Modelo de decisión espectral colaborativo para redes de radio cognitiva

Autores/as

César Augusto Hernández Suárez
Universidad Distrital Francisco José de Caldas
Danilo Alfonso López Sarmiento
Universidad Distrital Francisco José de Caldas
Diego Armando Giral Ramírez
Universidad Distrital Francisco José de Caldas

Palabras clave:

Decisión espectral, Redes de radio, Redes de radio cognitiva, Simulación, Algoritmos colaborativo

Sinopsis

La decisión espectral es un aspecto clave para mejorar el desempeño en las redes de radio cognitiva descentralizadas. Los usuarios secundarios deben tomar decisiones inteligentes en función de la variación del espectro y de las acciones adoptadas por otros usuarios secundarios. A partir de esta dinámica, la probabilidad de que dos o más usuarios secundarios elijan el mismo canal es alta, especialmente cuando el número de usuarios secundarios es mayor que el número de canales disponibles, debido a la externalidad negativa de la red; cuantos más usuarios secundarios seleccionen el mismo canal, menor será la utilidad que cada usuario secundario pueda obtener y el número de interferencias por el acceso simultáneo será mayor. Por esto, para modelar la red bajo parámetros de tráfico realistas, es necesario tener en cuenta la colaboración entre usuarios secundarios. Este libro de investigación presenta una propuesta para mejorar el proceso de toma de decisiones en una red de radio cognitiva descentralizada, y así dotar a los nodos con la capacidad de aprender del entorno, proponiendo estrategias que les permitan a los usuarios secundarios intercambiar información de forma cooperativa o competitiva.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

César Augusto Hernández Suárez, Universidad Distrital Francisco José de Caldas

Ingeniero electrónico con especialización en Interconexión de Redes; magíster en Ciencias de la Información y las Comunicaciones de la Universidad Distrital Francisco José de Caldas, y doctor en Ingeniería de la Universidad Nacional de Colombia. Profesor titular de la Universidad Distrital Francisco José de Caldas, adscrito a los programas de Tecnología en Electricidad de Media y Baja Tensión e Ingeniería Eléctrica de la Facultad Tecnológica. Investigador Sénior de Colciencias, director del grupo de investigación SIREC con categoría A1 de Colciencias, e integrante de los grupos de investigación Gidenutas (A1 de Colciencias) e Internet Inteligente (A de Colciencias), en los que lidera investigaciones sobre sistemas y redes cognitivas y aplicaciones tecnológicas que contribuyen a mejorar la calidad de vida de comunidades vulnerables. Ha realizado publicaciones de patentes, libros de investigación y artículos en el área de las telecomunicaciones en revistas indexadas de categoría nacional e internacional.

Danilo Alfonso López Sarmiento, Universidad Distrital Francisco José de Caldas

Ingeniero electrónico, magíster en Teleinformática y doctor en Ingeniería de la Universidad Distrital Francisco José de Caldas. Profesor asociado de la Universidad Distrital Francisco José de Caldas, adscrito a la Facultad de Ingeniería. Investigador Junior de Colciencias, integrante del grupo de investigación Internet Inteligente y LIDER con categoría A de Colciencias. Ha realizado publicaciones de libros de investigación y artículos en el área de las telecomunicaciones en revistas indexadas de categoría nacional e internacional.

Diego Armando Giral Ramírez, Universidad Distrital Francisco José de Caldas

Ingeniero eléctrico de la Universidad Distrital Francisco José de Caldas, magíster en Ingeniería Eléctrica de la Universidad de los Andes y candidato a doctor en Ingeniería de la Universidad Distrital Francisco José de Caldas. Profesor asistente de la Universidad Distrital Francisco José de Caldas, adscrito a los programas de Tecnología en Electricidad de Media y Baja Tensión e Ingeniería Eléctrica de la Facultad Tecnológica. Investigador Junior de Colciencias, integrante del grupo de investigación SIREC con categoría A1 de Colciencias. Ha realizado publicaciones de libros de investigación y artículos en el área de las telecomunicaciones y sistemas de potencia en revistas indexadas de categoría nacional e internacional.

Referencias

GPP. (2011). IEEE Approved Draft Standard For Information Technology. Local

and metropolitan area networks. Specific requirements. Part 22: Cognitive wireless ran medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands IEEE computer society (vol. 2015). https://standards.ieee.org/standard/802_22-2019.html

Abass, A. A. A., Mandayam, N. B. y Gajic, Z. (2017). An evolutionary game model for threat revocation in ephemeral networks. En 2017 51st Annual Conference

on Information Sciences and Systems (pp. 1-5). IEEE. http://doi.org/10.1109/CISS.2017.7926128

Abbas, N., Nasser, Y. y Ahmad, K. E. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. Eurasip Journal on Wireless Communications and Networking, (1), 1-20. http://doi.org/10.1186/s13638-015-0381-7

Abdulshahed, A. M., Longstaff, A. P. y Fletcher, S. (2015). The application of

Anfis prediction models for thermal error compensation on CNC machine

tools. Applied Soft Computing Journal, 27, 158-168. http://doi.org/10.1016/j.asoc.2014.11.012

Abonyi, J., Andersen, H., Nagy, L. y Szeifert, F. (1999). Inverse fuzzy-process-model based direct adaptive control. Mathematics and Computers in Simulation, 51(1-2), 119-132. http://doi.org/10.1016/s0378-4754(99)00142-1

Abramson, N. (1981). Teoría de la información y codificación (5.a ed.). Paraninfo. https://eva.udelar.edu.uy/pluginfile.php/84635/mod_resource/content/0/Teoria_de_la_Informacion_y_codificacion-Norman_Abramson_ebook-spanish_.pdf

Adeel, A., Larijani, H. y Ahmadinia, A. (2014, 13-16 de mayo). Performance analysis of artificial neural network-based learning schemes for cognitive radio systems in LTE-UL [presentación en conferencia]. 2014 28th International Conference on Advanced Information Networking and Applications, Victoria, Estados Unidos. http://doi.org/10.1109/WAINA.2014.116

Ahmed, A., Boulahia, L. M. y Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys & Tutorials, 16(2), 776-811. http://doi.org/10.1109/SURV.2013.082713.00141

Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J. y Khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823. http://doi.org/10.1109/COMST.2014.2363082

Akin, S. y Fidler, M. (2016). On the transmission rate strategies in cognitive radios. IEEE Transactions on Wireless Communications, 15(3), 2335-2350. http://doi.org/10.1109/TWC.2015.2503272

Akter, L., Natarajan, B. y Scoglio, C. (2008, 3-7 de agosto). Modeling and forecasting secondary user activity in cognitive radio networks [presentación en conferencia]. 17th International Conference on Computer Communications and Networks, St. Thomas, Islas Vírgenes, Estados Unidos. http://doi.org/10.1109/ICCCN.2008.ECP.50

Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2006). NeXt generation/

dynamic spectrum access/cognitive radio wireless networks: A survey. ComputerNetworks, 50(13), 2127-2159. http://doi.org/10.1016/j.comnet.2006.05.001

Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2008). A survey on spectrum

management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40-48. http://doi.org/10.1109/MCOM.2008.4481339

Akyildiz, I. F., Lee, W.-Y. y Chowdhury, K. R. (2009). CRAHNs: Cognitive radio

ad hoc networks. Ad Hoc Networks, 7(5), 810-836. http://doi.org/10.1016/j.ad-hoc.2009.01.001

Akyildiz, I. F. y Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. Broadband and Wireless Networking Laboratory technical report. Georgia Institute of Technology.

