Modelo de decisión espectral colaborativo para redes de radio cognitiva
Palabras clave:
Decisión espectral, Redes de radio, Redes de radio cognitiva, Simulación, Algoritmos colaborativoSinopsis
La decisión espectral es un aspecto clave para mejorar el desempeño en las redes de radio cognitiva descentralizadas. Los usuarios secundarios deben tomar decisiones inteligentes en función de la variación del espectro y de las acciones adoptadas por otros usuarios secundarios. A partir de esta dinámica, la probabilidad de que dos o más usuarios secundarios elijan el mismo canal es alta, especialmente cuando el número de usuarios secundarios es mayor que el número de canales disponibles, debido a la externalidad negativa de la red; cuantos más usuarios secundarios seleccionen el mismo canal, menor será la utilidad que cada usuario secundario pueda obtener y el número de interferencias por el acceso simultáneo será mayor. Por esto, para modelar la red bajo parámetros de tráfico realistas, es necesario tener en cuenta la colaboración entre usuarios secundarios. Este libro de investigación presenta una propuesta para mejorar el proceso de toma de decisiones en una red de radio cognitiva descentralizada, y así dotar a los nodos con la capacidad de aprender del entorno, proponiendo estrategias que les permitan a los usuarios secundarios intercambiar información de forma cooperativa o competitiva.
Descargas
Referencias
GPP. (2011). IEEE Approved Draft Standard For Information Technology. Local
and metropolitan area networks. Specific requirements. Part 22: Cognitive wireless ran medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands IEEE computer society (vol. 2015). https://standards.ieee.org/standard/802_22-2019.html
Abass, A. A. A., Mandayam, N. B. y Gajic, Z. (2017). An evolutionary game model for threat revocation in ephemeral networks. En 2017 51st Annual Conference
on Information Sciences and Systems (pp. 1-5). IEEE. http://doi.org/10.1109/CISS.2017.7926128
Abbas, N., Nasser, Y. y Ahmad, K. E. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. Eurasip Journal on Wireless Communications and Networking, (1), 1-20. http://doi.org/10.1186/s13638-015-0381-7
Abdulshahed, A. M., Longstaff, A. P. y Fletcher, S. (2015). The application of
Anfis prediction models for thermal error compensation on CNC machine
tools. Applied Soft Computing Journal, 27, 158-168. http://doi.org/10.1016/j.asoc.2014.11.012
Abonyi, J., Andersen, H., Nagy, L. y Szeifert, F. (1999). Inverse fuzzy-process-model based direct adaptive control. Mathematics and Computers in Simulation, 51(1-2), 119-132. http://doi.org/10.1016/s0378-4754(99)00142-1
Abramson, N. (1981). Teoría de la información y codificación (5.a ed.). Paraninfo. https://eva.udelar.edu.uy/pluginfile.php/84635/mod_resource/content/0/Teoria_de_la_Informacion_y_codificacion-Norman_Abramson_ebook-spanish_.pdf
Adeel, A., Larijani, H. y Ahmadinia, A. (2014, 13-16 de mayo). Performance analysis of artificial neural network-based learning schemes for cognitive radio systems in LTE-UL [presentación en conferencia]. 2014 28th International Conference on Advanced Information Networking and Applications, Victoria, Estados Unidos. http://doi.org/10.1109/WAINA.2014.116
Ahmed, A., Boulahia, L. M. y Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys & Tutorials, 16(2), 776-811. http://doi.org/10.1109/SURV.2013.082713.00141
Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J. y Khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823. http://doi.org/10.1109/COMST.2014.2363082
Akin, S. y Fidler, M. (2016). On the transmission rate strategies in cognitive radios. IEEE Transactions on Wireless Communications, 15(3), 2335-2350. http://doi.org/10.1109/TWC.2015.2503272
Akter, L., Natarajan, B. y Scoglio, C. (2008, 3-7 de agosto). Modeling and forecasting secondary user activity in cognitive radio networks [presentación en conferencia]. 17th International Conference on Computer Communications and Networks, St. Thomas, Islas Vírgenes, Estados Unidos. http://doi.org/10.1109/ICCCN.2008.ECP.50
Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2006). NeXt generation/
dynamic spectrum access/cognitive radio wireless networks: A survey. ComputerNetworks, 50(13), 2127-2159. http://doi.org/10.1016/j.comnet.2006.05.001
Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2008). A survey on spectrum
management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40-48. http://doi.org/10.1109/MCOM.2008.4481339
Akyildiz, I. F., Lee, W.-Y. y Chowdhury, K. R. (2009). CRAHNs: Cognitive radio
ad hoc networks. Ad Hoc Networks, 7(5), 810-836. http://doi.org/10.1016/j.ad-hoc.2009.01.001
Akyildiz, I. F. y Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. Broadband and Wireless Networking Laboratory technical report. Georgia Institute of Technology.
Al-Amidie, M., Al-Asadi, A., Micheas, A. C. e Islam, N. E. (2019). Spectrum sensing based on Bayesian generalised likelihood ratio for cognitive radio systems with multiple antennas. IET Communications, 13(3), 305-311. http://doi.org/10.1049/iet-com.2018.5276
Ali, A. y Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio
networks: Theory and applications. IEEE Communications Surveys & Tutorials,
(2), 1277-1304. http://doi.org/10.1109/COMST.2016.2631080
Alias, D. M. y Ragesh, G. K. (2016, 23-25 de marzo). Cognitive radio networks: A survey [presentación en conferencia]. 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India. http://doi.org/10.1109/WiSPNET.2016.7566489
Almasaeid, H. M. y Kamal, A. E. (2010). Receiver-based channel allocation for
wireless cognitive radio mesh networks. En 2010 IEEE Symposium on New
Frontiers in Dynamic Spectrum (pp. 1-10). IEEE. http://doi.org/10.1109/DYS-PAN.2010.5457862
Alnwaimi, G., Arshad, K. y Moessner, K. (2011). Dynamic spectrum allocation algorithm with interference management in co-existing networks.
IEEE Communications Letters, 15(9), 932-934. http://doi.org/10.1109/LCOMM.2011.062911.110248
Alsarhan, A. y Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. En 2009 Proceedings of 18th Internatonal Conference on Computer Communications and Networks (pp. 1-6). IEEE. http://doi.org/10.1109/ICCCN.2009.5235261
Amir, M., El-Keyi, A. y Nafie, M. (2011). Constrained interference alignment and the spatial degrees of freedom of mimo cognitive networks. IEEE Transactions on Information Theory, 57(5), 2994-3004. http://doi.org/10.1109/TIT.2011.2119770
Amjad, M. F., Chatterjee, M. y Zou, C. C. (2016). Coexistence in heterogeneous
spectrum through distributed correlated equilibrium in cognitive radio networks. Computer Networks, 98, 109-122. http://doi.org/10.1016/j.comnet.2016.01.016
Azarfar, A., Frigon, J.-F. y Sanso, B. (2012). Improving the reliability of wireless
networks using cognitive radios. IEEE Communications Surveys & Tutorials, 14(2), second quarter, 338-354. http://doi.org/10.1109/SURV.2011.021111.00064
Baran, P. (1964). On distributed communications networks. IEEE Transactions on Communications Systems, 12(1), 1-9. http://doi.org/10.1109/TCOM.1964.1088883
Bhowmik, M. y Malathi, P. (2019). Spectrum sensing in cognitive radio using actor-critic neural network with krill herd-whale optimization algorithm. Wireless Personal Communications, 105(1), 335-354. http://doi.org/10.1007/s11277-018-6115-5
Bkassiny, M., Li, Y. y Jayaweera, S. K. (2013). A survey on machine-learning tech-
niques in cognitive radios. IEEE Communications Surveys & Tutorials, 15(3), 1136-1159. http://doi.org/10.1109/SURV.2012.100412.00017
Bolstad, W. M. (2007). Introduction to Bayesian statistics (2.a ed.). John Wiley & Sons.
