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1. Introduccion

El crecimiento de las aplicaciones inaldmbricas plantea nuevos desafios a los
futuros sistemas de comunicacion. Segun CISCO, el trafico de datos méviles
ha crecido 18 veces en los ultimos cinco afios y se espera que el trafico total de
datos moviles crezca a 49 exabytes por mes en 2021 (CISCO, 2021; Hernandez
et al., 2017; Hernandez et al., 2015d; Kumar et al., 2016; Tahir et al., 2017,
Wang y Liu, 2011). Lo anterior, sumado al hecho de que las politicas de asig-
nacion actuales son fijas y reguladas por el estado (Cruz-Pol et al., 2018), han
generado que el espectro radioeléctrico presente problemas de escasez.

Sin embargo, estudios temporalesy geograficos realizados porla Comision
Federal de Comunicaciones de Estados Unidos (Federal Communications
Commission, 2003) muestran que gran parte del espectro de radiofrecuencia
esta siendo ineficientemente utilizado. Adicionalmente, mediciones realiza-
das en investigaciones recientes (CISCO, 2021; Tahir ez al., 2017) evidencian
que mas del 70% del espectro esta disponible (Federal Communications
Commission, 2003; IEEE, 2008). Como resultado del uso ineficiente del
espectro radioeléctrico existen bandas saturadas y otras poco utilizadas.

El uso ineficiente del espectro ha promovido estrategias para mitigar este
problema (Abbas et al., 2015). La Radio Cognitiva (CR) surge como una tec-
nologia para resolverlo mediante acceso dindmico al espectro, caracterizada
por percibir, aprender, planificar (toma de decisiones) y actuar de acuerdo
con las condiciones actuales de la red.

La Administracion Nacional de la Informaciéon y las Comunicaciones
define lIa CR como un sistema que detecta su entorno electromagnético de
operacion y ajusta, modifica de forma dinamica y autbnoma sus parametros
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para maximizar el rendimiento, reducir la interferencia y facilitar la inte-
roperabilidad. A diferencia de las redes tradicionales, en la CR existen dos
tipos de usuarios: el usuario que de forma licenciada accede a las bandas de
frecuencia, denominado licenciado o Usuario Primario (PU), y el usuario
no licenciado o Usuario Secundario (SU) que utiliza el espectro de forma
oportunista (Akyildiz ez al., 2008; Akyildiz et al., 2006).

El objetivo general de una Red de Radio Cognitiva (CRN) consiste en que
el SU acceda de manera oportunista a un canal de frecuencia disponible en
una banda licenciada, sin generar interferencia al PU (Akyildiz et al., 2008;
Akyildiz et al., 2006; Cheng et al., 2016). Lo anterior se logra a partir de un
modelo de gestién denominado ciclo cognitivo, el cual es una estructura de
radio que puede reconfigurarse mediante un proceso continuo de conciencia
(tanto de si mismo como del mundo exterior), percepcion, razonamiento
y toma de decisiones (Haykin, 2005). El ciclo cognitivo se caracteriza por
cuatro funciones principales: deteccion del espectro, decisién de espectro,
movilidad espectral y comparticiéon de espectro.

La decisién del espectro es el nucleo de una CRN; de forma eficiente y
sin causar ningun tipo de interferencia establece mediante un conjunto de
técnicas el proceso para seleccionar la oportunidad espectral mas adecuada
de acuerdo con los requerimientos del SU y las condiciones del ambiente de
radio. Un incorrecto proceso de toma de decisiones afecta los parametros de
la red, como por ejemplo, la tasa de cambios de canal o handoff espectral.
Sin embargo, a pesar de su relevancia no es una funcion tan explorada como
la deteccién de espectro.

En las CRN, el proceso de toma de decisiones se desarrolla de acuerdo
con la arquitectura de la red, la cual se divide en arquitectura con o sin in-
fraestructura (Hasegawa et al., 2014; Paez et al., 2017). En general, las CRN
basadas en infraestructura se clasifican a su vez en centralizadas o descentra-
lizadas, mientras las CRN sin infraestructura se denominan redes distribuidas
(Masonta et al., 2013). De acuerdo con lo anterior, las CRN pueden operar
con varios enfoques, cada uno de los cuales presenta ventajas y desventajas;
su utilizacién radica en funcion de la aplicaciéon (Darak ez al., 2014).
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Las Redes de Radio Cognitivas Descentralizadas (DCRN) son un mo-
delo hibrido caracterizado por utilizar en conjunto las ventajas de las redes
centralizadas y distribuidas. Las arquitecturas descentralizadas cuentan con
infraestructura y su implementacion es sencilla, entre otras ventajas (Darak
et al., 2014) por lo cual, son opciones eficientes para redes de gran tamafio
(Darak ez al., 2017).

1.1 Problema y motivacion del proyecto de investigacion

Durante la ultima década las investigaciones sobre CRIN centraron sus
esfuerzos en funcion de deteccion del espectro, razon por la cual, existen
diversos desarrollos al respecto en la literatura actual (Al-Amidie et al.,
2019; Ali y Hamouda, 2017; Bhowmik y Malathi, 2019; Youssef ez al., 2018;
Zhang et al., 2017). Por el contrario, la decisiéon de espectro (toma de deci-
siones) ha sido poco estudiada a pesar de su importancia en el mejoramiento
del desempefio de las redes inalambricas (Martins y Andrade, 2018; Rizk et
al., 2018; Tripathi et al., 2019). Debido a la relevancia dentro de las CRN,
se requiere proponer metodologias que orienten sus objetivos al proceso de
toma de decisiones.

El componente basico de una decision cognitiva esta en funcion del apren-
dizaje del ambiente, el razonamiento y la conciencia. Las técnicas de decision
buscan maximizar de forma global —o por 1o menos local— el uso del espec-
tro y los parametros de funcionamiento (Tabassam y Suleman, 2012). Los
modelos de toma de decisidon cuentan con multiples técnicas, algunas de-
terministicas y otras probabilisticas, sus aplicaciones son diversas y abarcan
grandes areas de las ciencias. En redes de telecomunicaciones, las teorias de
toma de decisidon permiten solucionar problemas de asignacién, sin embar-
g0, como muchas areas de la ingenieria se ven limitadas por el sistema de
aplicacion. En el caso de las CRN, los modelos desarrollados se esfuerzan
por solucionar problemas de arquitecturas centralizadas (Deng ez al., 2018;
Iftikhar et al., 2019; Salgado et al., 2016a; Tripathi et al., 2019), por tanto, es
necesario identificar modelos que mejoren el proceso de toma de decisiones
para otro tipo de arquitecturas con infraestructura como las descentralizadas.

Las redes centralizadas son arquitecturas con infraestructura que ope-
ran bajo un coordinador central; la informacion observada por cada SU
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alimenta la base central, de forma que esta pueda tomar decisiones para
maximizar los pardmetros de comunicacion. Aunque la observacion y co-
nocimiento global de la red presenta ventajas, para sistemas a gran escala y
aplicaciones en redes de seguridad publica no es la mejor opcion: el aumento
en los costos de medicion, la complejidad del sistema, la cantidad de infor-
macion que debe controlar sumado al desequilibrio y potencial caos si la
estacion base llega a fallar (vulnerabilidad), la convierte en una arquitectura
no factible para todas las estructuras de CRN (Pankratev et al., 2019). Las
redes distribuidas, como por ejemplo, las redes moviles ad hoc o Mobile ad
hoc network (MANET), se caracterizan por su alta movilidad, autonomia,
adaptacion e independencia; sus aplicaciones se encuentran en escenarios
que involucran redes ad hoc vehiculares (VANET) (Bujari et al., 2018), vehi-
culos aéreos no tripulados (Bujari ez al., 2018), vigilancia urbana y misiones
de busqueda o rescate (Dhamodharavadhani, 2015). Sin embargo, la falta
de infraestructura, la topologia dindmica, la implementacion rapida y los
entornos hostiles de aplicacién hacen que la MANET sea vulnerable a una
amplia gama de ataques de seguridad (Abass et al., 2017; Kongsiriwattana
y Gardner-Stephen, 2017; Vasudeva y Sood, 2018). Ademas, el consumo
de energia y retardo es alto (Kongsiriwattana y Gardner-Stephen, 2017), el
ancho de banda (BW) es bajo al igual que su rendimiento por las frecuentes
fallas de enlace (Dhamodharavadhani, 2015; Goswami, 2017). La anterior
problematica puede ser solucionada si se distribuye la responsabilidad de la
informacion en diferentes puntos de control, criterio base de las DCRN.

En las CRN, los SU deben tomar decisiones inteligentes en funcion de la
variacion del espectro y de las acciones adoptadas por otros SU. Desde esta
dinamica, la probabilidad de que dos o mas SU elijjan el mismo canal es alta,
especialmente cuando el nimero de SU es mayor que el numero de canales
disponibles —debido a la externalidad negativa de la red, cuantos mas SU
seleccionen el mismo canal, menor sera la utilidad que cada SU pueda obte-
ner y el numero de interferencias por acceso simultaneo serd mayor (Abbas
et al., 2015)—. Para modelar la red bajo parametros practicos en la realidad
es necesario analizar el acceso de multiples usuarios de forma simultanea.

El proceso de toma de decisiones entre usuarios que interactian en un
mismo entorno (multiusuario) es un problema de optimizacidén multiobjetivo
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que generalmente es dificil de analizar y resolver con los modelos clasicos
de optimizacion (Kaur er al., 2018a; 2018b). Para redes centralizadas y dis-
tribuidas (redes ad hoc), se encuentran metodologias con buenos resultados
(Masonta et al., 2013; Roy et al., 2017; Yu y Xue, 2018); sin embargo, para
las DCRN son pocos los trabajos de investigacion realizados (Joda y Zorzi,
2015; Rizk et al., 2018) y las propuestas disponibles suponen que no existe
externalidad de red, es decir, que la recompensa de un SU no se ve afectada
por las acciones de otros SU. Por tanto, para obtener un modelo de red mas
practico en la realidad, es necesario tener en cuenta como afectan las deci-
siones tomadas por un SU, a los demas usuarios de la red.

De acuerdo con lo relevante del proceso de toma de decisiones, los mul-
tiples inconvenientes de las arquitecturas centralizadas y distribuidas (que
pueden ser solucionados al descentralizar la responsabilidad en diferentes
puntos de control) y la necesidad de incluir el efecto de las decisiones de
los usuarios sobre la utilidad de los otros (para poder obtener validaciones
reales mas utiles), este proyecto tiene como desafio dotar los nodos de una
red descentralizada con la capacidad de aprender del entorno, proponiendo
estrategias que permita a los SU tomar decisiones e intercambiar informa-
cion de forma cooperativa o competitiva. De acuerdo con cada uno de los
elementos y problemas expuestos, la pregunta de investigacion planteada es
(como y en qué medida se puede reducir la tasa de sandoff espectral en redes
de radio cognitiva descentralizadas con un enfoque multiusuario?

1.2 Justificacion

A medida que aumenta la demanda de tecnologias inalambricas las poli-
ticas tradicionales de regulacion del espectro van quedando obsoletas. El
numero de dispositivos conectados a internet ha aumentado en los ultimos
afios y se proyecta que superard los 20 mil millones de dispositivos para
2020 (Boorstin, 2016; CISCO, 2021). Adicionalmente, el uso de bandas de
frecuencia como ISM (industrial, cientifica y médica) y las asignadas a co-
municaciones moviles han experimentado una fuerte demanda de servicios,
como unidades remotas, internet de las cosas y sistemas de audio y video
(Martins y Andrade, 2018).
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Las CRN surgieron como una solucion a los problemas de asignacion
fija y escasez de espectro a partir del uso eficiente del recurso espectral. La
decision espectral es una funcion clave en los sistemas cognitivos dado que
proporciona herramientas para seleccionar la oportunidad espectral (canal
de frecuencia) mas adecuada de acuerdo con los requerimientos del usuario,
las restricciones del ambiente de radio y los efectos producidos por las accio-
nes adoptadas por otros usuarios de la red.

El proceso de toma de decisiones se desarrolla de acuerdo con la arquitec-
tura de implementacion —centralizada, distribuida y descentralizada—. Las
redes descentralizadas surgen como un modelo hibrido entre redes centrali-
zadas y distribuidas. A pequefia escala se comportan como una arquitectura
centralizada al formar redes individuales con infraestructura; a gran escala
generan una red distribuida, conectando a través de enlaces adicionales las
diferentes redes individuales. Estas caracteristicas permiten configurar una
red con infraestructura segura y de facil implementacion (Darak et al., 2017,
Pankratev ef al., 2019). En general, la red descentralizada es una opcion efi-
ciente para aplicaciones de gran tamafio y, ademas, es la mejor alternativa
para redes de seguridad publica, servicios de redes sociales y redes de senso-
res inteligentes, entre otras (Darak ez al., 2017; Pankratev et al., 2019).

Actualmente las investigaciones se enfocan en modelos con un tnico SU,
lo cual no resulta practico en la realidad. Por tal razon, se hace imperativo
involucrar un enfoque multiusuario tanto en el disefio como en la evaluacion
y validacion de esta propuesta.

1.3 Objetivos

El objetivo general del proyecto de investigacidn es desarrollar un modelo de
decision espectral multiusuario para mejorar el desempeno de redes de radio
cognitiva descentralizadas, a partir de los siguientes objetivos especificos:

1. Desarrollar un ambiente de simulacion para redes de radio cognitiva
descentralizadas basado en datos reales de ocupacion espectral.

2. Disefiar un modelo de decision espectral multiusuario que integre las
caracteristicas y el comportamiento de las redes de radio cognitiva
descentralizadas.
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3. Validar el modelo de decision espectral multiusuario propuesto por me-
dio de simulaciones que integren las caracteristicas de las redes de radio
cognitiva descentralizadas y datos reales de ocupacion espectral, para
confrontarlo con modelos actuales.

1.4 Alcance y limitaciones

Son diversas las caracteristicas; fendmenos, indicadores o métricas que se
pueden analizar en el proceso de toma de toma de decisiones para DCRN.
El andlisis particular de algunas de ellas corresponde a tesis de doctorado,
por tanto, a continuacion, describimos las principales limitaciones y alcan-
ces del presente proyecto de investigacion.

Toma de decisiones cooperativa

* La decision sobre el espectro implica tres funciones principales: ca-
racterizacién, selecciéon y reconfiguracion. Nuestra investigacion esta
enfocada en realizar y evaluar un modelo para seleccion del espectro.
Caracterizacion y reconfiguracion son temas para otros proyectos.

* Los criterios en el proceso de toma de decisiones corresponden a indicado-
res asociados a Calidad de Servicio (QoS), los parametros iniciales seran:
Probabilidad de disponibilidad (AP), Tiempo medio de disponibilidad
(ETA), Relacién senal a ruido mas interferencia (SINR) y BW (Ancho
de banda). Posteriormente, se analizara si se incluyen otros parametros.

» Tuvimos en cuenta modelos de tipo cooperativo (colaborativo) sin dejar
de considerar, al menos, una de las propuestas de tipo no cooperativo.

* La colaboracion también puede llegar a darse entre los algoritmos utiliza-
dos dentro del modelo.

Modelos multiusuario

* Con el objetivo de mejorar el algoritmo de toma de decisiones, la infor-
macién a los datos de ocupacion espectral registrada por cada SU durante
los ultimos k periodos.
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* El numero de usuarios incluidos dentro del ambiente de simulacién esta-
ra en funcién de las capacidades de computo de los equipos con los que
se cuenten para la investigacion.

Caracteristicas de la red y métricas de desempefio

» El nimero de nodos de la red propuesta se determinara a partir del nivel
de procesamiento del equipo de computo con el que se cuente.

* No se cuenta con una red descentralizada para la medicién de datos, por
tanto, y teniendo en cuenta que a pequefia escala un modelo descentra-
lizado se comporta como una arquitectura centralizada, la informacion
sera tomada de una red centralizada, se caracterizaran los nodos indivi-
duales, y posteriormente se conectaran entre si.

Solo se utilizara en el ambiente de simulacidén redes con infraestructura.
Esta investigacion no involucrard en su andlisis estructuras de tipo distri-
buido como las redes ad hoc.

Los canales de frecuencia se dividiran en n canales con el mismo BW.

Se espera mejorar un numero considerable de problemas para el proceso
de toma de decisiones en DCRN; sin embargo, por la magnitud, comple-
jidad del proyecto y por el requerimiento computacional exponencial que
se requiere, esta investigacion se compromete a mejorar el indicador de al
menos una caracteristica relevante en el desempeno de la red.

La metodologia propuesta para el analisis de toma de decisiones no con-
templa modelos de propagacién. Se asume que la distancia entre SU es lo
suficientemente cercana para que el desvanecimiento no afecte la senal.

La metodologia propuesta para el andlisis de toma de decisiones no con-
templa enrutamiento.

El andlisis de pérdida de paquetes se tendrd en cuenta para los time step
en donde el algoritmo no encuentra un canal objetivo para transmitir la
informacién dentro del total de canales. No corresponde a un indicador
del proceso de toma de decisiones, sin embargo, si esta caracteristica se
presenta frecuentemente, se incluira una métrica que la describa.
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* Para analizar el desempefio del modelo de toma de decisiones implementa-
do, se utilizaran parametros asociados a la QoS. La evaluacion de calidad
de experiencia (QoE) aunque es relevante, hace parte de una propuesta de
trabajo futuro.

¢ Inicialmente se lestablece como métricas de desempeno parametros de
QoS tales como: numero de Aandoffs, nimero de handoffs fallidos, retardo
promedio, ancho de banda promedio y throughput promedio.

Campaiia de medicion

* Debido a la magnitud y complejidad de implementar una red piloto con
equipos de CR, la validacion del modelo de decisidén espectral multiu-
suario propuesto se realizard por medio de simulaciones con datos de
ocupacion espectral experimentales que permitan emular el comporta-
miento real del PU, y su posterior confrontacion con otras técnicas de
decision espectral. A partir de una metodologia que considere zonas con
alto nivel de demanda trafico alto (HT) y con bajo nivel de demanda tra-
fico bajo (LT), para la ciudad de Bogota.

» Las técnicas de deteccion de espectro filtro coincidente y deteccion ci-
cloestacionario son, tedricamente, mejores que la de deteccion de energia,
sin embargo, necesitan un conocimiento previo del PU y de la red, lo que
significa mayor complejidad y aumento en la carga computacional. Dado
que ésta ultima no contempla conocimiento previo del PU, es facil de
implementar por sus bajos costos computacionales, y baja complejidad.
Para el presente proyecto de investigacion se asume que la técnica de de-
teccion de energia entrega resultados efectivos; contemplar otra técnica o
mejorarla seria otra propuesta de trabajo, como se identifica en las inves-
tigaciones actuales.

» Las bandas de frecuencia seleccionadas corresponden a la tecnologia
GSM, Wi-Fi e ISM, dado que resultan mas sencillas de trabajar con la
técnica de deteccion de energia.

Estructura de programacion

» La simulacion del modelo de toma de decisiones se desarrollara en uno
de los siguientes softwares: Matlab, NS3 u OPNET, que sera seleccionado
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a partir de un analisis comparativo que determine cual se ajusta mejor a
los requerimientos de la estrategia inteligente desarrollada.

1.5 Modelo propuesto

La figura 1.1 presenta un modelo de asignacion espectral multiusuario para
redes de radio cognitiva descentralizadas conformado por modulos colabo-
rativo; multiusuario, predictivo y aprendizaje profundo (Deep Learning).

Para la asignacion del espectro utilizando Deep Learning se requiere ana-
lizar la informacion de entrada; la cantidad de usuarios y sensibilidad de
la aplicacién que se esta ejecutando. El mddulo colaborativo es el encarga-
do de gestionar la informacion de entrada. Si hay multiples SU se utiliza
el modulo multiusuario; si la aplicacion que se estd ejecutando tiene una
sensibilidad alta al retardo se implementa el mdédulo predictivo. Si no hay
multiples usuarios y tampoco se presenta alta sensibilidad al retardo, la co-
municacion se realiza de forma directa entre el modulo colaborativo y el
modulo aprendizaje profundo.

Modelo Propuesto

Médulo
Multiusuario

Médulo
Deep Learning
(Aprendizaje
Profundo)

Maodulo
Colaborativo

Modulo
Predictivo

Informacién
de Entrada

Asignacion
Espectral

Figura 1.1. Modelo propuesto.
Fuente: elaboracion propia.

EC 136



Modelo de asignacion espectral multiusuario para redes de radio cognitiva descentralizadas

1.6 Metodologia

El desarrollo del presente proyecto de investigacion se realizo secuencial-
mente por medio de cuatro enfoques metodoldgicos. El primero, de tipo
descriptivo, permiti6é detallar cada una de las caracteristicas de las estrate-
gias de interés. El segundo, de tipo analitico, permiti6é definir la influencia
de cada uno de los modelos de interés en el desempefio de la movilidad
espectral. El tercero, de tipo predictivo, buscé aplicar soluciones de otras
situaciones al contexto de interés, y finalmente, un cuarto tipo de enfoque
experimental permitid la realizacidén de pruebas de comprobacion y validez
a los desarrollos efectuados (Hernandez-Sampieri et al., 2006).

La metodologia de la presente investigacion se estructur6 de la siguiente
forma. Primero, se realiz6 un estudio del estado del arte que permitié iden-
tificar los aspectos mas importantes para el tema de asignacidén espectral
multiusuario en las DCRN, asi como sus algoritmos mas relevantes en la
literatura actual. Con base en el andlisis de la informacion anterior se disefid
una metodologia para la evaluacion del desempefio de la movilidad en redes
moéviles de CR. Luego, se realizo la captura de datos de ocupacion espec-
tral reales tanto en la banda GSM como en la banda Wi-Fi, para analizar
el comportamiento de dichas bandas y del PU. A continuacion, se realizé
procesamiento de los datos capturados para construir bases de datos con in-
formacién organizada sobre el comportamiento del PU y las caracteristicas
de los recursos espectrales de las bandas mencionadas—dichas bases de da-
tos fueron clasificadas por tipo de red (GSM y Wi-F1i) y nivel de trafico (HT
y LT)—. Posteriormente, se determinaron criterios de decisidon para la se-
leccion de las mejores oportunidades espectrales y se calcularon sus valores
histéricos a partir de la informacion de las bases de datos, complementando
las mismas. Consecuentemente, se seleccionaron y desarrollaron los algo-
ritmos de asignacion espectral multiusuario maés relevantes en la literatura
actual. Luego, se disefiaron y desarrollaron varios algoritmos para cada uno
de los mddulos del modelo de asignacion espectral multiusuario propuesto.

Con base en los resultados de desempeno de los algoritmos se construyé
el modelo de asignacion espectral multiusuario propuesto. Gracias al anali-
sis del estado del arte de las CRN se disefiaron ocho métricas de evaluacion
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para evaluar el desempefio de los algoritmos propuestos en esta investigacion,
asi como los seleccionados de la literatura actual, y se propusieron varios
escenarios de evaluacion. Luego, se diseid y desarrolld un simulador que
permite evaluar cuantitativamente el desempefio de los algoritmos, conside-
rando el comportamiento real del PU. Con los resultados obtenidos a partir
de los simuladores se realizd una evaluacion comparativa de desempefio en
cada una de las métricas de evaluacion. Por ultimo, se realizaron ajustes y
modificaciones al modelo propuesto con base en el andlisis comparativo.

1.7 Contribuciones

» Diseno y desarrollo de un modelo de asignacién espectral multiusuario
para mejorar el desempenio de lasredes de radio cognitiva descentralizadas.

» Diseno y desarrollo de un modulo colaborativo para el intercambio de
informacién entre SU con el objetivo de realizar una asignacién espectral
multiusuario inteligente.

 Disefio y desarrollo de un moédulo multiusuario para acceso simultdneo
de varios SU a las oportunidades espectrales.

* Disefio y desarrollo de un modulo predictivo que reduce el nivel de inter-
ferencia entre los SU y los PU.

 Evaluacion y validacién de los algoritmos de decision espectral desarrolla-
dos, con datos de ocupacidn espectral reales capturados en una campafia
de medicion realizada en la ciudad de Bogota, Colombia.

 Evaluacion y validacion de los algoritmos desarrollados en una red GSM.

* Evaluacion y validacién de los algoritmos desarrollados, con dos niveles
de trafico de PU: HT y LT.

* Evaluacion y validacion de los algoritmos desarrollados, en cuatro
diferentes escenarios de evaluacién: GSM-LT-Convencional, GSM-HT-
Convencional, GSM-LT-Real, GSM-HT-Real.

 Evaluacion y validacion de los algoritmos desarrollados bajo ocho métri-
cas de evaluacion:

* Retardo promedio acumulado (AAD)
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* Handoff fallidos promedio acumulado (AAFH)

* Handoff promedio acumulado (AAH)

* Handoff con interferencia promedio acumulado (AATH)
* Handoff perfecto promedio acumulado (AAPH)

o Throughput promedio acumulado (AAT)

* Handoff anticipado promedio acumulado (AAUH)

» Ancho de banda promedio (ABW)

* Determinacién de cuatro criterios de decision seleccionados cuidadosa-
mente para elegir la mejor oportunidad espectral. Todos los algoritmos
desarrollados trabajaron con los mismos cuatro criterios. Cada criterio de
decisiodn es calculado a partir de los datos de ocupacion espectral reales.

» Diseno y desarrollo de una herramienta de simulacién novedosa para
evaluar el desempeno de algoritmos de asignacion espectral multiusuario
para DCRN, basada en datos de ocupacion espectral reales, que permite
modificar varios parametros de interés para analizar el comportamiento
y desempefio de cada algoritmo bajo diferentes situaciones, donde des-
taca el nivel de colaboracidén y numero de SU simultaneos, denominada
“MultiColl-DCRN".

1.8 Financiamiento

El presente libro es producto de los resultados alcanzados con el proyecto de
investigacion “Modelo inteligente de asignacion espectral con enfoque mul-
tiusuario para mejorar la eficiencia y desempeno en redes de radio cognitiva
descentralizadas”, auspiciado por el Centro de Investigaciones y Desarrollo
Cientifico de la Universidad Distrital Francisco José de Caldas.

1.9 Organizacion del libro

A partir de este punto el lector encontrara, en el segundo capitulo, los funda-
mentos tedricos de la CR; la decision espectral, los algoritmos de asignacion
espectral, acceso multiusuario, estructuras colaborativas y una revision de
la literatura actual sobre modelos de asignacidén espectral multiusuarios
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colaborativos para DCRN. El tercer capitulo describe la metodologia desa-
rrollada; los equipos, la red, el tratamiento de los datos, el modelo propuesto,
los algoritmos seleccionados y la metodologia de evaluacion. El capitulo
cuatro describe en detalle el software de simulacion desarrollado. La quin-
ta seccion presenta los resultados: los modulos no predictivo, predictivo,
colaborativo y multiusuario; la evaluacion integral y el modelo propuesto de-
finitivo. El sexto capitulo aborda la discusidon de los resultados. Finalmente,
la dltima seccion, expone conclusiones.
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2. Fundamentos tedricos

El desarrollo de este proyecto de investigacion esta totalmente enfocado en
la radio cognitiva. Por tal razon, el presente capitulo se subdivide en cinco
secciones. La primera seccidén aborda los fundamentos de la CR; la segunda,
se enfoca en los aspectos teoricos de la decision espectral, la tercera, presenta
los algoritmos mas relevantes de la asignacién espectral. La cuarta seccion
presenta una revision de la literatura actual sobre modelos de decision es-
pectral para CRN, y finalmente, la quinta, muestra algunas herramientas de
simulacion de handoff espectral.

2.1 Radio cognitiva

Actualmente las redes y aplicaciones inalambricas en gran parte del mundo
se caracterizan por contar con una politica de asignacion fija de espectro de
radiofrecuencia regulada por el Estado. Por tal razon, las frecuencias asig-
nadas a servicios especificos estén practicamente en desuso y no puedan ser
aprovechadas por usuarios secundarios (SU), incluso si estos no provocan
interferencia (Ahmed ez al., 2016; Akyildiz et al., 2008; Marquez et al., 2017).

Segun estudios realizados por la Comision Federal de Comunicaciones
de Estados Unidos (Federal Communications Commission, 2003) se ha
evidenciado que gran parte del espectro de radiofrecuencia esta siendo in-
eficazmente utilizado. Basado en variaciones temporales y geograficas, la
utilizacidén del espectro asignado es ineficiente (Federal Communications
Commission, 2003; IEEE Standards Coordinating Committee 41 on
Dynamic Spectrum, 2008). Incluso mediciones mas actuales muestran
que mas del 70% del espectro no esta siendo utilizado (Hoven et al., 2005;
Pedraza et al., 2016).
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La utilizacion ineficiente y esporadica del espectro, junto a su incremento
de demanda, han hecho que se degrade la QoS en varias redes y aplicacio-
nes inalambricas, como las comunicaciones moviles, lo cual ha motivado
el desarrollo de investigaciones recientes que han encontrado solucién al
problema: la tecnologia clave que permite materializar las técnicas de acceso
dinamico al espectro es la radio cognitiva (Akyildiz ez al., 2008; Tsiropoulos
etal., 2016).

El concepto fue creado por Joseph Mitola III en 1999: “punto en el cual
las Personal Digital Assistant inalambricas y las redes relacionadas son, en
términos computacionales, lo suficientemente inteligentes con respecto a
los recursos de radio y las correspondientes comunicaciones de ordenador
a ordenador como para detectar las necesidades eventuales de comunica-
cion del usuario como una funcién del contexto de uso y proporcionarle los
recursos de radio y servicios inaldmbricos més adecuados a ese mismo ins-
tante” (Mitola y Maguire, 1999). Sin embargo, varias entidades importantes
han dado su punto de vista al respecto. Segin la Administraciéon Nacional
de la Informacion y las Comunicaciones, la CR “es una radio o sistema
que detecta su entorno electromagnético de operacion y puede ajustar de
forma dinamica y autébnoma sus parametros de operacion de radio para mo-
dificar la operacion del sistema como: maximizar el rendimiento, reducir
la interferencia o facilitar la interoperabilidad”; de acuerdo con la Union
Internacional de Telecomunicaciones, “es una radio o sistema que detecta
y esta al tanto de su entorno y se puede ajustar de forma dinamica y autéono-
ma de acuerdo con sus parametros de funcionamiento de radio”. Segun el
Instituto de Ingenieros Eléctricos y Electronicos (IEEE) “es un tipo de radio
que puede detectar de forma autdbnoma y razonar sobre su entorno y adaptar-
se acorde a este” (IEEE Standards Coordinating Committee 41 on Dynamic
Spectrum, 2008). Segiin la Comisién Federal de Comunicaciones, CR es una
radio que “puede cambiar los parametros del transmisor basado en la interac-
cion con su entorno” (Federal Communications Commission, 2003).

La radio cognitiva tiene la capacidad de proveer un gran ancho de ban-
da a usuarios moviles a través de arquitecturas inalambricas heterogéneas,
aumentando significativamente la eficiencia espectral, debido a que permi-
te que usuarios secundarios compartan el espectro con usuarios primarios
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(Akyildiz et al., 2008) a partir de la oportunidad como se muestra en la figura
2.1; es decir, utilizan las porciones del espectro que no estan siendo usadas
en ese momento (Delgado y Rodriguez, 2016; Ozger y Akan, 2016).

La figura 2.1 describe el concepto de oportunidad espectral a través de
una grafica en tres dimensiones cuyos ejes son potencia, frecuencia y tiem-
po. Cada bloque gris de la figura es un PU haciendo uso de una porcion del
espectro de frecuencia dado por el eje de frecuencia, a un nivel de potencia
dado por el eje de potencia, y durante un determinado periodo dado por el
eje de tiempo. Sin embargo, existen porciones del espectro de frecuencia que
no son utilizadas durante determinado intervalo de tiempo, dichos espacios
son denominados oportunidades espectrales, que pueden ser aprovechados
por los SU (Ozger y Akan, 2016).

Potencia
A

Espectro en uso

J v

Frecuencia/ . .
’ A
” i A

Acceso dindmico
del espectro

>

P Tiempo

~ U -
TA y v -
Oportunidad espectral

Figura 2.1. Concepto de oportunidades espectrales.
Fuente: adaptada de Akyildiz ez al. (2009).

2.1.1 Caracteristicas de la radio cognitiva

Las principales caracteristicas de la CR, que le confieren todas las capacida-
des descritas anteriormente, son la capacidad cognitiva y reconfigurabilidad.

2.1.1.1 Capacidad cognitiva

Tecnologia capaz de capturar la informacion de su entorno de radiofrecuen-
cia para identificar los segmentos del espectro que no estan siendo utilizados,
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seleccionar el mejor espectro posible y definir los parametros de operacion
mas adecuados con el objetivo de evitar la interferencia con otros usuarios
(Pedraza et al., 2016).

2.1.1.2 Reconfigurabilidad

Capacidad de cambiar, de forma dinamica, los diferentes parametros de
operacion relacionados con la transmision o recepcion —como frecuencia,
potencia y modulacion— con miras a habilitar la radio para ser programa-
da, transmitir y recibir en una gran variedad de frecuencias, en funcién del
ambiente de radio, asi como usar diferentes tecnologias de acceso a la trans-
mision (Pedraza er al., 2016).

2.1.2 Gestion de espectro en radio cognitiva

Para que se pueda hacer uso del espectro de manera oportunista, las CRN
trabajan con un modelo de gestién que se denomina ciclo cognitivo (figura
2.2). El modelo se caracteriza por cuatro funciones principales: deteccion,
decision, movilidad y comparticion de espectro. En la etapa de deteccion los
SU monitorean de manera continua el espectro para poder determinar las
oportunidades espectrales; luego, con la funcion decision de espectro, los SU
deben seleccionar la oportunidad espectral mas adecuada de acuerdo con
sus requerimientos de QoS. En la tercera funcion, movilidad de espectro, el
SU puede tener que realizar el cambio de su frecuencia actual para conti-
nuar su comunicacion en otro canal, debido a causas tales como: llegada de
un PU, no disponibilidad del canal; interferencia al PU, degradacién de la
calidad del canal, variacion del trafico y movimiento del SU. Por tltimo, en
la funcion de comparticion de espectro, el ciclo cognitivo proporciona la ca-
pacidad de compartir el recurso espectral con multiples SU, coordinando sus
transmisiones para evitar colisiones e interferencias, debido a que maultiples
usuarios de CR pueden intentar acceder al espectro de manera simultanea
(Pedraza et al., 2016; Ramzan et al., 2017).
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espectl;é

Solicitud de
decision Oportunidad
espectral

Compartir
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Capacidad de

canal Decision de
espectro -

Figura 2.2. Ciclo cognitivo.
Fuente: adaptada de Akyildiz er al. (2009).

2.1.2.1 Monitorizacion de espectro

La deteccidn del espectro es la funcion encargada de identificar oportunida-
des espectrales. Los SU monitorean el espectro capturando informacion que
permita determinar disponibilidad de canales. Actualmente existen varias
técnicas para monitorizar el espectro, las cuales se clasifican como se mues-

tra en la figura 2.3, siendo deteccion de energia la mas basica de ellas (Paez
etal., 2017).

Deteccion de espectro

|
1 1 1

Deteccion de Deteccion de Temperatura de
transmisor receptor interferencia
Deteccion de Deteccién de Deteccién de
filtro adaptado energia Caracteristicas ciclo

estacionarias

Figura 2.3. Clasificacion de las técnicas de deteccion de espectro.
Fuente: adaptada de Akyildiz ez al. (2009).
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2.1.2.2 Decision de espectro

La decision del espectro o proceso de toma de decisiones determina cual es
el mejor canal de frecuencia entre los disponibles, segun los requisitos de
QoS de las aplicaciones (Alias y Ragesh, 2016; Paez et al., 2017; Pedraza et
al., 2016; Ramzan et al., 2017).

2.1.2.3 Comparticion de espectro

Debido a que varios SU pueden intentar acceder al espectro, la funcién
de comparticion proporciona la capacidad de distribuir este recurso e in-
formacion con multiples SU, coordinando sus transmisiones para evitar
colisiones e interferencias. Las soluciones existentes para el uso compartido
del espectro se clasifican en funcién de la arquitectura —centralizada, des-
centralizada y distribuida—; de acuerdo con el comportamiento del acceso
al medio —cooperativo 0 no cooperativo—y por la forma como se accede al
medio —superposicion o subyacente— (Lertsinsrubtavee y Malouch, 2016;
Pedraza et al., 2016).

2.1.2.4 Movilidad de espectro

La movilidad espectral da lugar al concepto de handoff espectral, mediante
el cual, el SU cambia de una oportunidad espectral a otra. Durante el mo-
vimiento es inevitable que la comunicacion se rompa temporalmente, por
tanto, resulta ser un aspecto clave en el desempeno de las CRN. La funcion
de decision espectral juega un papel muy importante para mejorar dicho
desempefio, determinando cuando y donde realizar un sandoff espectral me-
diante un conjunto de reglas (Hernandez et al., 2016a; Lopez et al., 2015;
Oyewobi y Hancke, 2017; Paez et al., 2017)

2.1.3 Arquitectura de la radio cognitiva

El proceso de toma de decisiones en la CRN se clasifica segiin su arquitectu-
ra, de acuerdo con la figura 2.4.
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Arquitectura

|
1 1

Infraestructura Sin infraestructura

|
1 1

Centralizada Descentralizada Distribuida

Figura 2.4. Arquitectura de una CRN.
Fuente: adaptado de Masonta ez al. (2013) y Pedraza et al. (2016).

2.1.3.1 Centralizada

En las arquitecturas centralizadas — figura 2.5a — existe un coordinador
llamado entidad central o estacion base que se encarga de acomodar, asignar
y tomar las decisiones de los canales y ademas, almacena y procesa la infor-
macion entregada por los PU y SU (Ahmed ef al., 2016). Su vulnerabilidad
radica en que la destruccion del nodo central provoca una pérdida general
del sistema.

En la arquitectura centralizada, la coordinacién de los nodos entre si se
mantiene mediante la difusién de mensajes a través de un canal de control
comun (CCC) de coordinacion del espectro, independiente del canal de da-
tos. Cada usuario determina el canal que puede utilizar para la transmision
de datos, de tal manera que evite interferencias. En caso de que la seleccion
de canal no sea suficiente para eludirlas, se implementa la adaptacion de
potencia. Las evaluaciones de las alternativas anteriores revelan que el CCC
mejora el rendimiento entre 35% y 160% a través de la frecuencia como de
la adaptacién de potencia (Akyildiz et al., 2006; Tsiropoulos et al., 2016).

2.1.3.2 Distribuida

Las redes distribuidas forman una malla (figura 2.5c) donde los nodos de
cada subsistema comparten informacion entre si, se pueden mover libre-
mente y no existe un responsable en la coordinacidén global de los usuarios
licenciados y no licenciados, lo que permite que este tipo de estrategias
tenga una alta aplicacién en redes donde no es viable la implementacion
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de infraestructura (Brik ez al., 2005; Cao y Zheng, 2005; Krishnamurthy et
al., 2005; Pedraza et al., 2016; Salgado et al., 2016b). La desventaja de este
modelo es su baja seguridad. Los protocolos distribuidos que no requieren
infraestructura son ampliamente utilizados en redes de radio cognitiva ad
hoc (CRAHN) (Wang et al., 2016).

En la arquitectura distribuida la coordinacién entre nodos utiliza una
reserva de canal dinamica distribuida basada en la QoS —es decir, una esta-
cion base compite con su interferente estacion base (BS) de acuerdo con los
requisitos de QoS de los usuarios para asignar una porcion del espectro. De
forma similar al protocolo CCC, los canales de control y datos se separan—
(Akyildiz et al., 2006; Tsiropoulos et al., 2016).

2.1.3.3 Descentralizada

Las redes descentralizadas son arquitecturas formadas por un conjunto de
redes centralizadas conectadas por enlaces adicionales que crean una malla.
Cuentan con una infraestructura de implementacion sencilla; tienen buenos
niveles de seguridad, ausencia de sobrecarga de comunicacidén, menor retar-
do, baja complejidad, entre otras (Darak et al., 2014). Su estructura incorpora
atributos de redes centralizadas y distribuidas. El enfoque descentralizado es
una opcion eficiente para redes de gran tamafio, ademas, es la mejor alter-
nativa para redes de seguridad publica y servicios de redes sociales (Darak
etal., 2017). La figura 2.5b presenta la jerarquia de una red descentralizada.

(a) (b) (c)

Figura 2.5. Arquitectura de una red. a. Centralizada; b. Descentralizada; c. Distribuida.
Fuente: adaptado de Baran (1964) y Pankratev ez al. (2019).
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2.1.4 Aplicaciones de la radio cognitiva

Los resultados de esta investigacion pueden impactar el campo de la in-
formacion y las comunicaciones en la regién, no solo Bogota D.C. sino
Colombia y el mundo entero. Un ejemplo claro son las redes Mes#, las cuales
han emergido como una tecnologia con relacion beneficio-costo muy buena;
sin embargo, el incremento en la densidad de la red y el requerimiento de
un alto throughput por parte de sus aplicaciones han degradado su QoS. Con
las ventajas de la CR es posible habilitar el acceso a un mayor segmento del
espectro; por otro lado, una red backbone mesh puede incrementar el area de
cobertura basada en puntos de acceso cognitivos (Akyildiz et al., 2006).

Un desastre natural podria deshabilitar temporalmente o incluso destruir
la infraestructura de comunicaciones, por lo que seria necesario establecer
redes de emergencia que requieren una gran cantidad de espectro para po-
der manejar el volumen de trafico de video, voz y datos. La CR tiene la
capacidad de proporcionar dicho espectro sin la necesidad de una gran in-
fraestructura. Es asi, como la seguridad publica y las redes de emergencia
también se pueden beneficiar de sus ventajas (Akyildiz et al., 2006).

Otra de las potenciales aplicaciones de la CR son las redes militares, ya
que le permite a la radio militar escoger arbitrariamente su frecuencia, BW,
modulacién, codificacion, adaptandose al ambiente de radio variable del
campo de batalla (Akyildiz et al., 2006).

En suma, las caracteristicas de reconfigurabilidad dinamica de cada uno
de los parametros de operacion en una CRN puede garantizar integridad
de informacién, interoperabilidad, fiabilidad, flexibilidad; redundancia,
escalabilidad, seguridad, eficiencia y acceso en todo tiempo y espacio,
beneficiando significativamente el manejo de la informacion y las comuni-
caciones en Colombia.

2.1.5 Desafios y futuras investigaciones en radio cognitiva

La radio cognitiva abarca aspectos que van desde la monitorizacién del
espectro hasta las decisiones de movilidad en este, teniendo en cuenta esque-
mas de acceso al medio y tipo de redes en las cuales interactda.
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2.1.5.1 Monitorizacion del espectro

El proceso de monitorizacion no puede realizarse al mismo tiempo en que
se envia informacién entre SU, por consiguiente, si hay que monitorear los
usuarios deben detener las trasmisiones, afectando la eficiencia del espectro.
Con base en esto, seria deseable desarrollar algoritmos de monitorizacidon
que reduzcan su tiempo mientras mejoran la precision en el proceso de de-
teccion de oportunidades espectrales.

2.1.5.2 Espectro compartido

En trabajos realizados en CR se hacen suposiciones como que los SU co-
nocen de antemano la localizacion y el nivel de potencia de la trasmision
de los PU, lo cual permite realizar los calculos de interferencia de manera
facil. Sin embargo, esta suposicion no siempre es cierta para algunas CRN
(Lertsinsrubtavee y Malouch, 2016).

2.1.5.3 Procesos de aprendizaje

Debido a sus complejidades inherentes seria deseable habilitar en los dispo-
sitivos que hagan uso de CR un proceso de aprendizaje que tome en cuenta
las decisiones tomadas en el pasado para mejorar su comportamiento den-
tro de la red, y por tanto, sus decisiones futuras. El disefio de este tipo de
algoritmos representa un gran desafio, debido a que se debe determinar
que mediciones son necesarias para desarrollar este proceso de aprendizaje
(Delgado y Rodriguez, 2016).

2.1.5.4 Esquemas de control de acceso al medio

Aungque el grupo de investigacion del estandar IEEE 802.22 esta trabajando
en el desarrollo de un protocolo de control de acceso al medio (MAC), otras
investigaciones han desarrollado esquemas que no se adecuan al estandar.
Por ejemplo, los esquemas MAC distribuidos para CRAHN no estan del
todo cubiertas.

2.2 Decision espectral

Después de realizar la deteccion del espectro los SU deben decidir cual es la
mejor oportunidad espectral. Este proceso debe satisfacer los requerimientos
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de QoS e incluir como criterio de parametrizacién las acciones adoptadas
por otros usuarios (Alias y Ragesh, 2016; Pedraza et al., 2016; Ramzan et
al., 2017). Una inadecuada toma de decisiones afecta parametros de QoS
tales como: latencia, throughput, confiabilidad, sefializacion, interferencia,
eficiencia energética, ancho de banda, SINR y tasa de error (Hernandez et
al., 2016a; Lopez et al., 2015; Oyewobi y Hancke, 2017; Paez et al., 2017).
De acuerdo con lo anterior, la decisidon espectral es una funcién clave en las
CRN, sin embargo, no ha sido tan investigada en comparaciéon con otras
funciones del ciclo cognitivo (Akyildiz ez al., 2008; Masonta et al., 2013).

La toma de decisiones es un proceso que busca seleccionar la mejor alter-
nativa espectral entre un conjunto finito de posibilidades, permitiendo a los
SU generar una secuencia de acciones que conducira al logro de sus objetivos
(Rizk et al., 2018; Tripathi et al., 2019). Para realizar estructuras de decision
es necesario implementar modelos con altos desafios: los algoritmos deben
ser escalables y eficientes debido a los altos volimenes de informacion que
se requieren para el entrenamiento y validacion, a la complejidad de las ta-
reas y a los estandares de evaluacion minimos de cada aplicacién particular
(Rizk et al., 2018).

La decisiéon espectral incluye tres funciones principales: (1) caracteriza-
cion del espectro, (2) seleccion del espectro y (3) reconfiguracion. Como se
muestra en la figura 2.6, una vez que los canales se identifican —utilizando
sensores de espectro, bases de datos de geolocalizacion u otras técnicas—
cada banda del espectro es caracterizada (actividad del PU) a partir de la
base de observaciones locales y de la informacion estadistica; culminada
esta etapa los SU proceden a seleccionar la banda espectral mas apropiada.
A partir de la decision tomada el SU reconfigura sus parametros de transmi-
sidén y continua el envio de datos (Lopez, 2017; Masonta ez al., 2013).

A continuacién presentamos la descripcion de las funciones: carac-
terizacion del espectro, decisiéon de espectro (seleccion de espectro) y
reconfiguracion.
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Figura 2.6. Marco de decision del espectro.
Fuente: Lopez (2017).

2.2.1 Caracterizacion del espectro

Para determinar la banda espectral mas adecuada, en primer lugar, y de
acuerdo con las observaciones de la red, se requiere identificar las caracteris-
ticas de cada una de las bandas espectrales disponibles, teniendo en cuenta la
intensidad de la sefal recibida, interferencia y numero de usuarios actuales.
Adicionalmente, para realizar un correcto proceso de toma de decisiones
los SU deben observar la disponibilidad de espectro heterogéneo que varia
con el tiempo y el espacio. La disponibilidad heterogénea hace referencia a
la disponibilidad de los huecos espectrales que fluctian con el tiempo y la
ubicacion. En general, la caracterizacion del espectro debe incluir tanto las
condiciones actuales del entorno de radio frecuencia como el modelo de
actividades del PU. La caracterizacion del entorno de radiofrecuencia es un
proceso que implica: identificacion del canal, capacidad del canal, retardo
de conmutacién del espectro, interferencia del canal, tiempo de retencién del
canal, tasa de error del canal, ubicacion del abonado y pérdida de trayecto.
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La caracterizacion del espectro determina y describe el comportamiento
de los canales permitiendo distinguir unos de otros, de acuerdo con su trafi-
co, ocupacién y configuracion. Al seleccionar un canal es importante tener
en cuenta que dentro de sus caracteristicas de transmision existen parame-
tros que influyen en su comportamiento. Por tal motivo, se deben estudiar
estos factores con el fin de identificar algunos beneficios que permitan obte-
ner una mejora en el desempeno de estas redes. Algunas caracteristicas son
(Masonta et al., 2013):

* Identificar el canal.

» Capacidad del canal.

» Retardo de conmutacion de espectro.
* Interferencia del canal.

 Canal de tiempo.

* Tasa de error del canal.

» Posicién del abonado.

2.2.1.1 |dentificar el canal

La utilizacién del canal por parte del PU es quizas el factor mas importante
ya que define los espacios y tiempos libres en un canal para ser ocupados por
un SU. Esta ocupacion se realiza de manera aleatoria, donde los tiempos de
utilizacion no son deterministicos sino impredecibles y varian en diferen-
tes aplicaciones. Esta actividad de ocupacion del canal puede ser modelada
como un proceso estocastico aplicando técnicas de inteligencia artificial
como redes neuronales, modelos de Markov y Maquinas de soporte vecto-
rial (SVM) (Wang et al., 2011).

2.2.1.2 Capacidad del canal

Cada banda del espectro en un sistema de multiplexacién por division de
frecuencia ortogonal tiene un ancho de banda diferente, el cual esta com-
puesto por varias subportadoras que estiman una capacidad normalizada del
canal. Las investigaciones se han enfocado en estimar la capacidad de BW
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mediante el estudio de otros parametros como el nivel de interferencia, tasa
de errores y propagacion (Lee y Akyildiz, 2011).

Se ha demostrado que el método tradicional de estimacién de capacidad
del canal utilizando la relacion senal a ruido (SNR) conduce a una decision de
espectro no 6ptima (Masonta ez al., 2013).

Las capacidades de BW de un canal licenciado estan limitadas por la enti-
dad reguladora, haciendo que el SU requiera analizar recursos cuando el BW
del PU sea menor que el requerido por el SU. Para el modelo propuesto, el BW
no es utilizado.

2.2.1.3 Retardo de conmutacion de espectro

Esta caracteristica nace como consecuencia de la intervencion de un PU cuan-
do esta operando el SU en un canal licenciado. En ese momento, el SU debe
detectar nuevos canales con diferentes frecuencias y conmutar reconfigurando
sus parametros de transmision. En ese proceso de conmutacion hay una dura-
cion considerable que afecta el desempeno de las CRN (3GPP, 2011).

El desafio radica en reducir el retardo de deteccion del canal; el tiempo
que tarda el SU en configurar sus parametros de transmision y disminuir el
tiempo que gasta el SU en acceder al nuevo canal, con el fin de mejorar el
rendimiento de retardo en CRN.

2.2.1.4 Interferencia del canal

La interferencia es la mayor consecuencia generada en el proceso de interac-
cion entre usuarios en una red. Al acceder al espectro, un SU puede afectar
la sefial alterando los servicios de PU, por tanto, la interferencia esta definida
como la perturbacion de la sefial debido a la coexistencia entre PU y SU en
un area de cobertura del PU (Amir ez al., 2011).

Existen diferentes estudios para evitar interferencias entre PU y SU en
areas de cobertura especifica, donde es importante que el SU no transmita
mientras haya presencia de un PU.
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2.2.1.5 Tiempo de retencion del canal

Esta caracteristica es importante al momento de modelar el acceso al canal
debido a que estudia los tiempos de activacion y de inactividad de los PU
y SU permitiendo acceder a canales ranurados, regulando y sincronizando
este acceso (Akyildiz et al., 2006).

Inicialmente, se estudian los tiempos de duraciéon de activacion de los
usuarios y tiempos en que el canal permanece libre, luego se definen bloques
de tiempo que seran recursos libres que pueden ser utilizados por los SU
con bloques de similar tamafo, para finalmente, acceder al canal que mas se
ajuste con las mediciones realizadas, reduciendo interferencias en la interac-
cion (Akyildiz et al., 2006).

2.2.1.6 Tasa de error de canal

Este factor esta directamente relacionado con el nivel de interferencia, BW
y la banda de frecuencia disponible, los cuales influyen directamente en la
recepcion o transmision de errores de bit en un canal. Esta Tasa de error de
bit (BER) es indicada con la SNR (Hoyhtya ez al., 2008).

2.2.1.7 Localizacion del abonado

Dentro del funcionamiento y proceso de deteccion, el SU debe obtener
informacion geografica y del ambiente de radio frecuencia, mediante una
funcion del sistema de posicionamiento global, para coordinar informacién
entre los nodos o servidores centrales que identifiquen la ubicacion de cada
SU y poder construir un mapa de actualizaciéon mundial. Este proceso per-
mitira predecir situaciones futuras de intervenciones de los PU (Azarfar et
al., 2012).

