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Introducción

En los últimos años, las redes inalámbricas han sido de gran interés para la investiga-
ción debido al crecimiento de las tecnologías que utilizan el espectro para comunicar-
se. La demanda de usuarios y la evolución de las tecnologías generan indirectamente 
escasez de bandas de frecuencia haciendo cada vez más compleja la asignación de 
espectro [1].

En la actualidad, los sistemas de comunicación móvil presentan deficiencias en 
los servicios de voz y datos debido a la saturación de las bandas de frecuencia asig-
nadas y a la escasez de nuevas bandas de frecuencia en el espectro. La saturación de 
las bandas de frecuencia es ocasionada por el aumento considerable de dispositivos 
móviles en la red de radio. Según estudios, se espera que el tráfico IP aumente en 168 
exabytes para el 2019 con un número de dispositivos móviles que será tres veces la 
población mundial [2].

Por este motivo, el acceso oportunista al espectro busca aprovechar aquellas ban-
das de frecuencia licenciadas que no sean utilizadas eficientemente, para hacer uso 
de ellas sin generar impactos negativos en los usuarios licenciados, y así imponer un 
desafío en el estudio de la utilización eficiente del espectro.

Debido a estas razones, la radio cognitiva nace como una red de nueva genera-
ción donde los dispositivos son capaces de cambiar sus parámetros de transmisión en 
función de su interacción con el ambiente de radio para dar lugar a la negociación ac-
tiva o comunicación con otros usuarios del espectro [3]. Para ello, la radio cognitiva 
presenta un sistema inteligente dividido en ciclos que describen el proceso cognitivo 
y permite tener una mejor gestión de los recursos y rendimiento de la red; el ciclo 
cognitivo es capaz de detectar usuarios en el espectro, tomar decisiones, moverse por 
otros canales de frecuencia y compartir el espectro con otros usuarios [4].

Una de las principales funciones para acceder de manera oportunista al espec-
tro por parte de los usuarios secundarios (SU) es tomar decisiones en diferentes 
situaciones que no generen afectación en el tráfico de los usuarios primarios (PU) 
y que permitan hacer un uso eficiente de los canales disponibles [5]. Inicialmente, 
el SU realiza un proceso de detección que se encarga de analizar el entorno de 
radiofrecuencia (RF) e identifica la oportunidad espectral de cada canal, en este 
proceso también detecta posibles intervenciones de los PU en los canales a utilizar 
[6]. Cuando un SU establece una comunicación en un canal, este usuario debe con-
tinuar monitoreando el entorno de RF para poder identificar instantes futuros en los 
que se presente una intervención de un PU, en ese momento, el SU requiere elegir 
un canal próximo en el que pueda continuar con la comunicación y que sea adecua-
do para finalizar la misma. Basado en estas situaciones, un SU necesita establecer 
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comunicación en varios canales hasta llegar al receptor, y tomar decisiones que le 
permitan realizar una transmisión adecuada. 

Por estas razones, el objetivo principal de este trabajo es diseñar un modelo inteli-
gente de decisión de espectro que permita al SU elegir el mejor canal para transmitir, 
permaneciendo la mayor parte de tiempo y prediciendo posibles intervenciones del 
PU, que obliguen al SU a realizar un cambio a otro canal apropiado y oportuno. El 
modelo propuesto inicialmente realiza una etapa de clasificación que organiza por 
prioridad los canales menos utilizados y define el canal más adecuado para ser uti-
lizado por el SU, luego de esto, el modelo implementa técnicas de predicción para 
identificar instantes en que el canal puede ser intervenido por un PU y, de esta ma-
nera, elegir otro canal para continuar la transmisión de un servicio específico sin 
generar interferencia al PU.

Objetivos de la investigación

El objetivo general de esta investigación es: 

Desarrollar un modelo de predicción de la ocupación espectral en un entorno 
urbano que sirva como herramienta para el análisis y diseño de redes de radio cog-
nitiva.

El cual se pretende alcanzar a partir de los siguientes objetivos específicos: 

•	 Analizar estadísticamente las tendencias de ocupación espectral con base en 
mediciones de ocupación espectral, realizadas en redes móviles para un entorno 
urbano.

•	 Diseñar un modelo de predicción de la ocupación espectral con base en medi-
ciones de ocupación espectral realizadas. 

•	 Evaluar y validar el modelo desarrollado a través de datos de ocupación espec-
tral reales.

Financiamiento del proyecto de investigación

El presente libro de investigación es producto de los resultados alcanzados en el pro-
yecto de investigación sin financiación denominado: “Modelo inteligente de decisión 
de espectro para mejorar el desempeño en redes de radio cognitiva”, institucionali-
zado por el Consejo de Facultad de la Facultad Tecnológica y el Centro de Investiga-
ciones y Desarrollo Científico, de la Universidad Distrital Francisco José de Caldas, 
en el 2017. 

Organización del libro de investigación

El libro está estructurado como sigue. En el primer capítulo se realiza una descripción 
de los fundamentos teóricos de la CR. En el segundo apartado se describe la metodolo-
gía de la investigación realizada. La tercera sección presenta los resultados alcanzados 
en la investigación. Y finalmente, en el cuarto capítulo se presentan las conclusiones.
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Radio cognitiva

El espectro electromagnético es un recurso natural, por el cual dispositivos inalám-
bricos transmiten y reciben información en diferentes rangos de frecuencia, los cuales 
son  asignados y controlados por una entidad del gobierno de cada país [1]. 

Existen bandas de frecuencia que son asignadas para ser utilizadas por diferentes 
tecnologías que con el pasar del tiempo han sido relevadas o que pasan largos perio-
dos sin ser utilizadas. Esta problemática ha venido creciendo debido a la evolución y 
aumento de la demanda de las tecnologías inalámbricas. 

Debido a esta problemática, los investigadores se han enfocado en idear un soft-
ware de radio que pueda mejorar la flexibilidad del espectro a través de un lenguaje 
de representación de radio basado en el conocimiento y razonamiento automatizado 
que cumpla con las necesidades del usuario [7]. Esta propuesta inicial fue ideada por 
Mitola, quien dio pautas para una profunda investigación y nuevas problemáticas 
como el acceso al espectro el cual resulta aún más importante que la misma escasez 
física del espectro [8].

Así pues, la CR está definida como un sistema que puede cambiar sus parámetros 
de transmisión en función de su interacción para dar lugar a la negociación activa o 
comunicación con otros usuarios del espectro [1].

Esta tecnología debe cumplir ciertas condiciones que le permitirán desempeñarse 
en una red de radio frecuencia, entre ellas están: determinar las partes libres en el 
espectro, seleccionar el mejor canal disponible, coordinar el acceso al canal con otros 
usuarios, desalojar el canal cuando se detecta un SU [4]. Estas características se ana-
lizarán con más detalle, más adelante.

Para lograr estas condiciones, la CR está fundamentada por dos características 
en su operación, una de ellas es la capacidad cognitiva, la cual es la facultad de in-
teractuar en tiempo real con el entorno de radio, identificando los posibles agujeros 
en el espectro, haciendo uso de ellos de manera temporal y oportunista, y, asimismo, 
detectando usuarios con licencia que puedan intervenir en la comunicación [4]. La 
reconfiguración es otra característica importante ya que le permite programarse para 
transmitir y recibir información en varias bandas de frecuencia seleccionadas, y así 
realizar la configuración y ajuste de los parámetros de funcionamiento ideales para 
la comunicación como lo son las tecnologías de hardware de RF, antena de banda 
ancha, amplificador de potencia y el filtro adaptativo [4].

Una manera de catalogar la CR es en el tipo de arquitectura, centralizada o dis-
tribuida. Las redes clásicas o centralizadas son identificadas porque tienen en su in-
fraestructura un control central que administra la comunicación entre usuarios como 
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por ejemplo las estaciones bases de redes de telefonía móvil o un punto de acceso en 
redes inalámbricas de área local WLAN. Por otro lado, las redes CRAHN o redes 
distribuidas se diferencian en que no tienen una columna vertebral en su  infraestruc-
tura, es decir, que un usuario mediante CR puede conectarse en una arquitectura 
ad hoc con otro usuario en ambas bandas del espectro, con o sin licencia y sin una 
coordinación central [9].

En la figura 1, se puede observar al costado izquierdo una red centralizada en la 
que todos los dispositivos se conectan directamente a un nodo central de comuni-
cación, quien es el encargado de administrar las bandas de frecuencia y controlar el 
acceso al medio. Al costado derecho, se observa una red distribuida o ad hoc, donde 
los dispositivos establecen una comunicación directa entre ellos sin necesitar otro dis-
positivo de comunicación. En esta tecnología los dispositivos observan el ambiente de 
RF local y toman decisiones coordinadas con sus vecinos de manera cooperativa [10].

Figura 1. Arquitectura de red de radio cognitiva
 Fuente: tomada de [9].

Las interacciones en diferentes redes de radio cognitiva (CRN) son realizadas prime-
ro por los PU, quienes tienen un canal y un ancho de banda especifico asignado por 
su proveedor de servicio, y en segundo lugar por los SU, que no tienen un canal de-
terminado por lo que pretenden acceder de manera oportunista a canales con licencia 
sin generar interrupciones, ni afectar los servicios de los PU [11]. El SU debe actuar 
de manera inteligente al momento de acceder a un canal especifico, para ello se debe 
estudiar el ciclo cognitivo.

Ciclo cognitivo
La CR presenta un sistema inteligente dividido en ciclos que describen el proceso 
cognitivo que debe tener un SU para mejorar la gestión de los recursos y el rendi-
miento de la red, al momento de presentarse diferentes situaciones y lograr mante-
ner una comunicación estable. El ciclo cognitivo está compuesto por las funciones: 
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detección, decisión, movilidad y compartición del espectro. El diagrama del ciclo se 
muestra en la figura 2.

Figura 2. Ciclo cognitivo 
Fuente: adaptada de [3].

Para describir la figura 2, se presentarán dos situaciones en la interacción de los SU 
en la red, enfocando el proceso en la decisión de espectro.

El SU inicia una transmisión: cuando nace el requerimiento de transmitir, el SU 
debe analizar el ambiente RF y localizar una porción no usada del espectro. La de-
tección consiste en monitorear las bandas disponibles del espectro, capturar informa-
ción y detectar agujeros en el espectro [3]. Una vez detectado el canal, se requiere 
tomar decisiones y elegir el mejor canal para transmitir, o el canal operativo en ese 
instante, es decir, que la decisión de espectro se encarga de tomar decisiones basado 
en la disponibilidad del espectro y en la caracterización de los canales, analizando la 
capacidad de ancho de banda, interferencia y retardos, entre otras características [3].

Luego de elegir el canal apropiado se debe evitar posibles colisiones con otros SU; 
para ello, la compartición de espectro permite que múltiples SU accedan al espectro, 
y evita problemas de comunicación entre ellos. La CRN puede coordinar y prevenir 
múltiples colisiones o solapamiento en el espectro [12]. Por último, se procede a re-
configurar los parámetros y realizar la transmisión.

El SU transmite: al momento de transmitir, el SU debe tener la capacidad de de-
tectar la posible intervención de un PU, lo que genera la necesidad de cambiar de un 
canal a otro para continuar la comunicación, esta acción es denominada movilidad. El 
sistema debe estar en la capacidad de detectar otros canales disponibles y tomar deci-
siones de manera eficaz y continuar la comunicación en otra porción del espectro [13]. 
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Decisión de espectro en redes de radio cognitiva

La decisión de espectro es una de las principales funciones dentro del ciclo cognitivo, 
la cual tiene la finalidad de elegir el mejor canal para transmitir, dependiendo de los 
agujeros en el espectro y cambios de canal que sea necesarios realizar por parte del 
SU cuando se presente una intervención de un PU.

Existen varias situaciones generadas en la interacción de los SU en una CRN, 
donde es esencial decidir de manera oportuna un canal apropiado. La principal deci-
sión inicia cuando el SU requiere realizar una transmisión, en ese momento se hace 
fundamental determinar el mejor canal a utilizar que resulta de un estudio previo de 
la banda de frecuencia. Otra situación, y quizá más importante, es la intervención 
del PU cuando el SU está realizando una transmisión, en ese momento el SU debe 
seleccionar de manera eficaz otro canal disponible para completar la transmisión, 
este  proceso es llamado handoff  espectral [14].

En las dos situaciones anteriores, la decisión de espectro requiere de la funciona-
lidad de monitorear el entorno de RF para lograr el objetivo de evitar colisiones y 
disminuir la interferencia entre PU y SU. Un SU debe vigilar y guardar información 
estadística que le permita identificar situaciones futuras y tomar decisiones acerta-
das, esta información adquirida se convierte en parámetros útiles que describen el 
comportamiento de un canal y permiten caracterizar el espectro de tal manera que el 
canal elegido sea el adecuado y oportuno. A continuación, se definen aquellos pará-
metros útiles en la caracterización de espectro.

Caracterización del espectro

La caracterización del espectro determina y describe el comportamiento de los ca-
nales, lo que permite distinguir unos de otros, de acuerdo con su tráfico, ocupación 
y configuración. Dentro de las características de transmisión en un canal, existen 
parámetros que influyen en su comportamiento y es importante tenerlos en cuenta a 
la hora de seleccionar un canal. Por tal motivo, se deben estudiar estos factores con 
el fin de identificar algunos beneficios que permitan obtener una mejora en el desem-
peño de estas redes. Algunas características son [3]:

•	 Identificar el canal

•	 Capacidad del canal

•	 Retardo de conmutación de espectro

•	 Interferencia del canal 

•	 Canal de tiempo (CHT)

•	 Tasa de error del canal

•	 Posición del abonado
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Identificar el canal

La utilización del canal por parte del PU es quizás el factor más importante, ya que 
definirá los espacios y tiempos libres en un canal para ser ocupados por un SU. Esta 
ocupación se realiza de manera aleatoria, donde los tiempos de utilización no son de-
terminísticos, sino impredecibles y varían en diferentes aplicaciones. Esta actividad 
de ocupación del canal puede ser modelada como un proceso estocástico aplicando 
técnicas de inteligencia artificial como redes neuronales, modelos de Markov  y Sup-
port Vector Machine (SVM) [15].

Capacidad del canal

Cada banda del espectro en un sistema de multiplexación por división de frecuencia 
ortogonal (OFDM), tiene un ancho de banda diferente, el cual está compuesto por 
varias subportadoras que estiman una capacidad normalizada del canal. Las inves-
tigaciones se han enfocado en estimar la capacidad de ancho de banda mediante el 
estudio de otros parámetros como el nivel de interferencia, tasa de errores y propa-
gación [16].

Se ha demostrado que el método tradicional de la estimación de la capacidad de 
canal, utilizando la relación señal a ruido (SNR), conduce a una decisión de espectro 
no óptima [3]. 

Las capacidades de ancho de banda de un canal licenciado están limitadas por la 
entidad reguladora, esto hace que el SU requiera analizar recursos cuando el ancho 
de banda del PU sea menor que el requerido por el SU, para el modelo propuesto, el 
ancho de banda no es utilizado.

Retardo de conmutación de espectro

Esta característica nace como consecuencia de la intervención de un PU cuando 
está operando el SU en un canal licenciado, en ese momento, el SU debe detectar 
nuevos canales con diferentes frecuencias y conmutar reconfigurando sus parámetros 
de transmisión. En ese proceso de conmutación hay una duración considerable que 
afecta el desempeño de las CRN [17].

El desafío presentado está en reducir el retardo de detección del canal, el tiempo 
que tarda el SU en configurar sus parámetros de transmisión y disminuir el tiempo 
que gasta el SU en acceder al nuevo canal, con el fin de mejorar el rendimiento de 
retardo en CRN.

Interferencia del canal

La interferencia es la mayor consecuencia generada en el proceso de interacción entre 
usuarios en una red. Al acceder al espectro, un SU puede afectar la señal y alterar los 
servicios del PU, por lo tanto, la interferencia  está definida  como la perturbación de 
la señal debido a la coexistencia entre PU y SU en un área de cobertura del PU [18]. 

Existen diferentes estudios para evitar interferencias entre PU y SU en áreas de 
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cobertura específica, donde es importante que el SU no transmita mientras exista 
presencia de un PU.

Tiempo de retención de un canal (CHT)

Esta característica es importante al momento de modelar el acceso al canal, debido 
a que estudia los tiempos de activación y de inactividad de los PU y SU y permite el 
acceso a canales ranurados, regulando y sincronizando este acceso [19].

Inicialmente, se estudian los tiempos de duración de activación de los usuarios 
y tiempos en que el canal permanece libre, luego se definen bloques de tiempo que 
serán recursos libres que podrían ser utilizados por los SU con bloques de similar 
tamaño, para finalmente, acceder al canal que más se ajuste con las mediciones rea-
lizadas, lo que reduce interferencias en la interacción [19].

Tasa de error de canal

Este factor está directamente relacionado con el nivel de interferencia, ancho de ban-
da y la banda de frecuencia disponible, los cuales influyen directamente en la recep-
ción o transmisión de errores de bit en un canal. Esta tasa de error de bit (BER) es 
indicada con la SNR [20].

Localización del abonado

El SU dentro de su funcionamiento y proceso de detección debe obtener informa-
ción geográfica y del ambiente de RF, mediante una función del sistema de posicio-
namiento global (GPS), para coordinar información entre los nodos o servidores 
centrales que identifiquen la ubicación de cada SU y poder construir un mapa de 
actualización mundial.  Este proceso permitirá predecir situaciones futuras de inter-
venciones de los PU [21].

Figura 3. Caracterización del ambiente de radio 
Fuente: adaptada de [3].
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La figura 3 presenta en síntesis los componentes que debe tener en cuenta un modelo 
de decisión de espectro para cumplir con el objetivo de acceder al espectro opor-
tunamente. Aunque diseñar un modelo que evalúe todas las caracteristicas puede 
ser robusto, complejo y computacionalmente poco eficaz, si es misión del ingeniero 
idear un modelo que utilice las caracteristicas principales y necesarias, y que tambien 
reduzca el tiempo de ejecución del mismo.