Brik, V., Rozner, E., Banerjee, S. y Bahl, P. (2005). DSAP: A protocol for coordinated spectrum access. En 2005 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 611-614). IEEE. http://doi.org/10.1109/DYSPAN.2005.1542680
Bujari, A., Calafate, C. T., Cano, J.-C., Manzoni, P., Palazzi, C. E. y Ronzani,
D. (2018). Flying ad-hoc network application scenarios and mobility mo-
dels. International Journal of Distributed Sensor Networks, 13(10). http://doi.
org/10.1177/1550147717738192
Bütün, I., Talay, A. Ç., Altilar, D. T., Khalid, M. y Sankar, R. (2010, 21-23 de abril).
Impact of mobility prediction on the performance of cognitive radio networks [presentación en simposio]. 2010 Wireless Telecommunications Symposium (WTS), Tampa, Estados Unidos. http://doi.org/10.1109/WTS.2010.5479659
Büyüközkan, G., Kahraman, C. y Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2-3), 259-280. http://doi.org/10.1080/03081070310001633581
Büyüközkan, G. y Çifçi, G. (2012). A combined fuzzy AHP and fuzzy Topsis based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354. https://doi.org/10.1016/j.eswa.2011.08.061
Byun, S. S., Balasingham, I. y Liang, X. (2008, 21-24 de septiembre). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency [presentación en conferencia]. 2008 IEEE 68th Vehicular Technology Conference, Calgary, Canadá. http://doi.org/10.1109/VETECF.2008.299
Cao, L. y Zheng, H. (2005). Distributed spectrum allocation via local bargaining.
En 2005 Second Annual IEEE Communications Society Conference on Sensor and AdHoc Communications and Networks (pp. 475-486). IEEE. http://doi.org/10.1109/SAHCN.2005.1557100
Cardenas-Juarez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A. y Stevens-Navarro, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band
for cognitive radio applications. En 2016 International Conference on Electronics,Communications and Computers (pp. 25-31). IEEE. http://doi.org/10.1109/CONIELECOMP.2016.7438547
Chang, C.-C. y Lin, C.-J. (2013). Libsvm: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), artículo 27. http://doi.org/10.1145/1961189.1961199
Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. http://doi.org/10.1016/0377-2217(95)00300-2
Chen, D., Zhang, Q. y Jia, W. (2008, 15-17 de mayo). Aggregation aware spectrum assignment in cognitive ad-hoc networks [presentación en conferencia]. 2008 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Singapur, Singapur. http://doi.org/10.1109/CROWNCOM.2008.4562548
Chen, T., Zhang, H., Maggio, G. M. y Chlamtac, I. (2007). CogMesh: A cluster-
based cognitive radio network. En 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 168-178). IEEE. http://doi.org/10.1109/DYSPAN.2007.29
Chen, Y. y Oh, H.-S. (2016). A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1),848-859. http://doi.org/10.1109/COMST.2014.2364316
Cheng, X. y Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. En 2011 IEEE 13th International Conference on Communication Technology (pp. 161-164). IEEE. http://doi.org/10.1109/ICCT.2011.6157854
Cho, J. y Lee, J. (2013). Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330. https://doi.org/10.1016/j.eswa.2013.03.038
Chou, C.-T., Shankar, S., Kim, H. y Shin, K. G. (2007). What and how much to gain
by spectrum agility? IEEE Journal on Selected Areas in Communications, 25(3), 576-588. http://doi.org/10.1109/JSAC.2007.070408
Choudhary, D. y Shankar, R. (2012). An Steep-fuzzy AHP-Topsis framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521. https://doi.org/10.1016/j.energy.2012.03.010
Christian, I., Moh, S., Chung, I. y Lee, J. (2012). Spectrum mobility in cognitive
radio networks. IEEE Communications Magazine, 50(6), 114-121. http://doi.org/10.1109/MCOM.2012.6211495
Cisco. (2017). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,2016-2021 [white paper]. https://www.ramonmillan.com/documentos/bibliografia/VisualNetworkingIndexGlobalMobileDataTrafficForecastUpdate2016_Cisco.pdf
Cortés, J. (2011). Metodología para la implementación de tecnologías de la información y las comunicaciones TIC’s para soportar una estrategia de cadena de suministro esbelta [tesis de maestría, Universidad Nacional de Colombia]. BDigital.
Cruz-Pol, S., Van Zee, L., Kassim, N., Blackwell, W., Le Vine, D. y Scott, A. (2018).
Spectrum management and the impact of RFI on science sensors. En 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (pp.52-56). IEEE. http://doi.org/10.1109/MICRORAD.2018.843072
Csurgai-Horváth, L. y Bitó, J. (2011). Primary and secondary user activity models
for cognitive wireless network. En Proceedings of the 11th International Conference on Telecommunications (pp. 189-194). IEEE. https://ieeexplore.ieee.org/document/5969948
Dadallage, S., Yi, C. y Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive radio net-
works. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359. http://doi.org/10.1109/TVT.2015.2440412
Dadios, E. P. (ed.). (2012). Fuzzy logic: Algorithms, techniques and implementations. IntechOpen.
Darak, S. J., Dhabu, S., Moy, C., Zhang, H., Palicot, J. y Vinod, A. P. (2015). Low
complexity and efficient dynamic spectrum learning and tunable bandwidth
access for heterogeneous decentralized cognitive radio networks. Digital Signal
Processing, 37(1), 13-23. http://doi.org/10.1016/j.dsp.2014.12.001
Darak, S. J., Zhang, H., Palicot, J. y Moy, C. (2014). Efficient decentralized dyna-
mic spectrum learning and access policy for multi-standard multi-user cognitive
radio networks. En 2014 11th International Symposium on Wireless Communications Systems (ISWCS) (pp. 271-275). Institute of Electrical and Electronics Engineers. http://doi.org/10.1109/ISWCS.2014.693336
Darak, S. J., Zhang, H., Palicot, J. y Moy, C. (2017). Decision making policy for RF
energy harvesting enabled cognitive radios in decentralized wireless networks.