55 [Ee



César Augusto Hernandez Sudrez, Diego Armando Giral Ramirez, Lizet Camila Salgado Franco

[ Identificar el canal ]

[ Capacidad del canal Posicion del abonado ]

Modelo de
decision de
espectro general

[Retardo de conmutacién

Tasa de error del canal
de espectro

[Interferencia del canal Canal de tiempo CHT ]

Figura 2.7. Caracterizacion del ambiente de radio.
Fuente: adaptada de Masonta ez al. (2013).

La figura 2.7 sintetiza los componentes que debe tener en cuenta un modelo
de decision de espectro para cumplir con el objetivo de acceder al espectro
oportunamente. Aunque disefiar un modelo que evalde todas las caracteris-
ticas puede ser robusto, complejo y computacionalmente poco eficaz, si es
mision del ingeniero idear un modelo que utilice las caracteristicas principa-
les y necesarias, y que también reduzca su tiempo de ejecucion.

2.2.2 Seleccion — decision del espectro

La decision del espectro o proceso de toma de decisiones determina cual es el
mejor canal de frecuencia entre los disponibles, segun los requisitos de QoS
de las aplicaciones. Para esta funcion se han desarrollado algoritmos que
tienen en cuenta las caracteristicas del canal de radio y el comportamiento
estadistico de los PU (Alias y Ragesh, 2016; Paez et al., 2017; Pedraza et al.,
2016; Ramzan et al., 2017).

2.2.3 Reconfiguracion CR

En las redes inalambricas tradicionales los terminales de radio estan confi-
gurados estaticamente para operar sobre canales de frecuencia predefinidos
con parametros y caracteristicas predefinidas del transceptor. Las CR son
capaces de adaptarse rapidamente a los cambios (Masonta ez al., 2013).

La tarea de reconfiguracion de la CR requiere una clara comprension de
como interactian los parametros de comunicacion dentro de las diferentes
capas de protocolo. Sin embargo, aunque estos sistemas pueden emplear
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técnicas adaptativas para ajustar diversos parametros de transmision, su
arquitectura basada en hardware limita su flexibilidad para adaptarse al en-
torno externo (Lopez, 2017).

2.2.4 Tipos de enfoque de la decision espectral

Las CRN pueden operar de acuerdo con varios enfoques basicos, cada uno
de los cuales presenta ventajas y desventajas frente a su enfoque opuesto. En
esta seccion se analizard el enfoque con infraestructura frente al enfoque ad
hoc; el enfoque centralizado frente al distribuido, el enfoque de asignacion
multicanal frente al de asignacion Unica, inclusion o no del PU, inclusién o
no del SU, CCC dedicado o dinamico, y segmentacion o agrupamiento.

2.2.4.1 Infraestructura vs ad hoc

De acuerdo con la arquitectura de la red, las CRN pueden clasificarse en
redes basadas en infraestructura 0 CRAHN (Ahmed ez al., 2016; Akyildiz
et al., 2006). Las CRN basadas en infraestructura tienen una entidad de red
central similar a una estacion base en redes celulares o un punto de acceso
en las redes inalambricas de area local. Por otro lado, las CRAHN no tienen
ninguna infraestructura, por tanto, un SU se comunica con otro SU a través
de una conexion ad hoc, tanto en bandas espectrales licenciadas como no
licenciadas. (Akyildiz ez al., 2009).

En las redes con infraestructura, la informacién observada por cada SU
alimenta la base de datos de la entidad central, de forma que esta pueda
tomar decisiones inteligentes con el fin de maximizar los parametros de co-
municacién, como el throughput, el BW, SINR, el balanceo de carga, entre
otros, y eliminar o minimizar la interferencia hacia los PU (Akyildiz et al.,
2009). En el caso de las CRAHN, los SU son responsables de tomar sus
propias decisiones con base en observaciones locales unicamente, lo cual
les impide realizar un uso eficiente de los recursos de la red entera. Para
compensar el caso anterior, los SU pueden hacer uso de esquemas de cola-
boracién, en los cuales cada SU intercambia su informacioén de observacion
del espectro local, permitiéndoles tener un conocimiento aproximado de la
red completa (Akyildiz et al., 2009).
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2.2.4.2 Centralizado vs distribuido

Silas CRN cuentan con infraestructura, pueden operar tanto con un enfoque
centralizado como distribuido. En el primero existe una entidad encargada
de coordinar las funciones necesarias para la decision y asignacion del ca-
nal de frecuencia durante una decisidén espectral conocida como estacidén
base central que cumple, ademas, con la funcién de almacenar y procesar la
informacion del ambiente de radio y del espectro recibida por los SU peri6-
dicamente o por demanda (Ahmed ef al., 2016; Tragos et al., 2013).

Debido a que la estacidén base central tiene un nivel mucho mas elevado
de procesamiento y autonomia energética que los SU, desarrolla también
funciones de monitorizacion del espectro de forma periddica. Esta infor-
macion junto a la proporcionada por los SU actualiza dinamicamente la
base de datos central. La estacién base central procesa periddicamente esta
informacion y calcula valores estimados de algunos parametros de interés
del espectro como la AP, 1a SINR, el ETA y BW de los canales, entre otros,
los cuales permiten tomar decisiones mas acertadas para la asignacion es-
pectral. Lo anterior libera a los SU de la carga computacional requerida para
ejecutar un algoritmo robusto de asignacion espectral.

La principal ventaja en el enfoque centralizado es la observaciéon y cono-
cimiento global de la red lo cual permite maximizar el throughput, minimizar
la interferencia entre los SU, una asignacion multicanal justa y, en general,
mejorar el nivel de desempefio de la red (Alnwaimi ez /., 2011; Byun et al.,
2008). Sin embargo, su mayor desventaja es la cantidad de informaciéon de
sefializacion que se introduce a la red para coordinar los procedimientos de
intercambio de informacidn entre la estacion base central y los SU. Ademas,
si la estacion base central llegara a fallar se perderia el control sobre la asig-
nacién espectral creando desequilibrio y un potencial caos en el sistema.
(Tragos et al., 2013).

En el enfoque distribuido no existe una estacién base central responsa-
ble de coordinar la asignacion espectral a los SU. Por tanto, los SU toman
decisiones por ellos mismos o de forma colaborativa con otros SU vecinos,
a través de intercambio de informacion y medidas dentro de un rango de-
terminado (i.e. 2-3 saltos). Lo anterior hace que el enfoque distribuido sea
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mas flexible y eficiente que el centralizado ya que puede adaptarse rapida-
mente a los posibles cambios o variaciones del ambiente de radio o de la red;
solamente los SU en el area afectada tendran que hacer modificaciones e
intercambiar informacion. Otra ventaja significativa del enfoque distribuido
es la baja informacion de sefalizacion requerida ya que solo los nodos veci-
nos intercambian informacién. Entre las desventajas del enfoque distribuido
destaca que las decisiones tomadas no son optimas debido a que los nodos
solo tienen informacion de sus vecinos y no de la red completa, adicionando
el hecho de que es posible que la informacién intercambiada no sea suficien-
te (Tragos et al., 2013). También, la falta de un soporte centralizado impide
obtener informacién completa de la topologia de la red provocando coli-
siones entre SU e interferencia al PU (Giupponi y Pérez-Neira, 2008). En
conclusion, en lo que respecta a la asignacion espectral, el enfoque distribui-
do puede tomar decisiones adecuadas en casos de baja carga de trafico, pero
para los casos contrarios, el enfoque centralizado toma mejores decisiones
(Tragos et al., 2013).

Una solucién hibrida entre el enfoque centralizado y el distribuido es el
enfoque descentralizado —cluster—, el cual intenta eliminar las desventajas
de cada uno. La red es dividida en M clusters, cada uno con un enrutador
principal —cluster head—. Cada SU envia la informacién de espectro de-
tectada a su correspondiente cluster head, el cual se encarga de combinar
la informacion completa y generar un vector de asignacion espectral final.
Todos los cluster head intercambian su respectivo vector y de esta manera
cada uno conoce el estado general de la red. Con la informacion completa
de la red cada enrutador principal decide que canal de frecuencia asignar
y transmite esta informacién a todos los demas cluster head de la red. Este
enfoque es mas robusto contra fallas; hace un uso mas eficiente del ancho
de banda disponible, logra una mejor distribucién de los usuarios en clusters
y de la carga en multiples canales y reduce la sobrecarga de informacion de
control ya que los mensajes se intercambian a nivel del cluster y no de la red
completa. (Alsarhan y Agarwal, 2009; Chen ez al., 2007; Tragos et al., 2013).
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2.2.4.3 Canal (nico vs multicanal

El enfoque de asignacion de canal unico, como se hace tradicionalmente,
consiste en la asignacion de una frecuencia central y un BW especifico alre-
dedor de esa frecuencia. Lo anterior implica que los canales son contiguos
en el espectro.

El caso de la asignacion multicanal consiste en la agrupacion de varios
canales disponibles que no son adyacentes, para formar un solo canal. Este
enfoque permite aumentar el BW del SU aprovechando las oportunidades
espectrales con baja capacidad de canal. Una de las técnicas que permite el
acceso simultaneo a varios canales de frecuencia es la Multiplexacién por
Division de Frecuencia Ortogonal Discontinua (Chen et al., 2008). Lo ante-
rior permite un uso mas eficiente del espectro ya que aprovecha los canales
que por si solos no son adecuados debido a su restringido BW, pero que en
conjunto con otros canales similares puede satisfacer los requerimientos de
un SU. La asignacion multicanal puede incrementar significativamente la
capacidad de la red y la tasa de datos de los SU. (Dadallage er al., 2016;
Tragos et al., 2013).

Sin embargo, la asignacion multicanal también tiene limitaciones debido
a que los transreceptores no pueden agregar canales de frecuencia que se
encuentran muy distanciados entre si. En otras palabras, el Span de agrega-
cion no es ilimitado, ya que generalmente cada transreceptor tiene un Span
maximo especificado, por ejemplo 12MHz. Esto significa que, si dos canales
estan separados mas de 12MHz, no pueden unirse en un solo canal. Por
tanto, los algoritmos de asignacion espectral deben evitar crear pequefios
canales de frecuencia que posteriormente no puedan agregarse. También es
necesario analizar que la utilizacion de multiples canales por parte de un
solo SU no deje sin oportunidad espectral a otros SU, por tanto, el algoritmo
de asignacion espectral deberia manejar alguna métrica de justicia para estos
casos. (Tragos et al., 2013).

2.2.4.4 Incluir modelos de PU y SU vs no incluirlos

De acuerdo con algunos trabajos (Akter ez al., 2008; Chen y Hee-Seok, 2016;
Csurgai-Horvath y Bito, 2011; Rahimian et al., 2014; Rodriguez et al., 2015;
Wu et al., 2016) la precision y exactitud en el modelado de la actividad de los
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PU y SU es relevante para lograr un buen desempeno en las CRN. Un buen
modelo de actividad del PU y SU permite asignar inteligentemente cada ca-
nal de frecuencia disponible, optimizando el uso del espectro, maximizando
los parametros de comunicacién —como la tasa de datos, el BW, la SINR y
el balanceo de carga, entre otros—, eliminando o minimizando la interferen-
cia entre PU y SU. Sin embargo, la validez de dichos modelos generalmente
esta restringida a un determinado tiempo y lugar, para los cuales se disefid.

Una estrategia de handoff espectral reactiva provoca interferencia tempo-
ral con el PU debido a que durante el tiempo que tome realizar la movilidad
del SU coexistiran los dos en el mismo recurso espectral. Un buen modelo
de PU puede evitar o minimizar esta interferencia, a través de una estrategia
de handoff espectral proactiva (Wu et al., 2016). Sin embargo, el problema
radica en que dichos modelos estan basados en procesos estocasticos que
utilizan las observaciones pasadas del canal para predecir la disponibilidad
del espectro futuro, lo que puede llevar a tener que hacer muchas conmuta-
ciones de canal innecesarias si el modelo de prediccion es imperfecto. Pero
no solo el modelo de actividad del PU es relevante; en (Akter et al., 2008) se
propone un modelo de prediccidon para el SU, ya que, en muchas oportuni-
dades, multiples SU compiten por el mismo recurso de espectro, degradando
la QoS. A través de la implementacion de un filtro Kalman se logro realizar
una significativa estimacion del niumero de SU en el futuro instantaneo.

2.2.4.5 CCC dedicado vs CCC dinamico

El CCC es un requerimiento comun en la asignacién espectral de CRN, el
cual permite la coordinacion entre SU para la concesion del canal. E1 CCC
es un canal predefinido para el intercambio de informacién de sefalizacion,
control y espectro entre los SU, el cual puede ser global o local dependiendo
del operador de red (Kumar ez al., 2016). A continuacién, se presentan las
ventajas y desventajas de tener un CCC dedicado para la asignacion del ca-
nal de frecuencia o dinamico.

En la literatura son mas los trabajos de investigacién que defienden la
necesidad o existencia de un CCC dedicado (Ding et al., 2010; Kim et al.,
2010; Ma ez al., 2007). El enfoque con CCC dedicado se divide en dos situa-
ciones: (1) cuando el CCC vy el canal de datos del SU son el mismo, y (2)
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cuando el CCC se encuentra en un canal independiente del canal de datos
del SU (Akyildiz et al., 2009). Cuando el canal de datos del SU y del CCC
son el mismo su utilizacion se comparte por periodos fijos y no es necesario
un transreceptor adicional, ni se requiere cambiar la frecuencia para recibir o
transmitir los mensajes. Sin embargo, cuando sea necesario realizar un san-
doff espectral, el CCC desaparecera. Aunque este enfoque proporciona una
mayor eficiencia espectral al utilizar un solo canal de frecuencia, la cantidad
de informaciéon del CCC reduce el throughput de la transmision de datos del
SU (Akyildiz et al., 2009).

Cuando el canal de datos del SU y el CCC son independientes el CCC no
se ve afectado por la realizacion de un zandoff espectral; sin embargo, el costo
de tener dos canales implica la necesidad de un transreceptor adicional y un
incremento en el retardo. El CCC independiente puede ser global —si es el
mismo para todos los SU en una CRN—, o local —dedicado solamente a
una pequena area geografica—. En ambos casos es necesario contar con un
algoritmo de asignacién de CCC que permita encontrar el canal dptimo del
area geografica de la CRN. (Akyildiz et al., 2009). Con respecto al enfoque
del CCC dinamico existen muy pocos trabajos (Almasaeid y Kamal, 2010;
Kondareddy er al., 2008). Aunque hace un uso mas eficiente del espectro es
vulnerable al problema del nodo escondido, que puede llevar a un decremento
del nivel de conectividad. Ademas, la seleccion dinamica de un CCC puede
incrementar el nivel de retardo en la transmision del SU (Tragos ez al., 2013).

2.2.5 Criterios de decision espectral

En la asignacion espectral existen multiples criterios que ayudan a tomar
decisiones inteligentes. Sin embargo, cuantos y cuales criterios utilizar, de-
pende del objetivo en cada toma de decisiones. En aras de imparcialidad, se
analizaron todas las variables que intervienen durante la toma de decisiones
y que pueden afectar el desempefio de la red. Esto se logro a partir del ana-
lisis de cada una de las investigaciones consultadas alrededor del tema de
decision espectral en CRN (Ahmed et al., 2014; Masonta et al., 2013; Tragos
etal., 2013).

Estos criterios proporcionan informacion necesaria para alimentar los al-
goritmos de toma de decisiones con base en los criterios de evaluacion para
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la asignacion espectral a los SU en las CRN. Estos criterios varian de acuer-
do con los objetivos de cada esquema de fandoff espectral.

Calidad de Servicio (QoS)

La QoS es uno de los criterios mas relevantes en los algoritmos de toma de
decision para la asignacion espectral de los SU en las CRN. Permite dife-
renciar entre aplicaciones sensitivas y no al retardo; en otras palabras, las
clasifica de acuerdo con el tipo de servicio: tiempo real (RT) y mejor esfuer-
zo (BE). Con esta informacion se puede tomar la decision mas adecuada en
términos de las oportunidades espectrales.

Abplicaciones que no son sensibles al retardo pueden ser asignadas a
oportunidades espectrales con nivel de disponibilidad intermedio. Mientras
que aplicaciones sensibles al retardo pueden ser asignadas a oportunidades
espectrales con un nivel alto de disponibilidad a través de estrategias proacti-
vas que minimicen el valor del retardo global, aqui el throughput resulta mas
relevante que la BER. Lo anterior permite mejorar la eficiencia espectral.

Calidad del enlace

La calidad del enlace es otro criterio importante que normalmente se refleja
a través de la BER y SRN, los cuales también afectan la QoS de la red. Esta
ultima a veces se trabaja como SINR.

BER

Es el numero de bits recibidos que han sido alterados debido al ruido y la
interferencia, divididos por el nimero total de bits transmitidos durante un
periodo de tiempo (Ahmed ez al., 2014). La BER promedio del canal es un
parametro util para estimar la caracterizacion del ambiente de radio en las
CRN (Masonta et al., 2013). El nivel de BER esta relacionado con el nivel
de SNR, esto causa que la energia por bit transmitido sea una métrica im-
portante en la estimacion del error (Hoyhtya ez al., 2008). A mayor SNR
menor BER, sin embargo, es importante tener en cuenta que un mayor nivel
de SNR generalmente implica un mayor nivel de potencia, lo cual causa ma-
yor interferencia al PU. Por tanto, es necesario estimar un minimo nivel de
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SNR que garantice cierto nivel de BER que no perjudique la comunicacion
(Tragos et al., 2013).

Calidad del enlace de comunicacion

En CRN puede variar dinamicamente en el tiempo y espacio. Por ello, es
importante para el SU, monitorizar y analizar periddicamente la calidad del
canal que esta siendo utilizado, por ejemplo, a través de la SNR. La SNR
define la relacion entre la potencia de la sefial y la potencia del ruido. Es otro
parametro importante que afecta y refleja la QoS de la red. Usualmente la
fuerza de la sefial recibida (RSS) y la SINR son consideradas similares, sin
embargo, la primera esta mas inclinada a proveer conectividad y la segunda,
QoS de la red (Ahmed et al., 2014).

AP del canal

La disponibilidad de canal estima la probabilidad de que un canal de frecuen-
cia esté disponible. Algunos trabajos lo expresan como ocupacion de canal,
en cuyo caso se busca estimar la probabilidad de ocupacion de un canal de
frecuencia. Es un criterio muy relevante en la asignacion espectral ya que pue-
de determinar las posibilidades de que una oportunidad espectral esté libre
para ser utilizada por un SU. Su valor es proporcional a la media aritmética
de las medidas de disponibilidad obtenidas anteriormente por cada canal.
Aqui resulta interesante determinar el de tiempo a partir del cual se debe
actualizar el valor promedio de la disponibilidad por canal. Un analisis de la
serie de tiempo para esta variable podria estimar un intervalo de confianza
para el periodo de tiempo de actualizacion. Lo anterior permite lograr una
mejor eficiencia de energia, al no tener que correr el algoritmo de estimaciéon
del criterio de disponibilidad de canal continuamente (Ahmed et al., 2016).

ETA del canal

El tiempo estimado de disponibilidad es un criterio que busca determinar el
valor promedio que un canal de frecuencia permanece disponible para un
SU o PU. A diferencia del criterio de disponibilidad de canal, donde se de-
termina la probabilidad de encontrar cierto canal libre, el criterio de tiempo
estimado de disponibilidad estima el tiempo medio durante el cual el canal
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permanece libre, una vez esta disponible. Estos dos criterios no son sustitu-
tos sino complementarios, ya que dos canales pueden tener la misma AP,
pero con distribuciones de tiempo de disponibilidad distintas. Seleccionar
un canal con un tiempo estimado de disponibilidad alto, garantiza un me-
nor niamero de handoff espectral. Los autores en (Pla et al., 2010) proponen
un modelo Markoviano para determinar la duracién de las oportunidades
espectrales. Una vez se ha modelado el tiempo ocioso del PU, se aplican
técnicas de matriz analitica para determinar la duracion de las oportunida-
des espectrales para ser ocupadas por los SU. La principal desventaja de esta
técnica radica en su complejidad.

Patron de trafico del PU y SU

No hay ninguna garantia de que el canal de frecuencia seleccionado esté
disponible durante toda la comunicacién, por ello es beneficioso contar con
un modelo que estime la actividad del PU en la CRN. En algunos trabajos se
asume que se puede conocer el patron de llegadas del PU, ya que no es alea-
torio estadisticamente, debido a que depende del comportamiento humano.
De esta forma se puede estimar la AP yla ETA (Ahmed ez al., 2016; Akyildiz
et al., 2009; Christian et al., 2012; Wu et al., 2016).

Los autores en (Wang ez al., 2010) exponen varios trabajos que argumen-
tan que el comportamiento de ocupacion de los canales exhibe patrones que
pueden ser modelados estadisticamente. Sin embargo, diferentes modelos
pueden aplicar a diferentes aplicaciones como voz, video y paquetes de datos
generales. Varios modelos asumen que la actividad del PU se puede modelar
con interllegadas distribuidas exponencialmente (Chou et al., 2007; Kim y
Shin, 2008; Lee y Akyildiz, 2008). En (Sriram y Whitt, 1986) el patron de
trafico se modela como un proceso de dos estados ON-OFF; nacimiento y
muerte, con sus respectivas tasas. Otros modelan la actividad del PU a partir
del tiempo entre arribos; longitud y cantidad de paquetes.

Algunos trabajos se esfuerzan en modelar el comportamiento del PU en
bandas especificas a partir de datos experimentales (Pedraza et al., 2014).
Los autores en (Willkomm et al., 2008) utilizan medidas reales de una red
celular para modelar caracteristicas de uso del espectro por parte del PU.
El analisis realizado muestra que el modelo de llegadas exponencialmente
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distribuidas es adecuado para capturar el tiempo de actividad del PU en
llamadas no inalambricas. Mientras que para las llamadas moviles dicho
modelo no resulta 1util, siendo mas efectivo el uso de un modelo de caminata
aleatoria aun en condiciones de trafico alto. Los autores en (Hernandez et
al., 2009) validan el uso de series de tiempo —modelos Autorregresivo (AR);
Media movil (MA) y Autorregresivo integrado de media movil (ARIMA)—
para el modelamiento y prediccion de trafico en redes Wi-Fi, obteniendo
un alto nivel de precision en el pronodstico de rango corto. En (Li y Zekavat,
2008) se presenta un trabajo sobre la prediccion del patron de trafico para
CRN.

Los autores en (Wei et al., 2006) almacenan informacién de interés
para una CRN —pasada y presente— en un repositorio, incluyendo la in-
formacion de localizacion y trafico del SU y PU. Es importante validar la
informacion almacenada para asegurarse de que no es obsoleta. Esta colec-
cion de datos debe ser estadisticamente analizada y usada para modelar la
actividad del PU en un canal de frecuencia dado (Issariyakul ez al., 2009). De
acuerdo con el aprendizaje maquinal, los SU deberian ser habiles para recor-
dar las lecciones aprendidas en el pasado y actuar rapidamente en el futuro
(Marinho y Monteiro, 2012). Idealmente el SU deberia conocer el patrén de
trafico del PU, observar el cambio y seleccionar la estrategia de handoff mas
adecuada (Akyildiz er al., 2009; Christian et al., 2012). Las estrategias de
handoff espectral futuras deberian considerar un factor de aprendizaje.

Fecha y hora

La utilizacion del espectro depende del tiempo y del espacio. El criterio de
fecha y hora puede ser un buen dato de informacién para estimar el nivel de
trafico y congestion de la red, a partir de las estadisticas de la historia de in-
formacion pasada (Hernandez et al., 2009, 2013; Issariyakul ez al., 2009; Wei
et al., 2006; Zhang et al., 2016). Una base de datos de estadisticas pasadas
y recientes permite estimar la disponibilidad y acceso al espectro con cierto
nivel de precisidn. Las series de tiempo son una herramienta muy util en este
contexto (Hernandez et al., 2009).
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Geo-localizacion

De acuerdo con la naturaleza de las redes inalambricas, la disponibilidad de
espectro no solamente cambia con el tiempo sino también con la movilidad
espacial (Duan y Li, 2011; Zhang et al., 2016). Conocer la posicidén exacta de
los SU y PU es una ventaja en la toma de decisiones para la asignacion espec-
tral. Esta informacién puede mejorar las estrategias para evitar interferencias
al PU y reducir la tasa de handoff espectral, al determinar una distancia um-
bral a partir de la cual se deba realizar el cambio de canal. En zonas rurales,
debido a la baja demanda de espectro, es posible utilizar un BW mas amplio.
Este conocimiento puede ser util para futuras predicciones de oportunidades
espectrales y la caracterizacion del ambiente de radiofrecuencia.

Capacidad del canal o BW disponible

Muchos trabajos se enfocan en parametros como tasa de datos, retardo,
nivel de interferencia, BER o tasa de &andoff espectral, los cuales son rele-
vantes para la eficiencia espectral. Sin embargo, la capacidad de canal es otra
variable de interés en la asignacion espectral, ya que algunas aplicaciones
requieren un minimo BW para mantener sus parametros de BW (Kumar
et al., 2016). En los sistemas de multiplexacioén por division de frecuencia
ortogonal cada banda espectral tiene un diferente BW que consiste de varias
subportadoras (Masonta et al., 2013).

Fuerza de la senal recibida (RSS)

También conocida como Indicador de fuerza de la sefal recibida (RSSI) y
Fuerza relativa de la sefial recibida (RRSS), es un factor tradicional e impor-
tante para tomar decisiones de handoff espectral. RSS provee informacién
acerca del nivel de potencia que esta siendo recibido por la antena, el cual
decrementa cuando el usuario se aleja del actual punto de acceso de la red.
(Ahmed ez al., 2014). Este criterio permite determinar el momento en el que
se hace necesario realizar un cambio de canal.

Costo monetario

Las redes que funcionan sobre bandas de espectro licenciadas proveen cier-
tos servicios a los usuarios a cambio de un costo monetario. El valor del

67 E2



César Augusto Hernandez Sudrez, Diego Armando Giral Ramirez, Lizet Camila Salgado Franco

costo monetario dependera principalmente del recurso de BW y del tiempo
durante el cual se utiliz6. Si dos redes proveen la misma QoS entonces la
red con el costo mas bajo sera la preferida por los SU (Ahmed ez al., 2014).
Debido a lo anterior, el valor del costo monetario es una variable de informa-
cion de interés para el algoritmo de asignacion espectral.

Preferencias de usuario

Las preferencias de los usuarios pueden ser definidas con base en la red
preferida dentro de las disponibles, para ejecucion de aplicaciones. Las pre-
ferencias de los usuarios también se pueden definir a partir de las prioridades
asignadas a cada aplicacidn, las cuales pueden ser alta o baja. Usualmente
los usuarios prefieren conexiones con alto BW, bajo costo y amplia cober-
tura, entre otras (Ahmed et al., 2014). La mayoria de trabajos que analizan
preferencias de los usuarios, utilizan funciones de utilidad que permiten des-
cribirlas y manipularlas matematicamente para encontrar Optimos.

Seguridad de la red

La seguridad es uno de los temas mas relevantes en la convergencia de redes
debido a que cada red tiene sus propias opciones de seguridad. El proceso de
handoff espectral requiere proveer seguridad y privacidad contra intercepcio-
nes ilegales o ataques de denegacién de servicio (Ahmed et al., 2014).

2.3 Técnicas y algoritmos para la asignacion espectral

La asignacién espectral —y por ende la decision espectral— es un aspecto
clave en las CRN para reducir latencia, incrementar la tasa de datos, aumen-
tar el BW, mejorar la capacidad y cobertura, y optimizar el uso del espectro,
garantizando la QoS necesaria para aplicaciones de RT y BE.

Seleccionar un canal con las caracteristicas requeridas sobre el cual un
SU pueda continuar su sesion de transmisién de datos es un asunto apre-
miante en las CRN (Christian er al., 2012). Una pobre seleccién de canal
puede causar multiples handoff espectral, degradando el desempeno de
todo el conjunto (Christian et al., 2012; Hernandez, Salgado et al., 2015;
Hernandez-Guillén et al, 2012).
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Esta seccion tiene por objetivo presentar una revision sobre los algoritmos
de asignacion espectral en CRN, describiendo los algoritmos mas relevantes
y su clasificacion de acuerdo con la literatura actual. El desarrollo de esta re-
vision se realizd a partir del andlisis de publicaciones recientes de corriente
principal con sus respectivas citas, tratando de proveer un marco referencial
completo de la literatura actual sobre los algoritmos de asignacion espectral en
CRN. Los principales resultados determinan la importancia de una asignacion
espectral inteligente teniendo en cuenta la carga de trafico, el comportamiento
del usuario, los niveles de interferencia, la caracterizacion del espectro, el tipo
de aplicacioén y la necesidad de multiples canales de frecuencia. Como conclu-
sion es importante diseflar algoritmos adaptativos que permitan hacer un uso
eficiente de las porciones disponibles del espectro licenciado.

Una vez que todas las oportunidades espectrales se detectan y caracterizan
se debe seleccionar la oportunidad espectral mas cercana a los requerimientos
para la transmision, teniendo en cuenta los requisitos de QoS y las caracte-
risticas del espectro. Por tanto, se deben conocer los requisitos de QoS del
usuario. Con base en las necesidades de los usuarios se puede determinar: la
velocidad de datos, la BER aceptable, el retardo maximo permitido, el modo
de transmisién y el BW para la transmision. Entonces, puede ser elegido
el conjunto de bandas del espectro apropiado, de acuerdo con las reglas de
decision y los algoritmos que evaltian las posibles soluciones. En (Zheng y
Cao, 2005) se presentan cinco reglas para asignar espectro que se centran en
la equidad y el costo de la comunicacion. Sin embargo, este método asume
que todos los canales tienen una capacidad de rendimiento similar (Akyildiz
et al., 2006). Lo ideal es ajustarse a los requerimientos que imponen las dis-
tintas aplicaciones. En (Kanodia et al., 2004) se propone un protocolo de
saltos de canal de frecuencia oportunista para la busqueda de un canal de
mejor calidad, basada en la SNR.

La figura 2.8 propone una clasificacion de algoritmos para la seleccion de
oportunidades espectrales. Esta clasificacion agrupa los algoritmos de asig-
nacion espectral en seis clases: (1) toma de decisiones multicriterio (MCDM),
(2) algoritmos inteligentes, (3) técnicas de aprendizaje, (4) funciones de
decision, (5) contexto, y (6) estadisticos. A continuacién, se describen los
algoritmos mas relevantes dentro de cada clase de la clasificacién propuesta.
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2.3.1 Algoritmo de asignacion aleatoria

Es la forma mas basica para la asignacion espectral y la que peor desempe-
fio provee, por esta razdn no se encuentra en la clasificacion propuesta de
la figura 2.8. Sin embargo, se ha convertido en el algoritmo mas utilizado
para contrastar los resultados obtenidos por otros de asignacidon espectral
propuestos en la literatura actual al seleccionar de forma completamente
aleatoria las oportunidades espectrales, por lo cual es utilizado como punto
de referencia y comparacion para la evaluacion de algoritmos propuestos.

Clasificacion de Algoritmos para Asignacion de Espectro

v ¥ v ¥ ¥
s N ) s N )
MCDM Algo.rltmos Tecmca.s d.e Funuo.n.e's de Estadisticos
Inteligentes Aprendizaje Decision
L J L ) L J L )
¥ ¥ 7 7 ¥ ¥
Légica No . Funcién de Redes
SAW
Difusa Supervisado PRl Utilidad Bayesianas
12 ¥ ¥ ¥
MEW Algoritmos Aprendizaje Redes Funcién de Cadenas de
Genéticos por Refuerzo Neuronales Costo Markov
¥ ¥ ¥ ¥ ¥
ELECTRE Sis.temas Teoria de SVM Arbo!gs’de
Multiagentes Juegos Decision
|
¥
Colonia
GRA Artificial de
Abejas
TOPSIS
VIKOR
AHP
———

FAHP

—

FFAHP

Figura 2.8. Clasificacion de los algoritmos para la asignacion de espectro.

Fuente: elaboracion propia.

2.3.2 Algoritmos MCDM

El problema de asignacién espectral tiene multiples variables a analizar para
seleccionar una sola oportunidad espectral, por tanto, los algoritmos basados
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en MCDM son ampliamente usados en este tipo de problemas, donde Ia re-
lacién entre los criterios de decision es medida a través de pesos ajustados de
acuerdo con los requerimientos del disefiador. Al cabo de un cierto nimero
de iteraciones el algoritmo determinara la mejor solucién (Hernandez et al.,
2015a).

2.3.2.1 Simple Additive Weighting—SAW

Este algoritmo desarrolla una matriz de decision conformada por criterios
y alternativas (oportunidades espectrales). Para cada interseccion de la ma-
triz el algoritmo asigna un peso de acuerdo con los criterios del disefiador.
Esto permite establecer una calificacion para cada una de las oportunidades
espectrales evaluadas, y obtener asi un ranking de todas las alternativas. La
oportunidad espectral con mayor puntaje sera la seleccionada (Hernandez et
al., 2015a; Ramirez y Ramos, 2010).

La alternativa Ai esta definida por la ecuacion (2.1) (Ramirez y Ramos,
2013).

M
u, =Za)l.ri’j Viel,....N (2.1)

Jj=1

Donde 1, pertenece a la matriz y la suma de los pesos es 1.

Los pasos para desarrollar este algoritmo son: (1) identificar los objetivos
y alternativas; (2) evaluar las alternativas; (3) determinar los pesos de cada
combinacion; (4) adicionar los valores agregados segun las preferencias; y
(5) analizar la sensibilidad (Hernandez et al., 2015a; Hiibner, 2007; Ramirez
y Ramos, 2013; Ramirez y Ramos, 2010).

En Hernandez er al., (2015¢) se utiliza SAW para seleccionar la me-
jor oportunidad espectral en una banda de frecuencia GSM, evaluando la
cantidad de Aandoff realizados y comparando los resultados con otros dos
algoritmos de asignacion espectral.

2.3.2.2 Multiplicative Exponent Weighting—MEW

MEW es otro algoritmo MCDM, muy similar a SAW. La principal diferen-
cia es que en MEW en lugar de suma hay multiplicacion. Fue propuesto
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para asignacion espectral en (Stevens y Wong, 2006). En MEW la califica-
cion de las oportunidades espectrales es determinada por el producto de los
pesos de los criterios de decision. El puntaje S7 de la oportunidad espectral 7
es determinada por la ecuacién (2.2) (Hernandez ez al., 2015a; Hernandez et
al., 2015c; Hiibner, 2007; Ramirez y Ramos, 2013; Ramirez y Ramos, 2010;
Stevens et al., 2012; Stevens y Wong, 2006).

S, :Hx;j (2.2)

jeN

Donde X, deno'ggl el criterio j de la oportunidad espectral i, W, denota el peso
del criterio j, y ;Wf:l .

Es necesario tener en cuenta que en (2.2) W, es una potencia positiva para
métrica de beneficio y negativa para una métrica de costo. Debido a que la
normalizacion de pardmetros no es requerida sino opcional, el puntaje de la
oportunidad espectral asignado por MEW no tiene una cota superior (Yoon
y Hwang, 1995).

En Hernandez et al. (2015a) se utiliza MEW para seleccionar la mejor
oportunidad espectral en una banda de frecuencia de comunicaciones mévi-
les, evaluando el nivel de throughput y BW, y comparando los resultados con
otros dos algoritmos de asignacion espectral.

2.3.2.3 Elimination and Choice Expressing the Reality — ELECTRE

comparaciones entre parejas de alternativas utilizando cada uno de los
criterios por separado para establecer relaciones (Valenta er al., 2010). Se
propuso, inicialmente, para la asignacion espectral en Christian ez al. (2012).
En general, ELECTRE utiliza un vector de criterios de referencia para ajus-
tar los valores iniciales antes de compararlos. El valor de cada uno de estos
en la matriz de decision se compara con el correspondiente valor de criterio
de referencia X, La diferencia entre ambos se calcula de acuerdo con la
ecuacion (2.3) (Stevens et al., 2012).

Ty = Xy =Xy (2.3)
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Con el objetivo de comparar las alternativas espectrales se introduce el con-
cepto de concordancia y discordancia, que son medidas de satisfaccion e
insatisfaccion del algoritmo cuando una alternativa es comparada con otra.
La alternativa con el valor mas alto de concordancia neta y el valor mas bajo
de discordancia neta sera la preferida (Stevens ez al., 2012).

2.3.2.4 Grey Relational Analysis — GRA

“El objetivo de este algoritmo es establecer las redes candidatas y seleccionar
las que tengan mas alta puntuacion de acuerdo con unos parametros definidos.
Para lograr esto se establecen relaciones de Grey entre elementos de dos series:
la primera contiene las mejores cualidades, mientras que la otra contiene en-
tidades comparativas. Aca es parte importante el coeficiente de Grey, que se
usa para describir las relaciones entre las series calculado a partir del nivel de
similitud y variabilidad” (Hernandez, Giral, y Paez, 2015; Hernandez, Giral, y
Santa, 2015; Hiibner, 2007; Paez et al., 2015; Ramirez y Ramos, 2013; Ramirez
y Ramos, 2010; Stevens et al., 2012; Stevens y Wong, 2006).

“En GRA primero se genera el vector de referencia Xo, de la matriz X, a
través de la escogencia de los valores minimos para los costos y los valores
maximos para los criterios de beneficios. Después, la secuencia de datos debe
ser normalizada para X de acuerdo con tres situaciones: mas grande el mejor,
mas pequeilo el mejor o nominal el mejor. Luego, se calcula el coeficiente
relacional de Grey” como lo describe la ecuacién (2.4) (Paez et al., 2015).

— Amin + (Amax
AO,j(i) + CAmax

14 (xo(i), xj(i)) (2.4)

Donde,
Ao,j= |x0(i) - xj(i)|
A= min {min{|xo () ~ x (O]}
Bmax= max {max{|xo (D) = x; (D[}

JEN

Donde el coeficiente que pertenece [0,1] compensa el efecto de max, que
generalmente es 0,5.
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Finalmente, se calcula el grado relacional de Grey para cada una de las
diferentes series de datos, como lo describe la ecuacion (2.5), donde I'(x ,x)
representa el grado relacional de Grey para las j-ésimas alternativas.

[(x,x,) = > @r(x (i).x, (1)) (2.5)

M=

Donde w, es el peso de la importancia de los i-ésimos criterios.

En Paez et al. (2015) se utiliza GRA para seleccionar la oportunidad es-
pectral en el enlace ascendente de la banda de frecuencia GSM, evaluando
el nivel de bloqueos de Aandoff, y comparando los resultados con otros dos
algoritmos de asignacion espectral.

2.3.2.5 Technique for Order Preference by Similarity to Ideal Solution—TOPSIS

El desarrollo de este algoritmo se basa en la determinaciéon de dos compo-
nentes: la solucion ideal del sistema y la solucion que no puede ser aceptada
en ninguna situacién. Aqui es necesario comparar los resultados obtenidos
para determinar qué solucion es la mas cercana posible a la ideal, y cual la
mas lejana (la cual no sera aceptada). Dicha métrica se obtiene a partir de
la distancia euclidiana, entre los criterios y los pesos (Hernandez, Giral, y
Paez, 2015; Ramirez y Ramos, 2010).

El procedimiento del algoritmo TOPSIS esta descrito en Hernandez,
Giral, y Paez (2015), Ramirez y Ramos (2013) y Ramirez y Ramos (2010).
Inicialmente, se construye la matriz de decisién X y se normaliza usando el
método de raiz cuadrada —ecuacion (2.6)—.

Au o X Ox, - Oyliy

X=| ¢+ or= : (2.6)

vt " X Oy " OyXm
Donde w, es el peso asignado al criterio 1, y la suma de estos debe ser 1.

Luego se determina la solucién ideal y la peor solucién, como lo descri-
ben las ecuaciones (2.7) y (2.8).
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A* ={(max;(ij[]'e X*)’(min;(ijb' e X )} ={;(1+,___ 71:4} (2.7)

A :{(min;(ijb'e X*),(max;{ij[j € Xf)} Z{;(f,... ,){{4} (2.8)

Donde 1 = 1, ...N, y X+ y X- son el conjunto de beneficios y costos,
respectivamente.

Posteriormente, para cada alternativa se calcula la distancia euclidiana D,
como se observa en las ecuaciones (2.9) y (2.10).

M

D' = Z(;(ij—;(j*)z i=1...,N (2.9)

=1

M
D = /z(%_;{j-)z i=1...,N (2.10)
=1

Finalmente, las alternativas son organizadas en orden descendente de acuer-
do con el indice de preferencia dado por la ecuacién (2.11).
D
C=—"'"— i=1 N
; —, e s N (2.11)
D. +D,

En Hernandez et al. (2015f) se utiliza TOPSIS para seleccionar la mejor
oportunidad espectral evaluando el nivel de interferencia por canal adyacen-
te y el numero promedio de fandoff realizados. Los resultados son compara-
dos con otro algoritmo y sus respectivas versiones, al combinarlos, con tres
algoritmos de prediccion basados en series de tiempo.

2.3.2.6 Multi-Criteria Optimization and Compromise Solution—VIKOR

“El método VIKOR asume que cada alternativa es evaluada de acuerdo con
cada funcidn de criterio, y la clasificacion puede ser desarrollada a través de
la comparacién de las medidas que estén mas cercanas a la alternativa ideal”
(Hernandez, Vasquez, et al., 2015; Paez et al., 2015; Tanino et al., 2003).
VIKOR fue desarrollado para lograr la optimizacion de sistemas complejos
con multiples criterios, por tanto, es habil para determinar el compromiso en
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una lista de ranking, aun en presencia de criterios en conflicto, lo que lo hace
un algoritmo adecuado para la toma de decisiones en la asignacion espectral
(Gallardo-Medina et al., 2009).

El algoritmo VIKOR sigue los pasos descritos en Herndndez et al. (2015a),
Paez et al. (2015), Ramirez y Ramos (2010) y Stevens et al. (2012).

Para cada parametro j =1, 2, 3,..., N, se determina el mejor y peor valor,
dados por las ecuaciones (2.12) y (2.13).

B :{(Igldxxijﬁer),(l}gl;\?xijUeNC)} (2.12)
E :{(rirelglxij[jer),(rg%xxierNc)} (2.13)

Donde N, que pertenece a N, es el conjunto de pardmetros de beneficios y
N, que pertenece a N, es el conjunto de parametros de costos.

Luego se calculan los valores de S,y R parai=1,2,3,...,M, como lo des-
criben las ecuaciones (2.14) y (2.15).

(F.* - x,.)
S =>Yw 2L 2.14
2V FE) (2.14)
(Ff _Xij)
R, = max| w,-———= (2.15)
| (E-F)
Donde W es la importancia del peso del parametro j.
Posteriormente, se calculan los valores de Q, O parai=1,2, 3, ..., M,
dados por la ecuacion (2.16).
S. —-S* R, -R”
=y 2 +(1-y) ——— _
Q, Y[S_S+j ( v)(R_R+j (2.16)

A S*=minS,, S =maxS,,ST = minS;,S" = maxS;, R* =minR., R~ =maxR,
Dondei iem 1P em ieM ! ieM ' ieM v ieM i

y0< y<l1
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Dados los valores de Q para todos los 1 pertenecientes a M, se clasifican
de mayor a menor las oportunidades espectrales candidatas. Finalmente, la
oportunidad espectral seleccionada esta dada por el Q éptimo, como lo des-
cribe la ecuacion (2.17).

Ay =argmin Q] (217)

En (Paez et al., 2015) se utiliza VIKOR para seleccionar la mejor oportu-
nidad espectral en el enlace ascendente de la banda de frecuencia GSM,
evaluando el nivel de bloqueos de kandoff, y comparando los resultados con
otros dos algoritmos de asignacion espectral.

2.3.2.7 Analytical Hierarchical Process—AHP

AHP se basa en comparaciones sobre la importancia entre los criterios de
decision escogidos para la seleccion de una alternativa, siendo mas una me-
dida relativa que un valor absoluto (Saaty, 1990).

En la metodologia de disefio del algoritmo AHP, el primer paso es definir
el problema, descomponiéndolo a su vez en objetivo, criterios y alternativas.
El objetivo es la decisién que se ha de tomar, que para el presente trabajo
corresponde a la seleccion de la mejor oportunidad espectral. Los criterios
son los factores que afectan la preferencia de una alternativa. Las alterna-
tivas son todas las oportunidades espectrales, de las cuales hay que escoger
solo una.

El segundo paso es la construccion de la jerarquia de acuerdo con la de-
finicion del problema. El tercer paso es la realizacion de las matrices de
juicios, las cuales corresponden a evaluaciones comparativas que definen el
nivel de importancia relativa entre cada combinacién posible de parejas de
criterios —ver ecuacion (2.18)—.

all aIZ aln

a.. a e a
21 722 2

A:I:a:| = "
U Lnxn . . . .

(2.18)

a anz -.-a

nl

Dondei=j =1, 2,..., n, corresponden al numero de criterios.
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El cuarto paso procede a calcular los pesos normalizados para cada crite-
rio, como lo describe la ecuacion (2.19) (Hernandez et al., 2015a).

r:[r], Fyy oeeey rn] conr, = %
S, (2.19)
j=

Donde r es el vector de valores propios; 7,, 7,, ..., 7, €s el valor de los pesos
de cada subcriterio, V, es la media geométrica de la fila 1, y V.es la media
geométrica de la columna j.

Finalmente, el quinto paso evalua la validez del algoritmo AHP a través
del indice de consistencia, como se muestra en la ecuacién (2.20) (Miranda,
2001). De acuerdo con Saaty (1990) si el indice de consistencia es menor que
0,1 el desarrollo del algoritmo es satisfactorio.

v,
'y (Ina,;—In—+)
o JZ a2 Ty, (2.20)

(n—-Dx(n=-2)
2

Donde CI es el indice de consistencia, n el niumero de subcriterios y 4 es el
valor del elemento de la fila 1 y columna j.

En Hernandez, Giral y Paez (2015) se utiliza AHP para seleccionar la
mejor oportunidad espectral en la banda de frecuencia GSM, calculando el
desempefio del algoritmo con base en cinco métricas de evaluacion y com-
parando los resultados con otros cinco algoritmos de asignacion espectral.

2.3.2.8 Algoritmo multivariable difuso—FAHP

El algoritmo AHP para la toma de decisiones basada en multiples criterios,
tanto cuantitativos como cualitativos, ha demostrado ser una alternativa efi-
caz para la seleccion del canal objetivo (Kibria et al., 2005; Lahby et al.,
2011; Rodriguez et al., 2011; Song y Jamalipour, 2005; Stevens et al., 2012;
Stevens ez al., 2008). El algoritmo AHP se basa en juicios subjetivos, a través
de comparaciones de la importancia entre criterios usados para la seleccion
de una alternativa, como consecuencia es mas una medida relativa que un
valor absoluto (Saaty, 1990).
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Sin embargo, el método AHP propuesto en Saaty (1990) tiene algunas
limitaciones como: (1) trabajar con una escala de juicios muy desbalancea-
da, (2) no manejar informacién con incertidumbre y ambigliedad asociada
a la asignacion de un ntimero a cada evaluacion, (3) el ranking de AHP es
bastante impreciso, (4) la subjetividad del juicio, seleccién y preferencia de
quienes toman las decisiones tiene gran influencia en los resultados. Estas
limitaciones se pueden corregir a través de la integracidon de la logica difusa
en el algoritmo AHP, mejorando el manejo de subjetividad e incertidumbre
en la informacion y en las evaluaciones de criterios, obteniendo de esta for-
ma el algoritmo FAHP (Mehbodniya ef al., 2012; Patil y Kant, 2014; Zapata
etal., 2012).

Aunque el método FAHP tenga en esencia la misma metodologia del
algoritmo AHP, la 16gica difusa ayuda a tratar la subjetividad y la incerti-
dumbre en las evaluaciones de criterios, ya que con la logica difusa, mediante
un proceso matematico, permite utilizar un rango en la respuesta en lugar de
un numero puntual (Cortés, 2011).

El algoritmo FAHP propuesto adaptado a la CR, se desarrollo a través de
cuatro pasos: (1) definicion del problema, (2) construccidn de la jerarquia, (3)
construccion de la matriz de juicios, y (4) calculo de los pesos normalizados.

Definicién del problema

El problema puede ser dividido en cuatro niveles jerarquicos: objetivo,
criterios, subcriterios y alternativas. El objetivo es la seleccion de la me-
jor oportunidad espectral en una CRN. Los criterios y subcriterios son los
factores que afectan la preferencia de una alternativa. Las alternativas son
todas las oportunidades espectrales presentes en la banda de frecuencia
seleccionada.

El procedimiento para determinar los criterios y subcriterios fue realiza-
do a través de una modificacién del método Delphi (Green et al., 2007) que
es relativamente simple de implementar y ha sido adoptado para diversas
aplicaciones, como pronosticos, estimaciones y problemas de toma de deci-
siones (Green et al., 2007). El método consiste, generalmente, en un panel de
expertos respondiendo cuestionarios en dos o mas rondas. Después de cada
ronda un moderador provee un resumen anénimo de los juicios y razones
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de cada experto en la ronda previa. Para esta investigacion, los criterios de
decision para el algoritmo FAHP fueron propuestos inicialmente a partir de
todos los parametros reportados en la literatura actual sobre Zandoff espec-
tral para CRN, y finalmente seleccionados con una modificacion del método
Delphi, propuesto en (Hernandez et al., 2015). La contribucién al método
Delphi es la definicién de experto por si misma, definida como el profesional
inmerso en la administracion y operacion de red, asi como la propuesta del
método Delphi modificado, la cual consiste en considerar dos entradas en
lugar de una para cada ronda. Para la primera ronda y siguientes, se consi-
deraron dos entradas, la decision de un Consejo de Administradores de Red
compuesto por nueve expertos seleccionados aleatoriamente, y el ranking del
impacto de las variables que influyen en el proceso de handoff espectral, re-
portadas en la literatura.

La segunda ronda del método Delphi implementado considerd 13 va-
riables seleccionadas durante la primera ronda del proceso y el ranking del
impacto de las variables actualizado. El Consejo de Administradores de Red
determiné cuales de las 13 variables eran significativas, si debia adicionarse
nuevas variables, o si habia que modificar o descartar variables seleccionadas
inicialmente, lo cual se combiné con las estadisticas del ranking del impacto
de las variables y se actualizo. En caso de desacuerdo entre miembros del
Consejo de Administradores de Red, se desarrolla un analisis global com-
binado con las estadisticas del ranking del impacto de las variables, luego
un segundo conjunto de variables es propuesto para la tercera ronda, con el
mismo procedimiento. Este proceso se repite iterativamente hasta alcanzar
consenso general por parte del Consejo de Administradores de Red com-
binado con las estadisticas del ranking del impacto de las variables. En el
método Delphi propuesto, si el consenso no se da antes de la quinta ronda,
la decision final es tomada con base en las estadisticas finales del ranking del
impacto de las variables. Para este caso, el consenso se logro en la tercera
ronda, en la cual se descartaron ocho variables.

Después de tres rondas del método Delphi modificado, cinco variables
fueron seleccionadas por la combinacion del Consejo de Administradores
de Red y las estadisticas del ranking del impacto de las variables. Estas son,
clase de servicio del SU (RT y BE); AP, ETA, SINR y BW. El préximo paso
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fue organizar los criterios de decision en criterios y subcriterios para el obje-
tivo de seleccionar la mejor oportunidad espectral para el SU. Se considerod
que la variable clase de servicio es mas general que las otras variables, por lo
que se decidio seleccionarla como criterio, clasificandola como alta sensibi-
lidad al retardo y baja sensibilidad al retardo, y considerando las otras cuatro
variables seleccionadas como subcriterios de la clase de servicio. En esta in-
vestigacion el criterio clase de servicio es determinado por la aplicacién del
SU. Se considera que el objetivo es el mismo tanto para alta como baja sensi-
bilidad al retardo (seleccionar la mejor oportunidad espectral), sin embargo,
la importancia (ponderacién) de cada subcriterio es diferente, y corresponde
al enfoque de la sensibilidad al retardo de las aplicaciones.

Los cuatro subcriterios fueron medidos y calculados a partir de datos ex-
perimentales de ocupacion espectral, capturados en la banda GSM y Wi-Fi.

Estructura jerarquica

La estructura jerarquica del algoritmo FAHP se construy6 con base en el
objetivo, los criterios, subcriterios y las alternativas seleccionadas. Dicha es-
tructura se puede observar en la figura 2.9.

e Seleccionar la mejor
ObJ etivo Oportunidad Espectral
Criterio Alta Sensibilidad al Retardo Baja Sensibilidad al Retardo
Subcriterio AP ’ ‘ ETA SINR ’ ‘ BW
H Oportunidad
Alternativa Eepectral

Figura 2.9. Estructura propuesta para el algoritmo FAHP.