Dentro del modelo de decisión de espectro es importante definir la manera en que 
se accede al espectro dependiendo de las caracteristicas evaluadas en la caracteriza-
ción. A continuación se estudiarán brevemente los metodos de acceso oportunista al 
espectro.

Métodos de acceso oportunista al espectro

Los SU implementan diferentes técnicas para acceder al espectro basado en la premi-
sa de no afectar el tráfico de los PU; con tal fin, se han ideado diferentes maneras de 
acceder al espectro y se presentan ventajas y desventajas relacionadas con los retar-
dos ocasionados en el proceso de selección del canal, reconfiguración y la generación 
de interferencia al ingresar a un canal ocupado. 

Acceso reactivo

El acceso reactivo es el método por el cual los SU actúan de acuerdo a las interven-
ciones imprevistas de los PU, sin realizar una evaluación previa del comportamiento 
del canal, ni predecir agujeros en el espectro relacionados con la actividad del PU.

Este método puede generar ventajas en la disminución del retardo al momento de 
conmutar a otro canal, pero a su vez, presenta el riesgo de generar mayor interferen-
cia en otros canales.

Acceso predictivo

Los modelos predictivos asumen modelos de ocupación del canal en bandas de fre-
cuencia licenciadas y no licenciadas basado en información recolectada del pasado. 
Estos conjuntos de datos estadísticos sirven de base para la implementación de téc-
nicas de inteligencia artificial que permitan predecir estados futuros de acuerdo a sus 
estados anteriores, creando un patrón de uso de un canal específico. Dentro de las 
técnicas mayormente implementadas se encuentran los modelos ocultos de Markov, 
técnicas de regresión y redes neuronales. El trabajo realizado en [22] permite el acce-
so al espectro prediciendo el tráfico del PU mediante un modelo oculto de Markov.

El SU, dentro de su funcionamiento, podrá implementar alguna técnica para de-
cidir en qué momento puede cambiar de canal y acceder a otro, de acuerdo con sus 
resultados de predicción. Este método tiene la ventaja de evitar la interferencia con 
otros PU, siempre y cuando las predicciones futuras sean acertadas.  
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Acceso proactivo

Este sistema de acceso oportunista es el más apropiado en la implementación de las 
CRN, debido a que el SU prevé con anticipación la intervención de un PU, lo que le 
permite tomar acciones previstas y rápidas que evitarán generar obstrucciones y coli-
siones entre usuarios, reaccionando anticipadamente para realizar un cambio a otro 
canal y continuar la comunicación. En [23] podemos observar un modelo de acceso 
proactivo del espectro.

Los esquemas de cambio de canal proactivos logran que un SU pueda cambiar 
de canal, ya sea cuando se anticipa a la llegada de un PU o cuando un canal con un 
mayor tiempo de inactividad puede ser ocupado basándose en la predicción. Es claro 
que este método de acceso oportunista es beneficioso en la implementación debido 
a que disminuye los riesgos de generar interferencia y logra aprovechar el canal des-
ocupado de una manera eficiente.

Técnicas de inteligencia computacional para radio cognitiva

Las técnicas de inteligencia computacional brindan soluciones en el diseño de redes 
inalámbricas y en especial en las CRN, donde los métodos de clasificación y aprendi-
zaje son importantes para brindar soluciones en el funcionamiento y mejoramiento 
de la prestación de servicios en una red inalámbrica. 

En una CRN es indispensable utilizar herramientas que permitan tomar deci-
siones acordes a la variación del comportamiento del PU, tanto en el dominio del 
tiempo como del espacio, por lo que se hace necesario realizar un estudio previo de 
los métodos utilizados para clasificar canales y predecir espacios en el espectro.

En la construcción de este trabajo, inicialmente se realizó un estudio del estado 
del arte de las técnicas de inteligencia artificial para identificar los métodos más utili-
zados en la actualidad. El resultado de este estudio se ve representado en la elabora-
ción de la tabla 1, donde se evalúan diferentes algoritmos, se determina su aplicación, 
se identifican sus fortalezas y limitaciones, e incluso en algunos de ellos, se informa 
la capacidad de predicción y su rendimiento.

La tabla 1 también presenta la discusión y el análisis de los resultados obtenidos 
al realizar la comparación entre las diferentes técnicas, que permitirá definir cuáles 
pueden servir de apoyo en el diseño del modelo propuesto. En la primera mitad del 
cuadro se presentan los principales algoritmos de toma de decisiones basados en el 
método MADM (Multiple attribute decision making), y en la otra mitad se muestran 
los algoritmos usados en la predicción.

SAW

La aplicación de este algoritmo está fundamentada en la toma de decisiones y en la 
evaluación de criterios múltiples. Este método es utilizado para resolver problemas 
de decisión y se caracteriza por elegir la mejor alternativa basada en atributos que 
describen dichas alternativas. Dentro de las fortalezas más importantes, se puede 
considerar que este método permite asignar diferentes tipos de datos, tanto cuantita-
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tivos como cualitativos. Una limitación importante para este método es la construc-
ción de matrices de decisión y la normalización de los datos, lo que genera posibles 
retardos en su ejecución que impedirán evaluar el procesamiento y tomar decisiones 
en tiempo real [24].

VIKOR

Este algoritmo es implementado para la toma de decisiones multicriterio. VIKOR es 
un algoritmo de decisión que elige la alternativa que más se ajusta a la alternativa 
ideal, alcanzando un rendimiento medio en la asignación de varias características 
como por ejemplo: costo, ancho de banda, frecuencia, entre otras [24]. Al igual que 
SAW este método podría tener problemas en la ejecución en tiempo real si la base de 
datos es de gran tamaño.

Tabla 1. Comparativa de técnicas de inteligencia computacional

Técnica de 
aprendizaje 

Aplicación Fortalezas Limitación 

SAW

Toma de 
decisio-
nes con 

evaluación 
de criterios 
múltiples

Se pueden asignar diferentes tipos 
de datos que caracterizan un 

canal, pueden ser cuantitativos o 
cualitativos.

Requieren de una 
matriz de decisión 
y normalización 

de los datos. 
Pendiente evaluar 
el procesamiento 
en tiempo real.

VIKOR

VIKOR es un algoritmo de 
decisión que elige la alternativa 
que se ajusta a la ideal, alcanza 

un rendimiento medio en la 
asignación de varias característi-
cas como costo, ancho de banda 

y frecuencia.

TOPSIS

Igual que SAW es un algoritmo 
de decisión que trabaja con 

atributos cuantitativos. Elige la 
alternativa más adecuada con la 
distancia euclidiana más corta.
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Técnica de 
aprendizaje 

Aplicación Fortalezas Limitación 

GRA

Clasificar 
redes 

Permite organizar las redes por 
prioridad según el resultado del 

algoritmo M-AHP.

No reduce la can-
tidad de handoff  

en la toma de 
decisiones. 

Clasificar 
redes can-

didatas 

Es eficiente en el proceso de 
clasificación.

Depende del 
algoritmo FAHP 
para determinar 
los pesos de los 

criterios objetivos 
y subjetivos. No es 
diseñado para pre-
decir la actividad 

de los PU.

Aprendizaje 
por refuerzo 

RL

Aprendi-
zaje de ac-
ciones para 

toma de 
decisiones 
óptimas y 
detección 
de canal

Es un algoritmo de adaptación 
que aprende de su experiencia 
interactiva y crea una política 

óptima que puede ser utilizada 
para la toma de decisiones y es 
aplicado para: asignación de 

canal, control de la congestión y 
minimización de la interferencia.

No utiliza la 
experiencia pasada 

para el aprendi-
zaje, converge 
a una política 

óptima luego de 
un centenar de 

episodios o etapas 
de entrenamiento. 

Es asincrónico, 
no especifica que 

acción tomar 
en determinado 

tiempo. No actúa 
en tiempo real.

POMDP 
Proceso de 
decisión de 

Markov

Modela 
estados de 
un canal 

discreto en 
el tiempo

Predicción de la ocupación del 
espectro. Predice la ocurrencia 

y duración de agujeros en el 
espectro.

Alto nivel de 
computación, e 

interpretación del 
modelo matemá-

tico.
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Técnica de 
aprendizaje 

Aplicación Fortalezas Limitación 

Algoritmos 
genéticos 

Reconfigu-
ración de 
antenas, 
optimi-
zación, 

detección 
de espectro

 Resuelve problemas de optimi-
zación en la reconfiguración de 
antenas. Define el rendimiento 

deseado de la antena.

No es aplicable 
para toma de 
decisiones, ni 
predicciones.

Lógica difusa

Toma de 
decisiones 
y handoff  
espectral

No hay mayor dificultad en la 
implementación, utiliza paráme-
tros de entrada como los datos 
de caracterización del canal, es 

menos complejo computacional-
mente y toma decisiones rápidas 

en tiempo real.

Necesita de otra 
herramienta para 
realizar otro tipo 
de función, es ex-
clusivo para toma 

de decisiones.

 MLP Percep-
trón Multica-

pa ANN 

Predicción 
actividad 

PU

Presenta alta precisión en la 
probabilidad de error y en la 

predicción.

Ineficaz al au-
mentar las redes 

neuronales.

Recurrente  
ANN

Predicción 
actividad 

PU

Está bajo investigación aplicar 
redes neuronales recurrentes para 
el modelo de predicción del mapa 
espacio-temporal para la probabi-
lidad de ocupación de espectro.

LSVM  
núcleo lineal 

y GSVM 
Kernel Gaus-

siano

Clasifica-
dor, predic-
ción de la 
actividad 
del PU

LSVM resulta ser el mejor algorit-
mo para predecir el periodo OFF 
de un canal dentro de los algorit-

mos. Ofrece mayor precisión.

Complejidad en 
la implementa-

ción. Requiere de 
amplia infor-

mación para el 
entrenamiento y 
actualización del 

sistema.
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Técnica de 
aprendizaje 

Aplicación Fortalezas Limitación 

Teoría de 
juegos 

Compar-
tición de 
espectro 
en redes 
ad hoc, 

control de 
potencia y 
asignación 
de espectro

Puede ser aplicado para optimi-
zar un proceso de compartición 
de espectro, controlar potencia 
para evitar interferencia e iden-
tificar usuarios malignos para 
realizar enrutamiento seguro.

Complejidad en 
el planteamiento 
de las estrategias 

y el modelado 
matemático.

Árbol de 
decisión 

Toma de 
decisiones

Se genera con datos de entre-
namiento que pueden ser las 
características del canal. No 

presenta complejidad en la imple-
mentación.

No se tienen 
valores estadísticos 
de referencia sobre 

la utilidad en la 
implementación 

de este algoritmo.

TOPSIS

Es otro de los algoritmos de decisión multicriterio que trabaja con atributos cuantita-
tivos. Elige la alternativa más adecuada, de acuerdo con la distancia euclidiana más 
corta.

Aprendizaje por refuerzo RL

Es una técnica de aprendizaje automático, cuyo enfoque es determinar qué acciones 
tomar por parte de los agentes dependiendo de su entorno, con el fin de maximizar 
una recompensa que puede ser utilizada para la toma de decisiones. Esta técnica es 
aplicada para asignación de canal, control de la congestión y minimización de la  
interferencia [25].

Una limitación de esta técnica de aprendizaje es que no utiliza la experiencia o 
datos históricos para el aprendizaje y toma de acciones. Converge a una política óp-
tima luego de un centenar de episodios o etapas de entrenamiento, es asincrónico y 
no específica que acción tomar en determinado tiempo. No actúa en tiempo real [26].

El aprendizaje por refuerzo inicia cuando un SU evalúa ciertos parámetros del 
entorno para construir un estado actual. Luego de producirse las acciones de todo 
el estado actual en su entorno, el SU, o agente, realiza el estudio de acciones y selec-
ciona una del conjunto de acciones obtenidas para realizar la ejecución. Finalizada 
la ejecución, el SU calcula una recompensa que servirá como dato para las próximas 
acciones a tomar, actualizando un conjunto de valores [25]. 
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Proceso de decisión de Markov

El modelo de Markov en tiempo discreto es adecuado para modelar la actividad del 
PU en un canal, recordemos que la actividad del PU puede ser modelada como el 
cambio de estados activos e inactivos durante un tiempo determinado. También pue-
de ser descrito como un proceso estocástico en el que la generación de símbolos de 
observación depende de las propiedades de emisión de los estados. El modelo oculto 
de Markov es una máquina de estados finita, en el que la secuencia de observaciones 
es una función probabilística de estados [27]. La fortaleza más importante de esta téc-
nica es la predicción de ocupación del espectro; predice la ocurrencia y duración de 
agujeros en el espectro. Dentro de sus limitaciones está el alto nivel de computación 
y su complejidad en el diseño del modelo matemático. 

Algoritmos genéticos

Estos algoritmos son ideados para encontrar soluciones óptimas utilizando cierta 
población de individuos y sometiéndola a acciones aleatorias semejantes a las que ac-
túan en la evolución biológica [28]. Es muy utilizado para resolver problemas de op-
timización en la reconfiguración de antenas, ya que define el rendimiento deseado de 
la antena. En nuestro modelo no se aplica la optimización en la toma de decisiones. 

Lógica difusa

La lógica difusa es una técnica empleada en modelos en los que el tipo de informa-
ción toma valores aleatorios que oscilan entre extremos de lo falso o lo verdadero. 
El  sistema de lógica difusa se compone de fuzzificador, motor de inferencia y de-
fuzzificador [29]. No hay mayor dificultad en la implementación. Utiliza parámetros 
de entrada como los datos de caracterización del canal. La lógica difusa es menos 
compleja en la ejecución computacional y toma decisiones rápidas en tiempo real. 

Teoría de juegos

La teoría de juegos se basa en una colección de casos prácticos para desarrollar mo-
delos matemáticos de cooperación y conflicto. Esta técnica puede ser aplicada para 
optimizar un proceso de compartición de espectro, controlar potencia y evitar inter-
ferencia; también puede ser usada para identificar usuarios malignos que afecten el 
enrutamiento seguro [30]. El diseño del modelo presenta complejidad en el plantea-
miento de las estrategias y el modelado matemático.

Árbol de decisión

El proceso de desarrollo de este algoritmo inicia clasificando los valores de referen-
cia, atributos y objetivo. Luego de ello, el algoritmo calcula el valor medio de la 
entropía de información, calcula la ganancia de información en cada atributo y elige 
el atributo con mayor ganancia como el nodo inicial o raíz. El árbol de decisión es 
implementado con datos de entrenamiento como por ejemplo los parámetros de ca-
racterización del canal. No presenta complejidad en la implementación [31].
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Algoritmo de decisión multicriterio MADM

Los algoritmos de decisión multicriterio MADM son utilizados en sistemas donde se 
requiere dar una solución que depende de diversos parámetros que están en constante 
variación. La información obtenida de cada parámetro sirve para desarrollar juicios a 
la hora de tomar decisiones; las redes inalámbricas no son ajenas a estos sistemas [24]. 

La toma de decisiones se ha convertido en un estudio desarrollado de manera 
operativa donde han surgido diferentes metodologías con procesos matemáticos que 
ayudan a solucionar diversos problemas. Es por eso que en la CR es necesario un re-
curso como la decisión multicriterio para poder realizar una selección y clasificación 
de canales. En el funcionamiento de la decisión multicriterio es fundamental tener 
en cuenta la mayor cantidad de parámetros que influyen en las redes inalámbricas y 
los más predominantes. Para nuestro modelo propuesto, la mejor decisión está repre-
sentada en elegir el canal menos utilizado de acuerdo a la experiencia pasada. Esos 
parámetros, también llamados criterios, son entradas para el algoritmo el cual evalúa 
los valores dependiendo si son convenientes en el resultado que se desea obtener. 

En consecuencia, se concluye que GRA puede ser una técnica apropiada para la 
clasificación debido a su sencilla implementación y su poco uso en la tecnología de 
CR. En la etapa de predicción se eligieron las técnicas de redes neuronales: SVM y 
KNN, las cuales se evaluarán con el objetivo de seleccionar la más apropiada. 

Algoritmo GRA (Grey Relational Analysis)

El algoritmo GRA es también llamado modelo de análisis de la incidencia gris, fue 
desarrollado por el profesor chino Julong Deng de la universidad de Ciencia y Tecno-
logía de Huazhong. Este modelo utiliza un concepto específico de información que 
puede operar con datos cuantitativos y cualitativos.

La principal función de este algoritmo es clasificar, para permitir la organización 
de los datos por prioridad. Dentro de sus aplicaciones, el algoritmo puede elegir la 
mejor interfaz según los atributos de la red como retardo, ancho de banda y costo, 
con el objetivo de reducir el handoff  y mejorar la satisfacción del cliente.

En el desarrollo de la metodología se expondrá el funcionamiento e implementa-
ción del algoritmo GRA. 

Técnicas de predicción en redes de radio cognitiva

Esta sección se alejará un poco de la temática de la decisión de espectro, pero con-
tribuirá a definir las técnicas de inteligencia artificial que se pueden aplicar para el 
diseño del modelo de decisión de espectro según el enfoque y el objetivo propuesto 
en el proyecto. 

La inteligencia artificial tiene como objetivo hacer máquinas que realicen tareas 
mediante la formulación matemática, y que sean capaces de solucionar problemas, 
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deducir, razonar, representar conocimiento y aprendizaje, dichas tareas pueden ser 
aplicadas en una CRN.

Estas técnicas son aplicadas en algunas áreas del ciclo cognitivo en donde se pre-
sentan diferentes desafíos, como por ejemplo la detección de espectro en bandas de 
frecuencia licenciadas, en donde es necesario estudiar parámetros de calidad de ser-
vicio como el ancho de banda, la SNR y BER. Otro desafío importante es mantener 
una observación constante del ambiente de RF, que permita identificar interacciones 
entre los PU y SU, ayudando a los SU a definir ciertas caracteristicas que servirán de 
apoyo en el aprendizaje automatico, de acuerdo a su experiencia pasada, y adaptar 
este conocimiento para mejorar la toma de decisiones [32].

