entrenamiento de 
potencia segmentada para tráfico seleccionado.

Power Evaluation Traffic
Corresponde a la matriz de evaluación de poten-
cia para el tráfico seleccionado.

Fuente: elaboración propia.

4.6.3 Metodología del módulo
Para la descripción específica del módulo se requiere analizar las funcio-

nes que generan la base de datos y selecciona la información de acuerdo 

con el tipo de tráfico. La figura 4.24 presenta el diagrama con las funciones 
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“Parameters Module”: “Select Power Traffic Level” y “New Database”. Cada 

una de estas funciones es analizada en detalle en las figuras 4.25 y 4.26, 

respectivamente.

Función “Select Power Traffic Level”
La figura 4.25 presenta el diagrama de bloques de la función. Como va-

riable externa requiere la matriz “Power Evaluation” y “Power Segmentation 
Training”, la cual corresponde a las variables de salida del módulo “Project 
Information” y “Collaborative Module”, respectivamente. Además, requiere la 

información de entrada “Traffic Level”. La función maneja dos variables de 

salida, equivalentes a la matriz de potencia de entrenamiento y validación.

La función “Select Power Traffic Level” es la encargada de seleccionar de 

la base de datos principal la matriz de evaluación de acuerdo con el tráfico 

ajustado; el criterio de selección se realiza para la matriz de potencia seg-

mentada que se utilizara para el entrenamiento.

Select Power Tra�c Level

High

Medium

Low

Tra�c Level High

Medium

Low

Power Segmentation Training

Power Evaluation

Power Segmentation Training Tra�c 

Power  Evaluation Tra�c

Figura 4.25. Función “Select Power Traffic Level”.
Fuente: elaboración propia.

Función “New Database”
La figura 4.26 presenta el diagrama de bloques de la función; solo requiere 

información de entrada de la interfaz, la cual es almacenada a través de 

una nueva base de datos. Cada una de las variables almacenadas se utilizará 

para el ajuste de las técnicas de predicción y no predicción. Además, estas 

variables son utilizadas para visualización de información en la interfaz. La 

base de datos guarda los ajustes realizados a las variables “Threshold”, “Noise 
Floor”, “Bandwidth Fixed”, “Multichannels” y “Time”.
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New Database

Threshold

Fixed Bandwidth

Noise Floor

Multichannels

Tra�c Level

Time [minutes]

Input Data

Threshold

Fixed Bandwidth

Noise Floor

Multichannels

...

...

...

...

1 - 9

Time [minutes]

High

Medium

Low

Tra�c Level

Threshold

Fixed Bandwidth

Noise Floor

Multichannels

Time [minutes]

Tra�c Level

Figura 4.26. Función “New Database”.
Fuente: elaboración propia.

4.7 Models module
Contiene las diferentes estrategias que se pueden utilizar para el análisis de 

toma de decisiones. Los usuarios tienen disponibles siete modelos (11, si se 

incluyen cinco modelos autorregresivos que forman las series de tiempo). 

Como se muestra en la figura 4.27, cinco modelos para técnicas de predic-

ción y dos modelos para el análisis de técnicas no predictivas.

Prediction 
Module

Genetic Algorithm

Markov Chain

Feature Extraction

Spectral Decision

Logistic Regression

Time Series

Naive Bayes

No Prediction 
Module

Figura 4.27. Modelos disponibles.
Fuente: elaboración propia.
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La figura 4.28 presenta la interfaz correspondiente a “Prediction module”. El usua-

rio puede seleccionar entre dos opciones: “No prediction” y “Prediction”; como su 

nombre lo indica, cada opción está asociada al conjunto de modelos disponible.

“Parameters Modules” se habilita si “Project Information” es parametrizado 

correctamente, como se muestra en la figura 4.28.

Prediction Module

No                      
Prediction

Prediction

Figura 4.28. Módulo de técnicas de no predicción y predicción MultiColl-DCRN.
Fuente: elaboración propia.

En las siguientes secciones se describe en detalle cada una de las estrategias 

implementadas. Cada modelo es independiente, sin embargo, requieren de 

parámetros y algoritmos en común. Los parámetros están asociados a las 

variables de salida de los módulos, los algoritmos se citan en la siguiente lista:

•	 Algoritmo parámetros iniciales

•	 Algoritmo ranking multicriterio

•	 Algoritmo de búsqueda

•	 Algoritmo indicador de predicción

A continuación, se realiza la descripción de los algoritmos, posteriormente 

se detalla la estructura de cada una de las técnicas implementadas.

4.7.1 Algoritmo parámetros iniciales
Independiente de los ajustes realizado al tipo de red, nivel de tráfico, niveles 

de colaboración, número de usuarios y a la técnica de análisis, el simulador 

requiere establecer tres parámetros iniciales: Disponibilidad, SINR y BW. 
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Estos se determinan a través de la función “Initial Parameters”. La figura 

4.29 presenta el flujo de variables de entrada y de salida como se describe en 

la figura, se requieren seis variables de entrada, las cuales son tomadas del 

“Parameters Modules”.

El simulador transforma los datos de las matrices “Power Evaluation 
Traffic” y “Power Segmentation Training” en valores binarios según la restric-

ción dada por el valor “Threshold”; el resultado obtenido representa la matriz 

“Evaluation Availability” y “Training Availability”. El valor “Noise Floor” per-

mite calcular la matriz “SINR” basada en los datos de potencia. Finalmente, 

“Fixed Bandwidth” y “Multichannels” conforman los parámetros para el 

“Bandwidth” que se obtiene con la matriz de disponibilidad.

Initial 

Parameter

Training Availability Matrix

Bandwidth

SINR

Threshold

Fixed Bandwidth

Noise Floor

Multichannels

Power Segmentation Training Evaluation Availability Matrix

Power  Evaluation Tra�c

Figura 4.29. Función “Initial Parameter”.
Fuente: elaboración propia.

En las secciones 4.7.1.1, 4.7.1.2 y 4.7.1.3 se presenta la descripción y algorit-

mos implementados para cada uno de los parámetros iniciales.

4.7.1.1 Disponibilidad
El simulador transforma los datos de potencia que están en un rango entre 

[-40 y -147] a valores binarios según la restricción dada al campo Threshold, 
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donde 1 representa una frecuencia disponible y 0 una frecuencia no disponi-

ble. El resultado obtenido equivale a la matriz de disponibilidad y es la matriz 

de entrada para los diferentes modelos. El Algoritmo 8 presenta la estructu-

ra de programación implementada para obtener “Evaluation Availability” y 

“Training Availability”.

Algoritmo 8. Estructura matriz de disponibilidad.

Availability Matrix 

 % Evaluation Availability Matrix
If Power Evaluation Traffic > Threshold

Evaluation Availability Matrix = 1

else
Evaluation Availability Matrix = 0

end
 % Evaluation Availability Matrix
If Power Segmentation Training > Threshold

Evaluation Availability Matrix = 1

else
Evaluation Availability Matrix = 0

end

Fuente: elaboración propia.

4.7.1.2 Relación señal a ruido más interferencia (SINR)
A partir de “Noise Floor” y de las matrices “Power Evaluation Traffic” y “Power 
Segmentation Training” se determina la SINR: se realiza la resta entre la ma-

triz de datos de potencia y la variable “Noise floor”. El Algoritmo 9 presenta 

la estructura de programación implementada para obtener “SINR”.

Algoritmo 9. Estructura SINR

SINR–Relación Señal a Ruido más Interferencia

function [SINR] = Initial_Parameter(Power, Noise_floor)

SINR = Power–Evaluation Availability Matrix

end

Fuente: elaboración propia.
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4.7.1.3 Bandwidth (BW)
Para determinar la matriz de BW se utiliza la matriz de disponibilidad pre-

viamente obtenida y los parámetros de “Fixed Bandwidth” y “Multichannels”. 

El Algoritmo 10 presenta la estructura de programación implementada para 

obtener “Bandwidth”.

Algoritmo 10. Estructura matriz ancho de banda.

Matriz Ancho de Banda

function [Bandwidth] = Initial_Parameter(Available, 
Multichannel, Fixed_Bandwidth)

i = Current Time Step

j = Current Frequency

switch Availability
case 0
Bandwidth(i , j) = Fixed_Bandwidth;

case 1
for d = 1 : Multichannel
if Available(i , j+d) == 1
Accountant = Accountant + 1;

end
end
for d = 1 : Multichannel
if Available(i , j-d) == 1
Accountant = Accountant + 1;

end
end
Bandwidth(i , j) = Fixed_Bandwidth *(Accountant+Available(i 

, j));

end

Fuente: elaboración propia.

4.7.2 Algoritmo ranking multicriterio
El algoritmo ranking utiliza análisis multicriterio para asignarle una puntua-

ción a los diferentes canales. Se utilizan los criterios AP, ETA, promedio de 

SINR y promedio BW, para establecer los canales con mayor probabilidad 

de oportunidad espectral. La figura 4.30 presenta el flujo de variables de 

entrada y de salida; como se describe en la figura, para establecer el ranking, 

se requiere implementar dos funciones, la primera —denominada “Parameter 
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Ranking”, determina los criterios de probabilidad y promedio— utiliza cuatro 

variables de entrada; tres son variables internas que se obtienen del algorit-

mo de parámetros iniciales y una cuarta variable de información de entrada. 

La segunda función “Ranking”, toma los datos de “Parameter Ranking” y dos 

variables de información de entrada para calcular la puntuación de los cana-

les con mayor probabilidad de oportunidad espectral.

Availability Matrix

Bandwidth

SINR

PD

TED

PSINR

PWA

Ranking
Parameter

Ranking

Hando� Models

Weights

Ranking

Time Range

Figura 4.30. Funciones “Ranking”.
Fuente: elaboración propia.

En las secciones 4.7.2.1 y 4.7.2.2 se presenta la descripción y algoritmos im-

plementados para las funciones del algoritmo ranking multicriterio.

4.7.2.1 Parameter Ranking
La función “Parameter Ranking” determina los criterios de AP, ETA, prome-

dio de SINR y ABW, estos criterios son calculados para cada uno de los canales 

de la matriz de disponibilidad, la sigla y descripción de cada uno de los criterios se 

presenta en la tabla 4.21.

Tabla 4.21. Vectores para el análisis multicriterio.

Siglas Promedio Descripción

AP Probabilidad de disponibilidad
Promedio de cada una de las columnas 
de la matriz de disponibilidad.

ETA Tiempo medio de disponibilidad
Promedio de unos consecutivos de la 
matriz de disponibilidad.

ASINR Promedio de SINR
Promedio de cada columna de la matriz 
de SINR sin tener en cuenta los ceros.
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Siglas Promedio Descripción

ABW Ancho de banda promedio
Promedio de cada una de las columnas 
de la matriz BW.

Fuente: elaboración propia.

El tamaño de cada uno de los vectores es de 1xn, donde n corresponde a la 

cantidad de canales (columnas) de la matriz de disponibilidad. El Algoritmo 

10 presenta la estructura de programación implementada para obtener los 

criterios AP, ETA, ASINR y ABW.

Algoritmo 11. Estructura criterios AP, ETA, ASINR y ABW.

Criterios AP, ETA, ASINR y ABW

function [AP, ETA, ASINR, ABW] = Parameter_Ranking(Available, 
SINR, Bandwidth)

i = Current Time Step

j = Total channels

 % AP y ABW

AP = mean( Available(i , :) );

ABW = mean( Bandwidth(i , :) );

for k = 1 : j

 % ASINR

S = SINR(i , k);

S(S==0) = [ ];

ASINR(1 , k) = mean(S);

 % ETA

Channel = Available(: , k);

Ones_Channel_Total = sum(Channel);

NumObjects = bwconncomp(Channel).NumObjects;

ETA(1 , k) = Ones_Channel_Total/NumObjects;

end

* bwconncomp: Busca componentes binarias conectadas.

Fuente: elaboración propia.



209

Modelo de asignación espectral multiusuario para redes de radio cognitiva descentralizadas

La variable de información de entrada de la función “Parameter Ranking” es 

“Time Range”, la cual parametriza el número de filas que se van a utilizar 

para determinar los criterios. El usuario establece si se quiere realizar para 

todas las filas de la matriz de disponibilidad o para un rango en específico.

4.7.2.2 Ranking
La función “Ranking” determina los canales con mayor probabilidad de opor-

tunidad espectral, toma los vectores de los criterios AP, ETA, ASINR y ABW, 

y los multiplica por el vector “Weights” (puntuación) que se le asigna a cada uno 

de estos criterios. La ecuación (4.1) presenta la operación matricial realizada 

para determinar la variable de salida “Ranking”, [Weights] es la puntuación 

asignada a cada criterio y [P] la matriz de criterios por cada canal.

Capítulo 4. Caracterización del Arribo de los Usuarios Secundarios 183 
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La asignación de los pesos para la construcción del vector [Weights] se realiza de acuerdo a la técnica 

multicriterio que se requiera utilizar, las técnicas corresponden a los diferentes algoritmos de 

“Handoff Models”, cada uno programado de acuerdo al estado de arte realizado. En total, se cuenta 

con 9 técnicas de toma de decisión multicriterio (Figura 4-31). 

 

Cada uno de los “Handoff Models” requiere de la asignación de un vector fila de pesos de tamaño 

1x4 (Figura 4-31), los pesos pueden ser ajustados por el usuario, excepto el modelo Random que 

genera de manera aleatoria el vector de pesos, el simulador tiene la posibilidad de cargar pesos por 

defecto si el usuario lo requiere. 

 

 
Figura 4-31: Algoritmos multicriterio “Handoff Models” 

 

El Algoritmo 12 presenta la estructura de programación implementada para obtener “Ranking”, es 

importante aclara que la descripción es general, cada técnica multicriterio tiene su propia estructura 

AHP

FAHP

Handoff Models

FFAHP

SAW

MEW

TOPSIS

VIKOR

GRA

RANDOM

WPD

...

WTED

...

WPSINR
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WPWA

...

Handoff Models Weights

Weights

(4.1)

La asignación de los pesos para la construcción del vector [Weights] se rea-

liza de acuerdo con la técnica multicriterio que se requiera utilizar, las técni-

cas corresponden a los diferentes algoritmos de “Handoff  Models”, cada uno 

programado conforme el estado de arte realizado. En total, se cuenta con 

nueve técnicas de toma de decisión multicriterio (figura 4.31).