Fuente: elaboracion propia.
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Matrices de juicio

De acuerdo con el método AHP, una vez disefiada la jerarquia se construyen
las matrices de juicios, las cuales corresponden a las evaluaciones compa-
rativas que definen el nivel de importancia relativa entre cada combinacién
posible de parejas de criterios, subcriterios y alternativas, de forma indepen-
diente. Sin embargo, debido a que solo se tienen dos Unicos criterios: alta y
baja sensibilidad al retardo (cada uno con los mismos cuatro subcriterios),
los cuales son mutuamente excluyentes, no tiene sentido realizar una matriz
de juicios para este nivel. En el caso de las alternativas, debido a que las
oportunidades espectrales modifican sus caracteristicas (subcriterios) dina-
micamente en el tiempo, tampoco tendria sentido realizar una matriz de
juicios a este nivel, por tal razon se decidié que el algoritmo FAHP evaluara
dinamicamente el conjunto de alternativas.

De acuerdo con Biiyiikdzkan er al. (2004) “las personas encargadas de la
toma de decisiones usualmente encuentran que se sienten mejor presentan-
do sus juicios como un intervalo, en vez de dar un valor puntual y fijo. Esto
se debe a que é€l, ella o ellos, son incapaces de explicar sus preferencias, dado
la naturaleza difusa de los procesos de comparacion humana”, por ello se
decidi6 trabajar con una escala de Numeros Difusos Triangulares (TFIN),
presentados en la tabla 2.1. La escala de importancia difusa se obtuvo de
la conversion de la escala de importancia fundamental de nueve niveles a
numeros difusos presentada en (Blyikozkan et al., 2004).

Tabla 2.1. TFN y TFN reciproco para la escala de importancia de FAHP.

Nomenclatura Escala de Importancia TFN TFN Reciproco

EI Igualmente, Importante (1/72,1, 3/2) 2/3,1,2)
Moderadamente Més

MI Tmortante ,3/2,2) (1/2,2/3, 1)
Fuertemente Mas

SI pl——— (3/2,2,5/2) | (2/5,1/2,2/3)

VST puy Puertemente Mas (3, 572, 3) (1/3,2/5,1/2)

mportante
XI Extremadamente Mas | 5 3 7,9y |(2/7,1/3, 2/5)

Importante

Fuente: Biyiikozkan ez al. (2004); Buyiikozkan y Cifci (2012), Choudhary y
Shankar (2012) Cortés (2011), Giupponi y Pérez-Neira (2008), Kaya y Kahraman
(2010), Mehbodniya et al. (2012) Patil y Kant (2014), Zadeh (1965).
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|| = DMA| === FMA| == MFMAI = AMAI

1 & & & & &

o1 112 11 3/2 2/1 5/2 3/1 72

Figura 2.10. TFN para la escala de importancia de FAHP.

Fuente: elaboracion propia.

Una matriz de juicios de n criterios o subcriterios esta descrita por la ecua-
cién (2.21).

a” alz aln

AZ[a ] _| 9ty Gy,
i | L . 2.21)

anl anZ arm

Dondei=j=1,2,..., nyn es el nimero de criterios o subcriterios.

Para el caso del algoritmo FAHP, las matrices de juicios de que contie-
nen los TFN representan las comparaciones por parejas entre subcriterios
(Mehbodniya et al., 2012), como lo describe la ecuacion (2.22).

(0-5:1a1-5) (112’m12’u12) (lln’mln’u]n)

_ (Lysmyy,uy) (0.5,L1.5) o (L, m,,,u,,)

Ay, = (2.22)

(ln]’mnl’unl) (lnz’mr/2’ul12) (0.5,1,1.5)
- 1 1 1
Donde (@) = [ay]™ = (ijmyju)™ = (u_u m_uE>
Los elementos de la diagonal de cada matriz corresponden a la igualdad, a
razén de que compara la importancia entre los mismos subcriterios. La mitad
diagonal superior de cada matriz describe la importancia relativa del subcrite-
rio de la primera columna con respecto al subcriterio de la primera fila.
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Con base en la escala de importancia difusa presentada en la tabla 2.1 y la
figura 2.10, y el método Delphi modificado, se determiné el nivel de importan-
cia relativa de cada par de subcriterios y se construyeron las matrices de juicios
para los subcriterios. L.a matriz de juicios preliminar se construyo6 de los resul-
tados de la primera ronda del método Delphi modificado. Los resultados de
la primera ronda fueron usados en la segunda ronda tanto para el enfoque
de alta sensibilidad como el de baja sensibilidad al retardo. El proceso de
decision se repite hasta que los resultados convergen, los cuales se presentan
en las matrices de juicio para los subcriterios con el enfoque de alta sensibi-
lidad al retardo (ver tabla 2.2) y la matriz de juicios para los subcriterios con

el enfoque de baja sensibilidad al retardo (ver tabla 2.3).

Tabla 2.2. Matriz de juicios para los subcriterios de alta sensibilidad al retardo.

Subcriterios AP ETA SINR BW
AP (1/2,1,3/2) (1,3/2,2) (3/2,2,5/2) | (3/2,2,5/2)
EI MI SI SI
ETA (1/22/31) | (1/2,1,3/2) | (3/2,2,5/2) | (3/2,2,5/2)
1/MI EI SI SI
SINR (2/5,1/2,2/3) | (2/5,1/2,2/3) | (1/2,1,3/2) (1,3/2,2)
1/8I 1/SI EI MI
BW (2/5,1/2,2/3) | (2/5,1/2,2/3) | (1/2,2/3,1) | (1/2,1,3/2)
1/SI 1/SI 1/MI EI

Fuente: elaboracion propia.

Tabla 2.3. Matriz de juicios para los subcriterios de baja sensibilidad al retardo.

Subcriterios AP ETA SINR BW
AP (1/2,1,3/2) (1,3/2,2) | (1/3,2/5,1/2) | (1/3,2/5,1/2)
EI MI 1/VSI 1/VSI
ETA (1/2,2/3,1) | (1/2,1,3/2) | (2/5,1/2,2/3) | (2/5,1/2,2/3)
1/MI EI 1/81 1/S1
(2,5/2,3) (3/2,2,5/2) | (1/2,1,3/2) | (3/2,2,5/2)
SINR VSI SI EI SI
BW (2,5/2,3) (3/2,2,5/2) | (2/5,1/2,2/3) | (1/2,1,3/2)
VSI SI 1/81 EI

Fuente: elaboracion propia.

Las aplicaciones de alta y baja sensibilidad al retardo, tienen diferentes en-
foques. Para el primero, los subcriterios con mas alta prioridad son los que
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reducen el retardo, como AP y ETA. Para el segundo, los subcriterios con mas
alta prioridad son los que incrementan la tasa de datos, como BW y SINR.

Célculo de los pesos normalizados

Con las matrices de juicios definidas, se procedioé a calcular los pesos nor-
malizados para cada subcriterio, con base en el modelo propuesto por
Mehbodniya et al. (2012). Estos resultados estan basados en el analisis difu-
so extendido presentado en Chang (1996), como se describe a continuacion.

El valor del i-ésimo objeto del analisis extendido es definido como se
muestra en la ecuacion (2.23):

1
§,= 5,-{ &y} (2.23)
i1 -

Donde:
Z’,Ll a; = (Zj‘:l Iy Zj‘:l My Z:‘:l Uy )

La matriz inversa de la ecuacion (2.23) se calcula a partir de la ecuacion
(2.24):

1 1

-1

L 1
R DY IS 5 I 3
i=1 j:1uij i=1 j:lmif i=l e j=1 1

El grado de posibilidad de que un numero difuso convexo sea més grande

(2.24)

1
iN=
<

‘L =

que k numeros difusos convexos, esta dado por la ecuacion (2.25):
V(§=8)=r[(§=8)A($=58,).(S=8) |=min{1(§=35)} (2.25)

Donde el grado de posibilidad de que y esta dado por las ecuaciones (2.26)
y (2.27), respectivamente.

1 my 2 m,
V(S 28, = 0 L, >u, (2.26)
Zz_—ul, otherwise
(ml _ul)_(m2 _12)
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1 my, 2m,
V(S$,>8)= 0 L>u, (2.27)
b=t , otherwise
(mz _u2)_(m1 _11)

Asumiendo que di = min{V(S; = $,)} el vector de pesoses w’ = (d}, dy, ..., d%).

Finalmente, después de la normalizacidn, el vector de pesos no difuso
esta dado por la ecuacion (2.28):

_|_ 4 4 d,
- - ] L 90 | (2.28)
2od 20.d 2o

A partir del procedimiento anterior, los resultados del vector de pesos, co-

W=(d,d,,...d)"

rrespondientes al criterio de alta sensibilidad al retardo se observan en la
tabla 2.4, mientras que los de baja sensibilidad se muestran en la tabla 2.5.

Tabla 2.4. Pesos normalizados de los subcriterios de alta sensibilidad al retardo.

Subcriterio alta

sensibildad
Pesos normalizados 0,3593 0,2966 0,1970 0,1471

Fuente: elaboracion propia.

Tabla 2.5. Pesos normalizados de los subcriterios de baja sensibilidad al retardo.

Subcriterio baja

sensibilidad
Pesos normalizados 0,1607 0,1523 0,3949 0,2921

Fuente: elaboracion propia.

Los pesos normalizados describen el grado de importancia relativa de cada
subcriterio para la seleccion del canal de respaldo segun el criterio de alta o
baja sensibilidad al retardo.

Los pesos descritos en la tabla 2.4 y tabla 2.5 se utilizan para con-
figurar cada uno de los cuatro algoritmos de decision espectral a evaluar
comparativamente.
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2.3.2.9 Algoritmo multivariable difuso realimentado — FFAHP

En el algoritmo FFAHP, el puntaje de cada oportunidad espectral es calcula-
do a partir de los pesos obtenidos con FAHP, usando la ecuacion (2.29) para
el enfoque de alta sensibilidad al retardo y la ecuacién (2.30) para el enfoque
de baja sensibilidad al retardo. La oportunidad espectral con el puntaje mas
alto es la oportunidad espectral objetivo; la de segundo puntaje es la de res-
paldo y las siguientes — de mayor a menor puntaje— son las oportunidades
espectrales candidatas.

Score ASR=APX0,3593+ ETAX0,2966-+ SINRX0,1970+ B x0,1471  (2:29)

Score; _ BSR =APx0,1607 + ETAX0,1523+ SINRx0,3949+ B x0,2921 (2.30)

El objetivo del algoritmo FFAHP es incrementar la precision en la seleccion
de oportunidad espectral. Para lograr esto, FFAHP realimenta la informa-
cion de las evaluaciones de las oportunidades espectrales realizadas ante-
riormente. La seleccion de la oportunidad espectral se realiza con base en la
evaluacion de la informacion actual del espectro y las evaluaciones pasadas.

Inicialmente, el proceso de deteccion de espectro captura la informacion
de frecuencia, potencia y tiempo. La cantidad de datos capturados depen-
dera de los parametros de resolucion de BW, Span y tiempo de barrido,
configurados en el analizador de espectro (Pedraza et al., 2016). Los datos
capturados son almacenados en una base de datos. Periodicamente, la uni-
dad de procesamiento de informacién calcula el valor de los criterios de
decision: AP, ETA, SINR y BW, y los normaliza sobre una base de 100. El
algoritmo FAHP recibe los valores actualizados de cada criterio de decision
y procede a evaluar cada oportunidad espectral. Si la aplicaciéon es de alta
sensibilidad al retardo se utiliza la ecuacion (2.29), y si es una aplicaciéon de
baja sensibilidad al retardo se utiliza la ecuacion (2.30), donde Score i es el
puntaje asignado a la oportunidad espectral 1 para la aplicaciéon RT y Score
j es el puntaje asignado a la oportunidad espectral j para la aplicacion BE.
El rango del puntaje de evaluacién puede estar entre 0 y 100, siendo 100 el
mejor puntaje posible. La figura 2.11 ilustra el disefio del algoritmo FFAHP.
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AP

ETA
Algoritmo Ranking Actual Realimentacion Mejor Canal (
FAHP Canal

Procesamiento de
Informacion

) =
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BW
Ultimo Ranking
Ranking Promedio
Base de Datos
del Ranking

Deteccion de x
Espectro Ambiente %
de Radio

oo

Figura 2.11. Esquema del algoritmo FFAHP propuesto.

Fuente: elaboracion propia.

Esta parte del proceso tiene un ranking de cada una de las oportunidades
espectrales con base, inicamente, en la informacion actual de los criterios
de decision. Sin embargo, la oportunidad espectral con la mejor evaluacidon
hasta el momento puede no ser la seleccionada finalmente, debido a que
este valor de evaluacion se pondera con las evaluaciones realizadas en el
pasado. El proceso de realimentacion recibe las evaluaciones actuales (PS)
de cada oportunidad espectral y las pondera con el valor de la dltima eva-
luacion reciente (LS) y el promedio de las evaluaciones (AS) realizadas en
la ultima hora. Esta ponderacion da como resultado el ranking definitivo de
las oportunidades espectrales. El procedimiento anterior se describe en la
ecuacion (2.31).

Score,, , =0XPS+ BXLS+(1-a— B)x AS (2.31)

Donde a y B € [0,1], y Score_final es el valor de la evaluacion final de la
oportunidad espectral i 0 j.
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La oportunidad espectral con la mejor evaluacion final es la seleccionada
para realizar la transmision de los datos del SU. Posteriormente, el bloque
de realimentacidn transfiere el valor de PS a LS y actualiza el valor de AS de
acuerdo con el nuevo valor de LS. Si la oportunidad espectral seleccionada
finalmente se encuentra ocupada, el algoritmo FFAHP sobrescribe el valor
de LS en cero para la respectiva oportunidad espectral.

Para determinar los valores de o y B, se realizé un analisis experimental
autorregresivo con diferentes combinaciones de o y 3, para un conjunto de
datos predeterminado. Se tomaron los valores de o y 8 para los cuales la
precision en la seleccidon de la oportunidad espectral fue mas alta. Dichos va-
lores corresponden a a=0.60 y 3=0.35, con 87 % de precisién experimental.

2.3.3 Algoritmos inteligentes

La inteligencia artificial tiene como objetivo hacer que las maquinas realicen
tareas de manera similar a un experto. La maquina inteligente percibird la
toma de decisiones y de esta manera maximizara su propia utilidad (Woods,
1986). De tal manera, ésta tendra que prever desafios principales como
deduccion, razonamiento, representacion de las problematicas para, final-
mente, dar solucion a problemas como fuentes de entradas principales de
estudio (Abbas et al., 2015).

En relacién con la CR, los principales retos para las subareas de la inteli-
gencia artificial son: deteccion de la frecuencia disponible de radio, calidad
del canal de comunicacién, reconocimiento, prediccion y anticipacién en la
toma de decisiones y por ultimo, no menos importante, decision sobre asig-
nacion de recursos para ajuste de errores de trasmision y recepcion de datos
(Abbas ez al., 2015).

2.3.3.1 Logica difusa

La logica difusa esta basada en la teoria de conjuntos difusos, propuesta por
(Zadeh, 1965). Un conjunto difuso es definido por una funcién de membresia
que mapea elementos a grados de membresia dentro de un cierto intervalo,
el cual usualmente es [0,1]. Si el valor es cero, el elemento no pertenece al
conjunto, si por el contrario es uno, el elemento pertenece completamen-
te al conjunto, y si el valor es una cantidad intermedia, el elemento tiene
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cierto grado de pertenencia al conjunto (Patil y Kant, 2014). Los TFN son
ampliamente usados como funciones de membresia debido a su eficiencia
computacional.

Los TFN pueden ser denotados como parametros 1, m y u que represen-
tan el limite mas bajo, el valor modal y el limite mas alto, respectivamente,
como se observa en la figura 2.12 y en la ecuacién (2.32).

>
[ m u

Figura 2.12. Numero difuso triangular.
Fuente: adaptada de Cho y Lee (2013).

0, x<l,

| x=D/(m=1), 1sx<m,

- (u—x)/(w—m), m<x<u, (2.32)

A4(x)

0, x>u,

La lo6gica difusa es una herramienta particularmente apropiada para tomar
decisiones en situaciones donde las entradas disponibles son, en general, in-
ciertas e imprecisas o cualitativamente interpretadas. La l6gica difusa tam-
bién puede transformar informacion cualitativa y heterogénea en valores
de membresia homogéneos, los cuales pueden ser procesados a través de
un conjunto de reglas de inferencia difusa apropiadas (Giupponi y Pérez-
Neira, 2008).
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La logica difusa resulta ser una posicion relativa desde el observador
principal, sin embargo, las conclusiones de la técnica estan respaldas por
métricas iniciales que describen el conjunto de valores admisibles de una
muestra. De tal manera, la légica difusa —aunque con una tasa de estudio
aleatoria— permite obtener valores diferentes a los supuestos de verdadero
o falso (Gavrilovska et al., 2013).

La légica difusa proporciona al sistema razonamiento aproximado me-
diante conjuntos de reglas, teniendo la capacidad de obtener condiciones de
incertidumbre mediante la prediccion de consecuencias, ademas de la capa-
cidad de adaptarse a nuevas situaciones (Abbas et al., 2015; Dadios, 2012;
Gavrilovska et al., 2013).

Diferentes investigaciones (Abbas et al., 2015; Hernandez et al., 2015;
Matinmikko et al., 2013) han aplicado la teoria de logica difusa en la CR
para resolver problemas en funcion de la asignacion del BW, estudiando de
antemano la interferencia y la administracion de la energia, los anteriores
como métodos de evaluacion en la correcta asignacion espectral. No obstan-
te, diferentes resultados de estudios han detallado tépicos como la inferencia
difusa centralizada, que asigna los BW correspondientes a la intensidad de
trafico y la prioridad del servicio. Asi pues, esta ultima detalla como los SU
tienen que presentar solicitudes de BW al administrador primario de la red
(Abbas et al., 2015). Del mismo modo, el administrador analiza el trafico
desde la cola y verifica los retardos producidos por la demora en la trasmi-
sion de paquetes. En otras palabras, determina la latencia para el acceso a
SU (Abbas et al., 2015).

2.3.3.2 Algoritmos genéticos

Su principal campo de accion se encuentra inmerso en la optimizacion y
busqueda de soluciones, inspirado en la evolucidén genética y la seleccion
natural de las especies por naturaleza (Goldberg y Holland, 1988). Los
algoritmos evolutivos hacen parte de las ciencias de la computaciéon y su
principal enfoque esta determinado en la inteligencia artificial; siguiendo
la terminologia de la teoria de la evolucion. Asi pues, es comun encontrar
definiciones de los cromosomas y funciones de aptitud como descriptores de
un algoritmo genético en donde los primeros son representaciones abstractas
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de las soluciones candidatas y las segundas estan estrechamente relacionadas
con el objetivo del algoritmo para procesos de optimizacion (He et al., 2010).

La ventaja de utilizar algoritmos genéticos para solucionar el problema
de optimizacién de la asignacion espectral en CR es que pueden manejar
restricciones y objetivos de forma arbitraria; por ejemplo, las soluciones in-
eficientes son simplemente descartadas por el algoritmo. En (Del-Ser ez al.,
2010) se utiliza la técnica Busqueda de Armonia para encontrar la asignacion
de canal 6ptima. El algoritmo genético construye un vector de asignacion
de canales, llamados armonias; inicialmente, se realizan combinaciones y
mutaciones de forma inteligente, y posteriormente, en la evaluacion, se al-
macenan las mejores (Tragos ez al., 2013).

2.3.3.3 Sistemas multiagente

Los sistemas multiagente se consideran como una entidad inteligente y cons-
ciente del entorno que es capaz de actuar habilmente y genera comunicacion
de forma independientemente. Los sistemas multiagente estan relacionados
con el ambiente, objetivos, otros agentes y las diferentes relaciones entre esas
entidades, por lo que los sistemas multiagente son rapidos, confiables y flexi-
bles (Abbas et al., 2015; Ferber, 1999; Wooldridge, 2009).

En (Trigui et al., 2012) se introdujo un concepto novedoso para direccio-
nar el “espectro de transicion” en CR, permitiendo a los terminales cambiar
a una banda espectral que ofrezca mejores condiciones mediante una nego-
ciacion usando sistemas multiagente. En Mir et a/. (2011) usaron sistemas
multiagente para compartir dindmicamente el espectro en CR. De acuerdo
con las necesidades de SU, los agentes SU cooperan y se comunican con los
agentes PU para compartir el espectro.

2.3.3.4 Colonia artificial de abejas

La colonia artificial de abejas esta compuesta por tres grupos: abejas “em-
pleadas”, “exploradoras” y “observadoras”. El objetivo es determinar las
ubicaciones de las mejores fuentes de alimento. Para ello, las “abejas em-
pleadas” buscaran las fuentes de alimento, y si la cantidad de néctar de la
nueva fuente es mayor que una anterior, memorizaran las nuevas posiciones,
olvidandose de la anterior. Las “abejas empleadas” son iguales al nimero
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de fuentes de alimento; las “observadoras” comparten informacion de estas
fuentes y las “exploradoras” buscan nuevas, abandonando la propia (Ahmed
et al., 2016; Tragos et al., 2013).

En Cheng y Jiang (2011) el problema de asignacion espectral se resuelve
utilizando el algoritmo de colonia artificial de abejas. La ubicacion de una
abeja o espectador representa una posible asignacidon de canal y la cantidad
de néctar es la utilidad que se maximiza.

2.3.4 Técnicas de aprendizaje

El objetivo principal del aprendizaje autonomo es el autoaprendizaje com-
putacional, en donde las técnicas de analisis pueden ser programadas de
forma auténoma a través de la induccion del conocimiento, en donde la in-
formacién objeto de estudio estd disponible a partir de grandes conjuntos de
datos, dispuestos a ser analizados para la consecucion objetiva de resultados
(Abbas et al., 2015).

2.3.4.1 No supervisado

El aprendizaje no supervisado puede ser adecuado para las CR que operen
en entornos desconocidos de radiofrecuencia (Jayaweera y Christodoulou,
2011). Para este caso, los algoritmos de aprendizaje sin supervision autono-
ma permiten explorar caracteristicas del entorno y tomar acciones, por si
mismas, sin tener ningin conocimiento previo (Jayaweera y Christodoulou,
2011). Sin embargo, si la CR tiene informacién previa sobre el medio am-
biente, puede aprovechar este conocimiento mediante uso de técnicas de
aprendizaje supervisado (Bkassiny et al., 2013).

Aprendizaje por refuerzo

Es una técnica que permite a un agente modificar su comportamiento me-
diante la interaccion con su entorno (Sutton y Barto, 1998). Este tipo de
aprendizaje puede ser utilizado por los agentes para aprender de forma au-
tonoma y sin supervision. En este caso, la tnica fuente de conocimiento es
la retroalimentacidén que un agente recibe de su entorno después de ejecutar
una accion. Dos caracteristicas principales caracterizan el aprendizaje por
refuerzo: (1) ensayo y error, y (2) recompensa retardada. Por ensayo y error
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se supone que un agente no tiene ningin conocimiento previo sobre el medio
ambiente, y ejecuta acciones ciegamente con el fin de explorar el entorno.
La recompensa retardada es la sefnal de realimentacion que un agente recibe
del entorno después de la ejecucion de cada accidn (Bkassiny ez al., 2013).

El aprendizaje por refuerzo ha sido incorporado en la CR, especificamen-
te, en las telecomunicaciones moviles. En Abbas ef al. (2015) se muestra la
capacidad de implementar un sistema de errores y recompensas en funcion
de cada decision, optimizando el desempefio en la toma de decisiones para
la administracion del espectro electromagnético.

Teoria de juegos

Herramienta matematica que pretende modelar el comportamiento de enti-
dades racionales en un entorno conflictivo (Fudenberg y Tirole, 1991). En
las comunicaciones inaldmbricas, la teoria de juegos se ha aplicado a redes
de comunicacién de datos para modelar y analizar encaminamiento y asig-
nacién de recursos en entornos competitivos (Bkassiny ez al., 2013).

La teoria de juegos es utilizada como una herramienta de toma de de-
cisiones en donde varios jugadores se enfrentan a una serie de situaciones
donde deben tomar medidas que en la mayoria de los casos puede afectar
los intereses de otros (Abbas ez al., 2015). Una ventaja clave de la aplicacion
de soluciones de teoria de juegos a los protocolos CR es la reduccién de
complejidad de los algoritmos de adaptacidén en grandes redes cognitivas
(Bkassiny et al., 2013). En la literatura actual existen varios trabajos (Jiy Liu,
2007; Nisan et al., 2007; Zhao et al., 2009) sobre su aplicacion.

2.3.4.2 Supervisado

El aprendizaje supervisado se usa cuando los datos de entrenamiento estan
etiquetados, es decir, se conoce informacion a priori acerca del ambiente.
Algoritmos de entrenamiento tales como arboles de decision, redes neuro-
nales, SVM y razonamiento basado en casos, funcionan bien para este caso.
Difieren entre ellos en sus fortalezas y limitaciones, desafios y aplicaciones
referentes a la CR (Abbas ez al., 2015).
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Redes neuronales

Las redes neuronales se asemejan al cerebro en dos aspectos (Haykin, 1998):
1) el conocimiento es adquirido por la red, de su entorno, a través de un pro-
ceso de aprendizaje, y 2) las fuerzas de conexién inter-neuronas, conocidas
como pesos sindpticos, se utilizan para almacenar el conocimiento adquiri-
do. Algunas de las capacidades y ventajas de las redes neuronales incluyen
el modelado de comportamientos no lineales y la capacidad de adaptacion
ante cambios pequenos. Su principal desventaja es la necesidad de realizar un
entrenamiento bajo diferentes condiciones del entorno (Bkassiny ez al., 2013).

En (Taj y Akil, 2011) se presenta una metodologia para predecir el com-
portamiento del espectro. La actividad del PU es modelada a través de una
serie de tiempo cadtica multivariable, la cual se convierte en una entrada
a la red neuronal. Esta ultima predice la evolucidén de la serie de tiempo
para decidir si el SU puede ocupar una oportunidad espectral determinada
(Bkassiny et al., 2013).

Maquina de soporte vectorial

La SVM es un conjunto de algoritmos que tiene la capacidad de aprender
bajo la supervision de un agente de software. Su principal modo de operacion
esta en funcidn de la regresion y clasificacion en el aprendizaje. Esta técnica
es utilizada para llegar a margenes de clasificacion en un conjunto de datos,
por tanto, el principal objetivo de la SVM consiste en establecer un modelo
de prediccion en donde una entrada incierta puede ser identificada en una
categoria u otra (Abbas ez al., 2015; Bkassiny et al., 2013; Dadios, 2012; Del-
Ser et al., 2010; Ferber, 1999; Fudenberg y Tirole, 1991; Goldberg y Holland,
1988; Han et al., 2012; He et al., 2010; Ji y Liu, 2007; Matinmikko et al.,
2013; Mir et al., 2011; Nisan et al., 2007; Sutton y Barto, 1998; Taj y Akil,
2011; Trigui et al., 2012; Wooldridge, 2009; Zhao et al., 2009).

En Ia literatura actual existen varios trabajos (Petrova et al., 2010; Xu y
Lu, 2006) sobre la aplicacion de la SVM en la CR.
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2.3.5 Funciones de decision

Enredes heterogéneas con facilidad de acceso ubicuo los procesos de decision
y seleccion se hacen mas complejos debido a que las diferentes tecnologias,
por lo general, ofrecen diversas caracteristicas. De acuerdo con lo anterior,
la asignacion espectral llega a ser un problema con multiples criterios y pa-
rametros que incluyen complejos trade-offs entre criterios contradictorios.
En estos casos resulta util la aplicaciéon de funciones de beneficio o costo
(Ahmed ez al., 2014).

2.3.5.1 Funcion de utilidad

La funcién de utilidad tiene por objetivo maximizar la satisfaccion del
usuario de acuerdo con ciertos parametros y restricciones. En la asignacion
espectral y de gestion de decisiones, la utilidad mide el nivel de satisfaccion
del usuario correspondiente a un conjunto de caracteristicas de una red ina-
lambrica, incluyendo los parametros de recursos asignados (Ahmed ez al.,
2014). En Ormond et al. (2006) los autores examinan el nivel de satisfaccion
del usuario mediante el empleo de una funcién de utilidad para aplicacio-
nes de BE.

2.3.5.2 Funcion de costos

A diferencia de la funcion de utilidad esta busca minimizar el costo de
ciertos parametros teniendo en cuenta las restricciones del caso. En una
oportunidad espectral el costo total se calcula mediante la suma del cos-
to de los parametros de interés como QoS, BW, retardo y AP, entre otras
(Ahmed et al., 2014). En Wei et al. (2008) se presenta una aplicacion de la
funcién de costo.

2.3.6 Algoritmos estadisticos

Existen otro tipo de técnicas que también se han utilizado para la asignacion
espectral en CRN, las cuales estan basadas fundamentalmente en conceptos
de estadistica y probabilidad, tales como las redes bayesianas, cadenas de
Markov y arboles de decision.
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2.3.6.1 Redes bayesianas

Las redes bayesianas son modelos probabilisticos graficos que dependen
de la interaccién de diferentes nodos para, asi, generar aprendizaje en cada
nodo involucrado en el proceso. El enfoque bayesiano —el cual es una téc-
nica de aprendizaje probabilistico— provee exactas inferencias y estima
modelos de probabilidad completa donde el conocimiento a priori o los re-
sultados, son usados para construir un modelo actualizado (Bolstad, 2007;
Yonghui, 2010).

En Jiang er al. (2014) usan un enfoque cooperativo para estimar el estado
del canal usando aprendizaje bayesiano para resolver problemas de detec-
cion multicanal.

2.3.6.2 Cadenas de Markov

Los modelos de Markov son usados para modelar procesos aleatorios que
cambian de un estado a otro en el tiempo. Son procesos aleatorios donde
el estado futuro depende del estado presente y dichos estados son visibles
al observador, en contraste con los modelos ocultos de Markov, donde los
estados no son visibles (Fraser, 2008). Estas cadenas generan secuencias de
observaciones entre transiciones de estado, ya sea en el tiempo o en el espa-
cio con probabilidades fijas. El estado actual depende de los eventos previos
y las estructuras sucesivas determinan el éxito del proceso. Puede asignarse
un solo paso o ser extendido a las probabilidades asociadas con cada una de
las transiciones dependientes en multiples eventos que lo preceden (Abbas
etal., 2015).

En Yifei et al. (2013) usaron toma de decisiones de Markov para el acceso
dinamico al espectro en CRN. Utilizaron modelos ocultos de Markov en un
canal inalambrico y predijeron el estado del canal. Las decisiones estuvieron
basadas en: sensibilidad espectral, seleccion de canal, modulacion, esque-
mas de codificacién y potencia transmitida. En Pham ez a/. (2014) también
los utilizan en el andoff espectral para que el SU estudie el comportamiento
del PU, pueda predecir su futuro comportamiento y asegurar la transmision.
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2.3.6.3 Arboles de decisidn

El arbol de decision es un modelo que predice el valor de una “clase obje-
tivo” basado en la diversidad de variables de entrada. En este cada nodo
tiene un criterio; cada rama representa el resultado de una prueba y cada
hoja representa o contiene informacion de la etiqueta de una clase. (Abbas
et al., 2015; Ahmed et al., 2014; Bkassiny et al., 2013; Bolstad, 2007; Cheng
y Jiang, 2011; Del-Ser ef al., 2010; Ferber, 1999; Fraser, 2008; Fudenberg
y Tirole, 1991; Gavrilovska et al., 2013; Goldberg y Holland, 1988; Han et
al., 2012; Haykin, 1998; He et al., 2010; Ji y Liu, 2007; Jiang et al., 2014;
Matinmikko et al., 2013; Mir et al., 2011; Nisan et al., 2007; Ormond et al.,
2006; Petrova et al., 2010; Pham et al., 2014; Safavian y Landgrebe, 1991;
Sutton y Barto, 1998; Taj y Akil, 2011; Trigui et al., 2012; Wooldridge, 2009;
Xuy Lu, 2006; Yifei et al., 2013; Yonghui, 2010; Zhao et al., 2009).

2.3.7 Analisis comparativo de las técnicas y algoritmos de handoff

La tabla 2.6 resume el analisis comparativo de las diferentes técnicas para la
asignacion espectral en CRN, en términos de fortalezas y limitaciones.

Tabla 2.6. Analisis comparativo de las técnicas de asignacion espectral.

Algoritmo Fortalezas Limitaciones
MCDM Simplicidad. Facil implementa- | No hay una metodologia analitica
cién. Respuesta rapida. para estudiar su convergencia.
Decisiones rapidas basadas en | Funcionalidad limitada ya que las
Logica difusa reglas predefinidas. Técnicas de | reglas son predefinidas. Necesita
& aprendizaje pueden mejorar la | un gran numero de reglas para
calidad de las decisiones. considerar todos los parametros.
. Tiene optimizacion multi-objeti- | Requiere conocimiento previo
Algoritmos . .
L. vo. Se configura dinamicamente | del sistema. Proceso lento para
genéticos . e
dado los cambios del entorno. encontrar una solucién éptima.
. Adecuados para problemas ..
Sistemas s parap La complejidad y el costo compu-
. con multiples jugadores. .
multiagente .. \y tacional pueden llegar a ser altos.
Aprendizaje y cooperacion.
Colonia artificial de | Busqueda de soluciones en Requiere de conocimiento a priori
abejas paralelo. del sistema y funcion de aptitud.
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Fortalezas

Aprendizaje autobnomo usando
retroalimentacién y autoadapta-
cién progresiva en tiempo real.

Limitaciones

Necesita reglas de derivaciéon por
lo que la exactitud esta basada en
dichas reglas.

Teoria de juegos

Reduce la complejidad de la
adaptacion. Soluciones por
medio de multiples agentes.
Enfoque cooperativo y no
cooperativo.

Requiere conocimiento previo de
diferentes parametros del sistema
y que los datos de entrenamiento
estén etiquetados.

Redes neuronales

Habilidad para adaptarse a los
cambios menores. Excelente
para clasificacion. Puede identi-
ficar nuevos patrones.

El entrenamiento puede ser
lento dependiendo del tamafio
de la red. Poca capacidad para
generalizar. Puede sufrir de sobre
entrenamiento. Datos previos.

SVM

Capacidad de generalizar.
Robustez contra el ruido de en-
trada y casos diferentes. Mejor
desempefio con poco entrena-
miento en comparacion con las
redes neuronales.

Requiere que los datos de entre-
namiento estén etiquetados. Hay
que tener previo conocimiento del
funcionamiento del sistema. Se
vuelve complejo a medida que el
problema es mas grande.

Funciones de utili-
dad y costo

Permite encontrar éptimos
con multiples parametros y
restricciones.

Requiere que todos los parame-
tros estén modelados con una
funcién analitica.

Redes bayesianas

Se basa en modelos
probabilisticos.

Requiere conocimiento a priori
del sistema. Presenta complejidad
computacional.

Modelos de Markov

Se basa en modelos estadisti-
cos y es facilmente escalable.
Puede predecir basado en la
experiencia.

Requiere conocimiento previo del
sistema. Presenta complejidad
computacional.

Arboles de decision

Simplicidad. Toma de
decisiones mediante las configu-
raciones de sus ramas.

Requiere conocimiento previo
del sistema. Puede sufrir sobre
entrenamiento y requiere que
los datos de entrenamiento estén
etiquetados.

Fuente: Bkassiny ez al. (2013), He et al. (2010), Tragos et al. (2013), Yifei et al. (2013).

2.3.8 Desafios de investigacion en la asignacion espectral

Existen varias cuestiones de investigacion abiertas que necesitan ser estu-
diadas para el desarrollo de la asignacién espectral. Mencionamos algunas
(Akyildiz et al., 2006):
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2.3.8.1 Modelo de decision multivariado

La SNR no es suficiente para caracterizar las bandas espectrales en las CRN.
Ademsds de la SNR, muchos pardmetros de caracterizacion del espectro
afectan la calidad. Por tanto, la manera de combinar estos parametros para
el modelo de decision del espectro sigue siendo una cuestién abierta.

2.3.8.2 Algoritmos adaptativos

Para desarrollar soluciones eficientes en la asignacion espectral es necesario
desarrollar algoritmos que logren adaptarse a diversas condiciones y esce-
narios, con el objetivo de satisfacer los requisitos de un entorno altamente
dinamico. Todos los algoritmos hasta ahora se centran en un escenario y red
estaticos; en tratar de encontrar una solucion 6ptima de acuerdo con algunos
criterios (Tragos et al., 2013).

2.3.8.3 Seleccion multicanal

En las CRN se pueden utilizar simultaneamente multiples bandas de es-
pectro para la transmision. Por otra parte, las CRN no requieren que las
multiples bandas seleccionadas sean contiguas. De este modo, un SU puede
enviar paquetes a través de bandas de espectro no contiguas. Esta transmi-
sidén sobre multiples bandas muestra menos degradacion de calidad durante
el handoff espectral en comparaciéon con la transmisién convencional sobre
una sola banda del espectro (Akyildiz y Li, 2006). Por ejemplo, si un PU
aparece en una banda de espectro en particular, el SU tiene que desalojar solo
esa banda; en el resto de bandas de espectro mantendrd la comunicacion, por
lo cual la degradacion de la QoS puede ser mitigada (Dadallage et al., 2016).

Adicionalmente, la transmisién en multiples bandas de espectro permite
menor consumo de energia en cada una. Como resultado, se consigue me-
nos interferencias con los PU, en comparacién con la transmisién en una
unica banda del espectro (Akyildiz y Li, 2006). Por estas razones, el esque-
ma de gestion del espectro debe tener la capacidad de toma de decision para
multiples bandas. La forma de determinar el nimero de bandas del espectro
y como seleccionar el conjunto de bandas apropiadas siguen siendo temas de
investigacion abiertos en CRN.
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2.3.8.4 Seleccion cooperativa de espectro

El enfoque cooperativo tiene mas ventajas que el no cooperativo. En la prime-
ra forma el SU vecino comparte su informacién de deteccidon con el objetivo
de aprovechar la diversidad espacial; el desafio alli es combinar la informa-
cion de los usuarios cooperativos mientras se realiza la transmisién (Masonta
et al., 2013).

2.3.8.5 Seleccion de espectro en redes heterogéneas

En una determinada CRN puede haber requerimientos de QoS heterogé-
neos y el espectro disponible puede presentar fluctuaciones y cualidades
variables. En las redes de trafico heterogéneas el desafio consiste en seleccio-
nar las bandas de frecuencia apropiadas para satisfacer los requerimientos de
QoS de cada SU (Masonta et al., 2013).

2.4 Multiusuario

Debido a la movilidad de los nodos y la dinamica de variacion del canal
la precision de las decisiones de los usuarios es limitada y sigue siendo un
desafio para utilizar plenamente los escasos recursos de espectro (Jiang et
al., 2014a). La mayoria de los enfoques suponen que la utilidad de un SU
es independiente de las decisiones tomadas por otros SU, sin embargo, tal
suposicion no es cierta, especialmente cuando se consideran escenarios en
los que las SU comparten o compiten por ciertos recursos (Masonta et al.,
2013). La comunicacion inalambrica entre multiples usuarios es uno de los
principales retos para el despliegue de sistemas de proxima generacion.

Para poder recopilar informacion global y ampliar el conocimiento limi-
tado del usuario sobre el verdadero estado del sistema (sefiales y decisiones
tomadas por otros nodos), los usuarios de una CR deben tener la capacidad
de reconocer los cambios del entorno circundante. La informacién apren-
dida permitird elaborar una descripcion del estado desconocido del sistema
y mejorar la precision de las decisiones y, por tanto, la eficiencia de la red
(Wang et al., 2017).

Al tomar la decision de acceso al canal cada SU no solo debe considerar
la calidad del mismo sino, también, tener en cuenta las decisiones de acceso
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del canal de otros SU; cuanto mas SU acceden al mismo canal menor es el
rendimiento que puede alcanzar cada uno debido a la interferencia entre
ellos. Este fendmeno se conoce como externalidad negativa de la red (Jiang
et al., 2014b; Zhang et al., 2012) o influencia negativa de los comportamien-
tos de otros usuarios en la recompensa de un usuario, debido a que cada uno
tiende a evitar tomar la misma decision de otro para maximizar su propia
utilidad.

Consideremos una CRN multiusuario con PU y pares de SU, como se
muestra en la figura 2.13. Cada transmisor SU y su receptor SU correspon-
diente estan dentro del rango de transmision del otro. Por tanto, la existencia
de comunicacion entre dos SU depende de actividades que varian en el tiem-
po del PU. Como se ilustra, varios SU pueden acceder al mismo canal y un
SU puede tener mas de un canal para seleccionar (Hu et al., 2016).

A
‘ Usuario Secundario Transmisor ‘ Usuario Secundario Receptor é Usuario Primario

Figura 2.13. Escenario multiusuario.

Fuente: elaboracion propia.

2.5 Estructuras colaborativas

El principal desafio de las redes CR es garantizar los requisitos de QoS sin
causar degradacion inaceptable de rendimiento de los PU. Son multiples las
técnicas disponibles para el analisis de las CR, sin embargo, actualmente, los
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algoritmos cooperativos estan tomando un fuerte impulso en aplicaciones
de estructuras cognitivas. La CR y las estrategias colaborativas han brindado
nuevos modelos para el uso eficiente de los recursos de radio (Hernandez et
al., 2020).

Las estructuras cooperativas son metodologias que utiliza multiples rutas
en el entorno de radio para evitar el desvanecimiento de la sefal, maximi-
zando el rendimiento de los SU sin comprometer los requerimientos del PU
(Ghanem ez al., 2017; Huang ez al., 2014).

A diferencia de los sistemas clasicos, el nodo cooperativo actia como
fuente de informacién y retransmision; es una estructura bidireccional de
informacién que permite ahorrar energia al combinar las sefiales recibidas
de diferentes rutas espaciales y ranuras de tiempo consecutivas. Los sistemas
CR cooperativos pueden aumentar la velocidad de transmisién y mejorar
significativamente los parametros de QoS, latencia, throughput, confiabili-
dad, sefializacion, interferencia PU, eficiencia energética, BW, SINR, y tasa
de error (Hernandez et al., 2017; Hernandez et al., 2016a; Kumar et al., 2016;
Lertsinsrubtavee y Malouch, 2016; Lopez et al., 2015; Oyewobi y Hancke,
2017; Péaez et al., 2017).

En el contexto de CRN, las estrategias colaborativas permiten que los usua-
rios se comuniquen entre ellos para intercambiar mediciones de interferencia
observadas localmente. El objetivo es aprovechar la diversidad espacial. Para
lograrlo, el usuario no licenciado comparte su informacién de deteccion con
los usuarios vecinos (Salgado ef al., 2016b; Thakur ez al., 2017).

Existen dos escenarios basicos: 1) transmision cooperativa entre SU, que
tiene como objetivo aumentar el rendimiento de las oportunidades espec-
trales; 2) transmisién cooperativa entre PU y SU, que tiene como objetivo
aumentar las oportunidades de espectro de SU.

Otro tipo de clasificacion es la manera como se comparte la informacion:
centralizada, distribuida y retransmision asistida (Akyildiz ez al., 2011).

La figura 2.14a muestra la cooperaciéon de manera centralizada. Existe
una unidad central (UC) encargada de coordinar el proceso. La UC seleccio-
na la oportunidad espectral e informa a todos los SU que cooperan para que
realicen individualmente la deteccidon local y los resultados se envian a través
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del canal de control. Finalmente, la UC analiza la informacién recibida,
determina la presencia de PU y difunde la decision a los SU que cooperan.

La figura 2.14b muestra la cooperacion de manera distribuida. Después
de la deteccién local los SU comparten resultados entre ellos. Cada SU en-
via, combina sus datos con los datos de deteccion recibidos y decide si el PU
esta presente o no.

La figura 2.14c ilustra la cooperaciéon de manera asistida. SU1 y SU4
tienen un canal de informe débil y pueden sufrir pérdida de informacién.
SU2 y SU3 tienen un canal de informe s6lido, lo que les permite servir como
retransmisores para ayudar a enviar los resultados de deteccién de SU1 y
SU4 ala UC. Esta figura muestra una estructura centralizada, sin embargo,
la deteccidn cooperativa asistida puede implementar esquemas distribuidos.

A A A

PU PU PU

Deteccion de Canales Deteccion de Canales Deteccion de Canales

SUo (UC) SUo (UC)

SUs

Reporte de Cangles Reporte de Candles

Relay
Relay

SUs SUs

(a) Centralizado (b) Distribuido (c) Retransmision asistida

Figura 2.14. Clasificacion de estrategias colaborativas.
a. Centralizado; b.Distribuido; c. Retransmision asistida.

Fuente: elaboracion propia.

2.6 Trabajos relacionados

Con respecto a investigaciones previas, no se identificaron proyectos que
relacionen todos los enfoques descritos en el presente trabajo: toma de
decisiones, modelos multiusuario, modelos colaborativos y DCRN. Sin em-
bargo, se encuentran investigaciones relevantes de enfoques independientes
o combinaciones de dos de ellos.

En el area de DCRN, se describen tres publicaciones que tienen rela-
cion con la presente investigacion. Estas publicaciones estan enfocadas en el
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analisis de la QoS, el esquema de aprendizaje y acceso al espectro dinamico,
utilizando estrategias como teoria de colas, cadenas de Markov, filtros di-
gitales, entre otras. En general, los modelos descritos caracterizan las redes
utilizando aproximaciones basadas en funciones probabilisticas e implemen-
tan la red descentralizada dividiendo en N canales el espectro disponible;
derivando medidas de desempefio para respaldar caracteristicas de QoS, po-
litica de toma de decisiones y limitaciones de Aardware.

Los resultados obtenidos en cada uno de los trabajos permiten identificar
que las estrategias seleccionadas para el ajuste de los respectivos modelos
cuentan con buenos rendimientos. Xenakis et al. (2014) destaca la posibi-
lidad de extender la estructura al uso compartido del espectro para redes
descentralizadas, Darak ef al. (2015) exalta la posibilidad de extender el mo-
delo a escenarios desafiantes de CRN multiusuario y Amjad et al. (2016)
resuelve el problema de compartir el espectro mediante la adopcioén de un
enfoque basado en teoria de juegos. Sin embargo, las investigaciones cuentan
con una caracteristica en comun: no presentan evidencia de su desempefio
bajo comportamientos del PU cercanos a la realidad; desde el modelo de
la red hasta el analisis de los nodos utilizan comportamientos basados en
procesos aleatorios. Aunque el modelo matematico es detallado, se basa en
estimaciones de posible trafico que pueden afectar el desempeno del modelo
si se implementa en escenarios mas practicos (realistas). Existen otras va-
riables adicionales al comportamiento del PU que también pueden afectar
el desempefio en aplicaciones practicas y que los trabajos mencionados no
contemplan. Ninguno aborda la consecuencia de los comportamientos de
otros usuarios en la recompensa de un usuario. Aunque Darak ef al. (2015)
propone analisis multiusuario, no se evidencia de qué manera se pueden
abordar los fenémenos asociados a interferencias y como las decisiones de
un SU afectan otros usuarios.

A continuacion describimos las tres publicaciones citadas para el area de
DCRN.

El articulo “Multi-parameter performance analysis for decentralized cog-
nitive radio networks” de Xenakis ez al. (2014) realiza un analisis del impacto
de la actividad del PU y SU, el desvanecimiento de canales y las colas de lon-
gitud finita, en el rendimiento de las DCRN. Analiza también la teoria de
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colas y deriva varias medidas de rendimiento en relacion con la pérdida de
paquetes, asi como el rendimiento, la eficiencia espectral y la distribucién de
retardo de paquetes. Los resultados cuantifican el impacto de los parametros
y variables en el rendimiento del sistema y ponen de relieve las principales
ventajas y desventajas del rendimiento en las DCRN.

El articulo “Low complexity and efficient dynamic spectrum learning
and tunable bandwidth access for heterogeneous decentralized Cognitive
Radio Networks” de Darak ez al. (2015) propone un esquema de aprendizaje
y acceso al espectro dinamico de baja complejidad y eficiencia para DCRIN
y heterogéneas de proxima generacion. Consiste en una transformaciéon de
frecuencia de segundo orden, una técnica de interpolacion basada en un
filtro digital variable y una politica de toma de decisiones sintonizable. Los
resultados de la simulacion verifican la superioridad del esquema propuesto
sobre los demas existentes.

El articulo “Coexistence in heterogeneous spectrum through distributed
correlated equilibrium in cognitive radio networks” de Amjad et al. (2016)
analiza multiples técnicas de cadenas de Markov para estudiar fendmenos
de desigualdad en escenarios heterogéneos de CRN coexistentes. Propone
una solucion descentralizada que no limite la capacidad de hardware de un
dispositivo de CR e introduce una capa MAC para la coexistencia (CCR-
MAC). Los resultados obtenidos muestran que el CCR-MAC propuesto
mejora la ventaja competitiva y la equidad sin limitaciones de hardware.

En el area de toma de decisiones y arquitecturas descentralizadas hay
dos publicaciones que trabajan en conjunto los dos enfoques y tienen rela-
cion con la presente investigacion. Darak et al. (2017) disefia una politica
de toma de decisiones que permite, desde un punto de vista energético, im-
plementar redes inalambricas descentralizadas eficientes. Hasegawa et al.
(2014) analiza la toma de decisiones en redes cognitivas heterogéneas como
un problema de flujo de costos minimo solucionado a través de una red
neuronal. Para la caracterizacion y posterior analisis de efectividad utiliza
métricas exclusivas para los modelos realizados que pueden presentar un
alto grado de dificultad al momento de extrapolar estas mediciones o indi-
cadores a otro tipo de estrategias que analicen casos equivalentes. Para el
proceso de toma de decisiones, los autores no amplian las discusiones sobre
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otras posibles métricas de desempefio, ni incluyen propuestas que permitan
expandir los indicadores a escenarios multiusuario. Al igual que los trabajos
citados previamente, los modelos utilizados para la caracterizacion de la red
descentralizada utilizan traficos estocasticos, lo que no permite evidenciar
validaciones cercanas a la realidad.

A continuacion, se describen dos publicaciones que trabajan en conjunto
los enfoques de toma de decisiones y arquitecturas descentralizadas.

Darak et al. (2017) en su articulo “Decision making policy for RF ener-
gy harvesting enabled cognitive radios in decentralized wireless networks”
propone una nueva politica de toma de decisiones para DCRN basada en
acceso oportunista al espectro con capacidades de recoleccién de energia
por radiofrecuencia que consta de tres subunidades: un algoritmo de mues-
treo basado en un enfoque bayesiano, un esquema de acceso basado en el
algoritmo de muestreo de Thompson, y un esquema de seleccion de modo.
Los resultados de la simulacion muestran que la politica propuesta ofrece
una mejora de 10-35% en el rendimiento de la DCRN y una reduccién de
40-90% en el numero de conmutaciones de subbandas en comparaciéon con
las politicas de toma de decisiones existentes.

Hasegawa er al. (2014) en su articulo “Optimization for centralized and
decentralized cognitive radio networks” analiza y propone algoritmos de
optimizacion para la toma de decisiones en redes inaldmbricas cognitivas
heterogéneas. Para las DCRN, propone como estrategia una red neuronal
Hopfield-Tank. La propuesta es validada mediante un conjunto de simulacio-
nes para finalmente ser implementada en un sistema cognitivo experimental.

En el area de toma de decisiones y CRN, describimos seis publicacio-
nes que trabajan en conjunto los dos enfoques y que tienen relacion con la
presente investigacion. En general, para el proceso de toma de decisiones,
los trabajos analizados utilizan como estrategias: modelos probabilisticos,
de optimizacién y técnicas de machine learning. Tripathi et al. (2019) imple-
menta logica difusa, Kaur y Sharma (2018a) optimizacidén por enjambres de
particulas, Lopez (2017) redes neuronales, sistemas neurodifusos y SVM. Li
et al. (2016) técnicas evolutivas y modelos bioinspirados; Martins y Andrade
(2018) redes neurales, cadenas de Markov y arboles predictores y Joda y
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Zorzi (2015) utiliza técnicas heuristicas. Cada una de estas propuestas argu-
menta la seleccion del modelo implementado en funcién de los resultados
obtenidos en investigaciones previas.

Durante los ultimos afios se ha propuesto en la literatura un considerable
numero de técnicas, sin embargo, y como se identifica en los documentos
que se citan a continuacion, no hay ningun algoritmo que sea mejor para un
problema general si un algoritmo supera a otros en alguna funcion; habra
alguna tarea en la que otros algoritmos seran mejores. Una buena estrate-
gia para mejorar el rendimiento consiste en proponer algoritmos basados en
estructuras hibridas, esto permite caracterizar las ventajas y desventajas de
dos o mas estrategias para luego combinarlas, de tal forma que el algoritmo
global sea mejor que los individuales. Aunque los resultados obtenidos son
buenos, los autores no evaluan el efecto en la carga computacional. Una
caracteristica relevante para este tipo de problemas es que los algoritmos
para toma de decisiones no solo deben entregar buenos resultados y resolver
tareas complejas: deben disefiarse para que sean eficientes; el objetivo final
es poder evaluar el desempefio en escenarios reales.