Al-Amidie, M., Al-Asadi, A., Micheas, A. C. e Islam, N. E. (2019). Spectrum sensing based on Bayesian generalised likelihood ratio for cognitive radio systems with multiple antennas. IET Communications, 13(3), 305-311. http://doi.org/10.1049/iet-com.2018.5276

Ali, A. y Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio

networks: Theory and applications. IEEE Communications Surveys & Tutorials,

(2), 1277-1304. http://doi.org/10.1109/COMST.2016.2631080

Alias, D. M. y Ragesh, G. K. (2016, 23-25 de marzo). Cognitive radio networks: A survey [presentación en conferencia]. 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India. http://doi.org/10.1109/WiSPNET.2016.7566489

Almasaeid, H. M. y Kamal, A. E. (2010). Receiver-based channel allocation for

wireless cognitive radio mesh networks. En 2010 IEEE Symposium on New

Frontiers in Dynamic Spectrum (pp. 1-10). IEEE. http://doi.org/10.1109/DYS-PAN.2010.5457862

Alnwaimi, G., Arshad, K. y Moessner, K. (2011). Dynamic spectrum allocation algorithm with interference management in co-existing networks.

IEEE Communications Letters, 15(9), 932-934. http://doi.org/10.1109/LCOMM.2011.062911.110248

Alsarhan, A. y Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. En 2009 Proceedings of 18th Internatonal Conference on Computer Communications and Networks (pp. 1-6). IEEE. http://doi.org/10.1109/ICCCN.2009.5235261

Amir, M., El-Keyi, A. y Nafie, M. (2011). Constrained interference alignment and the spatial degrees of freedom of mimo cognitive networks. IEEE Transactions on Information Theory, 57(5), 2994-3004. http://doi.org/10.1109/TIT.2011.2119770

Amjad, M. F., Chatterjee, M. y Zou, C. C. (2016). Coexistence in heterogeneous

spectrum through distributed correlated equilibrium in cognitive radio networks. Computer Networks, 98, 109-122. http://doi.org/10.1016/j.comnet.2016.01.016

Azarfar, A., Frigon, J.-F. y Sanso, B. (2012). Improving the reliability of wireless

networks using cognitive radios. IEEE Communications Surveys & Tutorials, 14(2), second quarter, 338-354. http://doi.org/10.1109/SURV.2011.021111.00064

Baran, P. (1964). On distributed communications networks. IEEE Transactions on Communications Systems, 12(1), 1-9. http://doi.org/10.1109/TCOM.1964.1088883

Bhowmik, M. y Malathi, P. (2019). Spectrum sensing in cognitive radio using actor-critic neural network with krill herd-whale optimization algorithm. Wireless Personal Communications, 105(1), 335-354. http://doi.org/10.1007/s11277-018-6115-5

Bkassiny, M., Li, Y. y Jayaweera, S. K. (2013). A survey on machine-learning tech-

niques in cognitive radios. IEEE Communications Surveys & Tutorials, 15(3), 1136-1159. http://doi.org/10.1109/SURV.2012.100412.00017

Bolstad, W. M. (2007). Introduction to Bayesian statistics (2.a ed.). John Wiley & Sons.

Brik, V., Rozner, E., Banerjee, S. y Bahl, P. (2005). DSAP: A protocol for coordinated spectrum access. En 2005 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 611-614). IEEE. http://doi.org/10.1109/DYSPAN.2005.1542680

Bujari, A., Calafate, C. T., Cano, J.-C., Manzoni, P., Palazzi, C. E. y Ronzani,

D. (2018). Flying ad-hoc network application scenarios and mobility mo-

dels. International Journal of Distributed Sensor Networks, 13(10). http://doi.

org/10.1177/1550147717738192

Bütün, I., Talay, A. Ç., Altilar, D. T., Khalid, M. y Sankar, R. (2010, 21-23 de abril).

Impact of mobility prediction on the performance of cognitive radio networks [presentación en simposio]. 2010 Wireless Telecommunications Symposium (WTS), Tampa, Estados Unidos. http://doi.org/10.1109/WTS.2010.5479659

Büyüközkan, G., Kahraman, C. y Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2-3), 259-280. http://doi.org/10.1080/03081070310001633581

Büyüközkan, G. y Çifçi, G. (2012). A combined fuzzy AHP and fuzzy Topsis based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354. https://doi.org/10.1016/j.eswa.2011.08.061

Byun, S. S., Balasingham, I. y Liang, X. (2008, 21-24 de septiembre). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency [presentación en conferencia]. 2008 IEEE 68th Vehicular Technology Conference, Calgary, Canadá. http://doi.org/10.1109/VETECF.2008.299

Cao, L. y Zheng, H. (2005). Distributed spectrum allocation via local bargaining.

En 2005 Second Annual IEEE Communications Society Conference on Sensor and AdHoc Communications and Networks (pp. 475-486). IEEE. http://doi.org/10.1109/SAHCN.2005.1557100

Cardenas-Juarez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A. y Stevens-Navarro, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band

for cognitive radio applications. En 2016 International Conference on Electronics,Communications and Computers (pp. 25-31). IEEE. http://doi.org/10.1109/CONIELECOMP.2016.7438547

Chang, C.-C. y Lin, C.-J. (2013). Libsvm: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), artículo 27. http://doi.org/10.1145/1961189.1961199

Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. http://doi.org/10.1016/0377-2217(95)00300-2

Chen, D., Zhang, Q. y Jia, W. (2008, 15-17 de mayo). Aggregation aware spectrum assignment in cognitive ad-hoc networks [presentación en conferencia]. 2008 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Singapur, Singapur. http://doi.org/10.1109/CROWNCOM.2008.4562548

Chen, T., Zhang, H., Maggio, G. M. y Chlamtac, I. (2007). CogMesh: A cluster-

based cognitive radio network. En 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 168-178). IEEE. http://doi.org/10.1109/DYSPAN.2007.29

Chen, Y. y Oh, H.-S. (2016). A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1),848-859. http://doi.org/10.1109/COMST.2014.2364316

Cheng, X. y Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. En 2011 IEEE 13th International Conference on Communication Technology (pp. 161-164). IEEE. http://doi.org/10.1109/ICCT.2011.6157854

Cho, J. y Lee, J. (2013). Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330. https://doi.org/10.1016/j.eswa.2013.03.038

Chou, C.-T., Shankar, S., Kim, H. y Shin, K. G. (2007). What and how much to gain

by spectrum agility? IEEE Journal on Selected Areas in Communications, 25(3), 576-588. http://doi.org/10.1109/JSAC.2007.070408

Choudhary, D. y Shankar, R. (2012). An Steep-fuzzy AHP-Topsis framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521. https://doi.org/10.1016/j.energy.2012.03.010

Christian, I., Moh, S., Chung, I. y Lee, J. (2012). Spectrum mobility in cognitive

radio networks. IEEE Communications Magazine, 50(6), 114-121. http://doi.org/10.1109/MCOM.2012.6211495

Cisco. (2017). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,2016-2021 [white paper]. https://www.ramonmillan.com/documentos/bibliografia/VisualNetworkingIndexGlobalMobileDataTrafficForecastUpdate2016_Cisco.pdf

Cortés, J. (2011). Metodología para la implementación de tecnologías de la información y las comunicaciones TIC’s para soportar una estrategia de cadena de suministro esbelta [tesis de maestría, Universidad Nacional de Colombia]. BDigital.

Cruz-Pol, S., Van Zee, L., Kassim, N., Blackwell, W., Le Vine, D. y Scott, A. (2018).

