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Introduccion

En los ultimos afios, las redes inalambricas han sido de gran interés para la investiga-
cion debido al crecimiento de las tecnologias que utilizan el espectro para comunicar-
se. La demanda de usuarios y la evolucién de las tecnologias generan indirectamente
escasez de bandas de frecuencia haciendo cada vez mas compleja la asignacion de
espectro [1].

En la actualidad, los sistemas de comunicacion mévil presentan deficiencias en
los servicios de voz y datos debido a la saturacién de las bandas de frecuencia asig-
nadas y a la escasez de nuevas bandas de frecuencia en el espectro. La saturacion de
las bandas de frecuencia es ocasionada por el aumento considerable de dispositivos
moviles en la red de radio. Segtn estudios, se espera que el trafico IP aumente en 168
exabytes para el 2019 con un nimero de dispositivos méviles que sera tres veces la
poblaciéon mundial [2].

Por este motivo, el acceso oportunista al espectro busca aprovechar aquellas ban-
das de frecuencia licenciadas que no sean utilizadas eficientemente, para hacer uso
de ellas sin generar impactos negativos en los usuarios licenciados, y asi imponer un
desafio en el estudio de la utilizacion eficiente del espectro.

Debido a estas razones, la radio cognitiva nace como una red de nueva genera-
cion donde los dispositivos son capaces de cambiar sus parametros de transmision en
funcidn de su interaccidn con el ambiente de radio para dar lugar a la negociacion ac-
tiva o comunicacién con otros usuarios del espectro [3]. Para ello, la radio cognitiva
presenta un sistema inteligente dividido en ciclos que describen el proceso cognitivo
y permite tener una mejor gestion de los recursos y rendimiento de la red; el ciclo
cognitivo es capaz de detectar usuarios en el espectro, tomar decisiones, moverse por
otros canales de frecuencia y compartir el espectro con otros usuarios [4].

Una de las principales funciones para acceder de manera oportunista al espec-
tro por parte de los usuarios secundarios (SU) es tomar decisiones en diferentes
situaciones que no generen afectacion en el trafico de los usuarios primarios (PU)
y que permitan hacer un uso eficiente de los canales disponibles [5]. Inicialmente,
el SU realiza un proceso de deteccion que se encarga de analizar el entorno de
radiofrecuencia (RF) e identifica la oportunidad espectral de cada canal, en este
proceso también detecta posibles intervenciones de los PU en los canales a utilizar
[6]. Cuando un SU establece una comunicacion en un canal, este usuario debe con-
tinuar monitoreando el entorno de RF para poder identificar instantes futuros en los
que se presente una intervencion de un PU, en ese momento, el SU requiere elegir
un canal proximo en el que pueda continuar con la comunicacion y que sea adecua-
do para finalizar la misma. Basado en estas situaciones, un SU necesita establecer
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comunicacion en varios canales hasta llegar al receptor, y tomar decisiones que le
permitan realizar una transmision adecuada.

Por estas razones, el objetivo principal de este trabajo es disefiar un modelo inteli-
gente de decision de espectro que permita al SU elegir el mejor canal para transmitir,
permaneciendo la mayor parte de tiempo y prediciendo posibles intervenciones del
PU, que obliguen al SU a realizar un cambio a otro canal apropiado y oportuno. El
modelo propuesto inicialmente realiza una etapa de clasificacién que organiza por
prioridad los canales menos utilizados y define el canal més adecuado para ser uti-
lizado por el SU, luego de esto, el modelo implementa técnicas de prediccion para
identificar instantes en que el canal puede ser intervenido por un PU vy, de esta ma-
nera, elegir otro canal para continuar la transmision de un servicio especifico sin
generar interferencia al PU.

Objetivos de la investigacion

El objetivo general de esta investigacion es:

Desarrollar un modelo de prediccion de la ocupacidn espectral en un entorno
urbano que sirva como herramienta para el analisis y disefio de redes de radio cog-
nitiva.

El cual se pretende alcanzar a partir de los siguientes objetivos especificos:

*  Analizar estadisticamente las tendencias de ocupacion espectral con base en
mediciones de ocupacion espectral, realizadas en redes moviles para un entorno
urbano.

»  Diseflar un modelo de prediccion de la ocupacidn espectral con base en medi-
ciones de ocupacién espectral realizadas.

e Evaluar y validar el modelo desarrollado a través de datos de ocupacion espec-
tral reales.

Financiamiento del proyecto de investigacion

El presente libro de investigacién es producto de los resultados alcanzados en el pro-
yecto de investigacion sin financiaciéon denominado: “Modelo inteligente de decision
de espectro para mejorar el desempeno en redes de radio cognitiva”, institucionali-
zado por el Consejo de Facultad de la Facultad Tecnoldgica y el Centro de Investiga-
ciones y Desarrollo Cientifico, de la Universidad Distrital Francisco José de Caldas,
enel 2017.

Organizacidn del libro de investigacion

El libro esta estructurado como sigue. En el primer capitulo se realiza una descripcion
de los fundamentos tedricos de la CR. En el segundo apartado se describe la metodolo-
gia de la investigacion realizada. La tercera seccion presenta los resultados alcanzados
en la investigacion. Y finalmente, en el cuarto capitulo se presentan las conclusiones.
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Radio cognitiva

El espectro electromagnético es un recurso natural, por el cual dispositivos inalam-
bricos transmiten y reciben informacion en diferentes rangos de frecuencia, los cuales
son asignados y controlados por una entidad del gobierno de cada pais [1].

Existen bandas de frecuencia que son asignadas para ser utilizadas por diferentes
tecnologias que con el pasar del tiempo han sido relevadas o que pasan largos perio-
dos sin ser utilizadas. Esta problematica ha venido creciendo debido a la evolucion y
aumento de la demanda de las tecnologias inalambricas.

Debido a esta problematica, los investigadores se han enfocado en idear un soft-
ware de radio que pueda mejorar la flexibilidad del espectro a través de un lenguaje
de representacion de radio basado en el conocimiento y razonamiento automatizado
que cumpla con las necesidades del usuario [7]. Esta propuesta inicial fue ideada por
Mitola, quien dio pautas para una profunda investigacion y nuevas problematicas
como el acceso al espectro el cual resulta ain mas importante que la misma escasez
fisica del espectro [8].

Asi pues, la CR estd definida como un sistema que puede cambiar sus parametros
de transmision en funcién de su interaccion para dar lugar a la negociacidn activa o
comunicacion con otros usuarios del espectro [1].

Esta tecnologia debe cumplir ciertas condiciones que le permitiran desempefnarse
en una red de radio frecuencia, entre ellas estan: determinar las partes libres en el
espectro, seleccionar el mejor canal disponible, coordinar el acceso al canal con otros
usuarios, desalojar el canal cuando se detecta un SU [4]. Estas caracteristicas se ana-
lizaran con mas detalle, mas adelante.

Para lograr estas condiciones, la CR esta fundamentada por dos caracteristicas
en su operacion, una de ellas es la capacidad cognitiva, la cual es la facultad de in-
teractuar en tiempo real con el entorno de radio, identificando los posibles agujeros
en el espectro, haciendo uso de ellos de manera temporal y oportunista, y, asimismo,
detectando usuarios con licencia que puedan intervenir en la comunicacién [4]. La
reconfiguracion es otra caracteristica importante ya que le permite programarse para
transmitir y recibir informacion en varias bandas de frecuencia seleccionadas, y asi
realizar la configuracion y ajuste de los parametros de funcionamiento ideales para
la comunicacién como lo son las tecnologias de hardware de RF, antena de banda
ancha, amplificador de potencia y el filtro adaptativo [4].

Una manera de catalogar la CR es en el tipo de arquitectura, centralizada o dis-
tribuida. Las redes clasicas o centralizadas son identificadas porque tienen en su in-
fraestructura un control central que administra la comunicacién entre usuarios como
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por ejemplo las estaciones bases de redes de telefonia mévil o un punto de acceso en
redes inalambricas de area local WLAN. Por otro lado, las redes CRAHN o redes
distribuidas se diferencian en que no tienen una columna vertebral en su infraestruc-
tura, es decir, que un usuario mediante CR puede conectarse en una arquitectura
ad hoc con otro usuario en ambas bandas del espectro, con o sin licencia y sin una
coordinacion central [9].

En la figura 1, se puede observar al costado izquierdo una red centralizada en la
que todos los dispositivos se conectan directamente a un nodo central de comuni-
cacion, quien es el encargado de administrar las bandas de frecuencia y controlar el
acceso al medio. Al costado derecho, se observa una red distribuida o ad hoc, donde
los dispositivos establecen una comunicacién directa entre ellos sin necesitar otro dis-
positivo de comunicacion. En esta tecnologia los dispositivos observan el ambiente de
RF local y toman decisiones coordinadas con sus vecinos de manera cooperativa [10].

1) Local observation ,,"’, \\‘.\ 1) Local observation R 3) Learning
P I & '\ & Action Decision

4) Reconfiguration

2) Learning TN
& Action Decision
2) Cooperation
(if necessary) <

3) Reconfiguration

a o b

Fig. 2. Comparison between CR capabilities for: (a) infrastructure-based CR networks, and (b) CRAHNs.

Figura 1. Arquitectura de red de radio cognitiva
Fuente: tomada de [9].

Las interacciones en diferentes redes de radio cognitiva (CRN) son realizadas prime-
ro por los PU, quienes tienen un canal y un ancho de banda especifico asignado por
su proveedor de servicio, y en segundo lugar por los SU, que no tienen un canal de-
terminado por lo que pretenden acceder de manera oportunista a canales con licencia
sin generar interrupciones, ni afectar los servicios de los PU [11]. E1 SU debe actuar
de manera inteligente al momento de acceder a un canal especifico, para ello se debe
estudiar el ciclo cognitivo.

Ciclo cognitivo

La CR presenta un sistema inteligente dividido en ciclos que describen el proceso
cognitivo que debe tener un SU para mejorar la gestién de los recursos y el rendi-
miento de la red, al momento de presentarse diferentes situaciones y lograr mante-
ner una comunicacion estable. El ciclo cognitivo esta compuesto por las funciones:
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deteccion, decision, movilidad y comparticién del espectro. El diagrama del ciclo se

muestra en la figura 2.
/{\/V

Medio
ambiente RF

gs.uarl? Caracterizacion
Movilidad %ccién del espectro

Comparticion

v

Decision

Capacidad de canal

Figura 2. Ciclo cognitivo
Fuente: adaptada de [3].

Para describir la figura 2, se presentaran dos situaciones en la interacciéon de los SU
en la red, enfocando el proceso en la decision de espectro.

El SU inicia una transmisién: cuando nace el requerimiento de transmitir, el SU
debe analizar el ambiente RF y localizar una porcién no usada del espectro. La de-
teccidn consiste en monitorear las bandas disponibles del espectro, capturar informa-
cion y detectar agujeros en el espectro [3]. Una vez detectado el canal, se requiere
tomar decisiones y elegir el mejor canal para transmitir, o el canal operativo en ese
instante, es decir, que la decision de espectro se encarga de tomar decisiones basado
en la disponibilidad del espectro y en la caracterizacion de los canales, analizando la
capacidad de ancho de banda, interferencia y retardos, entre otras caracteristicas [3].

Luego de elegir el canal apropiado se debe evitar posibles colisiones con otros SU;
para ello, la comparticion de espectro permite que multiples SU accedan al espectro,
y evita problemas de comunicacion entre ellos. La CRN puede coordinar y prevenir
multiples colisiones o solapamiento en el espectro [12]. Por ultimo, se procede a re-
configurar los parametros y realizar la transmision.

El SU transmite: al momento de transmitir, el SU debe tener la capacidad de de-
tectar la posible intervencién de un PU, lo que genera la necesidad de cambiar de un
canal a otro para continuar la comunicacion, esta accién es denominada movilidad. El
sistema debe estar en la capacidad de detectar otros canales disponibles y tomar deci-
siones de manera eficaz y continuar la comunicacion en otra porcion del espectro [13].
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Decision de espectro en redes de radio cognitiva

La decision de espectro es una de las principales funciones dentro del ciclo cognitivo,
la cual tiene la finalidad de elegir el mejor canal para transmitir, dependiendo de los
agujeros en el espectro y cambios de canal que sea necesarios realizar por parte del
SU cuando se presente una intervencion de un PU.

Existen varias situaciones generadas en la interaccién de los SU en una CRN,
donde es esencial decidir de manera oportuna un canal apropiado. La principal deci-
sion inicia cuando el SU requiere realizar una transmision, en ese momento se hace
fundamental determinar el mejor canal a utilizar que resulta de un estudio previo de
la banda de frecuencia. Otra situacidn, y quizd mas importante, es la intervencioén
del PU cuando el SU esta realizando una transmision, en ese momento el SU debe
seleccionar de manera eficaz otro canal disponible para completar la transmision,
este proceso es llamado handoff espectral [14].

En las dos situaciones anteriores, la decision de espectro requiere de la funciona-
lidad de monitorear el entorno de RF para lograr el objetivo de evitar colisiones y
disminuir la interferencia entre PU y SU. Un SU debe vigilar y guardar informacién
estadistica que le permita identificar situaciones futuras y tomar decisiones acerta-
das, esta informacion adquirida se convierte en parametros utiles que describen el
comportamiento de un canal y permiten caracterizar el espectro de tal manera que el
canal elegido sea el adecuado y oportuno. A continuacion, se definen aquellos para-
metros utiles en la caracterizacidon de espectro.

Caracterizacion del espectro

La caracterizacion del espectro determina y describe el comportamiento de los ca-
nales, lo que permite distinguir unos de otros, de acuerdo con su trafico, ocupacion
y configuracién. Dentro de las caracteristicas de transmisiéon en un canal, existen
parametros que influyen en su comportamiento y es importante tenerlos en cuenta a
la hora de seleccionar un canal. Por tal motivo, se deben estudiar estos factores con
el fin de identificar algunos beneficios que permitan obtener una mejora en el desem-
pefio de estas redes. Algunas caracteristicas son [3]:

» Identificar el canal

*  Capacidad del canal

*  Retardo de conmutacion de espectro
* Interferencia del canal

e Canal de tiempo (CHT)

» Tasa de error del canal

e Posicion del abonado
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Identificar el canal

La utilizacion del canal por parte del PU es quizas el factor mas importante, ya que
definira los espacios y tiempos libres en un canal para ser ocupados por un SU. Esta
ocupacion se realiza de manera aleatoria, donde los tiempos de utilizaciéon no son de-
terministicos, sino impredecibles y varian en diferentes aplicaciones. Esta actividad
de ocupacion del canal puede ser modelada como un proceso estocastico aplicando
técnicas de inteligencia artificial como redes neuronales, modelos de Markov y Sup-
port Vector Machine (SVM) [15].

Capacidad del canal

Cada banda del espectro en un sistema de multiplexacién por division de frecuencia
ortogonal (OFDM), tiene un ancho de banda diferente, el cual esta compuesto por
varias subportadoras que estiman una capacidad normalizada del canal. Las inves-
tigaciones se han enfocado en estimar la capacidad de ancho de banda mediante el
estudio de otros parametros como el nivel de interferencia, tasa de errores y propa-
gacion [16].

Se ha demostrado que el método tradicional de la estimacion de la capacidad de
canal, utilizando la relacion sefial a ruido (SNR), conduce a una decision de espectro
no Optima [3].

Las capacidades de ancho de banda de un canal licenciado estan limitadas por la
entidad reguladora, esto hace que el SU requiera analizar recursos cuando el ancho
de banda del PU sea menor que el requerido por el SU, para el modelo propuesto, el
ancho de banda no es utilizado.

Retardo de conmutacién de espectro

Esta caracteristica nace como consecuencia de la intervencion de un PU cuando
esta operando el SU en un canal licenciado, en ese momento, el SU debe detectar
nuevos canales con diferentes frecuencias y conmutar reconfigurando sus parametros
de transmision. En ese proceso de conmutacion hay una duracion considerable que
afecta el desempefio de las CRN [17].

El desafio presentado esta en reducir el retardo de deteccion del canal, el tiempo
que tarda el SU en configurar sus parametros de transmisién y disminuir el tiempo
que gasta el SU en acceder al nuevo canal, con el fin de mejorar el rendimiento de
retardo en CRN.

Interferencia del canal
La interferencia es la mayor consecuencia generada en el proceso de interaccion entre
usuarios en una red. Al acceder al espectro, un SU puede afectar la sefial y alterar los

servicios del PU, por lo tanto, la interferencia esta definida como la perturbacion de
la sefial debido a la coexistencia entre PU y SU en un area de cobertura del PU [18].

Existen diferentes estudios para evitar interferencias entre PU y SU en areas de
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cobertura especifica, donde es importante que el SU no transmita mientras exista
presencia de un PU.

Tiempo de retencién de un canal (CHT)

Esta caracteristica es importante al momento de modelar el acceso al canal, debido
a que estudia los tiempos de activacion y de inactividad de los PU y SU y permite el
acceso a canales ranurados, regulando y sincronizando este acceso [19].

Inicialmente, se estudian los tiempos de duracién de activacion de los usuarios
y tiempos en que el canal permanece libre, luego se definen bloques de tiempo que
seran recursos libres que podrian ser utilizados por los SU con bloques de similar
tamarfio, para finalmente, acceder al canal que mas se ajuste con las mediciones rea-
lizadas, lo que reduce interferencias en la interaccién [19].

Tasa de error de canal

Este factor esta directamente relacionado con el nivel de interferencia, ancho de ban-
da y la banda de frecuencia disponible, los cuales influyen directamente en la recep-
cion o transmision de errores de bit en un canal. Esta tasa de error de bit (BER) es
indicada con la SNR [20].

Localizacion del abonado

El SU dentro de su funcionamiento y proceso de detecciéon debe obtener informa-
cion geografica y del ambiente de RF, mediante una funcién del sistema de posicio-
namiento global (GPS), para coordinar informacién entre los nodos o servidores
centrales que identifiquen la ubicaciéon de cada SU y poder construir un mapa de
actualizacion mundial. Este proceso permitira predecir situaciones futuras de inter-
venciones de los PU [21].