Adicionalmente, las estrategias utilizadas tienen buenos esquemas de de-
cision, lo cual se puede identificar en el analisis cuantitativo presentado en
cada una de las respectivas investigaciones; sin embargo, desde la estructura
del proceso de toma de decisiones, no cuentan con un modulo de inter-
cambio de informaciodn, por tanto, no es posible identificar el efecto de las
decisiones de un usuario sobre los demas. Joda y Zorzi (2015) consideran
esta caracteristica como trabajo futuro, resaltando la importancia de imple-
mentar escenarios multiusuarios.

A continuacién, describimos seis publicaciones que trabajan en conjunto
los enfoques de toma de decisiones y CRIN.

El articulo “Analysis and Comparison of Different Fuzzy Inference
Systems Used in Decision Making for Secondary Users in Cognitive Radio
Network” de Tripathi et al. (2019) implementa un sistema basado en logica
difusa con un conjunto de parametros de entrada y salida para la toma de
decisiones de los SU, a través de un andlisis comparativo entre Sugeno Fuzzy
Inference System y Mamdani Fuzzy Inference System. El trabajo concluye con
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una lista de ventajas y desventajas para cada una de las técnicas donde se
obtiene una correlacién mayor al 0,95 entre Mamdani y Sugeno, por tanto,
la seleccidn entre estrategias depende de los requisitos de aplicacion. Desde
una perspectiva computacional, Sugeno presenta una mayor eficiencia que
Mamdani para mas de 100 reglas.

El articulo “PSO based Multiobjective Optimization for parameter adap-
tation in CR based I0oTs” de Kaur et al. (2018b) estudia las caracteristicas de
adaptacion de las CRN al internet de las cosas. Para cumplir con los objeti-
vos de potencia minima de transmision, tasa minima de error y el maximo
throughput, los autores proponen un méddulo de toma de decisiones basado
en optimizacioén multiobjetivo a partir de enjambres de particulas. Los resul-
tados son comparados con un algoritmo genético con codificacidén real. Para
aplicaciones de email, voz y video el promedio de fitness para enjambres de
particulas es de 0,8614; 0,7327 y 0,8597 respectivamente, comparado con
el 0,8121; 0,5975 y 0,7183 obtenido para el algoritmo genético con codifi-
cacion real. Se demuestra que el modulo de decisidén cognitiva basado en
enjambres de particulas supera la implementacion basada en el algoritmo
genético con codificacion real en todos los escenarios, en términos de valor
de la funcion fitness y los valores 6ptimos de métricas de decision.

En su tesis de doctorado “Implementacién de un modelo predictor para la
toma de decisiones en redes inalambricas de radio cognitiva” Lopez (2017)
desarrolla metodologias para mejorar la seleccion y asignacion de canales
a través de técnicas que aumentan la precision en estimacion de presencia/
ausencia de usuarios en canales licenciados. Utiliza los modelos LSTM,
ANFIS-GRID-FCM y SVM para predecir el comportamiento de los PU;
implementa una red neuronal perceptron multicapa para gestionar anticipa-
damente las solicitudes de los SU en la base central, y SVM y ANFIS para
generar esquemas de seleccion de canales eficientes. Los resultados mues-
tran disminucion en el tiempo de seleccion y asignacion de canales.

El articulo “Optimization spectrum decision parameters in CR using
autonomously search algorithm” de Li et al. (2016) introduce el concepto
de bioinspiracién y su aplicacion en la toma de decisiones. Se propone un
algoritmo de busqueda autdbnomo basado en la evolucion de la poblacion,
reproduccioén, seleccion y mutacion. La estrategia propuesta es comparada
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con un algoritmo de optimizacion por enjambres de particulas y un algo-
ritmo genérico. Los resultados experimentales muestran que el algoritmo
de busqueda autonomo satisface la demanda de comunicacién y tiene un
buen rendimiento. Puede optimizar adaptablemente los parametros de trans-
mision de acuerdo con las condiciones del canal y el tipo de cambio en el
servicio al cliente, lo que le permite obtener un mejor esquema de decision
de parametros.

El articulo “Analysis of machine learning algorithms for spectrum deci-
sion in cognitive radios” de Martins y Andrade (2018) presenta un analisis
de algoritmos de machine learning para desarrollo de CRN en hardware real.
Se implementan en dos escenarios distintos tres métodos para la decision del
espectro: redes neuronales artificiales, bosques aleatorios y modelos ocultos
de Markov. Los resultados muestran que el modelo oculto de Markov obtu-
vo la mejor tasa media de entrega en los dos escenarios evaluados —fue 4%
mejor que la red neuronal artificial y 16 % mejor que el bosque aleatorio en el
patron de trafico alto; en el patrén medio fue 5,9 % mejor que la red neuronal
artificial y 9,7% mejor que el bosque aleatorio. En el patrén bajo fue 5,7%
mejor que la red neuronal artificial y 3 % mejor que el bosque aleatorio—.

El articulo “Decentralized Heuristic Access Policy Design for Two
Cognitive Secondary Users under a Primary Type-I HARQ Process” de
Joda y Zorzi (2015) propone politicas de acceso heuristico descentralizadas
para dos SU cognitivos. Debido a la falta de unidad central, el problema se
modela como un proceso de decision descentralizado parcialmente observa-
ble de Markov. Por la complejidad del modelo se disefian politicas de acceso
que aprovechan la redundancia introducida por el protocolo Hibrido-ARQ
de Tipo I. Los resultados muestran que las politicas heuristicas disefiadas
aumentan el rendimiento, la flexibilidad y robustez, frente a los cambios de
canal. Como trabajo futuro, los autores resaltan la importancia de imple-
mentar escenarios multiusuarios.

En el area de toma de decisiones y estructuras multiusuario mencionamos
dos publicaciones que trabajan en conjunto los dos enfoques y que tienen
relacidon con la presente investigacion. Los trabajos analizados utilizan téc-
nicas heuristicas, metaheuristicas, estrategias probabilisticas basadas en
cadenas de Markov y teoria de juegos. Ambos documentos utilizan modelos
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de sistemas multiagente para establecer o analizar objetivos comunes de los
usuarios a través de técnicas de cooperacion. Rizk e al. (2018) presenta la
revision de los dltimos cinco afos en aplicaciones de sistemas inteligentes
dentro de los cuales se incluye la CR, y Roy ez al. (2017) estudia el conflicto
entre dos niveles de SU utilizando teoria de juegos. Una caracteristica gene-
ral de los documentos es que no analizan las consecuencias de las decisiones
tomadas, lo que indica que las estrategias de cooperacion parten del supues-
to de que la utilidad de un SU es independiente de las decisiones tomadas
por otros SU, lo cual, no es la estrategia mas viable si se consideran esce-
narios en los que los SU comparten o compiten por ciertos recursos. Para
el caso particular de Roy et al. (2017) se limita a dos SU y un PU, con una
arquitectura de tipo centralizada y tradfico emulado por Qualnet. Si bien un
trafico real no implica validaciones totalmente reales —ya que existen otras
variables exdgenas que pueden afectar el desempeiio del modelo como el
consumo de energia—, el hecho de utilizar trafico real (capturado en campa-
fias de medicidn) para las pruebas y validaciones garantiza un acercamiento
a escenarios mas practicos en la realidad.

A continuacion, se describen dos publicaciones que trabajan en conjunto
los enfoques de toma de decisiones y estructuras multiusuario.

Rizk et al. (2018) en su articulo “Decision Making in Multiagent Systems:
A Survey” realiza una revision de los modelos cooperativos mas relevantes
para la toma de decisiones en sistemas multiagente. Presenta modelos basa-
dos en procesos de decision de Markov, teoria de juegos, teoria de grafos e
inteligencia de enjambres. Las diferentes técnicas son analizadas segun su
criterio de optimalidad y aplicacidén. Entre las aplicaciones més destacadas
se incluyen diferentes sistemas cognitivos como redes de telecomunica-
ciones, sistemas eléctricos, sistemas de transporte, equipos de busqueda y
rescate; transporte de objetos, exploracion y mapeo. Finalmente, el docu-
mento resalta avances y retos para los proximos anos, la necesidad de incluir
en el proceso de toma de decisiones avances en big data e internet de las cosas
y la necesidad de desarrollar normas de evaluacion que permitan la compa-
racion y faciliten su validacion.

Roy et al. (2017) en su articulo “Optimized secondary user selection for
quality of service enhancement of Two-Tier multi-user Cognitive Radio

1111E2



César Augusto Hernandez Sudrez, Diego Armando Giral Ramirez, Lizet Camila Salgado Franco

Network: A game theoretic approach” utiliza la teoria de juegos para es-
tudiar el conflicto y la cooperacion entre dos niveles de SU. El analisis
comparativo muestra que la probabilidad de bloqueo, caida y saturacion de
canales se reduce en 81 %, 79 %, 84 %, respectivamente y la probabilidad de
aceptacion aumenta en 91 %.

En el area de toma de decisiones y escenarios colaborativos se identi-
ficaron dos trabajos. Giral et al. (2020b) proponen un modelo colaborativo
a través de un nodo de informacion bidireccional con cinco niveles de cola-
boracion. El proceso de toma de decisiones se realiza por medio de técnicas
multicriterio implementando datos reales. Como métrica de desempefio se
utiliza el namero de handoff fallidos. De acuerdo con los resultados obte-
nidos se establece que el nivel de colaboracién que conduce a resultados
eficientes esta entre 20% y 50%. Ye et al. (2017) analizan el costo de la
interferencia para los modelos de decision de interferencia cognitiva colabo-
rativa. Se propone un algoritmo de busqueda tabu-colonia de abejas artificial
para el proceso de toma de decisiones. Para verificar la solidez y capacidad
del algoritmo propuesto se analiza el numero de iteraciones en funcion del
nivel de interferencia. Los resultados muestran que la solucion propuesta
presenta una mayor probabilidad de identificar el punto éptimo.

En el area de escenarios multiusuarios y escenarios colaborativos se
identificaron dos trabajos. Khedkar y Patil (2019) proponen una técnica de
toma de decisiones intra-coalition e inter-coalition para una CRN multiusuario.
Para la asignacion del espectro la estrategia utilizada es Pareto optimal coali-
tions, donde se utilizan métricas convencionales de toma de decisiones como
OR/AND/maximum, voting/half voting rules. Los resultados muestran una
carga de trabajo reducida y un aumento en la velocidad del proceso de de-
cision. Rizk et al. (2018) realizan una revision de los modelos colaborativos
mas relevantes para la toma de decisiones en sistemas multiagentes (MAS),
presentan modelos basados en procesos de decisiéon de Markov, teoria de
juegos, teoria de grafos e inteligencia de enjambres. Las diferentes técnicas
son analizadas segln su criterio de optimalidad y su aplicacion.

De acuerdo con los antecedentes, la tabla 2.7 presenta el analisis de los
enfoques: toma de decisiones, modelos multiusuario y DCRN en funcién de
las estrategias implementadas y las limitaciones identificadas.
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Tabla 2.7. Analisis de los enfoques de acuerdo con las
estrategias implementadas y las limitaciones.

Estrategias
implementadas

*Teoria de colas
*Cadenas de Markov
*Filtros digitales

Limitaciones

*Estructura de la DCRN utilizando
aproximaciones basadas en funciones
probabilisticas.

*No se presenta evidencia de su desempe-
fio bajo comportamientos reales del PU.

Toma de deci-
siones y CRN

*Modelos probabilisticos:
cadenas de Markov
*Técnicas optimizacion:
técnicas heuristicas, técni-
cas evolutivas y modelos
bioinspirados

*Técnicas de machine
learning: 16gica difusa,
redes neuronales, arboles
predictores

*Estructura de la DCRN utilizando
aproximaciones basadas en funciones
probabilisticas.

*No se evalua el efecto en la carga
computacional.

*No se presenta evidencia de su desempe-
fio bajo comportamientos reales del PU.
*No es posible identificar el efecto de las
decisiones de un usuario sobre los demas.

*Propuestas de politicas de

*Estructura de la DCRN utilizando
aproximaciones basadas en funciones

. L robabilisticas.
Toma de deci- | toma de decisiones EM o lusi 1 del
siones y DCRN | *Optimizacion a través de roe‘z::;gsexc ustvas para f0s mocelos
redes neuronales E w ) . .
No se presenta evidencia de su desempe-
fio bajo comportamientos reales del PU.
*Estructura de la DCRN utilizando
*Técnicas heuristicas aproximaciones basadas en funciones
. L robabilisticas.
Toma de “Técnicas metaheuristicas 5:‘)No es posible identificar el efecto de las
decisiones y *Estrategias probabilisticas: ) SSP - .

, decisiones de un usuario sobre los demas.
estructuras cadenas de Markov, teoria de | . .,
multiusuario 1e00S Las estrategias de cooperacién parten del

J*Sifternas multiagente supuesto de que la utilidad de un SU es
& independiente de las decisiones tomadas
por otros SU.
Toma de *Técnicas multicriterio
decisiones *Nodo bidireccional *No es posible identificar el efecto de las
y p
escenarios *Algoritmo de busqueda ta- | decisiones.
colaborativos bu-colonia de abejas artificial
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Enfoques

Escenarios
multiusuarios
y escenarios
colaborativos

Estrategias
implementadas

*Sistemas multiagentes
*Cadenas de Markov
*Teoria de juegos

*Teoria de grafos
*Inteligencia de enjambres

Limitaciones

*Meétricas exclusivas para los modelos
propuestos.

*No se presenta evidencia de su desempe-
fio bajo comportamientos reales del PU.
*No es posible identificar el efecto de las
decisiones de un usuario sobre los demas.

Fuente: elaboracion propia.

En conclusion, se evidencia que aun no hay estudios que relacionen en
conjunto los cuatro enfoques: (1) decision de espectro, (2) ambiente mul-
tiusuario, (3) ambiente colaborativo y (4) arquitectura descentralizada vy,
ademas, los oriente hacia las redes de radio cognitiva, lo cual se convierte en
el principal aporte de este trabajo de investigacion. Adicionalmente, el hecho
de trabajar con datos de ocupacion espectral reales obtenidos a partir de una
campaia de medicién le da al trabajo un mayor valor agregado y diferen-
ciador con respecto a las publicaciones descritas anteriormente, dado que en

ellas se trabaja con datos espectrales generados aleatoriamente.
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3. Metodologia

Debido a que la informacion de ocupacion espectral tiene un papel relevante
en esta investigacion, enunciamos primero la metodologia que se llevo a
cabo para capturar, organizar y procesar los datos experimentales de ocupa-
cion espectral. Luego, presentamos el modulo colaborativo. Posteriormente,
hay una descripcion del modulo de seleccion de oportunidades espectrales
junto con los resultados obtenidos para, finalmente, exponer el modelo de
decision espectral colaborativo definitivo, a partir de los resultados alcanza-
dos en cada uno de los cuatro médulos que lo conforman.

Con el objetivo de facilitar la comprensidén y organizacion de este libro, la
descripcion del software desarrollado se dejo como un capitulo independien-
te, posterior al actual.

3.1 Seleccidn de software y equipos

Para desarrollar la presente investigacidn se utilizaron los siguientes recursos:
* Un sistema de monitorizacién del espectro (descrito en la tabla 3.1) para
realizar el proceso de captura de datos de potencia espectral en las bandas

GSM y Wi-Fi, dentro de los cuales se destaca el analizador de espectro
MS2721B Anritsu.

» Multiples bases de datos electronicas para realizar la consulta y construc-
cion de la revision literaria sobre handoff espectral para CRN.

* El soffware Matlab para desarrollar el simulador y los correspondientes
algoritmos de decisidon espectral.

* Un computador de escritorio — cuyas caracteristicas estan descritas en la
tabla 3.2— para realizar el procesamiento de la informacion, el disefio del
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modelo propuesto, el desarrollo de la experimentacion, el analisis de los
resultados y la documentacion de esta investigacion.

Tabla 3.1. Especificaciones de los equipos para la monitorizacion del espectro.

. Especificaciones
Equipo . .
Rango de frecuencia Referencia
Antena tipo discono 25 MHz - 6 GHz Super-M Ultra Base
Cable de banda ancha DC - 18 GHz CBL-6FT SMNM+
Amplificador de bajo ruido | 20 MHz — 8 GHz ZX60-8008E-S+
Analizador de espectro 9kHz-7.1 GHz MS2721B Anritsu

Fuente: elaboracion propia.

Tabla 3.2. Especificaciones del equipo de computo.

Caracteristica Valor de referencia

Procesador AMD FX 9590 de 8 nucleos y 4.71 GHz
Memoria RAM DDR 3 de 16 GB

Disco de estado solido Kingston SV300S37A de 240 GB
Tarjeta de video AMD Radeon R7 200

Tarjeta de red 10 / 100 / 1000 Mbps

Monitor LG IPS Full HD

Sistema operativo Windows 7 de 64 bits

Fuente: elaboracion propia.

3.2 Tipo de red

Para realizar un analisis comparativo mas completo se decidié evaluar y
validar el desempefio de cada algoritmo de decision espectral en dos tipos
de redes diferentes: GSM y Wi-Fi. La razén de escoger la banda GSM esta
basada en la alta demanda de telefonia celular y la baja QoS (Pedraza ez al.,
2016). En el caso de la banda Wi-F1i, la razon obedece al interés de analizar
el desempefio de los algoritmos en un ambiente mas estocastico y la viabi-
lidad de la posible utilizaciéon de esta banda por parte de SU de telefonia
moévil (Cardenas et al., 2016).
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3.3 Captura y procesamiento de datos
de ocupacion espectral

Esta seccion describe el procedimiento realizado para obtener la informa-
cion de ocupacion espectral, la cantidad de informacion almacenada y su
posterior procesamiento para servir de insumo a la herramienta de simula-
cion. El andlisis se presenta para la red GSM; en el caso de Wi-Fi se sigue
una metodologia similar.

La figura 3.1 describe la configuracién de los equipos para realizar el pro-
ceso de medicion de la ocupacion espectral en las bandas GSM (824 MHz
— 874 MHz) y Wi-Fi (2,4 GHz - 2,5 GHz). Las especificaciones de los equi-
pos utilizados y la configuracion de los parametros técnicos del analizador
de espectro para la banda GSM se exponen en la tabla 3.3.

Antena MP
Ultra base super-M
25 MHz - 6 GHz
8dBmp

CBL - 6FT SMNM + (DC - 18 GHz)

/4 (o))
1/ D J\/\/—
e e
Amplificador de Bajo Ruido Analizador de Espectro
Ganancia:8-11.5dB 9kHz-7.1 GHz
Figura de ruido: 4 - 4.5 dB
20 - 8000 MHz

Figura 3.1. Configuracion experimental para medir la ocupacion espectral.

Fuente: elaboracion propia.

Tabla 3.3. Configuracién de los parametros técnicos
del analizador de espectro para GSM.

Parametro Valor

Banda de frecuencia 824 MHz a 874 MHz
Sistema de comunicacion Movil
Tecnologia de comunicacién GSM
Técnica de deteccion Deteccion de energia
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Parametro Valor

Tiempo de captura 1 mes
Tiempo de barrido 290 ms
Resolucion de BW 100 kHz
Span 50 MHz
Puntos por Span 500

Fuente: elaboracion propia.

“Los rangos de medicién de las bandas se basaron en aspectos como el tiem-
po de barrido, la Resolucién de Ancho de Banda y el Span, con el fin de
garantizar una adecuada medida en funcion del piso de ruido y el BW del
canal de la tecnologia a medir” (Pedraza et al., 2016). La técnica de detec-
cion utilizada fue la de energia debido a su factibilidad de implementacion.
La campafia de medicion se realizé durante un mes en total, desde mayo
hasta junio de 2018. Una explicacién mas detallada de la configuraciéon de
los parametros técnicos del analizador de espectro se puede consultar en el
capitulo tres de Pedraza et al. (2016).

El valor del Span corresponde al rango de frecuencia que esta siendo
analizado, en este caso 50 MHz (874 MHz — 824 MHz), y Puntos Por Span
determina el nimero de canales de frecuencia (division uniforme de una
porcién de espectro) para los cuales el analizador de espectro midi6 el co-
rrespondiente nivel de potencia durante cada barrido. De acuerdo con lo
anterior, en cada barrido, el analizador de espectro entrega la informacién
del valor de potencia medido en dBm correspondiente a 500 canales de fre-
cuencia (potenciales oportunidades espectrales), con un BW de 100 kHz
(50MHz / 500) cada uno.

El nimero de barridos que realiza el analizador de espectro depende del
tiempo de barrido (290 ms) y la duraciéon de la campafia de medicion (un mes).
De acuerdo con el tiempo de barrido se tiene, aproximadamente, 3,448 barri-
dos en un segundo. Por tanto, el nimero total de barridos realizados en un mes
son: 8.937.216 (barridos/mes) = 3,448 (barridos/segundo) x 60 (segundos/
minuto) X 60 (minutos/hora) X 24 (horas/dia) x 30 (dias/mes), y el nimero
total de datos de potencia son: 4.468.608.000 (dato de potencia del canal/mes)
= 8.937.216 (barridos/mes) X 500 (dato de potencia del canal/barrido).
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A partir de la informacion anterior se construyd una matriz de potencia
de 8.937.216 x 500, la cual contiene el valor de potencia de cada uno de los
500 canales (comprendidos entre 824 MHz y 874 MHz) para 8.937.216 ins-
tantes de tiempo (cada instante de tiempo equivale a 290 ms). Sin embargo,
debido a la gran cantidad de filas, dicha matriz tuvo que segmentarse en 240
matrices de 37.238 x 500 para poder trabajar con ella.

3.4 Nivel de trafico

Se realiz6 un analisis previo a la matriz de potencias para GSM basado en la
AP. El resultado obtenido se muestra en la figura 3.2. De este analisis resalta
la determinacién de un rango de frecuencia en donde la disponibilidad de la
matriz de potencia es alta. Para que el analisis de los modelos sea equitativo
se requiere realizar ajustes previos a este rango de frecuencias.

Probabilidad de
Disponibilidad
AP

v

Trafico de disponibilidad = 62%

i
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-
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N
] 0 T

N
o

N
o

0

Probabilidad de Disponibilidad (AP)

o

Frecuencia (MHz)

Figura 3.2. Probabilidad de disponibilidad matriz de potencia.
Fuente: elaboracion propia.
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Para realizar el ajuste al rango de frecuencia se implementa una estrategia
que involucra todos los canales de la matriz de potencia; consiste en generar
un conjunto de matrices para diferentes niveles de AP.

La metodologia —descrita en la figura 3.3— toma la matriz de potencia
medida. A través del nivel de threshold se obtiene la matriz de disponibilidad,
a esta se le determina la AP actual y se compara con la AP objetivo. A partir
de esta comparacion se establece el ajuste que se debe realizar a la matriz de
disponibilidad. El ajuste consiste en cambiar 0 por 1 si se requiere aumentar
la AP actual o, 1 por 0 si se requiere disminuir la AP actual. Los cambios se
realizan segun un criterio de porcentaje para no afectar el ETA. El proceso
previamente descrito es realizado en el bloque “Matriz de trafico objetivo”,
donde se analizan las multiples matrices obtenidas. De acuerdo con los re-
sultados obtenidos se seleccionan los niveles de trafico para la base de datos.

—> Matriz Potencia Mod

Matriz de Disponibilidad —>
. P —> Fi Handoff
Objetivo Decisién
—>|  Figura Handoff Fallidos
B -
Porcentaje de e ——
A __lgura roughpu
Seleccion

\

Ajustes por canal

AP Objetivo

Y

|ll€

Figura 3.3. Metodologia para AP objetivo.

Fuente: elaboracion propia.

3.4.1 Matriz de trafico objetivo

Este bloque es el encargado de realizar todo el proceso de ajuste segin los
requerimientos de AP objetivo y criterio de porcentaje. El primer paso con-
siste en tomar la matriz de potencia medida y convertirla en disponibilidad
—como se muestra en la figura 3.4 este proceso se realiza a través del nivel
de threshold—; posteriormente se analiza el AP actual, calculando la AP por
canal y a través de los datos obtenidos, la AP global.

ES 1120



Modelo de asignacion espectral multiusuario para redes de radio cognitiva descentralizadas

Canal1 Canal2 Canalm

AP AP AP

Canal1 Canal2 Canalm

AP
Actual

—

Figura 3.4. Probabilidad de disponibilidad actual.

Fuente: elaboracion propia.

Se compara la informacién —la AP actual con la AP objetivo— y se de-
termina si se requiere aumentar la cantidad o disminuir la disponibilidad
por canal. En el Algoritmo 1 se toman los criterios actuales, se comparan
con los objetivos y se determina el factor que se debe agregar a cada canal
—aditivo o sustractivo, depende si se quiere aumentar el nivel de trafico
o disminuir—. Para analizar los multiples escenarios, se analizan nueve
casos de AP objetivo: 10 %, 20%, 30 %, 40 %, 50%, 60 %, 70%, 80% y 90 %.
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Algoritmo 1. Ajuste segun criterios de AP objetivo.

Probabilidad de Disponibilidad Objetivo

Variables de entrada: Traffic goal, Available

AP 0ld = mean( Available );
Mean AP = mean (AP Old );
if Traffic goal < Mean PD

Y = —( Traffic goal*length (AP_0ld)-sum (AP _0Old) ) /
length (AP _01d) ;

AP_Goal = AP_Old*Y;
else

Y = ( Traffic goal*length (AP_0Old)-sum (AP 0Old) ) /
length (AP _01d);

AP_Goal = AP_Old + Y;

end

Fuente: elaboracion propia.

De acuerdo con el factor que se debe agregar a cada canal se determina si
se debe incrementar o reducir la cantidad de ceros —O0 por 1 si se requiere
aumentar la AP actual del canal o, 1 por 0 si se requiere disminuir el AP
actual del canal—. Estos cambios se plantearon en dos escenarios; el pri-
mero, a través de cambios aleatorios, es decir, se toma la ubicacion de los
elementos a cambiar y de forma aleatoria se modifican hasta obtener la AP
de interés. El problema de estos cambios aleatorios es que el criterio del ETA
presentaba fuertes variaciones, por tanto, no fue viable su implementacién.
El segundo escenario incluye el ETA para realizar los cambios —se toman
los conjuntos de 1 o 0 segtn el caso, y de forma porcentual se realizan las
modificaciones—.

Enlafigura 3.5 se describe la metodologia utilizada: la columna representa
instantes de tiempo y la fila el canal de interés. Para el caso particular donde
se requiere aumentar el trafico del canal, se toma el conjunto de columnas
(tiempo) disponibles consecutivas y se realizan cambios de acuerdo con el
tamafio y al criterio de porcentaje de seleccion; como el tamafio de columnas
consecutivas es de 10, si se requiere realizar un cambio en el 10%, se toma
1 canal y se modifica su estado; si se requiere realizar un cambio en el 40 %,
se toman 4 columnas y se modifica su estado. Esto significa que los cambios
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son proporcionales al tamafio del conjunto de columnas consecutivos. El
proceso se realiza hasta cumplir con la AP objetivo. Los cambios se realizan
desde los mayores conjuntos de columnas consecutivas hasta los menores.

time 1 time 2 timen

EEOOOOO00000.
_|ERENEnEa.

Porcentaje
10%

Porcentaje
20%

Porcentaje
40%

Porcentaje
80%

Porcentaje
100%

Canal
No Disponible

Canal
Disponible

NN
BN
H
1]
]
L]

Figura 3.5. Modificaciones porcentuales bajo criterios de ETA.

Fuente: elaboracion propia.

Segun la metodologia (figura 3.3) el porcentaje de seleccidén es un parametro
de entrada del modelo. Para la presente investigacion se tomaron diferentes
porcentajes de seleccion: 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% y
90%. Luego se combinaron con nueve casos de AP objetivo: 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80% y 90%. Para cada caso de AP objetivo
se analizaron nueve porcentajes de seleccion, por tanto, se obtuvieron 81
matrices de disponibilidad.

3.4.2 Criterio de decision

Para las 81 matrices de disponibilidad, se analizé el AAD, AAFH, AAH, AAT
y ABW; se compararon los resultados, semejanzas y diferencias; finalmente,
se selecciono la AP objetivo de 40% con porcentaje de seleccion de 50% para
trafico alto y AP objetivo de 80% con porcentaje de seleccion de 50%. La
figura 3.6 presenta el comportamiento de la AP para las matrices selecciona-
das; la grafica de color verde es el comportamiento original.
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Figura 3.6. Probabilidad de disponibilidad para trafico alto y bajo GSM.

Fuente: elaboracion propia.

3.4.3 Base de datos de ocupacion espectral

Para implementar las estrategias de toma de decisiones es necesario generar

un grupo de datos que pueda entrenar los modelos y otro grupo de datos que

los valide. Por tanto, se requieren dos bases de datos: una para entrenamien-

to y otra para evaluacion. Adicionalmente, cada base de datos se clasifica de
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acuerdo con el tipo de matriz (Potencia y Disponibilidad) y a los niveles de
trafico (HT y LT). Las tablas 3.4 y 3.5 describen la estructura de la base de
datos generada para la matriz de potencia y disponibilidad.

La matriz de disponibilidad se obtiene a través del nivel de Umbral (—95
dBm); este nivel se selecciona teniendo en cuenta la busqueda de equilibrio
entre la probabilidad de deteccion y la probabilidad de falsa alarma (Digham
et al., 2007; Lehtomaki et al., 2005).

Tabla 3.4. Estructura de la base de datos para la matriz de potencia.

Matriz de Potencia Nivel de Trafico Filas Columnas
HT

Evaluacion 1800 500
LT
HT

Entrenamiento LT 10,800 500

Fuente: elaboracion propia.

Tabla 3.5. Estructura de la base de datos para la matriz de disponibilidad.

Matriz de Disponibilidad  Nivel de Trafico Filas = Columnas

. HT
Evaluacion 1800 500
LT
; HT
Entrenamiento LT 10,800 500

Fuente: elaboracion propia.

3.9 Modelo propuesto

La figura 3.7 presenta el modelo de asignacién espectral multiusuario para
redes de radio cognitiva descentralizadas donde se tiene un ambiente de radio
que intercambia informacién de los SU de forma permanente con el médulo
colaborativo. El modulo colaborativo es la estructura de comunicacion entre
los modulos propuestos y el ambiente de radio de forma permanente, este
modulo se comunica con la base de datos para almacenar y actualiza la in-
formacion sobre las solicitudes y requerimientos de los SU.
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El modelo propuesto estd conformado por los moddulos colaborativo,
multiusuario, predictivo y Deep Learning. Cuando se realiza intercambio de
informacion, la estrategia propuesta genera tres posibilidades de comuni-
cacion con este ultimo. La primera es a través del mdédulo multiusuario, el
cual se realiza cuando hay maultiples SU; la segunda es a través del modulo
predictivo, el cual se implementa si la aplicacion que se esta ejecutando tiene
sensibilidad alta al retardo y se requiere disminuir la interferencia; finalmen-
te, si no hay multiples usuarios y tampoco se presenta alta sensibilidad al
retardo, la tercera posibilidad es generar comunicacién directa entre el mo-
dulo colaborativo y el Deep Learning. Finalmente, se toma la informacion del
moédulo Deep Learning para la asignacion del espectro.

En las secciones 3.5.1, 3.5.2, 3.5.3 y 3.5.4 describimos cada uno de estos
modulos.

20

Médulo
Multiusuario

g L3
G &

Solicitud SU y

Requerimientos

)
2.2
Médulo

Colaborativo

Médulo
Predictivo

Ambiente
de Radio

> D —— d
Modulo Aprendizaje

Profundo

Asignacion
Espectral

@
o

a

3

a

3

Datos

X

Actualizacién
de Parametros

Figura 3.7. Modelo de asignacion espectral multiusuario
para redes de radio cognitiva descentralizadas.

Fuente: elaboracion propia.

3.5.1 Mddulo colaborativo: intercambio de informacion entre SU

Una de las principales novedades de esta investigacion es el hecho de
contemplar la caracteristica de colaboracion entre SU para determinar la
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mejor oportunidad espectral. Como se menciond en los capitulos primero
y segundo, la mayor parte de trabajos de investigacion en radio cognitiva se
fundamentan en una red centralizada donde toda la informacién esta orga-
nizada en un solo lugar y acceder a ella resulta mas facil y beneficioso para
la toma de decisiones. Sin embargo, aunque la observacion y conocimiento
global de la red presenta ventajas, para sistemas a gran escala y aplicacio-
nes en redes de seguridad publica no es la mejor opcidn: el aumento en los
costos de medicidn, la complejidad del sistema, la cantidad de informacion
que se debe controlar, sumado al desequilibrio y potencial caos si la estacion
base llega a fallar (vulnerabilidad), la convierte en una arquitectura no facti-
ble para todas las estructuras de CRN (Pankratev et al., 2019).

Las redes distribuidas —por ejemplo, MANET— se caracterizan por su
alta movilidad, autonomia, adaptacion e independencia. Sus aplicaciones se
encuentran en escenarios que involucran redes VANET (Bujari et al., 2018),
vehiculos aéreos no tripulados (Bujari et al., 2018), vigilancia urbana y misiones
de buasqueda o rescate (Dhamodharavadhani, 2015). Sin embargo, la falta de
infraestructura, topologia dinamica, implementacién rapida y los entornos hos-
tiles de aplicacion hacen que la MANET sea vulnerable a una amplia gama de
ataques de seguridad (Abass et al., 2017; Kongsiriwattana y Gardner-Stephen,
2017; Vasudeva y Sood, 2018); ademas, el consumo de energia y retardo es
alto (Kongsiriwattana y Gardner-Stephen, 2017) y el BW es bajo al igual que
su rendimiento por las frecuentes fallas de enlace (Dhamodharavadhani, 2015;
Goswami, 2017). La anterior problemdtica puede ser solucionada si se dis-
tribuye la responsabilidad de la informacién en diferentes puntos de control,
criterio base de las DCRN. Ahora, debido a que en las DCRN no se centraliza
la informacion y gestion de la red, resulta realmente importante el concepto de
colaboracion entre SU para la toma de decisiones.

De acuerdo con lo anterior, la presente investigacion implementé y adap-
t6 la colaboracion al modelo de decisidn espectral propuesto, a través de un
modulo de intercambio de informacién entre SU, el cual segmenta la ma-
triz de entrenamiento de acuerdo con un numero establecido de usuarios.
Adicionalmente, caracteriza niveles de colaboracién a través del porcentaje
de informacién que se comparte. A continuacion, se realiza la descripcion
de la metodologia utilizada para el modulo colaborativo.
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3.5.1.1 Estructura del mddulo implementado

La figura 3.8 presenta el diagrama de bloques del modulo colaborativo. Los
bloques donde convergen las sefiales de entrada y salida corresponden a la
metodologia que segmenta la matriz de potencia de acuerdo con los niveles
de colaboracion. La idea general del modulo es dividir la matriz de potencia
(base de datos) en submatrices y caracterizar los niveles de colaboracién de
acuerdo con la cantidad de usuarios que seran parte del analisis del proceso
de decision espectral. Cada submatriz representa un usuario, por tanto, el
total de submatrices corresponde al numero total de usuarios. La cantidad
de informacion a compartir se selecciona de acuerdo con los niveles de co-
laboracion que son caracterizados por el tipo de segmentacion, el método
de division y el porcentaje de seleccion. La descripcion de cada una de las
variables de entrada y su respectivo ajuste se presenta en la tabla 3.6.

Continua/Aleatoria

S i_» 2
)

x Segmentacion
o
’ Division

)
Nivel de Porcentaje
Colaboracion o Matriz de Potencia
Segmer}tauon —>> S
—— Continua
R Usuarios Totales | ‘"’
m Division de > Usuarios
’ . ) Usuarios ) Colaborativos
Numero de (
Usuarios
— Segmentacion Usuarios
[ =] Aleatoria > Totales
[ = e

Base de
Datos

—

Figura 3.8. Diagrama general del modulo colaborativo.

Fuente: elaboracion propia.
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Tabla 3.6. Descripcion de las variables de entrada para el modulo colaborativo.

Variable

Nivel de
colaboracion

Ajuste

Segmentacion

Aleatoria

Descripcion

La seleccion de usuarios para la simu-
lacion, de acuerdo con el ajuste del
porcentaje, se realiza se forma aleatoria.

Continua

La seleccion de usuarios para la simu-
lacién, de acuerdo con el ajuste del
porcentaje, se realiza en orden, por filas o
por columnas.

Division

Fila

* Si el niimero de usuarios es mayor o igual a
10: Se dividen las filas de la matriz de po-
tencia en 10 partes iguales y las columnas
se dividen en m partes hasta completar el
numero de usuarios (Usuarios Totales =
10(m))

* Si el numero de usuarios es menor a 2: Se di-
viden las filas de la matriz de potencia en
2 partes iguales y las columnas se dividen
en m partes hasta completar el numero de
usuarios (Usuarios Totales = 2(m)).

Columna

* Si el numero de usuarios es mayor o igual a
10: Se dividen las columnas de la matriz
de potencia en 10 partes iguales y las filas
se dividen en m partes hasta completar el
numero de usuarios (Usuarios Totales =
10(m))

* Si el numero de usuarios es menor a 2: Se
dividen las columnas de la matriz de
potencia en 10 partes iguales y las filas
se dividen en m partes hasta completar el
numero de usuarios (Usuarios Totales =

2(m)).

Porcentaje

10%-100%

Porcentaje de usuarios que participaran
en el entrenamiento.

Numero de
usuarios

1-1000

Numero de usuarios (submatrices) que
segmentan la matriz de potencia.

Base de
datos

Tipos de red (GSM o Wi-Fi)

Matriz de trafico.

Fuente: elaboracion propia.

Una descripcion particular omitiendo el tipo de segmentacion y el método de

division se presenta en la figura 3.9. Se toma la informacion de entrada (Base

de datos) y se divide en n submatrices (Numero de usuarios = n). Después

de la division en submatrices se selecciona la cantidad de informacién a
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compartir en el entrenamiento segun el nivel de colaboracién (Porcentaje).
De acuerdo con la figura 3.9, para un numero de usuarios igual a cuatro
(n = 4), un nivel de colaboracion de 25% (Porcentaje = 25%) corresponde
a un entrenamiento basado en la informacion de un solo usuario (Usuarios
colaborativos = 1); un nivel de colaboracion de 50% (Porcentaje = 50 %)
corresponde a un entrenamiento basado en la informacién de dos usuarios
(Usuarios colaborativos = 2), un nivel de colaboracion de 75 % (Porcentaje
= 75%) corresponde a un entrenamiento basado en la informacion de tres
usuarios (Usuarios colaborativos = 3), si el nivel es de 100% (Porcentaje =
100%) el entrenamiento utiliza toda la informacién disponible (Usuarios
colaborativos = 100).

Matriz Entr i Segl ada
- Nivel de Colaboracion: 25% Nivel de Colaboracion: 50%
. . Usuario 1 Usuario 1 Usuario 2
[ =] Nuamero de Usuarios (n)
Base de Usuario 1 Usuario 2
Datos

e . . ’ Nivel de Colaboracion: 75% Nivel de Colaboracion: 100%
m Usuario 1 Usuario 2 Usuario 1 Usuario 2
Numero de

Usuarios
\. Usuario 3 Usuario 4
7 Usuarios Totales
8 "
%
'

7

Nivel de., Usuario 3 Usuario 3 Usuario 4
L Colaboracion

.

.

Figura 3.9. Operacion particular del modelo colaborativo.

Fuente: elaboracion propia.

Para una mejor comprension de la estrategia, a continuacion, se presentan
dos ejemplos. En contraste con el caso descrito en la figura 3.9, estos dos es-
cenarios son mas especificos ya que involucran todos los ajustes del modelo
colaborativo. La figura 3.10 corresponde a la base de datos de entrada de los
dos escenarios, representa una matriz de disponibilidad binaria con 36 da-
tos, obtenida a través de una matriz de potencia con un umbral de decision.
Cada columna representa un canal y cada fila representa el tiempo, donde
un valor de “1” representa un canal disponible y “0” representa un canal no
disponible.
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Channels

1 1 0 1 0 0

Time

Figura 3.10. Base de datos de entrada para los dos escenarios.

Fuente: elaboracion propia.

Los criterios de cada uno de los escenarios se presentan en la tabla 3.7 y
tabla 3.8. Para los dos casos, la matriz de disponibilidad es segmentada
en seis usuarios (equivalente a seis submatrices), el porcentaje es un valor
seleccionado aleatoriamente, 50 % para el primer escenario y 67 % para el
segundo escenario. Como se describid previamente, este parametro indica
el porcentaje de usuarios que seran parte del entrenamiento, equivalente a
un nivel de colaboracion de 50% (caso 1) y 67 % (caso 2), por tanto, si 6 es
el total de usuarios (100 %), 50% corresponde a un entrenamiento basado
en la informacion de 3 de usuarios, y 67 % corresponde a un entrenamiento
basado en la informacién de 4 usuarios. Este porcentaje, es un parametro
ajustable que puede variar entre 10% y 100% segun el caso de estudio a
analizar. El modelo colaborativo esta programado para adaptarse a cual-
quier parametro de entrada. Si el nivel de colaboracion ajusta un entrena-
miento basado en la informacion de un ntimero de usuarios decimal, el
modelo toma el entero mas cercano. Las variaciones en el modelo por las
variables Divisiéon y Segmentacién se describen en el analisis individual de
cada uno de los casos de estudio.
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Tabla 3.7. Ajuste modelo colaborativo para el primer escenario.

Base de datos Matriz de disponibilidad figura 3.10

Numero de usuarios 6
Segmentacion Fila

Nivel de colaboracion Division Aleatoria
Porcentaje 50%

Fuente: elaboracion propia.

Tabla 3.8. Ajuste modelo colaborativo para el segundo escenario.

Base de datos Matriz de disponibilidad figura 3.10

Numero de usuarios 6
Segmentacion Continua

Nivel de colaboracion Division Columna
Porcentaje 67%

Fuente: elaboracion propia.

Primer escenario: Segun la informacion presentada en la tabla 3.7, el primer
escenario segmenta la matriz de disponibilidad en seis usuarios con divisién
por filas. Como el niimero de usuarios es inferior a diez y la segmentacion
es por fila, el modulo toma la matriz de disponibilidad y la divide en dos
columnas (para usuarios mayores a diez, consulte la tabla 3.6). El modulo
determina que para segmentar la matriz de disponibilidad en seis submatri-
ces con una division de dos columnas, el numero de filas debe ser tres. La
figura 3.11 presenta la matriz de disponibilidad de acuerdo con el nimero
de usuarios y la division.

De los seis usuarios, para el nivel de colaboracion, solo 50% serdn parte
de los usuarios colaborativos (Porcentaje = 50 %), lo que corresponde a tres
usuarios (Usuarios colaborativos = 3). La seleccién de los tres usuarios se
realiza de forma aleatoria. La figura 3.12 ilustra la matriz de entrenamiento
de acuerdo con los ajustes descritos en la tabla 3.7.
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Channels
User 1 User 2
1 1 1
0 0 0 Row 1
1 1 1 1 1 1
User 3 User 4
(]
§ 0 1 0 0 0 1 Row 2
|_
0 1 0 1 0 0
User 5 User 6
1 0 0 1 1 0
Row 3
1 1 1 0 1 1
Column 1 Column 2

Figura 3.11. Matriz de disponibilidad seccionado para 6 usuarios con division por fila.

Fuente: elaboracion propia.

Channels
User 1
. : 0 Row 1
1 1 1
User 4
(]
€ 0 0 ! Row 2
|_
1 0 0
User 5
1 0 0 Row 3
1 1 1
Column 1 Column 2

Figura 3.12. Matriz de entrenamiento para 3 usuarios, con
50% de nivel de colaboracion y seleccion aleatoria.

Fuente: elaboracion propia.
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Segundo escenario: Segun la informacién presentada en la tabla 3.8, el se-
gundo escenario segmenta la matriz de disponibilidad en seis usuarios con
division por columna. Como el niumero de usuarios es inferior a diez y la
segmentacion es por columna, el médulo toma la matriz de disponibilidad
y la divide en dos filas (para usuarios mayores a diez, consulte la tabla 3.6).
El médulo determina que para segmentar la matriz de disponibilidad en seis
submatrices con una division de dos filas, el nimero de columnas debe ser
tres. La figura 3.13 presenta la matriz de disponibilidad de acuerdo con el
numero de usuarios y la division.

Channels
User 1 User 2 User 3
1 1 0 1 0 0
1 1|1 1] 1 1 Row 1
o | O 1 0 0 0 1
&
= User 4 User 5 User 6
0 1 0 1 0 0
Row 2

Column 1| Column 2 | Column 3

Figura 3.13. Matriz de disponibilidad seccionado para 6 usuarios con divisiéon por columna.
Fuente: elaboracion propia.

De los seis usuarios, para el nivel de colaboracion, solo 67 % seran parte de
los usuarios colaborativos (Porcentaje = 50%), lo que corresponde a cuatro
usuarios (Usuarios colaborativos = 4), la seleccion de los cuatro usuarios se
realiza de forma continua. La figura 3.14 ilustra la matriz de entrenamiento
de acuerdo con los ajustes descritos en la tabla 3.8.
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Channels

User 1 User 2 User 3

1 1 0 1 0 0

1 111 1|1 1 Row 1
ol O 1 0 0 0 1
E
= User 4

0 1

1 0 Row 2

1 1

Column 1 | Column 2 | Column 3

Figura 3.14. Matriz entrenamiento para 4 SU, con 67 %
de colaboracion y seleccion aleatoria.

Fuente: elaboracion propia.

Finalmente, las variables de salida del médulo contienen la matriz segmen-
tada con la informacion de los usuarios colaborativos seleccionados para el
proceso de toma de decisiones. Adicionalmente, como variable de salida se
incluye la matriz de potencia dividida por el total de usuarios.

3.5.2 Mddulo multiusuario

En las CRN, los usuarios deben tomar decisiones inteligentes en funcion de
la variacion del espectro y de las acciones adoptadas por otros usuarios. A
partir de esta dinamica, la probabilidad de que dos o mas usuarios elijan el
mismo canal es alta, especialmente cuando el nimero de usuarios es mayor
que el numero de canales disponibles: cuantos mas seleccionen el mismo
canal, menor sera la utilidad y mayor el nimero de interferencias por el ac-
ceso simultaneo (Abbas ef al., 2015). Para modelar la red bajo parametros de
trafico realistas es necesario analizar el acceso multiusuario.

Al tomar la decision de acceso al canal cada SU no solo debe considerar
la calidad del canal sino, también, tener en cuenta las decisiones de acceso
al canal de otros SU; cuanto mas acceden los SU al mismo canal menor es
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el rendimiento que puede alcanzar cada SU debido a la interferencia entre
ellos. Este fendmeno se conoce como externalidad negativa de la red (Jiang
et al., 2014b; Zhang et al., 2012). La influencia negativa de los comporta-
mientos de otros usuarios en la recompensa de un usuario se debe a que cada
usuario tiende a evitar tomar la misma decisién de otro para maximizar su
propia utilidad.

De acuerdo con lo relevante del proceso de toma de decisiones y la nece-
sidad de incluir el efecto de las decisiones de los usuarios sobre la utilidad
de los otros (para de esta manera poder obtener validaciones mas ttiles en
la realidad), la presente investigacion implemento6 y adapté un médulo mul-
tiusuarios al modelo de decisidn espectral propuesto, el cual permite incluir
multiples usuarios seriales, para diferentes tipos de aplicaciones, con nive-
les de prioridad y bandas de canales de diferentes tamafio. Adicionalmente,
para incluir otras caracteristicas asociadas al comportamiento real de la
banda espectral, el modulo cuenta con la posibilidad de agregar usuarios
aleatorios que seran parte de la simulacion en instantes de tiempos distintos
con los mismos requerimientos. A continuacion, se realiza la descripcion de
la metodologia utilizada para el moédulo multiusuario.

3.5.2.1 Estructura del mddulo implementado

La figura 3.15 presenta el diagrama de bloques del modulo multiusuario
donde convergen las seflales de entrada y salida correspondientes a la ca-
racterizacion que se realiza de los diferentes usuarios. La idea general del
modulo es analizar el comportamiento de los modelos de decision espectral
cuando se presenta acceso multiusuario. Para lograr este objetivo se generan
multiples usuarios con diferentes requerimientos.

El médulo permite manejar cuatro tipos de bandas (aplicaciones). Cada
una de estas bandas tiene la posibilidad de solicitar prioridad y acceso a
maultiples canales. Multiples usuarios y sus respectivas caracteristicas seran
parte del modelo durante todo el tiempo de simulacion. Esta metodologia se
denomino: “Modelo convencional”. El médulo cuenta con la posibilidad de
incluir usuarios aleatorios, sin interés de analisis, que aparecen en tiempos
aleatorios y que no estaran en todo el tiempo de simulacion, sin embargo,
con caracteristicas similares a los usuarios que participan en todo el proceso.
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Esta estructura se denominé: “Modelo real”. Para generar las métricas los
multiples usuarios se introducen en un algoritmo de busqueda que analiza el
comportamiento de los Aandoff espectral. La descripcion de cada una de las
variables de entrada y su respectivo ajuste se presentan en la tabla 3.9.

Tabla 3.9. Descripcion de las variables de entrada para el modulo multiusuario.
Variable Ajuste Descripcion

Numero de aplicaciones selec-

Bandas Multicanal 1-4 . . .
cionados para la simulacién.

Numero de canales nece-
Canales 1-10 sarios para cada aplicacién
seleccionado.

Porcentaje de usuarios que
adquieren la caracteristica de la
aplicacion y de la cantidad de
canales.

Porcentaje 25% —50% — 75% — 100 %

Numero de SU que de forma
simultanea acceden al espectro.
Numero de 1230 Estos usuarios se caracterizan
Usuarios Seriales por intercambiar informacion
entre ellos antes de iniciar el

proceso de acceso oportunista.

Modo Real Se incluyen usuarios aleatorios.
Modo de

Simulacion Modo Convencional

No se incluyen usuarios
aleatorios.

Fuente: elaboracion propia.
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Figura 3.15. Diagrama general del modulo multiusuario.
Fuente: elaboracion propia.

3.5.2.2 Caracteristicas de los usuarios

Las caracteristicas de los usuarios establecen la cantidad de bandas mul-
ticanales, el numero de canales por banda, la prioridad y el porcentaje de
usuarios que tendran estas caracteristicas. El objetivo es manejar diferentes
escenarios de demanda de canales por usuario; las bandas multicanal repre-
sentan el tipo de aplicacioén y el numero de canales la demanda de BW o el
requerimiento de acuerdo con el tipo de aplicaciodn, la cual puede ser de un
solo canal o de multiples canales. La asignacion de la prioridad se realiza
segun el orden de ajuste de la informacion. La figura 3.16 muestra la estruc-
tura de parametrizacion de la informacion.
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Bandas Multicanal { v }
‘ Canales [ V] Porcentaje [ V] Prioridad: 1 ‘
’ Canales [ V] Porcentaje [ v] Prioridad: 2 ‘
’ Canales [ V] Porcentaje [ v] Prioridad: 3 ‘
Canales E] Porcentaje E] Prioridad: 4

Figura 3.16. Ajustes para caracteristicas de los usuarios.

Fuente: elaboracion propia.

Una descripcion particular de las caracteristicas de los usuarios se presenta
en la figura 3.17. En este caso especifico se seleccionaron tres bandas multi-
canal (tres tipos de aplicaciones). La banda con la mayor prioridad requiere
de tres canales de BW; la banda con la segunda prioridad requiere de dos
canales de BW y la banda con la tercera prioridad requiere de cuatro canales
de BW. De acuerdo con esta informacién 25 % de los usuarios tendra prio-
ridad 1; 50% de los usuarios tendra prioridad 2 y finalmente, 25% de los
usuarios tendrd prioridad 3.

Bandas Multicanal

‘Canales [ 3 v] Porcentaje [25 v] ‘ O . . .
Prioridad: 1 Q

‘Canales [ 2 v] Porcentaje [50 v] ‘ O l
Prioridad: 2 D

(cots (5] poe [ 7] | O . . . .
Prioridad: 3 D

Figura 3.17. Descripcion particular para las caracteristicas de los usuarios.

Fuente: elaboracion propia.

139/E2



César Augusto Hernandez Sudrez, Diego Armando Giral Ramirez, Lizet Camila Salgado Franco

3.5.2.3 Nimero de usuarios

El nimero de usuarios depende del modo simulacién —convencional o
real— como se muestra en la figura 3.18. Para establecer el total de usuarios
se requiere un bloque de multiplexacion; si se utiliza el modo convencional,
la asignacion de usuarios y tiempo aleatorio se deshabilita y por tanto el
total de usuarios corresponde al numero de usuarios. Si se utiliza el modo
real, el bloque de usuarios y tiempo aleatorio se habilita y, por tanto, el total
de usuarios aumenta con respecto al modo convencional. A continuacion,
se presenta la descripcion de la metodologia utilizada para los bloques de la
figura 3.18.