Cada uno de los “Handoff  Models” requiere la asignación de un vector fila 

de pesos de tamaño 1x4 (figura 4.31), los pesos pueden ser ajustados por el 

usuario, excepto el modelo Random que genera de manera aleatoria el vector 

de pesos, el simulador tiene la posibilidad de cargar pesos por defecto si el 

usuario lo requiere.
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AHP

FAHP

Hando� Models

FFAHP

SAW
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TOPSIS

VIKOR
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WPD
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WTED
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WPSINR
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...

Hando� Models Weights

Weights

Figura 4.31. Algoritmos multicriterio “Handoff  Models”.
Fuente: elaboración propia.

El Algoritmo 12 presenta la estructura de programación implementada para 

obtener “Ranking”. Es importante aclarar que la descripción es general, cada 

técnica multicriterio tiene su propia estructura de programación para obte-

ner el vector final “Ranking”; sin embargo, los nueve algoritmos multicriterio 

“Handoff  Models” requieren como parámetro de entrada los criterios y pesos.

Algoritmo 12. Estructura Ranking.

Ranking

function [Ranking] = Ranking(AP, ETA, ASINR, ABW,Multicriteria)
Weights = [W_AP W_ETA W_ASINR W_ABW];

Average = [AP ; ETA ; ASINR ; ABW];

If Multicriteria == ‘Handoff Models’
 % Multicriteria Algorithm
Ranking = W*Average;

end
end

Fuente: elaboración propia.

4.7.3 Algoritmo de búsqueda
Es el encargado del análisis de movilidad espectral. Según el vector de po-

siciones entregado por el algoritmo “Ranking”, realiza saltos de columna 

en la matriz de disponibilidad hasta encontrar un canal disponible; al en-

contrarlo hace un cambio de fila en la matriz de disponibilidad —cada fila 

representa un instante de tiempo y la condición de parada del algoritmo 
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de búsqueda—. La condición de parada es ajustada en el parámetro “Time 
[minutes]” de la interfaz, correspondiente a la variable de salida “Simulation 
Time” de “Parameters Module”, es decir, el algoritmo de búsqueda realizará 

saltos de fila hasta completar el tiempo establecido. Los saltos de columna 

y fila, el tiempo y la disponibilidad son almacenados en un vector y retroali-

mentados al finalizar la simulación en una base de datos.

Adicional a la condición de parada “Simulation Time” el algoritmo tiene 

una variable de entrada llamada “Criteria Time” la cual establece el criterio 

de tiempo para el análisis de movilidad espectral de acuerdo con el vector 

“Ranking”, determinado con la matriz de entrenamiento. Cuando el algo-

ritmo de búsqueda se encuentre en el instante de tiempo t = criteria time, 
se calculará un nuevo vector “Ranking”, pero en este caso con la matriz de 

evaluación y para un número definido de filas de la matriz de disponibilidad, 

SINR y BW. Las filas seleccionadas corresponden a las últimas filas utili-

zadas antes de la condición de “Criteria time”. Esta condición permanecerá 

hasta que se cumpla el tiempo de simulación, por tanto, si Simulation Time > 
n*Criteria Time, el vector de posiciones se actualizará n veces.

El Algoritmo 13 presenta la estructura de programación implementada 

para el algoritmo de búsqueda de un solo usuario sin ajuste por “Criteria 
Time”. La figura 4.32, el flujo de datos de entrada y salida para el algoritmo 

de búsqueda.
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Algoritmo 13. Estructura algoritmo de búsqueda para un solo usuario.

Algoritmo de búsqueda para un solo usuario

r = Simulation_Time;

i = 1; j = 1; Handoffs = 0; Blokings = 0; time = 0;

while i <= Simulation_Time
Availability = Available(i , Ranking(j));

time = time + 1;

switch Availability
case 0

Free(1 , time) = Available(i , RankingF(j));

AB(1 , time) = BW(i , RankingF(j));

F_used(2 , time) = Handoffs;

j = j + 1;  % Cambia de canal
Handoffs = Handoffs + 1;

if Available(i , Ranking(j-1))==0 && Available(i 
, Ranking(j))==0

Blokings = Blokings + 1;

F_busy(2 , time+1) = Blokings;

else
F_busy(2 , time+1) = Blokings;

end
case 1

Free(1 , time) = Available(i , Ranking(j));

AB(1 , time) = BW(i , Ranking(j));

F_used(2,time) = Handoffs;

i = i + 1;  % Cambia de fila
if Available(i-1 , Ranking(j))==1 && 

Available(i,Ranking(1))==0

Blokings = Blokings+1;

F_busy(2 , time+1) = Blokings;

else
F_busy(2 , time+1) = Blokings;

end
end

end
Used_Frecuency = F_used;

Busy_Frecuency = F_busy;

Bandwidth Frequency Used = AB;

Fuente: elaboración propia.
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4.7.3.1 Algoritmo de búsqueda multiusuario
El algoritmo incorpora el análisis de saltos espectrales para varios usuarios 

seriales, para la caracterización de la búsqueda. El proceso es equivalente 

tanto para un usuario con un canal como para múltiples usuarios con múl-

tiples canales; la diferencia más relevante se presenta en el cambio de fila, la 

cual, para múltiples usuarios, solo se realiza cuando todos los usuarios en-

cuentran oportunidades espectrales, o cuando los requerimientos de canales 

son superiores a la disponibilidad.

Para la búsqueda multiusuario el algoritmo puede encontrar dos esce-

narios: el primero es donde todos los usuarios encuentran oportunidades 

espectrales para todos los requerimientos de canales y, el segundo, donde las 

oportunidades espectrales son menores a los requerimientos de los múltiples 

usuarios; para este último caso, el algoritmo informa sobre el evento y, poste-

riormente, salta al final para iniciar nuevamente la búsqueda en el siguiente 

instante de tiempo. La figura 4.34 presenta el flujo de variables de entrada y 

salida para el algoritmo de búsqueda multiusuario.
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Simulation Time
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Serial Mode

Random User Figure

Multichannel Bands

Criteria Time

Availability Matrix

Busy Frequency
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Figura 4.32. Algoritmo de búsqueda para el análisis de movilidad espectral.
Fuente: elaboración propia.
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4.7.4 Algoritmos indicadores de predicción
El algoritmo compara la precisión de la predicción de canales durante un 

tiempo de transmisión y evalúa si las predicciones de disponibilidad pueden 

conducir a un uso beneficioso de los canales. Los modelos utilizados para 

la predicción de canales generan una nueva matriz basada en probabilidad, 

donde los estados del canal están definidos por “1” (disponible) y “0” (ocu-

pado). Estas probabilidades son asignadas a una matriz llamada “Predicton 
Availability”; la predicción de disponibilidad se realiza por canal durante un 

tiempo definido de simulación.

La figura 4.33 exhibe el flujo de variables de entrada y salida de la fun-

ción. Es importante resaltar que el algoritmo de búsqueda descrito en la 

sección 4.7.3 hace parte del algoritmo indicadores de predicción, la dife-

rencia radica en una entrada y salida adicional; la entrada corresponde a 

“Prediction Availability Matrix”, obtenida a través de las predicciones de dis-

ponibilidad, la cual es comparada con “Evaluation Availability Matrix” para 

obtener las métricas de precisión. Los resultados de la comparación equiva-

len a la variable de salida “Prediction”.

Prediction 
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Ranking
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Random User Figure

Multichannel Bands
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Figura 4.33. Algoritmo indicadores de predicción.
Fuente: elaboración propia.
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4.7.4.1 Algoritmo métricas de desempeño
La evaluación de los handoffs espectrales se realiza a través de la matriz de 

entrenamiento y validación. Para el análisis de los resultados el simulador 

exporta la información a través de una base de datos y un conjunto de fi-

guras. La figura 4.34 presenta el flujo de datos de entrada y salida para el 

algoritmo asociado a las métricas de desempeño. Se requieren cinco varia-

bles de entrada: tres son tomadas del algoritmo de búsqueda; la ruta donde 

se almacenarán los resultados es tomada del módulo “Project Information” y 

finalmente una variable de información.
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Modulation Type

Directory

Ranking.mat
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Results.mat
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Figure Hando�

Figure Failed Hando�

Figure Throughput

Figure Delay

Directory

Figura 4.34. Algoritmo métricas de desempeño.
Fuente: elaboración propia.

La base de datos contiene la información de la matriz de potencia, la matriz 

de disponibilidad, las métricas del algoritmo de búsqueda: canales, saltos 

de fila, tiempo, disponibilidad y BW. Finalmente, las métricas del algoritmo 

ranking y puntuaciones asignadas durante la simulación. En la tabla 4.22 se 

muestran los archivos exportados y el tipo de respectivo formato.
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Tabla 4.22. Tipo de formato.

Archivo Descripción Formato del archivo

Results
Métricas de desempeño del algoritmo 
del ranking.

Documento en Matlab .mat

Ranking
Métricas de desempeño del algoritmo 
del ranking.

Documento en Matlab .mat

Database
Matriz de potencia y matriz de 
disponibilidad utilizadas para el entre-
namiento y la validación.

Documento en Matlab .mat

Fuente: elaboración propia.

El simulador genera cincos figuras, en dos formatos diferentes: .png y .fig 

(editable en Matlab). Tanto las figuras (.png, .fig) como los archivos expor-

tados (.mat) se guardan en la ruta seleccionada por el usuario (“Directory” 

del “Project Information”).

Los resultados corresponden a las figuras AAD, AAFH, AAH, AAT y 

ABW la tabla 4.23 presenta la descripción de las métricas de desempeño.

Tabla 4.23. Métricas de desempeño multicriterio.

Sigla Nombre Descripción

AAH
Número de handoff 
promedio acumulado

Número total de handoff realizados durante el 
tiempo de transmisión del SU.

AAFH
Número de handoff 
fallidos promedio 
acumulado

Número de handoff que el SU no pudo materiali-
zar porque encontró las respectivas oportunidades 
espectrales objetivo ocupadas.

ABW
Ancho de banda 
promedio

Es el BW promedio utilizado por el SU durante el 
tiempo de transmisión del SU.

AAD
Retardo promedio 
acumulado

Tiempo promedio total experimentado por el SU 
durante la transmisión de una determinada canti-
dad de información.

AAT
Throughput promedio 
acumulado

Tasa de datos efectiva transmitida por el SU du-
rante el tiempo de transmisión del SU.

Fuente: elaboración propia.

La figura 4.35 muestra un ejemplo de resultados obtenidos por el algoritmo 

asociado a las métricas de desempeño.
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Figura 4.35. Ejemplo figuras algoritmo métricas de desempeño.
Fuente: elaboración propia.

4.7.4.2 Algoritmo métricas de predicción
Como se describió en la sección 4.7.4.1, la evaluación handoffs espectrales 

se realiza a través de la matriz de entrenamiento y validación, los resultados 

corresponden a las figuras de AAD, AAFH, AAH, AAT y ABW. Los mode-

los utilizados para la predicción de canales cuentan con métricas adicionales 

asociadas a la calidad de las predicciones realizadas, como se muestra en la 

figura 4.36 las métricas son: “Figure Anticipated”, “Figure Interference”, “Figure 
Perfect”.
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Prediction
Construction

Prediction 
Figures

Figure Interference

Figure Anticipated

Figure Perfect
Directory

Figura 4.36. Algoritmo métricas de predicción.
Fuente: elaboración propia.

Los resultados corresponden a las figuras de handoffs acumulado; con inter-

ferencia, perfectos y anticipados, la tabla 4.24 presenta la descripción de las 

métricas de desempeño para las técnicas de predicción.

Tabla 4.24. Métricas de desempeño modelos de predicción.

Sigla Nombre Descripción

AAIH
Número de handoff con 
interferencia promedio 
acumulado 

Número total de handoff reactivos realizados una 
vez llega el PU, durante el tiempo de transmisión 
del SU.

AAPH
Número de handoff 
perfecto promedio 
acumulado 

Número de handoff sin interferencia realizados 
muy cerca de la llegada del PU, pero sin causar 
interferencia a este último, durante el tiempo de 
transmisión del SU.

AAUH
Número de handoff 
anticipado promedio 
acumulado 

Número de handoff sin interferencia realizados de 
forma muy anticipada a la llegada del PU, durante 
el tiempo de transmisión del SU.

Fuente: elaboración propia.

La figura 4.37 muestra un ejemplo de resultados por el algoritmo asociado a 

las métricas de desempeño.
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Figura 4.37. Ejemplo figuras algoritmo métricas de predicción.
Fuente: elaboración propia.
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4.8 No Predicton Module
La figura 4.38 presenta en detalle las variables de entrada y salida para el 

“No Prediction Module”.
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Power  Evaluation Tra�c

Directory

Figura 4.38. Descripción variables de entrada y salida “No Prediction Module”.
Fuente: elaboración propia.
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4.8.1 Movilidad espectral (No predicción)
La movilidad espectral es una función del ciclo cognitivo asociada al cambio 

de canal del SU cuando las condiciones del mismo se degradan o un PU 

aparece, también conocido como handoff espectral. Es un aspecto clave en el 

desempeño de las comunicaciones del SU en las redes de radio cognitiva, y 

la decisión espectral juega un papel muy importante para mejorar dicho des-

empeño. Las técnicas de decisión espectral establecen mediante un conjunto 

de reglas, cuando y donde realizar un handoff espectral. A continuación, se 

describe el modelo propuesto, las variables de entrada y funciones, el diagra-

ma de bloques del modelo y las métricas utilizadas.

4.8.1.1 Modelo propuesto
El análisis de movilidad espectral se realiza implementando en cascada los 

algoritmos: “Initial Parameter”, “Parameter Ranking”, “Ranking”, “Search 
Algorithm”, “Construction Figures” y “Data Export”. La figura 4.39 presenta el 

diagrama de bloques del modelo propuesto.

Multi-User
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Collaborative 
Module

Parameters
Module

Input 
Data 

Initial 

Parameter
Ranking

Movilidad Espectral

Search                        
Algorithm

Figure and Data

Project 
Information Module 

No Prediction 
Module

Figura 4.39. Modelo propuesto Movilidad espectral.
Fuente: elaboración propia.