Digital Signal Processing, 60, 33-45. http://doi.org/10.1016/j.dsp.2016.08.014
Del Ser, J., Matinmikko, M., Gil-Lopez, S. y Mustonen, M. (2010). A novel harmony
search based spectrum allocation technique for cognitive radio networks. En
7th International Symposium on Wireless Communication Systems (pp. 233-237). IEEE. http://doi.org/10.1109/ISWCS.2010.5624341
Delgado, M. y Rodríguez, B. (2016). Opportunities for a more efficient use of the
spectrum based in cognitive radio. IEEE Latin America Transactions, 14(2), 610-
http://doi.org/10.1109/TLA.2016.743720
Deng, H., Huang, L., Yang, C. y Xu, H. (2018). Centralized spectrum leasing via cooperative SU assignment in cognitive radio networks. International Journal of Communication Systems, 31(13), artículo e3726. http://doi.org/10.1002/dac.3726
Dhamodharavadhani, S. (2015). A survey on clustering based routing protocols
in mobile ad hoc networks. En 2015 International Conference on Soft-Computing and Networks Security (ICSNS) (pp. 1-6). IEEE. http://doi.org/10.1109/ICSNS.2015.7292426
Ding, L., Melodia, T., Batalama, S. N., Matyjas, J. D. y Medley, M. J. (2010). Cross-
layer routing and dynamic spectrum allocation in cognitive radio ad hoc net-
works. IEEE Transactions on Vehicular Technology, 59(4), 1969-1979. http://doi.org/10.1109/TVT.2010.2045403
Do, C. T., Tran, N. H., Hong, C. S., Lee, S., Lee, J.-J. y Lee, W. (2013). A lightweight
algorithm for probability-based spectrum decision scheme in multiple channels
cognitive radio networks. IEEE Communications Letters, 17(3), 509-512. http://doi.org/10.1109/LCOMM.2013.012313.122589
Du, K.-L. y Swamy, M. N. S. (2013). Neural networks and statistical learning. Springer.
Duan, J. y Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio
mobile ad hoc networks. Advances in Electrical and Computer Engineering, 11(3),11-16. http://doi.org/10.4316/aece.2011.03002
Dunn, J. C. (1973). A fuzzy relative of the Isodata process and its use in detecting
compact well-separated clusters. Journal of Cybernetics, 3(3), 32-57. http://doi.org/10.1080/01969727308546046
Fauzi bin Othman, M. y Yau, T. M. S. (2007). Neuro fuzzy classification and detection technique for bioinformatics problems. En First Asia International Conference on Modelling and Simulation: Asia Modelling Symposium (AMS 2007) (pp. 375-380).IEEE. http://doi.org/10.1109/AMS.2007.7
Federal Communications Commission (FCC). (2003a). Facilitating Opportunities
for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies. https://www.fcc.gov/document/facilitating-opportunities-flexible-efficient-and-reliable-spectrum-1
Federal Communications Commission (FCC). (2003b). Notice of proposed rulemaking and order. https://web.cs.ucdavis.edu/~liu/289I/Material/FCC-03-322A1.pdf
Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence. Addison-Wesley.
Flórez-López, R. y Fernández Fernández, J. M. (2008). Las redes neuronales artificiales: fundamentos teóricos y aplicaciones prácticas. Netbiblo.
Forero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso CDMA [tesis de maestría, Universidad Distrital Francisco José de Caldas].
Fraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM.
Fudenberg, D. y Tirole, J. (1991). Game theory. MIT Press. https://books.google.
com.co/books?id=pFPHKwXro3QC
Gallardo-Medina, J. R., Pineda-Rico, U. y Stevens-Navarro, E. (2009). Vikor method for vertical handoff decision in beyond 3G wireless networks. En 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE. http://doi.org/10.1109/ICEEE.2009.539332
Gavrilovska, L., Atanasovski, V., Macaluso, I. y Dasilva, L. A. (2013). Learning and
reasoning in cognitive radio networks. IEEE Communications Surveys & Tutorials, 15(4), 1761-1777. http://doi.org/10.1109/SURV.2013.030713.00113
Gers, F. A. y Schmidhuber, E. (2001). LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Transactions on Neural Networks, 12(6), 1333-1340. http://doi.org/10.1109/72.963769
Giupponi, L. y Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. En Proceedings of the Third International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE. http://doi.org/10.1109/CROWNCOM.2008.4562535
Goldberg, D. E. y Holland, J. H. (1988). Genetic algorithms and machine learning.
Machine Learning, 3(2), 95-99. http://doi.org/10.1023/A:1022602019183
Goswami, M. M. (2017). AODV based adaptive distributed hybrid multipath routing for mobile AdHoc network. En 2017 International Conference on Inventive Communication and Computational Technologies (pp. 410-414). IEEE. http://doi.org/10.1109/ICICCT.2017.797523
Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. Springer. http://doi.org/10.1007/978-3-642-24797-2
Graves, A., Mohamed, A.-R. y Hinton, G. (2013). Speech recognition with deep
recurrent neural networks. En 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. Proceedings (pp. 6645-6649). IEEE. http://doi.org/10.1109/ICASSP.2013.6638947
Graves, A. y Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5-6),602-610. http://doi.org/10.1016/j.neunet.2005.06.042
Green, K. C., Armstrong, J. S. y Graefe, A. (2007). Methods to elicit forecasts from
groups: Delphi and prediction markets compared. SSRN Electronic Journal, 8, 17-20. http://doi.org/10.2139/ssrn.1153124
Han, J., Kamber, M. y Pei, J. (2012). Data mining: Concepts and techniques. Elsevier y Morgan Kauffman.
Hasegawa, M., Hirai, H., Nagano, K., Harada, H. y Aihara, K. (2014). Optimiza-
tion for centralized and decentralized cognitive radio networks. Proceedings of the IEEE, 102(4), 574-584. http://doi.org/10.1109/JPROC.2014.2306255
Haykin, S. (1998). Neural networks: A comprehensive foundation (2.a ed.). Prentice Hall.
He, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., Morales-
Tirado, L., Neel, J., Zhao, Y., Reed, J. H. y Tranter, W. H. (2010). A survey of
artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technology, 59(4), 1578-1592. http://doi.org/10.1109/TVT.2010.2043968
Hernández, C., Giral, D. y Páez, I. (2015a). Benchmarking of the performance of
spectrum mobility models in cognitive radio networks. International Journal of
Applied Engineering Research, 10(21), 42.189-42.196.
Hernández, C., Giral, D. y Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Engineering and Technology, 9(12), 1212-1215. https://publications.waset.org/10002921/hybrid-algo-rithm-for-frequency-channel-selection-in-wi-fi-networks
Hernández, C., Giral, D. y Santa, F. (2015). MCDM spectrum handover models for
cognitive wireless networks. World Academy of Science, Engineering and Technology, 9(10), 679-682. https://publications.waset.org/10002749/mcdm-spectrum-handover-models-for-cognitive-wireless-networks
Hernández, C., Márquez, H. y Giral, D. (2017). Comparative evaluation of prediction models for forecasting spectral opportunities. International Journal of Engineering and Technology, 9(5), 3775-3782. http://doi.org/10.21817/ijet/2017/v9i5/170905055
Hernández, C., Páez, I. y Giral, D. (2015). Modelo AHP-Vikor para handoff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39. http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.3.a02
Hernández, C., Páez, I. y Giral, D. (2017). Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva. Editorial UD.