Spectrum management and the impact of RFI on science sensors. En 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (pp.52-56). IEEE. http://doi.org/10.1109/MICRORAD.2018.843072

Csurgai-Horváth, L. y Bitó, J. (2011). Primary and secondary user activity models

for cognitive wireless network. En Proceedings of the 11th International Conference on Telecommunications (pp. 189-194). IEEE. https://ieeexplore.ieee.org/document/5969948

Dadallage, S., Yi, C. y Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive radio net-

works. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359. http://doi.org/10.1109/TVT.2015.2440412

Dadios, E. P. (ed.). (2012). Fuzzy logic: Algorithms, techniques and implementations. IntechOpen.

Darak, S. J., Dhabu, S., Moy, C., Zhang, H., Palicot, J. y Vinod, A. P. (2015). Low

complexity and efficient dynamic spectrum learning and tunable bandwidth

access for heterogeneous decentralized cognitive radio networks. Digital Signal

Processing, 37(1), 13-23. http://doi.org/10.1016/j.dsp.2014.12.001

Darak, S. J., Zhang, H., Palicot, J. y Moy, C. (2014). Efficient decentralized dyna-

mic spectrum learning and access policy for multi-standard multi-user cognitive

radio networks. En 2014 11th International Symposium on Wireless Communications Systems (ISWCS) (pp. 271-275). Institute of Electrical and Electronics Engineers. http://doi.org/10.1109/ISWCS.2014.693336

Darak, S. J., Zhang, H., Palicot, J. y Moy, C. (2017). Decision making policy for RF

energy harvesting enabled cognitive radios in decentralized wireless networks.

Digital Signal Processing, 60, 33-45. http://doi.org/10.1016/j.dsp.2016.08.014

Del Ser, J., Matinmikko, M., Gil-Lopez, S. y Mustonen, M. (2010). A novel harmony

search based spectrum allocation technique for cognitive radio networks. En

7th International Symposium on Wireless Communication Systems (pp. 233-237). IEEE. http://doi.org/10.1109/ISWCS.2010.5624341

Delgado, M. y Rodríguez, B. (2016). Opportunities for a more efficient use of the

spectrum based in cognitive radio. IEEE Latin America Transactions, 14(2), 610-

http://doi.org/10.1109/TLA.2016.743720

Deng, H., Huang, L., Yang, C. y Xu, H. (2018). Centralized spectrum leasing via cooperative SU assignment in cognitive radio networks. International Journal of Communication Systems, 31(13), artículo e3726. http://doi.org/10.1002/dac.3726

Dhamodharavadhani, S. (2015). A survey on clustering based routing protocols

in mobile ad hoc networks. En 2015 International Conference on Soft-Computing and Networks Security (ICSNS) (pp. 1-6). IEEE. http://doi.org/10.1109/ICSNS.2015.7292426

Ding, L., Melodia, T., Batalama, S. N., Matyjas, J. D. y Medley, M. J. (2010). Cross-

layer routing and dynamic spectrum allocation in cognitive radio ad hoc net-

works. IEEE Transactions on Vehicular Technology, 59(4), 1969-1979. http://doi.org/10.1109/TVT.2010.2045403

Do, C. T., Tran, N. H., Hong, C. S., Lee, S., Lee, J.-J. y Lee, W. (2013). A lightweight

algorithm for probability-based spectrum decision scheme in multiple channels

cognitive radio networks. IEEE Communications Letters, 17(3), 509-512. http://doi.org/10.1109/LCOMM.2013.012313.122589

Du, K.-L. y Swamy, M. N. S. (2013). Neural networks and statistical learning. Springer.

Duan, J. y Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio

mobile ad hoc networks. Advances in Electrical and Computer Engineering, 11(3),11-16. http://doi.org/10.4316/aece.2011.03002

Dunn, J. C. (1973). A fuzzy relative of the Isodata process and its use in detecting

compact well-separated clusters. Journal of Cybernetics, 3(3), 32-57. http://doi.org/10.1080/01969727308546046

Fauzi bin Othman, M. y Yau, T. M. S. (2007). Neuro fuzzy classification and detection technique for bioinformatics problems. En First Asia International Conference on Modelling and Simulation: Asia Modelling Symposium (AMS 2007) (pp. 375-380).IEEE. http://doi.org/10.1109/AMS.2007.7

Federal Communications Commission (FCC). (2003a). Facilitating Opportunities

for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies. https://www.fcc.gov/document/facilitating-opportunities-flexible-efficient-and-reliable-spectrum-1

Federal Communications Commission (FCC). (2003b). Notice of proposed rulemaking and order. https://web.cs.ucdavis.edu/~liu/289I/Material/FCC-03-322A1.pdf

Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence. Addison-Wesley.

Flórez-López, R. y Fernández Fernández, J. M. (2008). Las redes neuronales artificiales: fundamentos teóricos y aplicaciones prácticas. Netbiblo.

Forero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso CDMA [tesis de maestría, Universidad Distrital Francisco José de Caldas].

Fraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM.

Fudenberg, D. y Tirole, J. (1991). Game theory. MIT Press. https://books.google.

com.co/books?id=pFPHKwXro3QC

Gallardo-Medina, J. R., Pineda-Rico, U. y Stevens-Navarro, E. (2009). Vikor method for vertical handoff decision in beyond 3G wireless networks. En 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE. http://doi.org/10.1109/ICEEE.2009.539332

Gavrilovska, L., Atanasovski, V., Macaluso, I. y Dasilva, L. A. (2013). Learning and

reasoning in cognitive radio networks. IEEE Communications Surveys & Tutorials, 15(4), 1761-1777. http://doi.org/10.1109/SURV.2013.030713.00113

Gers, F. A. y Schmidhuber, E. (2001). LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Transactions on Neural Networks, 12(6), 1333-1340. http://doi.org/10.1109/72.963769

Giupponi, L. y Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. En Proceedings of the Third International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE. http://doi.org/10.1109/CROWNCOM.2008.4562535

Goldberg, D. E. y Holland, J. H. (1988). Genetic algorithms and machine learning.

Machine Learning, 3(2), 95-99. http://doi.org/10.1023/A:1022602019183

Goswami, M. M. (2017). AODV based adaptive distributed hybrid multipath routing for mobile AdHoc network. En 2017 International Conference on Inventive Communication and Computational Technologies (pp. 410-414). IEEE. http://doi.org/10.1109/ICICCT.2017.797523

Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. Springer. http://doi.org/10.1007/978-3-642-24797-2

Graves, A., Mohamed, A.-R. y Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. En 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing. Proceedings (pp. 6645-6649). IEEE. http://doi.org/10.1109/ICASSP.2013.6638947

Graves, A. y Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5-6),602-610. http://doi.org/10.1016/j.neunet.2005.06.042

Green, K. C., Armstrong, J. S. y Graefe, A. (2007). Methods to elicit forecasts from

groups: Delphi and prediction markets compared. SSRN Electronic Journal, 8, 17-20. http://doi.org/10.2139/ssrn.1153124

Han, J., Kamber, M. y Pei, J. (2012). Data mining: Concepts and techniques. Elsevier y Morgan Kauffman.

Hasegawa, M., Hirai, H., Nagano, K., Harada, H. y Aihara, K. (2014). Optimiza-

tion for centralized and decentralized cognitive radio networks. Proceedings of the IEEE, 102(4), 574-584. http://doi.org/10.1109/JPROC.2014.2306255

Haykin, S. (1998). Neural networks: A comprehensive foundation (2.a ed.). Prentice Hall.

He, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., Morales-

Tirado, L., Neel, J., Zhao, Y., Reed, J. H. y Tranter, W. H. (2010). A survey of

artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technology, 59(4), 1578-1592. http://doi.org/10.1109/TVT.2010.2043968

Hernández, C., Giral, D. y Páez, I. (2015a). Benchmarking of the performance of

spectrum mobility models in cognitive radio networks. International Journal of

Applied Engineering Research, 10(21), 42.189-42.196.