4.8.1.2 Descripciones variables de entrada y funciones
La figura 4.40 fue elaborada con el objetivo de describir específicamente 

el control que tiene el usuario sobre las variables del modelo; presenta en 

detalle las funciones y variables de información de entrada (no contempla 
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las variables de entrada asociadas a las salidas de los módulos —esta des-

cripción se detalla en la figura 4.38 y en el diagrama de bloques de la figura 

4.40—).
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Figura 4.40. Descripción variables de entrada y salida modelo de Movilidad espectral.
Fuente: elaboración propia.
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4.8.1.3 Diagrama de bloques
La figura 4.41 presenta el diagrama de bloques del modelo de movilidad 

espectral, el cual permite identificar el flujo de datos de las funciones y la 

información tomada de los respectivos módulos. Cada uno de los colores se 

ajusta a la convención descrita en la figura 4.3.

4.8.1.4 Evaluación modelo movilidad espectral
Para la evaluación del modelo se utiliza el algoritmo métricas de desempeño 

para obtener las figuras de AAD, AAFH, AAH, AAT y ABW.

4.8.2 Feature Extraction
El Deep Learning es un método que emula el aprendizaje humano; sus mode-

los utilizan grandes volúmenes de información para extraer características 

directamente de los datos. La mayoría de los métodos de Deep Learning uti-

lizan redes neuronales. Una de las formas de aplicar una red profunda para 

la clasificación de objetos es la extracción de características, donde, las ca-

pas de las redes neuronales profundas aprenden ciertas características de 

las imágenes, las cuales se pueden se extraer en cualquier momento. Estas 

características se pueden utilizar para el entrenamiento de clasificadores ba-

sados en estrategia de machine learning como las SVM.

4.8.2.1 Modelo propuesto
El modelo consiste en implementar la red AlexNet para la selección de ca-

racterísticas. El objetivo es utilizar una red neuronal convolucional para 

extraer de una de sus capas un conjunto acertado de rasgos, y posteriormen-

te, a través de estos entrenar una máquina de soporte vectorial que permita 

desarrollar un proceso de clasificación. La figura 4.42 presenta el diagrama 

de bloques del modelo propuesto.
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Figura 4.41. Diagrama de bloques modelo no predictivo, técnica: movilidad espectral.
Fuente: elaboración propia.
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Figura 4.42. Modelo propuesto Feature Extraction.
Fuente: elaboración propia.
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4.8.2.2 Descripciones variables de entrada y funciones
La figura 4.43 fue elaborada con el objetivo de describir específicamente el con-

trol que tiene el usuario sobre las variables del modelo. Presenta en detalle las 

funciones y variables de información de entrada, no contempla las variables de 

entrada asociadas a las salidas de los módulos; esta descripción se realiza en 

detalle en la figura 4.38 y en el diagrama de bloques de la figura 4.44.
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Figura 4.43. Descripción variables de entrada y salida modelo Feature Extraction.
Fuente: elaboración propia

4.8.2.3 Diagrama de bloques
En la figura 4.44 se presenta el diagrama de bloques del modelo de extrac-

ción de características, permite identificar el flujo de datos de las funciones y 

la información tomada de los respectivos módulos; cada uno de los colores 

se ajusta a la convención descrita en la figura 4.3.
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4.8.2.4 Evaluación modelo movilidad espectral
Para la evaluación del modelo se utiliza el algoritmo métricas de desempeño 

para obtener las figuras de AAD, AAFH, AAH, AAT y ABW.
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Figura 4.44. Diagrama de bloques modelo no predictivo técnica Feature Extraction.
Fuente: elaboración propia.

4.9 Predicton Module
La figura 4.45 presenta en detalle las variables de entrada y salida para el 

“No Prediction Module”.
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Figura 4.45. Descripción variables de entrada y salida “Prediction Module”.
Fuente: elaboración propia.

4.9.1 Markov Chain
Las cadenas de Markov son una técnica estocástica basada en el análisis de 

la dinámica interna del sistema que simula la predicción del estado actual 

en un tiempo determinado a partir de los estados anteriores. Es un proceso 

aleatorio con la propiedad de que dado el valor actual del proceso Xt, los 

valores futuros Xs para s > t son independientes de los valores pasados Xu 

para u < t.
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4.9.1.1 Modelo propuesto
El modelo elaborado para la evaluación de handoff espectral utilizando 

cadenas de Markov está divido en cinco etapas, la figura 4.46 presenta el dia-

grama de bloques del modelo propuesto. La primera etapa corresponde a los 

módulos “Project Information”, “Collaborative Module”, “Multi-User Module” y 

“Parameters Module”; en la segunda se realiza una selección de canales para 

la matriz de entrada con dos algoritmos de selección, el objetivo es reducir 

los canales de estudio para mejorar los tiempos de simulación; en la tercera 

etapa se realiza la construcción de la matriz de probabilidades de transición; 

en la cuarta se evalúa la matriz de transición; y finalmente, en la quinta se 

procesan los resultados de la evaluación y se muestran de forma gráfica los 

indicadores relevantes.

Selección de canales
A través de “Channel Selection” se escogen los canales (columnas) de estudio. 

La cantidad de canales es un parámetro conocido ya que corresponde al 

valor ajustado en “Channels Number”, sin embargo, se requiere establecer 

cómo y cuales canales seleccionar; a través de “Ranking Markov” se realiza la 

selección, se utilizan dos técnicas: “Handoff  Models” y un modelo aleatorio 

“Random”.

Matriz de transición
El objetivo es determinar la matriz de probabilidades de transición, deter-

minando las probabilidades de estado actual y futuro que son necesarias 

para la implementación de las cadenas, luego son utilizadas en la matriz de 

validación para cuantificar los handoffs espectrales. Markov establece como 

requerimiento conocer el estado actual y futuro del sistema, se define un 

estado futuro como: time steps + 1.

La técnica utilizada para los estados actuales está orientada a mode-

lar cada time steps mediante un número entero positivo. Para obtener este 

modelamiento se representa cada fila de la matriz de disponibilidad de entre-

namiento como un numero binario donde cada bit corresponde a un canal, 

posteriormente, se realiza la conversión de base 2 a base 10.
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Para los estados futuros se realiza un barrido de la matriz de entrena-

miento según el conjunto de estados actuales obtenidos, se determinan los 

estados de mayor y menor ocurrencia evaluando todos los canales del time 
steps futuro, posteriormente, se normalizan los resultados.
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Figura 4.46. Modelo propuesto Markov Chain.
Fuente: elaboración propia.

4.9.1.2 Descripciones variables de entrada y funciones
La figura 4.47 fue elaborada con el objetivo de describir específicamente el 

control que tiene el usuario sobre las variables del modelo. Presenta en de-

talle las funciones y variables de información de entrada, no contempla las 

variables de entrada asociadas a las salidas de los módulos, esta descripción 

se realiza detalladamente en la figura 4.45 y en el diagrama de bloques de la 

figura 4.48.
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Figura 4.47. Descripción variables de entrada y salida modelo Markov Chain. 
Fuente: elaboración propia.

4.9.1.3 Diagrama de bloques
En la figura 4.48 se presenta el diagrama de bloques del modelo de extracción 

de características que permite identificar el flujo de datos de las funciones y 

la información tomada de los respectivos módulos, cada uno de los colores 

se ajusta a la convención descrita en la figura 4.3.

4.9.1.4 Evaluación modelo movilidad espectral
Se analizan los handoffs espectrales evaluando las probabilidades de transi-

ción sobre la matriz de validación; para la evaluación del modelo se utiliza el 
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algoritmo métricas de desempeño para obtener las figuras de AAD, AAFH, 

AAH, AAT y ABW. Adicionalmente, se vincula a la base de datos de salida 

indicadores asociados a las predicciones —exactas, buenas, regulares y ma-

las—. En la tabla 4.25 se presenta la descripción de estos indicadores.

Tabla 4.25. Indicadores de predicción Markov Chain.

Indicadores Descripción

Predicción exacta Condición donde la predicción del futuro es 100 % acertada.

Predicción buena
Condición donde la predicción del futuro tiene un acierto mayor 
al 70 % y menor al 100 %.

Predicción regular
Condición donde la predicción del futuro tiene un acierto mayor 
al 30 % y menor al 70 %.

Predicción mala
Condición donde la predicción del futuro tiene un acierto menor 
al 30 %.

Fuente: elaboración propia.
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Figura 4.48. Diagrama de bloques modelo no predictivo técnica Markov Chain.
Fuente: elaboración propia.

4.9.2 Algoritmos genéticos
Modelos de optimización inspirados en el proceso de genética y evolución. 

Un modelo simple está integrado por una población inicial de individuos y 
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un conjunto de operaciones que interactúan sobre la población para obtener 

nuevas generaciones de individuos.

La población está constituida por un conjunto de individuos representa-

do mediante un equivalente en número binario: la representación binaria se 

llama cromosoma y cada bit dentro de este se denomina gen. Un algoritmo 

genético se caracteriza a través de cinco definiciones o equivalentes genéti-

cos descritos en la tabla 4.26 (para una población específica se muestra en la 

figura 4.49).

Tabla 4.26. Equivalentes genéticos.

Parámetro genético Descripción

Alelo
Cada uno de los estados distintos que puede presentar un gen 
en una misma posición.

Gen Valor de un alelo dentro de un arreglo.

Cromosoma Colección de genes en forma de arreglo.

Posición Lugar que ocupa un gen dentro del cromosoma.

Índice Posición que tiene el individuo dentro de la población.

Fuente: elaboración propia.

1 2 3 4 5 6 7 8 9 

1
2
3
4

N

1 0 1 0 0 1 0 0 1
0 1 1 1 1 0 0 0 1
1 1 1 1 1 1 0 0 1
1 0 0 0 0 1 1 1 0

1 0 0 1 1 1 0 0 1

Alelos = {1,0}

Población

Índices

Posición

Gen

Cromosoma

Figura 4.49. Equivalentes genéticos población específica.
Fuente: elaboración propia.
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4.9.2.1 Modelo propuesto
El modelo establece una población inicial aleatoria que es verificada por 

una función de transición (matriz de transición). El objetivo es asegurar 

que la población tenga valores coherentes; la selección, cruce y mutación 

construye la población final, equivalente a los datos de entrenamiento. El 

número de generaciones (iteraciones) es una variable que se parametriza 

con criterio de prueba y error y se ajusta bajo parámetros de rendimiento 

como tiempos de simulación.

El modelo está divido en cinco etapas, la figura 4.50 presenta el diagra-

ma de bloques del modelo propuesto. La primera etapa corresponde a los 

módulos “Project Information”, “Collaborative Module”, “Multi-User Module” y 

“Parameters Module”; en la segunda se realiza una selección de canales para 

la matriz de entrada con dos algoritmos de selección, el objetivo es reducir 

los canales de estudio para mejorar los tiempos de simulación. En la terce-

ra etapa —a partir de las operaciones selección directa, cruce y mutación 

(tasas de mutación pequeñas)— se genera una población final equivalente 

a la matriz de entrenamiento; en la cuarta se evalúa la matriz de transición. 

Finalmente, en la quinta, se procesan los resultados de la evaluación y se 

muestran de forma gráfica los indicadores relevantes.

Selección de canales
A través de “Channel Selection” se escogen los canales (columnas) de estudio. 

La cantidad de canales es un parámetro conocido ya que corresponde al va-

lor ajustado en “Channels Number”, sin embargo, se requiere establecer como 

y cuales canales seleccionar; a través de “Ranking Genetic” se elige entre dos 

técnicas: “Handoff  Models” y un modelo aleatorio “Random”.

Matriz de entrenamiento
Para la matriz de entrenamiento se diseña un algoritmo genético. El modelo 

establece una población inicial aleatoria que es verificada por una función de 

transición (matriz de transición), el objetivo es asegurar que la población ten-

ga valores coherentes —la selección, cruce y mutación construye la población 

final, equivalente a los datos de entrenamiento—. El número de generacio-

nes (iteraciones) se ajusta bajo parámetros de rendimiento como tiempos de 
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simulación; es una variable que se parametriza con criterio de prueba y error. 

La figura 4.50 presenta el diagrama de flujo del algoritmo genético.
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Search                        
Algorithm

Figure and Data

Project 
Information Module 

Prediction 
Module 

Ranking
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Channel
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Genetic Algorithm

Training 
Availability Matrix

Genetic Algorithm

Ranking

Figura 4.50. Modelo propuesto Genetic Algorithm.
Fuente: elaboración propia.

4.9.2.2 Descripciones variables de entrada y funciones
La figura 4.51 fue elaborada con el objetivo de describir específicamente el 

control que tiene el usuario sobre las variables del modelo. Presenta en de-

talle las funciones y variables de información de entrada; no contempla las 

variables de entrada asociadas a las salidas de los módulos —esta descrip-

ción se realiza en detalle en la figura 4.45 y en el diagrama de bloques de la 

figura 4.52.
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Figura 4.51. Descripción variables de entrada y salida Genetic Algorithm.
Fuente: elaboración propia.

4.9.2.3 Diagrama de bloques
La figura 4.52 presenta el diagrama de bloques del modelo de extracción 

de características, permite identificar el flujo de datos de las funciones y la 

información tomada de los respectivos módulos, cada uno de los colores se 

ajusta a la convención descrita en la figura 4.3.
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4.9.2.4 Evaluación modelo movilidad espectral
Se utiliza el algoritmo métricas de desempeño para obtener las figuras de 

AAD, AAFH, AAH, AAT y ABW. Aunque no forma parte de la evaluación, 

entrega información del algoritmo genético: número de generaciones, pobla-

ción inicial, porcentaje de mutación, entre otras.
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Figura 4.52. Diagrama de bloques modelo no predictivo técnica Genetic Algorithm.
Fuente: elaboración propia.

4.9.3 Naive Bayes
Modelo que depende de la interacción de diferentes nodos para, así, generar 

aprendizaje en cada nodo involucrado en el proceso. El enfoque bayesiano 

es una técnica de aprendizaje probabilístico; provee exactas inferencias y 

estima modelos de probabilidad completa, donde el conocimiento a priori o 

los resultados son usados para construir un modelo actualizado.