[ Identificar el canal J

[ Capacidad del canal } ﬁ. [ Posicion del abonado]

A

Retardo de conmutacidn Modelo de
[ de espectro ]<:-_—| decision de I:> [ Tasa de error del canal }
espectro general

@ gV

[ Interferencia del canal ] [ Canal de tiempo CHT J

Figura 3. Caracterizacion del ambiente de radio
Fuente: adaptada de [3].
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La figura 3 presenta en sintesis los componentes que debe tener en cuenta un modelo
de decision de espectro para cumplir con el objetivo de acceder al espectro opor-
tunamente. Aunque disefiar un modelo que evalue todas las caracteristicas puede
ser robusto, complejo y computacionalmente poco eficaz, si es mision del ingeniero
idear un modelo que utilice las caracteristicas principales y necesarias, y que tambien
reduzca el tiempo de ejecucion del mismo.

Dentro del modelo de decision de espectro es importante definir la manera en que
se accede al espectro dependiendo de las caracteristicas evaluadas en la caracteriza-
cién. A continuacion se estudiaran brevemente los metodos de acceso oportunista al
espectro.

Métodos de acceso oportunista al espectro

Los SU implementan diferentes técnicas para acceder al espectro basado en la premi-
sa de no afectar el trafico de los PU; con tal fin, se han ideado diferentes maneras de
acceder al espectro y se presentan ventajas y desventajas relacionadas con los retar-
dos ocasionados en el proceso de seleccion del canal, reconfiguracion y la generacion
de interferencia al ingresar a un canal ocupado.

Acceso reactivo

El acceso reactivo es el método por el cual los SU acttian de acuerdo a las interven-
ciones imprevistas de los PU, sin realizar una evaluacion previa del comportamiento
del canal, ni predecir agujeros en el espectro relacionados con la actividad del PU.

Este método puede generar ventajas en la disminucién del retardo al momento de
conmutar a otro canal, pero a su vez, presenta el riesgo de generar mayor interferen-
cia en otros canales.

Acceso predictivo

Los modelos predictivos asumen modelos de ocupacién del canal en bandas de fre-
cuencia licenciadas y no licenciadas basado en informacion recolectada del pasado.
Estos conjuntos de datos estadisticos sirven de base para la implementacién de téc-
nicas de inteligencia artificial que permitan predecir estados futuros de acuerdo a sus
estados anteriores, creando un patrén de uso de un canal especifico. Dentro de las
técnicas mayormente implementadas se encuentran los modelos ocultos de Markov,
técnicas de regresion y redes neuronales. El trabajo realizado en [22] permite el acce-
so al espectro prediciendo el trafico del PU mediante un modelo oculto de Markov.

El SU, dentro de su funcionamiento, podrd implementar alguna técnica para de-
cidir en qué momento puede cambiar de canal y acceder a otro, de acuerdo con sus
resultados de prediccion. Este método tiene la ventaja de evitar la interferencia con
otros PU, siempre y cuando las predicciones futuras sean acertadas.

291E2



Cristian Camilo Bernal Ariza, César Augusto Hernandez Suarez

Acceso proactivo

Este sistema de acceso oportunista es el mas apropiado en la implementacion de las
CRN, debido a que el SU prevé con anticipacion la intervencion de un PU, lo que le
permite tomar acciones previstas y rapidas que evitaran generar obstrucciones y coli-
siones entre usuarios, reaccionando anticipadamente para realizar un cambio a otro
canal y continuar la comunicacion. En [23] podemos observar un modelo de acceso
proactivo del espectro.

Los esquemas de cambio de canal proactivos logran que un SU pueda cambiar
de canal, ya sea cuando se anticipa a la llegada de un PU o cuando un canal con un
mayor tiempo de inactividad puede ser ocupado basandose en la prediccién. Es claro
que este método de acceso oportunista es beneficioso en la implementacion debido
a que disminuye los riesgos de generar interferencia y logra aprovechar el canal des-
ocupado de una manera eficiente.

Técnicas de inteligencia computacional para radio cognitiva

Las técnicas de inteligencia computacional brindan soluciones en el disefio de redes
inalambricas y en especial en las CRN, donde los métodos de clasificacion y aprendi-
zaje son importantes para brindar soluciones en el funcionamiento y mejoramiento
de la prestacion de servicios en una red inalambrica.

En una CRN es indispensable utilizar herramientas que permitan tomar deci-
siones acordes a la variacion del comportamiento del PU, tanto en el dominio del
tiempo como del espacio, por lo que se hace necesario realizar un estudio previo de
los métodos utilizados para clasificar canales y predecir espacios en el espectro.

En la construccién de este trabajo, inicialmente se realizo un estudio del estado
del arte de las técnicas de inteligencia artificial para identificar los métodos mas utili-
zados en la actualidad. El resultado de este estudio se ve representado en la elabora-
cién de la tabla 1, donde se evaluan diferentes algoritmos, se determina su aplicacion,
se identifican sus fortalezas y limitaciones, e incluso en algunos de ellos, se informa
la capacidad de prediccion y su rendimiento.

La tabla 1 también presenta la discusion y el analisis de los resultados obtenidos
al realizar la comparacion entre las diferentes técnicas, que permitira definir cuales
pueden servir de apoyo en el disefio del modelo propuesto. En la primera mitad del
cuadro se presentan los principales algoritmos de toma de decisiones basados en el
método MADM (Multiple attribute decision making), y en la otra mitad se muestran
los algoritmos usados en la prediccion.

SAW

La aplicacion de este algoritmo esta fundamentada en la toma de decisiones y en la
evaluacion de criterios multiples. Este método es utilizado para resolver problemas
de decision y se caracteriza por elegir la mejor alternativa basada en atributos que
describen dichas alternativas. Dentro de las fortalezas mas importantes, se puede
considerar que este método permite asignar diferentes tipos de datos, tanto cuantita-
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tivos como cualitativos. Una limitacién importante para este método es la construc-
cion de matrices de decision y la normalizacion de los datos, 1o que genera posibles

retardos en su ejecucion que impediran evaluar el procesamiento y tomar decisiones
en tiempo real [24].

VIKOR

Este algoritmo es implementado para la toma de decisiones multicriterio. VIKOR es
un algoritmo de decisién que elige la alternativa que mas se ajusta a la alternativa
ideal, alcanzando un rendimiento medio en la asignacion de varias caracteristicas
como por ejemplo: costo, ancho de banda, frecuencia, entre otras [24]. Al igual que
SAW este método podria tener problemas en la ejecucion en tiempo real si la base de
datos es de gran tamafio.

Tabla 1. Comparativa de técnicas de inteligencia computacional

Técnica de
aprendizaje

Aplicacion

Fortalezas

Limitacion

SAW

VIKOR

TOPSIS

Toma de

decisio-

nes con
evaluacion
de criterios
multiples

Se pueden asignar diferentes tipos
de datos que caracterizan un
canal, pueden ser cuantitativos o
cualitativos.

VIKOR es un algoritmo de
decision que elige la alternativa
que se ajusta a la ideal, alcanza

un rendimiento medio en la
asignacion de varias caracteristi-
cas como costo, ancho de banda

y frecuencia.

Igual que SAW es un algoritmo
de decision que trabaja con
atributos cuantitativos. Elige la
alternativa mas adecuada con la
distancia euclidiana mas corta.

Requieren de una
matriz de decision
y normalizacion
de los datos.
Pendiente evaluar
el procesamiento
en tiempo real.

3l1IER



Cristian Camilo Bernal Ariza, César Augusto Hernandez Suarez

Técnica de
aprendizaje

Limitacion

GRA

Aprendizaje
por refuerzo
RL

POMDP
Proceso de
decision de

Markov

Aplicacion Fortalezas
Permite organizar las redes por No reduce la can-
Clasificar -rmpie organ P tidad de handoff
prioridad segun el resultado del
redes . en la toma de
algoritmo M-AHP. ..
decisiones.
Depende del
algoritmo FAHP
para determinar
Clasificar . los pesos de los
Es eficiente en el proceso de OSP ..
redes can- . = criterios objetivos
. clasificacion. .
didatas y subjetivos. No es
disefiado para pre-
decir la actividad
de los PU.
No utiliza la
experiencia pasada
para el aprendi-
. . ., zaje, converge
Aprendi- Es un algoritmo de adaptacion J , '8
h . a una politica
zaje de ac- que aprende de su experiencia .
. . . . optima luego de
ciones para interactiva y crea una politica
Y - un centenar de
toma de optima que puede ser utilizada .
.. .. episodios o etapas
decisiones para la toma de decisiones y es .
o - . - de entrenamiento.
Optimas y aplicado para: asignacion de ..
., . Es asincronico,
deteccion canal, control de la congestion y .
L . . no especifica que
de canal minimizacion de la interferencia. -
accion tomar
en determinado
tiempo. No actua
en tiempo real.
Modela L, ., Alto nivel de
Prediccion de la ocupacion del .
estados de . . computacion, e
espectro. Predice la ocurrencia . .
un canal L, . interpretacion del
. y duracién de agujeros en el ,
discreto en modelo matema-
. espectro. .
el tiempo tico.
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Técnica de N Ty
. . Aplicacion Fortalezas Limitacion
aprendizaje
Reconfigu-
racion de . .
antenas Resuelve problemas de optimi- No es aplicable
Algoritmos ontimi ’ zacion en la reconfiguracion de para toma de
genéticos P . antenas. Define el rendimiento decisiones, ni
zacion, ..
L deseado de la antena. predicciones.
deteccion
de espectro
No hay mayor dificultad en la .
. Y y .. . Necesita de otra
implementacion, utiliza parame- .
Toma de herramienta para
.. tros de entrada como los datos . .
20 q decisiones . realizar otro tipo
Logica difusa de caracterizacion del canal, es .,
y handoff . . de funcion, es ex-
menos complejo computacional- .
espectral .. L. clusivo para toma
mente y toma decisiones rapidas ..
. de decisiones.
en tiempo real.
MLP Percep- Prediccion Presenta alta precision en la
trén Multica- actividad probabilidad de error y en la
pa ANN PU prediccion.
Ineficaz al au-
o L ) mentar las redes
o Esta bajo investigacion aplicar neuronales.
Prediccion redes neuronales recurrentes para
Recurrente .. .
ANN actividad el modelo de predicciéon del mapa
PU espacio-temporal para la probabi-
lidad de ocupacién de espectro.
Complejidad en
. la implementa-
LSVM Clasifica- . . & mmprem
5 . . LSVM resulta ser el mejor algorit- cion. Requiere de
nucleo lineal dor, predic- . . S
- mo para predecir el periodo OFF amplia infor-
y GSVM ciéon de la . -
.. de un canal dentro de los algorit- macion para el
Kernel Gaus- actividad mos. Ofrece mayor precision entrenamiento
siano del PU ’ yorp ’ M

actualizacion del
sistema.
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Técnica de .., e e s
. . Aplicacion Fortalezas Limitacion
aprendizaje
Compar-
ticion de . .
Puede ser aplicado para optimi- ..
espectro S Complejidad en
zar un proceso de comparticién .
, en redes . el planteamiento
Teoria de de espectro, controlar potencia .
. ad hoc, . S de las estrategias
juegos para evitar interferencia e iden-
control de . . . y el modelado
. tificar usuarios malignos para .
potencia y . . matematico.
. . realizar enrutamiento seguro.
asignacion
de espectro
No se tienen
Se genera con datos de entre- .
namiento que pueden ser las valores estadisticos
Arbol de Toma de o quep de referencia sobre
Yy . caracteristicas del canal. No e
decision decisiones .. . la utilidad en la
presenta complejidad en la imple- . -
- implementacién
mentacion. .
de este algoritmo.

Es otro de los algoritmos de decisidon multicriterio que trabaja con atributos cuantita-
tivos. Elige la alternativa mas adecuada, de acuerdo con la distancia euclidiana mas
corta.

Aprendizaje por refuerzo RL

Es una técnica de aprendizaje automatico, cuyo enfoque es determinar qué acciones
tomar por parte de los agentes dependiendo de su entorno, con el fin de maximizar
una recompensa que puede ser utilizada para la toma de decisiones. Esta técnica es
aplicada para asignacion de canal, control de la congestiébn y minimizacion de la
interferencia [25].

Una limitacion de esta técnica de aprendizaje es que no utiliza la experiencia o
datos historicos para el aprendizaje y toma de acciones. Converge a una politica 6p-
tima luego de un centenar de episodios o etapas de entrenamiento, es asincréonico y
no especifica que accion tomar en determinado tiempo. No actia en tiempo real [26].

El aprendizaje por refuerzo inicia cuando un SU evalua ciertos parametros del
entorno para construir un estado actual. Luego de producirse las acciones de todo
el estado actual en su entorno, el SU, o agente, realiza el estudio de acciones y selec-
ciona una del conjunto de acciones obtenidas para realizar la ejecucion. Finalizada
la ejecucion, el SU calcula una recompensa que servira como dato para las proximas
acciones a tomar, actualizando un conjunto de valores [25].
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Proceso de decision de Markov

El modelo de Markov en tiempo discreto es adecuado para modelar la actividad del
PU en un canal, recordemos que la actividad del PU puede ser modelada como el
cambio de estados activos e inactivos durante un tiempo determinado. También pue-
de ser descrito como un proceso estocastico en el que la generacidén de simbolos de
observacién depende de las propiedades de emision de los estados. El modelo oculto
de Markov es una maquina de estados finita, en el que la secuencia de observaciones
es una funcion probabilistica de estados [27]. La fortaleza mas importante de esta téc-
nica es la prediccion de ocupacion del espectro; predice la ocurrencia y duraciéon de
agujeros en el espectro. Dentro de sus limitaciones esta el alto nivel de computacion
y su complejidad en el disefio del modelo matematico.

Algoritmos genéticos

Estos algoritmos son ideados para encontrar soluciones Optimas utilizando cierta
poblacion de individuos y sometiéndola a acciones aleatorias semejantes a las que ac-
tian en la evoluciodn bioldgica [28]. Es muy utilizado para resolver problemas de op-
timizacion en la reconfiguracion de antenas, ya que define el rendimiento deseado de
la antena. En nuestro modelo no se aplica la optimizacién en la toma de decisiones.

Légica difusa

La logica difusa es una técnica empleada en modelos en los que el tipo de informa-
cion toma valores aleatorios que oscilan entre extremos de lo falso o lo verdadero.
El sistema de logica difusa se compone de fuzzificador, motor de inferencia y de-
fuzzificador [29]. No hay mayor dificultad en la implementacion. Utiliza parametros
de entrada como los datos de caracterizacioén del canal. La logica difusa es menos
compleja en la ejecucion computacional y toma decisiones rapidas en tiempo real.

Teoria de juegos

La teoria de juegos se basa en una coleccion de casos practicos para desarrollar mo-
delos matematicos de cooperaciéon y conflicto. Esta técnica puede ser aplicada para
optimizar un proceso de comparticidén de espectro, controlar potencia y evitar inter-
ferencia; también puede ser usada para identificar usuarios malignos que afecten el
enrutamiento seguro [30]. El disefio del modelo presenta complejidad en el plantea-
miento de las estrategias y el modelado matematico.

Airbol de decisién

El proceso de desarrollo de este algoritmo inicia clasificando los valores de referen-
cia, atributos y objetivo. Luego de ello, el algoritmo calcula el valor medio de la
entropia de informacion, calcula la ganancia de informacion en cada atributo y elige
el atributo con mayor ganancia como el nodo inicial o raiz. El arbol de decision es
implementado con datos de entrenamiento como por ejemplo los parametros de ca-
racterizacion del canal. No presenta complejidad en la implementacion [31].
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Algoritmo de decisién multicriterio MADM

Los algoritmos de decision multicriterio MADM son utilizados en sistemas donde se
requiere dar una solucion que depende de diversos parametros que estan en constante
variacion. La informacién obtenida de cada pardmetro sirve para desarrollar juicios a
la hora de tomar decisiones; las redes inalambricas no son ajenas a estos sistemas [24].

La toma de decisiones se ha convertido en un estudio desarrollado de manera
operativa donde han surgido diferentes metodologias con procesos matematicos que
ayudan a solucionar diversos problemas. Es por eso que en la CR es necesario un re-
curso como la decision multicriterio para poder realizar una seleccion y clasificacion
de canales. En el funcionamiento de la decision multicriterio es fundamental tener
en cuenta la mayor cantidad de parametros que influyen en las redes inalambricas y
los mas predominantes. Para nuestro modelo propuesto, la mejor decision esta repre-
sentada en elegir el canal menos utilizado de acuerdo a la experiencia pasada. Esos
parametros, también llamados criterios, son entradas para el algoritmo el cual evalia
los valores dependiendo si son convenientes en el resultado que se desea obtener.

En consecuencia, se concluye que GRA puede ser una técnica apropiada para la
clasificacion debido a su sencilla implementacién y su poco uso en la tecnologia de
CR. En la etapa de prediccion se eligieron las técnicas de redes neuronales: SVM y
KNN, las cuales se evaluaran con el objetivo de seleccionar la mas apropiada.

Algoritmo GRA (Grey Relational Analysis)

El algoritmo GRA es también llamado modelo de analisis de la incidencia gris, fue
desarrollado por el profesor chino Julong Deng de la universidad de Ciencia y Tecno-
logia de Huazhong. Este modelo utiliza un concepto especifico de informacion que
puede operar con datos cuantitativos y cualitativos.

La principal funcién de este algoritmo es clasificar, para permitir la organizacion
de los datos por prioridad. Dentro de sus aplicaciones, el algoritmo puede elegir la
mejor interfaz segun los atributos de la red como retardo, ancho de banda y costo,
con el objetivo de reducir el handoff y mejorar la satisfaccion del cliente.

En el desarrollo de la metodologia se expondra el funcionamiento e implementa-
cion del algoritmo GRA.

Técnicas de prediccion en redes de radio cognitiva

Esta seccion se alejard un poco de la tematica de la decision de espectro, pero con-
tribuird a definir las técnicas de inteligencia artificial que se pueden aplicar para el
disenio del modelo de decision de espectro segun el enfoque y el objetivo propuesto
en el proyecto.

La inteligencia artificial tiene como objetivo hacer maquinas que realicen tareas
mediante la formulacién matematica, y que sean capaces de solucionar problemas,
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deducir, razonar, representar conocimiento y aprendizaje, dichas tareas pueden ser
aplicadas en una CRN.

Estas técnicas son aplicadas en algunas areas del ciclo cognitivo en donde se pre-
sentan diferentes desafios, como por ejemplo la deteccion de espectro en bandas de
frecuencia licenciadas, en donde es necesario estudiar parametros de calidad de ser-
vicio como el ancho de banda, la SNR y BER. Otro desafio importante es mantener
una observacion constante del ambiente de RF, que permita identificar interacciones
entre los PU y SU, ayudando a los SU a definir ciertas caracteristicas que serviran de
apoyo en el aprendizaje automatico, de acuerdo a su experiencia pasada, y adaptar
este conocimiento para mejorar la toma de decisiones [32].