Hernández, C., Giral, D. y Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Engineering and Technology, 9(12), 1212-1215. https://publications.waset.org/10002921/hybrid-algo-rithm-for-frequency-channel-selection-in-wi-fi-networks

Hernández, C., Giral, D. y Santa, F. (2015). MCDM spectrum handover models for

cognitive wireless networks. World Academy of Science, Engineering and Technology, 9(10), 679-682. https://publications.waset.org/10002749/mcdm-spectrum-handover-models-for-cognitive-wireless-networks

Hernández, C., Márquez, H. y Giral, D. (2017). Comparative evaluation of prediction models for forecasting spectral opportunities. International Journal of Engineering and Technology, 9(5), 3775-3782. http://doi.org/10.21817/ijet/2017/v9i5/170905055

Hernández, C., Páez, I. y Giral, D. (2015). Modelo AHP-Vikor para handoff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39. http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.3.a02

Hernández, C., Páez, I. y Giral, D. (2017). Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva. Editorial UD.

Hernández, C., Pedraza, L. F., Páez, I. y Rodríguez-Colina, E. (2015). Análisis de

la movilidad espectral en redes de radio cognitiva. Información Tecnológica, 26(6), 169-186. http://dx.doi.org/10.4067/S0718-07642015000600018

Hernández, C., Pedraza, L. F. y Martínez, F. H. (2016). Algoritmos para asignación de espectro en redes de radio cognitiva. Tecnura, 20(48), 69-88. http://www.scielo.org.co/scielo.phppid=S0123921X2016000200006&script=sci_abstract&tlng=es

Hernández, C., Pedraza, L. F. y Rodríguez-Colina, E. (2016). Fuzzy feedback algorithm for the spectral handoff in cognitive radio networks. Revista Facultad de Ingeniería de la Universidad de Antioquia, (81), 47-62. http://doi.org/10.17533/udea.redin.n81a05

Hernández, C., Salcedo, O. y Pedraza, L. F. (2009). An Arima model for forecasting Wi-Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-5609200900020001

Hernández, C., Salgado, C., López, H. y Rodríguez-Colina, E. (2015). Multivariable

algorithm for dynamic channel selection in cognitive radio networks. Eurasip

Journal on Wireless Communications and Networking, 2015(1), artículo 216. http://doi.org/10.1186/s13638-015-0445-8

Hernández, C., Salgado, C. y Salcedo, O. (2013). Performance of multivariable traffic model that allows estimating throughput mean values. Revista Facultad de Ingeniería de la Universidad de Antioquia, (67), 52-62. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-62302013000200005

Hernández Sampieri, R., Fernández-Collado, C. y Baptista Lucio, P. (2006). Metodología de la investigación (4.a ed.). McGraw-Hill.

Hernandez-Guillen, J., Rodríguez-Colina, E., Marcelín-Jiménez, R. y Pascoe Chalke,M. (2012). Cruam-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. En 2012 IEEE Latin-American Conference on Communications.IEEE. http://doi.org/10.1109/LATINCOM.2012.6505997

Hochreiter, S. y Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. http://doi.org/10.1162/neco.1997.9.8.1735

Hoven, N., Tandra, R. y Sahai, A. (2005). Some fundamental limits on cognitive radio. Wireless Foundations EECS. https://omidi.iut.ac.ir/SDR/2008/Projects/

AtaeiGame_Theory_Cognitive%20Radios/References/Some%20Fundamental%20Limits%20on%20Cognitive%20Radio.pdf

Hsieh, W. W. (2009). Machine learning methods in the environmental sciences: Neural networks and kernels. Cambridge University Press.

Hübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Springer.

Iftikhar, A., Rauf, Z., Ahmed Khan, F., Shoaib Ali, M. y Kakar, M. (2019). Bayesian

game-based user behavior analysis for spectrum mobility in cognitive radios. Physical Communication, 32, 200-208. https://doi.org/10.1016/j.phycom.2018.12.002

Institute of Electrical and Electronics Engineers. (2008). IEEE standard definitions and concepts for dynamic spectrum access: Terminology relating to emerging wireless networks, system functionality, and spectrum management (IEEE Standard 1900.1-2008). https://standards.ieee.org/standard/1900_1-2008.html

Issariyakul, T., Pillutla, L. S. y Krishnamurthy, V. (2009). Tuning radio resource in

an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communications Magazine, 47(7), 57-63. http://doi.org/10.1109/MCOM.2009.5183473

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. http://doi.org/10.1016/j.patrec.2009.09.011

Jang, J.-S. R. (1993). Anfis: Adaptive-network-based fuzzy inference system.

IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. http://doi.org/10.1109/21.256541

Jayaweera, S. y Christodoulou, C. (2011). Radiobots: Architecture, algorithms and realtime reconfigurable antenna designs for autonomous, self-learning future cognitive radios. https://digitalrepository.unm.edu/ece_rpts/36/

Ji, Z. y Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access. Dynamic

spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88-94. http://doi.org/10.1109/MCOM.2007.358854

Jiang, C., Chen, Y. y Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Communications, 13(4), 2176-2188. http://doi.org/10.1109/TWC.2014.022014.131209

Joda, R. y Zorzi, M. (2015). Decentralized heuristic access policy design for two cognitive secondary users under a primary Type-I HARQ process. IEEE Transactions on Communications, 63(11), 4037-4049. http://doi.org/10.1109/TCOMM.2015.2480846

Kalkan, S. (2018). Special topics in deep learning. http://kovan.ceng.metu.edu.tr/~sinan/DL/

Kanodia, V., Sabharwal, A. y Knightly, E. (2004). MOAR: A multi-channel opportunistic auto-rate media access protocol for ad hoc networks. En First International Conference on Broadband Networks (pp. 600-610). IEEE. https://ieeexplore.ieee.org/document/1363848?section=abstract

Kasbekar, G. S. y Sarkar, S. (2010). Spectrum auction framework for access allocation in cognitive radio networks. IEEE/ACM Transactions on Networking, 18(6),1841-1854. http://doi.org/10.1109/TNET.2010.2051453

Kaur, A., Kaur, A. y Sharma, S. (2018). PSO based multiobjective optimization for

parameter adaptation in CR based IoTs. En 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT). IEEE. http://doi.org/10.1109/CIACT.2018.8480298

Kaya, T. y Kahraman, C. (2010). Multicriteria renewable energy planning using

an integrated fuzzy Vikor & AHP methodology: The case of Istanbul. Energy,

(6), 2517-2527. https://doi.org/10.1016/j.energy.2010.02.051

Keller, J. M., Liu, D. y Fogel, D. B. (2016). Fundamentals of computational intelligence:Neural networks, fuzzy systems, and evolutionary computation. IEEE y Wiley. http://doi.org/10.1002/9781119214403

Kennedy, E. P., Condon, M. y Dowling, J. (2003). Torque-ripple minimisation in switched reluctance motors using a neuro-fuzzy control strategy. En Proceedings of the Iasted International Conference on Modelling and Simulation (pp. 106-109). Iasted.