Una de las principales consideraciones para la selección de modelos de 

predicción es que se tienen múltiples características o criterios que pueden 

mejorar el pronóstico. Una estructura basada en Naive Bayes asume que la 

presencia de una característica en particular no se relaciona de ninguna ma-

nera con la presencia de cualquier otra característica, incluso si una de estas 

características depende de la otra.



238

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

4.9.3.1 Modelo propuesto
El modelo propuesto toma como variable de entrada una matriz de entrenamien-

to de ocupación espectral. Antes de ser usada en el proceso de entrenamiento 

del predictor, la información espectral pasa por el bloque de procesamiento de 

información espectral, el cual convierte los datos en serie dicotómicas donde 

“0” representa ocupación del canal y “1”, disponibilidad de canal. Con este 

procesamiento de información se entrena el algoritmo Naive Bayes.

El modelo está divido en cuatro etapas, la figura 4.53 presenta el diagra-

ma de bloques del modelo propuesto. La primera etapa corresponde a los 

módulos “Project Information”, “Collaborative Module”, “Multi-User Module” 

y “Parameters Module”; la segunda consta de dos funciones: (1) “Naive Bayes 
Algorithm”, (2) “Channel allocation prediction”. Para calcular los parámetros 

de costo y gradiente que ajustan el predictor, la primera función utiliza como 

variables el vector ASINR, ETA y AP. La segunda función realiza una asig-

nación de la ocupación de canal mediante la asignación de “1” y “0”, lo cual 

genera como variable de salida una matriz de predicción de disponibilidad 

de BW. La tercera etapa compara las matrices para determinar los indicado-

res de predicción. Finalmente, en la cuarta etapa se procesan los resultados 

de la evaluación y se muestran de forma gráfica los indicadores relevantes.
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Figura 4.53. Modelo propuesto Naive Bayes.
Fuente: elaboración propia.
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4.9.3.2 Descripciones variables de entrada y funciones
La figura 4.54 fue elaborada con el objetivo de describir específicamente el 

control que tiene el usuario sobre las variables del modelo. Presenta en deta-

lle las funciones y variables de información de entrada —no contempla las 

variables de entrada asociadas a las salidas de los módulos, esta descripción 

se detalla en la figura 4.45 y el diagrama de bloques de la figura 4.55—.
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Figura 4.54. Descripción variables de entrada y salida modelo Naive Bayes.
Fuente: elaboración propia

4.9.3.3 Diagrama de bloques
La figura 4.55 presenta el diagrama de bloques del modelo de extracción de 

características, el cual permite identificar el flujo de datos de las funciones y 

la información tomada de los respectivos módulos, cada uno de los colores 

se ajusta a la convención descrita en la figura 4.3.
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4.9.3.4 Evaluación modelo movilidad espectral
Para la evaluación del modelo, se utiliza el algoritmo métricas de des-

empeño para obtener las figuras de AAD, AAFH, AAH, AAT y ABW. 

Adicionalmente, por ser un modelo que predice una matriz de disponibili-

dad, se utiliza el algoritmo de métricas de predicción descrito en la sección 

4.7.4.2. Por tanto, se incluyen las métricas AAIH, AAPH, AAUH.
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Figura 4.55. Diagrama de bloques modelo no predictivo, técnica Naive Bayes.
Fuente: elaboración propia.

4.9.4 Logistic Regression
La regresión logística tiene como principal ventaja el hecho de que se pueden 

usar diversas variables explicativas de manera simultánea. Esta caracterís-

tica permite conocer el impacto de estas sobre la variable respuesta. Si se 

examinan las variables explicativas de forma independiente, ignorando la 

covarianza entre las variables, se puede caer en confusión.

4.9.4.1 Modelo propuesto
El modelo propuesto toma como variable de entrada una matriz de en-

trenamiento de ocupación espectral. Antes de ser usada en el proceso de 

entrenamiento del predictor, los datos pasan por el bloque de procesamiento 
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de información espectral, el cual los convierte en serie dicotómicas donde 

“0” representa ocupación del canal y “1” representa disponibilidad de ca-

nal. Con este procesamiento de información se entrena el algoritmo Logistic 
Regression.

El modelo está divido en cuatro etapas, la figura 4.56 presenta el diagra-

ma de bloques del modelo propuesto. La primera etapa corresponde a los 

módulos “Project Information”, “Collaborative Module”, “Multi-User Module” 

y “Parameters Module”; la segunda consta de dos funciones: (1) “Logistic 
Regression Algorithm”, (2) “Channel Allocation Prediction”. Para calcular los 

parámetros de costo y gradiente que ajusta el predictor, la primera función 

utiliza como variables el vector ASINR, ETA y AP. La segunda función 

realiza una asignación de la ocupación de canal mediante “1” y “0”, lo cual 

genera como variable de salida una matriz de predicción de disponibilidad 

de BW. En la tercera etapa se comparan las matrices para determinar los in-

dicadores de predicción. Finalmente, en la cuarta, se procesan los resultados 

de la evaluación y se muestran de forma gráfica los indicadores relevantes.
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Figura 4.56. Modelo propuesto Logistic Regression.
Fuente: elaboración propia.
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4.9.4.2 Descripciones variables de entrada y funciones
La figura 4.57 fue elaborada con el objetivo de describir específicamente 

el control que tiene el usuario sobre las variables del modelo; presenta en 

detalle las funciones y variables de información de entrada. No contempla 

las variables de entrada asociadas a las salidas de los módulos —esta des-

cripción se detalla en la figura 4.45 y en el diagrama de bloques de la figura 

4.58—.
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Figura 4.57. Descripción variables de entrada y salida modelo Logistic Regression.
Fuente: elaboración propia.
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4.9.4.3 Diagrama de bloques
La figura 4.58 presenta el diagrama de bloques del modelo de extracción de 

características que permite identificar el flujo de datos de las funciones y la 

información tomada de los respectivos módulos; cada uno de los colores se 

ajusta a la convención descrita en la figura 4.3.

4.9.4.4 Evaluación modelo movilidad espectral
Para la evaluación del modelo se utiliza el algoritmo métricas de des-

empeño para obtener las figuras de AAD, AAFH, AAH, AAT y ABW. 

Adicionalmente, por ser un modelo que predice una matriz de disponibili-

dad, se utiliza el algoritmo de métricas de predicción descrito en la sección 

4.7.4.2. Por tanto, se incluyen las métricas AAIH, AAPH, AAUH.
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Figura 4.58. Diagrama de bloques modelo no predictivo, técnica Logistic Regression.
Fuente: elaboración propia.

4.9.5 Time Series
El objetivo del modelo de transferencia proactiva pura es hacer predicciones 

que definan el comportamiento de los PU y dar herramientas al sistema 

para reaccionar antes de que ocurra el evento de interferencia. Los modelos 

estocásticos generan nuevos datos a partir de registros históricos median-

te el ajuste de valores para diferentes retardos de varianza basados en un 
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coeficiente de correlación en serie. Existen modelos de series Temporales 

basados en AR, MA, ARMA, ARIMA y SARIMA.

4.9.5.1 Modelo propuesto
La figura 4.59 presenta el diagrama de bloques del modelo propuesto, divi-

do en cuatro etapas. La primera etapa corresponde a los módulos “Project 
Information”, “Collaborative Module”, “Multi-User Module” y “Parameters 
Module”; la segunda toma la información del canal seleccionado y aplica 

regresiones AR, MA, AR, ARMA, SARIMA para predecir la llegada de 

la PU en el canal seleccionado. La tercera etapa compara las matrices para 

determinar los indicadores de predicción. Finalmente, en la cuarta, se pro-

cesan los resultados de la evaluación y se muestran de forma gráfica los 

indicadores relevantes.
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Figura 4.59. Modelo propuesto Time Series.
Fuente: elaboración propia.
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4.9.5.2 Descripciones variables de entrada y funciones
La figura 4.60 fue elaborada con el objetivo de describir específicamente el 

control que tiene el usuario sobre las variables del modelo. Presenta en deta-

lle las funciones y variables de información de entrada —no contempla las 

variables de entrada asociadas a las salidas de los módulos, estas se detallan 

en la figura 4.45 y el diagrama de bloques de la figura 4.61—.
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Figura 4.60. Descripción variables de entrada y salida modelo Time Series.
Fuente: elaboración propia.

4.9.5.3 Diagrama de bloques
En la figura 4.61 se presenta el diagrama de bloques del modelo de extracción 

de características que permite identificar el flujo de datos de las funciones y 

la información tomada de los respectivos módulos; cada uno de los colores 

se ajusta a la convención descrita en la figura 4.3.
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4.9.5.4 Evaluación modelo movilidad espectral
Para la evaluación del modelo se utiliza el algoritmo métricas de des-

empeño para obtener las figuras de AAD, AAFH, AAH, AAT y ABW. 

Adicionalmente, por ser un modelo que predice una matriz de disponibili-

dad, se utiliza el algoritmo de métricas de predicción descrito en la sección 

4.7.4.2. Por tanto, se incluyen las métricas AAIH, AAPH, AAUH.
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Figura 4.61. Diagrama de bloques modelo no predictivo, técnica Time Series.
Fuente: elaboración propia.

4.10 Módulo Salida
La figura 4.62 presenta la interfaz correspondiente a “Output”. Este módulo 

contiene los botones “Run”, “Close” y “Update”. Para cerrar el software, an-

tes o después de la simulación, se selecciona el botón “Close”. Si el software 
presenta algún mensaje de error, advertencia o se quiere iniciar una nueva 

configuración descartando la información introducida, se selecciona el bo-

tón “Update”.

Finalmente, si todos los módulos fueron configurados correctamente, se 

habilita el botón “Run” encargado de ejecutar la simulación.
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CloseRun Update

Output

Figura 4.62. Salida MultiColl-DCRN.
Fuente: elaboración propia.

Cada modelo tiene su propio botón “Run”; el objetivo es indicarle al usua-

rio la estrategia parametrizada. En la tabla 4.27 se presenta la figura que se 

visualiza según el modelo.

Tabla 4.27. Botón “Run” según modelo.

No Prediction

Run DL

Run MC

Run GA

Run NB

Run LR

Run Time

Run MA

Run ARMA

Run ARIMA

Run SARIMA

Fuente: elaboración propia.
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5. Resultados de la investigación

Este capítulo presenta la evaluación del modelo propuesto para la asigna-

ción espectral multiusuario en redes de radio cognitiva descentralizadas. La 

presentación de los resultados está organizada en siete secciones; los títulos 

y la respectiva paginación se describen en la tabla 5.1.

Tabla 5.1. Estructura de resultados del modelo implementado.

Sección Título Páginas

5.1 Evaluación de los modelos no predictivos

5.2 Evaluación de los Modelos Predictivos

5.3 Evaluación comparativa y selección de los modelos

5.4

Evaluación del nivel de colaboración de los modelos

5.4.1 Evaluación comparativa de los niveles de 
colaboración

5.5

Evaluación con enfoque multiusuario de los modelos

5.5.1 Evaluación multiusuario Deep Learning

5.5.2 Evaluación multiusuario FFAHP

5.5.3 Evaluación multiusuario Naive Bayes

5.5.4 Evaluación multiusuario SAW

5.5.5 Evaluación multiusuario TOPSIS

5.5.6 Evaluación multiusuario VIKOR

5.5.7 Evaluación comparativa multiusuario

5.6
Evaluación integral colaborativa y multiusuario de los 
modelos

5.7 Propuesta definitiva de modelo multiusuario colaborativo

Fuente: elaboración propia.
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Las figuras 5.1 a 5.5 de la sección 5.1 describen el AAH, AAFH, ABW, 

AAD y AAT, para los modelos no predictivos: FFAHP, VIKOR, TOPSIS, 

SAW y Deep Learning, durante una transmisión de nueve minutos, con una 

traza de HT y LT, en una red GSM. Las tablas 5.2 y 5.3 muestran los por-

centajes comparativos de las métricas de evaluación para cada modelo no 

predictivo, con una traza de HT y LT, en una red GSM.

Las figuras 5.6 a 5.13 de la sección 5.3 describen el AAH, AAFH, ABW, 

AAD, AAT, AAIH, AAUH, AAPH, para los modelos predictivos: Logistic 
Regression y Naive Bayes, durante una transmisión de nueve minutos, con 

una traza de HT y LT, en una red GSM. Las tablas 5.4 y 5.5 muestran los 

porcentajes comparativos de las métricas de evaluación para cada modelo 

predictivo, con una traza de HT y LT, en una red GSM.

Las figuras 5.14, 5.16, 5.18, 5.20 y 5.22 de la sección 5.4 describen el 

AAH, AAFH, ABW, AAD, AAT, AAIH, AAUH y AAPH, para los mode-

los Deep Learning, FFAHP y Naive Bayes, durante una transmisión de nueve 

minutos, con una traza de HT, en una red GSM, para cuatro diferentes ni-

veles de cooperación entre SU (10 %, 40 %, 70 % y 100 %). Las figuras 5.15, 

5.17, 5.19, 5.21 y 5.23 de la sección 5.4 describen el AAH, AAFH, ABW, 

AAD, AAT, AAIH, AAUH y AAPH, para los modelos: SAW, TOPSIS y 

VIKOR, durante una transmisión de 9 minutos, con una traza de HT, en 

una red GSM, para cuatro diferentes niveles de cooperación entre SU (10 %, 

40 %, 70 % y 100 %). Finalmente, la figura 5.24 de la sección 5.4, describe el 

AAIH, AAUH, AAPH, para Naive Bayes, durante una transmisión de nue-

ve minutos, con una traza de HT, en una red GSM, para cuatro diferentes 

niveles de cooperación entre SU (10 %, 40 %, 70 % y 100 %). Finalmente, las 

tablas 5.6, 5.7 y 5.8 de la sección 5.4.1 muestran los porcentajes comparati-

vos de las métricas de evaluación para cada modelo.