En este apartado se discutirán las tres técnicas de inteligencia artificial seleccio-
nadas: redes neuronales, SVM y KNN, que son aplicadas para solucionar problemas 
específicos de predicción y acceso oportunista al espectro. 

Redes neuronales

Las redes neuronales son un modelo computacional que sirve para aprender y alma-
cenar diversos modos de entrada y salida de un sistema. En la figura 4 se describe el 
diagrama de una red neuronal artificial dividida en tres capas: (1) capa de entrada, 
la cual recibe la información del exterior y la entrega a la capa media; (2) la capa 
media,	 que conserva una gran cantidad de unidades neuronales y se utiliza para el 
procesamiento de la información; y finalmente, (3) la capa de salida, que entrega un 
resultado, el cual es comparado con el resultado esperado, para identificar los errores 
e iniciar una transmisión hacia atrás de los mismos. Cada unidad neuronal modifica-
rá sus pesos, haciendo los errores más pequeños y la salida cada vez más cercana a la 
salida real deseada [33].

Las redes neuronales se utilizan para llevar a cabo el proceso de aprendizaje, 
observar el medio ambiente de la red y mejorar el proceso de la toma de decisiones, 
por medio de la identificación de nuevos patrones que ayuden a predecir las probabi-
lidades de detección de espectro.

Estas redes neuronales tienen la capacidad de detectar el patrón de comporta-
miento del PU y tomar decisiones.
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Figura 4. Composición de una red neuronal
Fuente: Tomada de [33].

Soporte de máquina vectorial (SVM)

Esta técnica la definen como un modelo de aprendizaje [34]. También existen aplica-
ciones donde utilizan SVM para modelar el aprendizaje de la detección del espectro 
en tiempo real. 

Las pruebas realizadas en el modelo de clasificación SVM son las siguientes: si 
una señal es detectada y se genera ruido, se identificará como un PU detectado. 
Cuando la señal es única sin ruido, indicará que no hay PU. Los parámetros conside-
rados en este trabajo incluyen soporte, secuencia de pulsos, la extensión de repetición 
y el prefijo de la circulación [34].

El SVM funciona identificando un hiperplano con vectores para cada una de las 
clases que se desean clasificar, luego de esto, el algoritmo maximiza las distancias 
entre los puntos mas cercanos a cada  hiperplano definido para cada clase.

K-algoritmo de vecinos más cercanos (KNN)

KNN es un algoritmo de clasificación supervisada basado en el entrenamiento de 
datos históricos. Este algoritmo estima la función de probabilidad de las unidades 
predictores por cada clase.

Básicamente, este algoritmo funciona entrenando su base de datos, que son vecto-
res característicos junto con las etiquetas de clase, los nuevos datos serán clasificados 
según su clase y almacenados en vectores. Luego de esto, se calcula la distancia entre 
los vectores almacenados y los nuevos, seleccionando los vecinos más cercanos. Di-
cha distancia euclidiana está dada por la ecuación (1). 
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(1)

Dado un entero positivo K, una observación x y una métrica similar d,  KNN puede 
seguir dos pasos importantes:

Se ejecutan todos los datos informáticos d entre cada observación de entrenamien-
to x. Luego se estima la probabilidad condicional para cada clase y la salida x se asig-
na a la case de mayor probabilidad, el modelo general puede ver en la ecuación (2).

                              (2)

Trabajos relacionados

En la literatura actual se encuentran investigaciones que utilizan métodos que per-
miten solucionar problemas de toma de decisiones para elegir la red adecuada en 
diferentes tecnologías de redes inalámbricas, como es el caso del trabajo realizado en 
[6], donde evalúan 8 algoritmos MADM, entre ellos el algoritmo GRA, el cual clasi-
fica entre las primeras técnicas que garantizan la mejor continuidad de los servicios 
transportados en estas redes.

En el trabajo realizado en [35] eligen la mejor interfaz según los atributos de 
la red, como retardo, ancho de banda y costo, con el objetivo de reducir la tasa de 
handoff  y mejorar la satisfacción del cliente. En [36] se destaca la utilización del 
algoritmo FAHP para calcular los pesos de los criterios y GRA para clasificar las 
redes candidatas. El trabajo realizado en [37] y [38] utiliza GRA para clasificar redes 
en diferentes escenarios como UMTS, WLAN y WIMAX, basándose en múltiples 
criterios de costos y tráfico de paquetes. GRA proporciona un rendimiento aceptable 
al clasificar diferentes tipos de tráfico.

En cuanto a los algoritmos de predicción, se puede observar un resumen en [39] 
y en [40], donde se predice la probabilidad de aparición de un PU al canal, mediante 
redes neuronales, las cuales aprenden el comportamiento previo del PU. Si es alta 
la probabilidad de aparición, el SU está obligado a cambiar de canal. Este modelo 
está bien ajustado con el método de error cuadrático promedio (MSE). En [41]  utili-
zan una red neuronal para predecir los estados del canal mediante Sigma-IF y MLP 
(Multilayer Perceptron), los resultados demuestran que Sigma-IF presenta una mejor 
predicción y disminuye el tiempo de detección. En [42] se utiliza SVM para predecir 
el punto en el que el SU debe pasar a otro canal antes de que el canal sea ocupado, lo 
que reduce el tiempo de handoff. En el artículo realizado en [43] utilizan cuatro téc-
nicas de inteligencia artificial, dentro de las cuales se encuentran las redes neuronales 
y SVM, donde SVM se comporta de manera consistente y precisa.
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Los métodos de decisión de espectro pueden clasificarse de la siguiente manera:

•	 Decisión de espectro sin carga [44]: es el método donde el SU elige un canal 
operativo basándose en la carga de tráfico, la probabilidad de que este inactivo 
y el periodo de inactividad [45].

•	 Decisión de espectro basado en la probabilidad: este método evalúa las cargas 
de tráfico de los SU.

•	 Decisión de espectro basada en la detección: este método de decisión analiza 
la propuesta de diferentes canales y verifica el canal operativo más adecuado 
mediante la candidatura [44].

Continuando con el estudio de la literatura actual, observamos cómo aún se realizan 
investigaciones en la decisión de espectro donde se pretende mejorar la toma decisio-
nes aplicadas al servicio multimedia para mejorar su calidad de servicio, como en el 
caso del trabajo realizado en [46], donde desarrollan un modelo que se adapta a las 
decisiones y condiciones del canal cambiante, para asegurar una calidad de servicio 
óptima.

En otros trabajos, como [47], buscan maximizar la probabilidad de detección y 
de esta manera lograr definir el umbral de decisión que permita adaptar los SU a los 
cambios del canal. En [48] maximizan el acceso dinámico al espectro basándose en 
el método grafo de coloración, también llamado etiqueta de grafos.
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Al inicio de este proyecto se evaluaron diferentes técnicas de inteligencia artificial 
mediante la construcción de un cuadro comparativo con el objetivo de identificar for-
talezas y limitaciones en las técnicas implementadas y elegir los algoritmos apropia-
dos en cuanto al desempeño y rendimiento computacional para proponer un diseño 
adecuado y mejorable a los demás.

Teniendo en cuenta el resultado del cuadro comparativo se propone la construc-
ción del modelo propuesto para la decisión de espectro, compuesto de una serie de 
fases, iniciando con el cálculo de los parámetros que inciden en la caracterización del 
espectro, en segundo lugar, se realiza la implementación del algoritmo GRA, clasifi-
cando los mejores canales y finalmente, se predicen posibles intervenciones del PU, 
implementando tres algoritmos de predicción y eligiendo el más pertinente. 

Modelo conceptual

El objetivo principal de este proyecto es mejorar el desempeño de las CRN enfocado 
en la toma de decisiones para la asignación de espectro. Para ello, la principal misión 
del SU es elegir el canal menos ocupado y evitar transmitir en canales que han sido 
clasificados como los menos adecuados para la comunicación. 

Basado en esta premisa, el diseño del modelo conceptual presentado, describe 
los componentes que integran el modelo propuesto para la decisión de espectro y su 
relación entre sí, mediante el diseño del modelado de sistemas de software basado en 
UML (Unified Modeling Language). Dentro del modelo conceptual el principal com-
ponente que influye en la decisión de espectro es el canal de frecuencia, el cual es el 
principal recurso espectral en el que los PU y SU transmiten la información.

Para sacar provecho de los canales libres, el SU debe analizar ciertos parámetros 
que favorezcan la elección del canal menos ocupado y además, no interferir en la 
comunicación de otros usuarios.

En la figura 5 se observa el modelo conceptual, las clases que lo componen y sus 
respectivos atributos. 

La primera clase es llamada captura de datos, es la etapa inicial del modelo, donde 
el SU deberá realizar el monitoreo de la red y tomar mediciones de los niveles de 
potencia de su entorno. Esta clase contiene los atributos de medición de las bandas 
de frecuencia y su relación con los niveles de potencia de cada banda.
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Figura 5. Modelo conceptual de decisión de espectro

La siguiente clase representa el tratamiento de los datos. En esta parte se realiza el 
sistema de detección de espectro donde son separados los datos e identificados los 
instantes de tiempo en que el canal está ocupado o desocupado. 

Una vez establecida la base de datos, la cual está organizada de tal manera que 
las filas describirán los canales de la banda GSM y las columnas serán el tiempo de 
barrido de cada de cada canal, se procede a calcular los parámetros de caracteriza-
ción seleccionados.

La clase cálculo de los parámetros determina los datos calculados que serán uti-
lizados como entrada al algoritmo de clasificación. Un parámetro importante que 
describe el comportamiento del canal de frecuencia es la ocupación espectral, defi-
nida como la cantidad de tiempo que permanece el canal ocupado en un tiempo de 
medición dado. El siguiente parámetro presenta un índice de potencia obtenido de 
la relación del nivel de potencia máximo y mínimo en cada canal, y finalmente, el 
parámetro SNR indica la relación señal a ruido de cada canal de frecuencia, como se 
puede observar en la figura 5.

La clase clasificación reúne los resultados de los parámetros ocupación de espec-
tro, índice de potencia y SNR e implementa el algoritmo GRA para organizar por 
prioridad los mejores canales.

El SU requiere de inteligencia artificial para elegir el canal y predecir las posibles 
intervenciones de los PU, de manera que este modelo conceptual involucra una clase 
llamada predicción. Por lo tanto, el modelo propuesto está conformado por un algo-
ritmo de clasificación GRA y tres algoritmos de predicción, como lo son: redes neu-
ronales, SVM (Support Vector Machine) y clasificador KNN (K-Nearest Neighbors 
algorithm). El ciclo del modelo conceptual se observa en la figura 5.

Reuniendo lo más importante, y de acuerdo con las reglas planteadas en este 
modelo, las funciones a realizar por un SU son: monitorear el ambiente de RF para 
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identificar los canales que van a ser desocupados por parte del PU, luego de ello, el 
SU realiza un cálculo de los parámetros que afectan el comportamiento de los cana-
les y clasifica por prioridad los menos ocupados y más adecuados. Una vez elegidos 
los mejores canales, el SU debe detectar intervenciones de los PU en cada canal me-
diante una predicción aproximada.

Modelo inteligente de decisión de espectro propuesto

El modelo de decisión de espectro propuesto se muestra en la figura 6; en la primera 
parte se realiza el procesamiento de los datos obtenidos en la medición de la banda 
de frecuencia GSM (824 MHz - 874 MHz) y se calculan los parámetros que carac-
terizan dicha banda de frecuencia, estos parámetros son la ocupación de espectro, el 
índice de potencia y la SNR. Luego de obtener los resultados, se procede a clasificar 
los mejores canales para transmitir, mediante el algoritmo de decisión multicriterio 
GRA. Posterior a ello, el modelo organiza los mejores canales e inicia un proceso 
de predicción de cada uno, utilizando los datos de captura. El modelo es entrenado 
por medio de tres técnicas de inteligencia artificial, las cuales son: redes neuronales, 
SVM y KNN.

Figura 6. Modelo de decisión de espectro
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Procesamiento de los datos

Para el desarrollo del modelo se utilizaron datos obtenidos en la medición realiza-
da con un analizador de espectro, en la Facultad de Ingeniería de la Universidad 
Distrital Francisco José de Caldas. La tabla 2 muestra los parámetros técnicos más 
importantes.

Tabla 2. Parámetros técnicos de medición del espectro

Parámetros Valor

Banda de frecuencia 824 MHz- 874 MHz

Tecnología de comunicación GSM

Número de canales 551

Tiempo de barrido 290 ms

Resolución BW 100 KHz

La campaña de medición se realizó durante seis meses, siete días a la semana y 24 
horas por día, con tiempos de barrido de 290 ms, aproximadamente 3 datos por 
segundo para cada canal de frecuencia dentro de la banda GSM. Posteriormente, se 
organizaron los datos capturados y se realizó un análisis estadístico para identificar 
las trazas de 70 minutos con tasa de ocupación más alta y más baja, a partir de la 
identificación de un umbral con la fórmula de probabilidad de falsa alarma. Los 
primeros 60 minutos serán utilizados para la etapa de entrenamiento equivalentes a 
10800 time steps y los 10 minutos restantes son la etapa de evaluación que equivales a 
1800 time steps. En la figura 7 se observan los datos obtenidos en la medición, distri-
buidos de tal manera, que las filas representan las ranuras de tiempo y las columnas 
representan cada canal.

Para determinar si los usuarios están presentes en un canal o no, se define un 
umbral de decisión de -95 dBm, el cual se obtuvo a partir del nivel de piso de ruido 
de la banda de frecuencia seleccionada y la probabilidad de falsa alarma. Si el dato 
en el respectivo canal está por debajo del umbral, se asigna un 0 lógico, para indicar 
que el canal está desocupado en ese instante de tiempo. Si, por el contrario, el dato 
es mayor al umbral, se asigna un 1 lógico, para indicar que el canal está ocupado. La 
detección de espectro es modelada en la ecuación (3). 



45

Modelo de decisión espectral para redes de radio cognitiva

                           
(3)

Figura 7. Información de los niveles de potencia obtenidos en la medición

En la figura 8 se observa la variación de los niveles de potencia de un canal durante el 
tiempo, donde cada time step representa una ranura de tiempo de 0,290 ms.

Figura 8. Información del tráfico espectral
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Caracterización espectral

En este apartado se presenta el desarrollo preliminar del procesamiento de los datos 
obtenidos en la medición, se describe el proceso de normalización y luego, se procede 
con el cálculo de los tres parámetros requeridos como entradas al algoritmo GRA.

La caracterización del espectro permite a los SU identificar el comportamiento 
y la utilización de los canales en una banda de frecuencia. Es indispensable para los 
SU mantener la observación y establecer la disponibilidad del canal en instantes de 
tiempo debido a la actividad de cada PU [3].

Dentro de los parámetros de caracterización del espectro de este modelo se eva-
luaron la ocupación del espectro, el índice de potencia y la SNR.

Ocupación de espectral

La ocupación espectral permite observar la evolución temporal de cada canal de fre-
cuencia, esta ocupación puede ser evaluada bajo el parámetro de ciclo de trabajo, el 
cual nos indica la relación entre el tiempo y el estado activo de los canales, o median-
te el valor de disponibilidad absoluto, ‘0’ o ‘1’.

Ciclo de trabajo

El ciclo de trabajo es el porcentaje de tiempo en que un canal está siendo usado por 
un PU, es calculado mediante la ecuación (4).

                                  
(4)

Donde T
on

 representa el tiempo que estuvo ocupado el canal durante el tiempo total 
de medición, que para este caso es el tiempo de entrenamiento.

Otra manera de representar la ocupación de espectro es mediante la  intensidad 
de espectro, la cual se calcula como lo muestra la ecuación (5) [43]:

                                      
(5)

En la figura 9 se observa el porcentaje de ocupación de cada canal  en una fracción 
de tiempo de 60 minutos, en el intervalo de 824 MHz- 879 MHz, se puede observar 
que el foco de ocupación se presenta desde la frecuencia 854 MHz hasta 879 MHz.
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Figura 9. Ciclo de trabajo para la banda GSM

Índice de potencia

Es un dato que muestra la relación de los niveles potencia máxima P
max k

 y la mínima 
P

min k
 de cada canal de frecuencia k  seleccionado [24] (ver ecuación (6)).

                                                  (6)

En la figura 10 se observa la relación de los niveles de potencia de cada canal que 
permite inferir que tan alto puede ser la señal de un PU cuando accede a un canal. 
Este cálculo permitirá saber qué índice de potencia es el más adecuado cuando hay 
una señal baja definiendo los canales, en donde es baja la intervención del PU.
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Figura 10. Índice de potencia por canal para la banda GSM

SNR

En esta parte, se calcula la SNR como la diferencia entre el nivel de recepción medido 
P

k
 en dBm y el nivel de piso de ruido obtenido con el analizador de espectro P

N
 como 

se muestra en la ecuación (7). El resultado es obtenido en dBm, como se observa en 
la figura 11.

                                              (7)

Diseño de la etapa de clasificación

GRA es una técnica de ponderación de atributos efectiva de MADM que analiza la 
mejor alternativa con el mayor valor del coeficiente de relación gris (GRC) [49]. En 
el siguiente apartado se realizará paso a paso el diseño del algoritmo GRA.
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Figura 11. SNR para la banda 824 MHz - 874 MHz

Construcción del algoritmo GRA

Tomando como guía el trabajo realizado en [50], el método de implementación GRA 
fue desarrollado en los siguientes pasos:

Construir una matriz de decisión K para un modelo de k atributos y N datos, 
donde k define cada parámetro obtenido en el procesamiento de los datos como 
un atributo y N representa la cantidad de canales a analizar, como se observa en la 
ecuación (8).