Kibria, M. R., Jamalipour, A. y Mirchandani, V. (2005). A location aware three-

step vertical handoff scheme for 4G/B3G networks. En Globecom ’05. IEEE

Global Telecommunications Conference (vol. 5, pp. 2752-2756). IEEE. http://doi.

org/10.1109/GLOCOM.2005.157826

Kim, H. y Shin, K. G. (2008). Efficient discovery of spectrum opportunities with

MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile

Computing, 7(5), 533-545. http://doi.org/10.1109/TMC.2007.70751

Kim, W., Kassler, A. J., Di Felice, M. y Gerla, M. (2010). Urban-X: Towards distri-

buted channel assignment in cognitive multi-radio mesh networks. En 2010 IFIP

wireless days. IEEE. http://doi.org/10.1109/WD.2010.5657733

Kondareddy, Y. R., Agrawal, P. y Sivalingam, K. (2008). Cognitive radio network setup without a common control channel. En 2008 IEEE Military Communications Conference. IEEE. http://doi.org/10.1109/MILCOM.2008.4753398

Kongsiriwattana, W. y Gardner-Stephen, P. (2017). Eliminating the high stand-by

energy consumption of ad-hoc Wi-Fi. En 2017 IEEE Global Humanitarian Technology Conference. IEEE. http://doi.org/10.1109/GHTC.2017.8239229

Krishnamurthy, S., Thoppian, M., Venkatesan, S. y Prakash, R. (2005). Control

channel based MAC-layer configuration, routing and situation awareness for

cognitive radio networks. En 2005 IEEE Military Communications Conference (vol.1, pp. 455-460). IEEE. http://doi.org/10.1109/MILCOM.2005.1605725

Krogstad, H. E. (2012). TMA 4180. Optimeringsteori karush-kuhn-tucker theorem.https://folk.ntnu.no/hek/Optimering2012/kkttheoremv2012.pdf

Kumar, K., Prakash, A. y Tripathi, R. (2016). Spectrum handoff in cognitive radio networks: A classification and comprehensive survey. Journal of Network and

Computer Applications, 61, 161-188. http://doi.org/10.1016/j.jnca.2015.10.008

Kwok, T.-Y. y Yeung, D.-Y. (1997). Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks, 8(3), 630-645. http://doi.org/10.1109/72.572102

Lahby, M., Leghris, C. y Abdellah, A. (2011). A hybrid approach for network selection in heterogeneous multi-access environments. En 2011 4th IFIP International Conference on New Technologies, Mobility and Security. IEEE. http://doi.org/10.1109/NTMS.2011.5720658

Lee, W.-Y. y Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845-3857. http://doi.org/10.1109/T-WC.2008.070391

Lee, W.-Y. y Akyildiz, I. F. (2011). A spectrum decision framework for cognitive radio networks. IEEE Transactions on Mobile Computing, 10(2), 161-174. http://doi.org/10.1109/TMC.2010.147

Lertsinsrubtavee, A. y Malouch, N. (2016). Hybrid spectrum sharing through adaptive spectrum handoff and selection. IEEE Transactions on Mobile Computing,15(11), 2781-2793. http://doi.org/10.1109/TMC.2016.2517619

Li, X. y Zekavat, S. A. (2008). Traffic pattern prediction and performance investigation for cognitive radio systems. En IEEE Wireless Communications and Networking Conference (pp. 894-899). IEEE. http://doi.org/10.1109/WCNC.2008.163

Li, Y., Shen, H. y Wang, M. (2016). Optimization spectrum decision parameters

in CR using autonomously search algorithm. En 2016 IEEE 13th International

Conference on Signal Processing (pp. 1146-1151). IEEE. http://doi.org/10.1109/ICSP.2016.7878007

Liu, Y. y Tewfik, A. (2014). Primary traffic characterization and secondary transmissions. IEEE Transactions on Wireless Communications, 13(6), 3003-3016. http://doi.org/10.1109/TWC.2014.042914.130861

López Sarmiento, D. A. (2017). Implementación de un modelo predictor para la toma de decisiones en redes inalámbricas de radio cognitiva [tesis doctoral, Universidad Distrital Francisco José de Caldas]. Repositorio de tesis doctoral del Doctorado en Ingeniería de la Universidad Distrital Francisco José de Caldas. https://doctoradoingenieria.udistrital.edu.co/index.php/es/inicio/documentos/repositorio-de-tesis-doctoral/item/488-implementacion-de-un-modelopredictor-para-la-toma-de-decisiones-en-redes-inalambricas-de-radio-cognitiva

López Sarmiento, D. A., Rivas, E. y Gualdrón, O. E. (2015). Elementos fundamentales que componen la radio cognitiva y asignación de bandas espectrales. Información Tecnológica, 26(1), 23-40. http://dx.doi.org/10.4067/S0718-07642015000100004

Ma, L., Shen, C.-C. y Ryu, B. (2007). Single-radio adaptive channel algorithm for

spectrum agile wireless ad hoc networks. En 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 547-558). IEEE.http://doi.org/10.1109/DYSPAN.2007.78

Marinho, J. y Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks,18(2), 147-164. http://doi.org/10.1007/s11276-011-0392-1

Márquez, H., Hernández, C. y Giral, D. (2017). Channel availability prediction in

cognitive radio networks using naive Bayes. Contemporary Engineering Sciences,10(12), 593-605. http://doi.org/10.12988/ces.2017.7758

Masonta, M. T., Mzyece, M. y Ntlatlapa, N. (2013). Spectrum decision in cognitive

radio networks: A survey. IEEE Communications Surveys & Tutorials, 15(3), 1088-1107. http://doi.org/10.1109/SURV.2012.111412.0016

Masters, T. (1993). Practical neural networks recipes in C++. Morgan Kaufmann.

Matinmikko, M., Del Ser, J., Rauma, T. y Mustonen, M. (2013). Fuzzy-logic based framework for spectrum availability assessment in cognitive radio systems.IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184. http://doi.org/10.1109/JSAC.2013.131117

Matinmikko, M., Höyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz,

M., Mämmelä, A., Kiviranta, M. y Kautio, A. (2008). Cognitive radio: An intel-

ligent wireless communication system. VTT Technical Research Centre of Finland.

Meerschaert, M. M. (2013). Mathematical modeling (4.a ed.). Elsevier.

https://doi.org/10.1016/C2010-0-66940-9

Mehbodniya, A., Kaleem, F., Yen, K. K. y Adachi, F. (2012). A fuzzy MADM ranking approach for vertical mobility in next generation hybrid networks. En IV

International Congress on Ultra Modern Telecommunications and Control Systems 2012 (pp. 262-267). IEEE. http://doi.org/10.1109/ICUMT.2012.6459676

Melián-Gutiérrez, L., Zazo, S., Blanco-Murillo, J. L., Pérez-Álvarez, I., García-

Rodríguez, A. y Pérez-Díaz, B. (2013). HF spectrum activity prediction model

based on HMM for cognitive radio applications. Physical Communication, 9, 199-211. http://doi.org/10.1016/j.phycom.2012.09.004

Mir, U., Merghem-Boulahia, L., Esseghir, M. y Gaïti, D. (2011). Dynamic spectrum

sharing for cognitive radio networks using multiagent system. En 2011 IEEE

Consumer Communications and Networking Conference (pp. 658-663). IEEE. http://doi.org/10.1109/CCNC.2011.5766563

Miranda, E. (2001). Improving subjective estimates using paired comparisons. IEEE Software, 18(1), 87-91. http://doi.org/10.1109/52.903173

Mishra, V., Tong, L. C., Chan, S. y Kumar, A. (2012). Energy aware spectrum decision framework for cognitive radio networks. En 2012 International Symposium on Electronic System Design (ISED 2012) (pp. 309-313). IEEE. http://doi.org/10.1109/ISED.2012.65

Mitola III, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio [tesis de doctorado, Royal Institute of Technology]. http://www.diva-portal.org/smash/get/diva2:8730/FULLTEXT01.pdf

Neshat, M., Adeli, A., Masoumi, A. y Sargozae, M. (2011). A comparative study

on Anfis and fuzzy expert system models for concrete mix design. International

Journal of Computer Science Issues, 8(3), 196-210. https://www.researchgate.net/publication/260979471_Comparative_Study_on_Anfis_and_Fuzzy_Expert_System_Models_for_Concrete_Mix_Design

Nisan, N., Roughgarden, T., Tardos, É. y Vazirani, V. V. (2007). Algorithmic game

theory (vol. 1). Cambridge University Press.