Hernández, C., Pedraza, L. F., Páez, I. y Rodríguez-Colina, E. (2015). Análisis de
la movilidad espectral en redes de radio cognitiva. Información Tecnológica, 26(6), 169-186. http://dx.doi.org/10.4067/S0718-07642015000600018
Hernández, C., Pedraza, L. F. y Martínez, F. H. (2016). Algoritmos para asignación de espectro en redes de radio cognitiva. Tecnura, 20(48), 69-88. http://www.scielo.org.co/scielo.phppid=S0123921X2016000200006&script=sci_abstract&tlng=es
Hernández, C., Pedraza, L. F. y Rodríguez-Colina, E. (2016). Fuzzy feedback algorithm for the spectral handoff in cognitive radio networks. Revista Facultad de Ingeniería de la Universidad de Antioquia, (81), 47-62. http://doi.org/10.17533/udea.redin.n81a05
Hernández, C., Salcedo, O. y Pedraza, L. F. (2009). An Arima model for forecasting Wi-Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-5609200900020001
Hernández, C., Salgado, C., López, H. y Rodríguez-Colina, E. (2015). Multivariable
algorithm for dynamic channel selection in cognitive radio networks. Eurasip
Journal on Wireless Communications and Networking, 2015(1), artículo 216. http://doi.org/10.1186/s13638-015-0445-8
Hernández, C., Salgado, C. y Salcedo, O. (2013). Performance of multivariable traffic model that allows estimating throughput mean values. Revista Facultad de Ingeniería de la Universidad de Antioquia, (67), 52-62. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-62302013000200005
Hernández Sampieri, R., Fernández-Collado, C. y Baptista Lucio, P. (2006). Metodología de la investigación (4.a ed.). McGraw-Hill.
Hernandez-Guillen, J., Rodríguez-Colina, E., Marcelín-Jiménez, R. y Pascoe Chalke,M. (2012). Cruam-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. En 2012 IEEE Latin-American Conference on Communications.IEEE. http://doi.org/10.1109/LATINCOM.2012.6505997
Hochreiter, S. y Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. http://doi.org/10.1162/neco.1997.9.8.1735
Hoven, N., Tandra, R. y Sahai, A. (2005). Some fundamental limits on cognitive radio. Wireless Foundations EECS. https://omidi.iut.ac.ir/SDR/2008/Projects/
AtaeiGame_Theory_Cognitive%20Radios/References/Some%20Fundamental%20Limits%20on%20Cognitive%20Radio.pdf
Hsieh, W. W. (2009). Machine learning methods in the environmental sciences: Neural networks and kernels. Cambridge University Press.
Hübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Springer.
Iftikhar, A., Rauf, Z., Ahmed Khan, F., Shoaib Ali, M. y Kakar, M. (2019). Bayesian
game-based user behavior analysis for spectrum mobility in cognitive radios. Physical Communication, 32, 200-208. https://doi.org/10.1016/j.phycom.2018.12.002
Institute of Electrical and Electronics Engineers. (2008). IEEE standard definitions and concepts for dynamic spectrum access: Terminology relating to emerging wireless networks, system functionality, and spectrum management (IEEE Standard 1900.1-2008). https://standards.ieee.org/standard/1900_1-2008.html
Issariyakul, T., Pillutla, L. S. y Krishnamurthy, V. (2009). Tuning radio resource in
an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communications Magazine, 47(7), 57-63. http://doi.org/10.1109/MCOM.2009.5183473
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. http://doi.org/10.1016/j.patrec.2009.09.011
Jang, J.-S. R. (1993). Anfis: Adaptive-network-based fuzzy inference system.
IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. http://doi.org/10.1109/21.256541
Jayaweera, S. y Christodoulou, C. (2011). Radiobots: Architecture, algorithms and realtime reconfigurable antenna designs for autonomous, self-learning future cognitive radios. https://digitalrepository.unm.edu/ece_rpts/36/
Ji, Z. y Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access. Dynamic
spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88-94. http://doi.org/10.1109/MCOM.2007.358854
Jiang, C., Chen, Y. y Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Communications, 13(4), 2176-2188. http://doi.org/10.1109/TWC.2014.022014.131209
Joda, R. y Zorzi, M. (2015). Decentralized heuristic access policy design for two cognitive secondary users under a primary Type-I HARQ process. IEEE Transactions on Communications, 63(11), 4037-4049. http://doi.org/10.1109/TCOMM.2015.2480846
Kalkan, S. (2018). Special topics in deep learning. http://kovan.ceng.metu.edu.tr/~sinan/DL/
Kanodia, V., Sabharwal, A. y Knightly, E. (2004). MOAR: A multi-channel opportunistic auto-rate media access protocol for ad hoc networks. En First International Conference on Broadband Networks (pp. 600-610). IEEE. https://ieeexplore.ieee.org/document/1363848?section=abstract
Kasbekar, G. S. y Sarkar, S. (2010). Spectrum auction framework for access allocation in cognitive radio networks. IEEE/ACM Transactions on Networking, 18(6),1841-1854. http://doi.org/10.1109/TNET.2010.2051453
Kaur, A., Kaur, A. y Sharma, S. (2018). PSO based multiobjective optimization for
parameter adaptation in CR based IoTs. En 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT). IEEE. http://doi.org/10.1109/CIACT.2018.8480298
Kaya, T. y Kahraman, C. (2010). Multicriteria renewable energy planning using
an integrated fuzzy Vikor & AHP methodology: The case of Istanbul. Energy,
(6), 2517-2527. https://doi.org/10.1016/j.energy.2010.02.051
Keller, J. M., Liu, D. y Fogel, D. B. (2016). Fundamentals of computational intelligence:Neural networks, fuzzy systems, and evolutionary computation. IEEE y Wiley. http://doi.org/10.1002/9781119214403
Kennedy, E. P., Condon, M. y Dowling, J. (2003). Torque-ripple minimisation in switched reluctance motors using a neuro-fuzzy control strategy. En Proceedings of the Iasted International Conference on Modelling and Simulation (pp. 106-109). Iasted.
Kibria, M. R., Jamalipour, A. y Mirchandani, V. (2005). A location aware three-
step vertical handoff scheme for 4G/B3G networks. En Globecom ’05. IEEE
Global Telecommunications Conference (vol. 5, pp. 2752-2756). IEEE. http://doi.