                                              
(8)

Normalizar la matriz de decisión K con los parámetros obtenidos de la caracteriza-
ción del espectro para obtener la matriz S normalizada, a partir de la ecuación (9). 
Estos datos son parámetros de beneficio, ya que entre menor sea el valor de cada pará-
metro, podrá ser elegido en la toma de decisiones entre los canales menos ocupados.

                                (9)
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Construcción de la matriz de juicios

En varias ocasiones el diseñador define un peso para cada atributo dependiendo de 
su criterio, dando prioridades a ciertas variables que pueden ser determinantes al 
momento de tomar decisiones. Para calcular los pesos de cada atributo, se realiza una 
comparación entre dos atributos basada en una tabla de valores numéricos absolutos 
llamada matriz de juicios. Para nuestro caso, se definen los pesos de cada atributo 
con base en el método Delphi el cual consistió en consultar a un conjunto de expertos 
la importancia y jerarquía de los tres parámetros elegidos. 

Cálculo de los pesos normalizados

Luego de obtener la matriz de juicios de cada criterio, se calcula la media geométrica 
y el resultado se normaliza para obtener pesos entre 0 y 1, calculada de acuerdo con 
la ecuación (10). 

  

                                                                                                                                   
(10)

Seguidamente, se construye la matriz ponderada normalizada. Esta matriz es el re-
sultado de los pesos obtenidos multiplicados por cada elemento de la matriz, como 
lo muestra la ecuación (11).

                                            (11)

Acto seguido, se obtiene el valor máximo de cada criterio de beneficio calculado en 
la ecuación (12), para nuestro caso, se elige el canal con el valor máximo de cada 
criterio.

                                  
(12)

Finalmente, se procede con el cálculo de la posición de las alternativas dado el valor 
GRC, el cual es calculado mediante la ecuación (13).

(13)
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Donde  es la distancia correlacionada gris, y 
 son los valores máximos y mínimos de la distancia correlacionada gris.

En el apartado de resultados se podrá observar el grado de importancia de cada 
criterio a la hora de elegir el mejor canal para acceder. En definitiva, se obtendrá una 
tabla con los valores de frecuencia de los canales menos ocupados basados en los 
datos estadísticos medidos.

Diseño de la etapa de predicción

Una vez obtenida la clasificación por prioridad de los mejores canales a utilizar, se 
inicia un proceso de predicción basado en las estadísticas tomadas en la medición, 
para tráfico bajo y tráfico alto. Esta predicción le permitirá al SU identificar instantes 
de tiempo en los que puede existir una llegada del PU al canal y pueda tomar deci-
siones eficientes para realizar el cambio al segundo mejor canal dependiendo de su 
clasificación, como el trabajo realizado en [51], donde realizan predicciones imple-
mentado redes neuronales.

Para este modelo se utilizan 3 algoritmos de aprendizaje supervisado: redes neu-
ronales NAR (sistema no lineal autoregresivo), SVM y KNN, los cuales serán eva-
luados para elegir el más consistente y pragmático. En cada algoritmo se utilizan 
los datos de entrenamiento como entradas al modelo y los datos de evaluación para 
medir que tan eficaz es la predicción. La base de datos es divida de tal manera que 
los 60 minutos iniciales serán de entrenamiento y los 10 minutos finales serán de eva-
luación.  En estos tres algoritmos se evalúa el desempeño para elegir el más acertado 
al momento de predecir y realizar el cambio de canal.

Implementación de redes neuronales

Mediante la herramienta de Matlab se realiza la implementación de la predicción uti-
lizando redes neuronales artificiales, como primer paso, se realiza la normalización 
de los datos. Se entrena la red con los datos de entrada de cada canal y por último, se 
obtiene el resultado de la red que será la predicción para cada canal.

La red neuronal empleada se observa en la figura 12, esta red neuronal está basa-
da en el modelo NAR, el cual consta de la capa de entrada, la capa oculta que tiene 
10 neuronas y la capa de salida que utiliza una neurona. Se realizan pruebas con un 
número de neuronas menor a 10 en la capa oculta y se observa que con 10 neuronas 
se obtiene el error más pequeño. Cada dato de entrada está organizado de acuerdo 
con el canal y tiempo al que corresponde, para un total de 551 (canales) x 10800 (time 
step) datos de entrada.

Antes de ingresar los datos de entrenamiento es necesario ajustar las entradas a 
un rango específico que para este caso es [-1,1], como se observa en la ecuación (14).

                               
(14)
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Luego, se entrena la red mediante el algoritmo Levenberg-Marquadt. Este método 
fue elegido ya que es implementado para mejorar la velocidad, optimiza el tiempo 
de entrenamiento y puede mejorar computacionalmente en la ejecución del modelo 
con respecto a otros algoritmos, ya que el tamaño de entrada de los datos para esta 
investigación es considerablemente alto.

Figura 12. Sistema no lineal auto regresivo en redes neuronales
Fuente: tomada del software Matlab.

Luego de obtener el resultado de la red para cada canal, se realiza el proceso de 
conversión de los datos para obtener los valores reales de predicción. La formulación 
matemática se muestra en la ecuación (15), donde y(t) será el próximo valor de los 
datos previos de y(t) y d es la cantidad de retardos anteriores.

                              (15)

Implementación de SVM

En la implementación de SVM, inicialmente, se realiza el procesamiento de los datos 
de entrada que servirán de entrenamiento en la etapa de clasificación. Estos datos 
son normalizados entre -1 y 1, donde los niveles por debajo de -95 dBm pertenecen 
al valor -1, el cual indica que el canal está desocupado en ese time step y los valores 
mayores a -95 dBm que se relacionan al valor 1, como un estado que indica que el 
canal está ocupado, esta definición puede verse en la ecuación (14). 

En estos modelos se definen dos clases que serán las entradas para la función de 
clasificación. La clase 1 son los datos normalizados en el rango [-1,1] y la clase 2 son 
los niveles de potencia de cada canal medidos en dBm. Los conjuntos de datos de 
entrada están organizados por vectores de 1 canal x 10800 time steps, para un total 
de 551 x 10800.

Luego de obtener los datos de entrada definidos se inicia el proceso de clasifica-
ción aplicando la función fitcsvm de la herramienta Matlab. Para cada canal entre-
nado se obtiene un modelo de clasificación SVM que será la entrada en la etapa de 
predicción. Esta función de predicción está basada en el modelo matemático de la 
ecuación (16).
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(16)

Donde  es el resultado de la predicción, K es el número de clases,  es la pro-
babilidad posterior del número de clases para observación x y  es el costo de 
clasificar una observación cuando su clave verdadera es K.

La función predict (de la herramienta Matlab) retornará un vector de etiquetas de 
clase con valores entre [-1,1] según el modelo de regresión entrenado en la clasifica-
ción. El vector resultante tiene un tamaño de 1 x 10800 time steps por cada canal. Al 
final, la predicción construirá el conjunto de datos de 551 canales x 10800 time steps. 
En la figura 13 se puede observar el proceso de implementación del algoritmo SVM.

Figura 13. Proceso de predicción SVM

Implementación de KNN

Para KNN se ejecuta un procedimiento semejante a la técnica SVM. Primero, el 
algoritmo realiza el procesamiento de los datos normalizándolos entre 0 y 1, donde 
0 señala que el canal está desocupado (valores menores a -95 dBm) y 1 determina un 
canal ocupado (valores mayores a -95 dBm). Ver ecuación (3).

A partir de la construcción de los datos de entrada se procede a entrenar los datos, 
implementando el algoritmo de clasificación KNN con las mismas dimensiones del 
conjunto de datos utilizado en SVM. Para cada traza de entrada 1 x 10800 time steps, 
la función fitcknn construirá un modelo de clasificación que será la entrada en el pro-
ceso de predicción. Al igual que en SVM se utiliza la función predict para predecir 
los nuevos datos con valores entre 0 y 1, y se construye el mismo conjunto de datos 
de 551 canales por 10800 time steps, como resultado de la predicción. En la figura 14 
se puede observar la implementación del algoritmo KNN.
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Figura 14. Proceso de predicción KNN

Modelo inteligente de decisión de espectro definitivo

Luego del estudio realizado en la comparación de los algoritmos de inteligencia arti-
ficial utilizados en la predicción y los algoritmos aplicados en los modelos de toma de 
decisiones en el espectro, se propone un modelo definitivo que se adapte al propósito 
general de este proyecto.

Dentro de las cualidades principales que debe contener el modelo está la capaci-
dad de tomar de decisiones inteligentes y oportunas, buscando la manera de lograr 
una adaptación entre el SU y el ambiente de RF. Otra cualidad importante es admi-
nistrar la movilidad de los SU con el fin de cada salto de canal o handoff  espectral 
sea acertado y que en una transmisión se realicen la mínima cantidad de saltos con el 
propósito de reducir las colisiones y la interferencia entre señales.

Basado en lo anterior, se definieron dos algoritmos fundamentales dentro del mo-
delo que permitirán a los SU acceder al espectro de una manera dinámica. El modelo 
está construido en fases como se observa en la figura 15. La primera fase del modelo 
está definida como la etapa de caracterización del espectro. Luego de obtener los 
resultados de caracterización, el modelo continúa su ejecución a la fase 2, donde se 
desarrolla la clasificación del espectro empleando el algoritmo GRA. Finalizada la 
etapa de clasificación, el modelo ejecuta la fase 3, predecir la ocupación espectral 
en los canales seleccionados mediante el algoritmo elegido, y finalmente, realizar la 
correspondiente evaluación y comprobación.  
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Figura 15. Modelo de decisión de espectro definitivo

Metodología de validación y evaluación

En esta sección se explica el procedimiento de evaluación del desempeño del modelo 
propuesto, analizando por partes los algoritmos de clasificación y predicción a partir 
del siguiente proceso de análisis: primero, en la etapa de clasificación, se evalúa la 
precisión con que se eligen los canales con menos ocupación; segundo, en la etapa 
de predicción, se analiza el error porcentual de las técnicas de inteligencia artificial 
implementadas en este modelo; tercero, se presenta el análisis y evaluación del com-
portamiento del SU en los handoff  realizados por el SU; y finalmente, se evalúa el 
costo computacional del modelo.

Métricas de evaluación

Las métricas de evaluación son distintas para cada fase del modelo. En la etapa de 
clasificación (fase 2) se evalúa la precisión con que el algoritmo de clasificación reali-
za su proceso utilizando diferentes mediciones para varias tecnologías inalámbricas, 
mediante el uso de histogramas.

Para evaluar los resultados obtenidos en la etapa de predicción (fase 3), se realizan 
dos mediciones que permitirán evaluar el desempeño de las tres técnicas de predic-
ción implementadas. La primera medición calcula el error relativo porcentual para 
los resultados de tráfico bajo y tráfico alto, utilizando los datos de evaluación versus 
el resultado de la predicción. La segunda medición calcula la cantidad de cambios 
de canal o handoff  espectrales realizados por el SU durante la transmisión, para esta 
métrica es necesario construir un simulador que permita estimar los diferentes tipos 
de handoff  considerados en esta investigación, tales como: handoff  totales, handoff  
fallidos, handoff  perfectos, handoff  anticipados, handoff  con interferencia y handoff  
sin interferencia, que serán explicados en la siguiente sección con más detalle.
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Precisión en la clasificación

Es necesario asegurar que la clasificación de los canales sea acertada y que no existan 
errores en cada cálculo que puedan afectar la posterior elección, y que la predicción 
sea aprovechada eficazmente. Para ello se realizó un experimento que consiste en cal-
cular la cantidad de handoff  mínimos a realizar por el SU en diferentes trazas y de esta 
manera comparar los resultados con los del simulador diseñado. Estos experimentos 
serán explicados con más detalles en el capítulo de descripción de los experimentos.

Error relativo porcentual

El error relativo es calculado como se observa en la ecuación (17). Donde X_i repre-
senta el resultado obtenido en cada canal en un instante de tiempo y X_v es el dato 
de la etapa de evaluación, debido a que los valores resultantes están en el rango de -1 
a 1, se procede a normalizar estos datos antes de aplicar la ecuación (17).

 

				    (17)

Este cálculo es ejecutado con los datos de medición obtenidos para tráfico bajo y 
tráfico alto de la tecnología GSM.

Métricas de handoff espectral

Para el cálculo del handoff  se diseñó un algoritmo capaz de medir la cantidad de sal-
tos que debe realizar un SU en una transmisión de 10 minutos, aproximadamente. El 
algoritmo determina esta medición basado en el resultado de la predicción de las tres 
técnicas con el fin de determinar la técnica que más se ajuste al modelo propuesto.

El escenario diseñado compara en cada time step los datos obtenidos en la pre-
dicción junto con los datos reales de evaluación, calculando 6 métricas de handoff, 
las cuales son: 

•	 Handoff  total

•	 Handoff  fallidos 

•	 Handoff  con interferencia

•	 Handoff  sin interferencia 

•	 Handoff  anticipados 

•	 Handoff  perfectos 

El handoff  total es el acumulado total de cambios de canal. En esta métrica se describe 
la cantidad de saltos realizados por el SU al ejecutar el modelo diseñado hasta com-
pletar una transmisión de 10 minutos. El simulador es el encargado de ir contando 
cada salto de canal.  
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A medida que el SU recorre el espectro y realiza cambios de canal, se pueden 
seleccionar canales donde hay algún PU ocupándolo, a este tipo de cambio de canal 
se denominó handoff  fallido, que indican el número de handoff  cuyo canal objetivo 
está siendo ocupado por un PU.

Otra métrica importante a determinar es la cantidad de cambios de canal que ge-
neran interferencia. Los handoff  con interferencia muestra la cantidad de saltos realiza-
dos con posterioridad a la llegada de un PU. Al contrario, los handoff  sin interferencia 
indican la cantidad de saltos realizados con anterioridad a la llegada de un PU. 

Los handoff  anticipados son los cambios de canal sin interferencia que se reali-
zaron con mucha anterioridad a la llegada del PU. En esta acción la predicción no 
puede ser tomada como acertada dado que no se utiliza todo el tiempo que el canal 
permanece desocupado.

Finalmente, los handoff  perfectos son los handoff  sin interferencia que se realiza-
ron muy cerca de la llegada de un PU, esta métrica permitirá evaluar la certeza en la 
predicción de los algoritmos evaluados.

Costo computacional

Para el análisis del rendimiento computacional del modelo, se elabora la medición 
del tiempo de ejecución del modelo empleando la herramienta de Matlab. Esta me-
dición es realizada tomando mediciones del tiempo de ejecución de cada fase que 
compone el modelo. La medición inicia con la fase de caracterización del espectro 
y el cálculo de los parámetros utilizados, luego se mide el tiempo que tarda el algo-
ritmo GRA en clasificar los 551 canales y finalmente se determina el retardo de la 
predicción de cada canal implementando las tres técnicas de aprendizaje automático.

La herramienta Matlab cuenta con una función TIC y TOC que permite medir 
el tiempo transcurrido de un algoritmo desarrollado simplemente colocando el TIC 
en la parte inicial del algoritmo y la función TOC en la parte final, y se reflejará el 
tiempo transcurrido en la ventana de comandos.

Descripción de los experimentos

Para evaluar el desempeño de los algoritmos de clasificación y predicción empleados 
en este estudio, se diseñaron dos experimentos, los cuales se describen a continua-
ción. 

Experimento 1

Este experimento consiste en implementar un algoritmo de clasificación aleatoria de 
los canales y otra mediante el algoritmo GRA, luego se organizan los mejores cana-
les operativos basados en las trazas de tráfico bajo y tráfico alto con la finalidad de 
evaluar ambos procesos de clasificación.

Este experimento es realizado 50 veces para obtener un valor promedio de handoff  
mínimos, tanto de la clasificación aleatoria como del algoritmo GRA. 

•	 Paso 1: el experimento inicia calculando los parámetros de caracterización de 
espectro, que serán datos de entrada para el algoritmo de clasificación GRA.
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•	 Paso 2: se diseña un algoritmo que organiza los canales de manera aleatoria, 
utilizando la función rand de Matlab, la cual retorna un número de distribución 
uniforme. Los datos son ajustados en el intervalo de 1 a 551.

•	 Paso 3: una vez ordenados los canales por prioridad, se ejecuta el simulador 
desarrollado.

•	 Paso 4: el SU realiza dos recorridos por las trazas de la etapa de evaluación; el 
primero, ejecutando el algoritmo aleatorio y el segundo, ejecutando el algoritmo 
GRA. El SU inicia observando si en el instante t+1 el canal seleccionado está 
ocupado por un PU, en cuyo caso procederá a cambiar al siguiente canal de 
acuerdo con la clasificación previa.

•	 Paso 5: el SU realiza el mismo proceso de acceso al espectro trasmitiendo en 
los canales necesarios hasta completar la transmisión de 10 minutos, mientras 
va contando los handoff  requeridos para no generar interferencia. Este proceso 
es realizado 50 veces para los dos tipos de clasificación, al final se promedia la 
cantidad de handoff  de las 50 pruebas.

El proceso del experimento se puede observar en la figura 16, donde se observan los 
dos algoritmos de predicción planteados, cabe aclarar que el proceso es ejecutado con 
un solo algoritmo de clasificación a la vez.
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¿El canal está
 ocupado según la matriz de 

evaluación?

Elije el siguiente canal en 
la tabla

¿El canal en t+1 está 
ocupado?

SÍ

NO

SÍ

NO

∑  Handoff  total

Matriz de 
evaluación

Experimento 1

Clasificación de 
canales GRA

Accede al canal

Inicio del 
experimento

Tabla de canales

Caracterización 
del espectro

Continúa en el canal

Algoritmo de 
clasificación 

aleatoria

El SU elije un canal en la 
tabla de clasificación y 
se inicia el simulador

Figura 16. Diagrama de flujo del experimento 1

Experimento 2
En el diagrama de flujo de la figura 17, se pretende obtener resultados que describan 
el comportamiento de los tres algoritmos de predicción en un escenario de entorno 
espectral de tráfico bajo y tráfico alto, en la banda de frecuencia GSM. Este experi-
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mento simula el recorrido de un SU transmitiendo con niveles de potencia ideales 
durante 10 minutos por las trazas de evaluación de tráfico bajo y tráfico alto, para 
calcular la cantidad de los diferentes tipos de handoff  espectrales realizados. 