Las figuras 5.25 a 5.36 de la sección 5.5.1 describen el AAH en modo 

convencional y en modo real para el modelo Deep Learning, durante una 

transmisión de nueves minutos, con una traza de HT y LT, en una red GSM, 

para seis diferentes estructuras multiusuario (1 SU, 2 SU, 4 SU, 6 SU, 8 SU y 

10 SU). Las figuras 5.37 a 5.48 de la sección 5.5.2 exponen el AAH en modo 

convencional y en modo real para el modelo FFAHP, durante una transmi-

sión de nueve minutos, con una traza de HT y LT, en una red GSM, para seis 
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diferentes estructuras multiusuario (1 SU, 2 SU, 4 SU, 6 SU, 8 SU y 10 SU). 

Las figuras 5.49 a 5.72 de la sección 5.5.3 detallan el AAH y el AAIH, en 

modo convencional y en modo real para el modelo Naive Bayes, durante una 

transmisión de nueve minutos, con una traza de HT y LT, en una red GSM, 

para seis diferentes estructuras multiusuario (1 SU, 2 SU, 4 SU, 6 SU, 8 SU 

y 10 SU). Las figuras 5.73 a 5.84 de la sección 5.5.4 presentan el AAH y el 

AAIH, en modo convencional y en modo real para el modelo SAW, durante 

una transmisión de nueve minutos, con una traza de HT y LT, en una red 

GSM, para seis diferentes estructuras multiusuario (1 SU, 2 SU, 4 SU, 6 SU, 

8 SU y 10 SU). Las figuras 5.85 a 5.96 de la sección 5.5.5 describen el AAH, 

en modo convencional y en modo real para el modelo TOPSIS, durante una 

transmisión de nueve minutos, con una traza de HT y LT, en una red GSM, 

para seis diferentes estructuras multiusuario (1 SU, 2 SU, 4 SU, 6 SU, 8 SU 

y 10 SU). Las figuras 5.97 a 5.108 de la sección 5.5.6 exhiben el AAH, en 

modo convencional y en modo real para el modelo VIKOR, durante una 

transmisión de nueve minutos, con una traza de HT y LT, en una red GSM, 

para seis diferentes estructuras multiusuario (1 SU, 2 SU, 4 SU, 6 SU, 8 SU y 

10 SU). Finalmente, las tablas 5.9, 5.10, 5.11 y 5.12 presentan los porcentajes 

comparativos del desempeño de cada algoritmo para el módulo multiusua-

rio en modo convencional y el modo real para 1, 2, 4, 6, 8 y 10 usuarios. Lo 

anterior, con el objetivo de analizar el nivel los escenarios multiusuarios. Las 

tablas 5.9 y 5.10 exponen la evaluación comparativa por multiusuario para 

HT y LT en modo convencional y real. La tabla 5.11 muestra la evaluación 

comparativa global por tipo de tráfico para HT y LT en modo convencio-

nal y real. Finalmente, la tabla 5.12 presenta la evaluación comparativa por 

multiusuario para las métricas de predicción de Naive Bayes. Las tablas 5.9 y 

5.10 de la sección 5.5.7, dan los porcentajes comparativos de las métricas de 

evaluación para cada modelo, traza de HT y LT.
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5.1 Evaluación de los modelos no predictivos
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Figura 5.1. AAH de modelos no predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Figura 5.2. AAFH de modelos no predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Figura 5.3. ABW de modelos no predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Figura 5.4. AAD de modelos no predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Figura 5.5. AAT de modelos no predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Tabla 5.2. Valores relativos de las métricas para 
modelos no predictivos en GSM con HT.

Métrica de 
Evaluación

FFAHP SAW TOPSIS VIKOR
Deep 

Learning

AAH 96,22 86,43 89,67 81,16 100

AAFH 96,67 82,53 87,06 77,01 100

ABW 96,86 89,34 90,56 84,01 100

AAD 98,07 100 92,94 90,46 84,94

AAT 100 87,72 91,79 79,44 96,72

Score 97,56 89,2 90,4 82,42 96,33

Fuente: elaboración propia.

Tabla 5.3. Valores relativos de las métricas de 
modelos no predictivos en GSM con LT.

Métrica de 
Evaluación 

FFAHP SAW TOPSIS VIKOR
Deep 

Learning

AAH 77,89 92,5 100 90,24 15,01

AAFH 33,33 45,45 100 33,33 2,18

ABW 99,88 100 39,07 99,78 90,18

AAD 90,75 98,27 100 98,27 32,82

AAT 99,4 100 99,86 99,93 79,75

Score 80,25 87,24 87,79 84,31 43,99

Fuente: elaboración propia.
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5.2 Evaluación de los modelos predictivos
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Figura 5.6. AAH de modelos predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Figura 5.7. AAFH de modelos predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Figura 5.8. ABW de modelos predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Figura 5.9. AAD de modelos predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Figura 5.10. AAT de modelos predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Figura 5.11. AAIH de Modelos Predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Figura 5.12. AAUH de Modelos Predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Figura 5.13. AAPH de modelos predictivos en GSM para HT y LT.
Fuente: elaboración propia.
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Tabla 5.4. Valores relativos de las métricas para 
modelos predictivos en GSM con HT.

Métrica de Evaluación Logistic Regression Naive Bayes

AAH 89,93 100

AAFH 100 91,64

ABW 100 99,98

AAD 100 89,36

AAT 100 90,21

AAIH 68,12 100

AAUH 100 98,96

AAPH 100 89,05

Score 94,76 94,90

Fuente: elaboración propia.

Tabla 5.5. Valores relativos de las métricas para 
Modelos Predictivos en GSM con LT.

Métrica de Evaluación Logistic Regression Naive Bayes

AAH 98,77 100

AAFH 26,32 100

ABW 100 99,94

AAD 99,59 100

AAT 99,85 100

AAIH 18,6 100

AAUH 100 96,67

AAPH 100 95,4

Score 80,39 99,00

Fuente: elaboración propia.
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5.3 Evaluación comparativa y selección de los modelos
A partir del análisis comparativo de las métricas obtenidas en la evaluación 

de los modelos no predictivos y predictivos se seleccionan los algoritmos para 

la evaluación del módulo colaborativo, el análisis se realiza para LT y HT.

De acuerdo con los resultados de los modelos no predictivos, para HT, 

se seleccionan las dos puntuaciones más altas, FFAHP con 97,56 % y Deep 
Learning con 96,33 %. Para LT se seleccionan las tres puntuaciones más al-

tas, TOPSIS con 87,79 %, VIKOR con 84,31 % y SAW con 87,24 %.

Según los resultados de los modelos predictivos, para HT y LT, se selec-

ciona Naive Bayes por su desempeño en las métricas de QoS y de predicción.
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5.4 Evaluación del nivel de colaboración de los modelos
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Figura 5.14. AAH con 10 %, 40 %, 70 % y 100 % de colaboración para GSM con HT.
Fuente: elaboración propia.
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Figura 5.15. AAH con 10 %, 40 %, 70 % y 100 % de colaboración para GSM con LT.
Fuente: elaboración propia.
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Figura 5.16. AAFH con 10 %, 40 %, 70 % y 100 % de colaboración para GSM con HT.
Fuente: elaboración propia.



271

Modelo de asignación espectral multiusuario para redes de radio cognitiva descentralizadas

Tiempo de Transmisión del SU (min)

H
an

do
�s

 F
al

lid
os

a. SAW en LT 

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20
SAW 10
SAW 40
SAW 70
SAW 100

Tiempo de Transmisión del SU (min)

H
an

do
�s

 F
al

lid
os

b. TOPSIS en LT 

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14
TOPSIS 10
TOPSIS 40
TOPSIS 70
TOPSIS 100

Tiempo de Transmisión del SU (min)

H
an

do
�s

 F
al

lid
os

c. VIKOR en LT 

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20
VIKOR 10
VIKOR 40
VIKOR 70
VIKOR 100

Figura 5.17. AAFH con 10 %, 40 %, 70 % y 100 % de colaboración para GSM con LT.
Fuente: elaboración propia.
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Figura 5.18. ABW con 10 %, 40 %, 70 % y 100 % de colaboración para GSM con HT.
Fuente: elaboración propia.
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Figura 5.19. ABW con 10 %, 40 %, 70 % y 100 % de colaboración para GSM con LT.
Fuente: elaboración propia.
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Figura 5.20. AAD con 10 %, 40 %, 70 % y 100 % de colaboración para GSM con HT.
Fuente: elaboración propia.
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Figura 5.21. AAD con 10 %, 40 %, 70 % y 100 % de colaboración para GSM con LT.
Fuente: elaboración propia
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Figura 5.22. AAT con 10 %, 40 %, 70 % y 100 % de colaboración para GSM con HT.
Fuente: elaboración propia.
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Figura 5.23. AAT con 10 %, 40 %, 70 % y 100 % de colaboración para GSM con LT.
Fuente: elaboración propia.
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Figura 5.24: AAIH, AAUH, AAPH con 10 %, 40 %, 70 % 
y 100 % de colaboración en GSM con HT.

Fuente: elaboración propia.
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5.4.1 Evaluación comparativa de los niveles de colaboración
Las tablas 5.6 y la 5.7 presentan los porcentajes comparativos del desempeño 

de cada algoritmo por nivel de colaboración para cada métrica de evalua-

ción. Lo anterior, con el objetivo de analizar el nivel de dependencia y aporte 

que representa la colaboración y, de acuerdo con esto, seleccionar los niveles 

de que resulten más interesantes. Tener en cuenta que para las tablas ante-

riores la comparación solo se debe realizar verticalmente, no horizontal. La 

tabla 5.8 presenta los porcentajes comparativos globales del desempeño de 

cada algoritmo por métrica de evaluación para dos niveles de colaboración 

(10 % y 100 %). Tener en cuenta que para la tabla anterior la comparación se 

puede realizar horizontalmente, y no vertical.

Tabla 5.6. Evaluación comparativa por nivel de colaboración para HT.

Nivel de 
colaboración 

HT A
A

H

A
A

F
H

A
B

W

A
A

D

A
A

T

A
A

IH

A
A

U
H

A
A

P
H

Sc
or

e

Deep L. 10 % 64,68 22,15 74,18 71,75 68 - - - 60,15

FFAHP 10 % 91,71 33,37 91,17 95,27 94,1 - - - 81,12

Naive B. 10 % 51,31 50,49 72,53 65,59 84,63 71,45 100 58,05 69,26

Deep L. 40 % 70,64 25,72 81,15 75,88 71,39 - - - 64,96

FFAHP 40 % 94,67 34,67 91,41 97,24 94,4 - - - 82,48

Naive B. 40 % 56,51 55,83 76,66 69,5 92,91 82,21 87,38 63,5 73,06

Deep L. 70 % 79,08 27,04 87,26 83,55 76,04 - - - 70,59

FFAHP 70 % 96,14 35,62 92,35 98,07 95,45 - - - 83,53

Naive B. 70 % 68,38 77,36 79,24 71,35 95,45 93,79 61,22 80,35 78,39

Deep L. 100 % 100 36,98 95,34 100 92,31 - - - 84,93

FFAHP 100 % 96,22 35,75 100 99,03 100 - - - 86,2

Naive B. 100 % 80,05 100 81,8 76,18 97,46 100 59,21 100 86,84

Fuente: elaboración propia.
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Tabla 5.7. Evaluación comparativa por nivel de colaboración para LT.

Nivel de 
colaboración HT A

A
H

A
A

F
H

A
B

W

A
A

D

A
A

T

Sc
or

e

SAW 10 % 74,71 11,11 92,29 93,18 93,6 72,98

TOPSIS 10 % 67,71 14,29 92,49 86,08 93 70,71

VIKOR 10 % 70,65 11,11 92,95 90,16 92,81 71,54

SAW 40 % 81,25 18,18 92,71 95,13 92,52 75,96

TOPSIS 40 % 80,25 33,33 98,01 90,77 99,38 80,35

VIKOR 40 % 74,71 13,33 99,18 93,92 99,93 76,21

SAW 70 % 84,42 40 99,4 97,2 99,93 84,19

TOPSIS 70 % 83,33 40 98,54 98,91 99,86 84,13

VIKOR 70 % 79,27 20 99,46 95,13 99,88 78,75

SAW 100 % 100 100 99,56 100 100 99,91

TOPSIS 100 % 87,84 66,67 99,18 99,01 97,17 89,97

VIKOR 100 % 86,67 66,67 100 97,2 99,71 90,05

Fuente: elaboración propia.

Tabla 5.8. Evaluación comparativa global por métrica de evaluación.

Métrica de 
Evaluación

D
ee

p 
10

 %

D
ee

p 
10

0 
%

F
F

A
H

P
 1

0 
%

F
F

A
H

P
10

0 
%

N
ai

ve
 1

0 
%

N
ai

ve
 1

00
 %

SA
W

 1
0 

%

SA
W

 1
00

 %

T
op

si
s 

10
 %

T
op

si
s 

10
0 

%

V
ik

or
 1

0 
%

V
ik

or
 1

00
 %

AAH HT 64,68 100 91,71 96,22 51,31 80,05 - - - - - -

AAFH HT 22,15 36,98 33,37 35,75 50,49 100 - - - - - -

ABW HT 74,18 95,34 91,17 100 72,53 81,8 - - - - - -

AAD HT 71,75 100 95,27 99,03 65,59 76,18 - - - - - -

AAT HT 68 92,31 94,1 100 84,63 97,46 - - - - - -

AAIH HT - - - - 71,45 100 - - - - - -
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Métrica de 
Evaluación

D
ee

p 
10

 %

D
ee

p 
10

0 
%

F
F

A
H

P
 1

0 
%

F
F

A
H

P
10

0 
%

N
ai

ve
 1

0 
%

N
ai

ve
 1

00
 %

SA
W

 1
0 

%

SA
W

 1
00

 %

T
op

si
s 

10
 %

T
op

si
s 

10
0 

%

V
ik

or
 1

0 
%

V
ik

or
 1

00
 %

AAUH HT - - - - 100 59,21 - - - - - -

AAPH HT - - - - 58,05 100 - - - - - -

AAH LT - - - - - - 74,71 100 67,71 87,84 70,65 86,67

AAFH LT - - - - - - 11,11 100 14,29 66,67 11,11 66,67

ABW LT - - - - - - 92,29 99,56 92,49 99,18 92,95 100

AAD LT - - - - - - 93,18 100 86,08 99,01 90,16 97,2

AAT LT - - - - - - 93,6 100 93 97,17 92,81 99,71

Score HT 
Global

60,15 84,93 81,12 86,20 69,26 86,84 - - - - - -

Score LT 
Global

- - - - - - 72,98 99,91 70,71 89,97 71,54 90,05

Fuente: elaboración propia.