org/10.1109/GLOCOM.2005.157826
Kim, H. y Shin, K. G. (2008). Efficient discovery of spectrum opportunities with
MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile
Computing, 7(5), 533-545. http://doi.org/10.1109/TMC.2007.70751
Kim, W., Kassler, A. J., Di Felice, M. y Gerla, M. (2010). Urban-X: Towards distri-
buted channel assignment in cognitive multi-radio mesh networks. En 2010 IFIP
wireless days. IEEE. http://doi.org/10.1109/WD.2010.5657733
Kondareddy, Y. R., Agrawal, P. y Sivalingam, K. (2008). Cognitive radio network setup without a common control channel. En 2008 IEEE Military Communications Conference. IEEE. http://doi.org/10.1109/MILCOM.2008.4753398
Kongsiriwattana, W. y Gardner-Stephen, P. (2017). Eliminating the high stand-by
energy consumption of ad-hoc Wi-Fi. En 2017 IEEE Global Humanitarian Technology Conference. IEEE. http://doi.org/10.1109/GHTC.2017.8239229
Krishnamurthy, S., Thoppian, M., Venkatesan, S. y Prakash, R. (2005). Control
channel based MAC-layer configuration, routing and situation awareness for
cognitive radio networks. En 2005 IEEE Military Communications Conference (vol.1, pp. 455-460). IEEE. http://doi.org/10.1109/MILCOM.2005.1605725
Krogstad, H. E. (2012). TMA 4180. Optimeringsteori karush-kuhn-tucker theorem.https://folk.ntnu.no/hek/Optimering2012/kkttheoremv2012.pdf
Kumar, K., Prakash, A. y Tripathi, R. (2016). Spectrum handoff in cognitive radio networks: A classification and comprehensive survey. Journal of Network and
Computer Applications, 61, 161-188. http://doi.org/10.1016/j.jnca.2015.10.008
Kwok, T.-Y. y Yeung, D.-Y. (1997). Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks, 8(3), 630-645. http://doi.org/10.1109/72.572102
Lahby, M., Leghris, C. y Abdellah, A. (2011). A hybrid approach for network selection in heterogeneous multi-access environments. En 2011 4th IFIP International Conference on New Technologies, Mobility and Security. IEEE. http://doi.org/10.1109/NTMS.2011.5720658
Lee, W.-Y. y Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845-3857. http://doi.org/10.1109/T-WC.2008.070391
Lee, W.-Y. y Akyildiz, I. F. (2011). A spectrum decision framework for cognitive radio networks. IEEE Transactions on Mobile Computing, 10(2), 161-174. http://doi.org/10.1109/TMC.2010.147
Lertsinsrubtavee, A. y Malouch, N. (2016). Hybrid spectrum sharing through adaptive spectrum handoff and selection. IEEE Transactions on Mobile Computing,15(11), 2781-2793. http://doi.org/10.1109/TMC.2016.2517619
Li, X. y Zekavat, S. A. (2008). Traffic pattern prediction and performance investigation for cognitive radio systems. En IEEE Wireless Communications and Networking Conference (pp. 894-899). IEEE. http://doi.org/10.1109/WCNC.2008.163
Li, Y., Shen, H. y Wang, M. (2016). Optimization spectrum decision parameters
in CR using autonomously search algorithm. En 2016 IEEE 13th International
Conference on Signal Processing (pp. 1146-1151). IEEE. http://doi.org/10.1109/ICSP.2016.7878007
Liu, Y. y Tewfik, A. (2014). Primary traffic characterization and secondary transmissions. IEEE Transactions on Wireless Communications, 13(6), 3003-3016. http://doi.org/10.1109/TWC.2014.042914.130861
López Sarmiento, D. A. (2017). Implementación de un modelo predictor para la toma de decisiones en redes inalámbricas de radio cognitiva [tesis doctoral, Universidad Distrital Francisco José de Caldas]. Repositorio de tesis doctoral del Doctorado en Ingeniería de la Universidad Distrital Francisco José de Caldas. https://doctoradoingenieria.udistrital.edu.co/index.php/es/inicio/documentos/repositorio-de-tesis-doctoral/item/488-implementacion-de-un-modelopredictor-para-la-toma-de-decisiones-en-redes-inalambricas-de-radio-cognitiva
López Sarmiento, D. A., Rivas, E. y Gualdrón, O. E. (2015). Elementos fundamentales que componen la radio cognitiva y asignación de bandas espectrales. Información Tecnológica, 26(1), 23-40. http://dx.doi.org/10.4067/S0718-07642015000100004
Ma, L., Shen, C.-C. y Ryu, B. (2007). Single-radio adaptive channel algorithm for
spectrum agile wireless ad hoc networks. En 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 547-558). IEEE.http://doi.org/10.1109/DYSPAN.2007.78
Marinho, J. y Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks,18(2), 147-164. http://doi.org/10.1007/s11276-011-0392-1
Márquez, H., Hernández, C. y Giral, D. (2017). Channel availability prediction in
cognitive radio networks using naive Bayes. Contemporary Engineering Sciences,10(12), 593-605. http://doi.org/10.12988/ces.2017.7758
Masonta, M. T., Mzyece, M. y Ntlatlapa, N. (2013). Spectrum decision in cognitive
radio networks: A survey. IEEE Communications Surveys & Tutorials, 15(3), 1088-1107. http://doi.org/10.1109/SURV.2012.111412.0016
Masters, T. (1993). Practical neural networks recipes in C++. Morgan Kaufmann.
Matinmikko, M., Del Ser, J., Rauma, T. y Mustonen, M. (2013). Fuzzy-logic based framework for spectrum availability assessment in cognitive radio systems.IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184. http://doi.org/10.1109/JSAC.2013.131117
Matinmikko, M., Höyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz,
M., Mämmelä, A., Kiviranta, M. y Kautio, A. (2008). Cognitive radio: An intel-
ligent wireless communication system. VTT Technical Research Centre of Finland.
Meerschaert, M. M. (2013). Mathematical modeling (4.a ed.). Elsevier.
https://doi.org/10.1016/C2010-0-66940-9
Mehbodniya, A., Kaleem, F., Yen, K. K. y Adachi, F. (2012). A fuzzy MADM ranking approach for vertical mobility in next generation hybrid networks. En IV
International Congress on Ultra Modern Telecommunications and Control Systems 2012 (pp. 262-267). IEEE. http://doi.org/10.1109/ICUMT.2012.6459676
Melián-Gutiérrez, L., Zazo, S., Blanco-Murillo, J. L., Pérez-Álvarez, I., García-
Rodríguez, A. y Pérez-Díaz, B. (2013). HF spectrum activity prediction model
based on HMM for cognitive radio applications. Physical Communication, 9, 199-211. http://doi.org/10.1016/j.phycom.2012.09.004
Mir, U., Merghem-Boulahia, L., Esseghir, M. y Gaïti, D. (2011). Dynamic spectrum
sharing for cognitive radio networks using multiagent system. En 2011 IEEE
Consumer Communications and Networking Conference (pp. 658-663). IEEE. http://doi.org/10.1109/CCNC.2011.5766563
Miranda, E. (2001). Improving subjective estimates using paired comparisons. IEEE Software, 18(1), 87-91. http://doi.org/10.1109/52.903173
Mishra, V., Tong, L. C., Chan, S. y Kumar, A. (2012). Energy aware spectrum decision framework for cognitive radio networks. En 2012 International Symposium on Electronic System Design (ISED 2012) (pp. 309-313). IEEE. http://doi.org/10.1109/ISED.2012.65
Mitola III, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio [tesis de doctorado, Royal Institute of Technology]. http://www.diva-portal.org/smash/get/diva2:8730/FULLTEXT01.pdf
Neshat, M., Adeli, A., Masoumi, A. y Sargozae, M. (2011). A comparative study
on Anfis and fuzzy expert system models for concrete mix design. International
Journal of Computer Science Issues, 8(3), 196-210. https://www.researchgate.net/publication/260979471_Comparative_Study_on_Anfis_and_Fuzzy_Expert_System_Models_for_Concrete_Mix_Design
Nisan, N., Roughgarden, T., Tardos, É. y Vazirani, V. V. (2007). Algorithmic game
theory (vol. 1). Cambridge University Press.