El experimento consta de los siguientes pasos:

•	 Paso 1: el SU inicia ejecutando los parámetros de caracterización de espectro 
y clasifica los canales, organizándolos del menos ocupado al más ocupado, de 
acuerdo con el historial de tráfico de la ultima hora.

•	 Paso 2: el SU inicia la transmisión en el canal seleccionado durante 5 minutos. 

•	 Paso 3: cuando el SU accede al espectro, calcula la predicción para el canal se-
leccionado. En cada instante observa la predicción para saber en qué momento 
llega un PU. De esta manera el SU actúa cambiando a otro canal y continúa la 
transmisión hasta terminar los 5 minutos.

•	 Paso 4: durante este proceso el simulador se encarga de crear el escenario de 
ocupación espectral con los datos reales obtenidos de la campaña de medición, 
y a su vez, realiza el conteo del número de handoff  realizados en el proceso de 
predicción.

Este proceso es realizado 50 veces. En cada repetición el SU inicia 18 time step más 
adelante y durante 900 time step que equivalen a 5 minutos, este desplazamiento 
inicial se realiza hasta barrer toda la matriz de evaluación que consta de 10 minutos, 
de esta forma se garantiza un escenario diferente para cada repetición. En cada eje-
cución del experimento se tomarán medidas de los diferentes tipos de handoff. El re-
sultado de este experimento es presentado en el apartado “Evaluación comparativa”.
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Experimento 2

¿El canal está
 ocupado según matriz 

de predicción?

Accede al canal

Elije el siguiente 
canal en la tabla

Tabla de 
canales

¿El canal en t+1 está 
ocupado?

SÍ

NO

Continúa
en el canal

SÍ

NO

∑  Handoff  total

¿El canal está ocupado 
según la matriz de 

evaluación?

NO

Matriz de 
predicción

Matriz de 
evaluación

Predicción de 
canales

Caracterización 
del espectro

Clasificación de 
canales

Inicio del 
experimento

Matriz de predicción

El SU elije un canal 
en la tabla de 

clasificación e inicia 
la simulación

Figura 17. Diagrama de flujo del experimento 2

Simulador

Para medir y evaluar el modelo diseñado es necesario construir un simulador 
que pueda reflejar, mediante un experimento, el comportamiento del tráfico real 
de una red inalámbrica, de tal manera que se pueda evaluar el modelo diseñado. 
En este simulador, el SU puede realizar su proceso de ejecución, observando su 
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funcionamiento mediante la captura de datos y mediciones necesarias para evaluar 
los algoritmos de predicción.

El simulador es diseñado utilizando las trazas de entrenamiento y evaluación, 
obtenidas en la campaña de medición, de tal manera que la traza de entrenamiento 
servirá para configurar el modelo y la traza de evaluación será el entorno de RF don-
de se desplazará el SU y realizará su interacción. 

De esta manera el modelo es ejecutado implementando las trazas reales de trá-
fico, donde inicialmente el SU calcula todos los parámetros del espectro y genera la 
tabla de prioridad de los canales menos utilizados. El SU tiene dentro de su base de 
datos la tabla de clasificación. Luego de ello, el SU inicia su recorrido de transmisión 
realizando la predicción del primer canal seleccionado. El SU accede al canal y pre-
dice en qué momento puede llegar el PU al canal, en caso de que se de en el instante 
t+1, el SU cambiará de canal en el instante t, eligiendo el siguiente canal dentro de 
la tabla de clasificación.

El diseño del simulador está basado en un algoritmo que compara dos matrices, la 
primera matriz son los últimos 10 minutos de la medición realizada en la captura de 
datos, también llamada etapa de evaluación, la cual además es utilizada para evaluar 
la predicción, y la segunda matriz, representa el resultado de la predicción. Para este 
caso, el SU realiza la predicción de todos los canales según el orden de clasificación 
y construye su propia matriz.

Las matrices son construidas de tal manera que las columnas representan cada 
time step o paso en el tiempo y las filas son los canales organizados por prioridad, de 
tal manera que la primera fila será el primer canal a elegir. La matriz del simulador 
se muestra en la figura 18, donde los recuadros azules son espacios en el espectro y la 
señal en rojo muestra la interacción del SU. 

Dentro de una transmisión, el SU cambiará de canal, si es necesario, hasta finali-
zar la transmisión. Cada vez que el SU requiera realizar una transmisión actualizará 
su tabla de clasificación de canales.

Figura 18. Construcción de matrices del simulador

El SU inicia el recorrido en la matriz eligiendo la primera fila y analizando en qué 
instantes de tiempo puede existir una llegada, según la matriz de predicción. De esta 
manera, el SU analizará estados futuros y accederá proactivamente al próximo canal 
hasta el final de su transmisión.



63

Modelo de decisión espectral para redes de radio cognitiva

Con este funcionamiento el simulador realiza una serie de cálculos y mediciones 
de handoff  que permiten obtener información estadística de los tres algoritmos de 
predicción para definir que técnica es la más adecuada para su implementación.

La figura 19 describe el diagrama de flujo del simulador.

Simulador

El SU elije un 
canal en la tabla 
de clasificación

¿El canal está
 ocupado según matriz 

de predicción?

Accede al canal

Elije el siguiente 
canal en la tabla

Tabla de 
canales

¿El canal en t+1 está 
ocupado?

SÍ

NO

Continúa
en el canal

SÍ

NO

∑  Handoff  total

¿En el instante t+2 el canal 
está desocupado?

∑ Handoff perfecto

SÍ

NO

¿El canal está ocupado 
según la matriz de 

evaluación?

∑  Handoff fallido
∑  Handoff con
 interferencia

SI

NO

Matriz de 
predicción

Matriz de 
evaluación

Predicción de 
canales

Caracterización 
del espectro

Clasificación de 
canales

Inicio del  
experimento x

Matriz de predicción

Parámetros 
iniciales

∑ Handoff
anticipado

Figura 19. Diagrama de flujo del simulador
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Resultados

Los resultados alcanzados en el actual proyecto fueron obtenidos de la simulación 
desarrollada con la herramienta Matlab. Estos resultados serán presentados median-
te la evaluación del algoritmo de clasificación y el algoritmo de predicción. Luego de 
ello, se realiza el cálculo del error de predicción de las tres técnicas que permitirán 
elegir la más conveniente para ser implementada en el modelo final y de esta manera 
lograr mejorar el desempeño de las redes de radio cognitiva.

Algoritmo GRA

En la etapa de evaluación del algoritmo de clasificación se valoran inicialmente los 
parámetros seleccionados como criterios para la entrada del algoritmo, luego se ana-
liza el cálculo de los pesos normalizados y finalmente, se evalúa el valor obtenido del 
análisis relacional gris.

Parámetros elegidos como criterios

Luego de un importante estudio de diferentes investigaciones, se han definido tres pa-
rámetros que describen el comportamiento de cada canal y pueden funcionar como 
criterios en el análisis de decisiones multicriterio. 

Estas variables seleccionadas son:

•	 Ocupación espectral

•	 Índice de potencia

•	 Relación señal a ruido

Otras variables que inciden en el diseño de un modelo de toma de decisiones son el 
ancho de banda y la posición del SU, pero debido al objetivo propuesto en este mo-
delo, el cual pretende elegir el canal menos ocupado sin generar interferencias en los 
PU, no serán tenidos en cuenta; para estos parámetros se asignan valores fijos, como 
por ejemplo el ancho de banda de 100 kHz por cada canal.

Para evitar la interferencia es necesario escoger un canal que haya tenido histó-
ricamente poca actividad, por lo que el parámetro de ocupación de espectral resulta 
ser el más importante. Como se explicó anteriormente, este parámetro es medido con 
base en los datos históricos, donde el porcentaje de ocupación más bajo corresponde 
al canal menos ocupado.
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El índice de potencia es un parámetro que permite identificar la relación de los 
niveles de potencia que generan los PU en cada canal, en este modelo este parámetro 
precisa que entre menor sea esta relación más baja es la utilización de respectivo 
canal. 

La SNR describe la relación de la señal con respecto al ruido en cada canal, el 
cual es calculado tomando como base el nivel de piso de ruido obtenido en la me-
dición. Los datos calculados de los parámetros descritos se muestran en la tabla 3, 
donde los resultados han sido normalizados entre 0 y 1. Cada fila es un canal de 100 
KHz en la banda de frecuencia 824 MHz - 874 MHz.

Tabla 3. Normalización de los parámetros para los 10 primeros canales

Ocupación de espectro Índice de potencia SNR

1 0,9125 1

1 0,9125 1

0,9559 0,9272 0,9815

0,9179 0,8994 0,9744

0,9234 0,8673 0,9762

0,9120 0,8269 0,9740

0,9277 0,8238 0,9744

0,9520 0,9120 0,9811

0,9471 0,8879 0,9798

0,9286 0,7508 0,9779

Tabla de criterios

Se realiza la consulta de la importancia de los tres parámetros seleccionados a una 
serie de evaluadores que, debido a su experiencia y conocimiento adquirido en la 
literatura estudiada de radio cognitiva, tienen la potestad de brindar opiniones acerca 
de los criterios. En la tabla 4 se observan los criterios.
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Tabla 4. Criterios para establecer pesos en el método GRA

Criterios
Ocupación de 

espectro
Índice de potencia SNR

Ocupación de 
espectro

1 5 9

Índice de potencia 1/5 1 3

SNR 1/9 1/3 1

Pesos normalizados

Los pesos obtenidos describen el grado de importancia de cada parámetro o criterio 
al momento de tomar decisiones. Los pesos normalizados son valores obtenidos a 
partir de los datos de la tabla 4 y de la media geométrica descrita en la ecuación (10). 
En la tabla 5 se observan los pesos asignados a cada criterio.

Tabla 5. Pesos normalizados de los criterios

Criterios
Ocupación de 

espectro
Índice de potencia SNR

Pesos normali-
zados

0,7235 0,1932 0,083

Los pesos obtenidos se evalúan en todos los canales disponibles de la banda de fre-
cuencia seleccionada.  El resultado de la tabla 5 permite inferir que al decidir el mejor 
canal un 72,35 % dependerá de que el canal que disponible, el 19,32 % depende de 
que el índice de potencia sea bajo y un 8,3 % será producto de la relación señal a 
ruido.

En la tabla 6 se puede observar la matriz ponderada normalizada para los 10 pri-
meros canales, la cual es calculada mediante la ecuación (11).
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Tabla 6. Matriz ponderada normalizada

Ocupación de espectro Índice de potencia SNR

1 0,21639 0,09371

1 0,216392 0,09371

0,95599 0,219882 0,09198

0,91797 0,21327 0,09131

0,92347 0,205667 0,09148

0,91209 0,196098 0,09128

0,92773 0,195359 0,09131

0,95204 0,216280 0,09194

0,94711 0,210544 0,09182

0,92868 0,178046 0,09164

Análisis relacional gris
Luego de definir los pesos para cada criterio, el algoritmo realiza el procedimiento 
del cálculo de las distancias de gris para cada canal. Luego, estos valores son organi-
zados de mayor a menor en un rango entre 0 y 1, donde el valor más cercano a 1 será 
la primera opción de elección de canal.

En la tabla 7 se puede observar la selección de canales obtenida de la ejecución 
del algoritmo GRA utilizando los datos medidos de tráfico bajo, para los 10 mejores 
canales.
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Tabla 7. Distancia correlacionada gris GRC tráfico bajo

Prioridad Frecuencia (MHz) GRC

1 839,3 0,97903

2 843,5 0,97810

3 839,1 0,97717

4 842,3 0,97648

5 843,2 0,97629

6 838,80 0,97495

7 843,3 0,97439

8 839 0,97344

9 842,8 0,97325

10 824 0,97319

La tabla 7 es una lista de respaldo de canales, en el caso de requerir un cambio de 
canal. Cuando el SU necesite cambiar de canal elegirá el siguiente canal en su tabla 
con mayor distancia correlacionada gris.

Este proceso de clasificación es realizado cada vez que el SU requiera hacer una 
transmisión, por lo que la tabla de clasificación cambiará constantemente.

Métricas de evaluación
Una métrica de evaluación importante es conocer los tiempos de ejecución de cada 
proceso del modelo para analizar que técnicas utilizan menos recurso computacio-
nal, a continuación, se muestran las medidas obtenidas.

La evaluación del algoritmo de predicción permite determinar la mejor técnica 
que al predecir los nuevos datos se ajusten a los datos históricos de cada canal y se 
comporte de manera semejante a su experiencia. El mejor algoritmo debe ser eficaz 
y asertivo en la predicción.
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Una de las maneras de analizar los resultados de la predicción e identificar el 
algoritmo correcto es calculando el error relativo porcentual para cada técnica como 
se presenta en la siguiente sección.

Evaluación comparativa para la selección de canal

En la evaluación comparativa se muestran los resultados obtenidos en los experimen-
tos realizados. Primero, se muestran los cálculos de handoff  totales del experimento 
1, indicando para cada minuto la cantidad de handoff  realizados en los dos tipos de 
tráfico. En la figura 20 se puede observar el comportamiento de la clasificación en 
un escenario de tráfico bajo donde el SU realiza un total de 135 handoff, eligiendo 
primero los canales menos ocupados. En el mismo escenario, pero implementando 
un algoritmo aleatorio el SU realiza 220 handoff  en el mismo tiempo de transmisión. 
Para tráfico alto también se puede identificar la importancia de clasificar canales, 
ya que el SU realiza 180 handoff  mientras que de manera aleatoria realiza 350, este 
resultado se muestra en la figura 21.

Figura 20. Handoff  totales tráfico bajo experimento 1
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Figura 21. Handoff  totales tráfico alto experimento 1

En la figura 22 se presenta el promedio de handoff  del experimento 1, después de 
repetirlo 50 veces.

Figura 22. Promedio de handoff  experimento 1
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Cálculo del error de predicción

El resultado del error relativo promedio por cada técnica de predicción para tráfico 
alto y tráfico bajo, se observa en la tabla 8. Este valor permite mostrar el nivel de 
efectividad en la predicción, a pesar que la traza de evaluación utilizada es solo de 10 
minutos de medición, en tráfico alto se puede tener una certeza en la predicción del 
88,03 % para el caso de SVM. 

Tabla 8. Error relativo promedio para tráfico bajo y tráfico alto

Error relativo
promedio  

SVM Índice de potencia SNR

 Tráfico alto 11,97 13,09 16,44

 Tráfico bajo 13,85 14,21 18,42

De la tabla 8 se puede observar que para tráfico alto, el algoritmo SVM presenta una 
probabilidad del 88,03 % y KNN del 86,15 %, de acertar en la predicción, a dife-
rencia de la red neuronal que tiene una probabilidad del 83,5 %. Para tráfico bajo el 
comportamiento es similar en los tres algoritmos bajando la probabilidad de predic-
ción a un 86,15 % para SVM, 85,79 % para KNN y 81,58 % para la red neuronal. El 
resultado del error relativo es el promedio del resultado de los 551 canales, donde se 
observa que para los canales menos ocupados la probabilidad de predicción llega al 
92 % con la técnica SVM. Las técnicas SVM y KNN pueden presentar mejor estabi-
lidad y coherencia en los resultados, así como mejorar el rendimiento en la toma de 
decisiones.

Análisis del costo computacional

Dentro de las métricas de evaluación, consideramos inicialmente la medición del 
tiempo que tarda en realizar el proceso de cálculo de los parámetros para los 551 ca-
nales, el cual se puede observar en la tabla 9. También se determina el tiempo que el 
algoritmo GRA tarda en clasificar los canales, observado en la tabla 10. Por último, 
se realiza la medición de la predicción por canal para ambos tráficos, estos resultados 
se pueden ver en la tabla 11.
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Tabla 9. Tiempo de ejecución del cálculo de los parámetros

Ciclo de trabajo Índice de potencia SNR
Cálculo de los

parámetros

0,37719 S 1,01948 S 0,09312 S 1,6666 S

Tabla 10. Tiempo de ejecución de la etapa de clasificación

Clasificación GRA

Tráfico alto Tráfico bajo

0,041782 Seg 0,024856 Seg

Tabla 11. Tiempo de ejecución de la etapa de predicción

Predicción SVM KNN Neuronal

Predicción tráfico 
alto por canal

0,440 Seg 1,415  Seg 0,611 Seg

Predicción tráfico 
bajo por canal

0,392 Seg 1, 452eg 0,601 Seg

Las especificaciones técnicas del equipo de cómputo utilizado en el desarrollo del 
proyecto son mostrados en la tabla 12.

Tabla 12. Especificaciones técnicas del equipo de cómputo

Característica Descripción

Equipo y marca Portátil Lenovo

Serie Idea pad 500

Procesador
Intel ® Core™ i7 6500U CPU @ 

2.50 GHz - 2.6GHz
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Característica Descripción

Memoria RAM 8 GB

Sistema de almacenamiento 1 TB

Sistema operativo Windows 10, 64 bits

Evaluación comparativa para la predicción

El segundo experimento consistió en medir la cantidad de handoff  realizados por 
el SU durante una transmisión de 5 minutos. En cada ejecución se realizó el acceso 
al espectro aumentando cada 6 segundos el tiempo de inicio del experimento, hasta 
completar toda la traza de 10 minutos. Para este ejercicio solo se tuvo en cuenta la 
métrica de handoff  total. Los datos obtenidos en este experimento son presentados 
en la figura 23, para los dos tipos de tráfico. 