Numero de Usuarios

O
m { ~_ Numero de Usuarios Seriales . Usuarios Totales
T Usuarios Totales FO——>»
Numero de Usuarios
Seriales
- @@
- @ @@
i Random Users
———
5 o 56 o Namero de Usuarios
o o oo . [=} Modo Real Seriales
oY= 288 ~ . . Tiempo Aleatorio
o o o oo . Usuarios Aleatorios
== === Demultiplexor Tiempo Aleatorio
Disabled
Modo de Modo Convencional H
Simulacién

Figura 3.18. Usuarios totales en modo convencional y en modo real.

Fuente: elaboracion propia.

Usuarios totales

Se cuantifican en funcién del modo ajustado —convencional o real—. El
Algoritmo 2 presenta la estructura de programacién implementada. No es
posible que los dos modos estén habilitados de forma simultanea. La salida
“Tiempo aleatorio” solo estara disponible para el modo real.
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Algoritmo 2. Estructura para la asignacion de usuarios totales.

Usuarios Totales

% Usuarios Totales Modo Real

If Modo Real == 1 && Modo Convencional ==
Usuarios Totales = NUimero de Usuarios Seriales + Usuarios
Aleatorios
Tiempo Aleatorio = Enable
end

% Usuarios Totales Modo Convencional

If Modo Real == 0 && Modo Convencional ==
Usuarios Totales = Numero de Usuarios Seriales
Tiempo Aleatorio = Disable

end

Modo convencional

Este modo no genera usuarios aleatorios ni tiempo aleatorios. El total de
usuarios, segin describe el Algoritmo 2, corresponde al parametro de usua-
rios que se ajusta a la entrada del modelo.

Modo real

Genera usuarios aleatorios, sin interés de andlisis, que no estaran en todo el
tiempo de simulacion. Para el numero de usuarios aleatorios se genera un
numero entero distribuido uniformemente entre uno y el valor maximo de
usuarios que se ajusta a la entrada de modelo. Esto significa que el nimero de
usuarios aleatorios nunca podra ser superior a los usuarios convencionales.
Silos usuarios aleatorios permanecen durante todo el tiempo de simulacion,
el modelo real tendria el mismo comportamiento del modelo convencional,
por tanto, los usuarios aleatorios ingresan y salen en tiempos diferentes a los
ajustados en el modelo convencional.

Por criterio de disefio, un usuario aleatorio solo podra ingresar cuando
se supere el 30% del tiempo de transmision en minutos del SU, y podra
participar en el proceso de decision espectral hasta alcanzar el 70%. Para
establecer el tiempo de permanencia con los criterios previamente descritos,
por usuario aleatorio, se genera un vector entero aleatorio ascendente de dos
posiciones con un rango entre 30y 70, equivalente a los porcentajes de tiempo
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para ingreso y salida. La figura 3.19 presenta el diagrama de asignacion de
usuarios y tiempo aleatorio, este corresponde a la descripcion especifica del
bloque “Usuarios Aleatorios Tiempo Aleatorio” de la figura 31.8. Como se
muestra en la figura 3.19, para obtener el nimero de usuarios aleatorios y
su tiempo de permanencia se requiere de las variables de entrada “Numero
de Usuarios Seriales” y “Tiempo de simulacion”, respectivamente. Ademas,
se requieren tres constantes: valor minimo de usuarios aleatorios —el cual
corresponde a uno (1)— y limites de tiempo para ingreso (30%) y salida
(70%) de los usuarios aleatorios. La distribucién de probabilidad utilizada
corresponde a una distribucion uniforme (funcion randperm de Matlab).

Usuarios Aleatorios y Tiempo Aleatorio

Numero de Usuarios
eriales 4 )
(NSV) [ — Usuarios
—)([»—) > b :
max(NSU) —» 41 Aleatorios
. —O—>
Demultiplexor R
; -1 » andom Users
M' - randperm(1,max(NSU))
-
Tiempo de
Simulacion ’ § Tiempo
(ST) B oi : Aleatorio
Random Time
\0.3(ST)<randperm(ST)<0.7(ST))

Figura 3.19. Asignacion de usuarios y tiempo aleatorio.

Fuente: elaboracion propia.

3.5.2.4 Prioridad de los canales

Como se describi6 en la seccidon 3.5.2.2, la asignacion de prioridad se realiza
de acuerdo con el orden de ajuste de la informacién. Esta incluye infor-
macién asociada a la aplicacion (banda) y a la cantidad de canales. Si se
utiliza el modo convencional, el total de usuarios por cada prioridad estd en
funcion de la proporcionalidad —asignada en cada relacion porcentual de
las caracteristicas del usuario—. El Algoritmo 3 presenta la estructura para
prioridad de canales en modo convencional.
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Algoritmo 3. Prioridad de canales en modo convencional.

Modo Convencional
% Usuarios Totales Modo Convencional
If Modo Real == 0 && Modo Convencional ==
Usuarios = Numero de Usuarios Seriales
Usuarios Prioridad 1 = Porcentaje Prioridad 1 *
Usuarios
Usuarios Prioridad 2 = Porcentaje Prioridad 2 *
Usuarios
Usuarios Prioridad 3 = Porcentaje Prioridad 3 *
Usuarios
Usuarios Prioridad 4 = Porcentaje Prioridad 4 *
Usuarios
Tiempo Aleatorio = Disable
end

Para la prioridad de canales en modo real se requiere, primero, ubicar los
usuarios aleatorios y a partir de este criterio realizar la asignacion.

Ubicacion de usuarios aleatorios

Es importante diferenciar el tiempo de permanencia y la ubicacion de un
usuario aleatorio en la estructura multiusuario. Por criterio de disefio, un
usuario aleatorio solo podra ingresar cuando se supere el 30% de tiempo de
transmisioén en minutos del SU, y permanecer hasta alcanzar el 70%. La ubi-
cacion solo se analiza cuando el usuario aleatorio ingresa. Como se muestra
en la figura 3.20, un usuario aleatorio puede ubicarse al inicio, final y en una
posicion intermedia de los usuarios convencionales. La ubicacion se realiza
a través de una estructura aleatoria. Como se muestra en la figura 3.20 la
prioridad de los usuarios convencionales no se ve afectada.
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Figura 3.20. Ubicacion de usuarios aleatorios.
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Fuente: elaboracion propia.

Asignacién de prioridad

Cada usuario aleatorio debe adquirir una prioridad, la cual es asignada
segun la ubicacion y el porcentaje de usuarios de cada prioridad. Para com-
prender esta asignacion, la figura 3.21 presenta un ejemplo: se cuenta con
tres usuarios convencionales y un usuario aleatorio; el usuario aleatorio fue
ubicado entre los usuarios con prioridad 1 y prioridad 2 —como se descri-
bi6 previamente, la ubicacién fue seleccionada de forma aleatoria—. Por
las caracteristicas asignadas, 25 % de los usuarios tendran prioridad 1, 50%
tendran prioridad 2 y 25% tendran prioridad 3; por tanto, solo un usua-
rio tendra prioridad 1 (se maneja el criterio del mayor entero ya que no es
posible definir usuarios decimales), dos usuarios tendran prioridad 2 y un
usuario, prioridad 3. La seleccion de los usuarios se realiza en orden de ubi-
cacion, por ende, como describe la figura 3.21, el usuario aleatorio adquiere
las caracteristicas de los usuarios con prioridad 2.
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Porcentaje = 25%
Usuarios = 0.25(4)
Prioridad = 1
Requerimientos de Canales = 3
5 a Bandas Multicanal = 3
Porcentaje = 50% Numero de Usuarios = 3

Usuarios = 0.5(4)

Prioridad = 2 Usuario Aleatorios = 1
O D D Requerimientos de Canales =2 TOtaI UsuariOS _4

Porcentaje = 25%

Usuarios = 0.25(4)

Prioridad = 3

Requerimientos de Canales = 4

Figura 3.21. Asignacion de prioridad.
Fuente: elaboracion propia.

3.5.2.5 Algoritmo de bisqueda multicanal

Es el encargado del analisis de movilidad espectral. Segin el vector de
posiciones el algoritmo ranking realiza saltos de columna en la matriz de dis-
ponibilidad hasta encontrar un canal disponible; al encontrarlo, realiza un
cambio de fila (instante de tiempo) en la matriz de disponibilidad. Los saltos
de columna, de fila; el tiempo y la disponibilidad son almacenados en un
vector y retroalimentados, al finalizar la simulacion, en una base de datos.

El proceso es equivalente para un usuario con un canal y para multiples
usuarios con multiples canales. La diferencia mas relevante se presenta en
el cambio de fila (instante de tiempo), la cual, para multiples usuarios, solo
se realiza cuando todos los usuarios encuentran oportunidades espectrales
o cuando los requerimientos de canales son superiores a la disponibilidad.

La figura 3.22 presenta dos escenarios de movilidad espectral para mul-
tiples usuarios en modo convencional, o en modo real si la transmision en
minutos del SU es inferior a 30 % o superior a 70 %. Se cuenta con tres usua-
rios, para este caso particular. La prioridad 2 tiene un porcentaje de 50% y la
prioridad 1y 3 de 25%. Evidentemente, en nimeros enteros, la asignacion
de usuarios para cada prioridad no es posible; el modulo se reconfigura y
asigna a cada prioridad un porcentaje de 33 %, por tanto, cada prioridad
tendra un solo usuario. El objetivo del algoritmo de busqueda es encontrar
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las oportunidades espectrales (canales disponibles) de acuerdo con el vector
ranking, donde, el valor mds bajo en la posiciéon corresponde a los canales
con mayor AP.

En el primer escenario (figura 3.22) el usuario con prioridad 1 y requeri-
miento de 3 canales, encuentra oportunidades espectrales en las posiciones
del vector ranking [1 2 3]. El usuario con prioridad 2 y con requerimiento
de 2 canales, encuentra oportunidades espectrales en las posiciones del vec-
tor ranking [5 6] —no es posible ocupar la posicion [4] ya que el canal se
encuentra ocupado por un PU—; adicionalmente, el algoritmo no realiza
la busqueda en los canales [1 2 3] —previamente asignados a usuarios con
prioridad 1—, el mddulo se retroalimenta e informa que estos canales no es-
tan disponibles. Finalmente, el usuario con prioridad 3 y con requerimiento
de 4 canales encuentra oportunidades espectrales en las posiciones del vec-
tor ranking [7 9 10 11] —no es posible ocupar la posicion [4] ya que el canal
se encuentra ocupado por un PU—. Como todos los usuarios encuentran
oportunidades espectrales para todos los requerimientos de canales, el algo-
ritmo realiza un salto de fila e inicia nuevamente la btisqueda.

En el segundo escenario (figura 3.22) los requerimientos de canales son
superiores a la disponibilidad. Al finalizar la basqueda, los usuarios con
prioridad 3 y requerimiento de 4 canales encuentran solamente dos oportuni-
dades espectrales de las 4 que requieren; para este caso particular, el modulo
informa sobre el resultado, salta de fila e inicia nuevamente la busqueda.

Los saltos de columna, de fila; el tiempo y la disponibilidad por usuario
son almacenados en un vector y retroalimentados al finalizar la simulacidn
en una base de datos.

La figura 3.23 presenta un escenario de movilidad espectral para mul-
tiples usuarios en modo real. Se cuenta con tres usuarios convencionales
y uno aleatorio que adquiere las caracteristicas de la prioridad 2 (ejemplo
descrito en la asignacién de prioridades de la seccion 3.5.2.4), para este caso
particular, la prioridad 2 tiene un porcentaje de 50% vy, la prioridad 1 y 3 de
25%, por tanto, la prioridad 2 tendrd dos usuarios y la prioridad 1 y 3 un
solo usuario.
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O Porcentaje = 25%
Usuarios = 0.25(4)
Prioridad = 1
Requerimientos de Canales = 3
O Porcentaje = 50% V
Usuarios = 0.5(4) : f
Prioridad = 2 % Canal no Disponible
()] deCanoles =3 /
O Porcentaje = 25%
Usuarios = 0.25(4) . .
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Time < 0.3(Time) V V
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Ranking=[ 7 3 9 12 2 1 8 5 10 4 11 6 ]

Figura 3.22. Movilidad espectral para multiples usuarios en modo convencional.
Fuente: elaboracion propia.

De acuerdo con el escenario descrito en la figura 3.23, el usuario con prio-
ridad 1 y con requerimiento de 3 canales encuentra oportunidades espectra-
les en las posiciones del vector ranking [1 2 3]. Para la prioridad 2 hay dos
usuarios con requerimiento de dos canales por usuario, el aleatorio encuen-
tra oportunidades espectrales en las posiciones del vector ranking [4 6], y el
convencional en las posiciones del vector ranking [7 8], no es posible ocupar
la posicion [5] ya que el canal se encuentra ocupado por un PU. Finalmente,
el usuario con prioridad 3 y con requerimiento de cuatro canales, encuentra
oportunidades espectrales para solo tres de los cuatro canales en las posicio-
nes del vector ranking [9 10 11], el modulo informa sobre el resultado, salta
de fila e inicia nuevamente la bisqueda.

Los saltos de columna y fila, el tiempo y la disponibilidad por usuario son
almacenados en un vector y retroalimentados al finalizar la simulacion en
una base de datos.
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Figura 3.23. Movilidad espectral para multiples usuarios en modo real.

Fuente: elaboracion propia.

3.5.3 Mddulo predictivo

Una alternativa para reducir los niveles de interferencia entre PU y SU es
predecir el comportamiento del PU o las oportunidades espectrales. Los
algoritmos de prediccidén pronostican la llegada del PU, minimizando los ni-
veles de interferencia al realizar el cambio de canal antes de su arribo. Estas
estrategias son ampliamente utilizadas en aplicaciones con alta sensibilidad
al retardo. Adicionalmente, reducen la degradacion de la calidad del canal y
mejoran el proceso de asignacion de canales.

El proposito de este mddulo es incluir estrategias y métricas para la pre-
diccién del comportamiento del usuario principal. La figura 3.24 presenta la
estructura del modulo predictivo, que requiere informacioén de los médulos
colaborativo y multiusuario. Como modelos de prediccion se utilizan las
técnicas Naive Bayes y Regresion logistica.
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Figura 3.24. Estructura del médulo predictivo.
Fuente: elaboracion propia.

A continuacién, se presenta la descripcion metodoldgica de los modelos
Regresion logistica y Naive Bayes.

Regresion logistica

La regresion logistica es un método estadistico que permite estimar la pro-
babilidad de una variable cualitativa binaria en funcién de una variable
cuantitativa. La principal ventaja es que puede utilizar diversas variables
explicativas al mismo tiempo. Aunque parezca trivial, esta caracteristica es
importante debido al gran interés en conocer el impacto de estas variables
sobre la variable de respuesta.

Una regresion logistica modelara la probabilidad del resultado en funcion
de las caracteristicas individuales y esta dada por la ecuacion (3.1).

T
log E =B+ Bx +Bx, +-B,x, 3.1

Donde = indica la probabilidad de un evento, § son los coeficientes de re-
gresion asociados con el grupo de referencia y Xi las variables explicativas.
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Para aplicaciones con una alta sensibilidad al retardo, el esquema genera
una matriz de prediccion de disponibilidad que requiere variables explicati-
vas que estén asociadas y se puedan analizar de forma simultanea. Por tanto,
se definieron como variables explicativas: AP, ETA, PSINR. De acuerdo
con las variables definidas, la ecuacion (3.1) se expresa en términos de la
ecuacion (3.2).
log[é}ﬁo +B,(AP)+ B, (ETA)+ 5, (PSINR) (3.2)

El objetivo del algoritmo es utilizar una matriz dicotomica de entrenamiento
para implementar una funcién h:X->Y tal que h(x) sea un predictor eficaz de

ocupacion espectral respecto a los valores. La figura 3.25 muestra el proceso
de entrenamiento.

\ 4
=

Y

Datos de entrenamiento Algoritmo de aprendizaje

Figura 3.25. Proceso de entrenamiento de la regresion logistica.

Fuente: elaboracion propia.

Como se muestra en la figura 3.26, la estrategia propuesta contiene dos pro-
cesos: el primero, realiza el entrenamiento del modelo de prediccion con las
variables explicativas durante un periodo de tiempo establecido; el entrena-
miento estima el costo y gradiente de la estrategia de regresion, los cuales
permiten ajustar el predictor. El segundo proceso asigna la ocupacion de
cada canal de acuerdo con la prediccion, generando una matriz de disponi-
bilidad. Posteriormente, la informacién de la matriz de prediccion es toma-
da por el algoritmo de busqueda del modelo multiusuario para obtener las
métricas de desempefio.
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Figura 3.26. Regresion logistica para la prediccion de disponibilidad.

Fuente: elaboracion propia.

Naive Bayes

Una de las principales consideraciones para la selecciéon de modelos de
prediccion es el manejo de multiples clases o caracteristicas con y sin correla-
cion. Un clasificador Naive Bayes supone que una caracteristica en particular
no se relaciona de ninguna manera con otra caracteristica, en general. Las
clases siempre se analizan de forma independiente. Adicionalmente, presen-
ta desempenos eficientes al operar sobre grandes conjuntos de datos.

El teorema de Bayes permite determinar la probabilidad posteriori
P(c|x), P(c), P(x), P(x|c) —ecuacion (3.3)—.
_ P(xlo)P(c)

P(clx) P

(3.3)

Donde:
P (x |C) es la probabilidad del predictor dada la clase c (c, objetivo).

P (C|X ) es la probabilidad a posteriori de la clase c (c, objetivo) dado el
predictor (x, atributos).

P(c) es la probabilidad previa de la clase.
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P(x) es la probabilidad del predictor.

Considerando el teorema de Naive Bayes se puede afirmar que las variables
independientes (o predictores en el caso especifico) serian la AP y el ETA,
mientras que la variable dependiente serd la disponibilidad del canal.

Considerando las variables independientes AP y ETA, como se describio
en parrafos anteriores, asi como la variable o clase dependiente —en el caso
especifico la disponibilidad del canal es lo que se indicard como occupied o
available— se obtienen las ecuaciones (3.4), (3.5) y (3.6).

P(occupied)- P(ETA | ocuppied)- P(AP | occupied) (3.4)

posterior(occupied ) = '
evidence

P(available)- P(ETA| available)- P(AP| available)
evidence (3.5

posterior (available) =

evidence =k +1t
k = P(occupied)- P(ETA| ocuppied)- P(AP | occupied) (3.6)
t = P(available)- P(ETA | available )- P(AP | available)

La estrategia propuesta (figura 3.27) contiene dos procesos: el primero, reali-
za el entrenamiento del modelo de prediccion utilizando las variables de AP
y el tiempo promedio de disponibilidad. Durante un periodo de tiempo esta-
blecido en el proceso de entrenamiento, cada fila de datos se clasifica en una
de las clases (ocupada, disponible). El segundo proceso asigna la ocupacion
de cada canal de acuerdo con la prediccion, generando una matriz de dispo-
nibilidad donde los estados del canal estan definidos por “1” (disponible) y
“0” (ocupado). Posteriormente, la informacion de la matriz de prediccion es
tomada por el algoritmo de busqueda del modelo multiusuario para obtener
las métricas de desempefio.
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Figura 3.27. Naive Bayes para la prediccion de disponibilidad.

Fuente: elaboracion propia.

3.9.4 Deep Learning

El Deep Learning es un método que emula el aprendizaje humano. La ma-
yoria de estos métodos utilizan arquitecturas de redes neuronales que, a
diferencias de las estructuras tradicionales, contienen multiples capas ocul-
tas (redes profundas) para aprender diferentes caracteristicas.

Los modelos Deep Learning utilizan grandes volumenes de datos permi-
tiendo extraer caracteristicas directamente de estos —no es necesario realizar
o implementar metodologias para sacarlos manualmente—. Durante el pro-
ceso de entrenamiento los algoritmos de aprendizaje identifican el conjunto
correcto de caracteristicas; lo hacen de forma automatica, sin necesidad de
procesar los datos.

El Deep Learning se realiza jerarquicamente. Las capas inferiores caracte-
rizan estructuras basicas, mientras que las capas de nivel superior analizan
estructuras mas complejas. La red neuronal profunda mas popular es la
convolucional (CNN o ConvNet).
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Las tres formas més comunes de aplicar una red profunda para la clasifi-
cacion de objetos son entrenando desde cero, aprendizaje de transferencia y
extraccion de caracteristicas.

Entrenando desde cero: Se reune un conjunto de datos etiquetados muy
grande y se disefia una arquitectura de red que aprenderd las caracteristicas
y el modelo desde cero.

Aprendizaje de transferencia: Proceso de ajustar el modelo de redes pre-
viamente entrenadas, como AlexNet o GoogleNet. Esta estrategia solo
requiere ajustar los datos de entrada y posteriormente entrega nuevas clases.
Una caracteristica adicional de este tipo de estructuras es la reduccion en los
tiempos de procesamiento.

Extraccion de caracteristicas: Las capas de las redes neuronales profun-
das aprenden ciertas caracteristicas de las imagenes, las cuales se pueden se
extraer en cualquier momento. Estas caracteristicas se pueden utilizar para
el entrenamiento de clasificadores basados en estrategia de machine learning
como SVM.

3.5.4.1 Estructura del modelo implementado

La metodologia utilizando Deep Learning consiste en implementar el apren-
dizaje de transferencia para la extraccién de caracteristicas. El objetivo es
utilizar una red neuronal convolucional para extraer de una de sus capas
un conjunto acertado de caracteristicas y, posteriormente, a través de estas
caracteristicas, entrenar una maquina de soporte vectorial que permita desa-
rrollar un proceso de clasificacion.

La figura 3.28 presenta las variables de entrada y salida descritas de for-
ma general, adicional a la matriz entregada por el modulo colaborativo.
Requiere de cuatro variables adicionales: el nivel de threshold, nimero de
busquedas para el nivel medio, tamafio de la segmentacién para las figuras y
tipo de division. Como salida el modelo entrega un vector de puntuaciones
para cada canal.
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Figura 3.28. Variables de entrada y salida modelo de aprendizaje
de transferencia para la extraccion de caracteristicas.

Fuente: elaboracion propia.

Es importante resaltar que los datos se analizan directamente de la matriz de
potencia; la evaluacion de acuerdo con la matriz de disponibilidad se tendra
en cuenta solo para determinar los indicadores basados en QoS. La estrate-
gia consiste en implementar un clasificador de trafico. La tabla 3.10 presenta
los niveles de trafico a clasificar y su respectiva descripcion.

Tabla 3.10. Descripcion de los niveles de traficos.

Nivel de trafico Descripcion

Escenario con oportunidades espectrales limitadas, el nimero
Alto
de PU es alto.

Escenario con altas oportunidades espectrales, el nimero de
PU es bajo, con tendencia a cero.

Bajo

Escenario con oportunidades espectrales intermedias, el
Medio numero de PU no es alto ni bajo, lo que permite que puedan
interactuar en un mismo espacio SU y PU.

Fuente: elaboracion propia.

Por el alto rendimiento que tienen las redes neuronales profundas en el re-
conocimiento de imagenes el modelo propuesto clasifica un conjunto de
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imagenes asociadas a los niveles de potencia. Las imagenes son obtenidas a
partir de la conversién a RGB de la base de datos. Para el entrenamiento de
la red neuronal se utilizan figuras con multiples variaciones.

La figura 3.29 presenta la estructura general del modelo desarrollado. Como
se menciono previamente, el objetivo es clasificar un conjunto de imagenes
asociadas a los niveles de potencia. La primera tarea del modelo consiste
en realizar la conversion de la matriz de potencia a figuras, posteriormen-
te, estas figuras, mediante criterio de validacion cruzada, son tomadas para
entrenamiento y validacion de la estrategia a implementar. Adicionalmente
a las figuras obtenidas de la matriz de potencia se genera aleatoriamente un
conjunto de figuras con otro tipo de comportamientos para asegurar un me-
jor proceso de entrenamiento. Las figuras tomadas para el entrenamiento son
cargadas a la red AlexNet, y mediante el foolbox de Deep Learning de Matlab

se calculan las activaciones de las capas de aprendizaje de la red profunda.

Busqueda de Nivel
Medio
Segmentacion
Figuras

Division Figuras

! S

Nueva Zona

S
A ——
.{ }. Validacion Nueva
=~ Z S
Collaborative ona
Module Medio
Deep Figure Validacion
Cognitive Deep SVM o )
jo
Matriz de Radio
Potencia Aleatoria o
Threshold 3
—

Extraccion de Caracteristicas

Entrenamiento

Figura 3.29. Diagrama de bloques general para el modelo basado en Deep Learning.

Fuente: elaboracion propia.

Las caracteristicas se extraen mediante las activaciones. Teniendo en cuenta
la estructura jerarquica de las capas, se toma la capa de nivel superior fc7 de
la red AlexNet; el criterio de seleccion se realiza debido a que las capas de
nivel superior permiten analizan estructuras mas complejas. Con la infor-
macion de la capa se entrena una SVM; como técnica de clasificacion para
verificar el funcionamiento del clasificador se utilizan las figuras de prueba,
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previamente obtenidas en la validacion cruzada. Posteriormente, estas seran
reemplazadas por la figura de la matriz de potencia entregada por el médulo
colaborativo del simulador.

El clasificador identificara las figuras con trafico alto, medio y bajo; las fi-
guras con clasificaciéon de trafico alta seran almacenadas, sin analizar. En el
proceso para determinar el ranking final, las figuras de trafico medio tendran
un procesamiento adicional antes de ingresar al médulo de ranking —por la
naturaleza asignada a estas figuras y con el objetivo de no perder posibles
oportunidades espectrales, se filtran para identificar los segmentos locales
que presenten traficos bajos—. Para realizar este filtro, cada una de las figu-
ras de trafico medio serd dividida en un conjunto de subfiguras; la division,
al igual que el numero de busquedas que se realicen, es un parametro que se
ajusta de acuerdo con los criterios de la matriz de potencia.

Finalmente, después del filtro aplicado al trafico medio y de descartar el
trafico alto, la informacion, incluyendo la clasificacion de trafico bajo sera
entregada al bloque final del modelo; este tomard los datos de tiempo y fre-
cuencia para establecer el ranking de operacion.

3.5.4.2 Generacion de figuras

La generacién de figuras se realiza en el bloque Deep Figure Cognitive Radio
de la figura 3.29, el cual estd dividido en dos procesos: el primero llamado
“Potencia — Base de datos” convierte la base de datos de potencia espectral a
una matriz RGB. La conversidn se realiza a través de un ajuste lineal: el al-
goritmo determina los valores maximos y minimos de potencia del rango de
conversiéon —estos valores son tomados como base para un ajuste por uni-
dad de los demas valores—; se asume el origen como un punto de inflexioén,
y este valor corresponde al threshold ajustado por el usuario. Se selecciona
la escala en verde para trafico bajo y la escala en rojo para trafico alto. La
figura 3.30 presenta el modelo lineal implementado y las graficas obtenidas
para “Potencia — Base de datos”.

El segundo proceso del bloque se llama “Potencia — Aleatorio” se encar-
ga de generar un conjunto de figuras aleatorias para mejorar el proceso de
entrenamiento. Sobre este bloque el usuario no tiene control, sin embargo,
es indispensable para mejorar las caracteristicas que se extraen de la red
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neuronal profunda. Solo se requiere establecer un rango de threshold; el blo-
que realiza el ajuste lineal y gréfico.

Con las graficas obtenidas en “Potencia — Base de datos” y “Potencia—
Aleatorio”, se utiliza la metodologia de validacion cruzada para entrena-
miento y validacién del modelo.

Deep Figure Cognitive Radio

7

J

Potencia - Aleatorio

Threshold min

Validacion
00 0]
max(Threshold)  Threshold

[0 0 0]

Threshold max

Entrenamiento

max(Threshold)  Threshold min(Threshold)

Potencia - Base de Datos

[0 0 0]
o -- —

Entrenamiento

Threshold — >

min(Power)
max(Power)

min(Threshold)

Base de
Datos

max(Threshold)  Threshold min(Threshold)

Figura 3.30. Generacion de figuras para la matriz de potencia.
Fuente: elaboracion propia.

3.5.4.3 Red neuronal convolucional AlexNet

AlexNet es una red neuronal convolucional profunda que ha sido pre-
entrenada con mas de un millén de imagenes, lo cual le permite generar
caracteristicas relevantes para una amplia gama de imagenes.

La figura 3.31 presenta la arquitectura de la red, que contiene ocho capas;
las primeras cinco son convolucionales y las tres capas restantes estan total-
mente conectadas. La salida de la ultima capa produce una distribuciéon de
1000 etiquetas de clases. La red maximiza el objetivo de regresion logistica
multinomial. Los nucleos de la segunda, cuarta y quinta capas convolucio-
nales estan conectados solo a los mapas de Kernel en la capa anterior.
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La primera capa convolucional filtra la imagen de entrada. La segunda,
toma como entrada la salida de la primera capa y filtra con 256 nucleos. Las
capas convolucionales tercera, cuarta y quinta estan conectadas entre si sin
cualquier agrupacién intermedia o capas de normalizacién. La sexta capa
convolucional tiene 384 nucleos conectados a las salidas de la segunda capa
convolucional. La séptima capa convolucional tiene 384 nucleos, y la octava
capa convolucional tiene 256 nucleos. Las capas completamente conectadas
tienen 4096 neuronas cada una (Krizhevsky et al., 2012).
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,; 128 1
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» Q’ 1 ;. 3 Q’ i} 3 > = >
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Max 128 Max pooling 204 2048
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Figura 3.31. Arquitectura red neuronal convolucional AlexNet.

Fuente: elaboracion propia.

Para obtener las caracteristicas de entrenamiento y activacion de las capas
de la red AlexNet utilizando Matlab, se requiere establecer el tipo de red y
realizar la respectiva instalacion de la libreria, disponible en la pagina web
de Mathworks. Adicionalmente, se debe seleccionar la capa de interés y las
respectivas imagenes. La figura 3.32 presenta la estructura de las variables
de entrada y salida.

Entrenamiento

Red Extraccion de Caracteristicas

Capas

Figura 3.32. Entradas y salidas red neuronal convolucional AlexNet.

Fuente: elaboracion propia.
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3.5.4.4 Maquina de soporte vectorial

La técnica de machine learning utilizada para la clasificacion de las imagenes
es la SVM usa tres tipos de clasificadores, por tanto, se requiere una SVM
multiclase. El bloque asociado se presenta en la figura 3.33.

De acuerdo con los criterios para técnicas de clasificacion, los pardmetros
de entrada son las imagenes de entrenamiento y de validacion; las imagenes
para el proceso de validacion corresponden al ajuste realizado a través de la
técnica de validacion cruzada —estas imagenes seran las entregadas por el
modulo colaborativo—. Las salidas corresponden a la matriz de confusion,
herramienta indispensable para determinar el desempeno del algoritmo y la
clasificacion de las imagenes.

SVM Multiclase Alto

\/

\
\\ ,, .
Extraccion de N e Clasificador Bajo
Caracteristicas ) N
X
,' \ Matriz de Confusion
h ’ ' - Medio
Se-a - pa \\ O ’

Validacion / :‘--\ —>
’ ==
’ \, H
Vi \ g2
N F
\

Nueva Zona

Figura 3.33. Maquina de soporte vectorial multiclase para clasificacion de imagenes.

Fuente: elaboracion propia.

La figura 3.34 presenta un ejemplo para la clasificacion de la figura segun el
tipo de trafico. Como se puede observar, esta imagen tiene zonas con niveles
de trafico alto (color rojo) y niveles de trafico bajo (color verde).
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Tréfico Bajo Tréfico Bajo

Tréfico Bajo

Figura 3.34. Ejemplo de clasificacion para trafico alto y trafico bajo.

Fuente: elaboracion propia.

Como se muestra en la figura 3.33, se presenta una retroalimentacion. Este
proceso esta directamente relacionado con las figuras de clasificacidén para
trafico medio y equivalen a escenarios con oportunidades espectrales inter-
medias. La figura 3.35 muestra un ejemplo para este tipo de trafico: a mayor
escala cuentan con zonas de trafico bajo; el trabajo del bloque retroalimenta-
do es ajustar la escala para obtener la informacién de las zonas color verde.

Figura 3.35. Figuras con oportunidades espectrales intermedias.

Fuente: elaboracion propia.
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3.5.4.5 Generacion de nueva zona

Las figuras clasificadas con trafico medio contaran con un procesamiento
adicional que genera una nueva zona de andlisis. El objetivo es poder realizar
un conjunto de segmentaciones sobre la figura principal, de tal manera que
se pueda obtener la informacién asociada a las zonas con trafico bajo y alto.

La figura 3.36 presenta una descripcion grafica de la segmentacion que
se realiza a las figuras de trafico medio. Se requiere de cuatro parametros
de entrada; el primero corresponde a la figura clasificada por la SVM que
esta siendo retroalimentada, los parametros restantes son el tipo de division,
namero de busquedas nivel medio a realizar y nimero de segmentaciones
para la figura.

Division: Fila

Validacion

Medio Nueva Zona

Division

Busqueda de
Nivel Medio

Division: Columna

Segmentacion
de Figuras

Figura 3.36. Procesamiento para segmentar las figuras de trafico medio.

Fuente: elaboracion propia.
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En la tabla 3.11 se presenta la descripcidén de los parametros que deben ser
ajustados para la generacion de la nueva zona cuando se presentan escena-
rios de trafico medio.

Tabla 3.11. Descripcion de los parametros para la generacion de la nueva zona.

Row: Se divide la figura en dos columnas y la segmentacion se
completa a través de multiples divisiones por filas.

Division .. -
Column: Se divide la figura en dos filas y la segmentacién se com-
pleta a través de multiples divisiones por filas.

Segmentacion Numero de partes en que la figura sera segmentada.

El resultado de segmentar una figura no necesariamente permite
obtener la informacién de las zonas con trafico bajo y alto. La
probabilidad de obtener una nueva clasificaciéon de trafico medio
existe, por tanto, es posible realizar una nueva segmentacion a
una figura resultado de un proceso de segmentacién. Este proceso
Busqueda de nivel se puede realizar un ntimero finitos de veces, hasta asegurar que
medio no existan zonas con trafico medio, sin embargo, este proceso es
computacionalmente alto y no necesariamente eficiente, por eso,
corresponde a una variable de entrada y no se realiza de forma
automatica. De acuerdo con cada caso se puede decidir el numero
de veces que se va a realizar la busqueda de trafico medio en una
figura.

Fuente: elaboracion propia.

La salida del bloque corresponde a las figuras resultados del proceso de
segmentacion, la informacion es entregada al bloque “Deep SVM Cognitive
Radio” para realizar la nueva clasificacion. Este proceso se realiza el numero
de veces ajustado en “Busqueda de nivel medio”.

3.5.4.6 Ranking

El resultado del filtro realizado a las figuras con trafico medio puede generar
dos escenarios para el bloque ranking. El primero corresponde a zonas sin
trafico medio y el segundo a zonas con trafico medio y bajo. El primer caso
es un escenario con menor probabilidad de ocurrencia; el segundo es mas
realista, por tanto, a diferencia del trafico alto, no se descarta.

La informacién de tiempo y frecuencia de las figuras con trafico bajo
y medio se entregan al bloque ranking. Alli se realiza una clasificacion de
las figuras de acuerdo con el rango de frecuencias y tiempo, se comparan y
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finalmente se asignan pesos a las zonas. La figura 3.37 presenta la estructura

del bloque ranking.
4 N
. e N
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»~
Bajo
A
Ll
Rango de
Frecuencia
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Clasificador #1 *Contador

—)( )— Tiempo *Comparador —C >—) Ranking
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Figura 3.37. Ranking para el modelo de aprendizaje de transferencia utilizando Deep Learning.

Fuente: elaboracion propia.

3.6 Otros algoritmos

Con el objetivo de realizar una evaluacion comparativa del modelo propues-
to, se implementan los algoritmos multicriterio: FFAHP, SAW, TOPSIS,
VIKOR. Esta seleccién se realizd teniendo en cuenta que los métodos
MCDM son una herramienta matematica adecuada para modelar el proceso
asignaciodn espectral, por tanto, han sido ampliamente utilizados en trabajos
de investigacion (Lahby et al., 2011; Stevens et al., 2008; Yang y Wu, 2008;
Yang y Tseng, 2013; Zapata et al., 2012). SAW (Hernandez et al., 2015c;
Zhang, 2004); TOPSIS (Hernandez et al., 2015f; Zhang, 2004), VIKOR
(Paez et al., 2015; Stevens et al., 2012) y FFAHP (Hernandez et al., 2016a).

Dado que los métodos FFAHP, SAW, TOPSIS y VIKOR se explicaron en
el segundo capitulo, en este exponemos la estructura de programacién imple-
mentada. El Algoritmo 4 presenta las variables de entrada, salida y la estruc-
tura para FFAHP; el Algoritmo 5 para SAW, el Algoritmo 6 para TOPSIS y,
finalmente, el Algoritmo 7 para VIKOR.
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Algoritmo 4. Feedback Fuzzy Analytical Hierarchical Process (FFAHP).

W Puntuacion asignada a AP, ETA, ASINR y ABW.
AP Probabilidad de disponibilidad.
ETA Tiempo medio de disponibilidad.
Variables de - - - - -
entrada ASINR Promedio de relacion sefial a ruido mas interferencia.
ABW Ancho de banda promedio.
Rankine L Canales ordenados de forma descendente de acuerdo
anking_Last con la primera puntuacion (Sin retroalimentacién).
ScoreF Puntuacion asignada a cada canal.
Variables de
salida Ranki Canales ordenados de forma descendente de acuerdo
anking con el ScoreF (Con retroalimentacién).
Average = [ AP ; ETA ; ASINR ; ABW ];
Ranking = W*Average;
[ ~, Columnas] = size( Ranking );
%% Algoritmo FFAHP
if Feedback == 0

%$Vector Ranking Inicial

ScoreF

= sort( Ranking , ‘descend’ ); %0Ordena de manera
descendente
for 1 = 1 Columnas
[Posicion]=find( Ranking == ScoreF (i) );
RankingF (1 , i)= Posicion;
end
elseif Feedback == 1
%$Vector Ranking Actualizado
Ranking = 0.6*Ranking + 0.4* Ranking Last;
ScoreF = sort( Ranking , ‘descend’ ) ; %Ordena de manera
descendente
for i =1 Columnas
[Posicion] = find( Ranking == ScoreF (i) );
RankingF (1 , i) = Posicion;
end
end
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Algoritmo 5. Simple Additive Weighting (SAW)

\%% Puntuacion asignada a AP, ETA, ASINR y ABW.
AP Probabilidad de disponibilidad.
Variables de ETA Tiempo medio de disponibilidad.
entrada ASINR Promedio de relacion sefial a ruido mas
interferencia.
ABW Ancho de banda promedio.
. ScoreF Puntuacion asignada a cada canal.
Z;gzbles de Ranking Canales ordenados de forma descendente de
acuerdo con el ScoreF.
Average = [ AP ; ETA ; ASINR ; ABW ];
%% Algoritmo SAW
[Row , ~] = size( Average );

for £ = 1 : Row

X m = max( Average(f , :) );

r(f , :) = Average(f , :) ./ X m;
end

Ranking = W*r;

[ ~, Columnas] = size( Ranking );
ScoreF = sort( Ranking , ‘descend’ ) ; %Ordena de manera
descendente

%$Vector Ranking Inicial

for i = 1 : Columnas
[Posicion] = find( Ranking == ScoreF (i) );
RankingF (1 , i) = Posicion;

end

Algoritmo 6. Technique for order preference by similarity to ideal solution (TOPSIS).

W Puntuacion asignada a AP, ETA, ASINR y ABW.
AP Probabilidad de disponibilidad.
Variables de ETA Tiempo medio de disponibilidad.
entrada ASINR Promedio de relacién sefial a ruido mas
interferencia.
ABW Ancho de banda promedio.
bl ScoreF Puntuacion asignada a cada canal.
Val.‘lab es de . Canales ordenados de forma descendente de
salida Ranking
acuerdo con el ScoreF.
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Average = [ AP ; ETA ; ASINR ; ABW ];

%% Algoritmo TOPSIS

[Row , Column] = size( Average );

BC = [0 0 0 0]; % 1l: Parametro de costo-0: Parametro de
beneficio

% 1. Normalizar la Matriz de Decisién
for £f = 1 : Row

b = sgrt( sum( Average(f , :) . ~ 2 ) );
for ¢ = 1 : Column
r(f , ¢) = Average(f , c) / b;
end
end
% 2. Pesos Ponderados
for £ = 1 : Column
V((1 : Row) , ¢c) = r(: , c).*(W");
end

% 3: Solucién ideal y solucién ideal negativa
for £ = 1 : Row
if B C(1 , f) ==

al = max( V(f , :) ); a2 = min( V(£ , =) );
else
al = min( V(f , :) ); a2 = max( V(£ , =) );
end
Al(1 , £f) = al; A2(1 , f) = a2;

end
% 4: Medida de separacién

for ¢ = 1 : Column
S1(1 , ¢c) = sgrt( sum( ( V(:,c)-Al" ) .~ 2 ) );
S2(1 , c) = sqgrt( sum( ( V(: , c)-A2" ) ~N20) )
end
% 5: Relativa cercania a la solucidén ideal
for ¢ = 1 : Column
Ranking(l , c) = S2(1 , ¢) / ( S1(1 , c) + S2(1 , c) );
end
[ ~, Columnas] = size( Ranking );
ScoreF = sort( Ranking , ‘descend’ ) ; %0Ordena de manera
descendente
%$Vector Ranking Inicial
for 1 = 1 : Columnas
[Posicion] = find( Ranking == ScoreF (i) );
RankingF (1 , i) = Posicion;
end
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Algoritmo 7. Multi-Criteria Optimization and Compromise Solution (VIKOR).

W Puntuacion asignada a AP, ETA, ASINR y
ABW.
. AP Probabilidad de disponibilidad.
Variables de ETA Tiempo medio de disponibilidad.
entrada - - - - -
ASINR Promedlo Qe relacion sefial a ruido mas
interferencia.
ABW Ancho de banda promedio.
ScoreF Puntuacion asignada a cada canal.
Variables de
salida Ranking Canales ordenados de forma descendente de
acuerdo con el ScoreF.
Average = [ AP ; ETA ; ASINR ; ABW ];
%% Algoritmo VIKOR
[Row , Column] = size( Average );
BC = [0 0 0 0]; % 1l: Parametro de costo-0: Parametro de
beneficio
% 1. Normalizar la Matriz de Decisién
for £ =1 Row
if B C(1 , f) ==
fl = max( Average(f , :) ); f2 = min( Average (f
rot) )i
else
fl = min( Average(f , :) ); f2 = max( Average (f
rot) )i
end
F1(1 , £) = f£f1; F2(1 , £) = £2;
end
% 2. Calcula los valores Si y Ri
for £ =1 Column
for i =1 row
s(1 , 1) ( W(i) * ( ( Fl(i)-Average(i , J) ) / ( Fl(i)-
F2(1) ) ) )3
end
S(1 , j) = sum(s); R(1 , j) = max(s);
end
% 3: Calcula los valores Q (Q = Ranking)
S1 = min(S); S2 = max(S);
Rl = min(R); R2 = max(R);
Gamma = 0.5;
%Step 5: relative closeness to the ideal solution
for ¢ =1 column
Ranking(l , ¢) = S2(1 , ¢) / ( S1(1 , c) + S2( 1, ¢c) );
end
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[ ~, Columnas] = size( Ranking );
ScoreF = sort( Ranking , ‘descend’ ) ; %0Ordena de manera
descendente
%$Vector Ranking Inicial
for i = 1 : Columnas
[Posicion] = find( Ranking == ScoreF (i) );
RankingF (1 , i) = Posicion;
end

3.7 Criterios de decision

Ahora, cada algoritmo seleccionado depende de los criterios de decision que
se seleccionen y de sus correspondientes valores. Para esta investigacion se se-
leccionaron cuatro criterios de decision: AP, ETA, SINR y BW, debido a que
era posible determinar sus valores a partir de los datos de ocupacion espectral
experimentales. También se decidié que cada uno de los cuatro algoritmos de
decision espectral trabajen con los mismos cuatro criterios de decision.

La variable AP corresponde al analisis del ciclo de trabajo normalizado
de cada una de las 500 oportunidades espectrales potenciales. Por tanto, el
resultado de AP es un vector de 1x500, donde cada elemento es equivalente
al promedio de la correspondiente columna de la matriz de disponibilidad
de entrenamiento para LT o HT.

La variable ETA corresponde al tiempo de disponibilidad promedio de
cada canal. Primero se calculan todos los periodos en que cada canal estuvo
disponible de forma continua y, luego, se toma el promedio sobre dichos pe-
riodos para cada canal. El resultado de ETA también es un vector de 1x500
para la matriz de disponibilidad de entrenamiento LT o HT.

La variable SINR corresponde al promedio de la diferencia entre la po-
tencia de la sefial y el piso de ruido promedio. Primero, para cada elemento
de la matriz disponibilidad de entrenamiento LT o HT, diferente de cero, se
realiza la diferencia entre el elemento que tiene la misma posicioén en la ma-
triz de potencia de entrenamiento LT o HT y el valor promedio del piso de
ruido; el resultado de la diferencia se almacena en la misma posicién de una
matriz temporal denominada matriz de entrenamiento SINR-LT o SINR-
HT. Segundo, se calcula el valor promedio de cada columna de la matriz
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de entrenamiento SINR-LT o SINR-HT. Por tanto, el resultado de SINR
también es un vector de 1x500.

La variable BW corresponde al BW promedio de cada canal. Sin embar-
go, debido a que son canales, todos tienen el mismo BW —equivalente a
100kHz— por lo que el promedio sera siempre el mismo, restandole impor-
tancia. Con el objetivo de que la variable BW tenga incidencia en el ranking
de cada oportunidad espectral se decidio tomar, para cada potencial oportu-
nidad espectral, el BW agregado de hasta cuatro canales adyacentes, tanto a
la izquierda como a la derecha, siempre y cuando estuvieran disponibles de
forma consecutiva para formar un solo canal.

Enla banda GSM todos los canales tienen un BW de 200kHz, sin embargo,
debido a los parametros técnicos configurados en el analizador de espectro, la
campafa de medicién arrojé datos de ocupacion espectral para segmentos de
frecuencia con un BW fijo de 100kHz. Aunque se habria podido medir el pro-
medio del nivel de potencia para cada dos segmentos a fin de obtener el valor
correspondiente a cada canal GSM, se decidio trabajar con un BW de 100 kHz
para realizar un uso oportunista mas eficiente del espectro disponible.

Una vez calculados los valores de los criterios de decisiéon se normali-
zaron para que los puntajes que definen la posiciéon de las oportunidades
espectrales en el ranking siempre sean justos, tanto en la clase de aplicacion
RT como BE. La normalizacién de los valores para los cuatro criterios de
decision consistid en ajustar su rango de escala de 0 a 100; para ello se mul-
tiplicaron todos los valores de un mismo criterio por un factor de escala
equivalente a 100 dividido por el valor mas alto del criterio correspondiente.

3.8 Métricas de evaluacion

Para evaluar el desempeno de los algoritmos se determinaron ocho métricas
de evaluacion, descritas en las tablas 3.12 y 3.13. Las métricas de la tabla
3.12 se obtienen para modelos de prediccion y no prediccion, a diferencia
de las descritas en la tabla 3.13, las cuales son adicionales y exclusivas para
modelos de prediccién. En dichas tablas se presenta la sigla, significado,
descripcion y tipo de métricas de evaluacion —este dltimo campo hace re-
ferencia a si la métrica es de beneficio (entre mayor mejor) o costo (entre
menor mejor)—. La palabra promedio en las métricas de evaluacion hace
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referencia a que los resultados de estas corresponden al promedio de los

valores arrojados por varios experimentos realizados.

Tabla 3.12. Métricas utilizadas en la evaluacion de los modelos.

Tipo de métrica

Sigla Nombre Descripcion e il
Numero de Total de handoff realizados durante
AAH handoff promedio | los nueve minutos de transmision Costo
acumulado del SU.
Numero de Cantidad de handoff que el SU no
AAFH handoff falh-. pudo matepahzar porque encontrd Costo
dos promedio las respectivas oportunidades espec-
acumulado trales objetivo ocupadas.
BW promedio utilizado por el
ABW Ancho (.16 banda SU durante los 9 minutos de su Beneficio
promedio ..,
transmision.
Tiempo promedio total experimenta-
Retardo promedio | do por el SU durante la transmision
AAD acumulado de una determinada cantidad de Costo
informacion.
Throushput prome- Tasa de datos efectiva transmitida
AAT Jroughpul b por el SU durante los 9 minutos de Beneficio
dio acumulado .,
comunicacién.

Fuente: elaboracion propia.

Tabla 3.13. Métricas adicionales para la evaluacion de los modelos predictivos.

Tipo de métrica

Sigla Nombre Descripcion o iaetan
Numero de Cantidad total de handoff reactivos
handoff con inter- | realizados una vez llega el PU, duran-
AATH ferencia promedio | te el tiempo de transmision del SU. (o5
acumulado
Cantidad de handoff sin interferencia
Numero de handoff | realizados muy cerca de la llegada
AAPH | perfecto promedio | del PU, pero sin causar interferencia | Costo
acumulado a este ultimo, durante el tiempo de
transmision del SU.
Nimer de andy | opidalde e rnci
AAUH | anticipado prome- v P Costo

dio acumulado

a la llegada del PU, durante el tiempo
de transmision del SU.

Fuente: elaboracion propia.
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Con el fin de facilitar el analisis comparativo de cada algoritmo se calcula-
ron los valores relativos (en porcentaje) de cada métrica de evaluacion. Para
las métricas tipo beneficio se calculd el valor relativo (Rel) del algoritmo i
a partir del valor absoluto (Abs) y el valor maximo (Max) de la métrica de
evaluacion, como se describe en la ecuacion (3.7). Para las métricas tipo cos-
to se calcul6 el valor relativo (Rel) del algoritmo i a partir del valor absoluto
(Abs) y el valor minimo (Min) de la métrica de evaluacidén, como se describe
en la ecuacion (3.8).

X.Abs

X[ =—L—x100% (3.7)
XMax
XMin

X[ = X’Abs x100% (3-8)

7
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4. Software de simulacion desarrollado

La herramienta de simulacion propuesta fue desarrollada en (Matlab, 2020),
disefiada para permitir al usuario trabajar bajo un ambiente amigable y para-
metrizable segun las pruebas que se requieran implementar, basada en datos
de ocupacion espectral reales capturados de las bandas de frecuencia GSM
y Wi-Fi, a fin de incorporar el comportamiento real del PU en la evalua-
cion del desempefio del algoritmo de Zandoff espectral seleccionado. Consta
de una arquitectura de siete médulos que incluye un analisis colaborativo,
parametrizacion multiusuario y cuenta con siete posibles modelos, dos no
predictivos y cinco predictivos.

4.1 Interfaz herramienta de simulacion desarrollada

La figura 4.1 muestra el entorno principal de la herramienta de simulacion
denominada App MultiColl-DCRN. El software “Collaborative CRN” se
desarrollo utilizando el entorno App Designer de Matlab, disefiado para
permitir al usuario trabajar bajo un ambiente amigable y parametrizable se-
gun las pruebas que se requieran. El soffware esta divido en siete modulos
(1) Project Information, (2) Collaborative, (3) Multi-User, (4) Parameters, (5) No
Prediction, (6) Prediction, (7) Output.
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Help About

Project Information

UNIVERSIDAD DISTRITAL
FRANCISCO JOSE DE CALDAS

Collaborative Module

Project Name

Load Database v

Save Folder

Setting Collaborative

2\ Collaborative
/*\  Module
2

—

Multi-user Module

Multi-user

Collaborative Module Default

Segmentation Continuous
Setting Multi-user

Multi-user Module Default

Multichannel Bands 1

! Module

Parameters Module

Input Data

Threshold =

Availabilt
BWFed —f |
SINR
Noise Floor =] D212

Threshold
ity
BW Fixed

Bandwidth

Multichannels ==|
Default Parameters

Prediction Module
[ J

No
:;Q. Prediction

/ Prediction

Output

> L

Noise Floor

Multichannels

*:* Close

Division Row
User Percentage 100
Serial Users 1
Simulation Mode Conventional
Traffic Level

Time [minutes]

Number User 1

Setting Summary

Random User Figure

Setting Summary

% Update

Figura 4.1. Interfaz grafica App MultiColl-DCRN.
Fuente: elaboracion propia.
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4.2 Descripcion general

El software “App MultiCollDCRIN” —Application Multi-user Collaborative
Spectral Decision for Decentralized Cognitive Radio Networks— esta disefiado en
la herramienta App Designer de Matlab; conformado por 106 funciones, tres
interfaces graficas y un manual de usuario. El simulador funciona a partir de
las métricas de potencia de dos tipos de red: GSM y Wi-Fi, sin embargo, esta
desarrollado para que se puedan incluir otro tipo de métricas.