Ormond, O., Murphy, J. y Muntean, G.-M. (2006). Utility-based intelligent network selection in beyond 3G systems. En 2006 IEEE International Conference
on Communications (vol. 4, pp. 1831-1836). IEEE. http://doi.org/10.1109/ICC.2006.254986
Oyewobi, S. S. y Hancke, G. P. (2017). A survey of cognitive radio handoff schemes,challenges and issues for industrial wireless sensor networks (CRIWSN). Journal of Network and Computer Applications, 97, 140-156. https://doi.org/10.1016/j.jnca.2017.08.016
Ozger, M. y Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20(1), 157-160. http://doi.org/10.1109/LCOMM.2015.2504103
Palangi, H., Ward, R. y Deng, L. (2016). Distributed compressive sensing: A deep
learning approach. IEEE Transactions on Signal Processing, 64(17), 4504-4518.
http://doi.org/10.1109/TSP.2016.2557301
Pankratev, D. A., Samsonov, A. A. y Stotckaia, A. D. (2019). Wireless data transfer
technologies in a decentralized system. En Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) (pp.620-623). IEEE. http://doi.org/10.1109/EIConRus.2019.8656671
Patil, S. K. y Kant, R. (2014). A fuzzy AHP-Topsis framework for ranking the solu-
tions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Systems with Applications, 41(2), 679-693. http://doi.org/10.1016/j.eswa.2013.07.093
Pattanayak, S., Venkateswaran, P. y Nandi, R. (2013). Artificial intelligence based
model for channel status prediction: A new spectrum sensing technique for cognitive radio. International Journal of Communications, Network and System Sciences,6(3), 139-148. http://doi.org/10.4236/ijcns.2013.63017
Pedraza, L. F., Forero, F. y Páez, I. (2014). Evaluación de ocupación del espectro
radioeléctrico en Bogotá-Colombia. Ingeniería y Ciencia, 10(19), 127-143. http://www.scielo.org.co/pdf/ince/v10n19/v10n19a07.pdf
Pedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E. y Páez, I. (2016).
Ocupación espectral y modelo de radio cognitiva para Bogotá (1.a ed.). Editorial UD.
Petrova, M., Mähönen, P. y Osuna, A. (2010). Multi-class classification of analog
and digital signals in cognitive radios using support vector machines. En 2017th
International Symposium on Wireless Communication Systems (pp. 986-990). IEEE.http://doi.org/10.1109/ISWCS.2010.562450
Petter. (2013). Matlab mex support for Visual Studio 2013. MathWorks. https://www.mathworks.com/matlabcentral/fileexchange/44408-matlab-mex-support-for-visual-studio-2013-and-mbuild
Pham, C., Tran, N. H., Do, C. T., Moon, S. I. y Hong, C. S. (2014). Spectrum han-
doff model based on hidden Markov model in cognitive radio networks. En International Conference on Information Networking (pp. 406-411). IEEE. http://networking.khu.ac.kr/layouts/net/publications/data/Spectrum%20Handoff%20Model%20Based%20on%20Hidden%20Markov%20Model%20in%20Cognitive%20Radio%20Networks.pdf
Pinto, L. R. M. y Correia, L. H. A. (2018). Analysis of machine learning algorithms for spectrum decision in cognitive radios. En 2018 15th International Symposium on Wireless Communication Systems (ISWCS) (pp. 1-6). IEEE. http://doi.org/10.1109/ISWCS.2018.849106
Pla, V., Vidal, J.-R., Martinez-Bauset, J. y Guijarro, L. (2010). Modeling and characterization of spectrum white spaces for underlay cognitive radio networks.En 2010 IEEE International Conference on Communications. IEEE. http://doi.org/10.1109/ICC.2010.5501788
Powell, V. y Lehe, L. (s. f.). Principal component analysis explained visually. https://setosa.io/ev/principal-component-analysis/
Rahimian, N., Georghiades, C. N., Shakir, M. Z. y Qaraqe, K. A. (2014). On the
probabilistic model for primary and secondary user activity for OFDMA-based
cognitive radio systems: Spectrum occupancy and system throughput perspectives. IEEE Transactions on Wireless Communications, 13(1), 356-369. http://doi.org/10.1109/TWC.2013.120213.130658
Ramírez Pérez, C. y Ramos Ramos, V.-M. (2010). Handover vertical: un problema de toma de decisión múltiple. En Congreso Internacional sobre Innovación y Desarrollo Tecnológico (Ciindet) (pp. 727-733).
Ramírez Pérez, C. y Ramos Ramos, V.-M. (2013). On the effectiveness of multi-criteria decision mechanisms for vertical handoff. En IEEE 27th International Conference on Advanced Information Networking and Applications (pp. 1157-1164). IEEE.http://doi.org/10.1109/AINA.2013.114
Ramzan, M. R., Nawaz, N., Ahmed, A., Naeem, M., Iqbal, M. y Anpalagan, A.
(2017). Multi-objective optimization for spectrum sharing in cognitive radio networks: A review. Pervasive and Mobile Computing, 41, 106-131.
https://doi.org/10.1016/j.pmcj.2017.07.01
Rizk, Y., Awad, M. y Tunstel, E. W. (2018). Decision making in multiagent systems: A survey. IEEE Transactions on Cognitive and Developmental Systems, 10(3), 514-529. http://doi.org/10.1109/TCDS.2018.2840971
Rodriguez, A. B., Ramirez, L. J. y Chahuan, J. (2015). Nueva generación de heurísticas para redes de fibra óptica WDM (wavelength división multiplexing) bajo tráfico dinamico. Información Tecnológica, 26(5), 135-142. http://dx.doi.org/10.4067/S0718-07642015000500017
Rodríguez-Colina, E., Ramirez, P. y Carrillo, C. E. (2011). Multiple attribute dynamic spectrum decision making for cognitive radio networks. En 2011 8th International Conference on Wireless and Optical Communications Networks. IEEE. http://doi.org/10.1109/WOCN.2011.587296
Roy, A., Midya, S., Majumder, K., Phadikar, S. y Dasgupta, A. (2017). Optimized
secondary user selection for quality of service enhancement of two-tier multi-
user cognitive radio network: A game theoretic approach. Computer Networks,
, 1-18. http://doi.org/10.1016/j.comnet.2017.05.002
Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26. http://doi.org/10.1016/0377-2217(90)90057-I
Sadanandan, A. (2011). CSVIMPORT. https://www.mathworks.com/matlabcen-
tral/fileexchange/23573-csvimport
Safavian, S. R. y Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660-674. http://doi.org/10.1109/21.97458
Salcedo, D. (2006). Predicción del IBC utilizando redes neuronales con wavelets [tesis depregrado, Universidad de los Andes (Venezuela)]. http://bdigital.ula.ve/stora-ge/pdftesis/pregrado/tde_arquivos/8/TDE-2007-05-30T05:58:36Z-288/Publico/Dulmar%20Salcedo.pdf
Saleem, Y. y Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network and Computer Applications, 43, 1-16. https://doi.org/10.1016/j.jnca.2014.04.001
Salgado, C. (2014). Algoritmo multivariable para la selección dinámica del canal de backup en redes de radio cognitiva basado en el método fuzzy analitical hierarchical process [tesis de maestría, Universidad Distrital Francisco José de Caldas].
Salgado, C., Márquez, H. y Gómez, V. (2016). Técnicas inteligentes en la asignación de espectro dinámica para redes inalámbricas cognitivas. Tecnura, 20(49), 135-153. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a09
Salgado, C., Mora, S. y Giral, D. (2016). Collaborative algorithm for the spectrum allocation in distributed cognitive networks. International Journal of Engineering and Technology, 8(5), 2288-2299. http://doi.org/10.21817/ijet/2016/v8i5/160805091
Samui, P. (2015). Handbook of research on advanced computational techniques for simulation-based engineering. IGI Global.
Sarmiento, D. A. L., Rivas, E. y García, N. Y. G. (2016). Implementing a simulator
of wireless cognitive radio network primary users. International Journal of Applied Engineering Research, 11(2), 967-975.