5.5 Evaluación con enfoque multiusuario de los modelos
Para la evaluación del módulo multiusuario se utilizan los modelos no pre-

dictivos y predictivos de mayor puntuación para cada nivel de tráfico. Para 

el tráfico HT se utilizan el Módulo Deep Learning, el modelo predictivo Naive 
Bayes y las técnicas multicriterio FFAHP, SAW, TOPSIS, VIKOR. Se im-

plementa en modo convencional y en el modo real para 1, 2, 4, 6, 8 y 10 

usuarios, con una configuración de una sola aplicación al 100 % en un canal. 

Los resultados obtenidos se muestran desde la figura 5.25 hasta la 5.108.
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5.5.1 Evaluación multiusuario Deep Learning
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Figura 5.25. Deep Learning con 1 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.26. Deep Learning con 1 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.27. Deep Learning con 2 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.



285

Modelo de asignación espectral multiusuario para redes de radio cognitiva descentralizadas

Tiempo de Transmisión del SU (min)

H
an

do
�s

a. Modo Convencional en LT

Tiempo de Transmisión del SU (min)

H
an

do
�s

b. Modo Real en LT

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

User 1 User 2

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

User 1 User 2

Figura 5.28. Deep Learning con 2 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.29. Deep Learning con 4 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.30. Deep Learning con 4 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.31. Deep Learning con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.32. Deep Learning con 6 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.33. Deep Learning con 8 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.34. Deep Learning con 8 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.35. Deep Learning con 10 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.36. Deep Learning con 10 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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5.5.2 Evaluación multiusuario FFAHP
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Figura 5.37. FFAHP con 1 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.38. FFAHP con 1 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.39. FFAHP con 2 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.40. FFAHP con 2 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.41. FFAHP con 4 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.42. FFAHP con 4 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.43. FFAHP con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.44. FFAHP con 6 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.



302

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

Tiempo de Transmisión del SU (min)

H
an

do
�

s

a. Modo Convencional en HT

Tiempo de Transmisión del SU (min)

H
an

do
�

s

b. Modo Real en HT 

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500
User 1 User 2
User 3 User 4
User 5 User 6
User 7 User 8

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500
User 1 User 2
User 3 User 4
User 5 User 6
User 7 User 8

Figura 5.45. FFAHP con 8 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.46. FFAHP con 8 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.47. FFAHP con 10 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.48. FFAHP con 10 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.



306

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

5.5.3 Evaluación multiusuario Naive Bayes
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Figura 5.49. AAH de Naive Bayes con 1 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.50. AAH de Naive Bayes con 1 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.51. AAH de Naive Bayes con 2 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.52. AAH de Naive Bayes con 2 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.53. AAH de Naive Bayes con 4 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.54. AAH de Naive Bayes con 4 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.55. AAH de Naive Bayes con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.56. AAH de Naive Bayes con 6 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.57. AAH de Naive Bayes con 8 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.58. AAH de Naive Bayes con 8 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.59. AAH de Naive Bayes con 10 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.60. AAH de Naive Bayes con 10 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.61. AAIH de Naive Bayes con 1 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.62. AAIH de Naive Bayes con 1 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.63. AAIH de Naive Bayes con 2 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.64. AAIH de Naive Bayes con 2 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.65. AAIH de Naive Bayes con 4 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.



323

Modelo de asignación espectral multiusuario para redes de radio cognitiva descentralizadas

Tiempo de Transmisión del SU (min)

In
te

rf
er

en
ci

a

a. Modo Convencional en LT

Tiempo de Transmisión del SU (min)

In
te

rf
er

en
ci

a

b. Modo Real en LT 

0 1 2 3 4 5 6 7 8 9
0

5

10

15
User 1 User 2

User 3 User 4

0 1 2 3 4 5 6 7 8 9
0

5

10

15
User 1 User 2

User 3 User 4

Figura 5.66. AAIH de Naive Bayes con 4 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.67. AAIH de Naive Bayes con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.68. AAIH de Naive Bayes con 6 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.69. AAIH de Naive Bayes con 8 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.70. AAIH de Naive Bayes con 8 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.71. AAIH de Naive Bayes con 10 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.72. AAIH de Naive Bayes con 10 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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5.5.4 Evaluación multiusuario SAW
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Figura 5.73. SAW con 1 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.74. SAW con 1 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.75. SAW con 2 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.76. SAW con 2 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.77. SAW con 4 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.78. SAW con 4 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.79. SAW con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.80. SAW con 6 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.81. SAW con 8 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.82. SAW con 8 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.83. SAW con 10 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.84. SAW con 10 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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5.5.5 Evaluación multiusuario TOPSIS
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Figura 5.85. TOPSIS con 1 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.86. TOPSIS con 1 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.87. TOPSIS con 2 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.88. TOPSIS con 2 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.89. TOPSIS con 4 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.90. TOPSIS con 4 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.



348

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

Tiempo de Transmisión del SU (min)

H
an

do
�

s

a. Modo Convencional en HT

Tiempo de Transmisión del SU (min)

H
an

do
�

s

b. Modo Real en HT  

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500
User 1 User 2
User 3 User 4
User 5 User 6

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500
User 1 User 2
User 3 User 4
User 5 User 6

Figura 5.91. TOPSIS con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.92. TOPSIS con 6 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.93. TOPSIS con 8 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.94. TOPSIS con 8 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.95. TOPSIS con 10 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.



353

Modelo de asignación espectral multiusuario para redes de radio cognitiva descentralizadas

Tiempo de Transmisión del SU (min)

H
an

do
�

s

a. Modo Convencional en LT

Tiempo de Transmisión del SU (min)

H
an

do
�

s

b. Modo Real en LT  

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400 User 1 User 2
User 3 User 4
User 5 User 6
User 7 User 8
User 9 User 10

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500 User 1 User 2
User 3 User 4
User 5 User 6
User 7 User 8
User 9 User 10

Figura 5.96. TOPSIS con 10 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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5.5.6 Evaluación multiusuario VIKOR
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Figura 5.97. VIKOR con 1 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.98. VIKOR con 1 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.99. VIKOR con 2 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.100. VIKOR con 2 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.



358

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

Tiempo de Transmisión del SU (min)

H
an

do
�

s

a. Modo Convencional en HT

Tiempo de Transmisión del SU (min)

H
an

do
�

s

b. Modo Real en HT  

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500
User 1 User 2

User 3 User 4

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500
User 1 User 2

User 3 User 4

Figura 5.101. VIKOR con 4 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.102. VIKOR con 4 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.103. VIKOR con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.104. VIKOR con 6 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.



362

César Augusto Hernández Suárez, Diego Armando Giral Ramírez, Lizet Camila Salgado Franco

Tiempo de Transmisión del SU (min)

H
an

do
�

s

a. Modo Convencional en HT

Tiempo de Transmisión del SU (min)

H
an

do
�

s

b. Modo Real en HT  

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000
User 1 User 2
User 3 User 4
User 5 User 6
User 7 User 8

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000
User 1 User 2
User 3 User 4
User 5 User 6
User 7 User 8

Figura 5.105. VIKOR con 8 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.106. VIKOR con 8 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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Figura 5.107. VIKOR con 10 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.



365

Modelo de asignación espectral multiusuario para redes de radio cognitiva descentralizadas

Tiempo de Transmisión del SU (min)

H
an

do
�

s

a. Modo Convencional en LT

Tiempo de Transmisión del SU (min)

H
an

do
�

s

b. Modo Real en LT  

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400 User 1 User 2
User 3 User 4
User 5 User 6
User 7 User 8
User 9 User 10

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500 User 1 User 2
User 3 User 4
User 5 User 6
User 7 User 8
User 9 User 10

Figura 5.108. VIKOR con 10 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboración propia.
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5.5.7 Evaluación comparativa multiusuario
Las tablas 5.9, 5.10, 5.11 y 5.12 presentan los porcentajes comparativos del 

desempeño de cada algoritmo para el módulo multiusuario en modo con-

vencional y el modo real para 1, 2, 4, 6, 8 y 10 usuarios, con el objetivo de 

analizar el nivel de los escenarios multiusuarios. Las tablas 5.9 y 5.10 pre-

sentan la evaluación comparativa por multiusuario para HT y LT en modo 

convencional y real. La tabla 5.11 exhibe la evaluación comparativa global 

por tipo de tráfico para HT y LT en modo convencional y real. Finalmente, 

la tabla 5.12 presenta la evaluación comparativa multiusuario para las métri-

cas de predicción de Naive Bayes.

Tabla 5.9. Evaluación comparativa por multiusuario para HT.

Características 
Multiusuario 
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V
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O
R

MSU1–Convencional 100 96,22 80,05 86,43 89,67 81,16

MSU2 – Convencional 100 89,9 97,42 89,6 93,03 84,57

MSU4 – Convencional 84,65 83,65 100 79,71 87,59 75,15

MSU6 – Convencional 77,6 78,26 100 76,59 79,25 68,98

MSU8 – Convencional 74,79 74,57 100 75,36 75,68 65,58

MSU10 – Convencional 71,87 72,22 100 72,61 73,29 63,34

Score Convencional 84,82 82,47 96,25 80,05 83,09 73,13

MSU1 – Real 85,29 100 83.2 89,82 93,19 84,35

MSU2 – Real 80,94 80,7 100 83,77 92,59 84,16

MSU4 – Real 78,3 75,12 100 75,64 83,05 74,19

MSU6 – Real 78,58 77,49 100 77,7 76,42 67,27

MSU8 – Real 71,94 71,41 100 73,33 74,45 61,96

MSU10 – Real 66,12 68,97 100 70,75 70,51 60,93

Score Real 76,86 78,95 97,2 78,5 81,7 72,14

Fuente: elaboración propia.
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Tabla 5.10. Evaluación comparativa por multiusuario para LT.

Características 
Multiusuario
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MSU1–Convencional 16,23 77,89 8,41 92,5 100 90,24

MSU2 – Convencional 18,36 74,45 10,89 100 99,03 97,14

MSU4 – Convencional 13,52 72,51 15,29 100 97,7 97,23

MSU6 – Convencional 13,12 77,2 18,56 100 93,4 96,5

MSU8 – Convencional 13,66 77,91 21,41 100 94,59 96,81

MSU10 – Convencional 14,4 79,43 23,83 100 96,41 97,25

Score Convencional 14,88 76,57 16,4 98,75 96,86 95,86

MSU1 – Real 17,54 84,21 9,1 100 62,5 97,56

MSU2 – Real 13,92 73,29 13,21 100 63,82 85,17

MSU4 – Real 12,24 54,26 15,37 100 90,13 86,69

MSU6 – Real 12,61 64,6 19,96 100 81,12 69,04

MSU8 – Real 13,77 63,87 21,39 74,52 100 88,93

MSU10 – Real 14,89 73,86 26,7 83,94 100 98,26

Score Real 14,16 69,02 17,62 93,08 82,93 87,61

Fuente: elaboración propia.

Tabla 5.11. Evaluación comparativa global por tipo de tráfico.

Escenario
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AAH HT Convencional 84,82 82,47 96,25 80,05 83,09 73,13

AAH HT Real 76,86 78,95 97,2 78,5 81,7 72,14

AAH LT Convencional 14,88 76,57 16,4 98,75 96,86 95,86

AAH LT Real 14,16 69,02 17,62 93,08 82,93 87,61

Score HT Global 80,84 80,71 96,73 79,28 82,4 72,64

Score LT Global 14,52 72,8 17,01 95,92 89,9 91,74

Fuente: elaboración propia.
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Tabla 5.12. Evaluación comparativa por multiusuario 
para interferencia en Naive Bayes.

Características 
Multiusuario

A
A

IH
-H
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A
A
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A
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A
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MSU1–Convencional 52,6 75 100 100 100 44,67 78,71

MSU2 – Convencional 68,18 100 65,66 47,17 98,65 52,63 72,05

MSU4 – Convencional 86,89 82,76 52,01 26,77 91,26 79,57 69,88

MSU6 – Convencional 92,19 60 50,33 23,24 85,42 97,34 68,09

MSU8 – Convencional 95,65 50,51 47,08 22,34 82,89 100 66,41

MSU10 – Convencional 100 40,27 43,65 22,04 81,79 96,26 64

Score Convencional 82,59 68,09 59,79 40,26 90 78,41 69,86

MSU1 – Real 47,35 62,5 100 100 100 45,93 75,96

MSU2 – Real 79,89 100 49,67 40,98 97,51 58,41 71,08

MSU4 – Real 76,27 58,82 53,43 23,73 89,84 94,02 66,02

MSU6 – Real 80,54 50 49,06 23,27 83,49 100 64,39

MSU8 – Real 87,73 28,99 45,24 21,3 82,51 97,76 60,59

MSU10 – Real 100 31,65 37,35 21,26 81,01 94,98 61,04

Score Real 78,63 55,33 55,79 38,42 89,06 81,85 66,51

Score Global HT 80,61 NA 57,79 NA 89,53 NA 75,98

Score Global LT NA 61,71 NA 39,34 NA 80,13 60,39

Fuente: elaboración propia.
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6. Discusión

El modelo de asignación espectral multiusuario para redes de radio cog-

nitiva descentralizadas desarrollado está conformado por los módulos 

colaborativo, multiusuario, predictivo y el Deep Learning. Para su evaluación 

y validación se implementaron ocho métricas de evaluación:

1.	 Retardo promedio acumulado (AAD)

2.	 Handoff  fallidos promedio acumulado (AAFH)

3.	 Handoff  promedio acumulado (AAH)

4.	 Handoff  con interferencia promedio acumulado (AAIH)

5.	 Handoff perfecto promedio acumulado (AAPH)

6.	 Throughput promedio acumulado (AAT)

7.	 Handoff anticipado promedio acumulado (AAUH)

8.	 Ancho de banda promedio (ABW)

Las tablas 5.2 y 5.3 presentan la evaluación porcentual para los modelos 

no predictivos; las tablas 5.4 y 5.5 la evaluación porcentual para los mo-

delos predictivos. Las tablas 5.6, .57 y 5.8 hacen lo mismo para el módulo 

colaborativo. Las tablas 5.9, 5.10, 5.11 y 5.12 exponen los porcentajes com-

parativos del desempeño de cada algoritmo para el módulo multiusuario 

en modo convencional y real para 1, 2, 4, 6, 8 y 10 usuarios. Las tablas 

5.9 y 5.10 presentan la evaluación comparativa por multiusuario para HT 

y LT en modo convencional y real. La tabla 5.11 presenta la evaluación 

comparativa global por tipo de tráfico para HT y LT en modo convencional 

y real. Evidentemente, por mayor número de oportunidades espectrales, el 
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desempeño de las métricas presenta mejores resultados para LT. La tabla 

5.12 presenta la evaluación comparativa por multiusuario para las métricas 

de predicción de Naive Bayes.