Project
Information Module

/
A
(0 29
2.9 Pardmetros
Collaborative por Defecto Multi-User
Module Module
Y
>

Parameters
Module

=

No Prediction Prediction
Module Module

Figura 4.2. Arquitectura por modulos APP MultiColl-DCRN.
Fuente: elaboracion propia.

La figura 4.2 presenta el diagrama de bloques general del simulador. Como ex-
pone la grafica, trabaja con arquitectura por modulos, descritos en la tabla 4.1.
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Tabla 4.1. Descripcion modulos APP MultiColl-DCRN.

Modulo Descripcion

Permite parametrizar la informacion basica del proyecto y el tipo

Project Information
4 e de red.
. Permite parametrizar los escenarios colaborativos, ajustando la
Collaborative . , ., . .y
cantidad y el método de seleccion de informacion.
. Permite parametrizar el nimero de usuarios seriales, usuarios
Multi-User

aleatorios y caracteristicas multicanal.

Permite parametrizar las variables threshold, Noise floor, Bandwidth
Parameters fixed y Multichannels. Adicionalmente, caracteriza el nivel de trafico
y tiempo de transmision.

Permite parametrizar algoritmos de no predicciéon: Movilidad

No Prediction .
espectral y Feature Extraction.
.. Permite parametrizar algoritmos de prediccion: Markov Chain,
Prediction . . . . . . .
Genetic Algorithm, Naive Bayes, Logistic Regression'y Time Series.
Output Permite ejecutar el caso de estudio (Run), cerrar la ventana (Close)

y actualizar una nueva interfaz (Update).

Fuente: elaboracion propia.

En las siguientes secciones se describe en detalle cada uno de los médu-
los, sus variables de entrada, salida y la respectiva metodologia. Segun el
modulo, cada variable de salida se representa por un color, al igual que las
variables internas, la informacion de entrada ajustada en la interfaz y la in-
formacion que se visualiza. La figura 4.3 presenta la convencién de colores
utilizada para la descripcion de los méddulos.

( )

Variables de salida Médulo Informacion del
Proyecto

Variables de salida Médulo Colaborativo

Variables de salida Médulo Multi-Usuario

Variables de salida Médulo Ajuste

Variables internas

Informacion de entrada (ajustada por usuario)

jUERERN

Informacion de salida (Interfaz simulador)

\ J/

Figura 4.3. Convencién de colores para la descripcion de los modulos.

Fuente: elaboracion propia.
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4.3 Project Information Module

El simulador esta diseflado para guiar al usuario en todo el proceso de
parametrizacion. Inicialmente, con excepcion de algunos controles, los
parametros comienzan en estado inhabilitado. El objetivo es disminuir la
probabilidad de ajustes erroneos, por tanto, los modulos se habilitaran en
forma ordenada si los ajustes se realizan correctamente. El primer modulo
que se debe parametrizar es “Project Information”.

Dentro de las excepciones que no inician inhabilitadas se encuentran dos
variables de este modulo. La figura 4.4 presenta la interfaz correspondiente.
El modulo contiene los parametros asociados al nombre y ruta de la carpeta
donde se guardaran los resultados de las respectivas simulaciones y la base
de datos de ocupacion espectral. Como se identifica en la figura 4.4 las va-
riables habilitadas son “Project Name” y “Load Database” .

Project Information

Project Name

Load Database v

UNIVERSIDAD DISTRITAL  >2V@ FoIder

FRANCISCO JOSE DE CALDAS

Figura 4.4. Modulo “ Project Information”.

Fuente: elaboracion propia.

Enlassecciones 4.3.1,4.3.2 y 4.3.3 se presenta la descripcidon detallada de las
variables de entrada, salida y metodologia del médulo “Project Information”.

4.3.1 Variables de entrada

La figura 4.5 presenta las variables de entrada para el modulo “Project
Information”. El usuario debe definir un nombre para el proyecto, seleccionar
entre dos posibles tipos de red (GSM, Wi-Fi) y la ruta donde se almacenaran
los resultados de la simulacién. El simulador cuenta con la posibilidad de
cargar una base de datos personalizada “Custom”. La figura 4.5 incluye las
funciones que se requieren para la informacién del proyecto, estas funciones
seran analizadas en detalle en las secciones posteriores.
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Por defecto el simulador crea una carpeta con el nombre “App MultiColl-
DCRN?” en la ruta definida en “Save folder”. Dentro de esta carpeta se crean
los diferentes proyectos (subcarpetas) de acuerdo con los “Project name”

generados.
s N\
—)‘ Project Name ‘
Project Name >
% —){ Database ‘
UNIVERSIDAD DISTRITAL
FRANCISCO JOSE DE CALDAS
Load Database v >
( ) —)‘ Save Folder ‘
GSM
Wi Project Path Folder
o \ | —
>
Database
. J

| J

Figura 4.5. Descripcion variables de entrada y salida del médulo “Project Information”.
Fuente: elaboracion propia.

La tabla 4.2 presenta la descripcion de las variables de entrada que se requie-
ren para la parametrizacion del modulo “Project Information”.

Tabla 4.2. Variables de entrada del modulo “Project Information”.

Variable Descripcion

Los resultados de cada simulacion son almacenados en un
ruta y carpeta especifica. La ruta se establece en la variable
“Save Folder” y la carpeta se crea de forma automatica con
el nombre “App MultiColl-DCRN”. Dentro de esta carpeta
Project Name el usuario tiene la posibilidad de almacenar los resultados
de multiples simulaciones. Para diferenciar los diferentes
resultados se crean subcarpetas con diferentes nombres,
estos corresponden a la asignacion que realice el usuario en
la variable “Project Name” .

Se selecciona la base de datos asociada al tipo de red: GSM,
Wi-Fi, el simulador tiene la posibilidad de cargar una base

Load Database . . ..
de datos diferente a las predefinidas. Esta caracteristica se
habilita al seleccionar la opcion “Custom”.
Ruta donde se almacenan los resultados de cada

Save Folder

simulacion.

Fuente: elaboracion propia.
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4.3.1.1 Base de datos

El simulador trabaja con dos bases de datos de ocupacion espectral, una de
entrenamiento “Power Training”’y otra de evaluacion “Power Evaluation”. Las
bases de datos estan conformadas por las potencias medidas experimental-
mente en las bandas GSM y Wi-Fi, —durante una campafa de medicion
previa esta informacién permite que los resultados de la evaluacion de los
algoritmos sean mas confiables al trabajar con datos reales del comporta-
miento del usuario primario—. La base de datos de entrenamiento se utiliza
para configurar los parametros iniciales de los algoritmos de handoff espectral,
y la base de datos de evaluacidn se utiliza para calcular las métricas de los
algoritmos seleccionados. Ambas bases de datos tienen informacion de 550
canales de frecuencia, durante una hora para el caso de “Power Training”y
nueve minutos para el caso de “Power Evaluation”, con una resolucién de un
tercio de segundo para las dos bases de datos. La cantidad de informacion
correspondiente se muestra en la tabla 4.3; las filas representan el tiempo en
segundos y las columnas los canales de frecuencia. El tiempo de muestreo
para la toma de datos fue de 290ms.

Tabla 4.3. Bases de datos de ocupacion espectral.

Tecnologia Cantidad de datos capturados

Filas Columnas Total Datos
GSM 1.145.700 550 631.280.700
Wi-Fi 2.490.000 1.147.890.000

Fuente: elaboracion propia.

Adicionalmente, la base de datos “Power Training” y “Power Evaluation” es
clasificada de acuerdo con la AP, esto permite caracterizar la informacion
de acuerdo con el nivel de trafico: alto, medio y bajo. Segun la clasificacion
realizada, el tamafio de la base de datos es modificada. En total el simulador
cuenta con 12 bases de datos: seis para GSM y seis para Wi-Fi.

Las figuras 4.6 y 4.7 describen la AP para cada canal GSM de acuerdo
con el trafico de disponibilidad alto y bajo, respectivamente.
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Trafico de disponibilidad = 40%

60

)
)
0

0 100 200 300 400 500

Probabilidad de Disponibilidad (AP)

Frecuencia (MHz)

Figura 4.6. AP para la caracterizacion de GSM en trafico alto.
Fuente: elaboracion propia.

Trafico de disponibilidad = 80%

Frecuencia (MHz)

Probabilidad de Disponibilidad (AP)

Figura 4.7. AP para la caracterizacion de GSM en trafico bajo.

Fuente: elaboracion propia.

4.3.2 Variables de salida

La figura 4.5 presenta las variables de salida para el modulo “Project
Information” . Las variables “ Power Training” y “ Power Evaluation” correspon-
den a las bases de datos seleccionadas de acuerdo con el tipo de red y son
indispensables para la simulacion de diferentes casos de estudio. Como se
identifica en la figura 4.5 y segtn el codigo de colores descrito en la figura
4.3, son las variables de salida principales del mddulo; las demas, estan aso-
ciadas a variables de visualizacion.
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La tabla 4.4 presenta la descripcién de las variables de entrada que se
requieren para la parametrizacion del modulo “Project Information”.

Tabla 4.4. Variables de salida del médulo “ Project Information”.

Variable Descripcion

Project Name Interfaz donde se visualiza el nombre asignado al proyecto.
Database Interfaz donde se visualiza la tecnologia seleccionada.
Interfaz donde se visualiza la ruta de almacenamiento de los
Save Folder . .
resultados de la informacion.
Corresponde a la ruta donde accederan los médulos no predic-
Directory tivos y predictivos para guardar la informacion resultado de las
simulaciones.
.. Corresponde a la matriz de entrenamiento de potencia para el
Power Training . .
tipo de red seleccionada.
. Corresponde a la matriz de evaluacioén de potencia para el tipo
Power Evaluation P . P P P
de red seleccionada.

Fuente: elaboracion propia.

4.3.3 Metodologia modulo “Project Information”

La exposicidon especifica del mddulo requiere analizar dos funciones aso-
ciadas a la descripcion del proyecto y a la seleccidon de la base de datos. La
figura 4.5 presenta el diagrama con las funciones del modulo: “Project Path
Folder” y “Database”, cada una analizada en detalle en las figuras 4.8 y 4.9,
respectivamente.

Funcién “Project Path Folder”

La figura 4.8 presenta el diagrama de bloques de la funcidén que, como va-
riable externa, requiere la informacion de entrada “Project Name” y “Save
Folder”. La funciéon maneja tres variables de salida: dos corresponden a la
informacion que se visualiza en el modulo de informacion del proyecto en la
interfaz principal (figura 4.4). Estas variables son “ Database”, “ Save Folder”, y
“Directory”, que contienen la informacion interna requerida por los modulos
predictivos y no predictivos para guardar los resultados de las simulaciones.

La funcion “Project Path Folder” es la encargada de generar las carpetas
asociadas al simulador. Por defecto, el simulador crea una carpeta con el
nombre “App MultiColl-DCRN” en la ruta definida en “Salve Folder”; dentro
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de esta carpeta —siempre y cuando la ruta “Save Folder” se seleccione per-
manente— se podran generar multiples subcarpetas. Cada una representa
un proyecto (simulacién o caso de estudio). Para diferenciar los resultados,
se le asigna un nombre a cada una, a través de la variable “Project Name” .
La variable interna “Directory” contiene la informacion de ruta del proyecto.

4 \

Project Path Folder

Project Name —>1 Project Name ‘

—)‘ Save Folder ‘

Save Folder

C:\...\Save Folder\App MultiColl-DCRN\Project Name

\ J/

Figura 4.8. Funcién “Project Path Folder”.
Fuente: elaboracion propia.

Funcion “Database”

La figura 4.9 presenta el diagrama de bloques de esta funcion. Como varia-
ble externa requiere la informacién de entrada “Load Database”. Maneja tres
variables de salida: una corresponde a la informacion que se visualiza en
el médulo de informacion del proyecto en la interfaz principal (figura 4.4);
esta variable es “Database”. Las variables restantes contienen la informacién
interna “ Power Training” y “ Power Evaluation” , que corresponden a la base de
datos de acuerdo con el tipo de red seleccionada.

Database

—){ Database ‘

Load Database v

GSM

Wi-Fi

Custom

Figura 4.9. Funcién “Database” .
Fuente: elaboracion propia.
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4.4 Modulo colaborativo

Las estrategias colaborativas han brindado nuevos modelos para el uso efi-
ciente de los recursos de radio y para el proceso de toma de decisiones en
las CRN. En la decisién colaborativa, los usuarios se comunican entre si
para intercambiar mediciones de disponibilidad e interferencia; el objetivo
es aprovechar la diversidad espacial. Para lograrlo, el usuario no licenciado
comparte su informacion con los usuarios vecinos (Salgado er al., 2016b).
El enfoque colaborativo tiene mas ventajas que el enfoque no colaborativo.
Un desafio en la seleccién del espectro corresponde a cdmo combinar la
informacion de los usuarios de forma colaborativa mientras se realiza la
transmision (Thakur ez al., 2017).

Para analizar el proceso de toma de decisiones en escenarios colaborati-
vos, donde los usuarios comparten diferentes cantidades de informacion de
ocupacion espectral, “Collaborative Module” segmenta la matriz de potencia
segiin un numero establecido de usuarios y diferentes niveles de colabora-
cion. Cada nivel representa el porcentaje de informacion que serd compartido
para el entrenamiento y posterior validacion del modelo. Los niveles son
seleccionados de acuerdo con los limites de los datos: 10% y 100 % corres-
ponden a criterios de pocos y muchos datos; 50% a un valor intermedio
entre los limites. Como elementos de salida se obtiene la matriz de potencia
de entrenamiento segmentada.

La figura 4.10 presenta la interfaz correspondiente al resumen del modulo
colaborativo disponible en la interfaz principal del simulador. Este modulo
contiene dos botones; el primero, “Collaborative Module”, permite acceder a
la ventana de parametros del médulo, y el segundo, “Setting Summary”, ge-
nerar un archivo en formato .xIsx con el resumen de los ajustes realizados.
Para acceder al mddulo solo se requiere seleccionar la opcion “Collaborative
Module” que estard habilitada solo si el modulo “Project Information” se pa-
rametrizo correctamente. Se abrird una nueva ventana (figura 4.11) donde
estara disponible cada uno de los ajustes del modulo.
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Collaborative Module

Setting Collaborative

l Collaborative Collaborative Module Default Division Row Number User 1
/" Module

—. Segmentation Continuous User Percentage 100 Setting Summary

Figura 4.10. Resumen de parametros “Collaborative Module”,
interfaz principal App MultiColl- DCRN.

Fuente: elaboracion propia.

Inicialmente, como se muestra en la figura 4.11, el inico parametro habi-
litado en el “Collaborative Module” es la variable “Segmentation”. Cuando se
ajuste este parametro se habilitara “Division”, la cual habilita “ User percenta-
ge” y, a su vez, esta ultima habilita “ Number of Users”. Ademas de los ajustes
de habilitacién de parametros la ventana cuenta con un indicador color rojo
que permanecera si la informacioén parametrizada esta incompleta.

Help About
Collaborative Module Output Module
User Relation Number of Users
‘ Load Information
Segmentation v
e 1-10 User Default Values

10-100 User Number Users

Division v
100 - 200 User v

User Percentage v 200 - 1000 User

UNIVERSIDAD DISTRITAL
¢ FRANCISCO JOSE DE CALDAS

Figura 4.11. Interfaz “Collaborative Module” App MultiColl-DCRN.

Fuente: elaboracion propia.

Si el modulo se ajusta correctamente, el boton “Load Information” se habili-
ta y el indicador cambia a color verde. Para regresar a la ventana principal
solo se debe ejecutar el botdén “Load Information”. En cualquier momento el
usuario puede cargar los valores por defecto, solo se requiere seleccionar la
opcion “Default Values”.

El diagrama general del modulo colaborativo se presenta en la figura
4.12. Cuenta con cuatro parametros de entrada: tres corresponden a varia-
bles ajustadas por el usuario en la interfaz y la cuarta variable es la matriz de
salida del médulo “ Project Information”. La 16gica del algoritmo consiste en
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tomar la matriz de entrenamiento “Power Training” y segmentarla de acuer-
do con las entradas “User Relation” y “Number of User”. Como salida del
modulo se obtiene la matriz de potencia segmentada para el entrenamiento e
informacion del ajuste del mddulo que se visualizara en la interfaz principal.

'—P‘ Collaborative Module ‘
’ User Relation }—}
—>{ Division ‘

’ Number of Users }—» / l\ BN

2.0 _
’ Default Values }—) _>{ Segmentation ‘

Collaborative

Number user ‘

Module User Percentage ‘

Power Segmentation Training

Figura 4.12. Estructura general “Collaborative Module” .

Fuente: elaboracion propia.

En las secciones 4.4.1, 4.4.2 y 4.4.3 se presenta la descripcion detallada de
las variables de entrada, salida y metodologia de los “Collaborative Modules”.

4.4.1 Variables de entrada

La figura 4.13 presenta en detalle las variables de entrada para el “Collaborative
Module”, elaborada con el fin de describir especificamente el control que tiene
el usuario sobre las variables del modulo, ademas, de la relacién en términos
de interfaz grafica de la figura 4.11. Adicionalmente, incluye las funciones
que se requieren para la segmentacion de la matriz de potencia —estas se-
ran analizadas en detalles en las secciones posteriores—. Como se menciono
previamente, en cualquier momento el usuario puede cargar los valores por
defecto, solo se requiere seleccionar la opcidn “Default Values”. La figura 4.13
describe la asignacion de cada variable si se selecciona esta opcion.
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Users Relation

Segmentation v —3>| Division

v —» User Percentage v

Continuos Zone

Column

10-100

Random Zone

Row

Number of Users

Number User v

> / \ —> Collaborative Module
> owm |
Se ion -
Users Percentage

1-1000

Default Values

Segmentation v —3> Division

—> Segmentation

v | User Percentage v

Continuos Zone

Row

100

>
User Percentage

Division - Number Users

> Power Segmentation Training

Figura 4.13. Variables de entrada y funciones “Collaborative Module” .

Fuente: elaboracion propia.

Como se identifica en la figura 4.13, el modulo tiene tres conjuntos de va-

riables de entrada: “User Relation”, “Number User” y “Power Training”. La

descripcidén de cada una de las variables se presenta en las tablas 4.5, 4.6 y

4.7. En la tabla 4.8 se describen los valores asignados por defecto si no se

parametriza el moédulo colaborativo.

Tabla 4.5. Relacion de usuarios “Collaborative Module” .

Variable Elemento Descripcion
El porcentaje de usuarios seleccionados para la
Random Zone - poree , J os p
simulacién se toman de forma aleatoria.
Segmentation El porcentaje de usuarios seleccionados para la
Continuous Zone | simulacioén se toman en orden, por filas o por
columnas.
Se dividen las filas de la matriz de potencia en
Column 10 partes iguales y las columnas se dividen en n
partes hasta completar el nimero de usuarios.
Division
Se dividen las columnas de la matriz de poten-
Row cia en 10 partes iguales y las filas se dividen en
n partes hasta completar el numero de usuarios.
Porcentaje de usuarios que participaran en el
User percentage 10-100 ¢ que p P
entrenamiento.
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Tabla 4.6. Numero de usuarios “ Collaborative Module” .

Variable Elemento Descripcion

Numero de usuarios que conforman (dividen) la

Number of users 1-1000 User matriz de potencia para el entrenamiento.

Fuente: elaboracion propia.

Tabla 4.7. Matriz de potencia “Collaborative Module” .

Variable Trafico Descripcion
High Matriz de trafico de potencia para el entrena-
Power Training miento, correspondiente a la variable de salida
Low del moédulo “Project Information” .

Fuente: elaboracion propia.

Tabla 4.8. Valores por defecto “ Collaborative Module” .

Variable Descripcion

Segmentation Continuous Zone
Division Row
User percentage 100

Fuente: elaboracion propia.

4.4.2 Variables de salida

Como se identifica en la figura 4.13 el algoritmo tiene seis variables de sali-
da, la descripcion de estas variables se presenta en la tabla 4.9.

Tabla 4.9. Variables de salida “Collaborative Module” .

Interfaz donde se visualiza si el modulo colaborativo
Collaborative Module fue parametrizado (Enable) o si utiliza valores por
defecto (Default).

Interfaz donde se visualiza el tipo de division para la
seleccion de usuarios.

Division

Interfaz donde se visualiza la cantidad de usuarios

Number User que segmentan la matriz de entrada.

Visualizacion de la metodologia para la seleccion de

egmentation -
Seg los usuarios.

Visualizacion del porcentaje de usuarios que compar-
User Percentage P e g

tiran informacion en la fase de entrenamiento.

Informacién de los usuarios seleccionados para el

Power Segmentation Trainin, .
& g proceso de entrenamiento.

Fuente: elaboracion propia.
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4.4.3 Metodologia del modulo

La descripcion especifica del modulo colaborativo requiere analizar dos
funciones que permiten segmentar la matriz. La figura 4.13 presenta el dia-
grama con las funciones del modelo colaborativo: “Division — Number Users”
y “Segmentation—Users Percentage”. Cada una de estas funciones es analizada
en detalle en las figuras 4.14 y 4.15, respectivamente.

Funcion “Division — Number Users”

La figura 4.14 presenta el diagrama de bloques de la funcion. Como varia-
ble externa requiere de la matriz “Power Training”, la cual corresponde a la
variable de salida del modulo “Project Information”. Adicionalmente, requiere
la informacién de entrada de “Number User” y “Division”. La funcidon maneja
cuatro variables de salida —tres corresponden a la informacién que se vi-
sualiza en el resumen de parametros del mddulo colaborativo en la interfaz
principal (figura 4.10)—. Estas variables son “ Collaborative module” , * Division”
y “Number User”; “ Power Segmentation” es la cuarta variable y contiene la in-
formacion interna que requiere la funcion “Segmentation—Users Percentage” .

La funcion “Division — Number Users” es la encargada de dividir la matriz
de entrada “Power Training” en submatrices. Cada submatriz corresponde a la
informacion que caracteriza a un usuario, por tanto, el nimero de submatri-
ces responde al numero de usuarios. La cantidad de usuarios (#) se ajusta de
acuerdo con el parametro “Number User” y “ Division” establece la metodolo-
gla para realizar la division. Si el numero de usuarios es mayor a diez (Number
User > 10) y la division se parametriza por filas (Division = Row), se dividen
las filas de “Power Training” en 10 partes iguales y las columnas se dividen en
m partes hasta completar el numero de usuarios (Number User = 10(m)); si se
realiza por columnas (Division = Column), se dividen las columnas de “Power
Matrix” en 10 partes iguales y las filas se dividen en m partes hasta completar
el numero de usuarios (Number User = 10(m)). Para un numero de usuarios
menor a diez (Number User < 10), la division por filas (Division = Row) o
por columnas (Division = Column) se realiza en dos partes iguales; la variable
dependiente se divide en m partes hasta completar el numero de usuarios
(Number User = 2(m)). La variable interna “Power Segmentation” contiene la
informacion de las # submatrices generadas en la division.
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Division - Number Users

{!\ Division v Division v
Column Row
lul
Number User v Number User v

Power Training n n

User 1 User 2 —)‘ Collaborative Module: Enable ‘

User1 | User2 | User3

User 3 User 4 _>‘ Division ‘

Usern
—P‘ Number User ‘

Usern

& &

> ) > ) ;} Power Segmentation ‘

Figura 4.14. Funcion “Division — Number Users”.

Fuente: elaboracion propia.

Funcién “Segmentation—Users Percentage”

La figura 4.15 presenta el diagrama de bloques de la funciéon. Como variable
interna requiere de la matriz Power Segmentation la informacién de entrada
de “Segmentation” y “User Percentage”. La funcidn maneja tres variables de
salida: dos corresponden a la informacion que se visualiza en el resumen de
parametros del modulo colaborativo en la interfaz principal (figura 4.10).
Estas variables son “Segmentation” y “ User Percentage”. *“ Power Segmentation
Training” es la tercera variable y contiene la informacion de salida del
“Collaborative Module” .

La funcion “Segmentation—Users Percentage” es la encargada de establecer
los diferentes niveles de colaboracion, seleccionando la cantidad de infor-
macion que se compartira en la fase de entrenamiento de los modelos. Los
niveles de colaboracion se ajustan de acuerdo con el porcentaje ajustado
en la variable “Users Percentage”: 10% y 100% corresponden a los criterios
de minimo nivel y total colaboracion, respectivamente. Para seleccionar los
usuarios que haran parte del proceso de colaboracion, el modulo utiliza dos
metodologias disponibles en la variable “Segmentation”. En la primera opcion
el simulador selecciona de forma aleatoria los usuarios (Segmentation = User
Zone Random), y en la segunda opcion elige de forma continua (Segmentation
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= User Zone Continuous). La figura 4.15 presenta las dos metodologias. La va-
riable de salida “Power Segmentation” contiene la informacion de los usuarios
seleccionados para el proceso de entrenamiento, esta variable se requiere
como parametro de entrada del “Parameters Module” .

Segmentation - Users Percentage

Segmentation v Segmentation v Segmentation v Segmentation v

Random Zone

Random Zone

Continuos Zone

Continuos Zone

User Percentage

v

User Percentage

v

User Percentage

v

User Percentage

v

k%

k%

k%

k%

User 1

User 2

User3

User 1

User 2

User 3

User 1

User 2

User 1

User2

Usern

Usern

User3

User 4

User3

User 4

Usern

Usern

Segmentation
—>‘ User Percentage

5

1

V>

>

>
p\

Power Segmentation Training

Power Segmentation Training = User Percentage*Power Segmentation

Power Segmentation

Figura 4.15. Funcion “Segmentation—Users Percentage” .

Fuente: elaboracion propia.

4.5 Modulo multiusuario

Para analizar el proceso de toma de decisiones bajo escenarios multiusuario,
“Multi-user Module” permite ajustar tres parametros de escenarios realistas.
El primero corresponde al numero de SU que participaran en el proceso. El
segundo permite asignar canales multiples a los diferentes usuarios. El terce-
ro simula usuarios aleatorios en tiempo especificos.

La figura 4.16 presenta la visualizacion correspondiente al resumen
del modulo multiusuario disponible en la interfaz principal del simulador.
Este modulo contiene dos botones; el primero —Multi-user Module— per-
mite acceder a la ventana de parametros del médulo, y el segundo —Setting
Summary—, generar un archivo en formato .xIsx con el resumen de los ajus-
tes realizados. Para acceder solo se requiere seleccionar la opcion “Multi-user
Module”, que estara habilitada si el modulo “Project Information” se parame-
trizo correctamente. Se abrira una nueva ventana (figura 4.17) donde estara
disponible cada uno de los ajustes del modulo.
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Multi-user Module

Setting Multi-user

Multi-user Multi-user Module Default  Serial Users 1 Random User Figure
! ! Module

Multichannel Bands 1 Simulation Mode Conventional Setting Summary

Figura 4.16. Resumen de parametros “Multi-user Module”,
interfaz principal App MultiColl-DCRN.

Fuente: elaboracion propia.

Inicialmente, como se muestra en la figura 4.17, el Gnico parametro habi-
litado en “Multi-user Module” es la variable “Muitichannel Bands”. Cuando
se ajuste este parametro se habilitaran los bloques “Channels” y *Percent”.
Segun el numero de “Multichannel Bands”, “ Channels” y “ Percent” se habilita
“Simulation Mode” y este ultimo habilita “Serial Users”. Para incluir dentro de
las graficas el comportamiento de los usuarios aleatorios “Simulation Mode”
se debe seleccionar “Real Mode”. Ademas de los ajustes de habilitacion de
parametros la ventana cuenta con un indicador color rojo que permanecera
si la informacidn parametrizada esta incompleta.

Help About

Multi-user Module Output Module
User Relation Number of Users
‘ Load Information
Multichannel Bands v Simulation Mode v
el d f Default Values
Channels v Percent v nable random user igure
Channels v Percent v 1-10User Sl Usgs
Channels v Percent v 10 - 20 User v
Channels v Percent v 20-30 User UNIVERSIDAD DISTRITAL

‘@ FRANCISCO JOSE DE CALDAS

Eizasid

Figura 4.17. Interfaz “Multi-user Module” App MultiColl-DCRN.
Fuente: elaboracion propia.

Si el médulo se ajusta correctamente, el boton “Load Information” se habilita y el
indicador cambia a color verde. Para regresar a la ventana principal, solo se debe
ejecutar “Load Information” . En cualquier momento el usuario puede cargar los
valores por defecto, solo se requiere seleccionar la opcion “Default Values”.

El diagrama general del modulo colaborativo se presenta en la figura 4.18.
Cuenta con cuatro parametros de entrada: tres corresponden a variables
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ajustadas por el usuario en la interfaz y la cuarta a variable es la matriz de
salida del modulo “Project Information”. La 16gica del algoritmo consiste en
tomar la matriz de entrenamiento “Power Training” y segmentarla de acuer-
do con las entradas “User Relation” y “Number of User”. Como salida del
modulo se obtiene la matriz de potencia segmentada para el entrenamiento e
informacion del ajuste del médulo que se visualizara en la interfaz principal.

( )

’ Multichannel Bands }—V 1

’ Serial Users }—V Multi-User

Module

Multi-user Module ‘

Multichannel Bands ‘

Serial Users ‘

Simulation Mode ‘

WH W

Random User Figure ‘

. J

Figura 4.18. Estructura general “Multi-user Module”.
Fuente: elaboracion propia.

En las secciones 4.5.1, 4.5.2 y 4.5.3 se presenta la descripcion detallada de
las variables de entrada, salida y metodologia de “Multi-user Module”.

4.5.1 Variables de entrada

La figura 4.19 presenta en detalle las variables de entrada para el “Multi-
user Module”. Esta figura fue elaborada con el objetivo de describir
especificamente el control que tiene el usuario sobre las variables del mo-
dulo, ademas, de la relacidon en términos de la interfaz grafica, de la figura
4.17. Adicionalmente, incluye las funciones que se requieren para el anali-
sis de escenarios multiusuario. Estas funciones seran analizadas en detalle
en las secciones posteriores. Como se menciond previamente, en cualquier
momento el usuario puede cargar los valores por defecto, solo se requiere
seleccionar la opcion “Default Values”. En la figura 4.19 se describe la asig-
nacion de cada variable si se selecciona esta opcion.
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r N\
Users Relation
Mutichannel Bands v [—»{  Channels v |-3[ Percent +
1 ‘ 1-10 ‘ 25
2 50 Multi-user Module
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:;' Multichannel Bands
Number of Users
Multichannel Users
Simulation Mode v |  Serial Users v
Conventional Mode 1-10
S
Real Mode 10-20
20-30 ( 3 Simulation Mode
Enable random user figure )
Random Time
Random User Figure
Default Values
N J
[ uttichannelgands v | serialusers vl{ simuation ode v}
I | L1 | [ comentonimee |
N J

Figura 4.19. Variables de entrada y funciones “Multi-user Module”.
Fuente: elaboracion propia.

Como se identifica en la figura 4.19, el mddulo tiene dos conjuntos de variables

de entrada: “User Relation”, “ Number User”, la descripcion de cada una de las

variables se presenta en las tablas 4.10 y 4.11. En la tabla 4.12 se describen los

valores asignados por defecto si no se parametriza el modulo multiusuario.

Tabla 4.10. Relacion de usuarios “Multi-user Module” .

Variable Elemento Descripcion
, Numero de aplicaciones seleccionados para la
Multichannel Bands 1-4 | IETO | P par
simulacion.
Channels 1-10 Nl?mero dej canales necesarios para cada aplica-
cion seleccionado.
Porcentaje de usuarios que adquieren la carac-
Percent 25%-100% teristica de la aplicacién y de la cantidad de
canales.

Fuente: elaboracion propia.

Tabla 4.11. Numero de usuarios “Multi-user Module” .

Variable Elemento Descripcion
. Simulacion sin usuarios aleatorios en tiempos
Conventional Mode , P
) ) especificos.
Simulation Mode Simulaci s al - )
imulacion con usuarios aleatorios en tiempos
Real Mode , P
especificos.
Serial Users 1-30 Numero de usuarios seriales.
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Variable Elemento Descripcion
La métrica de evaluacion incluye a los usuarios
Enable leatori
Enable random aleatorios.
user figure . La métrica de evaluacion no incluye los usuarios
Disabled .
aleatorios.

Fuente: elaboracion propia.

Tabla 4.12. Valores por defecto “ Multi-user Module” .

Variable Descripcion

Multichannel Bands Continuous Zone
Serial Users Row
Simulation Mode Conventional Mode

Fuente: elaboracion propia.

4.5.2 Variables de salida
Como se identifica en la figura 4.19 el algoritmo tiene cinco variables de

salida, la descripcion de estas variables se presenta en la tabla 4.13.

Tabla 4.13. Variables de salida “Multi-user Module” .

Variable Descripcion

Visualizacion en la interfaz del médulo multiusua-

Multi-user Module rio. Parametrizado (Enable) o valores por defecto
(Default).
. Informacion de nimero de aplicaciones selecciona-
Multichannel Bands

dos, adicionalmente, se visualiza en la interfaz.

Informacion de nimero de usuarios seriales, adicio-

Serial Users . . .
nalmente, se visualiza en la interfaz.

Habilita o deshabilita los usuarios aleatorios, se

Simulation Mode visualiza en la interfaz.

Visualiza en la interfaz si las métricas incluyen el

Random User Figure g . .
8 comportamiento de los usuarios aleatorios.

Fuente: elaboracion propia.

4.5.3 Metodologia del modulo

La descripcion especifica del modulo multiusuario requiere analizar dos
funciones que permiten caracterizar el comportamiento de los usuarios. La
figura 4.19 presenta el diagrama con las funciones del modelo colaborativo:
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“Multichannel Users”y “Segmentation—Users Percentage”, cada una de estas fun-
ciones es analizada en detalle en las figuras 4.20 y 4.21, respectivamente.

Funcion “Multichannel Users”

La figura 4.20 presenta el diagrama de bloques de la funcion: se requiere
la informacion de entrada de “Multichannel Bands”, *“ Channels” y ““Percent”.
Maneja dos variables de salida: “Multi-user Module” y “ Multichannel Bands” .

La funcién “Multichannel Users” es la encargada de parametrizar el nime-
ro de aplicaciones, el nimero de canales para cada aplicacion y el porcentaje
de usuarios que adquiere la caracteristica de la aplicacion y de la cantidad
de canales.

e N
Multichannel Users

%L

Multichannel Bands v Channels v Percent v
>

A\
\ 4

1-10 k %

L o\: —)‘ Multi-user Module: Enable ‘
o, LSEIE @~
, K% ::‘ Multichannel Bands ‘

@ =
1(..[10 k%

- J

Figura 4.20. Funcion “Multichannel Users”.

Fuente: elaboracion propia.

Funcién “Random Users”

Es la encargada de seleccionar el numero de usuarios seriales y si la simula-
cioén cuenta con usuarios aleatorios. La figura 4.21 presenta el diagrama de
bloques de esta funcion. Se requiere informacion de entrada de “Serial Users”,
“Simulation Mode” y “Enable random user figure”. La funcidon maneja tres va-
riables de salida: “Serial Users”, “ Simulation Mode” y “ Random User Figure”.
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Figura 4.21. Funcion “Random Users”.

Fuente: elaboracion propia.

4.6 Parameters Module

La figura 4.22 presenta la interfaz correspondiente a “Parameters Modules”,
en este moédulo se parametriza el Threshold, Noise Floor, Bandwidth Fixed y
Multichannels. Adicionalmente, se caracteriza el nivel de trafico y tiempo de
transmision.

Parameters Module

Input Data Traffic Level
H M L
Threshokd| = Threshold o
> Availability
BW Fixed —| .
e Input L oNR BW Fixed
Noise Floor =—sf D212 Time [minutes]
' = Bandwidth .
Multichannels == Noise Floor
. v
Default Parameters Multichannels

Figura 4.22. “Parameters Modules” MultiColl-DCRN.

Fuente: elaboracion propia.

“ Parameters Modules” se habilita si “ Project Information” es parametrizado co-
rrectamente, como se muestra en la figura 4.22. El diagrama general del moé-
dulo se presenta en la figura 4.23. Cuenta con cinco parametros de entrada:
cuatro corresponden a variables ajustadas por el usuario en la interfaz, y la
quinta variable es la matriz de salida del “Collaborative Module” . No requiere
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ajustes de “Multi-User Module”; el simulador asume valores por defecto si el
caso de estudio no requiere incorporar analisis colaborativo.

La logica del algoritmo es la elaboracién de una nueva base de datos
de variables de entrada y seleccion de informacién. Para la nueva base de
datos se almacena la informacion de “ Threshold”, “ Noise Floor”, *“ Bandwidth
Fixed”, “Multichannels” y “Time”. Posteriormente, esta nueva base de da-
tos se incorpora en las estrategias de prediccién y no prediccion. Para la
seleccion de informacion, toma de la matriz “Power Segmentation Training”
(generada a través del “Collaborative Module” o de los valores por defecto) la
base de datos de entrenamiento. De acuerdo con el nivel de trafico, se aplica
el mismo proceso para la matriz “Power Evaluation” generada a través de
“Project Information”. Como salida del mddulo se obtiene la base de datos de
las variables parametrizadas y la base de datos de potencia para el entrena-
miento y validacion de acuerdo con el nivel de tréafico.

En las secciones 4.6.1, 4.6.2 y 4.6.3 se presenta la descripcion detallada
de las variables de entrada, salida y metodologia de “ Parameters Modules”.

)
: Threshold ‘
.
Fixed Bandwidth ‘
Traffic Level
—> : Noise Floor ‘
> I it >
nput |y
; . —| Dat
aa — : Multichannels ‘
—
Default Parameters : Time [minutes] ‘
Parameters
Module Taffe Level ‘
Power Segmentation Training > EILISIESS
Power Evaluation —)1 Power Segmentation Training Traffic ‘
—)1 Power Evaluation Traffic ‘
—

Figura 4.23. Estructura general “Parameters Module”.

Fuente: elaboracion propia.
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4.6.1 Variables de entrada

La figura 4.24 fue elaborada con el objetivo de describir especificamente
el control que tiene el usuario sobre las variables del modulo, ademas, de
la relacidon en términos de la interfaz grafica de la figura 4.22. Incluye las
funciones que se requieren para la construccién de la nueva base de datos
y la seleccién de la matriz potencia para el entrenamiento y validacion de
las técnicas —estas funciones seran analizadas en detalles en las secciones
posteriores—. En cualquier momento el usuario puede cargar los valores por
defecto, solo se requiere seleccionar la opcion “Default Values”. En la figura
4.24 se describe la asignaciéon de cada variable si se selecciona esta opcion.

e 2
Input Data
Threshold
Input Data v
—_—
o T —
e ———R— Fixed Bandwidth
Fixed Bandwidth
Noise Floor Input
— -
Waticharnels | - —{ Dat > tesefoor |
—
e
Traffic Level —> Multichannels
Traffic Level v —
> e
N e N
Medium
Low Select Power Traffic Level 5 Tt g
*Training
Time [minutes] *Evaluation
—> Threshold
Time [minutes] v > ~ <
1-9
( N —> Fixed Bandwidth
Default Parameters
New atabase [ ]
Input Data v ——
Threshold -95
\ J n
Fixed Bandwidth | -100 > putchanl
Noise Floor 100
Power Segmentation Training —)‘ Power Segmentation Training Traffic ‘
—)‘ Power Evaluation Traffic ‘
\. J

Figura 4.24. Variables de entrada y funciones “Parameters Module”.

Fuente: elaboracion propia.

Como se identifica en la figura 4.24, el modulo tiene cinco conjuntos de va-
riables de entrada: “Input Data”, “ Traffic Level”, “ Time”, *“ Power Segmentation
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Training” y “ Power Evaluation”. La descripcion de cada una de las variables
se presenta en las tablas 4.14, 4.15,4.16, 4.17 y 4.18. En la tabla 4.19 se des-
criben los valores asignados por defecto.

Tabla 4.14. Datos de entrada ““Parameters Module” .

Parametros Descripcion

Threshold U.mbra} de decision para determinar si una oportunidad espectral esta
disponible.
Noise Floor Piso de ruido promedio.
BW Fixed BW fijo para cada canal de frecuencia.
Multich I Numero maximo de canales adyacentes disponibles que se pueden
ultichannels agrupar para formar un solo canal.

Fuente: elaboracion propia.

Tabla 4.15. Nivel de trafico “Parameters Module” .

Variable Elemento Descripcion
High Trazas de informaciéon que representan el com-
Traffic Level Medium portamiento del espectro cuando la red tiene un

nivel de trafico alto, medio y bajo.
Low

Fuente: elaboracion propia.

Tabla 4.16. Tiempo “Parameters Module”.

Variable Elemento Descripcion

Time [minutes] 1-9 Tiempo de transmision en minutos del SU.

Fuente: elaboracion propia.

Tabla 4.17. Matriz de potencia segmentada para entrenamiento ““Parameters Module” .

Variable Descripcion
Power Contiene la informacién de la matriz segmentada de potencia de
Segmentation acuerdo con el nivel de trafico para el entrenamiento de las técnicas de
Training prediccion y no prediccidn.

Fuente: elaboracion propia.

Tabla 4.18. Matriz de potencia para evaluacion ““Parameters Module”.

Variable Descripcion

Informacién de la matriz de potencia de acuerdo con el nivel de trafico

Power Evaluation . . . .
para la validacién de las técnicas de prediccion y no prediccion.

Fuente: elaboracion propia.
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Tabla 4.19. Valores por defecto “ Parameters Module” .

Variable Descripcion

Threshold -95

Noise Floor -100

BW Fixed 100
Multichannels 4

Fuente: elaboracion propia.

4.6.2 Variables de salida

Como se identifica en la figura 4.24 el algoritmo tiene seis variables de salida
para visualizacién en la interfaz, y ocho variables de salida del modulo que
requieren los modelos de no prediccion y prediccion, la descripcion de las
variables se presenta en la tabla 4.20.

Tabla 4.20. Variables de salida “Parameters Module” .

Variable Descripcion

Visualizacién asociada al umbral de decision
Threshold .
parametrizado.
. Visualizacién asociada al piso de ruido promedio
Noise Floor .
parametrizado.
BW Fixed Visualizacién asociada al BW fijo parametrizado.
Multich ; Visualizacion asociada al nimero maximo de
uiticnannets : : :
canales adyacentes disponibles parametrizado.
Visualizacidn asociada al nivel de trafico
Traffic Level ]
seleccionado.
5 s Visualizacién asociada al tiempo de transmisioén
ime [minutes| en minutos del SU seleccionado.
7 s on Training T Corresponde a la matriz de entrenamiento de
v n n . ’ .
ower Segmentation Training Traffic potencia segmentada para trafico seleccionado.
B Evatuation T Corresponde a la matriz de evaluacion de poten-
ower Evaluation Traffic cia para el trafico seleccionado.

Fuente: elaboracion propia.

4.6.3 Metodologia del modulo

Para la descripcion especifica del modulo se requiere analizar las funcio-
nes que generan la base de datos y selecciona la informacion de acuerdo
con el tipo de trafico. La figura 4.24 presenta el diagrama con las funciones
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“Parameters Module”: “Select Power Traffic Level” y “New Database”. Cada
una de estas funciones es analizada en detalle en las figuras 4.25 y 4.26,
respectivamente.

Funcion “Select Power Traffic Level”

La figura 4.25 presenta el diagrama de bloques de la funcion. Como va-
riable externa requiere la matriz “Power Evaluation” y “Power Segmentation
Training”, la cual corresponde a las variables de salida del médulo “Project
Information” y “Collaborative Module”, respectivamente. Ademas, requiere la
informacion de entrada “Traffic Level”. La funcién maneja dos variables de
salida, equivalentes a la matriz de potencia de entrenamiento y validacion.

La funcién “Select Power Traffic Level” es la encargada de seleccionar de
la base de datos principal la matriz de evaluacion de acuerdo con el trafico
ajustado; el criterio de seleccion se realiza para la matriz de potencia seg-
mentada que se utilizara para el entrenamiento.

4 N\
Select Power Traffic Level

Power Evaluation

Power Segmentation Training

Traffic Level v —)‘ Power Segmentation Training Traffic ‘
- [ wecium |
R —)‘ Power Evaluation Traffic ‘
ey Low ]
\ J

Figura 4.25. Funcion “Select Power Traffic Level”.
Fuente: elaboracion propia.

Funcion “New Database”

La figura 4.26 presenta el diagrama de bloques de la funcion; solo requiere
informacion de entrada de la interfaz, la cual es almacenada a través de
una nueva base de datos. Cada una de las variables almacenadas se utilizara
para el ajuste de las técnicas de prediccion y no prediccion. Ademas, estas
variables son utilizadas para visualizacion de informacion en la interfaz. La
base de datos guarda los ajustes realizados a las variables “ Threshold”, “ Noise
Floor”, “Bandwidth Fixed”, “ Multichannels” y *“ Time” .
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New Database

Input Data v Threshold ‘
Threshold
Fixed Bandwidth Threshold Fixed Bandwidth ‘
Noise Floor Fixed Bandwidth
Multichannels Noise Floor Noise Floor ‘

Time [minutes] v Multichannels

Time [minutes] Multichannels ‘

=

—3
—3
—3
—3
—3
N

1-9
Traffic Level
Traffic Level v Time [minutes] ‘
High
Medium Traffic Level ‘
Low
_ J/

Figura 4.26. Funcion “New Database” .

Fuente: elaboracion propia.

4.1 Models module

Contiene las diferentes estrategias que se pueden utilizar para el analisis de
toma de decisiones. Los usuarios tienen disponibles siete modelos (11, si se
incluyen cinco modelos autorregresivos que forman las series de tiempo).
Como se muestra en la figura 4.27, cinco modelos para técnicas de predic-
cion y dos modelos para el andlisis de técnicas no predictivas.

Logistic Regression

._Q Spectral Decision
No Prediction Feature Extraction
Module
—
S—
Markov Chain
D Genetic Algorithm
-
Prediction

Time Series

Figura 4.27. Modelos disponibles.

Fuente: elaboracion propia.
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La figura 4.28 presenta la interfaz correspondiente a “ Prediction module”. El usua-
rio puede seleccionar entre dos opciones: “No prediction”y “Prediction”; como su
nombre lo indica, cada opcién esta asociada al conjunto de modelos disponible.

“ Parameters Modules” se habilita si “Project Information” es parametrizado

correctamente, como se muestra en la figura 4.28.

Prediction Module

No
:é. Prediction

/‘ Prediction

Figura 4.28. Modulo de técnicas de no prediccion y prediccién MultiColl-DCRN.
Fuente: elaboracion propia.

En las siguientes secciones se describe en detalle cada una de las estrategias
implementadas. Cada modelo es independiente, sin embargo, requieren de
parametros y algoritmos en comun. Los parametros estan asociados a las
variables de salida de los modulos, los algoritmos se citan en la siguiente lista:

» Algoritmo parametros iniciales
* Algoritmo ranking multicriterio
 Algoritmo de busqueda

» Algoritmo indicador de predicciéon

A continuacidn, se realiza la descripcion de los algoritmos, posteriormente
se detalla la estructura de cada una de las técnicas implementadas.

4.1.1 Algoritmo parametros iniciales

Independiente de los ajustes realizado al tipo de red, nivel de trafico, niveles
de colaboracion, numero de usuarios y a la técnica de andlisis, el simulador
requiere establecer tres parametros iniciales: Disponibilidad, SINR y BW.
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Estos se determinan a través de la funcion “Initial Parameters”. La figura
4.29 presenta el flujo de variables de entrada y de salida como se describe en
la figura, se requieren seis variables de entrada, las cuales son tomadas del
“ Parameters Modules” .

El simulador transforma los datos de las matrices “Power Evaluation
Traffic” y “ Power Segmentation Training” en valores binarios segun la restric-
cion dada por el valor “ Threshold”; el resultado obtenido representa la matriz
“Evaluation Availability” y “ Training Availability” . El valor “Noise Floor” per-
mite calcular la matriz “SINR” basada en los datos de potencia. Finalmente,
“Fixed Bandwidth” y “Multichannels” conforman los parametros para el
“Bandwidth” que se obtiene con la matriz de disponibilidad.

)
’ Power Evaluation Traffic }—}

’ Power Segmentation Training }—) —)‘ Evaluation Availability Matrix ‘
’ Threshold }—P —){ Training Availability Matrix ‘
Initial
Parameter
’ Fixed Bandwidth }—) —)‘ Bandwidth ‘
’ Noise Floor }—} —}‘ SINR ‘

’ Multichannels }—)
—

Figura 4.29. Funcion “Initial Parameter”.
Fuente: elaboracion propia.

Enlas secciones 4.7.1.1,4.7.1.2 y 4.7.1.3 se presenta la descripcién y algorit-
mos implementados para cada uno de los parametros iniciales.

4.7.1.1 Disponibilidad

El simulador transforma los datos de potencia que estan en un rango entre
[-40 y -147] a valores binarios segtn la restricciéon dada al campo Threshold,
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donde 1 representa una frecuencia disponible y 0 una frecuencia no disponi-
ble. El resultado obtenido equivale a la matriz de disponibilidad y es 1a matriz
de entrada para los diferentes modelos. El Algoritmo 8 presenta la estructu-
ra de programacion implementada para obtener “Evaluation Availability” y
“Training Availability” .

Algoritmo 8. Estructura matriz de disponibilidad.

Availability Matrix

% Evaluation Availability Matrix

If Power Evaluation Traffic > Threshold
Evaluation Availability Matrix = 1

else

I
o

Evaluation Availability Matrix
end
% Evaluation Availability Matrix
If Power Segmentation Training > Threshold
Evaluation Availability Matrix = 1
else
Evaluation Availability Matrix = 0
end

Fuente: elaboracion propia.

4.7.1.2 Relacion senal a ruido mas interferencia (SINR)

A partir de “Noise Floor” y de las matrices “ Power Evaluation Traffic” y “ Power
Segmentation Training” se determina la SINR: se realiza la resta entre la ma-
triz de datos de potencia y la variable “Noise floor”. El Algoritmo 9 presenta
la estructura de programacion implementada para obtener “SINR”.

Algoritmo 9. Estructura SINR

SINR-Relacidén Sefial a Ruido mas Interferencia

function [SINR] = Initial_ Parameter (Power, Noise_ floor)

SINR = Power-Evaluation Availability Matrix

end

Fuente: elaboracion propia.
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4.7.1.3 Bandwidth (BW)

Para determinar la matriz de BW se utiliza la matriz de disponibilidad pre-
viamente obtenida y los parametros de “Fixed Bandwidth” y “ Multichannels” .
El Algoritmo 10 presenta la estructura de programacion implementada para
obtener “Bandwidth” .

Algoritmo 10. Estructura matriz ancho de banda.

Matriz Ancho de Banda

function [Bandwidth] = Initial_ Parameter (Available,
Multichannel, Fixed Bandwidth)
i = Current Time Step
j = Current Frequency

switch Availability

case 0

Bandwidth (i , Jj) = Fixed Bandwidth;
case 1

for d = 1 : Multichannel

if Available(i , j+d) == 1
Accountant = Accountant + 1;
end

end

for d = 1 : Multichannel

if Available(i , j-d) == 1
Accountant = Accountant + 1;
end

end

Bandwidth (i, j) =Fixed Bandwidth* (Accountant+Available (i
0 J3))
end

Fuente: elaboracion propia.

4.7.2 Algoritmo ranking multicriterio

El algoritmo ranking utiliza analisis multicriterio para asignarle una puntua-
cion a los diferentes canales. Se utilizan los criterios AP, ETA, promedio de
SINR y promedio BW, para establecer los canales con mayor probabilidad
de oportunidad espectral. La figura 4.30 presenta el flujo de variables de
entrada y de salida; como se describe en la figura, para establecer el ranking,
se requiere implementar dos funciones, la primera —denominada “ Parameter
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Ranking”, determina los criterios de probabilidad y promedio— utiliza cuatro
variables de entrada; tres son variables internas que se obtienen del algorit-
mo de parametros iniciales y una cuarta variable de informacion de entrada.
La segunda funcion “Ranking”, toma los datos de “Parameter Ranking” y dos
variables de informacién de entrada para calcular la puntuacién de los cana-
les con mayor probabilidad de oportunidad espectral.

) )
Availability Matrix —> TED
Bandwidth —> —>| PSINR
Parameter Rankin P
Ranking 9
s > m
~— ~—

Figura 4.30. Funciones “Ranking”.

Fuente: elaboracion propia.