Figura 23. Handoff  totales experimento 2

Para tráfico alto el algoritmo de redes neuronales junto con KNN son las técnicas que 
realizan más handoff  en comparación con SVM, como se observa en la figura 23. La 
tabla 13 muestra los valores absolutos de dicho experimento. 
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Tabla 13. Handoff  totales experimento 2

Prueba  Rango time step

SVM Total 
Handoff

KNN Total
Handoff

Neuronal Total 
Handoff

Tráfico 
alto

Tráfico 
bajo

Tráfico 
alto

Tráfico 
bajo

Tráfico 
alto

Tráfico 
bajo

1 1 901 87 107 131 105 137 107

2 19 919 91 106 133 107 143 106

3 37 937 94 105 134 107 146 107

4 55 955 98 105 136 109 150 109

5 73 973 99 107 141 112 150 109

6 91 991 100 107 141 111 110 109

7 109 1009 104 109 144 112 112 114

8 127 1027 104 113 145 94 113 113

9 145 1045 104 116 128 93 117 115

10 163 1063 105 118 129 96 120 118

11 181 1081 92 122 130 104 123 122

12 199 1099 92 123 132 104 126 124

13 217 1117 97 125 133 92 126 123

14 235 1135 98 126 138 92 126 125

15 253 1153 100 131 128 96 128 131

16 271 1171 103 131 131 101 131 133

17 289 1189 104 134 132 103 131 139
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Prueba  Rango time step

SVM Total 
Handoff

KNN Total
Handoff

Neuronal Total 
Handoff

Tráfico 
alto

Tráfico 
bajo

Tráfico 
alto

Tráfico 
bajo

Tráfico 
alto

Tráfico 
bajo

18 307 1207 107 119 134 109 106 133

19 325 1225 109 122 138 111 108 133

20 343 1243 113 98 139 115 112 125

21 361 1261 117 106 141 117 116 124

22 379 1279 122 110 144 117 120 126

23 397 1297 123 112 146 117 122 130

24 415 1315 127 113 149 122 125 134

25 433 1333 131 114 134 124 129 117

26 451 1351 132 118 136 127 132 121

27 469 1369 134 125 140 129 141 128

28 487 1387 103 126 143 134 140 129

29 505 1405 105 126 144 134 140 129

30 523 1423 108 101 145 135 142 131

31 541 1441 109 100 145 119 110 134

32 559 1459 107 101 148 121 114 135

33 577 1477 109 105 151 123 114 137

34 595 1495 110 106 133 126 114 137

35 613 1513 113 108 137 128 118 140
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Prueba  Rango time step

SVM Total 
Handoff

KNN Total
Handoff

Neuronal Total 
Handoff

Tráfico 
alto

Tráfico 
bajo

Tráfico 
alto

Tráfico 
bajo

Tráfico 
alto

Tráfico 
bajo

36 631 1531 115 108 138 129 122 112

37 649 1549 117 108 141 132 123 114

38 667 1567 124 111 144 118 127 115

39 685 1585 125 109 145 118 130 123

40 703 1603 128 109 127 118 130 126

41 721 1621 88 108 128 118 105 115

42 739 1639 91 108 131 122 106 121

43 757 1657 93 138 138 123 92 123

44 775 1675 96 110 140 110 95 123

45 793 1693 96 114 143 110 95 127

46 811 1711 98 114 143 114 98 127

47 829 1729 104 117 146 115 102 131

48 847 1747 110 103 152 118 108 107

49 865 1765 113 103 157 121 111 112

50 883 1783 114 105 149 124 112 113

Como segunda parte del experimento, se realiza la simulación del modelo con una 
duración de transmisión de 10 minutos para los dos tipos de tráfico. En esta parte del 
experimento se obtienen los 6 tipos de handoff  descritos anteriormente y calculados 
a partir del simulador: handoff  totales (figura 24), handoff  anticipados (figura 25), 
handoff  fallidos (figura 26), handoff  perfectos (figura 27), handoff  sin interferencia 
(figura 28) y handoff  con interferencia (figura 29).
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Figura 24. Handoff  totales

Figura 25. Handoff  anticipados
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Figura 26. Handoff  fallidos

Figura 27. Handoff  perfectos
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Figura 28. Handoff  sin interferencia

Figura 29. Handoff  con interferencia
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Análisis estadístico de los resultados

Las tablas 12 y 13 resumen los resultados de las figuras 24 a la 29, en términos com-
parativos a través de porcentajes. Vale la pena aclarar que los porcentajes están calcu-
lados para que cuanto mejor sea el resultado más se acerque al 100 %, sin importar si 
la métrica es de beneficio o costo.

En las tablas 12 y 13 se puede analizar los resultados obtenidos del cálculo de los 
6 diferentes tipos de handoff, en los tres algoritmos evaluados, para los dos tipos de 
tráfico: alto y bajo. De la tabla 14 se observa que, en la ponderación total para tráfico 
alto, las redes neuronales obtienen un porcentaje menor del 81,57 % y KNN del 83 
%, siendo las técnicas menos favorables en la implementación de este escenario en 
comparación con SVM, que obtuvo un porcentaje del 90,49 %. SVM presenta me-
jores resultados en el cálculo de handoff, aunque no acierta en los handoff  perfectos 
(42,95 %) en comparación con redes neuronales y KNN. Por otro lado, SVM sí se 
comporta muy bien en los handoff  anticipados 100 % y en los handoff  con interfe-
rencia 100 %, en comparación con las demás técnicas. 

De acuerdo con las tablas 14 y 15, SVM y KNN son las técnicas que mejor ren-
dimiento muestran para tráfico alto y tráfico bajo. Por un lado, SVM es el algoritmo 
que menor handoff  realiza y el que genera menos interferencia en los dos escenarios 
(tráfico alto y tráfico bajo), en comparación con los demás algoritmos. Pero cuando 
se observa la ponderación total, se puede decir que para escenarios de tráfico alto la 
mejor técnica es SVM, mientras que para escenarios de tráfico bajo es KNN.

Tabla 14. Porcentaje comparativo de handoff  en tráfico alto

Tráfico alto
Red neuronal 

(%)
SVM (%) KNN (%)

Handoff  totales 82,17 100 75,18

Handoff  fallido 85,45 100 77,01

Handoff  con interferencia 82,82 100 91,8

Handoff  sin interferencia 93,77 100 97,32

Handoff  perfectos 100 42,95 86,11

Handoff  anticipados 45,2 100 70,58

Ponderación total 81,57 90,49 83
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Tabla 15. Porcentaje comparativo de handoff  en tráfico bajo

Tráfico alto
Red neuronal 

(%)
SVM (%) KNN (%)

Handoff  totales 78,38 100 76,32

Handoff  fallido 91,49 63,61 100

Handoff  con interferencia 55,91 91,88 100

Handoff  sin interferencia 96,4 100 99,45

Handoff  perfectos 72,87 88,68 100

Handoff  anticipados 33,09 79,88 100

Ponderación total 71,36 87,34 95,96
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Conclusiones

En las diferentes mediciones realizadas en Bogotá y para distintos tipos de servicios, 
que involucró la banda de frecuencia GSM (824 MHz - 874 MHz), se logró eviden-
ciar que el espectro radioeléctrico en esta región del país está siendo altamente subu-
tilizado, lo que lleva a confirmar la necesidad de un cambio en la actual política de 
asignación fija del espectro, y permite la generación de regulaciones para tecnologías 
de acceso dinámico al espectro, como la radio cognitiva. Para el desarrollo de las 
mediciones se recomienda hacer uso de tiempos de barrido cortos, en las bandas de 
las tecnologías variantes en el tiempo como GSM.

La ejecución del modelo implementado en Matlab permite concluir que el costo 
de procesamiento es bastante bajo para el cálculo de parámetros de cada canal, pues 
obtiene el resultado en 1,6 segundos para los 551 canales, aproximadamente 3 ms 
por cada canal. 

Al organizar los canales por prioridad, el SU puede elegir qué canales son lo 
menos utilizados basado en datos históricos, permitiéndole hacer uso del canal con 
menor probabilidad de generar interferencia y permanecer por más tiempo. La im-
portancia de clasificar los canales reduce la cantidad de handoff  requeridos por el SU 
para transmitir su información disminuyendo la interferencia que pueda generar a los 
usuarios primarios. 

El algoritmo de decisión multicriterio GRA permite obtener un resultado efectivo 
y computacionalmente bajo para el cálculo de los parámetros que varían con el tiem-
po. GRA clasifica los 551 canales en 24 ms para tráfico bajo y 48 ms para tráfico alto 
comparado con el trabajo realizado en [50], donde GRA es ejecutado en un rango 
de tiempo de 25 a 50 ms para la banda de UMTS. Este rendimiento computacional 
permite que el modelo pueda adaptarse rápidamente con diferentes datos de entrada 
y pueda ser implementado en otros entornos geográficos donde exista una banda de 
frecuencia que este siendo subutilizada. 

Las técnicas de SVM y KNN son las más adecuadas según las pruebas realizadas, 
ya que permiten predecir el próximo estado de un canal específico con una probabi-
lidad de acierto del 88% para tráfico alto y 86% para tráfico bajo, en SVM; y con un 
porcentaje del 86% en tráfico alto y 85% para tráfico bajo, en KNN. Por otra parte, 
SVM es la técnica que demuestra mejor comportamiento en los cambios de canal ya 
que disminuye la interferencia al realizar un menor número de handoff  y realizar 
mayores cambios de canal sin afectar el tráfico del usuario primario en los dos esce-
narios. KNN puede mostrar mejor rendimiento en tráfico bajo y ser más asertivo en 
los handoff  perfectos, pero para tráfico alto no tiene buen desempeño, lo que muestra 



84

Cristian Camilo Bernal Ariza, César Augusto Hernández Suárez

irregularidad. En términos computacionales el algoritmo KNN y redes neuronales 
son más eficaces comparados con SVM, y esto permite concluir que no hay un mé-
todo de predicción perfecto para todo tipo de escenario o ambiente de simulación.

Trabajo futuro

Para un trabajo futuro se propone evaluar otras técnicas de predicción que permitan 
mejorar el rendimiento computacional del modelo propuesto que mejore la probabi-
lidad de acierto obtenida en este modelo. 

Es necesario realizar experimentos en redes de radio cognitiva con datos de otras 
bandas de frecuencia implementadas actualmente como UMTS y LTE, que permitan 
evidenciar ajustes en el modelo y mejorar su implementación en el campo real.

Implementar el modelo diseñado en un escenario de red móvil utilizando más de 
un usuario secundario en la interacción permitirá observar si las decisiones tomadas 
por los SU conllevan a un comportamiento inteligente de autoorganización o si esta 
interacción entre usuarios tiende a comportarse al borde del caos, para ello un trabajo 
futuro será modelar la actividad de los SU en el espectro.

Este modelo no tiene en cuenta la variable espacio y ubicación de los diferentes 
usuarios secundarios en una red inalámbrica, lo cual es necesario en una topología 
de red distribuida donde el usuario más cercano pueda ser localizado y asociarse 
para realizar una comunicación. Podría ser interesante incluir otros parámetros en el 
desarrollo de este modelo como el ancho de banda o la regulación de la potencia de 
transmisión lo cual será una propuesta futura.
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Anexos

Desarrollo de software simulador en matlab.

A. Algoritmo general de decisión de espectro

clc;clear ; close all;

load(‘C:\Users\rokli\OneDrive\Documentos\Universidad\Matlab\Machine 

learning\Trazas de trafico GSM\Trafico_GSM_trazas_entrenamiento -95.mat’);

load(‘C:\Users\rokli\OneDrive\Documentos\Universidad\Matlab\Machine 

learning\Trazas de trafico GSM\Trafico_GSM_trazas_evaluacion -95.mat’);

High= Power_t.High;

EvaHigh=Power_e.High;

EvaLow=Power_e.Low;

Low=Power_t.Low;

[Mev,Nev]=size(EvaHigh);

[Mevl,Nevl]=size(EvaLow);

[Mh,Nh]=size(High);

[Ml,Nl]=size(Low);

datosHigh= High((1:Mh),(1:Nh));

datosLow=Low((1:Ml),(1:Nl));

Clasificacion= zeros(1,Nh);

Evaluacion= zeros(1,Nh);

ValorEs = zeros(1,Nh);

Matriz= zeros(Nh,3);

banda= 824:0.1:879; 

banda=banda’;

canaleslibres=zeros(551,3);

canalesocupados=zeros(551,3);

canal1=zeros(551,1);

salidaE=zeros(Mev,551);

salidane=zeros(Mev,551);

ocu=zeros(551,2);

ener=zeros(551,2);

grasnr=zeros(551,2);

%% Calculo de los criterios

[Procupacion]=ciclotrabajo (datosHigh,datosLow);

[trazaden,trazaenergia]=energia(datosHigh,datosLow); 
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[snrdb]=SNR(High,Nh,Mh,Low,Ml,Nl);

% Graficas Criterios

ocu(:,1)=banda(:,1);

ocu(:,2)=Procupacion(:,2)*100;

figure 

plot(ocu(:,1),ocu(:,2));

grid on

grid minor

title(‘CICLO DE TRABAJO ‘,’fontsize’,16);

ylabel(‘Porcentaje de Ocupación (%)’,’fontsize’,16);

xlabel(‘Frencuencia (MHz)’,’fontsize’,16);

axis([820 880 0 110])

set(gca,’fontsize’,12)

figure

ener(:,1)=banda(:,1);

ener(:,2)=trazaenergia(:,1);

plot(ener(:,1),ener(:,2));

set(gca,’fontsize’,12)

grid on

grid minor

title(‘ INDICE DE POTENCIA ‘,’fontsize’,16);

ylabel(‘Nivel de potencia’,’fontsize’,16);

xlabel(‘Frencuencia (MHz)’,’fontsize’,16);

figure

grasnr(:,1)=banda(:,1);

grasnr(:,2)=snrdb(:,1);

plot(grasnr(:,1),grasnr(:,2));

set(gca,’fontsize’,12)

grid on

grid minor

title(‘ SNR ‘,’fontsize’,16);

ylabel(‘ Nivel SNR (dBm)’,’fontsize’,16);

xlabel(‘Frencuencia (MHz)’,’fontsize’,16);

%%  Matriz de criterios

MatrizHigh=criteriosHigh(Procupacion,trazaenergia,snrdb);

MatrizLow=criteriosLow(Procupacion,trazaenergia,snrdb);

%% Clasificacion

[mejorcanalHigh]= GRA(MatrizHigh);

[mejorcanalLow]= GRAlow(MatrizLow);

%% Predicción  red neuronal y SVM

[preneuronalH,preneuronalL,presvmH,presvmL,mcanalH,preKNNH,preKNNL]= neur

oprediccion(datosHigh,datosLow,mejorcanalHigh,mejorcanalLow);

%% Calculo del error para SVM y red neuronal 

[errorsvmH,errorneuralH,errorknnH,errorH,mcaH,promedioH] 

=errorpre(EvaHigh,mejorcanalHigh,banda,presvmH,preneuronalH,preKNNH);

[errorsvmL,errorneuralL,errorknnL,errorL,mcaL,promedioL] 
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=errorprelow(EvaLow,mejorcanalLow,banda,presvmL,preneuronalL,preKNNL);

%% experimento sin predicción

[totalalto]=experimentoalto(mcaH,EvaHigh);

[totalbajo]=experimentobajo(mcaL,EvaLow);

%% interacción High

[totalhand,totalfallido,totalanti,totalinte,totalperfecto]=handoffsvm(pre

svmH,mcaH,EvaHigh);

[totalhandn,totalfallidon,totalantin,totalinten,totalperfecton]=handoffne

uronal(preneuronalH,mcaH,EvaHigh);

[totalhandk,totalfallidok,totalantik,totalintek,totalperfectok]=handoffKN

N(preKNNH,mcaH,EvaHigh);

totalsininte=totalhand-totalinte;

totalsininten=totalhandn-totalinten;

totalsinintek=totalhandk-totalintek;

%% interacción Low

[totalhandL,totalfallidoL,totalantiL,totalinteL,totalperfectoL]=handoffsv

mL(presvmL,mcaL,EvaLow);

[totalhandnL,totalfallidonL,totalantinL,totalintenL,totalperfectonL]=hand

offneuronalL(preneuronalL,mcaL,EvaLow);

[totalhandkL,totalfallidokL,totalantikL,totalintekL,totalperfectokL]=hand

offKNNL(preKNNL,mcaL,EvaLow);

totalsininteL=totalhandL-totalinteL;

totalsinintenL=totalhandnL-totalintenL;

totalsinintekL=totalhandkL-totalintekL;

%% Grafica Experimento

plot(totalalto,’b-*’)

hold on

grid on

title(‘Handoffs Totales Experimento tráfico alto’,’fontsize’,14)

set(gca,’fontsize’,12)

ylabel(‘Número de handoffs’,’fontsize’,14)

xlabel(‘Minutos’,’fontsize’,14)

figure

plot(totalbajo,’b-*’)

hold on

grid on

title(‘Handoffs Totales Experimento tráfico bajo’,’fontsize’,14)

set(gca,’fontsize’,12)

ylabel(‘Número de handoffs’,’fontsize’,14)

xlabel(‘Minutos’,’fontsize’,14)

figure

%% graficas Handoff

plot(totalhand,’b-*’)

hold on

plot(totalhandn,’r-x’)

grid on
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plot(totalhandk,’g-o’)

plot(totalhandL,’k-+’)

plot(totalhandnL,’c-d’)

plot(totalhandkL,’m-p’)

title(‘Handoffs Totales’,’fontsize’,16)

set(gca,’fontsize’,12)

ylabel(‘Número de handoffs’,’fontsize’,16)

xlabel(‘Minutos’,’fontsize’,16)

legend(‘SVM Alto’,’Neuronal Alto’,’KNN Alto’,’SVM Bajo’,’Neuronal 

Bajo’,’KNN Bajo’)

figure

plot(totalfallido,’b-*’)

hold on

plot(totalfallidon,’r-x’)

grid on 

plot(totalfallidok,’g-o’)

plot(totalfallidoL,’k-+’)

plot(totalfallidonL,’c-d’)

plot(totalfallidokL,’m-p’)

title(‘Handoffs Fallidos’,’fontsize’,16)

set(gca,’fontsize’,12)

ylabel(‘Número de handoffs’,’fontsize’,16)

xlabel(‘Minutos’,’fontsize’,16)

legend(‘SVM Alto’,’Neuronal Alto’,’KNN Alto’,’SVM Bajo’,’Neuronal 

Bajo’,’KNN Bajo’)

figure

plot(totalinte,’b-*’)

hold on

plot(totalinten,’r-x’)

grid on

plot(totalintek,’g-o’)

plot(totalinteL,’k-+’)

plot(totalintenL,’c-d’)

plot(totalintekL,’m-p’)

title(‘Handoffs con interferencia’,’fontsize’,16)

set(gca,’fontsize’,12)

ylabel(‘Número de handoffs’,’fontsize’,16)

xlabel(‘Minutos’,’fontsize’,16)

legend(‘SVM Alto’,’Neuronal Alto’,’KNN Alto’,’SVM Bajo’,’Neuronal 

Bajo’,’KNN Bajo’)

figure

plot(totalsininte,’b-*’)

hold on

plot(totalsininten,’r-x’)

grid on 

plot(totalsinintek,’g-o’)