En este apartado se discutiran las tres técnicas de inteligencia artificial seleccio-
nadas: redes neuronales, SVM y KNN, que son aplicadas para solucionar problemas
especificos de prediccion y acceso oportunista al espectro.

Redes neuronales

Las redes neuronales son un modelo computacional que sirve para aprender y alma-
cenar diversos modos de entrada y salida de un sistema. En la figura 4 se describe el
diagrama de una red neuronal artificial dividida en tres capas: (1) capa de entrada,
la cual recibe la informacion del exterior y la entrega a la capa media; (2) la capa
media, que conserva una gran cantidad de unidades neuronales y se utiliza para el
procesamiento de la informacion; y finalmente, (3) la capa de salida, que entrega un
resultado, el cual es comparado con el resultado esperado, para identificar los errores
e iniciar una transmision hacia atras de los mismos. Cada unidad neuronal modifica-
ra sus pesos, haciendo los errores mas pequefios y la salida cada vez mas cercana a la
salida real deseada [33].

Las redes neuronales se utilizan para llevar a cabo el proceso de aprendizaje,
observar el medio ambiente de la red y mejorar el proceso de la toma de decisiones,
por medio de la identificacion de nuevos patrones que ayuden a predecir las probabi-
lidades de deteccion de espectro.

Estas redes neuronales tienen la capacidad de detectar el patrén de comporta-
miento del PU y tomar decisiones.
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énput layer Hide layer Output layer

Figura 4. Composicion de una red neuronal
Fuente: Tomada de [33].

Soporte de maquina vectorial (SVM)

Esta técnica la definen como un modelo de aprendizaje [34]. También existen aplica-
ciones donde utilizan SVM para modelar el aprendizaje de la deteccion del espectro
en tiempo real.

Las pruebas realizadas en el modelo de clasificacion SVM son las siguientes: si
una sefal es detectada y se genera ruido, se identificard como un PU detectado.
Cuando la sefal es tinica sin ruido, indicard que no hay PU. Los parametros conside-
rados en este trabajo incluyen soporte, secuencia de pulsos, la extension de repeticion
y el prefijo de la circulacién [34].

El SVM funciona identificando un hiperplano con vectores para cada una de las
clases que se desean clasificar, luego de esto, el algoritmo maximiza las distancias
entre los puntos mas cercanos a cada hiperplano definido para cada clase.

K-algoritmo de vecinos mas cercanos (KNN)

KNN es un algoritmo de clasificacion supervisada basado en el entrenamiento de
datos historicos. Este algoritmo estima la funcion de probabilidad de las unidades
predictores por cada clase.

Basicamente, este algoritmo funciona entrenando su base de datos, que son vecto-
res caracteristicos junto con las etiquetas de clase, los nuevos datos seran clasificados
segln su clase y almacenados en vectores. Luego de esto, se calcula la distancia entre
los vectores almacenados y los nuevos, seleccionando los vecinos mas cercanos. Di-
cha distancia euclidiana esta dada por la ecuacion (1).
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A x) = Jur)? + G ) M

Dado un entero positivo K, una observacién x y una métrica similar d, KNN puede
seguir dos pasos importantes:

Se ejecutan todos los datos informaticos d entre cada observacion de entrenamien-
to x. Luego se estima la probabilidad condicional para cada clase y la salida x se asig-
na a la case de mayor probabilidad, el modelo general puede ver en la ecuacion (2).

Py=ilx=x=7 » 16V =)) @

ieA

Trabajos relacionados

En Ia literatura actual se encuentran investigaciones que utilizan métodos que per-
miten solucionar problemas de toma de decisiones para elegir la red adecuada en
diferentes tecnologias de redes inalambricas, como es el caso del trabajo realizado en
[6], donde evaltian 8 algoritmos MADM, entre ellos el algoritmo GRA, el cual clasi-
fica entre las primeras técnicas que garantizan la mejor continuidad de los servicios
transportados en estas redes.

En el trabajo realizado en [35] eligen la mejor interfaz segin los atributos de
la red, como retardo, ancho de banda y costo, con el objetivo de reducir la tasa de
handoff y mejorar la satisfaccion del cliente. En [36] se destaca la utilizacion del
algoritmo FAHP para calcular los pesos de los criterios y GRA para clasificar las
redes candidatas. El trabajo realizado en [37] y [38] utiliza GRA para clasificar redes
en diferentes escenarios como UMTS, WLAN y WIMAX, basandose en multiples
criterios de costos y trafico de paquetes. GRA proporciona un rendimiento aceptable
al clasificar diferentes tipos de trafico.

En cuanto a los algoritmos de prediccion, se puede observar un resumen en [39]
y en [40], donde se predice la probabilidad de aparicion de un PU al canal, mediante
redes neuronales, las cuales aprenden el comportamiento previo del PU. Si es alta
la probabilidad de aparicion, el SU esta obligado a cambiar de canal. Este modelo
esta bien ajustado con el método de error cuadratico promedio (MSE). En [41] utili-
zan una red neuronal para predecir los estados del canal mediante Sigma-IF y MLP
(Multilayer Perceptron), los resultados demuestran que Sigma-IF presenta una mejor
prediccion y disminuye el tiempo de deteccidon. En [42] se utiliza SVM para predecir
el punto en el que el SU debe pasar a otro canal antes de que el canal sea ocupado, lo
que reduce el tiempo de handoff. En el articulo realizado en [43] utilizan cuatro téc-
nicas de inteligencia artificial, dentro de las cuales se encuentran las redes neuronales
y SVM, donde SVM se comporta de manera consistente y precisa.
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Los métodos de decision de espectro pueden clasificarse de la siguiente manera:

*  Decisién de espectro sin carga [44]: es el método donde el SU elige un canal
operativo basandose en la carga de trafico, la probabilidad de que este inactivo
y el periodo de inactividad [45].

*  Decisiéon de espectro basado en la probabilidad: este método evalta las cargas
de trafico de los SU.

*  Decision de espectro basada en la deteccion: este método de decision analiza
la propuesta de diferentes canales y verifica el canal operativo mas adecuado
mediante la candidatura [44].

Continuando con el estudio de la literatura actual, observamos cémo aun se realizan
investigaciones en la decision de espectro donde se pretende mejorar la toma decisio-
nes aplicadas al servicio multimedia para mejorar su calidad de servicio, como en el
caso del trabajo realizado en [46], donde desarrollan un modelo que se adapta a las
decisiones y condiciones del canal cambiante, para asegurar una calidad de servicio
optima.

En otros trabajos, como [47], buscan maximizar la probabilidad de deteccion y
de esta manera lograr definir el umbral de decision que permita adaptar los SU a los
cambios del canal. En [48] maximizan el acceso dindmico al espectro basandose en
el método grafo de coloracidn, también llamado etiqueta de grafos.
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Al inicio de este proyecto se evaluaron diferentes técnicas de inteligencia artificial
mediante la construccion de un cuadro comparativo con el objetivo de identificar for-
talezas y limitaciones en las técnicas implementadas y elegir los algoritmos apropia-
dos en cuanto al desempeno y rendimiento computacional para proponer un disefio
adecuado y mejorable a los demas.

Teniendo en cuenta el resultado del cuadro comparativo se propone la construc-
cion del modelo propuesto para la decision de espectro, compuesto de una serie de
fases, iniciando con el calculo de los parametros que inciden en la caracterizacion del
espectro, en segundo lugar, se realiza la implementacion del algoritmo GRA, clasifi-
cando los mejores canales y finalmente, se predicen posibles intervenciones del PU,
implementando tres algoritmos de prediccion y eligiendo el mas pertinente.

Modelo conceptual

El objetivo principal de este proyecto es mejorar el desempeiio de las CRN enfocado
en la toma de decisiones para la asignacion de espectro. Para ello, la principal mision
del SU es elegir el canal menos ocupado y evitar transmitir en canales que han sido
clasificados como los menos adecuados para la comunicacién.

Basado en esta premisa, el disefio del modelo conceptual presentado, describe
los componentes que integran el modelo propuesto para la decision de espectro y su
relacion entre si, mediante el disefio del modelado de sistemas de software basado en
UML (Unified Modeling Language). Dentro del modelo conceptual el principal com-
ponente que influye en la decisién de espectro es el canal de frecuencia, el cual es el
principal recurso espectral en el que los PU y SU transmiten la informacion.

Para sacar provecho de los canales libres, el SU debe analizar ciertos parametros
que favorezcan la eleccion del canal menos ocupado y ademas, no interferir en la
comunicacion de otros usuarios.

En la figura 5 se observa el modelo conceptual, las clases que lo componen y sus
respectivos atributos.

La primera clase es llamada captura de datos, es la etapa inicial del modelo, donde
el SU debera realizar el monitoreo de la red y tomar mediciones de los niveles de
potencia de su entorno. Esta clase contiene los atributos de medicién de las bandas
de frecuencia y su relaciéon con los niveles de potencia de cada banda.
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Captura de datos Tratamiento de los datos
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Figura 5. Modelo conceptual de decision de espectro

La siguiente clase representa el tratamiento de los datos. En esta parte se realiza el
sistema de deteccion de espectro donde son separados los datos e identificados los
instantes de tiempo en que el canal esta ocupado o desocupado.

Una vez establecida la base de datos, la cual esta organizada de tal manera que
las filas describiran los canales de la banda GSM vy las columnas seran el tiempo de
barrido de cada de cada canal, se procede a calcular los parametros de caracteriza-
cion seleccionados.

La clase célculo de los parametros determina los datos calculados que seran uti-
lizados como entrada al algoritmo de clasificacion. Un parametro importante que
describe el comportamiento del canal de frecuencia es la ocupacion espectral, defi-
nida como la cantidad de tiempo que permanece el canal ocupado en un tiempo de
medicion dado. El siguiente parametro presenta un indice de potencia obtenido de
la relacién del nivel de potencia maximo y minimo en cada canal, y finalmente, el
parametro SNR indica la relacion sefial a ruido de cada canal de frecuencia, como se
puede observar en la figura 5.

La clase clasificacion retine los resultados de los parametros ocupacion de espec-
tro, indice de potencia y SNR e implementa el algoritmo GRA para organizar por
prioridad los mejores canales.

E1 SU requiere de inteligencia artificial para elegir el canal y predecir las posibles
intervenciones de los PU, de manera que este modelo conceptual involucra una clase
llamada prediccién. Por lo tanto, el modelo propuesto esta conformado por un algo-
ritmo de clasificacion GRA y tres algoritmos de prediccion, como lo son: redes neu-
ronales, SVM (Support Vector Machine) y clasificador KNN (K-Nearest Neighbors
algorithm). El ciclo del modelo conceptual se observa en la figura 5.

Reuniendo lo mas importante, y de acuerdo con las reglas planteadas en este
modelo, las funciones a realizar por un SU son: monitorear el ambiente de RF para
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identificar los canales que van a ser desocupados por parte del PU, luego de ello, el
SU realiza un calculo de los parametros que afectan el comportamiento de los cana-
les y clasifica por prioridad los menos ocupados y mas adecuados. Una vez elegidos
los mejores canales, el SU debe detectar intervenciones de los PU en cada canal me-
diante una prediccion aproximada.

Modelo inteligente de decision de espectro propuesto

El modelo de decision de espectro propuesto se muestra en la figura 6; en la primera
parte se realiza el procesamiento de los datos obtenidos en la medicion de la banda
de frecuencia GSM (824 MHz - 874 MHz) y se calculan los pardmetros que carac-
terizan dicha banda de frecuencia, estos parametros son la ocupacién de espectro, el
indice de potencia y la SNR. Luego de obtener los resultados, se procede a clasificar
los mejores canales para transmitir, mediante el algoritmo de decision multicriterio
GRA. Posterior a ello, el modelo organiza los mejores canales e inicia un proceso
de prediccion de cada uno, utilizando los datos de captura. El modelo es entrenado
por medio de tres técnicas de inteligencia artificial, las cuales son: redes neuronales,
SVM y KNN.

I‘ BANDA GSM 824 — 879 MHz ‘l

Figura 6. Modelo de decision de espectro
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Procesamiento de los datos

Para el desarrollo del modelo se utilizaron datos obtenidos en la medicion realiza-
da con un analizador de espectro, en la Facultad de Ingenieria de la Universidad
Distrital Francisco José de Caldas. La tabla 2 muestra los parametros técnicos mas
importantes.

Tabla 2. Parametros técnicos de medicion del espectro

Parametros Valor
Banda de frecuencia 824 MHz- 874 MHz
Tecnologia de comunicacion GSM
Numero de canales 551
Tiempo de barrido 290 ms
Resoluciéon BW 100 KHz

La campana de medicion se realizd durante seis meses, siete dias a la semana y 24
horas por dia, con tiempos de barrido de 290 ms, aproximadamente 3 datos por
segundo para cada canal de frecuencia dentro de la banda GSM. Posteriormente, se
organizaron los datos capturados y se realizo un analisis estadistico para identificar
las trazas de 70 minutos con tasa de ocupacién mas alta y mas baja, a partir de la
identificacion de un umbral con la formula de probabilidad de falsa alarma. Los
primeros 60 minutos seran utilizados para la etapa de entrenamiento equivalentes a
10800 time steps y los 10 minutos restantes son la etapa de evaluacién que equivales a
1800 time steps. En la figura 7 se observan los datos obtenidos en la medicién, distri-
buidos de tal manera, que las filas representan las ranuras de tiempo y las columnas
representan cada canal.

Para determinar si los usuarios estan presentes en un canal o no, se define un
umbral de decision de -95 dBm, el cual se obtuvo a partir del nivel de piso de ruido
de la banda de frecuencia seleccionada y la probabilidad de falsa alarma. Si el dato
en el respectivo canal esta por debajo del umbral, se asigna un 0 logico, para indicar
que el canal esta desocupado en ese instante de tiempo. Si, por el contrario, el dato
es mayor al umbral, se asigna un 1 16gico, para indicar que el canal esta ocupado. La
deteccion de espectro es modelada en la ecuacidn (3).
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. {1, si Rx PU > —95dBm ?)
Y= 10, siRxPU< —95dBm

All - Jx || -0a,4830m

c D E _ F G
1| 98751999 96,711998 -96,732002  -98,056 -96,592003
2 97,084 97,363998 96,848 99,236 -95,664001
3 | 98,248001 -98,367996 -98,688004  -97,444 -97,395004
4 | 97,199997 98,068001  -99,292 -94,956001 -96,227997
5 | -98,788002 -98,531998 -93,540001  -97,292 -98,019997
6 95,388 -89,620003 -90,339996 -98,307999 -98,575996
7 97,348 -99,903999 -96,587997 -97,779999  -98,264
8 | 97,332001 -98,332001  -94,916 -95,632004 -96,244003
9 | 95540001 -96,816002 -99,068001  -100,488 -97,351997
10| -96,779999 -89,959999 91,112 -97,800003 -98,480003
11| 98344002 -97,987999 -95,360001 -98,919998 -95,468002
12| 97,863998 100,672 99,931999 97,236 -95,987999
13|  -100,564 -93,571999 -96,959999 -98,723999  -100,512
14| -95,323997 -94,711998 -99,744003 -95,896004 -97,540001

‘ISI -97,832001 97,112 -95,639999 -96,68359598 -96,540001

Figura 7. Informacion de los niveles de potencia obtenidos en la medicion

Enla figura 8 se observa la variacion de los niveles de potencia de un canal durante el
tiempo, donde cada time step representa una ranura de tiempo de 0,290 ms.
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Figura 8. Informacion del trafico espectral
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Caracterizacion espectral

En este apartado se presenta el desarrollo preliminar del procesamiento de los datos
obtenidos en la medicidn, se describe el proceso de normalizacién y luego, se procede
con el calculo de los tres parametros requeridos como entradas al algoritmo GRA.

La caracterizacion del espectro permite a los SU identificar el comportamiento
y la utilizacién de los canales en una banda de frecuencia. Es indispensable para los
SU mantener la observacion y establecer la disponibilidad del canal en instantes de
tiempo debido a la actividad de cada PU [3].

Dentro de los parametros de caracterizacidon del espectro de este modelo se eva-
luaron la ocupacion del espectro, el indice de potencia y la SNR.

Ocupacidn de espectral

La ocupacidn espectral permite observar la evolucion temporal de cada canal de fre-
cuencia, esta ocupacion puede ser evaluada bajo el parametro de ciclo de trabajo, el
cual nos indica la relacion entre el tiempo y el estado activo de los canales, o median-
te el valor de disponibilidad absoluto, ‘0’ o ‘1°.

Ciclo de trabajo

El ciclo de trabajo es el porcentaje de tiempo en que un canal esta siendo usado por
un PU, es calculado mediante la ecuacion (4).

TDT[
Tiempo total

4

% Ocupaciéon =

Donde T representa el tiempo que estuvo ocupado el canal durante el tiempo total
de medicién, que para este caso es el tiempo de entrenamiento.

Otra manera de representar la ocupacion de espectro es mediante la intensidad
de espectro, la cual se calcula como lo muestra la ecuacion (5) [43]:

TOTL

Intensidad = ——— 5
Ton + Toff ©)

En la figura 9 se observa el porcentaje de ocupacién de cada canal en una fraccion
de tiempo de 60 minutos, en el intervalo de 824 MHz- 879 MHz, se puede observar
que el foco de ocupacion se presenta desde la frecuencia 854 MHz hasta 879 MHz.

EC 146



Modelo de decision espectral para redes de radio cognitiva

100
90
80
70
60
50
40
30
20
10

0

Porcentaje de ocupacion (%)

828
3
833
835
3
839
842

44

4
4
5
5
5
5
5

<t
w0 W
0 0

866
868
870
872
875
877
879

© © 00 00 © 00 00 00

Frecuencia (MHz)

Figura 9. Ciclo de trabajo para la banda GSM

indice de potencia

Es un dato que muestra la relacion de los niveles potencia maxima P__ | y la minima
P_. . de cada canal de frecuencia k seleccionado [24] (ver ecuacion (6)).