Ormond, O., Murphy, J. y Muntean, G.-M. (2006). Utility-based intelligent network selection in beyond 3G systems. En 2006 IEEE International Conference

on Communications (vol. 4, pp. 1831-1836). IEEE. http://doi.org/10.1109/ICC.2006.254986

Oyewobi, S. S. y Hancke, G. P. (2017). A survey of cognitive radio handoff schemes,challenges and issues for industrial wireless sensor networks (CRIWSN). Journal of Network and Computer Applications, 97, 140-156. https://doi.org/10.1016/j.jnca.2017.08.016

Ozger, M. y Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20(1), 157-160. http://doi.org/10.1109/LCOMM.2015.2504103

Palangi, H., Ward, R. y Deng, L. (2016). Distributed compressive sensing: A deep

learning approach. IEEE Transactions on Signal Processing, 64(17), 4504-4518.

http://doi.org/10.1109/TSP.2016.2557301

Pankratev, D. A., Samsonov, A. A. y Stotckaia, A. D. (2019). Wireless data transfer

technologies in a decentralized system. En Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) (pp.620-623). IEEE. http://doi.org/10.1109/EIConRus.2019.8656671

Patil, S. K. y Kant, R. (2014). A fuzzy AHP-Topsis framework for ranking the solu-

tions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Systems with Applications, 41(2), 679-693. http://doi.org/10.1016/j.eswa.2013.07.093

Pattanayak, S., Venkateswaran, P. y Nandi, R. (2013). Artificial intelligence based

model for channel status prediction: A new spectrum sensing technique for cognitive radio. International Journal of Communications, Network and System Sciences,6(3), 139-148. http://doi.org/10.4236/ijcns.2013.63017

Pedraza, L. F., Forero, F. y Páez, I. (2014). Evaluación de ocupación del espectro

radioeléctrico en Bogotá-Colombia. Ingeniería y Ciencia, 10(19), 127-143. http://www.scielo.org.co/pdf/ince/v10n19/v10n19a07.pdf

Pedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E. y Páez, I. (2016).

Ocupación espectral y modelo de radio cognitiva para Bogotá (1.a ed.). Editorial UD.

Petrova, M., Mähönen, P. y Osuna, A. (2010). Multi-class classification of analog

and digital signals in cognitive radios using support vector machines. En 2017th

International Symposium on Wireless Communication Systems (pp. 986-990). IEEE.http://doi.org/10.1109/ISWCS.2010.562450

Petter. (2013). Matlab mex support for Visual Studio 2013. MathWorks. https://www.mathworks.com/matlabcentral/fileexchange/44408-matlab-mex-support-for-visual-studio-2013-and-mbuild

Pham, C., Tran, N. H., Do, C. T., Moon, S. I. y Hong, C. S. (2014). Spectrum han-

doff model based on hidden Markov model in cognitive radio networks. En International Conference on Information Networking (pp. 406-411). IEEE. http://networking.khu.ac.kr/layouts/net/publications/data/Spectrum%20Handoff%20Model%20Based%20on%20Hidden%20Markov%20Model%20in%20Cognitive%20Radio%20Networks.pdf

Pinto, L. R. M. y Correia, L. H. A. (2018). Analysis of machine learning algorithms for spectrum decision in cognitive radios. En 2018 15th International Symposium on Wireless Communication Systems (ISWCS) (pp. 1-6). IEEE. http://doi.org/10.1109/ISWCS.2018.849106

Pla, V., Vidal, J.-R., Martinez-Bauset, J. y Guijarro, L. (2010). Modeling and characterization of spectrum white spaces for underlay cognitive radio networks.En 2010 IEEE International Conference on Communications. IEEE. http://doi.org/10.1109/ICC.2010.5501788

Powell, V. y Lehe, L. (s. f.). Principal component analysis explained visually. https://setosa.io/ev/principal-component-analysis/

Rahimian, N., Georghiades, C. N., Shakir, M. Z. y Qaraqe, K. A. (2014). On the

probabilistic model for primary and secondary user activity for OFDMA-based

cognitive radio systems: Spectrum occupancy and system throughput perspectives. IEEE Transactions on Wireless Communications, 13(1), 356-369. http://doi.org/10.1109/TWC.2013.120213.130658

Ramírez Pérez, C. y Ramos Ramos, V.-M. (2010). Handover vertical: un problema de toma de decisión múltiple. En Congreso Internacional sobre Innovación y Desarrollo Tecnológico (Ciindet) (pp. 727-733).

Ramírez Pérez, C. y Ramos Ramos, V.-M. (2013). On the effectiveness of multi-criteria decision mechanisms for vertical handoff. En IEEE 27th International Conference on Advanced Information Networking and Applications (pp. 1157-1164). IEEE.http://doi.org/10.1109/AINA.2013.114

Ramzan, M. R., Nawaz, N., Ahmed, A., Naeem, M., Iqbal, M. y Anpalagan, A.

(2017). Multi-objective optimization for spectrum sharing in cognitive radio networks: A review. Pervasive and Mobile Computing, 41, 106-131.

https://doi.org/10.1016/j.pmcj.2017.07.01

Rizk, Y., Awad, M. y Tunstel, E. W. (2018). Decision making in multiagent systems: A survey. IEEE Transactions on Cognitive and Developmental Systems, 10(3), 514-529. http://doi.org/10.1109/TCDS.2018.2840971

Rodriguez, A. B., Ramirez, L. J. y Chahuan, J. (2015). Nueva generación de heurísticas para redes de fibra óptica WDM (wavelength división multiplexing) bajo tráfico dinamico. Información Tecnológica, 26(5), 135-142. http://dx.doi.org/10.4067/S0718-07642015000500017

Rodríguez-Colina, E., Ramirez, P. y Carrillo, C. E. (2011). Multiple attribute dynamic spectrum decision making for cognitive radio networks. En 2011 8th International Conference on Wireless and Optical Communications Networks. IEEE. http://doi.org/10.1109/WOCN.2011.587296

Roy, A., Midya, S., Majumder, K., Phadikar, S. y Dasgupta, A. (2017). Optimized

secondary user selection for quality of service enhancement of two-tier multi-

user cognitive radio network: A game theoretic approach. Computer Networks,

, 1-18. http://doi.org/10.1016/j.comnet.2017.05.002

Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26. http://doi.org/10.1016/0377-2217(90)90057-I

Sadanandan, A. (2011). CSVIMPORT. https://www.mathworks.com/matlabcen-

tral/fileexchange/23573-csvimport

Safavian, S. R. y Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660-674. http://doi.org/10.1109/21.97458

Salcedo, D. (2006). Predicción del IBC utilizando redes neuronales con wavelets [tesis depregrado, Universidad de los Andes (Venezuela)]. http://bdigital.ula.ve/stora-ge/pdftesis/pregrado/tde_arquivos/8/TDE-2007-05-30T05:58:36Z-288/Publico/Dulmar%20Salcedo.pdf

Saleem, Y. y Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network and Computer Applications, 43, 1-16. https://doi.org/10.1016/j.jnca.2014.04.001

Salgado, C. (2014). Algoritmo multivariable para la selección dinámica del canal de backup en redes de radio cognitiva basado en el método fuzzy analitical hierarchical process [tesis de maestría, Universidad Distrital Francisco José de Caldas].