95

Modelo de decisión espectral para redes de radio cognitiva

plot(totalsininteL,’k-+’)

plot(totalsinintenL,’c-d’)

plot(totalsinintekL,’m-p’)

title(‘Handoffs sin interferencia’,’fontsize’,16)

set(gca,’fontsize’,12)

ylabel(‘Número de  handoffs’,’fontsize’,16)

xlabel(‘Minutos’,’fontsize’,16)

legend(‘SVM Alto’,’Neural Alto’,’KNN Alto’,’SVM Bajo’,’Neuronal 

Bajo’,’KNN Bajo’)

figure

plot(totalperfecto,’b-*’)

hold on

plot(totalperfecton,’r-x’)

grid on

plot(totalperfectok,’g-o’)

plot(totalperfectoL,’k-+’)

plot(totalperfectonL,’c-d’)

plot(totalperfectokL,’m-p’) 

title(‘Handoffs Perfectos’,’fontsize’,16)

set(gca,’fontsize’,12)

ylabel(‘Número de handoffs’,’fontsize’,16)

xlabel(‘Minutos’,’fontsize’,16)

legend(‘SVM Alto’,’Neuronal Alto’,’KNN Alto’,’SVM Bajo’,’Neuronal 

Bajo’,’KNN Bajo’)

figure

plot(totalanti,’b-*’)

hold on

plot(totalantin,’r-x’)

grid on

plot(totalantik,’g-o’)

plot(totalantiL,’k-+’)

plot(totalantinL,’c-d’)

plot(totalantikL,’m-p’)

title(‘Handoffs Anticipados’,’fontsize’,16)

set(gca,’fontsize’,12)

ylabel(‘Número de  handoffs’,’fontsize’,16)

xlabel(‘Minutos’,’fontsize’,16)

legend(‘SVM Alto’,’Neuronal Alto’,’KNN Alto’,’SVM Bajo’,’Neuronal 

Bajo’,’KNN Bajo’)

figure
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B. Cálculo de los parámetros

Ocupación de espectro

function [Procupacion]=ciclotrabajo (datosHigh,datosLow) 

%% Entrenamiento

ocupacionH= lt(-95,datosHigh);

ocupacionH=ocupacionH’;

ocupacionL= lt(-95,datosLow);

ocupacionL=ocupacionL’;

[Fh,Ch]=size(ocupacionH);

[Fl,Cl]=size(ocupacionL);

TOFFh=zeros(Fh,2);

TONh =zeros(Fh,2);

TOFFl=zeros(Fl,2);

TONl =zeros(Fl,2);

intensidad= zeros((Fh),3);

Procupacion= zeros((Fh),3);

Prolibre= zeros((Fh),3);

Total= Ch*0.290;

% High

for i=1:Fh

     libreh=0;

      ocupadoh=0;

       for j=1:Ch

         if ocupacionH (i,j)== 0

          libreh=libreh+0.290;

          TOFFh(i,2)=libreh;

          TOFFh(i,1)=i;

         else 

          ocupadoh=ocupadoh+0.290;

          TONh (i,2)= ocupadoh;

          TONh(i,1)=i;

         end

        end

    intensidad(i,2)= TONh(i,2)/(TONh(i,2)+TOFFh(i,2));

    intensidad(i,1)= i;

    Procupacion(i,2)= TONh(i,2)/Total;

    Procupacion(i,1)= i;

    Prolibre(i,2)= 1-Procupacion(i,2);

    Prolibre(i,1)=i;

end

%% Low

for i=1:Fl

   librel=0;
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      ocupadol=0; 

      for j=1:Cl

         if ocupacionL (i,j)== 0 

          librel=librel+0.290;

          TOFFl(i,2)=librel;

          TOFFl(i,1)=i;

         else 

          ocupadol=ocupadol+0.290;

          TONl(i,2)= ocupadol;

          TONl(i,1)=i;

         end 

    intensidad(i,3)= TONl(i,2)/(TONl(i,2)+TOFFl(i,2));

    Procupacion(i,3)= TONl(i,2)/Total;

    Prolibre(i,3)= 1-Procupacion(i,3);

       end

end

Índice de potencia

function [trazaden,trazaenergia] =energia(datosHigh,datosLow)

%% Indice de potencia en dBm datos de entrenamiento

Emaxh=max(datosHigh);Eminh=min(datosHigh);

Eminl=min(datosLow);Emaxl=max(datosLow);

Energiahigh = Eminh./Emaxh;Energiahigh=Energiahigh’;

Energialow = Eminl./Emaxl;Energialow=Energialow’;

[~,c]=size(datosHigh);

trazaenergia=zeros(c,2);

trazaenergia(:,1)=Energiahigh;

trazaenergia(:,2)=Energialow;

%% Indice de potencia en mV datos de entrenamiento

denHigh=10.^(datosHigh./10);

denLow=10.^(datosLow./10);

trazaden=zeros(c,2);

Dmaxh=max(denHigh);Dminh=min(denHigh);

Dminl=min(denLow);Dmaxl=max(denLow);

Densidadhigh = Dminh./Dmaxh;Densidadhigh=Densidadhigh’;

Densidadlow=Dminl./Dmaxl;Densidadlow=Densidadlow’;

trazaden(:,1)=Densidadhigh;

trazaden(:,2)=Densidadlow;

end
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Relación señal a ruido

function [snrdb]=SNR(High,Nh,Mh,Low,Ml,Nl)

%% Calculo del ruido termico

snrdH=zeros(Mh,Nh);

snrdL=zeros(Ml,Nl);

potencia1=-100;

snrdb=zeros(Nl,2);

for i=1:Nh

snrdH(:,i)=High(:,i)-(potencia1);

snrdb(i,1)=sum(snrdH(:,i))/Mh;

snrdL(:,i)=Low(:,i)-(potencia1);

snrdb(i,2)=sum(snrdL(:,i))/Mh;

end

C. Algoritmo GRA

function[mejorcanalHigh]= GRA(MatrizHigh)

[fi,co]=size(MatrizHigh);

r=zeros(fi,co);

p=zeros(fi,co);

v=zeros(fi,co);

deltai=zeros(fi,co);

S=zeros(fi,2);

CRC=zeros(fi,3);

salida=zeros(fi,2);

mejorcanalHigh=zeros(fi,3);

Mo=max(MatrizHigh(:,1));

Me=max(MatrizHigh(:,2));

Ms=max(MatrizHigh(:,3));

Mino=min(MatrizHigh(:,1));

Mine=min(MatrizHigh(:,2));  

Mins=min(MatrizHigh(:,3));

%% Normalizar la matriz de decision de los tres atributos de beneficio

for j=1:co

    for i=1:fi

          if j == 1

         r(i,j) = (Mo-MatrizHigh(i,j))/(Mo-Mino);

          elseif j ==2

         r(i,j) = (Me-MatrizHigh(i,j))/(Me-Mine);

          else

         r(i,j) = (Ms-MatrizHigh(i,j))/(Ms-Mins);

          end

    end

end
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%% Normalizado  Ponderado

% Se asignan los pesos de los atributos de la siguiente manera:

% Para ocupacion se elige una prioridad de 7; Energia 5 y SNR 3; La 

sumatoria es igual a 1

% pesos=zeros(1,3);

PeOc=7;

PeSinr=5;

PePot=3;

raiz=zeros(3,3);

pesos=zeros(3,3);

% [1  5  7]

% [1/5 1 3]

% [1/7 1/3 1]

% raizOc= 1*PeSinr*PeOc;

% raizSi=1/PeSinr*1*PePot;

% raizPo=1/PeOc*1/PePot*1;

% Wo1=nthroot(raizOc,3);

% We=nthroot(raizSi,3);

% Ws=nthroot(raizPo,3);

% pesos(1,1)=Wo1;

% pesos(1,2)=We;

% pesos(1,3)=Ws;

% maxpe=max(pesos);

% minpe=min(pesos);

% Wo= (pesos(1,1)-minpe)/(maxpe - minpe);

% We= (pesos(1,2)-minpe)/(maxpe - minpe);

% Ws= (pesos(1,3)-minpe)/(maxpe - minpe);

raiz(1,:)=[1         PeSinr     PeOc];

raiz(2,:)=[1/PeSinr    1       PePot];

raiz(3,:)=[1/PeOc    1/PePot       1];

Wo1=max(cumsum(raiz(:,1)));

We1=max(cumsum(raiz(:,2)));

Ws1=max(cumsum(raiz(:,3)));

pesos(1,1)=raiz(1,1)/Wo1;

pesos(2,1)=raiz(2,1)/Wo1;

pesos(3,1)=raiz(3,1)/Wo1;

pesos(1,2)=raiz(1,2)/We1;

pesos(2,2)=raiz(2,2)/We1;

pesos(3,2)=raiz(3,2)/We1;

pesos(1,3)=raiz(1,3)/Ws1;

pesos(2,3)=raiz(2,3)/Ws1;

pesos(3,3)=raiz(3,3)/Ws1;

Wo=max(cumsum(pesos(1,:)))/3;

We=max(cumsum(pesos(2,:)))/3;
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Ws=max(cumsum(pesos(3,:)))/3;

% Wo=Wo1/Wo1

% We=We/Wo1

P2 = Wo + We + Ws

% Ws=Ws/Wo1;

v(:,1)= r(:,1).*Wo;

v(:,2)= r(:,2).*We;

v(:,3)= r(:,3).*Ws;

%% criterio de beneficio

x1=max(v(:,1));

x2=max(v(:,2));

x3=max(v(:,3));

%% Calculo GRC

for j=1:co

   for i=1: fi

       if j==1

           deltai(i,1)= x1-v(i,j);

       elseif j==2 

           deltai(i,2)= x2-v(i,j);

       else 

           deltai(i,3)= x3-v(i,j);

        end

   end

end

maxD1=max(deltai(:,1));

maxD2=max(deltai(:,2));

maxD3=max(deltai(:,3));

minD1=min(deltai(:,1));

minD2=min(deltai(:,2));

minD3=min(deltai(:,3));

for j=1:co

    for i=1:fi

       if j==1

           CRC (i,j) = ((minD1+maxD1) /(deltai(i,j)+ maxD1))/co;

       elseif j==2

           CRC (i,j) = ((minD2+maxD2) /(deltai(i,j)+ maxD2))/co;

       else

           CRC (i,j) = ((minD3+maxD3) /(deltai(i,j)+ maxD3))/co;

       end

    end

end

%% Salida 

banda= 824:0.1:879;
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banda=banda’;

S(:,1)=banda(:,1);

S(:,2)=v(:,1)+v(:,2)+v(:,3);

salida(:,2)=CRC(:,1)+ CRC(:,2)+CRC(:,3);

salida(:,1)=banda(:,1);

%% Organiza los mejores canales para la predicción

for i=1:fi

    [maxi,j]=max(salida(:,2));

    mejorcanalHigh(i,2)=salida(j,1);

    mejorcanalHigh(i,3)=maxi;

    salida(j,1:2)=0;

    prioridad=1:1:551;

    prioridad=prioridad’;

    mejorcanalHigh(:,1)=prioridad;

end

D. Algoritmo de predicción

function 

[preneuronalH,preneuronalL,presvmH,presvmL,mcanalH,preKNNH,preKNNL]= neur

oprediccion(datosHigh,datosLow,mejorcanalHigh,mejorcanalLow)

% load(‘C:\Users\rokli\OneDrive\Documentos\Universidad\Matlab\Machine 

learning\Trazas de trafico GSM\Trafico_GSM_trazas_evaluacion -95.mat’);

% High= Power_e.Low;

[fil,~]=size(datosHigh); 

% [fi,~]=size(High);

band= 824:0.1:879;

mcanalH=zeros(1,551);

mcanalL=zeros(1,551);

claseh=zeros(fil,2);

clasel=zeros(fil,2);

clasek=zeros(fil,2);

presvmH=zeros(fil,551);

presvmL=zeros(fil,551);

preKNNH=zeros(fil,551);

preKNNL=zeros(fil,551);

datosentradaH=(lt(-95,datosHigh));

datosentradaL=(lt(-95,datosLow));

[Y,PS]=mapminmax(datosentradaH);

[Yl,PSl]=mapminmax(datosentradaL);

canalentrenamientoL=zeros(fil,551);

preneuronalL=zeros(551,fil);

aprioriL=zeros(fil,551);

apriori1L=zeros(fil,551);
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apriori1H=zeros(fil,551);

aprioriH=zeros(fil,551);

% High

for i=1:551

    primer=mejorcanalHigh(i,2);

    [~,c]=find(primer==band(1,:));

    mcanalH(1,i)=c;

end

% Low

for i=1:551

    primerL=mejorcanalLow(i,2);

    [~,c]=find(primerL==band(1,:));

    mcanalL(1,i)=c;

end

%% implementacion SVM  y  KNN HIGH

for i=1:551

aprioriH(:,i)= lt(-95,datosHigh(:,mcanalH(1,i)));

claseh(:,1)=datosHigh(:,mcanalH(1,i));

claseh(:,2)=aprioriH(:,i);

claseh(:,2)=(aprioriH(:,i).*2-1);

SVMModelH = fitcsvm(claseh(:,1), claseh(:,2));

[presvmH(:,i),~]  = predict(SVMModelH,datosHigh(:,i));

presvmH(:,i)=((presvmH(:,i)+ 1)./2);

apriori1H(:,i)= lt(-95,datosHigh(:,mcanalH(1,i)));

clasek(:,2)=apriori1H(:,i);

clasek(:,1)=datosHigh(:,mcanalH(1,i));

KNNModel=fitcknn(clasek(:,1),clasek(:,2),’NumNeighbors’,3,’NSMethod’,’exha

ustive’,’Distance’,’minkowski’,’Standardize’,1);

[preKNNH(:,i),~]  = predict(KNNModel,datosHigh(:,i));

end

% LOW SVM y KNN

for i=1:551

aprioriL(:,i)= lt(-95,datosLow(:,mcanalL(1,i)));

clasel(:,1)=datosLow(:,mcanalL(1,i));

clasel(:,2)=aprioriL(:,i);

clasel(:,2)=(aprioriL(:,i).*2-1);

SVMModelL =fitcsvm(clasel(:,1), clasel(:,2));

[presvmL(:,i),~]  = predict(SVMModelL,datosLow(:,i));

presvmL(:,i)=((presvmL(:,i)+ 1)./2);

apriori1L(:,i)= lt(-95,datosLow(:,mcanalL(1,i)));
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clasekl(:,2)=apriori1L(:,i);

clasekl(:,1)=datosLow(:,mcanalL(1,i));

KNNModelL=fitcknn(clasekl(:,1),clasekl(:,2),’NumNeighbors’,3,’NSMethod’,’e

xhaustive’,’Distance’,’minkowski’,’Standardize’,1);

[preKNNL(:,i),~]  = predict(KNNModelL,datosLow(:,i));

end

%% neuronal High

canalentrenamientoH=zeros(fil,551);

preneuronalH=zeros(551,fil);

aprioriH=zeros(fil,551);

for i=1:551

      canalentrenamientoH(:,i)=Y(:,mcanalH(1,i));

      x1=canalentrenamientoH(:,i);   

      x1=x1’;

      xi1=[-1 1];

      [y1,~] = normal1(x1,xi1);

      preneuronalH(i,:)=y1;

end

preneuronalH=preneuronalH’;

preneuronalH=mapminmax(‘reverse’,preneuronalH,PS);

%% low

% for i=1:551

%       canalentrenamientoL(:,i)=Yl(:,mcanalL(1,i));

%       x1=canalentrenamientoL(:,i);   

%       x1=x1’;

%       xi1=[-1 1];

%       [yl,~] = normallow(x1,xi1);

%       preneuronalL(i,:)=yl;

% end

for i=1:551

      canalentrenamientoL(:,i)=Yl(:,mcanalL(1,i));

      x1=canalentrenamientoL(:,i);   

      x1=x1’;

      xi1=[-1 1];

      [yl,~] = normal1(x1,xi1);

      preneuronalL(i,:)=yl;

end

preneuronalL=preneuronalL’;

preneuronalL=mapminmax(‘reverse’,preneuronalL,PSl);

end
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E. Simulador

function [totalhand,totalfallido,totalanti,totalinte,totalperfecto]=hando

ffsvm(presvmH,mcaH,EvaHigh)