Pij = —— 6)

En la figura 10 se observa la relacion de los niveles de potencia de cada canal que
permite inferir que tan alto puede ser la sefial de un PU cuando accede a un canal.
Este calculo permitira saber qué indice de potencia es el mas adecuado cuando hay
una sefial baja definiendo los canales, en donde es baja la intervencion del PU.
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Figura 10. Indice de potencia por canal para la banda GSM

En esta parte, se calcula la SNR como la diferencia entre el nivel de recepcién medido
P, en dBm y el nivel de piso de ruido obtenido con el analizador de espectro P, como
se muestra en la ecuacion (7). El resultado es obtenido en dBm, como se observa en
la figura 11.

SNRkZPk_PN (7)

Disefio de la etapa de clasificacion
GRA es una técnica de ponderacion de atributos efectiva de MADM que analiza la

mejor alternativa con el mayor valor del coeficiente de relacion gris (GRC) [49]. En
el siguiente apartado se realizard paso a paso el disefio del algoritmo GRA.
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Figura 11. SNR para la banda 824 MHz - 874 MHz

Construccion del algoritmo GRA

Tomando como guia el trabajo realizado en [50], el método de implementaciéon GRA
fue desarrollado en los siguientes pasos:

Construir una matriz de decisiéon K para un modelo de k atributos y N datos,
donde k define cada parametro obtenido en el procesamiento de los datos como
un atributo y N representa la cantidad de canales a analizar, como se observa en la
ecuacion (8).

kll klZ
K:[ku ku} ®)

kNl kNZ

Normalizar la matriz de decision K con los parametros obtenidos de la caracteriza-
cion del espectro para obtener la matriz S normalizada, a partir de la ecuacion (9).
Estos datos son parametros de beneficio, ya que entre menor sea el valor de cada para-
metro, podra ser elegido en la toma de decisiones entre los canales menos ocupados.

maxienki; — ki;

Sij = ©
] .
maxeykij — mingeyk;;

491Ee



Cristian Camilo Bernal Ariza, César Augusto Hernandez Suarez

Construccion de la matriz de juicios

En varias ocasiones el disefiador define un peso para cada atributo dependiendo de
su criterio, dando prioridades a ciertas variables que pueden ser determinantes al
momento de tomar decisiones. Para calcular los pesos de cada atributo, se realiza una
comparacion entre dos atributos basada en una tabla de valores numéricos absolutos
llamada matriz de juicios. Para nuestro caso, se definen los pesos de cada atributo
con base en el método Delphi el cual consistio en consultar a un conjunto de expertos
la importancia y jerarquia de los tres parametros elegidos.

Calculo de los pesos normalizados
Luego de obtener la matriz de juicios de cada criterio, se calcula la media geométrica

y el resultado se normaliza para obtener pesos entre 0 y 1, calculada de acuerdo con
la ecuacion (10).

(10)

Seguidamente, se construye la matriz ponderada normalizada. Esta matriz es el re-
sultado de los pesos obtenidos multiplicados por cada elemento de la matriz, como
lo muestra la ecuacion (11).

Vi =Wj*5ij (11)

Acto seguido, se obtiene el valor maximo de cada criterio de beneficio calculado en
la ecuacioén (12), para nuestro caso, se elige el canal con el valor maximo de cada
criterio.

xj =max {v; j =1,..,N} (12)

Finalmente, se procede con el calculo de la posicion de las alternativas dado el valor
GRG, el cual es calculado mediante la ecuacién (13).

GRCi=—= ) ————
' N] 1 Ai +Amax (13)
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Donde  Aijy,-y,; es la distancia correlacionada gris, Apg= max (A)iex V
Apin= min(A);er sonlosvalores maximosyminimosdeladistanciacorrelacionadagris.

En el apartado de resultados se podra observar el grado de importancia de cada
criterio a la hora de elegir el mejor canal para acceder. En definitiva, se obtendra una
tabla con los valores de frecuencia de los canales menos ocupados basados en los
datos estadisticos medidos.

Disefo de la etapa de prediccion

Una vez obtenida la clasificacion por prioridad de los mejores canales a utilizar, se
inicia un proceso de predicciéon basado en las estadisticas tomadas en la medicion,
para trafico bajo y trafico alto. Esta prediccion le permitird al SU identificar instantes
de tiempo en los que puede existir una llegada del PU al canal y pueda tomar deci-
siones eficientes para realizar el cambio al segundo mejor canal dependiendo de su
clasificacion, como el trabajo realizado en [51], donde realizan predicciones imple-
mentado redes neuronales.

Para este modelo se utilizan 3 algoritmos de aprendizaje supervisado: redes neu-
ronales NAR (sistema no lineal autoregresivo), SVM y KNN, los cuales seran eva-
luados para elegir el mas consistente y pragmatico. En cada algoritmo se utilizan
los datos de entrenamiento como entradas al modelo y los datos de evaluacion para
medir que tan eficaz es la prediccion. La base de datos es divida de tal manera que
los 60 minutos iniciales seran de entrenamiento y los 10 minutos finales seran de eva-
luacion. En estos tres algoritmos se evalda el desempefio para elegir el mas acertado
al momento de predecir y realizar el cambio de canal.

Implementacion de redes neuronales

Mediante la herramienta de Matlab se realiza la implementacion de la prediccion uti-
lizando redes neuronales artificiales, como primer paso, se realiza la normalizacion
de los datos. Se entrena la red con los datos de entrada de cada canal y por ultimo, se
obtiene el resultado de la red que serd la prediccion para cada canal.

La red neuronal empleada se observa en la figura 12, esta red neuronal esta basa-
da en el modelo NAR, el cual consta de la capa de entrada, la capa oculta que tiene
10 neuronas y la capa de salida que utiliza una neurona. Se realizan pruebas con un
numero de neuronas menor a 10 en la capa oculta y se observa que con 10 neuronas
se obtiene el error mas pequefio. Cada dato de entrada estd organizado de acuerdo
con el canal y tiempo al que corresponde, para un total de 551 (canales) x 10800 (time
step) datos de entrada.

Antes de ingresar los datos de entrenamiento es necesario ajustar las entradas a
un rango especifico que para este caso es [-1,1], como se observa en la ecuacion (14).

_ {1, siRx PU = —95dBm (14)
Y= 10,  siRxPU<-95dBm
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Luego, se entrena la red mediante el algoritmo Levenberg-Marquadt. Este método
fue elegido ya que es implementado para mejorar la velocidad, optimiza el tiempo
de entrenamiento y puede mejorar computacionalmente en la ejecucion del modelo
con respecto a otros algoritmos, ya que el tamafo de entrada de los datos para esta
investigacion es considerablemente alto.

Hidden Layer with Delays Qutput Layer

Figura 12. Sistema no lineal auto regresivo en redes neuronales
Fuente: tomada del software Matlab.

Luego de obtener el resultado de la red para cada canal, se realiza el proceso de
conversion de los datos para obtener los valores reales de prediccion. La formulaciéon
matematica se muestra en la ecuacion (15), donde y(2) sera el proximo valor de los
datos previos de y(¢) y d es la cantidad de retardos anteriores.

y® =fyt-1,.yt-d) 15)

Implementacion de SYM

En la implementacién de SVM, inicialmente, se realiza el procesamiento de los datos
de entrada que serviran de entrenamiento en la etapa de clasificacion. Estos datos
son normalizados entre -1 y 1, donde los niveles por debajo de -95 dBm pertenecen
al valor -1, el cual indica que el canal esta desocupado en ese time step y los valores
mayores a -95 dBm que se relacionan al valor 1, como un estado que indica que el
canal esta ocupado, esta definicién puede verse en la ecuacion (14).

En estos modelos se definen dos clases que seran las entradas para la funcion de
clasificacion. La clase 1 son los datos normalizados en el rango [-1,1] y la clase 2 son
los niveles de potencia de cada canal medidos en dBm. Los conjuntos de datos de
entrada estan organizados por vectores de 1 canal x 10800 time steps, para un total
de 551 x 10800.

Luego de obtener los datos de entrada definidos se inicia el proceso de clasifica-
cion aplicando la funcion fitcsym de la herramienta Matlab. Para cada canal entre-
nado se obtiene un modelo de clasificacion SVM que sera la entrada en la etapa de
prediccion. Esta funcion de prediccion estd basada en el modelo matematico de la
ecuacion (16).
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K
§=arg yrg}{}(KZ;P(klx) ¢ oIk (16)

Donde # es el resultado de la prediccion, K es el numero de clases, P(k|x) es la pro-
babilidad posterior del nimero de clases para observacion xy C(y|k) es el costo de
clasificar una observacion cuando su clave verdadera es K.

La funcioén predict (de la herramienta Matlab) retornara un vector de etiquetas de
clase con valores entre [-1,1] segun el modelo de regresion entrenado en la clasifica-
cién. El vector resultante tiene un tamafio de 1 x 10800 time steps por cada canal. Al
final, la prediccidn construird el conjunto de datos de 551 canales x 10800 time steps.
En la figura 13 se puede observar el proceso de implementacion del algoritmo SVM.

Procesamiento de
los datos y

Clasificacion de Predicciony
clases normalizacion

FITCSVM [1,0]

normalizacion
[ 1! _1]

Figura 13. Proceso de prediccion SVM

Implementacion de KNN

Para KNN se ejecuta un procedimiento semejante a la técnica SVM. Primero, el
algoritmo realiza el procesamiento de los datos normalizandolos entre 0 y 1, donde
0 senala que el canal esta desocupado (valores menores a -95 dBm) y 1 determina un
canal ocupado (valores mayores a -95 dBm). Ver ecuacién (3).

A partir de la construccion de los datos de entrada se procede a entrenar los datos,
implementando el algoritmo de clasificacion KNN con las mismas dimensiones del
conjunto de datos utilizado en SVM. Para cada traza de entrada 1 x 10800 time steps,
la funcidn fitcknn construira un modelo de clasificacion que sera la entrada en el pro-
ceso de prediccion. Al igual que en SVM se utiliza la funcion predict para predecir
los nuevos datos con valores entre 0 y 1, y se construye el mismo conjunto de datos
de 551 canales por 10800 time steps, como resultado de la predicciéon. En la figura 14
se puede observar la implementacién del algoritmo KINN.
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Procesamiento de
los datos y

Clasificacion de
clases

FITCKNN

e Prediccion
normalizacion

(1,0]

Figura 14. Proceso de prediccion KNN

Modelo inteligente de decision de espectro definitivo

Luego del estudio realizado en la comparacion de los algoritmos de inteligencia arti-
ficial utilizados en la prediccidn y los algoritmos aplicados en los modelos de toma de
decisiones en el espectro, se propone un modelo definitivo que se adapte al proposito
general de este proyecto.

Dentro de las cualidades principales que debe contener el modelo esta la capaci-
dad de tomar de decisiones inteligentes y oportunas, buscando la manera de lograr
una adaptacion entre el SU y el ambiente de RF. Otra cualidad importante es admi-
nistrar la movilidad de los SU con el fin de cada salto de canal o handoff espectral
sea acertado y que en una transmision se realicen la minima cantidad de saltos con el
proposito de reducir las colisiones y la interferencia entre sefiales.

Basado en lo anterior, se definieron dos algoritmos fundamentales dentro del mo-
delo que permitiran a los SU acceder al espectro de una manera dindmica. El modelo
esta construido en fases como se observa en la figura 15. La primera fase del modelo
esta definida como la etapa de caracterizacion del espectro. Luego de obtener los
resultados de caracterizacion, el modelo contintia su ejecucion a la fase 2, donde se
desarrolla la clasificacion del espectro empleando el algoritmo GRA. Finalizada la
etapa de clasificacion, el modelo ejecuta la fase 3, predecir la ocupacién espectral
en los canales seleccionados mediante el algoritmo elegido, y finalmente, realizar la
correspondiente evaluacion y comprobacion.

EC 154



Modelo de decision espectral para redes de radio cognitiva

* Prediccion del
espectro, 3
técnicas de

* Caracterizacion

de espectro e Clasificacion del

espectro cas
mediante el prediccion
algoritmo GRA

e — Fase 3

Figura 15. Modelo de decision de espectro definitivo

Metodologia de validacion y evaluacion

En esta seccion se explica el procedimiento de evaluacidon del desempefio del modelo
propuesto, analizando por partes los algoritmos de clasificacion y prediccion a partir
del siguiente proceso de analisis: primero, en la etapa de clasificacion, se evalua la
precision con que se eligen los canales con menos ocupacion; segundo, en la etapa
de prediccién, se analiza el error porcentual de las técnicas de inteligencia artificial
implementadas en este modelo; tercero, se presenta el analisis y evaluacion del com-
portamiento del SU en los handoff realizados por el SU; y finalmente, se evalua el
costo computacional del modelo.

Métricas de evaluacion

Las métricas de evaluacion son distintas para cada fase del modelo. En la etapa de
clasificacion (fase 2) se evalua la precision con que el algoritmo de clasificacion reali-
za su proceso utilizando diferentes mediciones para varias tecnologias inaldmbricas,
mediante el uso de histogramas.

Para evaluar los resultados obtenidos en la etapa de prediccion (fase 3), se realizan
dos mediciones que permitiran evaluar el desempefo de las tres técnicas de predic-
cion implementadas. La primera medicion calcula el error relativo porcentual para
los resultados de trafico bajo y trafico alto, utilizando los datos de evaluacién versus
el resultado de la prediccion. La segunda medicién calcula la cantidad de cambios
de canal o handoff espectrales realizados por el SU durante la transmision, para esta
métrica es necesario construir un simulador que permita estimar los diferentes tipos
de handoff considerados en esta investigacidn, tales como: handoff totales, handoff
fallidos, handoff perfectos, handoff anticipados, handoff con interferencia y handoff
sin interferencia, que seran explicados en la siguiente seccién con mas detalle.
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Precision en la clasificacion

Es necesario asegurar que la clasificacion de los canales sea acertada y que no existan
errores en cada calculo que puedan afectar la posterior eleccion, y que la prediccion
sea aprovechada eficazmente. Para ello se realizo un experimento que consiste en cal-
cular la cantidad de handoff minimos a realizar por el SU en diferentes trazas y de esta
manera comparar los resultados con los del simulador disefiado. Estos experimentos
seran explicados con mas detalles en el capitulo de descripcion de los experimentos.

Error relativo porcentual

El error relativo es calculado como se observa en la ecuacion (17). Donde X_i repre-
senta el resultado obtenido en cada canal en un instante de tiempo y X_v es el dato
de la etapa de evaluacién, debido a que los valores resultantes estan en el rango de -1
a 1, se procede a normalizar estos datos antes de aplicar la ecuacién (17).

1o (1X,o Xl
error—r—lz< X *100) 17

Este calculo es ejecutado con los datos de medicion obtenidos para trafico bajo y
trafico alto de la tecnologia GSM.

Métricas de handoff espectral

Para el calculo del handoff se disefié un algoritmo capaz de medir la cantidad de sal-
tos que debe realizar un SU en una transmision de 10 minutos, aproximadamente. El
algoritmo determina esta medicion basado en el resultado de la prediccion de las tres
técnicas con el fin de determinar la técnica que mas se ajuste al modelo propuesto.

El escenario diseflado compara en cada time step los datos obtenidos en la pre-
diccidn junto con los datos reales de evaluacion, calculando 6 métricas de handoff,
las cuales son:

*  Handoff total

*  Handoff fallidos

*  Handoff con interferencia
*  Handoff sin interferencia
*  Handoff anticipados

*  Handoff perfectos
El handoff toral es el acumulado total de cambios de canal. En esta métrica se describe
la cantidad de saltos realizados por el SU al ejecutar el modelo disefiado hasta com-

pletar una transmisién de 10 minutos. El simulador es el encargado de ir contando
cada salto de canal.
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A medida que el SU recorre el espectro y realiza cambios de canal, se pueden
seleccionar canales donde hay algin PU ocupandolo, a este tipo de cambio de canal
se denomind handoff fallido, que indican el numero de handoff cuyo canal objetivo
esta siendo ocupado por un PU.

Otra métrica importante a determinar es la cantidad de cambios de canal que ge-
neran interferencia. Los handoff con interferencia muestra la cantidad de saltos realiza-
dos con posterioridad a la llegada de un PU. Al contrario, los handoff sin interferencia
indican la cantidad de saltos realizados con anterioridad a la llegada de un PU.

Los handoff anticipados son los cambios de canal sin interferencia que se reali-
zaron con mucha anterioridad a la llegada del PU. En esta accién la predicciéon no
puede ser tomada como acertada dado que no se utiliza todo el tiempo que el canal
permanece desocupado.

Finalmente, los handoff perfectos son los handoff sin interferencia que se realiza-
ron muy cerca de la llegada de un PU, esta métrica permitira evaluar la certeza en la
prediccion de los algoritmos evaluados.

Costo computacional

Para el analisis del rendimiento computacional del modelo, se elabora la medicion
del tiempo de ejecucion del modelo empleando la herramienta de Matlab. Esta me-
dicién es realizada tomando mediciones del tiempo de ejecuciéon de cada fase que
compone el modelo. La medicion inicia con la fase de caracterizacion del espectro
y el calculo de los parametros utilizados, luego se mide el tiempo que tarda el algo-
ritmo GRA en clasificar los 551 canales y finalmente se determina el retardo de la
prediccion de cada canal implementando las tres técnicas de aprendizaje automatico.

La herramienta Matlab cuenta con una funcién TIC y TOC que permite medir
el tiempo transcurrido de un algoritmo desarrollado simplemente colocando el TIC
en la parte inicial del algoritmo y la funcion TOC en la parte final, y se reflejara el
tiempo transcurrido en la ventana de comandos.

Descripcion de los experimentos

Para evaluar el desempefio de los algoritmos de clasificacién y prediccion empleados
en este estudio, se diseflaron dos experimentos, los cuales se describen a continua-
cion.

Experimento 1

Este experimento consiste en implementar un algoritmo de clasificacion aleatoria de
los canales y otra mediante el algoritmo GRA, luego se organizan los mejores cana-
les operativos basados en las trazas de trafico bajo y trafico alto con la finalidad de
evaluar ambos procesos de clasificacion.

Este experimento es realizado 50 veces para obtener un valor promedio de handoff
minimos, tanto de la clasificacién aleatoria como del algoritmo GRA.

*  Paso I: el experimento inicia calculando los parametros de caracterizacion de
espectro, que seran datos de entrada para el algoritmo de clasificacion GRA.
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El pr

Paso 2: se disefia un algoritmo que organiza los canales de manera aleatoria,
utilizando la funcién rand de Matlab, la cual retorna un niamero de distribucion
uniforme. Los datos son ajustados en el intervalo de 1 a 551.

Paso 3: una vez ordenados los canales por prioridad, se ejecuta el simulador
desarrollado.