Siddique, N. y Adeli, H. (2013). Computational intelligence: Synergies of fuzzy
logic, neural networks and evolutionary computing. Wiley. http://doi.org/10.1002/9781118534823
Song, Q. y Jamalipour, A. (2005). A network selection mechanism for next generation networks. En 2005 IEEE International Conference on Communications (vol. 2,pp. 1418-1422). IEEE. http://doi.org/10.1109/ICC.2005.1494578
Soto, J., Castillo, O. y Soria, J. (2010). Chaotic time series prediction using ensembles of Anfis. En O. Castillo, J. Kacprzyk y W. Pedrycz (eds.), Soft computing for intelligent control and mobile robotics (pp. 287-301). Springer. http://doi.org/10.1007/978-3-642-15534-5_18
Sriram, K. y Whitt, W. (1986). Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 4(6), 833-846. http://doi.org/10.1109/JSAC.1986.1146402
Stevens-Navarro, E., Gallardo-Medina, R., Pineda-Rico, U. y Acosta-Elias, J. (2012). Application of MADM method Vikor for vertical handoff in heterogeneous wireless networks. Ieice Transactions on Communications, 95(2), 599-602. http://doi.org/10.1587/transcom.E95.B.599
Stevens-Navarro, E., Lin, Y. y Wong, V. W. S. (2008). An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 57(2), 1243-1254. http://doi.org/10.1109/TVT.2007.907072
Stevens-Navarro, E., Martinez-Morales, J. D. y Pineda-Rico, U. (2012). Evaluation
of vertical handoff decision algorightms based on MADM methods for heterogeneous wireless networks. Journal of Applied Research and Technology,
(4), 534-548. https://core.ac.uk/download/pdf/27220545.pdf
Stevens-Navarro, E. y Wong, V. W. S. (2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. En 2006 IEEE 63rd Vehicular Technology Conference (vol. 2, pp. 947-951). IEEE. http://doi.org/10.1109/VETECS.2004.138897
Sun, B., Feng, H., Chen, K. y Zhu, X. (2016). A deep learning framework of quantized compressed sensing for wireless neural recording. IEEE Access, 4, 5169-5178. http://doi.org/10.1109/ACCESS.2016.2604397
Sundermeyer, M., Ney, H. y Schlüter, R. (2015). From feedforward to recurrent
LSTM neural networks for language modeling. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(3), 517-529. http://doi.org/10.1109/TASLP.2015.2400218
Sutton, R. S. y Barto, A. G. (1998). Reinforcement learning: An introduction.
IEEE Transactions on Neural Networks, 9(5), 1054. http://doi.org/10.1109/TNN.1998.712192
Tabassam, A. A. y Suleman, M. U. (2012). Game theory in wireless and cogniti-
ve radio networks: Coexistence perspective. En 2012 IEEE Symposium on Wire-
less Technology and Applications (ISWTA 2012) (pp. 177-181). IEEE. http://doi.org/10.1109/ISWTA.2012.6373837
Tahir, M., Hadi Habaebi, M. e Islam, M. R. (2017). Novel distributed algorithm for
coalition formation for enhanced spectrum sensing in cognitive radio networks.
AEU: International Journal of Electronics and Communications, 77, 139-148. http://doi.org/https://doi.org/10.1016/j.aeue.2017.04.033
Taj, M. I. y Akil, M. (2011). Cognitive radio spectrum evolution prediction using
artificial neural networks based multivariate time series modelling. En 17th European Wireless 2011. Sustainable Wireless Technologies. VDE. https://ieeexplore.ieee.org/document/5898018
Tanino, T., Tanaka, T. e Inuiguchi, M. (eds.). (2003). Multi-objectiven programming and goal programming: Theory and applications (vol. 21). Springer.
Tragos, E. Z., Zeadally, S., Fragkiadakis, A. G. y Siris, V. A. (2013). Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Com-
munications Surveys & Tutorials, 15(3), 1108-1135. http://doi.org/10.1109/SURV.2012.121112.00047
Trigui, E., Esseghir, M. y Merghem-Boulahia, L. (2012). Multi-agent systems negotiation approach for handoff in mobile cognitive radio networks. En 2012 5th International Conference on New Technologies, Mobility and Security (NTMS 2012). IEEE. http://doi.org/10.1109/NTMS.2012.6208687
Tripathi, S., Upadhyay, A., Kotyan, S. y Yadav, S. (2019). Analysis and comparison
of different fuzzy inference systems used in decision making for secondary users in cognitive radio network. Wireless Personal Communications, 104(3), 1175-1208. http://doi.org/10.1007/s11277-018-6075-9
Tsiropoulos, G. I., Dobre, O. A., Ahmed, M. H. y Baddour, K. E. (2016). Radio
resource allocation techniques for efficient spectrum access in cognitive radio
networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847. http://doi.org/10.1109/COMST.2014.2362796
Tumuluru, V. K., Wang, P. y Niyato, D. (2010). A neural network based spectrum
prediction scheme for cognitive radio. En 2010 IEEE International Conference on
Communications. IEEE. http://doi.org/10.1109/ICC.2010.5502348
Uyanik, G. S., Canberk, B. y Oktug, S. (2012). Predictive spectrum decision mechanisms in cognitive radio networks. En 2012 IEEE Globecom Workshops. http://doi.org/10.1109/GLOCOMW.2012.6477703
Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suarez, M. y Robert, F. (2010).
Survey on spectrum utilization in Europe: Measurements, analyses and observations. En 2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE. http://doi.org/10.4108/ICST.CROWNCOM2010.922
Valero Verdú, S. y Senabre Blanes, C. (2013). Aplicación de un modelo de red neuronal no supervisado a la clasificación de consumidores eléctricos. Club Universitario.
Vásquez, H., Hernández, C. y Páez, I. (2015). Proactive spectrum handoff model
with time series prediction. International Journal of Applied Engineering Research,10(21), 42.259-42.264.
Vasudeva, A. y Sood, M. (2018). Survey on sybil attack defense mechanisms in wireless ad hoc networks. Journal of Network and Computer Applications, 120, 78-118. http://doi.org/https://doi.org/10.1016/j.jnca.2018.07.006
Veeriah, V., Zhuang, N. y Qi, G.-J. (2015). Differential recurrent neural networks
for action recognition. En 2015 IEEE International Conference on Computer Vision (ICCV). IEEE. http://doi.org/10.1109/ICCV.2015.46
Velmurugan, T. (2014). Performance based analysis between k-Means and fuzzy C-Means clustering algorithms for connection oriented telecommunication data. Applied Soft Computing, 19, 134-146. http://doi.org/10.1016/j.asoc.2014.02.011
Wang, B. y Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5-23. http://doi.org/10.1109/JSTSP.2010.209321
Wang, C.-W. y Wang, L.-C. (2009). Modeling and analysis for proactive-decision
spectrum handoff in cognitive radio networks. En 2009 IEEE International Conference on Communications. IEEE. http://doi.org/10.1109/ICC.2009.5199189
Wang, J., Ghosh, M. y Challapali, K. (2011). Emerging cognitive radio applications: A survey. IEEE Communications Magazine, 49(3), 74-81. http://doi.org/10.1109/MCOM.2011.5723803
Wang, L.-C., Wang, C.-W. y Adachi, F. (2011). Load-balancing spectrum decision
for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(4), 757-769. http://doi.org/10.1109/JSAC.2011.110408
Wang, L.-C., Wang, C.-W. y Chang, C.-J. (2012). Modeling and analysis for spectrum handoffs in cognitive radio networks. IEEE Transactions on Mobile Computing, 11(9), 1499-1513. http://doi.org/10.1109/TMC.2011.155
Wang, P., Ansari, J., Petrova, M. y Mähönen, P. (2016). CogMAC+: A decentralized
MAC protocol for opportunistic spectrum access in cognitive wireless networks.