Matrizinteraccion=EvaHigh;   % transpuesta de la matriz canal de 

frecuencia(filas) tiempo columnas 

Matrizinteraccion=lt(-95,Matrizinteraccion)’;% matriz de ceros y unos 

presvmH=presvmH’; % transpuesta de la matriz

presvmH(:,1:8999)=[];

cana=1;

hand1=0;hand2=0;hand3=0;hand4=0;hand5=0;

hand6=0;hand7=0;hand8=0;hand9=0;hand10=0;

fallido1=0;fallido2=0;fallido3=0;fallido4=0;fallido5=0;

fallido6=0;fallido7=0;fallido8=0;fallido9=0;fallido10=0;

handin1=0;handin2=0;handin3=0;handin4=0;handin5=0;

handin6=0;handin7=0;handin8=0;handin9=0;handin10=0;

anti1=0;anti2=0;anti3=0;anti4=0;anti5=0;

anti6=0;anti7=0;anti8=0;anti9=0;anti10=0;

inte1=0;inte2=0;inte3=0;inte4=0;inte5=0;

inte6=0;inte7=0;inte8=0;inte9=0;inte10=0;

perfecto1=0;perfecto2=0;perfecto3=0;perfecto4=0;perfecto5=0;

perfecto6=0;perfecto7=0;perfecto8=0;perfecto9=0;perfecto10=0;

tablahand=zeros(10,1);

tablafallido=zeros(10,1);

tablaanti=zeros(10,1);

tablainte=zeros(10,1);

tablaperfecto=zeros(10,1);

%% primer minuto

for i=1:180

   if presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),i)==0

       if presvmH(mcaH(cana,1),i+1)==1

         hand1=hand1+1;

         cana=cana+1;

          if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido1=fallido1+1;

          end

       end

     elseif presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),

i)==1

     handin1=handin1+1;

     if presvmH(mcaH(cana,1),i+1)==1

      hand1=hand1+1;

      cana=cana+1;

      inte1=inte1+1;

      handin1=0;
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        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido1=fallido1+1;

        end

       else

        handin1= handin1+1;

     end

     elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),

i)==0

       anti1=anti1+1;

       hand1=hand1+1;

       cana=cana+1;

         if handin1>0

            inte1=inte1+1;

         else

         handin1=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido1=fallido1+1;

        end   

    elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),i

)==1

       if Matrizinteraccion(mcaH(cana,1),i)==1 || Matrizinteraccion(mcaH(

cana,1),i+1)==1 || Matrizinteraccion(mcaH(cana,1),i+2)==1 || Matrizintera

ccion(mcaH(cana,1),i+3)==1 || Matrizinteraccion(mcaH(cana,1),i+4)==1 

          perfecto1=perfecto1+1;

          cana=cana+1;

       end

       if presvmH(mcaH(cana,1),i+1)==1

          hand1=hand1+1;

          cana=cana+1;    

         if handin1>0

            inte1=inte1+1;

         else

         handin1=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido1=fallido1+1;

        end

       end

   end

end

tablahand(1,1)=hand1;

tablafallido(1,1)=fallido1;

tablaanti(1,1)=anti1;

tablainte(1,1)=inte1;

tablaperfecto(1,1)=perfecto1;
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%% segundo minuto

for i=181:360

   if presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),i)==0

       if presvmH(mcaH(cana,1),i+1)==1

         hand2=hand2+1;

         cana=cana+1;

          if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido2=fallido2+1;

          end

       end

     elseif presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),

i)==1

     handin2=handin2+1;

     if presvmH(mcaH(cana,1),i+1)==1

      hand2=hand2+1;

      cana=cana+1;

      inte2=inte2+1;

      handin2=0;

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido2=fallido2+1;

        end

       else

        handin2= handin2+1;

     end

     elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),

i)==0

       anti2=anti2+1;

       hand2=hand2+1;

       cana=cana+1;

         if handin2>0

            inte2=inte2+1;

         else

         handin2=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido2=fallido2+1;

        end   

    elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),i

)==1

       if Matrizinteraccion(mcaH(cana,1),i)==1 || Matrizinteraccion(mcaH(

cana,1),i+1)==1 || Matrizinteraccion(mcaH(cana,1),i+2)==1 || Matrizintera

ccion(mcaH(cana,1),i+3)==1 || Matrizinteraccion(mcaH(cana,1),i+4)==1 

          perfecto2=perfecto2+1;

          cana=cana+1;

       end

       if presvmH(mcaH(cana,1),i+1)==1
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          hand2=hand2+1;

          cana=cana+1;    

         if handin2>0

            inte2=inte2+1;

         else

         handin2=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido2=fallido2+1;

        end

       end

   end

end

tablahand(2,1)=hand2;

tablafallido(2,1)=fallido2;

tablaanti(2,1)=anti2;

tablainte(2,1)=inte2;

tablaperfecto(2,1)=perfecto2;

%% tercer minuto

for i=361:540

   if presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),i)==0

       if presvmH(mcaH(cana,1),i+1)==1

         hand3=hand3+1;

         cana=cana+1;

          if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido3=fallido3+1;

          end

       end

     elseif presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),

i)==1

     handin3=handin3+1;

     if presvmH(mcaH(cana,1),i+1)==1

      hand3=hand3+1;

      cana=cana+1;

      inte3=inte3+1;

      handin3=0;

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido3=fallido3+1;

        end

       else

        handin3= handin3+1;

     end

     elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),

i)==0

       anti3=anti3+1;

       hand3=hand3+1;
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       cana=cana+1;

         if handin3>0

            inte3=inte3+1;

         else

         handin3=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido3=fallido3+1;

        end   

    elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),i

)==1

       if Matrizinteraccion(mcaH(cana,1),i)==1 || Matrizinteraccion(mcaH(

cana,1),i+1)==1 || Matrizinteraccion(mcaH(cana,1),i+2)==1 || Matrizintera

ccion(mcaH(cana,1),i+3)==1 || Matrizinteraccion(mcaH(cana,1),i+4)==1 

          perfecto3=perfecto3+1;

          cana=cana+1;

       end

       if presvmH(mcaH(cana,1),i+1)==1

          hand3=hand3+1;

          cana=cana+1;    

         if handin3>0

            inte3=inte3+1;

         else

         handin3=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido3=fallido3+1;

        end

       end

   end

end

tablahand(3,1)=hand3;

tablafallido(3,1)=fallido3;

tablaanti(3,1)=anti3;

tablainte(3,1)=inte3;

tablaperfecto(3,1)=perfecto3;

%% cuarto minuto

for i=541:720

   if presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),i)==0

       if presvmH(mcaH(cana,1),i+1)==1

         hand4=hand4+1;

         cana=cana+1;

          if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido4=fallido4+1;

          end
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       end

     elseif presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),

i)==1

     handin4=handin4+1;

     if presvmH(mcaH(cana,1),i+1)==1

      hand4=hand4+1;

      cana=cana+1;

      inte4=inte4+1;

      handin4=0;

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido4=fallido4+1;

        end

       else

        handin4=handin4+1;

     end

     elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),

i)==0

       anti4=anti4+1;

       hand4=hand4+1;

       cana=cana+1;

         if handin4>0

            inte4=inte4+1;

         else

         handin4=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido4=fallido4+1;

        end   

    elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),i

)==1

       if Matrizinteraccion(mcaH(cana,1),i)==1 || Matrizinteraccion(mcaH(

cana,1),i+1)==1 || Matrizinteraccion(mcaH(cana,1),i+2)==1 || Matrizintera

ccion(mcaH(cana,1),i+3)==1 || Matrizinteraccion(mcaH(cana,1),i+4)==1 

          perfecto4=perfecto4+1;

          cana=cana+1;

       end

       if presvmH(mcaH(cana,1),i+1)==1

          hand4=hand4+1;

          cana=cana+1;    

         if handin4>0

            inte4=inte4+1;

         else

         handin4=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido4=fallido4+1;



110

Cristian Camilo Bernal Ariza, César Augusto Hernández Suárez

        end

       end

   end

end

tablahand(4,1)=hand4;

tablafallido(4,1)=fallido4;

tablaanti(4,1)=anti4;

tablainte(4,1)=inte4;

tablaperfecto(4,1)=perfecto4;

%% quinto minuto

for i=721:900

   if presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),i)==0

       if presvmH(mcaH(cana,1),i+1)==1

         hand5=hand5+1;

         cana=cana+1;

          if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido5=fallido5+1;

          end

       end

     elseif presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),

i)==1

     handin5=handin5+1;

     if presvmH(mcaH(cana,1),i+1)==1

      hand5=hand5+1;

      cana=cana+1;

      inte5=inte5+1;

      handin5=0;

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido5=fallido5+1;

        end

       else

        handin5=handin5+1;

     end

     elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),

i)==0

       anti5=anti5+1;

       hand5=hand5+1;

       cana=cana+1;

         if handin5>0

            inte5=inte5+1;

         else

         handin5=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido5=fallido5+1;

        end   
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    elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),i

)==1

       if Matrizinteraccion(mcaH(cana,1),i)==1 || Matrizinteraccion(mcaH(

cana,1),i+1)==1 || Matrizinteraccion(mcaH(cana,1),i+2)==1 || Matrizintera

ccion(mcaH(cana,1),i+3)==1 || Matrizinteraccion(mcaH(cana,1),i+4)==1  

          perfecto5=perfecto5+1;

          cana=cana+1;

       end

       if presvmH(mcaH(cana,1),i+1)==1

          hand5=hand5+1;

          cana=cana+1;    

         if handin5>0

            inte5=inte5+1;

         else

         handin5=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido5=fallido5+1;

        end

       end

   end

end

tablahand(5,1)=hand5;

tablafallido(5,1)=fallido5;

tablaanti(5,1)=anti5;

tablainte(5,1)=inte5;

tablaperfecto(5,1)=perfecto5;

%% sexto minuto

for i=901:1080

   if presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),i)==0

       if presvmH(mcaH(cana,1),i+1)==1

         hand6=hand6+1;

         cana=cana+1;

          if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido6=fallido6+1;

          end

       end

     elseif presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),

i)==1

     handin6=handin6+1;

     if presvmH(mcaH(cana,1),i+1)==1

      hand6=hand6+1;

      cana=cana+1;

      inte6=inte6+1;

      handin6=0;

        if Matrizinteraccion(mcaH(cana,1),i+1)==1
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          fallido6=fallido6+1;

        end

       else

        handin6=handin6+1;

     end

     elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),

i)==0

       anti6=anti6+1;

       hand6=hand6+1;

       cana=cana+1;

         if handin6>0

            inte6=inte6+1;

         else

         handin6=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido6=fallido6+1;

        end   

    elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),i

)==1

       if Matrizinteraccion(mcaH(cana,1),i)==1 || Matrizinteraccion(mcaH(

cana,1),i+1)==1 || Matrizinteraccion(mcaH(cana,1),i+2)==1 || Matrizintera

ccion(mcaH(cana,1),i+3)==1 || Matrizinteraccion(mcaH(cana,1),i+4)==1  

          perfecto6=perfecto6+1;

          cana=cana+1;

       end

       if presvmH(mcaH(cana,1),i+1)==1

          hand6=hand6+1;

          cana=cana+1;    

         if handin6>0

            inte6=inte6+1;

         else

         handin6=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido6=fallido6+1;

        end

       end

   end

end

tablahand(6,1)=hand6;

tablafallido(6,1)=fallido6;

tablaanti(6,1)=anti6;

tablainte(6,1)=inte6;

tablaperfecto(6,1)=perfecto6;

%% septimo minuto
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for i=1081:1260

   if presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),i)==0

       if presvmH(mcaH(cana,1),i+1)==1

         hand7=hand7+1;

         cana=cana+1;

          if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido7=fallido7+1;

          end

       end

     elseif presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),

i)==1

     handin7=handin7+1;

     if presvmH(mcaH(cana,1),i+1)==1

      hand7=hand7+1;

      cana=cana+1;

      inte7=inte7+1;

      handin7=0;

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido7=fallido7+1;

        end

       else

        handin7=handin7+1;

     end

     elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),

i)==0

       anti7=anti7+1;

       hand7=hand7+1;

       cana=cana+1;

         if handin7>0

            inte7=inte7+1;

         else

         handin7=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido7=fallido7+1;

        end   

    elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),i

)==1

       if Matrizinteraccion(mcaH(cana,1),i)==1 || Matrizinteraccion(mcaH(

cana,1),i+1)==1 || Matrizinteraccion(mcaH(cana,1),i+2)==1 || Matrizintera

ccion(mcaH(cana,1),i+3)==1 || Matrizinteraccion(mcaH(cana,1),i+4)==1 

          perfecto7=perfecto7+1;

          cana=cana+1;

       end

       if presvmH(mcaH(cana,1),i+1)==1

          hand7=hand7+1;
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          cana=cana+1;    

         if handin7>0

            inte7=inte7+1;

         else

         handin7=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido7=fallido7+1;

        end

       end

   end

end

tablahand(7,1)=hand7;

tablafallido(7,1)=fallido7;

tablaanti(7,1)=anti7;

tablainte(7,1)=inte7;

tablaperfecto(7,1)=perfecto7;

%% octavo  minuto

for i=1261:1440

   if presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),i)==0

       if presvmH(mcaH(cana,1),i+1)==1

         hand8=hand8+1;

         cana=cana+1;

          if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido8=fallido8+1;

          end

       end

     elseif presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),

i)==1

     handin8=handin8+1;

     if presvmH(mcaH(cana,1),i+1)==1

      hand8=hand8+1;

      cana=cana+1;

      inte8=inte8+1;

      handin8=0;

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido8=fallido8+1;

        end

       else

        handin8=handin8+1;

     end

     elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),

i)==0

       anti8=anti8+1;

       hand8=hand8+1;

       cana=cana+1;
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         if handin8>0

            inte8=inte8+1;

         else

         handin8=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido8=fallido8+1;

        end   

    elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),i

)==1

       if Matrizinteraccion(mcaH(cana,1),i)==1 || Matrizinteraccion(mcaH(

cana,1),i+1)==1 || Matrizinteraccion(mcaH(cana,1),i+2)==1 || Matrizintera

ccion(mcaH(cana,1),i+3)==1 || Matrizinteraccion(mcaH(cana,1),i+4)==1 

          perfecto8=perfecto8+1;

          cana=cana+1;

       end

       if presvmH(mcaH(cana,1),i+1)==1

          hand8=hand8+1;

          cana=cana+1;    

         if handin8>0

            inte8=inte8+1;

         else

         handin8=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido8=fallido8+1;

        end

       end

   end

end

tablahand(8,1)=hand8;

tablafallido(8,1)=fallido8;

tablaanti(8,1)=anti8;

tablainte(8,1)=inte8;

tablaperfecto(8,1)=perfecto8;

%% noveno minuto

for i=1441:1620

   if presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),i)==0

       if presvmH(mcaH(cana,1),i+1)==1

         hand9=hand9+1;

         cana=cana+1;

          if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido9=fallido9+1;

          end

       end

     elseif presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),
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i)==1

     handin9=handin9+1;

     if presvmH(mcaH(cana,1),i+1)==1

      hand9=hand9+1;

      cana=cana+1;

      inte9=inte9+1;

      handin9=0;

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido9=fallido9+1;

        end

       else

        handin9=handin9+1;

     end

     elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),

i)==0

       anti9=anti9+1;

       hand9=hand9+1;

       cana=cana+1;

         if handin9>0

            inte9=inte9+1;

         else

         handin9=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido9=fallido9+1;

        end   

    elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),i

)==1

       if Matrizinteraccion(mcaH(cana,1),i)==1 || Matrizinteraccion(mcaH(

cana,1),i+1)==1 || Matrizinteraccion(mcaH(cana,1),i+2)==1 || Matrizintera

ccion(mcaH(cana,1),i+3)==1 || Matrizinteraccion(mcaH(cana,1),i+4)==1 

          perfecto9=perfecto9+1;

          cana=cana+1;

       end

       if presvmH(mcaH(cana,1),i+1)==1

          hand9=hand9+1;

          cana=cana+1;    

         if handin9>0

            inte9=inte9+1;

         else

         handin9=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido9=fallido9+1;

        end

       end
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   end

end

tablahand(9,1)=hand9;

tablafallido(9,1)=fallido9;

tablaanti(9,1)=anti9;

tablainte(9,1)=inte9;

tablaperfecto(9,1)=perfecto9;

%% decimo minuto

for i=1620:1800

   if presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),i)==0

       if presvmH(mcaH(cana,1),i+1)==1

         hand10=hand10+1;

         cana=cana+1;

          if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido10=fallido10+1;

          end

       end

     elseif presvmH(mcaH(cana,1),i)==0 && Matrizinteraccion(mcaH(cana,1),

i)==1

     handin10=handin10+1;

     if presvmH(mcaH(cana,1),i+1)==1

      hand10=hand10+1;

      cana=cana+1;

      inte10=inte10+1;

      handin10=0;

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido10=fallido10+1;

        end

       else

        handin10= handin10+1;

     end

     elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),

i)==0

       anti10=anti10+1;

       hand10=hand10+1;

       cana=cana+1;

         if handin10>0

            inte10=inte10+1;

         else

         handin10=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido10=fallido10+1;

        end   

    elseif presvmH(mcaH(cana,1),i)==1 && Matrizinteraccion(mcaH(cana,1),i

)==1
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       if Matrizinteraccion(mcaH(cana,1),i)==1 || Matrizinteraccion(mcaH(

cana,1),i+1)==1 || Matrizinteraccion(mcaH(cana,1),i+2)==1 || Matrizintera

ccion(mcaH(cana,1),i+3)==1 || Matrizinteraccion(mcaH(cana,1),i+4)==1 

          perfecto10=perfecto10+1;

          cana=cana+1;

       end

       if presvmH(mcaH(cana,1),i+1)==1

          hand10=hand10+1;

          cana=cana+1;    

         if handin10>0

            inte10=inte10+1;

         else

         handin10=0;

         end

        if Matrizinteraccion(mcaH(cana,1),i+1)==1

          fallido10=fallido10+1;

        end

       end

   end

end

tablahand(10,1)=hand10;

tablafallido(10,1)=fallido10;

tablaanti(10,1)=anti10;

tablainte(10,1)=inte10;

tablaperfecto(10,1)=perfecto10;

totalhand=cumsum(tablahand);

totalfallido=cumsum(tablafallido);

totalanti=cumsum(tablaanti);

totalinte=cumsum(tablainte);

totalperfecto=cumsum(tablaperfecto);
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