Paso 4: el SU realiza dos recorridos por las trazas de la etapa de evaluacion; el
primero, ejecutando el algoritmo aleatorio y el segundo, ejecutando el algoritmo
GRA. El SU inicia observando si en el instante t+1 el canal seleccionado esta
ocupado por un PU, en cuyo caso procedera a cambiar al siguiente canal de
acuerdo con la clasificacion previa.

Paso 5: el SU realiza el mismo proceso de acceso al espectro trasmitiendo en
los canales necesarios hasta completar la transmisién de 10 minutos, mientras
va contando los handoff requeridos para no generar interferencia. Este proceso
es realizado 50 veces para los dos tipos de clasificacion, al final se promedia la
cantidad de handoff de las 50 pruebas.

oceso del experimento se puede observar en la figura 16, donde se observan los

dos algoritmos de prediccion planteados, cabe aclarar que el proceso es ejecutado con
un solo algoritmo de clasificacion a la vez.
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Caracterizacion

Experimento 1 del espectro

Algoritmo de
clasificacion
aleatoria

Clasificacién de
canales GRA

Inicio del
experimento

EI' SU elije un canal en la Tabla de canales
tabla de clasificacion y
se inicia el simulador

Matriz de ¢El canal esta
evaluacion ocupado segln la matriz de
evaluaciéon?

Elije el siguiente canal en
la tabla

Accede al canal

JEl | en t+1 esta sl
¢El canal en esta Y Handoff total
ocupado?

Contintia en el canal

Figura 16. Diagrama de flujo del experimento 1

Experimento 2

En el diagrama de flujo de la figura 17, se pretende obtener resultados que describan
el comportamiento de los tres algoritmos de prediccién en un escenario de entorno
espectral de trafico bajo y trafico alto, en la banda de frecuencia GSM. Este experi-
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mento simula el recorrido de un SU transmitiendo con niveles de potencia ideales
durante 10 minutos por las trazas de evaluacion de trafico bajo y trafico alto, para
calcular la cantidad de los diferentes tipos de handoff espectrales realizados.

El experimento consta de los siguientes pasos:

e Paso I: el SU inicia ejecutando los parametros de caracterizacion de espectro
y clasifica los canales, organizandolos del menos ocupado al mas ocupado, de
acuerdo con el historial de trafico de la ultima hora.

e Puaso 2: el SU inicia la transmision en el canal seleccionado durante 5 minutos.

*  Paso 3: cuando el SU accede al espectro, calcula la prediccion para el canal se-
leccionado. En cada instante observa la prediccion para saber en qué momento
llega un PU. De esta manera el SU actiia cambiando a otro canal y continta la
transmision hasta terminar los 5 minutos.

*  Paso 4: durante este proceso el simulador se encarga de crear el escenario de
ocupacion espectral con los datos reales obtenidos de la campafa de medicidn,
y a su vez, realiza el conteo del nimero de handoff realizados en el proceso de
prediccion.

Este proceso es realizado 50 veces. En cada repeticion el SU inicia 18 time step mas
adelante y durante 900 time step que equivalen a 5 minutos, este desplazamiento
inicial se realiza hasta barrer toda la matriz de evaluacion que consta de 10 minutos,
de esta forma se garantiza un escenario diferente para cada repeticién. En cada eje-
cucion del experimento se tomaran medidas de los diferentes tipos de handoff. El re-
sultado de este experimento es presentado en el apartado “Evaluacion comparativa”.
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Experimento 2

Caracterizacion
del espectro

Prediccion de Inicio del Clasificacion de
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evaluacion?

- ) si
& cazz‘,i;;;; o8 Y Handoff total

Contintia
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Figura 17. Diagrama de flujo del experimento 2

Simulador

Para medir y evaluar el modelo disefiado es necesario construir un simulador
que pueda reflejar, mediante un experimento, el comportamiento del trafico real
de una red inaldmbrica, de tal manera que se pueda evaluar el modelo disenado.
En este simulador, el SU puede realizar su proceso de ejecucion, observando su
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funcionamiento mediante la captura de datos y mediciones necesarias para evaluar
los algoritmos de prediccion.

El simulador es disefiado utilizando las trazas de entrenamiento y evaluacidn,
obtenidas en la campana de medicion, de tal manera que la traza de entrenamiento
servira para configurar el modelo y la traza de evaluacion sera el entorno de RF don-
de se desplazara el SU vy realizara su interaccion.

De esta manera el modelo es ejecutado implementando las trazas reales de tra-
fico, donde inicialmente el SU calcula todos los parametros del espectro y genera la
tabla de prioridad de los canales menos utilizados. E1 SU tiene dentro de su base de
datos la tabla de clasificacion. Luego de ello, el SU inicia su recorrido de transmision
realizando la prediccion del primer canal seleccionado. El SU accede al canal y pre-
dice en qué momento puede llegar el PU al canal, en caso de que se de en el instante
t+1, el SU cambiara de canal en el instante t, eligiendo el siguiente canal dentro de
la tabla de clasificacion.

El disefio del simulador esta basado en un algoritmo que compara dos matrices, la
primera matriz son los ultimos 10 minutos de la medicion realizada en la captura de
datos, también llamada etapa de evaluacion, la cual ademas es utilizada para evaluar
la prediccion, y la segunda matriz, representa el resultado de la prediccion. Para este
caso, el SU realiza la prediccion de todos los canales segin el orden de clasificacion
y construye su propia matriz.

Las matrices son construidas de tal manera que las columnas representan cada
time step o paso en el tiempo y las filas son los canales organizados por prioridad, de
tal manera que la primera fila sera el primer canal a elegir. La matriz del simulador
se muestra en la figura 18, donde los recuadros azules son espacios en el espectro y la
sefial en rojo muestra la interaccion del SU.

Dentro de una transmisién, el SU cambiara de canal, si es necesario, hasta finali-

zar la transmision. Cada vez que el SU requiera realizar una transmision actualizara
su tabla de clasificacion de canales.

Prioridad | Canal 1 1 1 1 1 1 0 1 1
1 839,1 0——0__ 1 1 0 1 1 1 1
2 839,2 1 1 >0~ 1 1 1 1 1 1
. 4 839,3 1 1 1 1 | 0—>0~ 1 1 1
Frecuencia - ~
3 839,4 1 1 1 > 0= 1 1 1 1 1
(MHz) =
5 839,5 1 1 1 1 1 1 20— 1 1
6 839,6 1 1 1 1 . 1 1 ~———5
i 0,29 0,58 0,87 1,16 1,45 1,74 | 2,03 | 2,32 2,61
Tiempo (seg)

Figura 18. Construccion de matrices del simulador

El SU inicia el recorrido en la matriz eligiendo la primera fila y analizando en qué
instantes de tiempo puede existir una llegada, segin la matriz de prediccion. De esta
manera, el SU analizara estados futuros y accedera proactivamente al proximo canal
hasta el final de su transmision.
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Con este funcionamiento el simulador realiza una serie de calculos y mediciones
de handoff que permiten obtener informacion estadistica de los tres algoritmos de
prediccion para definir que técnica es la mas adecuada para su implementacion.

La figura 19 describe el diagrama de flujo del simulador.

Simulador

Parametros
iniciales

Caracterizacion
del espectro

Prediccion de Clasificacion de
canales canales

Inicio del
experimento x

El SU elije un Tabla de
canal en la tabla canales
de clasificacion

¢El canal esta
ocupado seguin matriz
de prediccion?

Matriz de prediccion Elije el siguiente

canal en la tabla

Matriz de
Accede a canal evaluacion

> Handoff fallido ¢ El canal esta ocupado
> Handoff con segun la matriz de
interferencia evaluacién?

¢El canal en t+1 esta

ocupado? Y Handoff total

¢En el instante t+2 el canal > Handoff
Continta esta desocupado? anticipado
en el canal

> Handoff perfecto

Figura 19. Diagrama de flujo del simulador
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Resultados

Los resultados alcanzados en el actual proyecto fueron obtenidos de la simulacion
desarrollada con la herramienta Matlab. Estos resultados seran presentados median-
te la evaluacioén del algoritmo de clasificacion y el algoritmo de prediccién. Luego de
ello, se realiza el calculo del error de prediccion de las tres técnicas que permitiran
elegir la mas conveniente para ser implementada en el modelo final y de esta manera
lograr mejorar el desempeno de las redes de radio cognitiva.

Algoritmo GRA

En la etapa de evaluacion del algoritmo de clasificacion se valoran inicialmente los
parametros seleccionados como criterios para la entrada del algoritmo, luego se ana-
liza el calculo de los pesos normalizados y finalmente, se evaltua el valor obtenido del
analisis relacional gris.

Parametros elegidos como criterios

Luego de un importante estudio de diferentes investigaciones, se han definido tres pa-
rametros que describen el comportamiento de cada canal y pueden funcionar como
criterios en el analisis de decisiones multicriterio.

Estas variables seleccionadas son:
*  Ocupacioén espectral

« Indice de potencia

¢ Relacién senal a ruido

Otras variables que inciden en el disefio de un modelo de toma de decisiones son el
ancho de banda y la posicion del SU, pero debido al objetivo propuesto en este mo-
delo, el cual pretende elegir el canal menos ocupado sin generar interferencias en los
PU, no seran tenidos en cuenta; para estos parametros se asignan valores fijos, como
por ejemplo el ancho de banda de 100 kHz por cada canal.

Para evitar la interferencia es necesario escoger un canal que haya tenido histo-
ricamente poca actividad, por lo que el parametro de ocupacion de espectral resulta
ser el mas importante. Como se explico anteriormente, este parametro es medido con
base en los datos histéricos, donde el porcentaje de ocupacion mas bajo corresponde
al canal menos ocupado.
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El indice de potencia es un parametro que permite identificar la relacién de los
niveles de potencia que generan los PU en cada canal, en este modelo este parametro
precisa que entre menor sea esta relacién mas baja es la utilizacion de respectivo
canal.

La SNR describe la relacion de la sefial con respecto al ruido en cada canal, el
cual es calculado tomando como base el nivel de piso de ruido obtenido en la me-
dicién. Los datos calculados de los parametros descritos se muestran en la tabla 3,
donde los resultados han sido normalizados entre 0 y 1. Cada fila es un canal de 100
KHz en la banda de frecuencia 824 MHz - 874 MHz.

Tabla 3. Normalizacion de los parametros para los 10 primeros canales

Ocupacion de espectro Indice de potencia SNR

1 0,9125 1

1 0,9125 1
0,9559 0,9272 0,9815
0,9179 0,8994 0,9744
0,9234 0,8673 0,9762
0,9120 0,8269 0,9740
0,9277 0,8238 0,9744
0,9520 0,9120 0,9811
0,9471 0,8879 0,9798
0,9286 0,7508 0,9779

Tabla de criterios

Se realiza la consulta de la importancia de los tres parametros seleccionados a una
serie de evaluadores que, debido a su experiencia y conocimiento adquirido en la
literatura estudiada de radio cognitiva, tienen la potestad de brindar opiniones acerca
de los criterios. En la tabla 4 se observan los criterios.
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Tabla 4. Criterios para establecer pesos en el método GRA

Criterios L Indice de potencia SNR
espectro
Ocupacioén de 1 5 9
espectro
Indice de potencia 1/5 1 3
SNR 1/9 1/3 1

Pesos normalizados

Los pesos obtenidos describen el grado de importancia de cada parametro o criterio
al momento de tomar decisiones. Los pesos normalizados son valores obtenidos a
partir de los datos de la tabla 4 y de la media geométrica descrita en la ecuacion (10).
En Ia tabla 5 se observan los pesos asignados a cada criterio.

Tabla 5. Pesos normalizados de los criterios

Criterios TG indice de potencia SNR
espectro
Pesos normali- 0,7235 0,1932 0,083
zados

Los pesos obtenidos se evaluan en todos los canales disponibles de la banda de fre-
cuencia seleccionada. Elresultado de la tabla 5 permite inferir que al decidir el mejor
canal un 72,35 % dependera de que el canal que disponible, el 19,32 % depende de
que el indice de potencia sea bajo y un 8,3 % sera producto de la relacion sefal a
ruido.

En la tabla 6 se puede observar la matriz ponderada normalizada para los 10 pri-
meros canales, la cual es calculada mediante la ecuacién (11).
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Tabla 6. Matriz ponderada normalizada

Ocupacion de espectro Indice de potencia SNR

1 0,21639 0,09371

1 0,216392 0,09371
0,95599 0,219882 0,09198
0,91797 0,21327 0,09131
0,92347 0,205667 0,09148
0,91209 0,196098 0,09128
0,92773 0,195359 0,09131
0,95204 0,216280 0,09194
0,94711 0,210544 0,09182
0,92868 0,178046 0,09164

Analisis relacional gris

Luego de definir los pesos para cada criterio, el algoritmo realiza el procedimiento
del calculo de las distancias de gris para cada canal. Luego, estos valores son organi-
zados de mayor a menor en un rango entre 0 y 1, donde el valor maés cercano a 1 serd
la primera opcion de eleccion de canal.

En la tabla 7 se puede observar la seleccion de canales obtenida de la ejecucion
del algoritmo GRA utilizando los datos medidos de trafico bajo, para los 10 mejores
canales.
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Tabla 7. Distancia correlacionada gris GRC trafico bajo

Prioridad Frecuencia (MHz) GRC
1 839,3 0,97903
2 843,5 0,97810
3 839,1 0,97717
4 8423 0,97648
5 843,2 0,97629
6 838,80 0,97495
7 843,3 0,97439
8 839 0,97344
9 842,8 0,97325
10 824 0,97319

La tabla 7 es una lista de respaldo de canales, en el caso de requerir un cambio de
canal. Cuando el SU necesite cambiar de canal elegira el siguiente canal en su tabla
con mayor distancia correlacionada gris.

Este proceso de clasificacion es realizado cada vez que el SU requiera hacer una
transmisién, por lo que la tabla de clasificacion cambiara constantemente.

Métricas de evaluacion

Una métrica de evaluacion importante es conocer los tiempos de ejecucion de cada
proceso del modelo para analizar que técnicas utilizan menos recurso computacio-
nal, a continuacién, se muestran las medidas obtenidas.

La evaluacion del algoritmo de prediccidén permite determinar la mejor técnica
que al predecir los nuevos datos se ajusten a los datos histéricos de cada canal y se
comporte de manera semejante a su experiencia. El mejor algoritmo debe ser eficaz
y asertivo en la prediccion.
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Una de las maneras de analizar los resultados de la prediccién e identificar el
algoritmo correcto es calculando el error relativo porcentual para cada técnica como
se presenta en la siguiente seccion.

Evaluacion comparativa para la seleccion de canal

En la evaluacién comparativa se muestran los resultados obtenidos en los experimen-
tos realizados. Primero, se muestran los calculos de handoff totales del experimento
1, indicando para cada minuto la cantidad de handoff realizados en los dos tipos de
trafico. En la figura 20 se puede observar el comportamiento de la clasificacion en
un escenario de trafico bajo donde el SU realiza un total de 135 handoff, eligiendo
primero los canales menos ocupados. En el mismo escenario, pero implementando
un algoritmo aleatorio el SU realiza 220 handoff en el mismo tiempo de transmision.
Para trafico alto también se puede identificar la importancia de clasificar canales,
ya que el SU realiza 180 handoff mientras que de manera aleatoria realiza 350, este
resultado se muestra en la figura 21.

250 T T T T

200 [ | —%— Algoritmo GRA / 1
—— Clasificacion aleatoria -

150 - 1

100

Numero de handoffs

n
[=]
T

Minutos

Figura 20. Handoff totales trafico bajo experimento 1
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Figura 21. Handoff totales trafico alto experimento 1

En la figura 22 se presenta el promedio de handoff del experimento 1, después de
repetirlo 50 veces.
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Tipo de Prueba

Figura 22. Promedio de handoff experimento 1
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Calculo del error de prediccion

El resultado del error relativo promedio por cada técnica de prediccidn para trafico
alto y trafico bajo, se observa en la tabla 8. Este valor permite mostrar el nivel de
efectividad en la prediccidn, a pesar que la traza de evaluacion utilizada es solo de 10
minutos de medicién, en trafico alto se puede tener una certeza en la prediccion del
88,03 % para el caso de SVM.

Tabla 8. Error relativo promedio para trafico bajo y trafico alto

Error rela.t 1o SVM Indice de potencia SNR
promedio
Trafico alto 11,97 13,09 16,44
Trafico bajo 13,85 14,21 18,42

De la tabla 8 se puede observar que para trafico alto, el algoritmo SVM presenta una
probabilidad del 88,03 % y KINN del 86,15 %, de acertar en la prediccion, a dife-
rencia de la red neuronal que tiene una probabilidad del 83,5 %. Para trafico bajo el
comportamiento es similar en los tres algoritmos bajando la probabilidad de predic-
cion a un 86,15 % para SVM, 85,79 % para KNN y 81,58 % para la red neuronal. El
resultado del error relativo es el promedio del resultado de los 551 canales, donde se
observa que para los canales menos ocupados la probabilidad de prediccién llega al
92 % con la técnica SVM. Las técnicas SVM y KNN pueden presentar mejor estabi-
lidad y coherencia en los resultados, asi como mejorar el rendimiento en la toma de
decisiones.

Analisis del costo computacional

Dentro de las métricas de evaluacion, consideramos inicialmente la medicién del
tiempo que tarda en realizar el proceso de calculo de los parametros para los 551 ca-
nales, el cual se puede observar en la tabla 9. También se determina el tiempo que el
algoritmo GRA tarda en clasificar los canales, observado en la tabla 10. Por ultimo,
se realiza la medicién de la prediccidn por canal para ambos traficos, estos resultados
se pueden ver en la tabla 11.
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Tabla 9. Tiempo de ejecucion del calculo de los parametros

Ciclo de trabajo Indice de potencia SNR Calc1'110 de los
parametros
0,37719 S 1,01948 S 0,09312 S 1,6666 S

Tabla 10. Tiempo de ejecucién de la etapa de clasificacion

Clasificacion GRA

Trafico alto

Trafico bajo

0,041782 Seg

0,024856 Seg

Tabla 11. Tiempo de ejecucion de la etapa de prediccion

Prediccion SVM KNN Neuronal
Prediccion trafico

alto por canal 0,440 Seg 1,415 Seg 0,611 Seg
Prediccién trafico

bajo por canal 0,392 Seg 1, 452eg 0,601 Seg

Las especificaciones técnicas del equipo de cémputo utilizado en el desarrollo del
proyecto son mostrados en la tabla 12.