Computer Communications, 79, 22-36. http://doi.org/https://doi.org/10.1016/j.comcom.2015.09.016
Wang, X. Y., Wong, A. y Ho, P.-H. (2010). Dynamically optimized spatiotemporal
prioritization for spectrum sensing in cooperative cognitive radio. Wireless Networks, 16(4), 889-901. http://doi.org/10.1007/s11276-009-0175-
Wei, Q., Farkas, K., Prehofer, C., Mendes, P. y Plattner, B. (2006). Context-aware
handover using active network technology. Computer Networks, 50(15), 2855-
http://doi.org/10.1016/j.comnet.2005.11.002
Wei, Y., Li, X., Song, M. y Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. En International Conference on Natural Computation (vol. 5, pp. 197-201). IEEE. http://doi.org/10.1109/ICNC.2008.504
Willkomm, D., Machiraju, S., Bolot, J. y Wolisz, A. (2008). Primary users in cellular
networks: A large-scale measurement study. En 2008 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 401-411). IEEE. http://doi.org/10.1109/DYSPAN.2008.48
Winston, O., Thomas, A. y Okelloodongo, W. (2013). Optimizing neural network
for TV idle channel prediction in cognitive radio using particle swarm optimization. En Fifth International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN 2013) (pp. 25-29). IEEE. http://doi.org/10.1109/CICSYN.2013.68
Woods, W. A. (1986). Important issues in knowledge representation. Proceedings of the IEEE, 74(10), 1322-1334. http://doi.org/10.1109/PROC.1986.13634
Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.
Wu, Y., Yang, Q., Liu, X. y Kwak, K. S. (2016). Delay-constrained optimal transmission with proactive spectrum handoff in cognitive radio networks. IEEE
Transactions on Communications, 64(7), 2767-2779. http://doi.org/10.1109/TCOMM.2016.2561936
Xenakis, D., Passas, N. y Merakos, L. (2014). Multi-parameter performance analysis for decentralized cognitive radio networks. Wireless Networks, 20(4), 787-803. https://doi.org/10.1007/s11276-013-0635-4
Xing, X., Jing, T., Cheng, W., Huo, Y. y Cheng, X. (2013). Spectrum prediction in
cognitive radio networks. IEEE Wireless Communications, 20(2), 90-96. http://doi.org/10.1109/MWC.2013.6507399
Xing, X., Jing, T., Huo, Y., Li, H. y Cheng, X. (2013). Channel quality prediction based on Bayesian inference in cognitive radio networks. En 2013 Proceedings IEEE Infocom (pp. 1465-1473). IEEE. http://doi.org/10.1109/INFCOM.2013.6566941
Xu, G. y Lu, Y. (2006). Channel and modulation selection based on support vector machines for cognitive radio. En 2006 IEEE International Conference on
Wireless Communications, Networking and Mobile Computing. IEEE. http://doi.org/10.1109/WiCOM.2006.181
Yang, S.-F. y Jung-ShyrWu. (2008). A IEEE 802.21 handover design with QOS provision across WLAN and WMAN. En 2008 International Conference on Communications, Circuits and Systems (pp. 548-552). IEEE. http://doi.org/10.1109/ICC-CAS.2008.4657833
Yang, S.-J. y Tseng, W.-C. (2013). Design novel weighted rating of multiple attributes scheme to enhance handoff efficiency in heterogeneous wireless networks. Computer Communications, 36(14), 1498-1514. http://doi.org/10.1016/j.comcom.2013.06.005
Yao, Y., Hu, Q., Yu, H. y Grzymala-Busse, J. W. (eds.). (2015). Rough sets, fuzzy sets,data mining, and granular computing (vol. 2639). Tianjin, China: Springer.
Yarkan, S. y Arslan, H. (2007). Binary time series approach to spectrum prediction for cognitive radio. En 2007 IEEE 66th Vehicular Technology Conference (pp. 1563-1567). IEEE. http://doi.org/10.1109/VETECF.2007.332
Yifei, W., Yinglei, T., Li, W., Mei, S. y Xiaojun, W. (2013). QoS provisioning energy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101. http://doi.org/10.1109/CC.2013.6723882
Yonghui, C. (2010). Study of the Bayesian networks. En 2010 International Conference on E-Health Networking, Digital Ecosystems and Technologies (vol. 1, pp. 172-174).IEEE. http://doi.org/10.1109/EDT.2010.5496612
Yoon, K. y Hwang, C.-L. (1995). Multiple attribute decision making: An introduction (vol. 104). Sage.
Youssef, M. E., Nasim, S., Wasi, S., Khisal, U. y Khan, A. (2018). Efficient cooperative spectrum detection in cognitive radio systems using wavelet fusion. En 2018 International Conference on Computing, Electronic and Electrical Engineering. IEEE.
http://doi.org/10.1109/ICECUBE.2018.8610981
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. http://doi.org/10.1016/S0019-9958(65)90241-X
Zapata, J. A., Arango, M. D. y Adarme, W. (2012). Applying fuzzy extended analytical hierarchy (Feahp) for selecting logistics software. Ingeniería e Investigación,32(1), 94-99. http://www.revistas.unal.edu.co/index.php/ingeinv/article/view/28521/33581
Zapata Muñoz, D. F. y Anzola Rojas, C. (2016). Diseño de un algoritmo MAC para
la asignación equitativa de espectro en redes inalámbricas de radio cognitiva [tesis de pregrado, Universidad Distrital Francisco José de Caldas]. RIUD. http://repository.udistrital.edu.co/bitstream/11349/3754/1/AnzolaRojasCamilo2016.pdf
Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M. y Nallanathan, A. (2017). Sensing
time optimization and power control for energy efficient cognitive small cell
with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730-743. http://doi.org/10.1109/TWC.2016.2628821
Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous networks. En 2004 IEEE Wireless Communications and Networking Conference (vol. 4,pp. 653-658). IEEE. http://doi.org/10.1109/WCNC.2004.1311263
Zhang, Y., Tay, W. P., Li, K. H., Esseghir, M. y Gaïti, D. (2016). Opportunistic spectrum access with temporal-spatial reuse in cognitive radio networks. En IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 3661-3665).IEEE. https://sigport.org/documents/opportunistic-spectrum-access-tempo-ral-spatial-reuse-cognitive-radio-networks
Zhao, Y., Mao, S., Neel, J. O. y Reed, J. H. (2009). Performance evaluation of cognitive radios: Metrics, utility functions, and methodology. Proceedings of the IEEE,97(4), 642-658. http://doi.org/10.1109/JPROC.2009.2013017
Zheng, H. y Cao, L. (2005). Device-centric spectrum management. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 56-65). IEEE. http://doi.org/10.1109/DYSPAN.2005.1542617
Descargas
Publicado
Colección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