Salgado, C., Márquez, H. y Gómez, V. (2016). Técnicas inteligentes en la asignación de espectro dinámica para redes inalámbricas cognitivas. Tecnura, 20(49), 135-153. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a09

Salgado, C., Mora, S. y Giral, D. (2016). Collaborative algorithm for the spectrum allocation in distributed cognitive networks. International Journal of Engineering and Technology, 8(5), 2288-2299. http://doi.org/10.21817/ijet/2016/v8i5/160805091

Samui, P. (2015). Handbook of research on advanced computational techniques for simulation-based engineering. IGI Global.

Sarmiento, D. A. L., Rivas, E. y García, N. Y. G. (2016). Implementing a simulator

of wireless cognitive radio network primary users. International Journal of Applied Engineering Research, 11(2), 967-975.

Siddique, N. y Adeli, H. (2013). Computational intelligence: Synergies of fuzzy

logic, neural networks and evolutionary computing. Wiley. http://doi.org/10.1002/9781118534823

Song, Q. y Jamalipour, A. (2005). A network selection mechanism for next generation networks. En 2005 IEEE International Conference on Communications (vol. 2,pp. 1418-1422). IEEE. http://doi.org/10.1109/ICC.2005.1494578

Soto, J., Castillo, O. y Soria, J. (2010). Chaotic time series prediction using ensembles of Anfis. En O. Castillo, J. Kacprzyk y W. Pedrycz (eds.), Soft computing for intelligent control and mobile robotics (pp. 287-301). Springer. http://doi.org/10.1007/978-3-642-15534-5_18

Sriram, K. y Whitt, W. (1986). Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 4(6), 833-846. http://doi.org/10.1109/JSAC.1986.1146402

Stevens-Navarro, E., Gallardo-Medina, R., Pineda-Rico, U. y Acosta-Elias, J. (2012). Application of MADM method Vikor for vertical handoff in heterogeneous wireless networks. Ieice Transactions on Communications, 95(2), 599-602. http://doi.org/10.1587/transcom.E95.B.599

Stevens-Navarro, E., Lin, Y. y Wong, V. W. S. (2008). An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 57(2), 1243-1254. http://doi.org/10.1109/TVT.2007.907072

Stevens-Navarro, E., Martinez-Morales, J. D. y Pineda-Rico, U. (2012). Evaluation

of vertical handoff decision algorightms based on MADM methods for heterogeneous wireless networks. Journal of Applied Research and Technology,

(4), 534-548. https://core.ac.uk/download/pdf/27220545.pdf

Stevens-Navarro, E. y Wong, V. W. S. (2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. En 2006 IEEE 63rd Vehicular Technology Conference (vol. 2, pp. 947-951). IEEE. http://doi.org/10.1109/VETECS.2004.138897

Sun, B., Feng, H., Chen, K. y Zhu, X. (2016). A deep learning framework of quantized compressed sensing for wireless neural recording. IEEE Access, 4, 5169-5178. http://doi.org/10.1109/ACCESS.2016.2604397

Sundermeyer, M., Ney, H. y Schlüter, R. (2015). From feedforward to recurrent

LSTM neural networks for language modeling. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(3), 517-529. http://doi.org/10.1109/TASLP.2015.2400218

Sutton, R. S. y Barto, A. G. (1998). Reinforcement learning: An introduction.

IEEE Transactions on Neural Networks, 9(5), 1054. http://doi.org/10.1109/TNN.1998.712192

Tabassam, A. A. y Suleman, M. U. (2012). Game theory in wireless and cogniti-

ve radio networks: Coexistence perspective. En 2012 IEEE Symposium on Wire-

less Technology and Applications (ISWTA 2012) (pp. 177-181). IEEE. http://doi.org/10.1109/ISWTA.2012.6373837

Tahir, M., Hadi Habaebi, M. e Islam, M. R. (2017). Novel distributed algorithm for

coalition formation for enhanced spectrum sensing in cognitive radio networks.

AEU: International Journal of Electronics and Communications, 77, 139-148. http://doi.org/https://doi.org/10.1016/j.aeue.2017.04.033

Taj, M. I. y Akil, M. (2011). Cognitive radio spectrum evolution prediction using

artificial neural networks based multivariate time series modelling. En 17th European Wireless 2011. Sustainable Wireless Technologies. VDE. https://ieeexplore.ieee.org/document/5898018

Tanino, T., Tanaka, T. e Inuiguchi, M. (eds.). (2003). Multi-objectiven programming and goal programming: Theory and applications (vol. 21). Springer.

Tragos, E. Z., Zeadally, S., Fragkiadakis, A. G. y Siris, V. A. (2013). Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Com-

munications Surveys & Tutorials, 15(3), 1108-1135. http://doi.org/10.1109/SURV.2012.121112.00047

Trigui, E., Esseghir, M. y Merghem-Boulahia, L. (2012). Multi-agent systems negotiation approach for handoff in mobile cognitive radio networks. En 2012 5th International Conference on New Technologies, Mobility and Security (NTMS 2012). IEEE. http://doi.org/10.1109/NTMS.2012.6208687

Tripathi, S., Upadhyay, A., Kotyan, S. y Yadav, S. (2019). Analysis and comparison

of different fuzzy inference systems used in decision making for secondary users in cognitive radio network. Wireless Personal Communications, 104(3), 1175-1208. http://doi.org/10.1007/s11277-018-6075-9

Tsiropoulos, G. I., Dobre, O. A., Ahmed, M. H. y Baddour, K. E. (2016). Radio

resource allocation techniques for efficient spectrum access in cognitive radio

networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847. http://doi.org/10.1109/COMST.2014.2362796

Tumuluru, V. K., Wang, P. y Niyato, D. (2010). A neural network based spectrum

prediction scheme for cognitive radio. En 2010 IEEE International Conference on

Communications. IEEE. http://doi.org/10.1109/ICC.2010.5502348

Uyanik, G. S., Canberk, B. y Oktug, S. (2012). Predictive spectrum decision mechanisms in cognitive radio networks. En 2012 IEEE Globecom Workshops. http://doi.org/10.1109/GLOCOMW.2012.6477703

Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suarez, M. y Robert, F. (2010).

Survey on spectrum utilization in Europe: Measurements, analyses and observations. En 2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE. http://doi.org/10.4108/ICST.CROWNCOM2010.922

Valero Verdú, S. y Senabre Blanes, C. (2013). Aplicación de un modelo de red neuronal no supervisado a la clasificación de consumidores eléctricos. Club Universitario.

Vásquez, H., Hernández, C. y Páez, I. (2015). Proactive spectrum handoff model

with time series prediction. International Journal of Applied Engineering Research,10(21), 42.259-42.264.

Vasudeva, A. y Sood, M. (2018). Survey on sybil attack defense mechanisms in wireless ad hoc networks. Journal of Network and Computer Applications, 120, 78-118. http://doi.org/https://doi.org/10.1016/j.jnca.2018.07.006

Veeriah, V., Zhuang, N. y Qi, G.-J. (2015). Differential recurrent neural networks

for action recognition. En 2015 IEEE International Conference on Computer Vision (ICCV). IEEE. http://doi.org/10.1109/ICCV.2015.46

Velmurugan, T. (2014). Performance based analysis between k-Means and fuzzy C-Means clustering algorithms for connection oriented telecommunication data. Applied Soft Computing, 19, 134-146. http://doi.org/10.1016/j.asoc.2014.02.011

Wang, B. y Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5-23. http://doi.org/10.1109/JSTSP.2010.209321

Wang, C.-W. y Wang, L.-C. (2009). Modeling and analysis for proactive-decision

spectrum handoff in cognitive radio networks. En 2009 IEEE International Conference on Communications. IEEE. http://doi.org/10.1109/ICC.2009.5199189

Wang, J., Ghosh, M. y Challapali, K. (2011). Emerging cognitive radio applications: A survey. IEEE Communications Magazine, 49(3), 74-81. http://doi.org/10.1109/MCOM.2011.5723803

Wang, L.-C., Wang, C.-W. y Adachi, F. (2011). Load-balancing spectrum decision

for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(4), 757-769. http://doi.org/10.1109/JSAC.2011.110408

Wang, L.-C., Wang, C.-W. y Chang, C.-J. (2012). Modeling and analysis for spectrum handoffs in cognitive radio networks. IEEE Transactions on Mobile Computing, 11(9), 1499-1513. http://doi.org/10.1109/TMC.2011.155

Wang, P., Ansari, J., Petrova, M. y Mähönen, P. (2016). CogMAC+: A decentralized

MAC protocol for opportunistic spectrum access in cognitive wireless networks.