Para la evaluación de los modelos no predictivos se implementaron cua-

tro técnicas multicriterio (FFAHP, VIKOR, TOPSIS, SAW) y Deep Learning. 

Para el nivel de tráfico HT los resultados se presentan en la tabla 5.2. De 

acuerdo con los criterios de costo y beneficio de cada una de las métricas, 

Deep Learning obtiene el mejor desempeño respecto a las técnicas multicri-

terio con una puntuación de 96,33 %; FFAHP obtiene el segundo mejor 

desempeño, TOPSIS, VIKOR y SAW el tercer, cuarto y quinto, respecti-

vamente. Respecto a las métricas de evaluación individuales, para los dos 

modelos con las puntuaciones más altas (Deep Learning y FFAHP), la dife-

rencia promedio entre métricas es de 3,38 %, exceptuando AAD, en donde 

el primero obtiene el rendimiento más deficiente —para esta métrica, la di-

ferencia es 13,13 %—. Entre el modelo con la puntuación más alta (Deep 
Learning) y la más baja (VIKOR), la diferencia promedio entre métricas es 

18,76 %, exceptuando AAD; para esta métrica, la diferencia es 5,52 %.

Para la evaluación de los modelos no predictivos se implementaron cua-

tro técnicas multicriterio (FFAHP, VIKOR, TOPSIS, SAW) y Deep Learning. 

Para el nivel de tráfico LT los resultados se presentan en la tabla 5.3. A di-

ferencia de HT y de acuerdo con los criterios de costo y beneficio de cada 

una de las métricas, Deep Learning y FFAHP obtienen el menor desempeño 

respecto a TOPSIS, VIKOR y SAW. TOPSIS obtiene la mayor puntuación 

con 87,29 %, SAW la segunda con 87,24 %, finalmente VIKOR con 84,31 %. 

Respecto a las métricas de evaluación individuales, para los tres modelos 

con las puntuaciones más altas (TOPSIS, VIKOR y SAW), no es viable ob-

tener una diferencia promedio entre métricas debido a que no se presentan 

variaciones sobre el mismo rango.

Para la evaluación de los modelos predictivos se implementaron dos 

técnicas: Logistic Regression y Naive Bayes. Para el nivel de tráfico HT los 

resultados se presentan en la tabla 5.4. Por ser técnicas de predicción, se in-

cluyen tres métricas adicionales: AAPH, AAUH y AAIH. Para el análisis de 

puntuación Naive Bayes presenta la mayor puntuación: 94,9  % —con una di-

ferencia por debajo de 1 %, respecto a Logistic Regression—. Para las métricas 
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asociadas a la predicción, Logistic Regression presenta los valores relativos 

más altos para handoff perfectos y anticipados, con una diferencia de 10,95 % 

y 1,04 % respecto a Naive Bayes. Para los handoff con interferencia Naive Bayes 
presenta los valores relativos más altos con una diferencia de 31,88 %. Para 

las demás métricas la diferencia promedio es 9,72 %, exceptuando AAD, en 

donde la diferencia es 0,02 %.

La evaluación de los modelos predictivos implementó dos técnicas: 

Logistic Regression y Naive Bayes. Para el nivel de tráfico LT los resultados se 

presentan en la tabla 5.5; por ser técnicas de predicción, se incluyen tres mé-

tricas adicionales: AAPH, AAUH y AAIH. Para el análisis de puntuación 

Naive Bayes presenta la mayor puntuación con 99,0 %, con una diferencia de 

18,61 % respecto a Logistic Regression. De las métricas asociadas a la predic-

ción, Logistic Regression presenta los valores relativos más altos para handoff 
perfectos y anticipados, con una diferencia de 3,33 % y 4,6 % respecto a Naive 
Bayes; para los handoff con interferencia Naive Bayes presenta los valores re-

lativos más altos con una diferencia de 81,4 %. Para las demás métricas la 

diferencia promedio es 0,46 %, exceptuando AAFH, en donde la diferencia 

es 73,68 %.

Para la evaluación del módulo colaborativo se utilizan los modelos no 

predictivos y predictivos de mayor puntuación para cada nivel de tráfico. 

Para el tráfico HT se utiliza Deep Learning, FFAHP y Naive Bayes, para cua-

tro niveles de colaboración: 10 %, 40 %, 70 % y 100 %. Los resultados de la 

evaluación comparativa por nivel de colaboración se presentan en la tabla 

5.6. De acuerdo con la puntuación, se evidencia una mejoría en el desem-

peño de cada algoritmo al aumentar el nivel de colaboración: el promedio 

de las diferencias con respecto al nivel colaboración anterior es 8,26 % para 

Deep Learning, 1,69 % para FFAHP y 5,86 % para Naive Bayes. En general, 

la mejoría obtenida es menor a 10 % para todos los modelos. Por tanto, un 

análisis interesante seria evaluar comparativamente cada modelo en todos 

los escenarios, teniendo en cuenta el nivel de mayor y menor colaboración, 

es decir, 10 % y 100 %.

Para la evaluación del módulo colaborativo se utilizan los modelos no 

predictivos y predictivos de mayor puntuación para cada nivel de tráfico. 

Para el tráfico LT se utilizan SAW, TOPSIS y VIKOR, para cuatro niveles 
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de colaboración: 10 %, 40 %, 70 % y 100 %. Los resultados de la evalua-

ción comparativa por nivel de colaboración se presentan en la tabla 5.7. De 

acuerdo con la puntuación, se evidencia una mejoría en el desempeño de 

cada algoritmo al aumentar el nivel de colaboración; el promedio de las di-

ferencias con respecto al nivel colaboración anterior es de 8,98 % para SAW, 

6,42 % para TOPSIS y 6,17 % para VIKOR. En general, la mejoría obtenida 

es menor a 10 % para todos los modelos. Por tanto, un análisis interesante se-

ria evaluar comparativamente cada modelo en todos los escenarios, teniendo 

en cuenta el nivel de mayor y menor colaboración, es decir, 10 % y 100  %.

Con respecto a AAH, en HT se observa que Deep Learning en 100 % tiene 

el mejor desempeño, sin embargo, esta característica solo está presente para 

este nivel de colaboración, para el resto de escenarios FFAHP presenta las 

mejores métricas; Naive Bayes, para los cuatro escenarios obtiene los niveles 

más bajos. En LT, SAW en 100 % tiene el mejor desempeño. Esta caracterís-

tica se presenta para los demás niveles de colaboración. TOPSIS obtiene las 

segundas mejores métricas excepto en el escenario del 10 %, en donde por 

una diferencia de 2,94 % gana VIKOR.

Con respecto a AAFH, en HT se observa que Naive Bayes en 100 % tiene 

el mejor desempeño. Esta característica se presenta para los demás niveles 

de colaboración. FFAHP obtiene las segundas mejores métricas excepto en 

el escenario del 100 %, en donde por una diferencia de 1,23 % gana Deep 
Learning. En LT, SAW en 100 % tiene el mejor desempeño, para este esce-

nario TOPSIS y SAW obtienen resultados iguales: el comportamiento es 

equivalente para el nivel de colaboración de 70 %. Para el nivel de colabora-

ción de 40 % y 19 % TOPSIS supera a SAW y VIKOR.

Con respecto a ABW, en HT se observa un comportamiento equivalente 

en los cuatro escenarios: FFAHP obtiene el mejor desempeño, seguido de 

Deep Learning y, finalmente, Naive Bayes. En LT, para los cuatro escenarios, 

VIKOR obtiene el mejor desempeño, seguido de SAW para 100 %, 70 %. 

Para el 40 % y 10 % —con una diferencia de 5,3 % y 0,2 % respectivamen-

te—, TOPSIS presenta mejores resultados.

Con respecto a AAD, se observa que FFAHP domina en tres de los cuatro 

escenarios de HT —solo en el nivel de colaboración de 100 %, Deep Learning 
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con una diferencia de 0,97 % presenta el mejor desempeño—; para el resto 

de niveles mantiene el segundo lugar y Naive Bayes ocupa el tercero. Para 

LT, SAW domina en tres de los cuatro escenarios —solo en el nivel de cola-

boración de 70 % TOPSIS, con una diferencia de 1,71 %, presenta el mejor 

desempeño—, para 10 % y 40 % de colaboración el comportamiento se man-

tiene; TOPSIS y VIKOR presentan el segundo y tercer desempeño.

Con respecto a AAT, para los cuatro escenarios de HT, FFAHP obtiene el 

mejor desempeño, seguido de Naive Bayes y Deep Learning. Para LT, en 10 % 

y 40 % de colaboración VIKOR, TOPSIS y SAW presentan el primer, segun-

do y tercer desempeño, respectivamente. Para 100 % y 10 % SAW toma los 

mayores niveles; por una diferencia de 2,54 % en la colaboración del 100 % 

VIKOR sobrepasa a TOPSIS; finalmente, para 10 % de colaboración, por un 

margen de 0,19 % TOPSIS supera a VIKOR.

De acuerdo con la propuesta de evaluar comparativamente el nivel de mayor 

y menor colaboración, la tabla 5.8 presenta los porcentajes comparativos glo-

bales del desempeño por métrica de evaluación, para el nivel de colaboración 

de 10 % y 100 %. En este caso, la evaluación comparativa se realiza horizontal-

mente para poder comparar los modelos en los diferentes escenarios.

Respecto a la puntuación global de la tabla 5.8, para HT con un nivel de 

colaboración de 100 %, el modelo con el mejor desempeño es el obtenido 

por el modelo predictivo Naive Bayes, con una puntuación de 86,84 % si se 

incluyen las métricas de predicción; si se excluyen del análisis, la puntuación 

para este modelo sigue siendo superior con 87,84 %. La segunda mejor pun-

tuación la obtiene la técnica multicriterio FFAHP con 86,2 %. Finalmente, 

Deep Learning se ubica en el tercer puesto con una puntuación de 84,93 %, 

respecto a la primera puntuación; el segundo y tercer modelo están por de-

bajo de 2 %. Para LT con un nivel de colaboración de 10 %, el modelo con 

mejor desempeño es el obtenido por la técnica multicriterio FFAHP con 

81,2 %; la segunda mejor puntuación la obtiene el modelo predictivo Naive 
Bayes con 69,26 % y, finalmente, Deep Learning con 60,15 %. Si se comparan 

los niveles de colaboración de 10 % y 100 %, se evidencia que Deep Learning 

y Naive Bayes mejoran considerablemente al aumentar el nivel de colabora-

ción, con una diferencia en la puntuación de 24,78 % para Deep Learning y 

17,58 % para Naive Bayes; para FFAHP la diferencia es 5,08 %.
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Respecto a la puntuación global de la tabla 5.8, para LT con un nivel de 

colaboración de 100 %, el modelo con el mejor desempeño es el obtenido 

por SAW, con una puntuación de 99,91 %; la segunda mejor puntuación la 

obtiene VIKOR con 89,97 %. En el tercer puesto con una puntuación de 

89,97 % se ubica VIKOR —respecto a la primera puntuación, el segundo y 

tercer modelo están por debajo del 10 %—. Para LT con un nivel de colabo-

ración de 10 %, el modelo con el mejor desempeño es el obtenido por SAW 

con 72,98 %, la segunda mejor puntuación la obtiene VIKOR con 71,54 % 

y, finalmente, TOPSIS con 70,71 %. Si se comparan los niveles de colabo-

ración de 10 % y 100 %, se evidencia que SAW, TOPSIS y VIKOR mejoran 

considerablemente al aumentar el nivel de colaboración, con una diferencia 

en la puntuación de 26,93 % para SAW, 19,26 % para TOPSIS y 18,51 % 

para VIKOR.

Para la evaluación del módulo multiusuario se utilizan los modelos no 

predictivos y predictivos de mayor puntuación para cada nivel de tráfico. 

Para el tráfico HT se utiliza Deep Learning, el modelo predictivo Naive Bayes y 

las técnicas multicriterio FFAHP, SAW, TOPSIS, VIKOR. Se implementa en 

modo convencional y real para 1, 2, 4, 6, 8 y 10 usuarios. Como métrica de 

evaluación se utiliza: AAH. Los resultados de la evaluación comparativa de 

acuerdo con el tipo de simulación (real y convencional) y al número de usua-

rios es presentado en la tabla 5.9. Como se identifica, conforme aumenta el 

número de usuarios el desempeño de cada uno de los modelos disminuye; 

evidentemente, las oportunidades espectrales serán menores y más difíciles 

de ubicar.

Según la puntuación obtenida en la tabla 5.9 para HT, en modo conven-

cional, el mejor desempeño es Naive Bayes, con una puntuación del 96,25 % 

seguido de Deep Learning, TOPSIS, FFAHP, SAW y VIKOR. La diferencia 

promedio de cada modelo con respecto a Naive Bayes es de 13,65 %, con 

excepción del modelo con el más bajo desempeño que es VIKOR, donde la 

diferencia es de 23,12 %. Para el modo real Naive Bayes continúa siendo el 

modelo con mejor desempeño, sin embargo, se presenta variación respecto a 

la puntuación de las demás técnicas; Deep Learning baja y se ubica en la cuar-

ta puntuación; TOPSIS, FFAHP, SAW aumentan de posición manteniendo 

el orden de clasificación, VIKOR permanece en la última posición. La 
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diferencia promedio de cada modelo con respecto a Naive Bayes es 17,48 %, 

con excepción de Deep Learning y VIKOR, donde la diferencia promedio es 

de 22,7 %.