Tabla 12. Especificaciones técnicas del equipo de cémputo

Caracteristica

Descripcion

Equipo y marca

Portatil Lenovo

Serie

Idea pad 500

Procesador

Intel ® Core™ i7 6500U CPU @
2.50 GHz - 2.6GHz
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Caracteristica Descripcion
Memoria RAM 8 GB
Sistema de almacenamiento 1TB
Sistema operativo Windows 10, 64 bits

Evaluacidon comparativa para la prediccion

El segundo experimento consistiéo en medir la cantidad de handoff realizados por
el SU durante una transmision de 5 minutos. En cada ejecucién se realizo el acceso
al espectro aumentando cada 6 segundos el tiempo de inicio del experimento, hasta
completar toda la traza de 10 minutos. Para este ejercicio solo se tuvo en cuenta la
métrica de handoff total. Los datos obtenidos en este experimento son presentados
en la figura 23, para los dos tipos de trafico.

150 T T T T T T

—#— SVM Alto
—— Neuronal Alto
—&— KNN Alto
—-%-— SVM Bajo
100 [ | —-%-— Neuronal Bajo
—-&-— KNN Bajo

Numero de handoffs

Minutos

Figura 23. Handoff totales experimento 2

Para trafico alto el algoritmo de redes neuronales junto con KNN son las técnicas que
realizan mas handoff en comparacion con SVM, como se observa en la figura 23. La
tabla 13 muestra los valores absolutos de dicho experimento.
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Tabla 13. Handoff totales experimento 2

SVM Total KNN Total Neuronal Total
Handoff Handoff Handoff
Prueba Rango time step
Trafico Trafico Trafico Trafico Trafico Trafico
alto bajo alto bajo alto bajo
1 1 901 87 107 131 105 137 107
2 19 919 91 106 133 107 143 106
3 37 937 94 105 134 107 146 107
4 55 955 98 105 136 109 150 109
5 73 973 99 107 141 112 150 109
6 91 991 100 107 141 111 110 109
7 109 1009 104 109 144 112 112 114
8 127 1027 104 113 145 94 113 113
9 145 1045 104 116 128 93 117 115
10 163 1063 105 118 129 96 120 118
11 181 1081 92 122 130 104 123 122
12 199 1099 92 123 132 104 126 124
13 217 1117 97 125 133 92 126 123
14 235 1135 98 126 138 92 126 125
15 253 1153 100 131 128 96 128 131
16 271 1171 103 131 131 101 131 133
17 289 1189 104 134 132 103 131 139
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SVM Total KNN Total Neuronal Total
Handoff Handoff Handoff
Prueba Rango time step
Trafico Trafico Trafico Trafico Trafico Trafico
alto bajo alto bajo alto bajo
18 307 1207 107 119 134 109 106 133
19 325 1225 109 122 138 111 108 133
20 343 1243 113 98 139 115 112 125
21 361 1261 117 106 141 117 116 124
22 379 1279 122 110 144 117 120 126
23 397 1297 123 112 146 117 122 130
24 415 1315 127 113 149 122 125 134
25 433 1333 131 114 134 124 129 117
26 451 1351 132 118 136 127 132 121
27 469 1369 134 125 140 129 141 128
28 487 1387 103 126 143 134 140 129
29 505 1405 105 126 144 134 140 129
30 523 1423 108 101 145 135 142 131
31 541 1441 109 100 145 119 110 134
32 559 1459 107 101 148 121 114 135
33 577 1477 109 105 151 123 114 137
34 595 1495 110 106 133 126 114 137
35 613 1513 113 108 137 128 118 140
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SVM Total KNN Total Neuronal Total
Handoff Handoff Handoff
Prueba Rango time step
Trafico Trafico Trafico Trafico Trafico Trafico
alto bajo alto bajo alto bajo

36 631 1531 115 108 138 129 122 112
37 649 1549 117 108 141 132 123 114
38 667 1567 124 111 144 118 127 115
39 685 1585 125 109 145 118 130 123
40 703 1603 128 109 127 118 130 126
41 721 1621 88 108 128 118 105 115
42 739 1639 91 108 131 122 106 121
43 757 1657 93 138 138 123 92 123
44 775 1675 96 110 140 110 95 123
45 793 1693 96 114 143 110 95 127
46 811 1711 98 114 143 114 98 127
47 829 1729 104 117 146 115 102 131
48 847 1747 110 103 152 118 108 107
49 865 1765 113 103 157 121 111 112
50 883 1783 114 105 149 124 112 113

Como segunda parte del experimento, se realiza la simulacion del modelo con una
duracion de transmision de 10 minutos para los dos tipos de trafico. En esta parte del
experimento se obtienen los 6 tipos de handoff descritos anteriormente y calculados
a partir del simulador: handoff totales (figura 24), handoff anticipados (figura 25),
handoff fallidos (figura 26), handoff perfectos (figura 27), handoff sin interferencia
(figura 28) y handoff con interferencia (figura 29).
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Analisis estadistico de los resultados

Las tablas 12 y 13 resumen los resultados de las figuras 24 a la 29, en términos com-
parativos a través de porcentajes. Vale la pena aclarar que los porcentajes estan calcu-
lados para que cuanto mejor sea el resultado mas se acerque al 100 %, sin importar si
la métrica es de beneficio o costo.

En las tablas 12 y 13 se puede analizar los resultados obtenidos del calculo de los
6 diferentes tipos de handoff, en los tres algoritmos evaluados, para los dos tipos de
trafico: alto y bajo. De la tabla 14 se observa que, en la ponderacion total para trafico
alto, las redes neuronales obtienen un porcentaje menor del 81,57 % y KNN del 83
%, siendo las técnicas menos favorables en la implementacion de este escenario en
comparacion con SVM, que obtuvo un porcentaje del 90,49 %. SVM presenta me-
jores resultados en el calculo de handoff, aunque no acierta en los handoff perfectos
(42,95 %) en comparacion con redes neuronales y KNN. Por otro lado, SVM si se
comporta muy bien en los handoff anticipados 100 % y en los handoff con interfe-
rencia 100 %, en comparacion con las demas técnicas.

De acuerdo con las tablas 14 y 15, SVM y KNN son las técnicas que mejor ren-
dimiento muestran para trafico alto y trafico bajo. Por un lado, SVM es el algoritmo
que menor handoff realiza y el que genera menos interferencia en los dos escenarios
(trafico alto y trafico bajo), en comparacion con los demas algoritmos. Pero cuando
se observa la ponderacion total, se puede decir que para escenarios de trafico alto la
mejor técnica es SVM, mientras que para escenarios de trafico bajo es KNN.

Tabla 14. Porcentaje comparativo de handoff en tréafico alto

Tréfico alto R ‘Zf/:‘)m“al SVM (%) KNN (%)
Handoff totales 82,17 100 75,18
Handoff fallido 85,45 100 77,01

Handoff con interferencia 82,82 100 91,8
Handoff sin interferencia 93,77 100 97,32
Handoff perfectos 100 42,95 86,11
Handoff anticipados 45,2 100 70,58
Ponderacion total 81,57 90,49 83

811E2



Cristian Camilo Bernal Ariza, César Augusto Hernandez Suarez

Tabla 15. Porcentaje comparativo de handoff en trafico bajo

Trdfico alto L ‘;f/‘o’)m““l SVM (%) KNN (%)
Handoff totales 78,38 100 76,32
Handoff fallido 91,49 63,61 100

Handoff con interferencia 55,91 91,88 100
Handoff sin interferencia 96,4 100 99,45

Handoff perfectos 72,87 88,68 100

Handoff anticipados 33,09 79,88 100
Ponderacion total 71,36 87,34 95,96
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Conclusiones

En las diferentes mediciones realizadas en Bogota y para distintos tipos de servicios,
que involucro la banda de frecuencia GSM (824 MHz - 874 MHz), se logro6 eviden-
ciar que el espectro radioeléctrico en esta region del pais esta siendo altamente subu-
tilizado, lo que lleva a confirmar la necesidad de un cambio en la actual politica de
asignacion fija del espectro, y permite la generacion de regulaciones para tecnologias
de acceso dinamico al espectro, como la radio cognitiva. Para el desarrollo de las
mediciones se recomienda hacer uso de tiempos de barrido cortos, en las bandas de
las tecnologias variantes en el tiempo como GSM.

La ejecucién del modelo implementado en Matlab permite concluir que el costo
de procesamiento es bastante bajo para el calculo de parametros de cada canal, pues
obtiene el resultado en 1,6 segundos para los 551 canales, aproximadamente 3 ms
por cada canal.

Al organizar los canales por prioridad, el SU puede elegir qué canales son lo
menos utilizados basado en datos histdricos, permitiéndole hacer uso del canal con
menor probabilidad de generar interferencia y permanecer por mas tiempo. La im-
portancia de clasificar los canales reduce la cantidad de handoff requeridos por el SU
para transmitir su informacion disminuyendo la interferencia que pueda generar a los
usuarios primarios.

El algoritmo de decisién multicriterio GRA permite obtener un resultado efectivo
y computacionalmente bajo para el calculo de los parametros que varian con el tiem-
po. GRA clasifica los 551 canales en 24 ms para trafico bajo y 48 ms para trafico alto
comparado con el trabajo realizado en [50], donde GRA es ejecutado en un rango
de tiempo de 25 a 50 ms para la banda de UMTS. Este rendimiento computacional
permite que el modelo pueda adaptarse rapidamente con diferentes datos de entrada
y pueda ser implementado en otros entornos geograficos donde exista una banda de
frecuencia que este siendo subutilizada.

Las técnicas de SVM y KINN son las mas adecuadas segtin las pruebas realizadas,
ya que permiten predecir el proximo estado de un canal especifico con una probabi-
lidad de acierto del 88% para trafico alto y 86% para trafico bajo, en SVM; y con un
porcentaje del 86% en trafico alto y 85% para trafico bajo, en KNN. Por otra parte,
SVM es la técnica que demuestra mejor comportamiento en los cambios de canal ya
que disminuye la interferencia al realizar un menor numero de handoff y realizar
mayores cambios de canal sin afectar el trafico del usuario primario en los dos esce-
narios. KNN puede mostrar mejor rendimiento en trafico bajo y ser mas asertivo en
los handoff perfectos, pero para trafico alto no tiene buen desempeno, lo que muestra
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irregularidad. En términos computacionales el algoritmo KNN y redes neuronales
son mas eficaces comparados con SVM, y esto permite concluir que no hay un mé-
todo de prediccidn perfecto para todo tipo de escenario o ambiente de simulacidn.

Trabajo futuro

Para un trabajo futuro se propone evaluar otras técnicas de prediccion que permitan
mejorar el rendimiento computacional del modelo propuesto que mejore la probabi-
lidad de acierto obtenida en este modelo.

Es necesario realizar experimentos en redes de radio cognitiva con datos de otras
bandas de frecuencia implementadas actualmente como UMTS y LTE, que permitan
evidenciar ajustes en el modelo y mejorar su implementacion en el campo real.

Implementar el modelo diseniado en un escenario de red movil utilizando mas de
un usuario secundario en la interaccién permitira observar si las decisiones tomadas
por los SU conllevan a un comportamiento inteligente de autoorganizacion o si esta
interaccidn entre usuarios tiende a comportarse al borde del caos, para ello un trabajo
futuro sera modelar la actividad de los SU en el espectro.

Este modelo no tiene en cuenta la variable espacio y ubicacion de los diferentes
usuarios secundarios en una red inalambrica, lo cual es necesario en una topologia
de red distribuida donde el usuario mas cercano pueda ser localizado y asociarse
para realizar una comunicacion. Podria ser interesante incluir otros parametros en el
desarrollo de este modelo como el ancho de banda o la regulacién de la potencia de
transmisién lo cual sera una propuesta futura.
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Anexos

Desarrollo de software simulador en matlab.

A. Algoritmo general de decision de espectro

clc;clear ; close all;
Toad(‘C:\Users\rokli\oneDrive\Documentos\Universidad\Matlab\Machine
learning\Trazas de trafico GSM\Trafico_GSM_trazas_entrenamiento -95.mat’);
Toad(‘C:\Users\rokli\oneDrive\Documentos\Universidad\Matlab\Machine
learning\Trazas de trafico GSM\Trafico_GSM_trazas_evaluacion -95.mat’);
High= Power_t.High;

EvaHigh=Power_e.High;

EvalLow=Power_e.Low;

Low=Power_t.Low;

[Mev,Nev]=size(EvaHigh);

[Mev1,Nevl]=size(EvaLow);

[Mh,Nh]=size(High);

[M1,NT]=size(Low);

datosHigh= High((1:Mh), (1:Nh));

datosLow=Low((1:MT1), (1:N1));

Clasificacion= zeros(1,Nh);

Evaluacion= zeros(1,Nh);

valores = zeros(1,Nh);

Matriz= zeros(Nh,3);

banda= 824:0.1:879;

banda=banda’;

canaleslibres=zeros(551,3);

canalesocupados=zeros(551,3);

canall=zeros(551,1);

salidaE=zeros(Mev,551);

salidane=zeros(Mev,551);

ocu=zeros(551,2);

ener=zeros(551,2);

grasnr=zeros(551,2);

%% Calculo de los criterios

[Procupacion]=ciclotrabajo (datosHigh,datosLow);

[trazaden, trazaenergia]=energia(datosHigh,datosLow);
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[snrdb]=SNR(High,Nh,Mh,Low,M1,N1);

% Graficas Criterios

ocu(:,1)=banda(:,1);

ocu(:,2)=Procupacion(:,2)*100;

figure

plot(ocu(:,1),ocu(:,2));

grid on

grid minor

title(‘CICLO DE TRABAJO ‘,’fontsize’,16);
ylabel(‘Porcentaje de Ocupacion (%)’,’fontsize’,16);
xlabel(‘Frencuencia (MHz)’,’fontsize’,16);

axis([820 880 0 110])

set(gca, ’fontsize’,12)

figure

ener(:,1)=banda(:,1);

ener(:,2)=trazaenergia(:,1);

plot(ener(:,1),ener(:,2));

set(gca, ’fontsize’,12)

grid on

grid minor

title(* INDICE DE POTENCIA ‘,’fontsize’,16);
ylabeT(‘Nivel de potencia’,’fontsize’,16);
xlabel(‘Frencuencia (MHz)’,’fontsize’,16);

figure

grasnr(:,1l)=banda(:,1);

grasnr(:,2)=snrdb(:,1);

plot(grasnr(:,1),grasnr(:,2));

set(gca, ’'fontsize’,12)

grid on

grid minor

title(* SNR ¢, ’fontsize’,16);

ylabeT(‘ Nivel SNR (dBm)’,’fontsize’,16);
xlabel(‘Frencuencia (MHz)’,’fontsize’,16);

%% Matriz de criterios
MatrizHigh=criteriosHigh(Procupacion,trazaenergia,snrdb);
MatrizLow=criteriosLow(Procupacion,trazaenergia,snrdb);
%% Clasificacion

[mejorcanalHigh]= GRA(MatrizHigh);

[mejorcanalLow]= GRATow(MatrizLow);

%% Prediccién red neuronal y SvM
[preneuronalH,preneuronalL,presvmH,presvmL,mcanalH,preKNNH, preKNNL]= neur
oprediccion(datosHigh,datosLow,mejorcanalHigh,mejorcanalLow) ;
%% Calculo del error para SVM y red neuronal
[errorsvmH,errorneuralH,errorknnH,errorH,mcaH, promedioH]
=errorpre(EvaHigh,mejorcanalHigh,banda,presvmH,preneuronalH, preKNNH) ;
[errorsvmL,errorneuralL,errorknnL,errorL,mcaL,promediolL]
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=errorprelow(EvaLow,mejorcanalLow,banda,presvmL,preneuronalL,prekNNL) ;

%% experimento sin prediccidn

[totalalto]=experimentoalto(mcaH,EvaHigh);
[totalbajo]=experimentobajo(mcaL,EvaLow) ;

%% interaccion High

[totalhand, totalfallido,totalanti,totalinte,totalperfecto]=handoffsvm(pre
svmH,mcaH, EvaHigh) ;
[totalhandn,totalfallidon,totalantin,totalinten,totalperfecton]=handoffne
uronal (preneuronalH,mcaH,EvaHigh);

[totalhandk,totalfallidok, totalantik,totalintek,totalperfectok]=handoffKkN
N(prekKNNH,mcaH, EvaHigh);

totalsininte=totalhand-totalinte;

totalsininten=totalhandn-totalinten;

totalsinintek=totalhandk-totalintek;

%% interaccidn Low
[totalhandL,totalfallidoL,totalantiL,totalinteL,totalperfectoL]=handoffsv
mL(presvmL,mcaL,EvaLow) ;
[totalhandnL,totalfallidonL,totalantinL,totalintenL,totalperfectonL]=hand
offneuronalL(preneuronalL,mcaL,EvaLow);
[totalhandkL,totalfallidokL,totalantikL,totalintekL,totalperfectokL]=hand
of fKNNL (prekKNNL,mcaL,EvaLow) ;

totalsininteL=totalhandL-totalinteL;
totalsinintenL=totalhandnL-totalintenL;
totalsinintekL=totalhandkL-totalintekL;