Computer Communications, 79, 22-36. http://doi.org/https://doi.org/10.1016/j.comcom.2015.09.016

Wang, X. Y., Wong, A. y Ho, P.-H. (2010). Dynamically optimized spatiotemporal

prioritization for spectrum sensing in cooperative cognitive radio. Wireless Networks, 16(4), 889-901. http://doi.org/10.1007/s11276-009-0175-

Wei, Q., Farkas, K., Prehofer, C., Mendes, P. y Plattner, B. (2006). Context-aware

handover using active network technology. Computer Networks, 50(15), 2855-

http://doi.org/10.1016/j.comnet.2005.11.002

Wei, Y., Li, X., Song, M. y Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. En International Conference on Natural Computation (vol. 5, pp. 197-201). IEEE. http://doi.org/10.1109/ICNC.2008.504

Willkomm, D., Machiraju, S., Bolot, J. y Wolisz, A. (2008). Primary users in cellular

networks: A large-scale measurement study. En 2008 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 401-411). IEEE. http://doi.org/10.1109/DYSPAN.2008.48

Winston, O., Thomas, A. y Okelloodongo, W. (2013). Optimizing neural network

for TV idle channel prediction in cognitive radio using particle swarm optimization. En Fifth International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN 2013) (pp. 25-29). IEEE. http://doi.org/10.1109/CICSYN.2013.68

Woods, W. A. (1986). Important issues in knowledge representation. Proceedings of the IEEE, 74(10), 1322-1334. http://doi.org/10.1109/PROC.1986.13634

Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.

Wu, Y., Yang, Q., Liu, X. y Kwak, K. S. (2016). Delay-constrained optimal transmission with proactive spectrum handoff in cognitive radio networks. IEEE

Transactions on Communications, 64(7), 2767-2779. http://doi.org/10.1109/TCOMM.2016.2561936

Xenakis, D., Passas, N. y Merakos, L. (2014). Multi-parameter performance analysis for decentralized cognitive radio networks. Wireless Networks, 20(4), 787-803. https://doi.org/10.1007/s11276-013-0635-4

Xing, X., Jing, T., Cheng, W., Huo, Y. y Cheng, X. (2013). Spectrum prediction in

cognitive radio networks. IEEE Wireless Communications, 20(2), 90-96. http://doi.org/10.1109/MWC.2013.6507399

Xing, X., Jing, T., Huo, Y., Li, H. y Cheng, X. (2013). Channel quality prediction based on Bayesian inference in cognitive radio networks. En 2013 Proceedings IEEE Infocom (pp. 1465-1473). IEEE. http://doi.org/10.1109/INFCOM.2013.6566941

Xu, G. y Lu, Y. (2006). Channel and modulation selection based on support vector machines for cognitive radio. En 2006 IEEE International Conference on

Wireless Communications, Networking and Mobile Computing. IEEE. http://doi.org/10.1109/WiCOM.2006.181

Yang, S.-F. y Jung-ShyrWu. (2008). A IEEE 802.21 handover design with QOS provision across WLAN and WMAN. En 2008 International Conference on Communications, Circuits and Systems (pp. 548-552). IEEE. http://doi.org/10.1109/ICC-CAS.2008.4657833

Yang, S.-J. y Tseng, W.-C. (2013). Design novel weighted rating of multiple attributes scheme to enhance handoff efficiency in heterogeneous wireless networks. Computer Communications, 36(14), 1498-1514. http://doi.org/10.1016/j.comcom.2013.06.005

Yao, Y., Hu, Q., Yu, H. y Grzymala-Busse, J. W. (eds.). (2015). Rough sets, fuzzy sets,data mining, and granular computing (vol. 2639). Tianjin, China: Springer.

Yarkan, S. y Arslan, H. (2007). Binary time series approach to spectrum prediction for cognitive radio. En 2007 IEEE 66th Vehicular Technology Conference (pp. 1563-1567). IEEE. http://doi.org/10.1109/VETECF.2007.332

Yifei, W., Yinglei, T., Li, W., Mei, S. y Xiaojun, W. (2013). QoS provisioning energy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101. http://doi.org/10.1109/CC.2013.6723882

Yonghui, C. (2010). Study of the Bayesian networks. En 2010 International Conference on E-Health Networking, Digital Ecosystems and Technologies (vol. 1, pp. 172-174).IEEE. http://doi.org/10.1109/EDT.2010.5496612

Yoon, K. y Hwang, C.-L. (1995). Multiple attribute decision making: An introduction (vol. 104). Sage.

Youssef, M. E., Nasim, S., Wasi, S., Khisal, U. y Khan, A. (2018). Efficient cooperative spectrum detection in cognitive radio systems using wavelet fusion. En 2018 International Conference on Computing, Electronic and Electrical Engineering. IEEE.

http://doi.org/10.1109/ICECUBE.2018.8610981

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. http://doi.org/10.1016/S0019-9958(65)90241-X

Zapata, J. A., Arango, M. D. y Adarme, W. (2012). Applying fuzzy extended analytical hierarchy (Feahp) for selecting logistics software. Ingeniería e Investigación,32(1), 94-99. http://www.revistas.unal.edu.co/index.php/ingeinv/article/view/28521/33581

Zapata Muñoz, D. F. y Anzola Rojas, C. (2016). Diseño de un algoritmo MAC para

la asignación equitativa de espectro en redes inalámbricas de radio cognitiva [tesis de pregrado, Universidad Distrital Francisco José de Caldas]. RIUD. http://repository.udistrital.edu.co/bitstream/11349/3754/1/AnzolaRojasCamilo2016.pdf

Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M. y Nallanathan, A. (2017). Sensing

time optimization and power control for energy efficient cognitive small cell

with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730-743. http://doi.org/10.1109/TWC.2016.2628821

Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous networks. En 2004 IEEE Wireless Communications and Networking Conference (vol. 4,pp. 653-658). IEEE. http://doi.org/10.1109/WCNC.2004.1311263

Zhang, Y., Tay, W. P., Li, K. H., Esseghir, M. y Gaïti, D. (2016). Opportunistic spectrum access with temporal-spatial reuse in cognitive radio networks. En IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 3661-3665).IEEE. https://sigport.org/documents/opportunistic-spectrum-access-tempo-ral-spatial-reuse-cognitive-radio-networks

Zhao, Y., Mao, S., Neel, J. O. y Reed, J. H. (2009). Performance evaluation of cognitive radios: Metrics, utility functions, and methodology. Proceedings of the IEEE,97(4), 642-658. http://doi.org/10.1109/JPROC.2009.2013017

Zheng, H. y Cao, L. (2005). Device-centric spectrum management. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 56-65). IEEE. http://doi.org/10.1109/DYSPAN.2005.1542617

Descargas

Publicado

November 30, 2020

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Detalles sobre el formato de publicación disponible: PDF

PDF

ISBN-13 (15)

978-958-787-462-4

Detalles sobre el formato de publicación disponible: Formato físico

Formato físico

ISBN-13 (15)

978-958-787-245-3

Dimensiones físicas

Loading...