De acuerdo con la puntuación obtenida en la tabla 5.9 para LT, en modo 

convencional, el mejor desempeño lo obtienen las técnicas multicriterio. 

A diferencia de HT, Deep Learning y el modelo predictivo Naive Bayes no 

se ubican en los primeros lugares, de igual forma. Respecto a las técnicas 

multicriterio, SAW, VIKOR y TOPSIS obtienen las mayores puntuaciones, 

mientras que FFAHP se ubica en la última posición de estas cuatro técni-

cas. El mejor desempeño es SAW, con una puntuación de 98,75 % seguido 

de TOPSIS y VIKOR con 96,86 % y 95,82 %, respectivamente; FFAHP con 

76,57 %. Las puntuaciones más bajas son para Naive Bayes y Deep Learning 

por debajo de 17 %; la diferencia de cada modelo con respecto a SAW está 

por debajo de 3 % para TOPSIS y VIKOR; para FFAHP es de 22,18 %, para 

Naive Bayes de 75,46 % y para Deep Learning de 78,92 %. Para el modo real 

el comportamiento es proporcional, la única diferencia está en función de 

la segunda y tercera posición; para este caso, VIKOR adquiere el segun-

do mejor rendimiento y TOPSIS baja a la tercera posición, Deep Learning y 

Naive Bayes se mantienen en la quinta y sexta posición. El mejor desempeño 

es SAW, con una puntuación de 93,08 % seguido VIKOR y TOPSIS con 

87,61 % y 82,93 %, respectivamente; FFAHP con 69,02 %. Las puntuaciones 

más bajas son para Naive Bayes y Deep Learning con puntuaciones debajo de 

20 %; la diferencia de cada modelo con respecto a SAW está por debajo de 

20 % para las técnicas multicriterio y de 75,46 % y 78,92 % para el modelo 

predictivo y Deep Learning, respectivamente.

La tabla 5.11 presenta la evaluación comparativa de acuerdo con el núme-

ro de handoff para para HT y el LT, en modo convencional y real. Para HT 

la mayor puntuación la tiene Naive Bayes. Adicionalmente, esta técnica de 

predicción tiene otra característica relevante frente a las demás: el desempeño 

aumenta para un modelo realista, como se espera de tal escenario, con 

usuarios que ingresan y salen en tiempo aleatorio; las métricas de beneficio 

deberían disminuir, sin embargo, aunque se presenta un incremento en el 

desempeño, es tan solo de 0,95 %, lo cual permite establecer que esta estra-

tegia no se ve afectada por la incorporación de usuarios aleatorios. Para el 
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resto de estrategias, la variación del escenario realista respecto al conven-

cional es inferior a 2 % para SAW y TOPSIS, para FFAHP es de 3,52 % y, 

finalmente, la mayor variación la tiene Deep Learning con 7,96 %. En LT 

las mejores puntuaciones son para las técnicas multicriterio SAW, VIKOR, 

TOPSIS y FFAHP con 95,92 %, 91,74 %, 89,9 % y 72,8 %, respectivamente. 

Deep Learning y Naive Bayes obtienen puntuaciones debajo de 20 % respecto a 

las variaciones del escenario realista frente al convencional; la mayor varia-

ción se presenta en las técnicas multicriterio: 13,93 % para TOPSIS, 8,25 % 

para VIKOR, 7,55 % para FFAHP y 5,67 % para SAW, las variaciones de 

Deep Learning y Naive Bayes están por debajo de 1 %, aunque al igual que en 

HT, Naive Bayes presenta un incremento en el desempeño.

De acuerdo con la métrica de costo acumulativa analizada para diferentes 

modelos de toma de decisiones —durante nueve minutos de transmisión, en 

modo convencional y real—, se presenta una disminución en el desempeño 

de la técnica multicriterio en términos de aumento del número de usuarios: 

el mejor desempeño con el menor número de handoff acumulados es para 

el escenario con 1 SU, y el desempeño más bajo con el mayor número de 

handoff acumulados es para el escenario con 10 SU. Para escenarios inter-

medios, durante los primeros tres minutos se presentan variaciones en el 

orden de desempeño, después del tercer minuto, los escenarios con el mayor 

incremento promedio del número de handoff son los rangos de 2 SU a 5 SU.

El desempeño en modo real es menor al modo convencional, la incor-

poración de usuarios aleatorios reduce las oportunidades espectrales y por 

tanto son más difíciles de ubicar. Respecto a los modelos multicriterio imple-

mentados para la toma de decisiones, se evidencia que conforme aumenta 

el número de usuarios el desempeño de las técnicas de toma de decisiones 

disminuye. En general, TOPSIS proporciona las mejores métricas con los 

niveles más bajos de handoff totales, el mejor indicador se obtiene para el 

escenario con 1 SU.
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7. Conclusiones

7.1 Generales
La presente investigación desarrolla un modelo de asignación espectral mul-

tiusuario para redes de radio cognitiva descentralizadas. Para la asignación 

del espectro se implementan cuatro módulos: el módulo colaborativo, el 

módulo multiusuario, el módulo predictivo y el módulo Deep Learning. El 

módulo colaborativo es una estructura bidireccional de información; el mó-

dulo multiusuario gestiona el acceso de múltiples usuarios en dos tipos de 

modos: convencional y real; el módulo predictivo analiza aplicaciones con 

sensibilidad alta al retardo y, finalmente, el módulo Deep Learning extrae de 

una red neuronal convolucional las características de las oportunidades es-

pectrales. El modelo propuesto, selecciona de forma dinámica e inteligente 

la oportunidad espectral con base en los criterios: AP del canal, tiempo esti-

mado de disponibilidad del canal, SINR y BW. La validación del desempeño 

del modelo propuesto se realizó por medio de datos reales de ocupación 

espectral capturados en experimentos realizados en la banda de frecuencia 

GSM y Wi-Fi. Sin embargo, la aplicación del algoritmo también se puede 

extender a otras bandas de frecuencia siempre que se cuente con la informa-

ción estadística necesaria y suficiente.

De acuerdo con los resultados de los modelos no predictivos, Deep Learning 

presenta un alto desempeño (el segundo mejor, 1 % por debajo de FFAHP) 

para los niveles de tráfico alto y un bajo desempeño (el peor) para los nive-

les de tráfico bajo. Su desempeño en el módulo colaborativo es congruente 

para los niveles de tráfico alto, evidenciando un buen rendimiento —alrede-

dor de 85 % a tan solo 1 % de FFAHP y 2 % de Naive Bayes—. Aunque era 
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lógico obtener los mejores resultados para niveles de colaboración completa 

(100 %), dado que al tener mayor información se toman mejores decisiones, 

es significativo observar que con una reducción de 30 % en el nivel de co-

laboración, los resultados en la toma de decisiones se reducen tan solo 9 % 

para el caso de Naive Bayes y 15 % para Deep Learning. Lo anterior permite 

ajustar el nivel de procesamiento sin sacrificar mucho rendimiento. Para los 

niveles de tráfico bajo, SAW logra un rendimiento excepcional de casi 100 % 

con 100 % de colaboración, reduciéndose en 15 % al caer la colaboración 

a 70 %; mientras que TOPSIS se mantiene más estable al pasar de 90 % de 

rendimiento con 100 % de colaboración a 85 % con 70 % de colaboración. 

Lo anterior permite inferir que a mayor número de oportunidades espectra-

les mejor desempeño por parte de los modelos de asignación espectral; este 

mayor número de oportunidades espectrales permite una mayor flexibilidad 

a la hora de balancear el rendimiento y costo computacional.

Con respecto al módulo multiusuario se pudo evidenciar que al aumentar 

el número de usuarios el desempeño de cada uno de los modelos disminuye. 

Naive Bayes responde muy bien al tráfico multiusuario, Deep Learning no se ve 

afectado por escenarios realistas y las técnicas multicriterio FFAHP, SAW, 

TOPSIS y VIKOR presentan buen rendimiento para escenarios con tráficos 

bajos. También es interesante observar como en los niveles de tráfico alto 

el rendimiento de las estrategias evaluadas se reduce alrededor de 25 % al 

incorporar usuarios aleatorios, mientras que para tráfico bajo el rendimiento 

solo se ve afectado alrededor de 12 % en el mismo escenario de usuarios 

aleatorios. Lo anterior evidencia la importancia de realizar simulaciones en 

entornos más próximos a la realidad, ya que los resultados se pueden ver 

afectados con magnitudes significativas. Ahora, teniendo solo en cuenta la 

cantidad de usuarios simultáneos se evidencia que, en efecto, a mayor núme-

ro de usuarios menor nivel de desempeño; sin embargo, la reducción en este 

caso es mejor a la observada para el caso de usuarios aleatorios, para tráfico 

alto es tan solo de 10 % y para tráfico bajo no se evidencia afectación alguna. 

En general, cada estrategia se desempeña de forma satisfactoria en determi-

nados escenarios; para mejorar el rendimiento en el acceso multiusuarios, 

una propuesta interesante sería combinar las estrategias implementadas o 

desarrollar un multimodelo con un módulo adaptativo que seleccione la 
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mejor estrategia con base en el escenario y aplicación que se esté ejecutando 

en dicho momento.

Con respecto al nivel de interferencia para la estrategia Naive Bayes —la 

única predictiva— en los resultados presentados, se evidencia que a mayor 

número de usuarios simultáneos mayor nivel de interferencia, llegando a 

aumentar alrededor de 20 % para el caso de diez usuarios simultáneos. Lo 

anterior hace más relevante el tema de la interferencia a la hora de selec-

cionar una estrategia, sobre todo en aplicaciones sensibles al retardo y la 

calidad del canal como el caso de las comunicaciones de voz.

Con respecto al módulo Deep Learning, se utiliza como técnica de ex-

tracción de características para el volumen de datos obtenidos a partir de 

las mediciones realizadas. Los resultados de las múltiples simulaciones en 

los diferentes escenarios permiten afirmar que el modelo propuesto tiene 

un buen rendimiento en redes de alto tráfico, ubicándolo como la segunda 

mejor estrategia, con una diferencia de 1,23 % respecto al modelo con mejor 

comportamiento; para ambientes colaborativos se evidencia una mejoría de 

acuerdo con los niveles de colaboración establecidos. En promedio, las dife-

rencias con respecto al nivel colaboración anterior obtenido fue de 8,26 %; 

finalmente, los escenarios multiusuarios no se ven afectados por la inclusión 

de usuarios aleatorios en tiempo aleatorios. Sin embargo, cada una de las 

métricas descritas previamente son tomadas de redes con tráfico alto; el mó-

dulo Deep Learning no es una buena estrategia para análisis de escenarios con 

tráficos bajos.

7.2 Contribuciones de la investigación
•	 Diseño y desarrollo de un modelo de asignación espectral multiusuario 

para mejorar el desempeño de las redes de radio cognitiva descentralizadas.

•	 Diseño y desarrollo de un módulo colaborativo para el intercambio de 

información entre SU con el objetivo de realizar una asignación espectral 

multiusuario inteligente.

•	 Diseño y desarrollo de un módulo multiusuario para el acceso simultáneo 

de varios SU a las oportunidades espectrales.
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•	 Diseño y desarrollo de un módulo predictivo que reduce el nivel de inter-

ferencia entre los SU y los PU.

•	 Evaluación y validación de los algoritmos de decisión espectral desarrolla-

dos, con datos de ocupación espectral reales capturados en una campaña 

de medición realizada en la ciudad de Bogotá, Colombia.

•	 Evaluación y validación de los algoritmos desarrollados, en una red GSM.

•	 Evaluación y validación de los algoritmos desarrollados, con dos niveles 

de tráfico de PU: alto y bajo.

•	 Evaluación y validación de los algoritmos desarrollados, en cuatro 

diferentes escenarios de evaluación: GSM-LT-Convencional, GSM-HT-

Convencional, GSM-LT-Real, GSM-HT-Real.

•	 Evaluación y validación de los algoritmos desarrollados bajo ocho mé-

tricas de evaluación: AAH, AAFH, ABW, AAD, AAT, AAIH, AAUH y 

AAPH.

•	 Determinación de cuatro criterios de decisión, seleccionados cuidadosa-

mente, para elegir la mejor oportunidad espectral. Todos los algoritmos 

desarrollados trabajaron con los mismos cuatro criterios. Cada uno es 

calculado a partir de los datos de ocupación espectral reales.

•	 Diseño y desarrollo de una herramienta de simulación novedosa para 

evaluar el desempeño de algoritmos de asignación espectral multiusuario 

para DCRN, basada en datos de ocupación espectral reales. La herra-

mienta permite modificar varios parámetros de interés para analizar el 

comportamiento del desempeño de cada algoritmo bajo diferentes situa-

ciones, entre los que se destaca el nivel de colaboración y el número de 

SU simultáneos, denominada “MultiColl-DCRN”.

7.3 Investigación futura
De acuerdo con los resultados obtenidos en el modelo de asignación es-

pectral concluimos que no hay un algoritmo que se desempeñe de forma 

excelente en todas las métricas de evaluación y para todos los escenarios de 

simulación (nivel de tráfico, tipo de aplicación, tipo de red). Cada algoritmo 

se puede desempeñar de forma satisfactoria en determinadas métricas de 
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evaluación y para ciertos escenarios, por lo que una propuesta interesante 

es incluir en el modelo desarrollado un módulo de adaptación que genere 

recomendaciones o modificaciones de acuerdo con los requerimientos de la 

aplicación que se esté desarrollando durante la comunicación del usuario 

secundario.

Como trabajo futuro se proponen tres directrices. La primera consiste en 

realizar un módulo adaptativo que seleccione el mejor modelo de selección 

espectral de acuerdo con los requerimientos de la aplicación en curso. La 

segunda consiste en una evaluación y validación de los algoritmos de apren-

dizaje autónomo más relevantes en la literatura actual, por ejemplo, el uso 

de SVM para realizar procesos de clasificación y aprendizaje por refuerzo 

para desarrollar la parte de adaptación. La tercera consiste en realizar una 

evaluación y validación con equipos de radio cognitiva que emulen una red 

de radio cognitiva en lugar de simulaciones, con datos de ocupación espec-

tral reales.
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