En las secciones 4.7.2.1 y 4.7.2.2 se presenta la descripcion y algoritmos im-
plementados para las funciones del algoritmo ranking multicriterio.

4.7.2.1 Parameter Ranking

La funcion “Parameter Ranking” determina los criterios de AP, ETA, prome-
dio de SINR y ABW, estos criterios son calculados para cada uno de los canales
de la matriz de disponibilidad, la sigla y descripcién de cada uno de los criterios se

presenta en la tabla 4.21.

Tabla 4.21. Vectores para el analisis multicriterio.

Siglas Promedio Descripcion
.. . e Promedio de cada una de las columnas
AP Probabilidad de disponibilidad e )
ETA Tiempo medio de disponibilidad Promedio de unos consecutivos de la

matriz de disponibilidad.

Promedio de cada columna de la matriz

AN IFpmneiie ce DL de SINR sin tener en cuenta los ceros.
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Promedio Descripcion

Promedio de cada una de las columnas

ABW Ancho de banda promedio de la matriz BW.

Fuente: elaboracion propia.

El tamafio de cada uno de los vectores es de 1xn, donde n corresponde a la
cantidad de canales (columnas) de la matriz de disponibilidad. El Algoritmo
10 presenta la estructura de programacion implementada para obtener los
criterios AP, ETA, ASINR y ABW.

Algoritmo 11. Estructura criterios AP, ETA, ASINR y ABW.

Criterios AP, ETA, ASINR y ABW

function [AP, ETA, ASINR, ABW] = Parameter Ranking(Available,
SINR, Bandwidth)

i = Current Time Step
j = Total channels
$ AP y ABW

AP = mean( Available(i , :) )
ABW = mean ( Bandwidth (i , :) );
for k =1 : 3
% ASINR

S = SINR(i , k);

S(s==0) = [ 1;

ASINR(1 , k) = mean(S);

% ETA

Channel = Available(: , k);

Ones Channel Total = sum(Channel);
NumObjects = bwconncomp (Channel) .NumObjects;
ETA(1 , k) = Ones Channel Total/NumObjects;

end

* bwconncomp: Busca componentes binarias conectadas.

Fuente: elaboracion propia.

EC 1208



Modelo de asignacion espectral multiusuario para redes de radio cognitiva descentralizadas

La variable de informacién de entrada de la funcion “Parameter Ranking” es
“Time Range”, la cual parametriza el numero de filas que se van a utilizar
para determinar los criterios. El usuario establece si se quiere realizar para
todas las filas de la matriz de disponibilidad o para un rango en especifico.

4.7.2.2 Ranking

La funcion “Ranking” determina los canales con mayor probabilidad de opor-
tunidad espectral, toma los vectores de los criterios AP, ETA, ASINR y ABW,
y los multiplica por el vector “ Weights” (puntuacidn) que se le asigna a cada uno
de estos criterios. La ecuacion (4.1) presenta la operacion matricial realizada
para determinar la variable de salida “Ranking”, [Weights] es la puntuacion
asignada a cada criterio y [P] la matriz de criterios por cada canal.

Ranking = [Weighz‘s]lx X [P] o

[Weights]1x4:[m,l> Were Waisnw WABW]T

APl,l APLn 4.1
) ETA2,1 cer el ETAz,n
[ ]4xn_ ASINR3,1 ASINR},n

ABW;J ABW;’n

La asignacion de los pesos para la construccion del vector [Weights] se rea-
liza de acuerdo con la técnica multicriterio que se requiera utilizar, las técni-
cas corresponden a los diferentes algoritmos de “Handoff Models”, cada uno
programado conforme el estado de arte realizado. En total, se cuenta con
nueve técnicas de toma de decisién multicriterio (figura 4.31).

Cada uno de los “Handoff Models” requiere la asignacion de un vector fila
de pesos de tamafio 1x4 (figura 4.31), los pesos pueden ser ajustados por el
usuario, excepto el modelo Random que genera de manera aleatoria el vector
de pesos, el simulador tiene la posibilidad de cargar pesos por defecto si el
usuario lo requiere.
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Handoff Models Weights

Handoff Models ¥

WeD  WTED WPSINR  WPWA

AHP > Weights V}——){ ‘ ‘ ‘ ‘

FAHP

Y

FFAHP

SAW

MEW

TOPSIS

VIKOR

GRA

RANDOM

Figura 4.31. Algoritmos multicriterio “Handoff Models”.
Fuente: elaboracion propia.

El Algoritmo 12 presenta la estructura de programacion implementada para
obtener “Ranking”. Es importante aclarar que la descripcion es general, cada
técnica multicriterio tiene su propia estructura de programacion para obte-
ner el vector final “ Ranking”; sin embargo, los nueve algoritmos multicriterio
“Handoff Models” requieren como parametro de entrada los criterios y pesos.

Algoritmo 12. Estructura Ranking.

Ranking

function [Ranking] = Ranking (AP, ETA, ASINR, ABW,Multicriteria)
Weights = [W AP W ETA W ASINR W _ABW];
Average = [AP ; ETA ; ASINR ; ABW];
If Multicriteria == ‘Handoff Models’
% Multicriteria Algorithm
Ranking = W*Average;

end

end

Fuente: elaboracion propia.

4.1.3 Algoritmo de basqueda

Es el encargado del analisis de movilidad espectral. Segun el vector de po-
siciones entregado por el algoritmo “Ranking”, realiza saltos de columna
en la matriz de disponibilidad hasta encontrar un canal disponible; al en-
contrarlo hace un cambio de fila en la matriz de disponibilidad —cada fila
representa un instante de tiempo y la condicion de parada del algoritmo
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de busqueda—. La condicion de parada es ajustada en el parametro “7ime
[minutes]” de la interfaz, correspondiente a la variable de salida “Simulation
Time” de “Parameters Module”, es decir, el algoritmo de busqueda realizara
saltos de fila hasta completar el tiempo establecido. Los saltos de columna
y fila, el tiempo y la disponibilidad son almacenados en un vector y retroali-
mentados al finalizar la simulacién en una base de datos.

Adicional a la condicion de parada “Simulation Time” el algoritmo tiene
una variable de entrada llamada “Criteria Time” la cual establece el criterio
de tiempo para el analisis de movilidad espectral de acuerdo con el vector
“Ranking”, determinado con la matriz de entrenamiento. Cuando el algo-
ritmo de busqueda se encuentre en el instante de tiempo ¢ = criteria time,
se calculara un nuevo vector “Ranking”, pero en este caso con la matriz de
evaluaciéon y para un namero definido de filas de la matriz de disponibilidad,
SINR y BW. Las filas seleccionadas corresponden a las ultimas filas utili-
zadas antes de la condicion de “Criteria time”. Esta condicién permanecera
hasta que se cumpla el tiempo de simulacidn, por tanto, si Simulation Time >
n*Criteria Time, el vector de posiciones se actualizara n veces.

El Algoritmo 13 presenta la estructura de programaciéon implementada
para el algoritmo de busqueda de un solo usuario sin ajuste por “Criteria
Time”. La figura 4.32, el flujo de datos de entrada y salida para el algoritmo
de busqueda.
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Algoritmo 13. Estructura algoritmo de busqueda para un solo usuario.

Algoritmo de busqueda para un solo usuario

r = Simulation Time;

i =1; j = 1; Handoffs = 0; Blokings = 0; time = 0;
while i <= Simulation Time

Availability = Available(i , Ranking(j));

time = time + 1;

switch Availability

case 0
Free(l , time) = Available(i , RankingF(j));
AB(1 , time) = BW(i , RankingF(j));
F used(2 , time) = Handoffs;

3 =3 + 1; % Cambia de canal
Handoffs = Handoffs + 1;
if Available(i , Ranking(j-1))==0 && Available (i
, Ranking(j))==0
Blokings = Blokings + 1;

F busy(2 , time+l) = Blokings;
else
F busy(2 , time+l) = Blokings;
end
case 1
Free(l , time) = Available(i , Ranking(j)):;
AB(1 , time) = BW(i , Ranking(j)):
F used(2,time) = Handoffs;
i =1+ 1; % Cambia de fila
if Available (i-1 , Ranking (j))== &&

Available (i,Ranking(1l))==
Blokings = Blokings+1l;
F busy(2 , time+l) = Blokings;
else
F busy(2 , time+l) = Blokings;
end
end
end
Used Frecuency = F used;
Busy Frecuency = F busy;
Bandwidth Frequency Used = AB;

Fuente: elaboracion propia.
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4.7.3.1 Algoritmo de bdsqueda multiusuario

El algoritmo incorpora el analisis de saltos espectrales para varios usuarios
seriales, para la caracterizacion de la busqueda. El proceso es equivalente
tanto para un usuario con un canal como para multiples usuarios con mul-
tiples canales; la diferencia mas relevante se presenta en el cambio de fila, la
cual, para multiples usuarios, solo se realiza cuando todos los usuarios en-
cuentran oportunidades espectrales, o cuando los requerimientos de canales
son superiores a la disponibilidad.

Para la busqueda multiusuario el algoritmo puede encontrar dos esce-
narios: el primero es donde todos los usuarios encuentran oportunidades
espectrales para todos los requerimientos de canales y, el segundo, donde las
oportunidades espectrales son menores a los requerimientos de los multiples
usuarios; para este ultimo caso, el algoritmo informa sobre el evento y, poste-
riormente, salta al final para iniciar nuevamente la busqueda en el siguiente
instante de tiempo. La figura 4.34 presenta el flujo de variables de entrada y
salida para el algoritmo de busqueda multiusuario.

)

‘ Availability Matrix

’ Multichannel Bands

’ Serial Users

—P‘ Used Frequency ‘

’ Serial Mode

Search

. —}‘ Busy Frequenc ‘
Algorithm yreaueney

’ Random User Figure

—)‘ Bandwidth Frequency Used ‘

’ Simulation Time

by by by

‘ Ranking

~—

Figura 4.32. Algoritmo de busqueda para el analisis de movilidad espectral.

Fuente: elaboracion propia.
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4.7.4 Algoritmos indicadores de prediccion

El algoritmo compara la precision de la prediccion de canales durante un
tiempo de transmision y evalda si las predicciones de disponibilidad pueden
conducir a un uso beneficioso de los canales. Los modelos utilizados para
la prediccion de canales generan una nueva matriz basada en probabilidad,
donde los estados del canal estan definidos por “1” (disponible) y “0” (ocu-
pado). Estas probabilidades son asignadas a una matriz llamada “Predicton
Availability”; la prediccion de disponibilidad se realiza por canal durante un
tiempo definido de simulacion.

La figura 4.33 exhibe el flujo de variables de entrada y salida de la fun-
cion. Es importante resaltar que el algoritmo de busqueda descrito en la
seccion 4.7.3 hace parte del algoritmo indicadores de prediccion, la dife-
rencia radica en una entrada y salida adicional; la entrada corresponde a
“Prediction Availability Matrix”, obtenida a través de las predicciones de dis-
ponibilidad, la cual es comparada con “Evaluation Availability Matrix” para
obtener las métricas de precision. Los resultados de la comparacién equiva-
len a la variable de salida “Prediction”.

)

—P‘ Prediction ‘

icti —P{ Used F ‘
Prediction sed Frequency
Indicators
—>{ Busy Frequency ‘
—}{ Bandwidth Frequency Used ‘

’ Prediction Availability Matrix

‘ Ranking

‘ Evaluation Availability Matrix

’ Multichannel Bands

’ Serial Users

’ Serial Mode

Search
Algorithm

’ Random User Figure

TTTT}TTTT

’ Simulation Time

Update Channels —

~——

Figura 4.33. Algoritmo indicadores de prediccion.

Fuente: elaboracion propia.
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4.7.4.1 Algoritmo métricas de desempefo

La evaluacion de los handoffs espectrales se realiza a través de la matriz de
entrenamiento y validacién. Para el analisis de los resultados el simulador
exporta la informacién a través de una base de datos y un conjunto de fi-
guras. La figura 4.34 presenta el flujo de datos de entrada y salida para el
algoritmo asociado a las métricas de desempeno. Se requieren cinco varia-
bles de entrada: tres son tomadas del algoritmo de busqueda; la ruta donde
se almacenaran los resultados es tomada del médulo “Project Information” y
finalmente una variable de informacion.

|

Used Frequency Figure Delay

Busy Frequency Figure Failed Handoff

N
N

Construction
Bandwidth Frequency Used }—) Figures

Figure Throughput

|
|
Figure Handoff ‘
|
|

Modulation Type ¥ Figure Abandwidth

|

Used Frequency

Database.mat ‘

Busy Frequency }—)
Bandwidth Frequency Used }—)

Data Export Ranking.mat ‘

NN NN

Results.mat ‘

——

Figura 4.34. Algoritmo métricas de desempeno.

Fuente: elaboracion propia.

La base de datos contiene la informacion de la matriz de potencia, la matriz
de disponibilidad, las métricas del algoritmo de busqueda: canales, saltos
de fila, tiempo, disponibilidad y BW. Finalmente, las métricas del algoritmo
ranking y puntuaciones asignadas durante la simulacién. En la tabla 4.22 se
muestran los archivos exportados y el tipo de respectivo formato.
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Tabla 4.22. Tipo de formato.

Archivo Descripcion Formato del archivo

Results Memca§ de desempefio del algoritmo Documento en Matlab .mat
del ranking.

Ranking Metrlcas. de desempefio del algoritmo Documento en Matlab .mat
del ranking.
Matriz de potencia y matriz de

Database disponibilidad utilizadas para el entre- | Documento en Matlab .mat
namiento y la validacion.

Fuente: elaboracion propia.

El simulador genera cincos figuras, en dos formatos diferentes: .png y .fig
(editable en Matlab). Tanto las figuras (.png, .fig) como los archivos expor-
tados (.mat) se guardan en la ruta seleccionada por el usuario (“Directory”
del “Project Information™).

Los resultados corresponden a las figuras AAD, AAFH, AAH, AAT y
ABW la tabla 4.23 presenta la descripcién de las métricas de desemperfio.

Tabla 4.23. Métricas de desempefio multicriterio.

Sigla Nombre Descripcion
Numero de handoff Numero total de sandoff realizados durante el
AAH . . .
promedio acumulado | tiempo de transmision del SU.
Numero de handoff Numero de handoff que el SU no pudo materiali-
AAFH fallidos promedio zar porque encontrd las respectivas oportunidades
acumulado espectrales objetivo ocupadas.
Ancho de banda Es el BW promedio utilizado por el SU durante el
ABW . . ..
promedio tiempo de transmision del SU.
. Tiempo promedio total experimentado por el SU
AAD Retardo promedio durante la transmision de una determinada canti-
acumulado . .
dad de informacion.
Throughput promedio | Tasa de datos efectiva transmitida por el SU du-
AAT . .
acumulado rante el tiempo de transmision del SU.

Fuente: elaboracion propia.

La figura 4.35 muestra un ejemplo de resultados obtenidos por el algoritmo

asociado a las métricas de desempefio.
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Figura 4.35. Ejemplo figuras algoritmo métricas de desempefio.

Fuente: elaboracion propia.

4.7.4.2 Algoritmo métricas de prediccion

Como se describi6 en la seccién 4.7.4.1, la evaluacion handoffs espectrales
se realiza a través de la matriz de entrenamiento y validacién, los resultados
corresponden a las figuras de AAD, AAFH, AAH, AAT y ABW. Los mode-
los utilizados para la prediccidon de canales cuentan con métricas adicionales
asociadas a la calidad de las predicciones realizadas, como se muestra en la
figura 4.36 las métricas son: “ Figure Anticipated” , * Figure Interference” , “ Figure
Perfect”.
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Figure Anticipated ‘

‘ Prediction ‘—)

Construction

1

Prediction Figure Interference ‘
.
Figure Perfect ‘
~—

Figura 4.36. Algoritmo métricas de prediccion.
Fuente: elaboracion propia.

Los resultados corresponden a las figuras de handoffs acumulado; con inter-
ferencia, perfectos y anticipados, la tabla 4.24 presenta la descripcion de las
métricas de desempefo para las técnicas de prediccion.

Tabla 4.24. Métricas de desempefio modelos de prediccion.

Sigla Nombre Descripcion
v Gl ey st Numero total de handoff reactivos realizados una
AATH interferencia/promedio vez llega el PU, durante el tiempo de transmision
acumulado e
, Numero de handoff sin interferencia realizados
AAPH N;rfr;eczg dfo}g:;?r muy cerca de la llegada del PU, pero sin causar
E cumula. (Ii)o interferencia a este ultimo, durante el tiempo de
transmision del SU.
Ntmero de handoff’ Numero de handoff sin interferencia realizados de
AAUH anticipado promedio forma muy anticipada a la llegada del PU, durante
acumulado el tiempo de transmision del SU.

Fuente: elaboracion propia.

La figura 4.37 muestra un ejemplo de resultados por el algoritmo asociado a
las métricas de desempefio.
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Figura 4.37. Ejemplo figuras algoritmo métricas de prediccion.

Fuente: elaboracion propia.
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4.8 No Predicton Module

La figura 4.38 presenta en detalle las variables de entrada y salida para el
“No Prediction Module” .

’ Multichannel Bands }—V
’ Serial Users }—V
’ Serial Mode }—V
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»
>
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’ Threshold }—P P

’ Fixed Bandwidth }—»

No Prediction
’ Noise Floor }—V Module
’ Multichannels }—}
’ Simulation Time }-’

Model Inputs

Figure Handoff ‘

Figure Throughput ‘

Database.mat ‘

Ranking.mat ‘

[ A A A A

Results.mat ‘

Y

Spectral Mobility

Feature Extraction

Figura 4.38. Descripcion variables de entrada y salida “No Prediction Module”.

Fuente: elaboracion propia.
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4.8.1 Movilidad espectral (No prediccion)

La movilidad espectral es una funcion del ciclo cognitivo asociada al cambio
de canal del SU cuando las condiciones del mismo se degradan o un PU
aparece, también conocido como Zandoff espectral. Es un aspecto clave en el
desempeno de las comunicaciones del SU en las redes de radio cognitiva, y
la decisidn espectral juega un papel muy importante para mejorar dicho des-
empefio. Las técnicas de decisidn espectral establecen mediante un conjunto
de reglas, cuando y donde realizar un handoff espectral. A continuacidn, se
describe el modelo propuesto, las variables de entrada y funciones, el diagra-
ma de bloques del modelo y las métricas utilizadas.

4.8.1.1 Modelo propuesto

El analisis de movilidad espectral se realiza implementando en cascada los
algoritmos: “Initial Parameter”, “Parameter Ranking”, “Ranking”, “Search
Algorithm”, “ Construction Figures” y “ Data Export”. La figura 4.39 presenta el
diagrama de bloques del modelo propuesto.

Information Module

£) 19
2.2
Collaborative Multi-User
Module Module

\—l—’ Movilidad Espectral
-
ie | s

‘ Parameters No Prediction

Initial
Parameter

Search

Ranking Algorithm

Figure and Data
Module Module

_________________________________________

Figura 4.39. Modelo propuesto Movilidad espectral.
Fuente: elaboracion propia.

4.8.1.2 Descripciones variables de entrada y funciones

La figura 4.40 fue elaborada con el objetivo de describir especificamente
el control que tiene el usuario sobre las variables del modelo; presenta en
detalle las funciones y variables de informacion de entrada (no contempla

Ec 1222



Modelo de asignacion espectral multiusuario para redes de radio cognitiva descentralizadas

las variables de entrada asociadas a las salidas de los modulos —esta des-

cripcion se detalla en la figura 4.38 y en el diagrama de bloques de la figura
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Spectral Mobility
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|
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160AM
64QAM |
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|
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FFAHP
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MEW
TOPSIS L
VIKOR
GRA (
RANDOM
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Weights
Weights v > -
Availability Average r
Median Availability
Time
Data Export
PSINR
Bandwidth Average
|

Figura 4.40. Descripcion variables de entrada y salida modelo de Movilidad espectral.

Fuente: elaboracion propia.
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4.8.1.3 Diagrama de bloques

La figura 4.41 presenta el diagrama de bloques del modelo de movilidad
espectral, el cual permite identificar el flujo de datos de las funciones y la
informacioén tomada de los respectivos modulos. Cada uno de los colores se
ajusta a la convencién descrita en la figura 4.3.

4.8.1.4 Evaluacion modelo movilidad espectral

Para la evaluacion del modelo se utiliza el algoritmo métricas de desempefio
para obtener las figuras de AAD, AAFH, AAH, AAT y ABW.

4.8.2 Feature Extraction

El Deep Learning es un método que emula el aprendizaje humano; sus mode-
los utilizan grandes volumenes de informacion para extraer caracteristicas
directamente de los datos. La mayoria de los métodos de Deep Learning uti-
lizan redes neuronales. Una de las formas de aplicar una red profunda para
la clasificacion de objetos es la extraccion de caracteristicas, donde, las ca-
pas de las redes neuronales profundas aprenden ciertas caracteristicas de
las imagenes, las cuales se pueden se extraer en cualquier momento. Estas
caracteristicas se pueden utilizar para el entrenamiento de clasificadores ba-
sados en estrategia de machine learning como las SVM.

4.8.2.1 Modelo propuesto

El modelo consiste en implementar la red AlexNet para la seleccion de ca-
racteristicas. El objetivo es utilizar una red neuronal convolucional para
extraer de una de sus capas un conjunto acertado de rasgos, y posteriormen-
te, a través de estos entrenar una maquina de soporte vectorial que permita
desarrollar un proceso de clasificacion. La figura 4.42 presenta el diagrama
de bloques del modelo propuesto.
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Figura 4.41. Diagrama de bloques modelo no predictivo, técnica: movilidad espectral.
Fuente: elaboracion propia.
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Figura 4.42. Modelo propuesto Feature Extraction.

Fuente: elaboracion propia.
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4.8.2.2 Descripciones variables de entrada y funciones

La figura 4.43 fue elaborada con el objetivo de describir especificamente el con-
trol que tiene el usuario sobre las variables del modelo. Presenta en detalle las
funciones y variables de informacion de entrada, no contempla las variables de
entrada asociadas a las salidas de los mddulos; esta descripcion se realiza en
detalle en la figura 4.38 y en el diagrama de bloques de la figura 4.44.
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Deep Figure Cognitive Radio
M
Deep Learning
Deep SVM Cognitive Radio
Deep Learning .
Feature Extraction Deep Network Cognitive Radio New Zone — | Construction
Figures
Search Medium Figure ) .
Level > segmentation [ Figure Division ¥
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Row DeepALearnmg
Ranking Deep
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r N\
Search Medium |, Figure ) . —
Level Segmentation | »| Figure Division v Initial Parameters
SR
2 12 Row
L J
( N\
—>| Data Export
Search Algorithm
L J
—
r N\
Construction Figure
Data Export
AN J

Figura 4.43. Descripcion variables de entrada y salida modelo Feature Extraction.
Fuente: elaboracion propia

4.8.2.3 Diagrama de bloques

En la figura 4.44 se presenta el diagrama de bloques del modelo de extrac-
cion de caracteristicas, permite identificar el flujo de datos de las funciones y
la informacién tomada de los respectivos modulos; cada uno de los colores
se ajusta a la convencion descrita en la figura 4.3.
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4.8.2.4 Evaluacion modelo movilidad espectral

Para la evaluacion del modelo se utiliza el algoritmo métricas de desempefo

para obtener las figuras de AAD, AAFH, AAH, AAT y ABW.
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Figura 4.44. Diagrama de bloques modelo no predictivo técnica Feature Extraction.

Fuente: elaboracion propia.

4.9 Predicton Module

La figura 4.45 presenta en detalle las variables de entrada y salida para el

“No Prediction Module” .
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Figura 4.45. Descripcion variables de entrada y salida “ Prediction Module”.
Fuente: elaboracion propia.

4.9.1 Markov Chain

Las cadenas de Markov son una técnica estocastica basada en el analisis de
la dinamica interna del sistema que simula la predicciéon del estado actual
en un tiempo determinado a partir de los estados anteriores. Es un proceso
aleatorio con la propiedad de que dado el valor actual del proceso Xt, los
valores futuros Xs para s > t son independientes de los valores pasados Xu
parau <t.
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4.9.1.1 Modelo propuesto

El modelo elaborado para la evaluacion de handoff espectral utilizando
cadenas de Markov estd divido en cinco etapas, la figura 4.46 presenta el dia-
grama de bloques del modelo propuesto. La primera etapa corresponde a los
modulos “Project Information”, “ Collaborative Module” , *“ Multi-User Module” y
“Parameters Module”; en la segunda se realiza una seleccion de canales para
la matriz de entrada con dos algoritmos de seleccion, el objetivo es reducir
los canales de estudio para mejorar los tiempos de simulacion; en la tercera
etapa se realiza la construccion de la matriz de probabilidades de transicion;
en la cuarta se evalta la matriz de transicion; y finalmente, en la quinta se
procesan los resultados de la evaluacion y se muestran de forma grafica los
indicadores relevantes.

Seleccion de canales

A través de “ Channel Selection” se escogen los canales (columnas) de estudio.
La cantidad de canales es un parametro conocido ya que corresponde al
valor ajustado en “Channels Number”, sin embargo, se requiere establecer
como y cuales canales seleccionar; a través de “Ranking Markov” se realiza la
seleccion, se utilizan dos técnicas: “ Handoff Models” y un modelo aleatorio

“Random” .

Matriz de transicion

El objetivo es determinar la matriz de probabilidades de transicion, deter-
minando las probabilidades de estado actual y futuro que son necesarias
para la implementacién de las cadenas, luego son utilizadas en la matriz de
validacion para cuantificar los sandoffs espectrales. Markov establece como
requerimiento conocer el estado actual y futuro del sistema, se define un
estado futuro como: time steps + 1.

La técnica utilizada para los estados actuales esta orientada a mode-
lar cada time steps mediante un ntimero entero positivo. Para obtener este
modelamiento se representa cada fila de la matriz de disponibilidad de entre-
namiento como un numero binario donde cada bit corresponde a un canal,
posteriormente, se realiza la conversioén de base 2 a base 10.
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Para los estados futuros se realiza un barrido de la matriz de entrena-
miento segun el conjunto de estados actuales obtenidos, se determinan los
estados de mayor y menor ocurrencia evaluando todos los canales del time
steps futuro, posteriormente, se normalizan los resultados.
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Figura 4.46. Modelo propuesto Markov Chain.
Fuente: elaboracion propia.

4.9.1.2 Descripciones variables de entrada y funciones

La figura 4.47 fue elaborada con el objetivo de describir especificamente el
control que tiene el usuario sobre las variables del modelo. Presenta en de-
talle las funciones y variables de informacion de entrada, no contempla las
variables de entrada asociadas a las salidas de los modulos, esta descripcion
se realiza detalladamente en la figura 4.45 y en el diagrama de bloques de la
figura 4.48.
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Figura 4.47. Descripcion variables de entrada y salida modelo Markov Chain.

Fuente: elaboracion propia.

4.9.1.3 Diagrama de bloques

Enla figura 4.48 se presenta el diagrama de bloques del modelo de extraccion
de caracteristicas que permite identificar el flujo de datos de las funciones y
la informacién tomada de los respectivos mdédulos, cada uno de los colores
se ajusta a la convencion descrita en la figura 4.3.

4.9.1.4 Evaluacion modelo movilidad espectral

Se analizan los handoffs espectrales evaluando las probabilidades de transi-
cion sobre la matriz de validacion; para la evaluacion del modelo se utiliza el
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algoritmo métricas de desempefio para obtener las figuras de AAD, AAFH,
AAH, AAT y ABW. Adicionalmente, se vincula a la base de datos de salida
indicadores asociados a las predicciones —exactas, buenas, regulares y ma-
las—. En la tabla 4.25 se presenta la descripcion de estos indicadores.

Tabla 4.25. Indicadores de prediccion Markov Chain.
Indicadores Descripcion

Prediccion exacta Condicién donde la prediccion del futuro es 100 % acertada.

Condicién donde la prediccion del futuro tiene un acierto mayor

Prediccion buena al 70% y menor al 100 %.

. Condicién donde la prediccion del futuro tiene un acierto mayor
Prediccion regular

al 30% y menor al 70 %.
L Condicion donde la prediccion del futuro tiene un acierto menor
Prediccion mala o
al 30%.
Fuente: elaboracion propia.
[ Evaluation Availability Matrix |
Power Evaluation Traffic R T
[ YR T Evaluation
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Figura 4.48. Diagrama de bloques modelo no predictivo técnica Markov Chain.
Fuente: elaboracion propia.

4.9.2 Algoritmos genéticos

Modelos de optimizacion inspirados en el proceso de genética y evolucion.
Un modelo simple esta integrado por una poblacion inicial de individuos y
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un conjunto de operaciones que interactian sobre la poblacion para obtener
nuevas generaciones de individuos.

La poblacidén esta constituida por un conjunto de individuos representa-
do mediante un equivalente en numero binario: la representacion binaria se
llama cromosoma y cada bit dentro de este se denomina gen. Un algoritmo
genético se caracteriza a través de cinco definiciones o equivalentes genéti-
cos descritos en la tabla 4.26 (para una poblacion especifica se muestra en la
figura 4.49).

Tabla 4.26. Equivalentes genéticos.

Parametro genético Descripcion

Alelo Cada uno de los es.ta'lc’los distintos que puede presentar un gen
en una misma posicion.

Gen Valor de un alelo dentro de un arreglo.

Cromosoma Coleccion de genes en forma de arreglo.

Posiciéon Lugar que ocupa un gen dentro del cromosoma.

Indice Posicion que tiene el individuo dentro de la poblacion.

Fuente: elaboracion propia.

(123456789 | Posicion

1 101001001
2 011110001
indices 3 1171111001
| 4 10000111@-—>Gen
N [1001 11001]——» Cromosoma

Alelos ={1,0}

Poblaciéon

Figura 4.49. Equivalentes genéticos poblacion especifica.

Fuente: elaboracion propia.
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4.9.2.1 Modelo propuesto

El modelo establece una poblacion inicial aleatoria que es verificada por
una funcién de transicién (matriz de transicion). El objetivo es asegurar
que la poblacion tenga valores coherentes; la seleccidén, cruce y mutacion
construye la poblacion final, equivalente a los datos de entrenamiento. El
numero de generaciones (iteraciones) es una variable que se parametriza
con criterio de prueba y error y se ajusta bajo parametros de rendimiento
como tiempos de simulacion.

El modelo esta divido en cinco etapas, la figura 4.50 presenta el diagra-
ma de bloques del modelo propuesto. La primera etapa corresponde a los
modulos “Project Information” , * Collaborative Module”, “ Multi-User Module” y
“Parameters Module”; en la segunda se realiza una seleccion de canales para
la matriz de entrada con dos algoritmos de seleccion, el objetivo es reducir
los canales de estudio para mejorar los tiempos de simulacion. En la terce-
ra etapa —a partir de las operaciones seleccion directa, cruce y mutacion
(tasas de mutacién pequefnias)— se genera una poblacion final equivalente
a la matriz de entrenamiento; en la cuarta se evalua la matriz de transicion.
Finalmente, en la quinta, se procesan los resultados de la evaluacion y se
muestran de forma grafica los indicadores relevantes.

Seleccion de canales

A través de “Channel Selection” se escogen los canales (columnas) de estudio.
La cantidad de canales es un parametro conocido ya que corresponde al va-
lor ajustado en “Channels Number”, sin embargo, se requiere establecer como
y cuales canales seleccionar; a través de “Ranking Genetic” se elige entre dos
técnicas: “Handoff Models” y un modelo aleatorio “Random”.

Matriz de entrenamiento

Para la matriz de entrenamiento se disefia un algoritmo genético. El modelo
establece una poblacion inicial aleatoria que es verificada por una funcion de
transicion (matriz de transicion), el objetivo es asegurar que la poblacién ten-
ga valores coherentes —la seleccion, cruce y mutacion construye la poblacion
final, equivalente a los datos de entrenamiento—. El numero de generacio-
nes (iteraciones) se ajusta bajo parametros de rendimiento como tiempos de
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simulacion; es una variable que se parametriza con criterio de prueba y error.
La figura 4.50 presenta el diagrama de flujo del algoritmo genético.

Project
Information Module

" 29
2.2
Collaborative Multi-User
Module Module
_l—/ Genetic Algorithm
S \
. 1 N
/ 1 Genetic Algorithm Genetic Algorithm 1
- ' Initial Rankin !
Parameters Prediction ' Parameter Channel Training 9 :
Module Module : Selection Availability Matrix '
1 “1
! ) /—*— 1
1 0 o 1
Genetic Al it
: enetic Algorithm Search :
N Ranking Algorithm :
1
1 ~— 1
. J——
1 1
1 1
1 X 1
. Figure and Data '
1 1
1 1
1

Figura 4.50. Modelo propuesto Genetic Algorithm.

Fuente: elaboracion propia.

4.9.2.2 Descripciones variables de entrada y funciones

La figura 4.51 fue elaborada con el objetivo de describir especificamente el
control que tiene el usuario sobre las variables del modelo. Presenta en de-
talle las funciones y variables de informacion de entrada; no contempla las
variables de entrada asociadas a las salidas de los modulos —esta descrip-
cion se realiza en detalle en la figura 4.45 y en el diagrama de bloques de la
figura 4.52.
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Figura 4.51. Descripcion variables de entrada y salida Genetic Algorithm.

Fuente: elaboracion propia.

4.9.2.3 Diagrama de bloques

La figura 4.52 presenta el diagrama de bloques del modelo de extraccion
de caracteristicas, permite identificar el flujo de datos de las funciones y la
informacion tomada de los respectivos modulos, cada uno de los colores se
ajusta a la convencién descrita en la figura 4.3.
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4.9.2.4 Evaluacion modelo movilidad espectral

Se utiliza el algoritmo métricas de desempefio para obtener las figuras de
AAD, AAFH, AAH, AAT y ABW. Aunque no forma parte de la evaluacion,
entrega informacion del algoritmo genético: numero de generaciones, pobla-
cion inicial, porcentaje de mutacion, entre otras.

Training Availabilty Matrix

Powersegmertaion Traning Sandwidth
SR Genetic et
Theshold Algorithm Igorithm
Initial
Foed Bandwidth

Gen
Trainin

Parameter Channels Number

i

Training
Availability

Matrix Genetic Algorithm

Channel
Selection

Noise Floor [channel selection v. Genetic
Handoff Models Algorithm

Random

Ranking

Evaluation Availability Matrix
P Algorith CIe ey Construction
Training bility Matrix Figures
Evaluation Availabilty Matrix Search
Parameter i
aram Ranking Algorithm s
Bandwidth Matrix Selection PWA
Data Export
T N
[ ooy

Figura 4.52. Diagrama de bloques modelo no predictivo técnica Genetic Algorithm.

Fuente: elaboracion propia.

4.9.3 Naive Bayes

Modelo que depende de la interaccion de diferentes nodos para, asi, generar
aprendizaje en cada nodo involucrado en el proceso. El enfoque bayesiano
es una técnica de aprendizaje probabilistico; provee exactas inferencias y
estima modelos de probabilidad completa, donde el conocimiento a priori o
los resultados son usados para construir un modelo actualizado.

Una de las principales consideraciones para la selecciéon de modelos de
prediccién es que se tienen multiples caracteristicas o criterios que pueden
mejorar el prondstico. Una estructura basada en Naive Bayes asume que la
presencia de una caracteristica en particular no se relaciona de ninguna ma-
nera con la presencia de cualquier otra caracteristica, incluso si una de estas
caracteristicas depende de la otra.
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4.9.3.1 Modelo propuesto

Elmodelo propuesto toma como variable de entrada una matriz de entrenamien-
to de ocupacioén espectral. Antes de ser usada en el proceso de entrenamiento
del predictor, la informacion espectral pasa por el bloque de procesamiento de
informacioén espectral, el cual convierte los datos en serie dicotomicas donde
“0” representa ocupacion del canal y “1”, disponibilidad de canal. Con este
procesamiento de informacion se entrena el algoritmo Naive Bayes.

El modelo est4 divido en cuatro etapas, la figura 4.53 presenta el diagra-
ma de bloques del modelo propuesto. La primera etapa corresponde a los
modulos “Project Information”, “Collaborative Module”, * Multi-User Module”
y “Parameters Module”; 1a segunda consta de dos funciones: (1) “Naive Bayes
Algorithm”, (2) “Channel allocation prediction”. Para calcular los parametros
de costo y gradiente que ajustan el predictor, la primera funcién utiliza como
variables el vector ASINR, ETA y AP. La segunda funcion realiza una asig-
nacién de la ocupacion de canal mediante la asignacion de “1” y “0”, lo cual
genera como variable de salida una matriz de prediccion de disponibilidad
de BW. La tercera etapa compara las matrices para determinar los indicado-
res de prediccidon. Finalmente, en la cuarta etapa se procesan los resultados
de la evaluacion y se muestran de forma grafica los indicadores relevantes.

Project
Information Module

Collaborative Multi-User

'
/ : Naive Bayes
- Initial
Parameters Prediction i Parameter Algorithm
1
1
1 ¥
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Module Module
Naive Bayes
------------------------------------------ '
Naive Bayes
Channel Allocation
Module Module Prediction

Prediction
Indicators
Ranking Search Figure and Data

Figure Prediction

Figura 4.53. Modelo propuesto Naive Bayes.

Fuente: elaboracion propia.
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4.9.3.2 Descripciones variables de entrada y funciones

La figura 4.54 fue elaborada con el objetivo de describir especificamente el
control que tiene el usuario sobre las variables del modelo. Presenta en deta-
lle las funciones y variables de informacién de entrada —no contempla las
variables de entrada asociadas a las salidas de los mddulos, esta descripcion
se detalla en la figura 4.45 y el diagrama de bloques de la figura 4.55—.
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Handoff Models v (——— arameter Ranking
AHP
N J
FFAHP ~ <
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SAW
E—
RANDOM Ranking
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—>| Prediction
Weights v Figures
P Prediction Indicators
Availability Average
N ; —
Median Availability
Time Search Algorithm
E—
PSINR
Bandwidth Average
r N
Construction Figure >| Data Export
Data Export
N J
N J
r N
Construction Prediction
Figures
N J

Figura 4.54. Descripcion variables de entrada y salida modelo Naive Bayes.

Fuente: elaboracion propia

4.9.3.3 Diagrama de bloques

La figura 4.55 presenta el diagrama de bloques del modelo de extraccion de
caracteristicas, el cual permite identificar el flujo de datos de las funciones y
la informacién tomada de los respectivos mddulos, cada uno de los colores
se ajusta a la convencion descrita en la figura 4.3.
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4.9.3.4 Evaluacion modelo movilidad espectral

Para la evaluacion del modelo, se utiliza el algoritmo métricas de des-
empefio para obtener las figuras de AAD, AAFH, AAH, AAT y ABW.
Adicionalmente, por ser un modelo que predice una matriz de disponibili-
dad, se utiliza el algoritmo de métricas de prediccion descrito en la seccidn
4.7.4.2. Por tanto, se incluyen las métricas AAIH, AAPH, AAUH.

Initial Naive Naive
Parameter Bayes [ Gradient Predictor Bayes
Channel
Algorithm Allocation
~— S S Indicators Construction
Eauation sty i |—>] s fananom
Evaluation Availability Matrix Prediction
Training Availability Matrix m Figures
> w ] Search
Parameter Rank Al ith
>
(ST TS

Figura 4.55. Diagrama de bloques modelo no predictivo, técnica Naive Bayes.

Fuente: elaboracion propia.

4.9.4 Logistic Regression

La regresion logistica tiene como principal ventaja el hecho de que se pueden
usar diversas variables explicativas de manera simultanea. Esta caracteris-
tica permite conocer el impacto de estas sobre la variable respuesta. Si se
examinan las variables explicativas de forma independiente, ignorando la
covarianza entre las variables, se puede caer en confusion.

4.9.4.1 Modelo propuesto

El modelo propuesto toma como variable de entrada una matriz de en-
trenamiento de ocupacion espectral. Antes de ser usada en el proceso de
entrenamiento del predictor, los datos pasan por el bloque de procesamiento
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de informacion espectral, el cual los convierte en serie dicotomicas donde
“0” representa ocupacion del canal y “1” representa disponibilidad de ca-
nal. Con este procesamiento de informacidn se entrena el algoritmo Logistic
Regression.

El modelo esta divido en cuatro etapas, la figura 4.56 presenta el diagra-
ma de bloques del modelo propuesto. La primera etapa corresponde a los
modulos “Project Information”, “Collaborative Module”, “ Multi-User Module”
y “Parameters Module”; la segunda consta de dos funciones: (1) “Logistic
Regression Algorithm”, (2) “Channel Allocation Prediction”. Para calcular los
parametros de costo y gradiente que ajusta el predictor, la primera funcion
utiliza como variables el vector ASINR, ETA y AP. La segunda funcion
realiza una asignacion de la ocupacion de canal mediante “1” y “0”, lo cual
genera como variable de salida una matriz de prediccién de disponibilidad
de BW. En la tercera etapa se comparan las matrices para determinar los in-
dicadores de prediccion. Finalmente, en la cuarta, se procesan los resultados
de la evaluacion y se muestran de forma grafica los indicadores relevantes.
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Figura 4.56. Modelo propuesto Logistic Regression.
Fuente: elaboracion propia.
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4.9.4.2 Descripciones variables de entrada y funciones

La figura 4.57 fue elaborada con el objetivo de describir especificamente
el control que tiene el usuario sobre las variables del modelo; presenta en
detalle las funciones y variables de informacion de entrada. No contempla
las variables de entrada asociadas a las salidas de los mdédulos —esta des-
cripcion se detalla en la figura 4.45 y en el diagrama de bloques de la figura
4.58—.
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Figura 4.57. Descripcion variables de entrada y salida modelo Logistic Regression.

Fuente: elaboracion propia.
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4.9.4.3 Diagrama de bloques

La figura 4.58 presenta el diagrama de bloques del modelo de extraccion de
caracteristicas que permite identificar el flujo de datos de las funciones y la
informacion tomada de los respectivos modulos; cada uno de los colores se
ajusta a la convencién descrita en la figura 4.3.

4.9.4 .4 Evaluacion modelo movilidad espectral

Para la evaluacion del modelo se utiliza el algoritmo métricas de des-
empefio para obtener las figuras de AAD, AAFH, AAH, AAT y ABW.
Adicionalmente, por ser un modelo que predice una matriz de disponibili-
dad, se utiliza el algoritmo de métricas de prediccion descrito en la seccion
4.7.4.2. Por tanto, se incluyen las métricas AAIH, AAPH, AAUH.
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Figura 4.58. Diagrama de bloques modelo no predictivo, técnica Logistic Regression.
Fuente: elaboracion propia.

4.9.5 Time Series

El objetivo del modelo de transferencia proactiva pura es hacer predicciones
que definan el comportamiento de los PU y dar herramientas al sistema
para reaccionar antes de que ocurra el evento de interferencia. Los modelos
estocasticos generan nuevos datos a partir de registros histéricos median-
te el ajuste de valores para diferentes retardos de varianza basados en un
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coeficiente de correlacidon en serie. Existen modelos de series Temporales
basados en AR, MA, ARMA, ARIMA y SARIMA.

4.9.5.1 Modelo propuesto

La figura 4.59 presenta el diagrama de bloques del modelo propuesto, divi-
do en cuatro etapas. La primera etapa corresponde a los modulos “Project
Information”, “Collaborative Module”, “Multi-User Module” y “Parameters
Module”; 1la segunda toma la informacién del canal seleccionado y aplica
regresiones AR, MA, AR, ARMA, SARIMA para predecir la llegada de
la PU en el canal seleccionado. La tercera etapa compara las matrices para
determinar los indicadores de prediccidon. Finalmente, en la cuarta, se pro-
cesan los resultados de la evaluacion y se muestran de forma grafica los
indicadores relevantes.
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Figura 4.59. Modelo propuesto Time Series.

Fuente: elaboracion propia.
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4.9.5.2 Descripciones variables de entrada y funciones

La figura 4.60 fue elaborada con el objetivo de describir especificamente el
control que tiene el usuario sobre las variables del modelo. Presenta en deta-
lle las funciones y variables de informacién de entrada —no contempla las
variables de entrada asociadas a las salidas de los mdodulos, estas se detallan
en la figura 4.45 y el diagrama de bloques de la figura 4.61—.
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Figura 4.60. Descripcién variables de entrada y salida modelo Time Series.
Fuente: elaboracion propia.

4.9.5.3 Diagrama de bloques

Enlafigura 4.61 se presenta el diagrama de bloques del modelo de extraccion
de caracteristicas que permite identificar el flujo de datos de las funciones y
la informacién tomada de los respectivos modulos; cada uno de los colores
se ajusta a la convencion descrita en la figura 4.3.
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4.9.5.4 Evaluacion modelo movilidad espectral

Para la evaluacion del modelo se utiliza el algoritmo métricas de des-
empefio para obtener las figuras de AAD, AAFH, AAH, AAT y ABW.
Adicionalmente, por ser un modelo que predice una matriz de disponibili-
dad, se utiliza el algoritmo de métricas de prediccion descrito en la seccidn
4.7.4.2. Por tanto, se incluyen las métricas AAIH, AAPH, AAUH.
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. N
Random User Figure Data Export
T

Figura 4.61. Diagrama de bloques modelo no predictivo, técnica Time Series.
Fuente: elaboracion propia.

4.10 Mddulo Salida

La figura 4.62 presenta la interfaz correspondiente a “Output”’. Este modulo
contiene los botones “Run”, “Close” y “Update”. Para cerrar el software, an-
tes o después de la simulacion, se selecciona el boton “Close”. Si el software
presenta algun mensaje de error, advertencia o se quiere iniciar una nueva
configuracion descartando la informacién introducida, se selecciona el bo-
ton “Update”.

Finalmente, si todos los médulos fueron configurados correctamente, se
habilita el boton “Run” encargado de ejecutar la simulacion.
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Output

# Run *:* Close & Update

Figura 4.62. Salida MultiColl-DCRN.
Fuente: elaboracion propia.

Cada modelo tiene su propio boton “Run”; el objetivo es indicarle al usua-
rio la estrategia parametrizada. En la tabla 4.27 se presenta la figura que se
visualiza segin el modelo.

Tabla 4.27. Boton “Run” segun modelo.

¢ No Prediction # Run Time
# Run DL * Run MA
# Run MC * Run ARMA
# Run GA # Run ARIMA
# Run NB # Run SARIMA
# Run LR

Fuente: elaboracion propia.
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5. Resultados de la investigacion

Este capitulo presenta la evaluacion del modelo propuesto para la asigna-

cion espectral multiusuario en redes de radio cognitiva descentralizadas. La

presentacion de los resultados esta organizada en siete secciones; los titulos

y la respectiva paginacion se describen en la tabla 5.1.

Tabla 5.1. Estructura de resultados del modelo implementado.

Seccion Titulo Paginas

5.1 Evaluacién de los modelos no predictivos

5.2 Evaluacién de los Modelos Predictivos

5.3 Evaluacién comparativa y seleccion de los modelos
Evaluacion del nivel de colaboracion de los modelos

5.4 5.4.1 Evaluacion comparativa de los niveles de

colaboracion

Evaluacién con enfoque multiusuario de los modelos
5.5.1 Evaluacion multiusuario Deep Learning
552 Evaluacion multiusuario FFAHP
5.5.3 Evaluacién multiusuario Naive Bayes

> 5.5.4 Evaluacion multiusuario SAW
5.5.5 Evaluacion multiusuario TOPSIS
5.5.6 Evaluacion multiusuario VIKOR
5.5.7 Evaluacion comparativa multiusuario

56 Evaluacién integral colaborativa y multiusuario de los
modelos

5.7 Propuesta definitiva de modelo multiusuario colaborativo

Fuente: elaboracion propia.
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Las figuras 5.1 a 5.5 de la seccion 5.1 describen el AAH, AAFH, ABW,
AAD y AAT, para los modelos no predictivos: FFAHP, VIKOR, TOPSIS,
SAW y Deep Learning, durante una transmision de nueve minutos, con una
traza de HT y LT, en una red GSM. Las tablas 5.2 y 5.3 muestran los por-
centajes comparativos de las métricas de evaluacion para cada modelo no
predictivo, con una traza de HT y LT, en una red GSM.

Las figuras 5.6 a 5.13 de la seccion 5.3 describen el AAH, AAFH, ABW,
AAD, AAT, AATH, AAUH, AAPH, para los modelos predictivos: Logistic
Regression y Naive Bayes, durante una transmision de nueve minutos, con
una traza de HT y LT, en una red GSM. Las tablas 5.4 y 5.5 muestran los
porcentajes comparativos de las métricas de evaluacion para cada modelo
predictivo, con una traza de HT y LT, en una red GSM.

Las figuras 5.14, 5.16, 5.18, 5.20 y 5.22 de la seccion 5.4 describen el
AAH, AAFH, ABW, AAD, AAT, AATH, AAUH y AAPH, para los mode-
los Deep Learning, FFAHP y Naive Bayes, durante una transmision de nueve
minutos, con una traza de HT, en una red GSM, para cuatro diferentes ni-
veles de cooperacion entre SU (10%, 40%, 70% y 100%). Las figuras 5.15,
5.17, 5.19, 5.21 y 5.23 de la seccion 5.4 describen el AAH, AAFH, ABW,
AAD, AAT, AATH, AAUH y AAPH, para los modelos: SAW, TOPSIS y
VIKOR, durante una transmision de 9 minutos, con una traza de HT, en
una red GSM, para cuatro diferentes niveles de cooperacion entre SU (10 %,
40%, 70% y 100%). Finalmente, la figura 5.24 de la seccion 5.4, describe el
AATH, AAUH, AAPH, para Naive Bayes, durante una transmisioén de nue-
ve minutos, con una traza de HT, en una red GSM, para cuatro diferentes
niveles de cooperacién entre SU (10 %, 40%, 70% y 100 %). Finalmente, las
tablas 5.6, 5.7 y 5.8 de la seccién 5.4.1 muestran los porcentajes comparati-
vos de las métricas de evaluacion para cada modelo.

Las figuras 5.25 a 5.36 de la seccion 5.5.1 describen el AAH en modo
convencional y en modo real para el modelo Deep Learning, durante una
transmision de nueves minutos, con una traza de HT y LT, en una red GSM,
para seis diferentes estructuras multiusuario (1 SU, 2 SU,4 SU, 6 SU, 8 SU y
10 SU). Las figuras 5.37 a 5.48 de la seccion 5.5.2 exponen el AAH en modo
convencional y en modo real para el modelo FFAHP, durante una transmi-
sidén de nueve minutos, con una traza de HT y LT, en una red GSM, para seis
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diferentes estructuras multiusuario (1 SU, 2 SU, 4 SU, 6 SU, 8 SU y 10 SU).
Las figuras 5.49 a 5.72 de la seccion 5.5.3 detallan el AAH y el AAIH, en
modo convencional y en modo real para el modelo Naive Bayes, durante una
transmisioén de nueve minutos, con una traza de HT y LT, en una red GSM,
para seis diferentes estructuras multiusuario (1 SU, 2 SU, 4 SU, 6 SU, 8§ SU
y 10 SU). Las figuras 5.73 a 5.84 de la seccion 5.5.4 presentan el AAH y el
AATH, en modo convencional y en modo real para el modelo SAW, durante
una transmision de nueve minutos, con una traza de HT y LT, en una red
GSM, para seis diferentes estructuras multiusuario (1 SU, 2 SU, 4 SU, 6 SU,
8 SU y 10 SU). Las figuras 5.85 a 5.96 de la seccion 5.5.5 describen el AAH,
en modo convencional y en modo real para el modelo TOPSIS, durante una
transmisioén de nueve minutos, con una traza de HT y LT, en una red GSM,
para seis diferentes estructuras multiusuario (1 SU, 2 SU, 4 SU, 6 SU, 8 SU
y 10 SU). Las figuras 5.97 a 5.108 de la seccion 5.5.6 exhiben el AAH, en
modo convencional y en modo real para el modelo VIKOR, durante una
transmisioén de nueve minutos, con una traza de HT y LT, en una red GSM,
para seis diferentes estructuras multiusuario (1 SU, 2 SU,4 SU, 6 SU, 8 SU y
10 SU). Finalmente, las tablas 5.9, 5.10, 5.11 y 5.12 presentan los porcentajes
comparativos del desempeno de cada algoritmo para el modulo multiusua-
rio en modo convencional y el modo real para 1, 2, 4, 6, 8 y 10 usuarios. Lo
anterior, con el objetivo de analizar el nivel los escenarios multiusuarios. Las
tablas 5.9 y 5.10 exponen la evaluacion comparativa por multiusuario para
HT y LT en modo convencional y real. La tabla 5.11 muestra la evaluacién
comparativa global por tipo de trafico para HT y LT en modo convencio-
nal y real. Finalmente, la tabla 5.12 presenta la evaluacién comparativa por
multiusuario para las métricas de prediccion de Naive Bayes. Las tablas 5.9y
5.10 de la seccidon 5.5.7, dan los porcentajes comparativos de las métricas de
evaluacion para cada modelo, traza de HT y LT.
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5.1 Evaluacidn de los modelos no predictivos
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Figura 5.1. AAH de modelos no predictivos en GSM para HT y LT.
Fuente: elaboracion propia.
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Figura 5.2. AAFH de modelos no predictivos en GSM para HT y LT.