%% Grafica Experimento

plot(totalalto, 'b-*")

hold on

grid on

title(‘Handoffs Totales Experimento trafico alto’,’fontsize’,14)

set(gca, ’fontsize’,12)

ylabel(‘Numero de handoffs’,’fontsize’,14)
xlabel(‘Minutos’,’fontsize’,14)

figure

plot(totalbajo, ’b-*")

hold on

grid on

title(‘Handoffs Totales Experimento trafico bajo’,’fontsize’,14)

set(gca, ’fontsize’,12)

ylabel(‘Numero de handoffs’,’fontsize’,14)
xlabel(‘Minutos’,’fontsize’,14)

figure

%% graficas Handoff

plot(totalhand, "b-*")

hold on

plot(totalhandn,’r-x")

grid on
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plot(totalhandk,’g-0’)
plot(totalhandL, "k-+")
plot(totalhandnL,’c-d’)
plot(totalhandkL, ’m-p’)

title(‘Handoffs Totales’,’fontsize’,16)
set(gca, ’fontsize’,12)

ylabel(‘Nimero de handoffs’,’fontsize’,16)
xlabel(‘Minutos’,’fontsize’,16)
Tegend(‘SvM Alto’,’Neuronal ATto’,’KNN Alto’,’SVM Bajo’,’Neuronal
Bajo’,’KNN Bajo’)

figure

plot(totalfallido, ’b-*")

hold on

plot(totalfallidon,’r-x")

grid on

plot(totalfallidok,’g-0’)
plot(totalfallidoL, k-+")
plot(totalfallidonL,’c-d’)
plot(totalfallidokL, m-p’)

title(‘Handoffs Fallidos’,’fontsize’,16)
set(gca, ’fontsize’,12)

ylabel(‘Numero de handoffs’,’fontsize’,16)
xlabel(‘Minutos’,’fontsize’,16)
Tegend(‘sSvM Alto’,’Neuronal ATto’,’KNN Alto’,’SVM Bajo’,’Neuronal
Bajo’,’KNN Bajo’)

figure

plot(totalinte, ’b-*")

hold on

plot(totalinten,’r-x")

grid on

plot(totalintek,’g-o0’)
plot(totalinteL, "k-+")
plot(totalintenL,’c-d’)
plot(totalintekL,  'm-p’)

title(‘Handoffs con interferencia’,’fontsize’,16)
set(gca, ’fontsize’,12)

ylabel(‘Nimero de handoffs’,’fontsize’,16)
xlabel(‘Minutos’,’fontsize’,16)
Tegend(‘sSvM Alto’,’Neuronal ATto’,’KNN Alto’,’SVM Bajo’,’Neuronal
Bajo’,’KNN Bajo’)

figure

plot(totalsininte, 'b-*")

hold on

plot(totalsininten,’r-x’)

grid on

plot(totalsinintek,’g-0’)
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plot(totalsininteL, "k-+")
plot(totalsinintenL,’c-d’)
plot(totalsinintekL, 'm-p’)

title(‘Handoffs sin interferencia’,’fontsize’,16)
set(gca, ’fontsize’,12)

ylabel(‘Numero de handoffs’,’fontsize’,16)
xlabel(‘Minutos’,’fontsize’,16)

legend(‘svM Alto’,’Neural Alto’,’KNN Alto’,’SVM Bajo’, ’Neuronal
Bajo’,’KNN Bajo’)

figure

plot(totalperfecto, ’b-*")

hold on

plot(totalperfecton,’r-x’)

grid on

plot(totalperfectok,’g-0’)
plot(totalperfectoL, 'k-+)
plot(totalperfectonL,’c-d’)
plot(totalperfectokL, 'm-p’)

title(‘Handoffs Perfectos’,’fontsize’,16)
set(gca, ’fontsize’,12)

ylabel(‘Numero de handoffs’,’fontsize’,16)
xlabel(‘Minutos’,’fontsize’,16)

Tegend(‘sSvM Alto’,’Neuronal ATto’,’KNN Alto’,’SVM Bajo’,’Neuronal
Bajo’,’KNN Bajo’)

figure

plot(totalanti, ’b-*")

hold on

plot(totalantin,’r-x")

grid on

plot(totalantik,’g-o0’)

plot(totalantiL, "k-+")

plot(totalantinL,’c-d’)

plot(totalantikL, 'm-p’)

title(‘Handoffs Anticipados’,’fontsize’,16)
set(gca, ’fontsize’,12)

ylabel(‘Numero de handoffs’,’fontsize’,16)
xlabel(‘Minutos’,’fontsize’,16)

Tegend(‘sSvM Alto’,’Neuronal ATto’,’KNN Alto’,’SVM Bajo’,’Neuronal
Bajo’,’KNN Bajo’)

figure
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B. Calculo de los parametros
Ocupacion de espectro

function [Procupacion]=ciclotrabajo (datosHigh,datosLow)
%% Entrenamiento
ocupacionH= 1t(-95,datosHigh);
ocupacionH=ocupacionH’;
ocupacionL= T1t(-95,datosLow);
ocupacionL=ocupacionL’;
[Fh,ch]=size(ocupacionH);
[F1,cT]=size(ocupacionL);
TOFFh=zeros(Fh,2);
TONh =zeros(Fh,2);
TOFFl=zeros(F1,2);
TON1 =zeros(F1,2);
intensidad= zeros((Fh),3);
Procupacion= zeros((Fh),3);
Prolibre= zeros((Fh),3);
Total= Cch*0.290;
% High
for i=1:Fh
Tibreh=0;
ocupadoh=0;
for j=1:ch
if ocupacionH (i,j)== 0
Tibreh=1ibreh+0.290;
TOFFh(i,2)=11ibreh;
TOFFh(i,1D)=1;
else
ocupadoh=ocupadoh+0.290;
TONh (i,2)= ocupadoh;
TONh(i,1)=1;
end
end
intensidad(i,2)= TONh(i,2)/(TONh(i,2)+TOFFh(i,2));
intensidad(i,1)= 1i;
Procupacion(i,2)= TONh(i,2)/Total;
Procupacion(i,1l)= 1i;
Prolibre(i,2)= 1-Procupacion(i,2);
Prolibre(i,1)=1;
end

%% Low

for i=1:F1
Tibrel=0;
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ocupadol=0;

for j=1:Cl
if ocupacionL (i,j)== 0
Tibrel=1ibrel1+0.290;
TOFF1(i,2)=11ibrel;
TOFF1(i,D)=1;
else
ocupadoTl=ocupado1+0.290;
TON1(i,2)= ocupadol;
TONT(i,1)=1;
end

intensidad(i,3)= TONT1(i,2)/(TONT(i,2)+TOFF1(i,2));

Procupacion(i,3)= TON1(i,2)/Total;
Prolibre(i,3)= 1-Procupacion(i,3);
end
end

indice de potencia

function [trazaden,trazaenergial] =energia(datosHigh,datosLow)

%% Indice de potencia en dBm datos de entrenamiento
Emaxh=max (datosHigh) ;Eminh=min(datosHigh);
EminT=min(datosLow) ;Emax1=max(datosLow) ;

Energiahigh = Eminh./Emaxh;Energiahigh=Energiahigh’;
Energialow = Eminl./Emax1;Energialow=Energialow’;
[~,c]=size(datosHigh);

trazaenergia=zeros(c,2);
trazaenergia(:,1l)=Energiahigh;
trazaenergia(:,2)=Energialow;

%% Indice de potencia en mv datos de entrenamiento
denHigh=10.A(datosHigh./10);
denLow=10.A(datosLow./10);

trazaden=zeros(c,2);

Dmaxh=max (denH1igh) ;Dminh=min(denHigh);
Dminl=min(denLow) ;Dmax1=max (denLow) ;

Densidadhigh = Dminh./Dmaxh;Densidadhigh=Densidadhigh’;

Densidadlow=Dmin1./Dmax1;Densidadlow=Densidadlow’;
trazaden(:,1l)=Densidadhigh;
trazaden(:,2)=Densidadlow;

end
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Relacion sefial a ruido

function [snrdb]=SNR(High,Nh,Mh,Low,MT,N1)
%% Ccalculo del ruido termico
snrdH=zeros (Mh,Nh);
snrdL=zeros(M1,N1);
potencial=-100;
snrdb=zeros(N1,2);

for i=1:Nh
snrdH(:,i)=High(:,i)-(potencial);
snrdb(i,1)=sum(snrdH(:,i))/Mh;
snrdL(:,i)=Low(:,i)-(potencial);
snrdb(i,2)=sum(snrdL(:,i))/Mh;
end

C. Algoritmo GRA

function[mejorcanalHigh]= GRA(MatrizHigh)
[fi,co]l=size(MatrizHigh);
r=zeros(fi,co);
p=zeros(fi,co);
v=zeros (fi,co);
deltai=zeros(fi,co);
S=zeros(fi,2);
CRC=zeros(fi,3);
salida=zeros(fi,2);
mejorcanalHigh=zeros(fi,3);
Mo=max(MatrizHigh(:,1));
Me=max(MatrizHigh(:,2));
Ms=max(MatrizHigh(:,3));
Mino=min(MatrizHigh(:,1));
Mine=min(MatrizHigh(:,2));
Mins=min(MatrizHigh(:,3));
%% Normalizar la matriz de decision de Tos tres atributos de beneficio
for j=l:co
for i=1:fi
if j ==
r(i,j) = (Mo-MatrizHigh(i,j))/(Mo-Mino);
elseif j ==
r(i,j) = (Me-MatrizHigh(i,j))/(Me-Mine);
else
r(i,j) = (Ms-MatrizHigh(i,j))/(Ms-Mins);
end
end
end
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%% Normalizado Ponderado

% Se asignan los pesos de Tos atributos de Ta siguiente manera:
% Para ocupacion se elige una prioridad de 7; Energia 5 y SNR 3; La
sumatoria es igual a 1

% pesos=zeros(1,3);

PeOc=7;

PeSinr=5;

PePot=3;

raiz=zeros(3,3);

pesos=zeros(3,3);

% [1 5 7]

% [1/5 1 3]

% [1/7 1/3 1]

% raizoc= l*PeSinr*pPeOc;

% raizSi=1/PeSinr*1*PePot;

% raizPo=1/PeOc*1/PePot*1;

% Wol=nthroot(raizoc,3);

% We=nthroot(raizsi,3);

% Ws=nthroot(raizPo,3);

% pesos(1l,1)=wol;

% pesos(1,2)=We;

% pesos(1,3)=Ws;

% maxpe=max(pesos);

% minpe=min(pesos);

% Wo= (pesos(1l,1)-minpe)/(maxpe - minpe);
% We= (pesos(1l,2)-minpe)/(maxpe - minpe);
% Ws= (pesos(1l,3)-minpe)/(maxpe - minpe);

raiz(l,:)=[1 PeSinr PeOc];
raiz(2,:)=[1/pPeSinr 1 PePot];
raiz(3,:)=[1/PeOc 1/PePot 1];

wol=max(cumsum(raiz(:,1)));
wel=max(cumsum(raiz(:,2)));
wsl=max(cumsum(raiz(:,3)));
pesos(1,1)=raiz(1,1)/wol;
pesos(2,1)=raiz(2,1)/wol;
pesos(3,1)=raiz(3,1)/wol;
pesos(1,2)=raiz(1,2)/wel;
pesos(2,2)=raiz(2,2)/wel;
pesos(3,2)=raiz(3,2)/wel;
pesos(1,3)=raiz(1,3)/wsl;
pesos(2,3)=raiz(2,3)/wsl;
pesos(3,3)=raiz(3,3)/wsl;

wo=max (cumsum(pesos(1,:)))/3;
we=max (cumsum(pesos(2,:)))/3;

9IEC



Cristian Camilo Bernal Ariza, César Augusto Hernandez Suarez

ws=max (cumsum(pesos(3,:)))/3;
% Wo=wol/wol

% We=we/Wol

P2 = Wo + We + Ws

% Ws=Ws/Wol;

v(:,D= r(:,1).*wo;

v(:,2)= r(:,2).*we;

v(:,3)= r(:,3).*ws;

%% criterio de beneficio
x1=max(v(:,1));
x2=max(v(:,2));
x3=max(v(:,3));
%% Calculo GRC

for j=1:co
for i=1: fi
if j==1
deltai(i,1)= x1-v(i,j);
elseif j==2
deltai(i,2)= x2-v(i,j);
else
deltai(i,3)= x3-v(i,j);
end
end
end

maxDl=max(deltai(:,1));
maxD2=max (deltai(:,2));
maxD3=max (deltai(:,3));
minDl=min(deltai(:,1));
minD2=min(deltai(:,2));
minD3=min(deltai(:,3));

for j=1:co
for i=1:fi
if j==1
CRC (i,j) = ((minDl+maxDl) /(deltai(i,j)+ maxDl))/co;
elseif j==
CRC (i,j) = ((minD2+maxD2) /(deltai(i,j)+ maxD2))/co;
else
CRC (i,j) = ((minD3+maxD3) /(deltai(i,j)+ maxD3))/co;
end
end

end

%% Salida
banda= 824:0.1:879;
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banda=banda’;

S(:,1)=banda(:,1);
SC:,2)=v(:,D+v(:,2)+v(:,3);
salida(:,2)=CRC(:,1)+ CRC(:,2)+CRC(:,3);
salida(:,1)=banda(:,1);

%% Organiza Tos mejores canales para la prediccidn
for i=1:fi
[maxi,jl=max(salida(:,2));
mejorcanalHigh(i,2)=salida(j,1);
mejorcanalHigh(i, 3)=maxi;
salida(j,1:2)=0;
prioridad=1:1:551;
prioridad=prioridad’;
mejorcanalHigh(:,1)=prioridad;
end

D. Algoritmo de prediccion

function
[preneuronalH,preneuronalL,presvmH,presvmL,mcanalH,prekNNH, prekKNNL]= neur
oprediccion(datosHigh,datosLow,mejorcanalHigh,mejorcanalLow)

% load(‘C:\Users\rokli\oneDrive\Documentos\Universidad\Matlab\Machine
Tearning\Trazas de trafico GSM\Trafico_GSM_trazas_evaluacion -95.mat’);
% High= Power_e.Low;

[fi1,~]=size(datosHigh);

% [fi,~]=size(High);

band= 824:0.1:879;

mcanalH=zeros(1,551);

mcanalL=zeros(1,551);

claseh=zeros(fil,2);

clasel=zeros(fil,2);

clasek=zeros(fil,2);

presvmH=zeros(fil,551);

presvmL=zeros(fil,551);

prekNNH=zeros (fi1,551);

prekNNL=zeros (fi1,551);

datosentradaH=(1t(-95,datosHigh));

datosentradaL=(1t(-95,datosLow));

[Y,PS]=mapminmax(datosentradaH) ;

[Y1,PsT1]=mapminmax(datosentradaL);

canalentrenamientoL=zeros(fi1,551);

preneuronalL=zeros(551,fil1);

aprioriL=zeros(fil,551);

apriorilL=zeros(fi1,551);
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apriorilH=zeros(fi1,551);

aprioriH=zeros(fi1,551);

% High

for i=1:551
primer=mejorcanalHigh(i,2);
[~,c]=find(primer==band(1,:));
mcanalH(1,i)=c;

end

% Low

for i=1:551
primerL=mejorcanalLow(i,2);
[~,c]=find(primerL==band(1,:));
mcanalL(l,i)=c;

end

%% implementacion SVM y KNN HIGH

for i=1:551

aprioriH(:,i)= 1t(-95,datosHigh(:,mcanalH(1,i)));
claseh(:,1)=datosHigh(:,mcanalH(1,1));
claseh(:,2)=aprioriH(:,i);
claseh(:,2)=CaprioriH(:,i).*2-1);

SvMModelH = fitcsvm(claseh(:,1), claseh(:,2));
[presvmH(:,i),~] = predict(SvMModelH,datosHigh(:,1));
presvmH(:,i)=C(presvmH(:,i)+ 1)./2);

apriorilH(:,i)= 1t(-95,datosHigh(:,mcanalH(1,i)));
clasek(:,2)=apriorilH(:,i);
clasek(:,1)=datosHigh(:,mcanalH(1,i));
KNNModel=fitcknn(clasek(:,1),clasek(:,2), ’NumNeighbors’,3, ’NSMethod’,’exha
ustive’,’Distance’, 'minkowski’,’Standardize’,1);
[prekKNNH(:,1),~] = predict(KNNModel,datosHigh(:,1));
end

% LOW SVM y KNN

for i=1:551

aprioriL(:,i)= 1t(-95,datosLow(:,mcanalL(1,i)));
clasel(:,1)=datosLow(:,mcanalL(1l,i));
clasel(:,2)=aprioriL(:,i);
clasel(:,2)=CaprioriL(:,i).*2-1);

SsvMModelL =fitcsvm(clasel(:,1), clasel(:,2));
[presvmL(:,i),~] = predict(SvMModelL,datosLow(:,1));
presvmL(:,i)=C(presvmL(:,i)+ 1)./2);

apriorilL(:,i)= T1t(-95,datosLow(:,mcanalL(1l,i)));
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clasekl1(:,2)=apriorilL(:,1);

clasekl1(:,1)=datosLow(:,mcanalL(1l,i));
KNNModelL=fitcknn(clasek1(:,1),clasek1(:,2), NumNeighbors’,3, ’NSMethod’,’e
xhaustive’,’Distance’, ’minkowski’,’Standardize’,1);

[prekKNNL(:,1),~] = predict(KNNModelL,datosLow(:,1));

end

%% neuronal High
canalentrenamientoH=zeros(fi1,551);
preneuronalH=zeros(551,fil1);
aprioriH=zeros(fi1,551);
for i=1:551
canalentrenamientoH(:,i)=Y(:,mcanalH(1l,i));
xl=canalentrenamientoH(:,1);
x1=x1’;
xil=[-1 1];
[yl,~] = normall(x1,xil);
preneuronalH(i,:)=yl;
end
preneuronalH=preneuronalH’;
preneuronalH=mapminmax(‘reverse’,preneuronalH,PS);
%% 1ow

% for i=1:551

% canalentrenamientoL(:,i)=Y1(:,mcanalL(1,1));
% x1l=canalentrenamientoL(:,1);

% x1=x1";

% xil=[-1 1];

% [yl,~] = normallow(x1,xil);

% preneuronalL(i,:)=yl;