Fuente: elaboracion propia.
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Figura 5.3. ABW de modelos no predictivos en GSM para HT y LT.
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Figura 5.4. AAD de modelos no predictivos en GSM para HT y LT.

Fuente: elaboracion propia.
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Figura 5.5. AAT de modelos no predictivos en GSM para HT y LT.

Fuente: elaboracion propia.
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Tabla 5.2. Valores relativos de las métricas para
modelos no predictivos en GSM con HT.

yvzﬁ;:lgi FFAHP SAW TOPSIS VIKOR . EIZ :an
AAH 96,22 86,43 89,67 81,16 100
AAFH 96,67 82,53 87,06 77,01 100
ABW 96,86 89,34 90,56 84,01 100
AAD 98,07 100 92,94 90,46 84,94
AAT 100 87,72 91,79 79,44 96,72
Score 97,56 89,2 90,4 82,42 96,33

Fuente: elaboracion propia.
Tabla 5.3. Valores relativos de las métricas de
modelos no predictivos en GSM con LT.

glvz:l‘;z‘lg; FFAHP SAW TOPSIS VIKOR . :Zf;fng
AAH 77,89 92,5 100 90,24 15,01
AAFH 33,33 45,45 100 33,33 2,18
ABW 99,88 100 39,07 99,78 90,18
AAD 90,75 98,27 100 98,27 32,82
AAT 99,4 100 99,86 99,93 79,75
Score 80,25 87,24 87,79 84,31 43,99

Fuente: elaboracion propia.
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5.2 Evaluacidn de los modelos predictivos
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Figura 5.6. AAH de modelos predictivos en GSM para HT y LT.

Fuente: elaboracion propia.
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Figura 5.7. AAFH de modelos predictivos en GSM para HT y LT.

Fuente: elaboracion propia.
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Figura 5.8. ABW de modelos predictivos en GSM para HT y LT.

Fuente: elaboracion propia.
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Figura 5.9. AAD de modelos predictivos en GSM para HT y LT.

Fuente: elaboracion propia.
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Figura 5.10. AAT de modelos predictivos en GSM para HT y LT.

Fuente: elaboracion propia.
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Figura 5.11. AATH de Modelos Predictivos en GSM para HT y LT.

Fuente: elaboracion propia.
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Figura 5.13. AAPH de modelos predictivos en GSM para HT y LT.

Fuente: elaboracion propia.
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Tabla 5.4. Valores relativos de las métricas para
modelos predictivos en GSM con HT.

Meétrica de Evaluacion Logistic Regression Naive Bayes
AAH 89,93 100
AAFH 100 91,64
ABW 100 99,98
AAD 100 89,36
AAT 100 90,21
AATH 68,12 100
AAUH 100 98,96
AAPH 100 89,05
Score 94,76 94,90

Tabla 5.5. Valores relativos de las métricas para
Modelos Predictivos en GSM con LT.

Fuente: elaboracion propia.

Métrica de Evaluacion Logistic Regression Naive Bayes
AAH 98,77 100
AAFH 26,32 100
ABW 100 99,94
AAD 99,59 100
AAT 99,85 100
AATH 18,6 100
AAUH 100 96,67
AAPH 100 95,4
Score 80,39 99,00

EC 1266
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5.3 Evaluacidn comparativa y seleccion de los modelos

A partir del analisis comparativo de las métricas obtenidas en la evaluacion
de los modelos no predictivos y predictivos se seleccionan los algoritmos para
la evaluacién del modulo colaborativo, el andlisis se realiza para LT y HT.

De acuerdo con los resultados de los modelos no predictivos, para HT,
se seleccionan las dos puntuaciones mas altas, FFAHP con 97,56 % y Deep
Learning con 96,33 %. Para LT se seleccionan las tres puntuaciones mas al-
tas, TOPSIS con 87,79%, VIKOR con 84,31 % y SAW con 87,24 %.

Segtn los resultados de los modelos predictivos, para HT y LT, se selec-
ciona Naive Bayes por su desempefo en las métricas de QoS y de prediccion.
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5.4 Evaluacion del nivel de colaboracion de los modelos
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Figura 5.14. AAH con 10%, 40%, 70% y 100% de colaboraciéon para GSM con HT.

Fuente: elaboracion propia.
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Figura 5.15. AAH con 10%, 40%, 70% y 100% de colaboracion para GSM con LT.

Fuente: elaboracion propia.
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Figura 5.17. AAFH con 10%, 40%, 70% y 100% de colaboracién para GSM con LT.

Fuente: elaboracion propia.
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Figura 5.19. ABW con 10%, 40%, 70% y 100 % de colaboracion para GSM con LT.
Fuente: elaboracion propia.
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Figura 5.21. AAD con 10%, 40%, 70% y 100% de colaboracién para GSM con LT.

Fuente: elaboracion propia
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Figura 5.22. AAT con 10%, 40%, 70% y 100% de colaboracién para GSM con HT.

Fuente: elaboracion propia.
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Figura 5.23. AAT con 10%, 40%, 70% y 100 % de colaboracion para GSM con LT.

Fuente: elaboracion propia.
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5.4.1 Evaluacion comparativa de los niveles de colaboracion

Las tablas 5.6 y la 5.7 presentan los porcentajes comparativos del desempefio
de cada algoritmo por nivel de colaboracion para cada métrica de evalua-
cion. Lo anterior, con el objetivo de analizar el nivel de dependencia y aporte
que representa la colaboracién y, de acuerdo con esto, seleccionar los niveles
de que resulten mas interesantes. Tener en cuenta que para las tablas ante-
riores la comparacion solo se debe realizar verticalmente, no horizontal. La
tabla 5.8 presenta los porcentajes comparativos globales del desempefio de
cada algoritmo por métrica de evaluacion para dos niveles de colaboracion
(10% y 100 %). Tener en cuenta que para la tabla anterior la comparacién se
puede realizar horizontalmente, y no vertical.

Tabla 5.6. Evaluacion comparativa por nivel de colaboracién para HT.

Nivel de
colaboracion
HT
Deep L. 10% 64,68 | 22,15 | 74,18 | 71,75 68 - - - 60,15
FFAHP 10% 91,71 | 33,37 | 91,17 | 95,27 | 94,1 - - - 81,12
Naive B. 10% 51,31 | 50,49 | 72,53 | 65,59 | 84,63 | 71,45 | 100 | 58,05 | 69,26
Deep L. 40% 70,64 | 25,72 | 81,15 | 75,88 | 71,39 - - - 64,96
FFAHP 40% 94,67 | 34,67 | 91,41 | 97,24 | 94,4 - - - 82,48
Naive B. 40% 56,51 | 55,83 | 76,66 | 69,5 | 92,91 | 82,21 | 87,38 | 63,5 | 73,06
Deep L. 70% 79,08 | 27,04 | 87,26 | 83,55 | 76,04 - - - 70,59
FFAHP 70% 96,14 | 35,62 | 92,35 | 98,07 | 95,45 - - - 83,53
Naive B. 70% 68,38 | 77,36 | 79,24 | 71,35 | 95,45 | 93,79 | 61,22 | 80,35 | 78,39
Deep L. 100% 100 | 36,98 | 95,34 | 100 | 92,31 - - - 84,93
FFAHP 100% 96,22 | 35,75 | 100 | 99,03 | 100 - - - 86,2
Naive B. 100% 80,05 | 100 81,8 | 76,18 | 97,46 | 100 | 59,21 | 100 | 86,84

Fuente: elaboracion propia.
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Tabla 5.7. Evaluacion comparativa por nivel de colaboracion para LT.

Nivel de g

colaboracion HT

SAW 10% 74,71 11,11 92,29 93,18 93,6 72,98
TOPSIS 10% 67,71 14,29 92,49 86,08 93 70,71
VIKOR 10% 70,65 11,11 92,95 90,16 92,81 71,54
SAW 40% 81,25 18,18 92,71 95,13 92,52 75,96
TOPSIS 40 % 80,25 33,33 98,01 90,77 99,38 80,35
VIKOR 40% 74,71 13,33 99,18 93,92 99,93 76,21
SAW 70% 84,42 40 99,4 97,2 99,93 84,19
TOPSIS 70% 83,33 40 98,54 98,91 99,86 84,13
VIKOR 70% 79,27 20 99,46 95,13 99,88 78,75
SAW 100% 100 100 99,56 100 100 99,91
TOPSIS 100 % 87,84 66,67 99,18 99,01 97,17 89,97
VIKOR 100 % 86,67 66,67 100 97,2 99,71 90,05

Fuente: elaboracion propia.

Tabla 5.8. Evaluacién comparativa global por métrica de evaluacion.

Métrica de
Evaluacion

Naive 100 %

Naive 10%
SAW 100 %
Topsis 10%

N
SR
= v—
S

o

Q‘ %
g
) [

Topsis 100 %
Vikor 100 %

Vikor 10%

AAH HT 64,68 | 100 | 91,71 | 96,22 | 51,31 | 80,05 - - - -

AAFH HT 22,15 | 36,98 | 33,37 | 35,75 | 50,49 | 100

ABW HT 74,18 | 95,34 | 91,17 | 100 | 72,53 | 81,8 - - - -

AAD HT 71,75 | 100 | 95,27 | 99,03 | 65,59 | 76,18

AAT HT 68 92,31 | 94,1 | 100 | 84,63 97,46 | - - - -

AAIH HT - - - - 71,45 | 100
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X g X X X oc\° NS §
Meétrica de = 3 = = = = S =
072 = — ) )
Evaluacion o % L S 7 g7 g g
o o ‘s <« g g 4 =
9 [ Z %) = = = >
AAUH HT ; ; . - | 100 |5921| - ; ; ; ; ;
AAPH HT ; ; . - |5805| 100 | - ; ; ; ; ;
AAHLT ; : - ; : - | 74,71 100 |67,71 | 87,84 | 70,65 | 86,67
AAFHLT ; ; ; ; ; - 11,11 100 | 14,29 | 66,67 | 11,11 | 66,67
ABW LT ; ; ; ; ; - 192,29199,56 | 92,49 | 99,18 | 92,95 | 100
AADLT ; ; ; ; ; - 193,18 100 | 86,08 99,01 |90,16| 97,2
AATLT ; ; . ; ; - | 936 | 100 | 93 |97,17|92,81|99,71
HT
Score 60,15 | 84,93 | 81,12 | 86,20 | 69,26 | 86,84 | - ; ; ; ; ;
Global
Score LT
roal ; ; ; ; ; - | 72,98|99,01 70,71 | 89,97 | 71,54 | 90,05

Fuente: elaboracion propia.

5.9 Evaluacion con enfoque multiusuario de los modelos

Para la evaluacién del médulo multiusuario se utilizan los modelos no pre-
dictivos y predictivos de mayor puntuacion para cada nivel de trafico. Para
el trafico HT se utilizan el Modulo Deep Learning, el modelo predictivo Naive
Bayes y las técnicas multicriterio FFAHP, SAW, TOPSIS, VIKOR. Se im-
plementa en modo convencional y en el modo real para 1, 2, 4, 6, 8 y 10
usuarios, con una configuracion de una sola aplicacion al 100 % en un canal.
Los resultados obtenidos se muestran desde la figura 5.25 hasta la 5.108.
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5.5.1 Evaluacion multiusuario Deep Learning
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Figura 5.25. Deep Learning con 1 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.26. Deep Learning con 1 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.27. Deep Learning con 2 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.28. Deep Learning con 2 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.29. Deep Learning con 4 SU en HT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.30. Deep Learning con 4 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.31. Deep Learning con 6 SU en HT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.32. Deep Learning con 6 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.33. Deep Learning con 8 SU en HT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.34. Deep Learning con 8 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.35. Deep Learning con 10 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.36. Deep Learning con 10 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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5.5.2 Evaluacion multiusuario FFAHP
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Figura 5.37. FFAHP con 1 SU en HT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.38. FFAHP con 1 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.39. FFAHP con 2 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.40. FFAHP con 2 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.41. FFAHP con 4 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.42. FFAHP con 4 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.43. FFAHP con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.44. FFAHP con 6 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.45. FFAHP con 8 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.46. FFAHP con 8 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.47. FFAHP con 10 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.48. FFAHP con 10 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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5.5.3 Evaluacion multiusuario Naive Bayes
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Figura 5.49. AAH de Naive Bayes con 1 SU en HT con y sin SU aleatorios adicionales.
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Figura 5.50. AAH de Naive Bayes con 1 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.51. AAH de Naive Bayes con 2 SU en HT con y sin SU aleatorios adicionales.
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Figura 5.52. AAH de Naive Bayes con 2 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.53. AAH de Naive Bayes con 4 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.54. AAH de Naive Bayes con 4 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.55. AAH de Naive Bayes con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.56. AAH de Naive Bayes con 6 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.57. AAH de Naive Bayes con 8 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.58. AAH de Naive Bayes con 8 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.59. AAH de Naive Bayes con 10 SU en HT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.60. AAH de Naive Bayes con 10 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.61. AATH de Naive Bayes con 1 SU en HT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.62. AAIH de Naive Bayes con 1 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.63. AAIH de Naive Bayes con 2 SU en HT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.64. AATH de Naive Bayes con 2 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.65. AAIH de Naive Bayes con 4 SU en HT con y sin SU aleatorios adicionales.
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Figura 5.66. AATH de Naive Bayes con 4 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.67. AAIH de Naive Bayes con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.68. AAIH de Naive Bayes con 6 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.69. AAIH de Naive Bayes con 8 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.70. AATH de Naive Bayes con 8 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.71. AATH de Naive Bayes con 10 SU en HT con y sin SU aleatorios adicionales.
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Figura 5.72. AATH de Naive Bayes con 10 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.73. SAW con 1 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.74. SAW con 1 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.75. SAW con 2 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.76. SAW con 2 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.77. SAW con 4 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.78. SAW con 4 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.79. SAW con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.80. SAW con 6 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.81. SAW con 8 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.82. SAW con 8 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.83. SAW con 10 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.84. SAW con 10 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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5.5.5 Evaluacion multiusuario TOPSIS
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Figura 5.85. TOPSIS con 1 SU en HT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.86. TOPSIS con 1 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.87. TOPSIS con 2 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.88. TOPSIS con 2 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.

3451E2



César Augusto Hernandez Sudrez, Diego Armando Giral Ramirez, Lizet Camila Salgado Franco

2000 T
weUser 1 @User 2 J

@ User 3 ¥ User 4 -
1 “‘*

1500

1000

Handoffs

500

Tiempo de Transmision del SU (min)

a. Modo Convencional en HT

2000 T
weUser 1 @User 2

@ User 390 User 4

1500

1000

Handoffs

500

Tiempo de Transmision del SU (min)

b. Modo Real en HT

Figura 5.89. TOPSIS con 4 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.90. TOPSIS con 4 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.

347 1E2



César Augusto Hernandez Sudrez, Diego Armando Giral Ramirez, Lizet Camila Salgado Franco

2500 T
wkUser 1 @User 2|

Handoffs

Tiempo de Transmisién del SU (min)

a. Modo Convencional en HT

2500 T
wkUser 1 @User 2|

@®User 30 User 4
User 5‘User 6

2000

1500

1000

Handoffs

500

Tiempo de Transmisién del SU (min)

b. Modo Real en HT

Figura 5.91. TOPSIS con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.92. TOPSIS con 6 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.

349 E2



César Augusto Hernandez Sudrez, Diego Armando Giral Ramirez, Lizet Camila Salgado Franco

2500

2000

1500

1000

Handoffs

500

2500

2000

1500

1000

Handoffs

User 7

User 4
User 6
User 8

Tiempo de Transmision del SU (min)

a. Modo Convencional en HT

eUser 1@

User 7

User 2
User 4
User 6
User 8

Tiempo de Transmision del SU (min)

b. Modo Real en HT

Figura 5.93. TOPSIS con 8 SU en HT con y sin SU aleatorios adicionales.

EC 1350

Fuente: elaboracion propia.



Modelo de asignacion espectral multiusuario para redes de radio cognitiva descentralizadas

400 I

User 7" 'User 8

300

200

Handoffs

100

0 1 2 3 4 5 6 7 8 9
Tiempo de Transmisién del SU (min)

a. Modo Convencional en LT

400

300 User 7" User 8

200

Handoffs

100

0 1 2 3 4 5 6 7 8 9
Tiempo de Transmisién del SU (min)

b. Modo Real en LT

Figura 5.94. TOPSIS con 8 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.95. TOPSIS con 10 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.96. TOPSIS con 10 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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5.5.6 Evaluacion multiusuario VIKOR
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Figura 5.97. VIKOR con 1 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.98. VIKOR con 1 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.99. VIKOR con 2 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.100. VIKOR con 2 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.101. VIKOR con 4 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.

EC 1358



Modelo de asignacion espectral multiusuario para redes de radio cognitiva descentralizadas

250

200 [{@user 3

wmUser 1 @User 2,

User 4

150

100

Handoffs

50

0

N

1

2 3 4 5 6 7 8 9
Tiempo de Transmision del SU (min)

a. Modo Convencional en LT

300

2501

®uUser3

wUser 1 @User 2

User 4

200

150

Handoffs

100

Tiempo de Transmision del SU (min)

b. Modo Real en LT

Figura 5.102. VIKOR con 4 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.

359 [EC



César Augusto Hernandez Sudrez, Diego Armando Giral Ramirez, Lizet Camila Salgado Franco

3000

T
deUser 1 @User 2
2500 H®User 34 User 4
-User S‘User 6

2000

1500

Handoffs

1000

500

Tiempo de Transmisién del SU (min)

a. Modo Convencional en HT
3000

T
deUser 1 @User 2
2500 H®User 340 User 4
-User 5‘User 6

2000~

1500

1000

Handoffs

500

Tiempo de Transmisién del SU (min)

b. Modo Real en HT

Figura 5.103. VIKOR con 6 SU en HT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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Figura 5.104. VIKOR con 6 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.105. VIKOR con 8 SU en HT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.106. VIKOR con 8 SU en LT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.107. VIKOR con 10 SU en HT con y sin SU aleatorios adicionales.

Fuente: elaboracion propia.
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Figura 5.108. VIKOR con 10 SU en LT con y sin SU aleatorios adicionales.
Fuente: elaboracion propia.
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5.9.7 Evaluacion comparativa multiusuario

Las tablas 5.9, 5.10, 5.11 y 5.12 presentan los porcentajes comparativos del
desempefio de cada algoritmo para el modulo multiusuario en modo con-
vencional y el modo real para 1, 2, 4, 6, 8 y 10 usuarios, con el objetivo de
analizar el nivel de los escenarios multiusuarios. Las tablas 5.9 y 5.10 pre-
sentan la evaluacion comparativa por multiusuario para HT y LT en modo
convencional y real. La tabla 5.11 exhibe la evaluacion comparativa global
por tipo de trafico para HT y LT en modo convencional y real. Finalmente,
la tabla 5.12 presenta la evaluacién comparativa multiusuario para las métri-
cas de prediccién de Naive Bayes.

Tabla 5.9. Evaluacién comparativa por multiusuario para HT.

9
Caracteristicas .§° §
Multiusuario & § .§
SEN =
MSUI1-Convencional 100 96,22 80,05 86,43 89,67 81,16
MSU2 - Convencional 100 89,9 97,42 89,6 93,03 84,57
MSU4 - Convencional 84,65 83,65 100 79,71 87,59 75,15
MSU6 — Convencional 77,6 78,26 100 76,59 79,25 68,98
MSUS - Convencional 74,79 74,57 100 75,36 75,68 65,58
MSU10 - Convencional 71,87 72,22 100 72,61 73,29 63,34
Score Convencional 84,82 82,47 96,25 80,05 83,09 73,13
MSUI - Real 85,29 100 83.2 89,82 93,19 84,35
MSU2 — Real 80,94 80,7 100 83,77 92,59 84,16
MSU4 — Real 78,3 75,12 100 75,64 83,05 74,19
MSU6 — Real 78,58 77,49 100 71,7 76,42 67,27
MSUS — Real 71,94 71,41 100 73,33 74,45 61,96
MSU10 — Real 66,12 68,97 100 70,75 70,51 60,93
Score Real 76,86 78,95 97,2 78,5 81,7 72,14

Fuente: elaboracion propia.
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Tabla 5.10. Evaluacion comparativa por multiusuario para LT.

g

Caracteristicas §

Multiusuario 2

=
MSU1-Convencional 16,23 77,89 8,41 92,5 100 90,24
MSU?2 - Convencional 18,36 74,45 10,89 100 99,03 97,14
MSU4 — Convencional 13,52 72,51 15,29 100 97,7 97,23
MSU6 — Convencional 13,12 77,2 18,56 100 93,4 96,5
MSUS - Convencional 13,66 77,91 21,41 100 94,59 96,81
MSU10 — Convencional 14,4 79,43 23,83 100 96,41 97,25
Score Convencional 14,88 76,57 16,4 98,75 96,86 95,86
MSUI - Real 17,54 84,21 9,1 100 62,5 97,56
MSU2 — Real 13,92 73,29 13,21 100 63,82 85,17
MSU4 — Real 12,24 54,26 15,37 100 90,13 86,69
MSU6 — Real 12,61 64,6 19,96 100 81,12 69,04
MSUS — Real 13,77 63,87 21,39 74,52 100 88,93
MSU10 — Real 14,89 73,86 26,7 83,94 100 98,26
Score Real 14,16 69,02 17,62 93,08 82,93 87,61

Fuente: elaboracion propia.

Tabla 5.11. Evaluacion comparativa global por tipo de trafico.

§

Escenario '§ %

3 3

QAN =
AAH HT Convencional 84,82 82,47 96,25 80,05 83,09 73,13
AAH HT Real 76,86 78,95 97,2 78,5 81,7 72,14
AAH LT Convencional 14,88 76,57 16,4 98,75 96,86 95,86
AAH LT Real 14,16 69,02 17,62 93,08 82,93 87,61
Score HT Global 80,84 80,71 96,73 79,28 82,4 72,64
Score LT Global 14,52 72,8 17,01 95,92 89,9 91,74

Fuente: elaboracion propia.
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Tabla 5.12. Evaluacion comparativa por multiusuario
para interferencia en Naive Bayes.

Caracteristicas E.

Multiusuario E
MSU1-Convencional 52,6 75 100 100 100 44,67 | 78,71
MSU2 - Convencional 68,18 100 65,66 | 47,17 | 98,65 | 52,63 | 72,05
MSU4 - Convencional 86,89 | 82,76 | 52,01 | 26,77 | 91,26 | 79,57 | 69,88
MSU6 — Convencional 92,19 60 50,33 | 23,24 | 85,42 | 97,34 | 68,09
MSUS - Convencional 95,65 | 50,51 | 47,08 | 22,34 | 82,89 100 | 66,41

MSU10 - Convencional 100 40,27 | 43,65 | 22,04 | 81,79 | 96,26 64

Score Convencional 82,59 | 68,09 | 59,79 | 40,26 90 78,41 | 69,86
MSU1 - Real 47,35 | 62,5 100 100 100 | 45,93 | 75,96
MSU2 - Real 79,89 100 | 49,67 | 40,98 | 97,51 | 58,41 | 71,08
MSU4 - Real 76,27 | 58,82 | 53,43 | 23,73 | 89,84 | 94,02 | 66,02
MSU6 — Real 80,54 50 49,06 | 23,27 | 83,49 100 | 64,39
MSUS - Real 87,73 | 28,99 | 4524 | 21,3 | 82,51 | 97,76 | 60,59
MSU10 - Real 100 | 31,65 | 37,35 | 21,26 | 81,01 | 94,98 | 61,04
Score Real 78,63 | 55,33 | 55,79 | 38,42 | 89,06 | 81,85 | 66,51
Score Global HT 80,61 | NA | 57,79 | NA | 89,53 | NA | 7598
Score Global LT NA | 61,71 NA | 39,34 | NA | 80,13 | 60,39

Fuente: elaboracion propia.
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6. Discusion

El modelo de asignacion espectral multiusuario para redes de radio cog-
nitiva descentralizadas desarrollado estd conformado por los modulos
colaborativo, multiusuario, predictivo y el Deep Learning. Para su evaluacion
y validacién se implementaron ocho métricas de evaluacion:

1. Retardo promedio acumulado (AAD)

2. Handoff fallidos promedio acumulado (AAFH)

3. Handoff promedio acumulado (AAH)

Handoff con interferencia promedio acumulado (AAIH)
Handoff perfecto promedio acumulado (AAPH)
Throughput promedio acumulado (AAT)

Handoff anticipado promedio acumulado (AAUH)

© N S s A

Ancho de banda promedio (ABW)

Las tablas 5.2 y 5.3 presentan la evaluacién porcentual para los modelos
no predictivos; las tablas 5.4 y 5.5 la evaluacién porcentual para los mo-
delos predictivos. Las tablas 5.6, .57 y 5.8 hacen lo mismo para el modulo
colaborativo. Las tablas 5.9, 5.10, 5.11 y 5.12 exponen los porcentajes com-
parativos del desempefio de cada algoritmo para el médulo multiusuario
en modo convencional y real para 1, 2, 4, 6, 8 y 10 usuarios. Las tablas
5.9 y 5.10 presentan la evaluaciéon comparativa por multiusuario para HT
y LT en modo convencional y real. La tabla 5.11 presenta la evaluacién
comparativa global por tipo de trafico para HT y LT en modo convencional
y real. Evidentemente, por mayor numero de oportunidades espectrales, el
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desempeno de las métricas presenta mejores resultados para LT. La tabla
5.12 presenta la evaluacion comparativa por multiusuario para las métricas
de prediccion de Naive Bayes.

Para la evaluacion de los modelos no predictivos se implementaron cua-
tro técnicas multicriterio (FFAHP, VIKOR, TOPSIS, SAW) y Deep Learning.
Para el nivel de trafico HT los resultados se presentan en la tabla 5.2. De
acuerdo con los criterios de costo y beneficio de cada una de las métricas,
Deep Learning obtiene el mejor desempefio respecto a las técnicas multicri-
terio con una puntuacion de 96,33%; FFAHP obtiene el segundo mejor
desempefio, TOPSIS, VIKOR y SAW el tercer, cuarto y quinto, respecti-
vamente. Respecto a las métricas de evaluacion individuales, para los dos
modelos con las puntuaciones mas altas (Deep Learning y FFAHP), la dife-
rencia promedio entre métricas es de 3,38 %, exceptuando AAD, en donde
el primero obtiene el rendimiento maés deficiente —para esta métrica, la di-
ferencia es 13,13%—. Entre el modelo con la puntuaciéon mas alta (Deep
Learning) y la mas baja (VIKOR), la diferencia promedio entre métricas es
18,76 %, exceptuando AAD; para esta métrica, la diferencia es 5,52 %.

Para la evaluacion de los modelos no predictivos se implementaron cua-
tro técnicas multicriterio (FFAHP, VIKOR, TOPSIS, SAW) y Deep Learning.
Para el nivel de trafico LT los resultados se presentan en la tabla 5.3. A di-
ferencia de HT y de acuerdo con los criterios de costo y beneficio de cada
una de las métricas, Deep Learning y FFAHP obtienen el menor desempefo
respecto a TOPSIS, VIKOR y SAW. TOPSIS obtiene la mayor puntuacion
con 87,29%, SAW la segunda con 87,24 %, finalmente VIKOR con 84,31 %.
Respecto a las métricas de evaluacion individuales, para los tres modelos
con las puntuaciones mas altas (TOPSIS, VIKOR y SAW), no es viable ob-
tener una diferencia promedio entre métricas debido a que no se presentan
variaciones sobre el mismo rango.

Para la evaluacion de los modelos predictivos se implementaron dos
técnicas: Logistic Regression y Naive Bayes. Para el nivel de trafico HT los
resultados se presentan en la tabla 5.4. Por ser técnicas de prediccidn, se in-
cluyen tres métricas adicionales: AAPH, AAUH y AAIH. Para el analisis de
puntuacion Naive Bayes presenta la mayor puntuacion: 94,9 % —con una di-
ferencia por debajo de 1%, respecto a Logistic Regression—. Para las métricas
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asociadas a la prediccidn, Logistic Regression presenta los valores relativos
mas altos para handoff perfectos y anticipados, con una diferencia de 10,95 %
y 1,04 % respecto a Naive Bayes. Para los handoff con interferencia Naive Bayes
presenta los valores relativos mas altos con una diferencia de 31,88 %. Para
las demas métricas la diferencia promedio es 9,72 %, exceptuando AAD, en
donde la diferencia es 0,02 %.

La evaluacion de los modelos predictivos implementd dos técnicas:
Logistic Regression y Naive Bayes. Para el nivel de trafico LT los resultados se
presentan en la tabla 5.5; por ser técnicas de prediccion, se incluyen tres mé-
tricas adicionales: AAPH, AAUH y AAIH. Para el analisis de puntuacion
Naive Bayes presenta la mayor puntuacién con 99,0 %, con una diferencia de
18,61 % respecto a Logistic Regression. De las métricas asociadas a la predic-
cion, Logistic Regression presenta los valores relativos mas altos para handoff
perfectos y anticipados, con una diferencia de 3,33 % y 4,6 % respecto a Naive
Bayes; para los handoff con interferencia Naive Bayes presenta los valores re-
lativos mas altos con una diferencia de 81,4%. Para las demas métricas la
diferencia promedio es 0,46 %, exceptuando AAFH, en donde la diferencia
es 73,68 %.

Para la evaluacion del modulo colaborativo se utilizan los modelos no
predictivos y predictivos de mayor puntuacioén para cada nivel de tréafico.
Para el trafico HT se utiliza Deep Learning, FFAHP y Naive Bayes, para cua-
tro niveles de colaboracion: 10%, 40%, 70% y 100%. Los resultados de la
evaluaciéon comparativa por nivel de colaboracidn se presentan en la tabla
5.6. De acuerdo con la puntuacion, se evidencia una mejoria en el desem-
pefio de cada algoritmo al aumentar el nivel de colaboracién: el promedio
de las diferencias con respecto al nivel colaboracion anterior es 8,26 % para
Deep Learning, 1,69% para FFAHP y 5,86 % para Naive Bayes. En general,
la mejoria obtenida es menor a 10% para todos los modelos. Por tanto, un
analisis interesante seria evaluar comparativamente cada modelo en todos
los escenarios, teniendo en cuenta el nivel de mayor y menor colaboracion,
es decir, 10% y 100 %.

Para la evaluacion del modulo colaborativo se utilizan los modelos no
predictivos y predictivos de mayor puntuacion para cada nivel de trafico.
Para el trafico LT se utilizan SAW, TOPSIS y VIKOR, para cuatro niveles
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de colaboracion: 10%, 40%, 70% y 100%. Los resultados de la evalua-
cion comparativa por nivel de colaboracion se presentan en la tabla 5.7. De
acuerdo con la puntuacién, se evidencia una mejoria en el desempefio de
cada algoritmo al aumentar el nivel de colaboracion; el promedio de las di-
ferencias con respecto al nivel colaboracion anterior es de 8,98 % para SAW,
6,42 % para TOPSIS y 6,17 % para VIKOR. En general, la mejoria obtenida
es menor a 10 % para todos los modelos. Por tanto, un analisis interesante se-
ria evaluar comparativamente cada modelo en todos los escenarios, teniendo
en cuenta el nivel de mayor y menor colaboracion, es decir, 10% y 100 %.

Con respecto a AAH, en HT se observa que Deep Learning en 100 % tiene
el mejor desempeno, sin embargo, esta caracteristica solo esta presente para
este nivel de colaboracidon, para el resto de escenarios FFAHP presenta las
mejores métricas; Naive Bayes, para los cuatro escenarios obtiene los niveles
mas bajos. En LT, SAW en 100 % tiene el mejor desempefo. Esta caracteris-
tica se presenta para los demas niveles de colaboracion. TOPSIS obtiene las
segundas mejores métricas excepto en el escenario del 10%, en donde por
una diferencia de 2,94 % gana VIKOR.

Con respecto a AAFH, en HT se observa que Naive Bayes en 100 % tiene
el mejor desempefio. Esta caracteristica se presenta para los demas niveles
de colaboracion. FFAHP obtiene las segundas mejores métricas excepto en
el escenario del 100%, en donde por una diferencia de 1,23% gana Deep
Learning. En LT, SAW en 100% tiene el mejor desempefio, para este esce-
nario TOPSIS y SAW obtienen resultados iguales: el comportamiento es
equivalente para el nivel de colaboracién de 70%. Para el nivel de colabora-
cion de 40% y 19% TOPSIS supera a SAW y VIKOR.

Con respecto a ABW, en HT se observa un comportamiento equivalente
en los cuatro escenarios: FFAHP obtiene el mejor desempefo, seguido de
Deep Learning y, finalmente, Naive Bayes. En LT, para los cuatro escenarios,
VIKOR obtiene el mejor desempeno, seguido de SAW para 100%, 70 %.
Para el 40% y 10% —con una diferencia de 5,3% y 0,2% respectivamen-
te—, TOPSIS presenta mejores resultados.

Con respecto a AAD, se observa que FFAHP domina en tres de los cuatro
escenarios de HT —solo en el nivel de colaboracion de 100 %, Deep Learning
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con una diferencia de 0,97 % presenta el mejor desempeflo—; para el resto
de niveles mantiene el segundo lugar y Naive Bayes ocupa el tercero. Para
LT, SAW domina en tres de los cuatro escenarios —solo en el nivel de cola-
boracion de 70% TOPSIS, con una diferencia de 1,71 %, presenta el mejor
desempeiio—, para 10% y 40 % de colaboracion el comportamiento se man-
tiene; TOPSIS y VIKOR presentan el segundo y tercer desempeno.

Con respecto a AAT, para los cuatro escenarios de HT, FFAHP obtiene el
mejor desempeno, seguido de Naive Bayes y Deep Learning. Para LT, en 10%
y 40 % de colaboracién VIKOR, TOPSIS y SAW presentan el primer, segun-
do y tercer desempefio, respectivamente. Para 100% y 10% SAW toma los
mayores niveles; por una diferencia de 2,54 % en la colaboracién del 100 %
VIKOR sobrepasa a TOPSIS; finalmente, para 10 % de colaboracion, por un
margen de 0,19% TOPSIS supera a VIKOR.

De acuerdo con la propuesta de evaluar comparativamente el nivel de mayor
y menor colaboracion, la tabla 5.8 presenta los porcentajes comparativos glo-
bales del desempefio por métrica de evaluacion, para el nivel de colaboracion
de 10% y 100%. En este caso, la evaluacion comparativa se realiza horizontal-
mente para poder comparar los modelos en los diferentes escenarios.

Respecto a la puntuacién global de la tabla 5.8, para HT con un nivel de
colaboracion de 100 %, el modelo con el mejor desempefio es el obtenido
por el modelo predictivo Naive Bayes, con una puntuacion de 86,84 % si se
incluyen las métricas de prediccion; si se excluyen del analisis, la puntuacion
para este modelo sigue siendo superior con 87,84 %. La segunda mejor pun-
tuacion la obtiene la técnica multicriterio FFAHP con 86,2 %. Finalmente,
Deep Learning se ubica en el tercer puesto con una puntuacion de 84,93 %,
respecto a la primera puntuacion; el segundo y tercer modelo estan por de-
bajo de 2%. Para LT con un nivel de colaboracién de 10%, el modelo con
mejor desempefio es el obtenido por la técnica multicriterio FFAHP con
81,2 %; la segunda mejor puntuacion la obtiene el modelo predictivo Naive
Bayes con 69,26 % vy, finalmente, Deep Learning con 60,15 %. Si se comparan
los niveles de colaboracion de 10% y 100 %, se evidencia que Deep Learning
y Naive Bayes mejoran considerablemente al aumentar el nivel de colabora-
cion, con una diferencia en la puntuacion de 24,78 % para Deep Learning y
17,58 % para Naive Bayes, para FFAHP la diferencia es 5,08 %.
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Respecto a la puntuacion global de la tabla 5.8, para LT con un nivel de
colaboracion de 100%, el modelo con el mejor desempeiio es el obtenido
por SAW, con una puntuacion de 99,91 %; la segunda mejor puntuacion la
obtiene VIKOR con 89,97%. En el tercer puesto con una puntuacion de
89,97 % se ubica VIKOR —respecto a la primera puntuacion, el segundo y
tercer modelo estan por debajo del 10 %—. Para LT con un nivel de colabo-
racion de 10 %, el modelo con el mejor desempefio es el obtenido por SAW
con 72,98 %, la segunda mejor puntuacion la obtiene VIKOR con 71,54%
y, finalmente, TOPSIS con 70,71 %. Si se comparan los niveles de colabo-
racion de 10% y 100 %, se evidencia que SAW, TOPSIS y VIKOR mejoran
considerablemente al aumentar el nivel de colaboracién, con una diferencia
en la puntuacién de 26,93 % para SAW, 19,26 % para TOPSIS y 18,51%
para VIKOR.

Para la evaluacion del modulo multiusuario se utilizan los modelos no
predictivos y predictivos de mayor puntuacion para cada nivel de trafico.
Para el trafico HT se utiliza Deep Learning, el modelo predictivo Naive Bayesy
las técnicas multicriterio FFAHP, SAW, TOPSIS, VIKOR. Se implementa en
modo convencional y real para 1, 2, 4, 6, 8 y 10 usuarios. Como métrica de
evaluacion se utiliza: AAH. Los resultados de la evaluacién comparativa de
acuerdo con el tipo de simulacion (real y convencional) y al numero de usua-
rios es presentado en la tabla 5.9. Como se identifica, conforme aumenta el
numero de usuarios el desempefio de cada uno de los modelos disminuye;
evidentemente, las oportunidades espectrales seran menores y mas dificiles
de ubicar.

Segun la puntuacion obtenida en la tabla 5.9 para HT, en modo conven-
cional, el mejor desempefio es Naive Bayes, con una puntuacion del 96,25 %
seguido de Deep Learning, TOPSIS, FFAHP, SAW y VIKOR. La diferencia
promedio de cada modelo con respecto a Naive Bayes es de 13,65%, con
excepcion del modelo con el mas bajo desempefnio que es VIKOR, donde la
diferencia es de 23,12%. Para el modo real Naive Bayes continua siendo el
modelo con mejor desempeno, sin embargo, se presenta variacion respecto a
la puntuacion de las demas técnicas; Deep Learning baja y se ubica en la cuar-
ta puntuacion; TOPSIS, FFAHP, SAW aumentan de posicion manteniendo
el orden de clasificacién, VIKOR permanece en la ultima posicion. La
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diferencia promedio de cada modelo con respecto a Naive Bayes es 17,48 %,
con excepcion de Deep Learning y VIKOR, donde la diferencia promedio es
de 22,7%.

De acuerdo con la puntuacién obtenida en la tabla 5.9 para LT, en modo
convencional, el mejor desempefio lo obtienen las técnicas multicriterio.
A diferencia de HT, Deep Learning y el modelo predictivo Naive Bayes no
se ubican en los primeros lugares, de igual forma. Respecto a las técnicas
multicriterio, SAW, VIKOR y TOPSIS obtienen las mayores puntuaciones,
mientras que FFAHP se ubica en la ultima posicion de estas cuatro técni-
cas. El mejor desempefio es SAW, con una puntuacion de 98,75 % seguido
de TOPSIS y VIKOR con 96,86 % y 95,82 %, respectivamente; FFAHP con
76,57%. Las puntuaciones mas bajas son para Naive Bayes y Deep Learning
por debajo de 17%; la diferencia de cada modelo con respecto a SAW esta
por debajo de 3% para TOPSIS y VIKOR; para FFAHP es de 22,18 %, para
Naive Bayes de 75,46 % y para Deep Learning de 78,92 %. Para el modo real
el comportamiento es proporcional, la tnica diferencia esta en funcién de
la segunda y tercera posicion; para este caso, VIKOR adquiere el segun-
do mejor rendimiento y TOPSIS baja a la tercera posicion, Deep Learning y
Naive Bayes se mantienen en la quinta y sexta posicion. El mejor desempeio
es SAW, con una puntuacion de 93,08% seguido VIKOR y TOPSIS con
87,61% y 82,93 %, respectivamente; FFAHP con 69,02 %. Las puntuaciones
mas bajas son para Naive Bayes y Deep Learning con puntuaciones debajo de
20%; la diferencia de cada modelo con respecto a SAW esta por debajo de
20% para las técnicas multicriterio y de 75,46% y 78,92 % para el modelo
predictivo y Deep Learning, respectivamente.

Latabla 5.11 presenta la evaluacion comparativa de acuerdo con el nime-
ro de handoff para para HT y el LT, en modo convencional y real. Para HT
la mayor puntuacién la tiene Naive Bayes. Adicionalmente, esta técnica de
predicciodn tiene otra caracteristica relevante frente a las demas: el desempefio
aumenta para un modelo realista, como se espera de tal escenario, con
usuarios que ingresan y salen en tiempo aleatorio; las métricas de beneficio
deberian disminuir, sin embargo, aunque se presenta un incremento en el
desemperio, es tan solo de 0,95 %, lo cual permite establecer que esta estra-
tegia no se ve afectada por la incorporacién de usuarios aleatorios. Para el
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resto de estrategias, la variacion del escenario realista respecto al conven-
cional es inferior a 2% para SAW y TOPSIS, para FFAHP es de 3,52% vy,
finalmente, la mayor variacién la tiene Deep Learning con 7,96%. En LT
las mejores puntuaciones son para las técnicas multicriterio SAW, VIKOR,
TOPSIS y FFAHP con 95,92%, 91,74%, 89,9% y 72,8 %, respectivamente.
Deep Learning y Naive Bayes obtienen puntuaciones debajo de 20 % respecto a
las variaciones del escenario realista frente al convencional; la mayor varia-
cion se presenta en las técnicas multicriterio: 13,93 % para TOPSIS, 8,25 %
para VIKOR, 7,55% para FFAHP y 5,67% para SAW, las variaciones de
Deep Learning y Naive Bayes estan por debajo de 1%, aunque al igual que en
HT, Naive Bayes presenta un incremento en el desempefio.

De acuerdo con la métrica de costo acumulativa analizada para diferentes
modelos de toma de decisiones —durante nueve minutos de transmision, en
modo convencional y real—, se presenta una disminucion en el desempefio
de la técnica multicriterio en términos de aumento del numero de usuarios:
el mejor desempefio con el menor numero de fandoff acumulados es para
el escenario con 1 SU, y el desempefio mas bajo con el mayor numero de
handoff acumulados es para el escenario con 10 SU. Para escenarios inter-
medios, durante los primeros tres minutos se presentan variaciones en el
orden de desempeno, después del tercer minuto, los escenarios con el mayor
incremento promedio del nimero de Aandoff son los rangos de 2 SU a 5 SU.

El desempefio en modo real es menor al modo convencional, la incor-
poracion de usuarios aleatorios reduce las oportunidades espectrales y por
tanto son mas dificiles de ubicar. Respecto a los modelos multicriterio imple-
mentados para la toma de decisiones, se evidencia que conforme aumenta
el nimero de usuarios el desempefio de las técnicas de toma de decisiones
disminuye. En general, TOPSIS proporciona las mejores métricas con los
niveles mas bajos de Aandoff totales, el mejor indicador se obtiene para el
escenario con 1 SU.
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1. Conclusiones

1.1 Generales

La presente investigacion desarrolla un modelo de asignacion espectral mul-
tiusuario para redes de radio cognitiva descentralizadas. Para la asignacion
del espectro se implementan cuatro moédulos: el modulo colaborativo, el
moédulo multiusuario, el médulo predictivo y el modulo Deep Learning. El
modulo colaborativo es una estructura bidireccional de informacién; el moé-
dulo multiusuario gestiona el acceso de multiples usuarios en dos tipos de
modos: convencional y real; el modulo predictivo analiza aplicaciones con
sensibilidad alta al retardo y, finalmente, el modulo Deep Learning extrae de
una red neuronal convolucional las caracteristicas de las oportunidades es-
pectrales. El modelo propuesto, selecciona de forma dinamica e inteligente
la oportunidad espectral con base en los criterios: AP del canal, tiempo esti-
mado de disponibilidad del canal, SINR y BW. La validacion del desempefio
del modelo propuesto se realizdé por medio de datos reales de ocupacion
espectral capturados en experimentos realizados en la banda de frecuencia
GSM y Wi-Fi. Sin embargo, la aplicacion del algoritmo también se puede
extender a otras bandas de frecuencia siempre que se cuente con la informa-
cion estadistica necesaria y suficiente.

De acuerdo con los resultados de los modelos no predictivos, Deep Learning
presenta un alto desempefio (el segundo mejor, 1% por debajo de FFAHP)
para los niveles de trafico alto y un bajo desempefio (el peor) para los nive-
les de trafico bajo. Su desempeifio en el médulo colaborativo es congruente
para los niveles de trafico alto, evidenciando un buen rendimiento —alrede-
dor de 85% a tan solo 1% de FFAHP y 2% de Naive Bayes—. Aunque era
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logico obtener los mejores resultados para niveles de colaboracion completa
(100%), dado que al tener mayor informacién se toman mejores decisiones,
es significativo observar que con una reduccion de 30% en el nivel de co-
laboracion, los resultados en la toma de decisiones se reducen tan solo 9%
para el caso de Naive Bayes y 15% para Deep Learning. Lo anterior permite
ajustar el nivel de procesamiento sin sacrificar mucho rendimiento. Para los
niveles de trafico bajo, SAW logra un rendimiento excepcional de casi 100 %
con 100% de colaboracién, reduciéndose en 15% al caer la colaboraciéon
a 70%; mientras que TOPSIS se mantiene mas estable al pasar de 90% de
rendimiento con 100% de colaboraciéon a 85% con 70% de colaboracion.
Lo anterior permite inferir que a mayor numero de oportunidades espectra-
les mejor desempefio por parte de los modelos de asignacion espectral; este
mayor numero de oportunidades espectrales permite una mayor flexibilidad
a la hora de balancear el rendimiento y costo computacional.

Con respecto al moédulo multiusuario se pudo evidenciar que al aumentar
el numero de usuarios el desempefio de cada uno de los modelos disminuye.
Naive Bayes responde muy bien al trafico multiusuario, Deep Learning no se ve
afectado por escenarios realistas y las técnicas multicriterio FFAHP, SAW,
TOPSIS y VIKOR presentan buen rendimiento para escenarios con traficos
bajos. También es interesante observar como en los niveles de trafico alto
el rendimiento de las estrategias evaluadas se reduce alrededor de 25% al
incorporar usuarios aleatorios, mientras que para trafico bajo el rendimiento
solo se ve afectado alrededor de 12% en el mismo escenario de usuarios
aleatorios. Lo anterior evidencia la importancia de realizar simulaciones en
entornos mas proximos a la realidad, ya que los resultados se pueden ver
afectados con magnitudes significativas. Ahora, teniendo solo en cuenta la
cantidad de usuarios simultaneos se evidencia que, en efecto, a mayor nume-
ro de usuarios menor nivel de desempefio; sin embargo, la reduccion en este
caso es mejor a la observada para el caso de usuarios aleatorios, para trafico
alto es tan solo de 10% y para tréfico bajo no se evidencia afectacion alguna.
En general, cada estrategia se desempefia de forma satisfactoria en determi-
nados escenarios; para mejorar el rendimiento en el acceso multiusuarios,
una propuesta interesante seria combinar las estrategias implementadas o
desarrollar un multimodelo con un moédulo adaptativo que seleccione la

EC 1378



Modelo de asignacion espectral multiusuario para redes de radio cognitiva descentralizadas

mejor estrategia con base en el escenario y aplicacion que se esté ejecutando
en dicho momento.

Con respecto al nivel de interferencia para la estrategia Naive Bayes —la
unica predictiva— en los resultados presentados, se evidencia que a mayor
numero de usuarios simultaneos mayor nivel de interferencia, llegando a
aumentar alrededor de 20% para el caso de diez usuarios simultaneos. Lo
anterior hace mas relevante el tema de la interferencia a la hora de selec-
cionar una estrategia, sobre todo en aplicaciones sensibles al retardo y la
calidad del canal como el caso de las comunicaciones de voz.

Con respecto al modulo Deep Learning, se utiliza como técnica de ex-
traccion de caracteristicas para el volumen de datos obtenidos a partir de
las mediciones realizadas. Los resultados de las multiples simulaciones en
los diferentes escenarios permiten afirmar que el modelo propuesto tiene
un buen rendimiento en redes de alto trafico, ubicandolo como la segunda
mejor estrategia, con una diferencia de 1,23 % respecto al modelo con mejor
comportamiento; para ambientes colaborativos se evidencia una mejoria de
acuerdo con los niveles de colaboracion establecidos. En promedio, las dife-
rencias con respecto al nivel colaboracién anterior obtenido fue de 8,26 %);
finalmente, los escenarios multiusuarios no se ven afectados por la inclusion
de usuarios aleatorios en tiempo aleatorios. Sin embargo, cada una de las
métricas descritas previamente son tomadas de redes con trafico alto; el moé-
dulo Deep Learning no es una buena estrategia para analisis de escenarios con
traficos bajos.

1.2 Contribuciones de la investigacion

* Disefio y desarrollo de un modelo de asignacion espectral multiusuario
para mejorar el desempeno de las redes de radio cognitiva descentralizadas.

* Disefio y desarrollo de un moédulo colaborativo para el intercambio de
informacion entre SU con el objetivo de realizar una asignacién espectral
multiusuario inteligente.

* Disefio y desarrollo de un médulo multiusuario para el acceso simultaneo
de varios SU a las oportunidades espectrales.
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* Disefio y desarrollo de un modulo predictivo que reduce el nivel de inter-
ferencia entre los SU y los PU.

 Evaluacion y validacién de los algoritmos de decision espectral desarrolla-
dos, con datos de ocupacidn espectral reales capturados en una campafia
de medicion realizada en la ciudad de Bogota, Colombia.

 Evaluacion y validacién de los algoritmos desarrollados, en una red GSM.

* Evaluacion y validacién de los algoritmos desarrollados, con dos niveles
de trafico de PU: alto y bajo.

* Evaluacion y validacion de los algoritmos desarrollados, en cuatro
diferentes escenarios de evaluacién: GSM-LT-Convencional, GSM-HT-
Convencional, GSM-LT-Real, GSM-HT-Real.

* Evaluacion y validacion de los algoritmos desarrollados bajo ocho mé-
tricas de evaluacion: AAH, AAFH, ABW, AAD, AAT, AAIH, AAUHy
AAPH.

e Determinacion de cuatro criterios de decision, seleccionados cuidadosa-
mente, para elegir la mejor oportunidad espectral. Todos los algoritmos
desarrollados trabajaron con los mismos cuatro criterios. Cada uno es
calculado a partir de los datos de ocupacion espectral reales.

* Disefio y desarrollo de una herramienta de simulacién novedosa para
evaluar el desempeno de algoritmos de asignacion espectral multiusuario
para DCRN, basada en datos de ocupacion espectral reales. La herra-
mienta permite modificar varios parametros de interés para analizar el
comportamiento del desempefio de cada algoritmo bajo diferentes situa-
ciones, entre los que se destaca el nivel de colaboracion y el nimero de
SU simultaneos, denominada “MultiColl-DCRN”.

1.3 Investigacion futura

De acuerdo con los resultados obtenidos en el modelo de asignacion es-
pectral concluimos que no hay un algoritmo que se desempene de forma
excelente en todas las métricas de evaluacion y para todos los escenarios de
simulacién (nivel de trafico, tipo de aplicacidn, tipo de red). Cada algoritmo
se puede desempefiar de forma satisfactoria en determinadas métricas de
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evaluacidon y para ciertos escenarios, por lo que una propuesta interesante
es incluir en el modelo desarrollado un médulo de adaptacion que genere
recomendaciones o modificaciones de acuerdo con los requerimientos de la
aplicacion que se esté desarrollando durante la comunicacion del usuario
secundario.

Como trabajo futuro se proponen tres directrices. La primera consiste en
realizar un modulo adaptativo que seleccione el mejor modelo de seleccion
espectral de acuerdo con los requerimientos de la aplicacién en curso. La
segunda consiste en una evaluacion y validacidon de los algoritmos de apren-
dizaje autbnomo mas relevantes en la literatura actual, por ejemplo, el uso
de SVM para realizar procesos de clasificacion y aprendizaje por refuerzo
para desarrollar la parte de adaptacion. La tercera consiste en realizar una
evaluacion y validacion con equipos de radio cognitiva que emulen una red
de radio cognitiva en lugar de simulaciones, con datos de ocupacion espec-
tral reales.
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