% end

for i=1:551

canalentrenamientoL(:,i)=Y1(:,mcanalL(l,i));
xl=canalentrenamientoL(:,1);
x1=x1";
xil=[-1 1];
[yl,~] = normall(x1,xil);
preneuronalL(i,:)=yl;
end
preneuronalL=preneuronall’;
preneuronalL=mapminmax(‘reverse’,preneuronalL,PST);

end
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E. Simulador

function [totalhand,totalfallido,totalanti,totalinte,totalperfecto]=hando
ffsvm(presvmH,mcaH, EvaHigh)
Matrizinteraccion=EvaHigh; % transpuesta de la matriz canal de
frecuencia(filas) tiempo columnas
Matrizinteraccion=1t(-95,Matrizinteraccion)’;% matriz de ceros y unos
presvmH=presvmH’; % transpuesta de la matriz
presvmH(:,1:8999)=[1];
cana=1;
hand1=0;hand2=0;hand3=0;hand4=0;hand5=0;
hand6=0;hand7=0;hand8=0;hand9=0;hand10=0;
fallidol=0;fallido2=0;fallido3=0;fallido4=0;fallido5=0;
fallido6=0;fallido7=0;fallido8=0;fal1ido9=0;fal1ido10=0;
handinl=0;handin2=0;handin3=0;handin4=0;handin5=0;
handin6=0;handin7=0;handin8=0;handin9=0;handin10=0;
antil=0;anti2=0;anti3=0;anti4=0;anti5=0;
anti6=0;anti7=0;anti8=0;anti9=0;antil0=0;
intel=0;inte2=0;inte3=0;inte4=0;inte5=0;
inte6=0;inte7=0;inte8=0;inte9=0;1intel0=0;
perfectol=0;perfecto2=0;perfecto3=0;perfecto4=0;perfecto5=0;
perfecto6=0;perfecto7=0;perfecto8=0;perfecto9=0;perfectol0=0;
tablahand=zeros(10,1);
tablafallido=zeros(10,1);
tablaanti=zeros(10,1);
tablainte=zeros(10,1);
tablaperfecto=zeros(10,1);
%% primer minuto
for i=1:180
if presvmH(mcaH(cana,1l),i)==0 & & Matrizinteraccion(mcaH(cana,1l),i)==0
if presvmH(mcaH(cana,l),i+1)==1
handl=hand1+1;
cana=canha+l;
if Matrizinteraccion(mcaH(cana,1l),i+1)==1
fallidol=fallidol+1;
end
end
elseif presvmH(mcaH(cana,1l),i)==0 & & Matrizinteraccion(mcaH(cana,l),
i)==1
handinl=handinl+1;
if presvmH(mcaH(cana,l),i+1)==1
handl=handl+1;
cana=cana+l;
intel=intel+l;
handinl=0;
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if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallidol=fallidol+1;
end
else
handinl= handinl+1l;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,1l),
i1)==0
antil=antil+l;
handl=hand1+1;
cana=canha+l;
if handinl>0
intel=intel+l;
else
handinl=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallidol=fallidol+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,l),i
==1
if Matrizinteraccion(mcaH(cana,1l),i)==1 || Matrizinteraccion(mcaH(
cana,l),i+1)==1 || Matrizinteraccion(mcaH(cana,1l),i+2)==1 || Matrizintera
ccion(mcaH(cana,1l),i+3)==1 || Matrizinteraccion(mcaH(cana,l),i+4)==1
perfectol=perfectol+l;
cana=cana+l;
end
if presvmH(mcaH(cana,l),i+1)==1
handl=handl+1;
cana=cana+l;
if handinl>0
intel=intel+l;
else
handinl=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallidol=fallidol+1;
end
end
end
end
tablahand(1,1)=handl;
tablafallido(1l,1)=fallidol;
tablaanti(1l,1)=antil;
tablainte(l,1)=intel;
tablaperfecto(l,1)=perfectol;

105/E2



Cristian Camilo Bernal Ariza, César Augusto Hernandez Suarez

%% segundo minuto
for i1=181:360
if presvmH(mcaH(cana,l),i)==0 && Matrizinteraccion(mcaH(cana,1l),i)==0
if presvmH(mcaH(cana,l),i+1)==1
hand2=hand2+1;
cana=cana+l;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido2=fallido2+1;
end
end
elseif presvmH(mcaH(cana,1l),i)==0 & & Matrizinteraccion(mcaH(cana,1l),
i)==1
handin2=handin2+1;
if presvmH(mcaH(cana,1l),i+1)==1
hand2=hand2+1;
cana=cana+l;
inte2=inte2+1;
handin2=0;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido2=fallido2+1;
end
else
handin2= handin2+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,1l),
i)==0
anti2=anti2+1;
hand2=hand2+1;
cana=cana+l;
if handin2>0
inte2=inte2+1;
else
handin2=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido2=fallido2+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,l),i
==1
if Matrizinteraccion(mcaH(cana,1l),i)==1 || Matrizinteraccion(mcaH(
cana,l),i+1)==1 || Matrizinteraccion(mcaH(cana,1l),i+2)==1 || Matrizintera
ccion(mcaH(cana,1l),i+3)==1 || Matrizinteraccion(mcaH(cana,l),i+4)==1
perfecto2=perfecto2+1;
cana=cana+l;
end
if presvmH(mcaH(cana,l),i+1)==1
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hand2=hand2+1;
cana=cana+l;
if handin2>0
inte2=inte2+1;
else
handin2=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido2=fallido2+1;
end
end
end
end
tablahand(2,1)=hand2;
tablafallido(2,1)=fallido2;
tablaanti(2,1)=anti2;
tablainte(2,1)=inte2;
tablaperfecto(2,1)=perfecto2;
%% tercer minuto
for i=361:540
if presvmH(mcaH(cana,l),i)==0 && Matrizinteraccion(mcaH(cana,1l),i)==0
if presvmH(mcaH(cana,l),i+1)==1
hand3=hand3+1;
cana=canha+l;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido3=fallido3+1;
end
end
elseif presvmH(mcaH(cana,1),i)==0 & Matrizinteraccion(mcaH(cana,1l),
i)==1
handin3=handin3+1;
if presvmH(mcaH(cana,1l),i+1)==1
hand3=hand3+1;
cana=cana+l;
inte3=inte3+1;
handin3=0;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido3=fallido3+1;
end
else
handin3= handin3+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,1l),
i1)==0
anti3=anti3+1;
hand3=hand3+1;
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cana=cana+l;
if handin3>0
inte3=inte3+1;
else
handin3=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido3=fallido3+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,l),i
==1
if Matrizinteraccion(mcaH(cana,1l),i)==1 || Matrizinteraccion(mcaH(
cana,l),i+1)==1 || Matrizinteraccion(mcaH(cana,l),i+2)==1 || Matrizintera
ccion(mcaH(cana,1l),i+3)==1 || Matrizinteraccion(mcaH(cana,l),i+4)==1
perfecto3=perfecto3+1;
cana=cana+l;
end
if presvmH(mcaH(cana,l),i+1)==1
hand3=hand3+1;
cana=cana+l;
if handin3>0
inte3=inte3+1;
else
handin3=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido3=fallido3+1;
end
end
end
end
tablahand(3,1)=hand3;
tablafallido(3,1)=fallido3;
tablaanti(3,1)=anti3;
tablainte(3,1)=inte3;
tablaperfecto(3,1)=perfecto3;

%% cuarto minuto
for i1=541:720
if presvmH(mcaH(cana,l),i)==0 && Matrizinteraccion(mcaH(cana,1l),i)==0
if presvmH(mcaH(cana,l),i+1)==1
hand4=hand4+1;
cana=cana+l;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido4=fallido4+1;
end
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end
elseif presvmH(mcaH(cana,1),i1)==0 & & Matrizinteraccion(mcaH(cana,1l),
i)==1
handin4=handin4+1;
if presvmH(mcaH(cana,1l),i+1)==1
hand4=hand4+1;
cana=cana+l;
inted4=inte4+1;
handin4=0;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido4=fallido4+1;
end
else
handin4=handin4+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,1l),
i)==0
anti4=anti4+1;
hand4=hand4+1;
cana=caha+l;
if handin4>0
inte4=inte4+1;
else
handin4=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido4=fallido4+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,l),i
==1
if Matrizinteraccion(mcaH(cana,1l),i)==1 || Matrizinteraccion(mcaH(
cana,l),i+1)==1 || Matrizinteraccion(mcaH(cana,l),i+2)==1 || Matrizintera
ccion(mcaH(cana,1),i+3)==1 || Matrizinteraccion(mcaH(cana,l),i+4)==1
perfecto4=perfectod+1;
cana=cana+l;
end
if presvmH(mcaH(cana,l),i+1)==1
hand4=hand4+1;
cana=cana+l;
if handin4>0
inte4=inte4+1;
else
handin4=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido4=fallido4+1;
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end
end
end
end
tablahand(4,1)=hand4;
tablafallido(4,1)=fallido4;
tablaanti(4,1)=anti4;
tablainte(4,1)=inte4;
tablaperfecto(4,1)=perfecto4;
%% quinto minuto
for i1=721:900
if presvmH(mcaH(cana,l),i)==0 && Matrizinteraccion(mcaH(cana,1l),i)==0
if presvmH(mcaH(cana,l),i+1)==1
hand5=hand5+1;
cana=cana+l;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido5=fallido5+1;
end
end
elseif presvmH(mcaH(cana,1l),i)==0 & Matrizinteraccion(mcaH(cana,1l),
i)==1
handin5=handin5+1;
if presvmH(mcaH(cana,1l),i+1)==1
hand5=hand5+1;
cana=cana+l;
inte5=inte5+1;
handin5=0;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido5=fallido5+1;
end
else
handin5=handin5+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,1l),
1)==0
antiS5=anti5+1;
hand5=hand5+1;
cana=cana+l;
if handin5>0
inte5=inte5+1;
else
handin5=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido5=fallido5+1;
end
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elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,l),i
==1
if Matrizinteraccion(mcaH(cana,1l),i)==1 || Matrizinteraccion(mcaH(
cana,l),i+1)==1 || Matrizinteraccion(mcaH(cana,l),i+2)==1 || Matrizintera
ccion(mcaH(cana,1),i+3)==1 || Matrizinteraccion(mcaH(cana,l),i+4)==1
perfecto5=perfecto5+1;
cana=cana+l;
end
if presvmH(mcaH(cana,l),i+1)==1
hand5=hand5+1;
cana=cana+l;
if handin5>0
inte5=inte5+1;
else
handin5=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido5=fallido5+1;
end
end
end
end
tablahand(5,1)=hand5;
tablafallido(5,1)=fallido5;
tablaanti(5,1)=anti5;
tablainte(5,1)=inte5;
tablaperfecto(5,1)=perfecto5;
%% sexto minuto
for i=901:1080
if presvmH(mcaH(cana,l),i)==0 && Matrizinteraccion(mcaH(cana,1l),i)==0
if presvmH(mcaH(cana,l),i+1)==1
hand6=hand6+1;
cana=canha+l;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido6=fallido6+1;
end
end
elseif presvmH(mcaH(cana,1),i)==0 & & Matrizinteraccion(mcaH(cana,1l),
i)==1
handin6=handin6+1;
if presvmH(mcaH(cana,l),i+1)==1
hand6=hand6+1;
cana=cana+l;
inteb=inte6+1;
handin6=0;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
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fallido6=fallido6+1;
end
else
handin6=handin6+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,1l),
1)==0
anti6b=anti6+1;
hand6=hand6+1;
cana=cana+l;
if handin6>0
inteb=inte6+1;
else
handin6=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido6=fallido6+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,l),i
==1
if Matrizinteraccion(mcaH(cana,1l),i)==1 || Matrizinteraccion(mcaH(
cana,l),i+1)==1 || Matrizinteraccion(mcaH(cana,l),i+2)==1 || Matrizintera
ccion(mcaH(cana,1l),i+3)==1 || Matrizinteraccion(mcaH(cana,l),i+4)==1
perfectob=perfecto6+1;
cana=cana+l;
end
if presvmH(mcaH(cana,l),i+1)==1
hand6=hand6+1;
cana=cana+l;
if handin6>0
inteb=inte6+1;
else
handin6=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido6=fallido6+1;
end
end
end
end
tablahand(6,1)=hand6;
tablafallido(6,1)=fallido6;
tablaanti(6,1)=anti6;
tablainte(6,1)=inte6;
tablaperfecto(6,1)=perfectob;
%% septimo minuto
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for i1=1081:1260
if presvmH(mcaH(cana,l),i)==0 && Matrizinteraccion(mcaH(cana,1l),i)==0
if presvmH(mcaH(cana,l),i+1)==1
hand7=hand7+1;
cana=canha+l;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido7=fallido7+1;
end
end
elseif presvmH(mcaH(cana,1),i1)==0 & & Matrizinteraccion(mcaH(cana,1l),
i)==1
handin7=handin7+1;
if presvmH(mcaH(cana,1l),i+1)==1
hand7=hand7+1;
cana=cana+l;
inte7=inte7+1;
handin7=0;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido7=fallido7+1;
end
else
handin7=handin7+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,1l),
i)==0
anti7=anti7+1;
hand7=hand7+1;
cana=caha+l;
if handin7>0
inte7=inte7+1;
else
handin7=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido7=fallido7+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,l),i
==1
if Matrizinteraccion(mcaH(cana,1l),i)==1 || Matrizinteraccion(mcaH(
cana,l),i+1)==1 || Matrizinteraccion(mcaH(cana,1l),i+2)==1 || Matrizintera
ccion(mcaH(cana,1l),i+3)==1 || Matrizinteraccion(mcaH(cana,l),i+4)==1
perfecto7=perfecto7+1;
cana=cana+l;
end
if presvmH(mcaH(cana,l),i+1)==1
hand7=hand7+1;
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cana=cana+l;
if handin7>0
inte7=inte7+1;
else
handin7=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido7=fallido7+1;
end
end
end
end
tablahand(7,1)=hand7;
tablafallido(7,1)=fallido7;
tablaanti(7,1)=anti7;
tablainte(7,1)=inte7;
tablaperfecto(7,1)=perfecto7;
%% octavo minuto
for i=1261:1440
if presvmH(mcaH(cana,l),i)==0 && Matrizinteraccion(mcaH(cana,1l),i)==0
if presvmH(mcaH(cana,l),i+1)==1
hand8=hand8+1;
cana=cana+l;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido8=fallido8+1;
end
end
elseif presvmH(mcaH(cana,1l),i)==0 & Matrizinteraccion(mcaH(cana,1l),
i)==1
handin8=handin8+1;
if presvmH(mcaH(cana,l),i+1)==1
hand8=hand8+1;
cana=cana+l;
inte8=inte8+1;
handin8=0;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido8=fallido8+1;
end
else
handin8=handin8+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,1l),
1)==0
anti8=anti8+1l;
hand8=hand8+1;
cana=cana+l;
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if handin8>0
inte8=inte8+1;
else
handin8=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido8=fallido8+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,l),i
==1
if Matrizinteraccion(mcaH(cana,1l),i)==1 || Matrizinteraccion(mcaH(
cana,l),i+1)==1 || Matrizinteraccion(mcaH(cana,l),i+2)==1 || Matrizintera
ccion(mcaH(cana,1l),i+3)==1 || Matrizinteraccion(mcaH(cana,l),i+4)==1
perfecto8=perfectod+1;
cana=cana+l;
end
if presvmH(mcaH(cana,l),i+1)==1
hand8=hand8+1;
cana=cana+l;
if handin8>0
inte8=inte8+1;
else
handin8=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido8=fallido8+1;
end
end
end
end
tablahand(8,1)=hand8;
tablafallido(8,1)=fallido8;
tablaanti(8,1)=anti8;
tablainte(8,1)=intes;
tablaperfecto(8,1)=perfectos;
%% noveno minuto
for 1=1441:1620
if presvmH(mcaH(cana,l),i)==0 && Matrizinteraccion(mcaH(cana,1l),i)==0
if presvmH(mcaH(cana,l),i+1)==1
hand9=hand9+1;
cana=canha+l;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido9=fallido9+1;
end
end
elseif presvmH(mcaH(cana,1),i1)==0 & & Matrizinteraccion(mcaH(cana,1l),
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i)==1
handin9=handin9+1;
if presvmH(mcaH(cana,1l),i+1)==1
hand9=hand9+1;
cana=cana+l;
inte9=inte9+1;
handin9=0;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido9=fallido9+1;
end
else
handin9=handin9+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,1l),
i)==0
anti9=anti9+1;
hand9=hand9+1;
cana=cana+l;
if handin9>0
inte9=inte9+1;
else
handin9=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido9=fallido9+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,l),i
==1
if Matrizinteraccion(mcaH(cana,1l),i)==1 || Matrizinteraccion(mcaH(
cana,l),i+1)==1 || Matrizinteraccion(mcaH(cana,l),i+2)==1 || Matrizintera
ccion(mcaH(cana,1l),i+3)==1 || Matrizinteraccion(mcaH(cana,l),i+4)==1
perfecto9=perfecto9+1;
cana=cana+l;
end
if presvmH(mcaH(cana,l),i+1)==1
hand9=hand9+1;
cana=cana+l;
if handin9>0
inte9=inte9+1;
else
handin9=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallido9=fallido9+1;
end
end
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end
end
tablahand(9,1)=hand9;
tablafallido(9,1)=fallido9;
tablaanti(9,1)=anti9;
tablainte(9,1)=inte9;
tablaperfecto(9,1)=perfecto9;
%% decimo minuto
for i1=1620:1800
if presvmH(mcaH(cana,l),i)==0 && Matrizinteraccion(mcaH(cana,1l),i)==0
if presvmH(mcaH(cana,l),i+1)==1
hand10=hand10+1;
cana=canha+l;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallidol0=fallidol0+1;
end
end
elseif presvmH(mcaH(cana,1),i)==0 & Matrizinteraccion(mcaH(cana,1l),
i)==1
handinl0=handinl0+1;
if presvmH(mcaH(cana,1l),i+1)==1
hand10=hand10+1;
cana=cana+l;
intelO=intel0+1;
handinl10=0;
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallidol0=fallidol0+1;
end
else
handinl0= handinl0+1;
end
elseif presvmH(mcaH(cana,1),i)==1 & & Matrizinteraccion(mcaH(cana,1l),
i1)==0
antilO=antilO+1;
hand10=hand10+1;
cana=canha+l;
if handinl0>0
intelO0=intel0+1;
else
handinl0=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallidol0=fallidol0+1;
end
elseif presvmH(mcaH(cana,1l),i)==1 & & Matrizinteraccion(mcaH(cana,l),i
==1
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if Matrizinteraccion(mcaH(cana,1l),i)==1 || Matrizinteraccion(mcaH(
cana,l),i+1)==1 || Matrizinteraccion(mcaH(cana,1l),i+2)==1 || Matrizintera
ccion(mcaH(cana,1l),i+3)==1 || Matrizinteraccion(mcaH(cana,l),i+4)==1
perfectolO=perfectolO+1;
cana=cana+l;
end
if presvmH(mcaH(cana,l),i+1)==1
hand10=hand10+1;
cana=cana+l;
if handinl0>0
intelO0=intel0+1;
else
handin10=0;
end
if Matrizinteraccion(mcaH(cana,l),i+1)==1
fallidol0=fallidol0+1;
end
end
end
end
tablahand(10,1)=hand10;
tablafallido(10,1)=fallidol0;
tablaanti (10,1)=anti10;
tablainte(10,1)=intel0;
tablaperfecto(10,1)=perfectol0;
totalhand=cumsum(tablahand);
totalfallido=cumsum(tablafallido);
totalanti=cumsum(tablaanti);
totalinte=cumsum(tablainte);
totalperfecto=cumsum(tablaperfecto);
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