Comprensión y aprendizaje en matemáticas:perspectivas semióticas seleccionadas
Palabras clave:
Matemáticas - Enseñanza, Matemáticas - Enseñanza - Problemas, ejercicios, etc., Geometria - Enseñanza, Semiótica (Matemáticas)Sinopsis
En 2005, la revista Relime del Cinvestav, México, decidió ofrecer a sus lec- tores un panorama mundial lo más completo posible de las investigaciones sobre semiótica en Matemática Educativa. Al solicitarnos a Luis Radford y a mí fungir como editores (en Colombia, compiladores), elegimos de común acuer- do los autores que, en aquel periodo, consideramos los de mayor influencia y de mayor representación a nivel mundial (Radford, D’Amore, 2006). Con respecto a dos nombres, nos pusimos inmediatamente de acuerdo: Raymond Duval y Adalira Sáenz-Ludlow. Ambos aceptaron y enviaron inmediatamente sus importantes contribuciones.
Cuando el DIE (Doctorado Interinstitucional en Educación) de la Universidad Distrital Francisco José de Caldas le propuso a nuestro énfasis de Educación Matemática publicar un libro que concentrara lo más relevante de las investigaciones en nuestro campo, los docentes del doctorado elegimos sin dudarlo a los mismos, como autores de la primera publicación. Así que solicitamos a cada uno tres artículos fuertemente representativos tanto de sus propias investigaciones específicas como del panorama mundial. Al profesor Carlos Eduardo Vasco Uribe se le encomendó comentar los trabajos de Adalira Sáenz-Ludlow, y a mí los de Raymond Duval.
Fue así como nació este libro, destinado al estudio, investigación y preparación profesional tanto de los doctorandos de nuestro énfasis, como de los estudiosos de todo el mundo. Dados sus contenidos trascendentales y ricos, el libro podría incluso ser leído por estudiantes de maestría en Didáctica de la matemática, por los colegas profesores de otras universidades y profesores de todos los niveles escolares que deseen tener una mayor competencia en estos importantes temas. Este es el propósito de los autores de este complejo pero interesante e iluminador volumen. Un libro de base para quienes deseen dar los primeros pasos en el estudio de la semiótica en los procesos de comprensión de aquel maravilloso mundo que involucra la enseñanza y el aprendizaje de la matemática. (...)
Capítulos
-
Prólogo
-
I. Las condiciones cognitivas del aprendizaje de la geometría. Desarrollo de la visualización, diferenciaciones de los razonamientos, coordinación de sus funcionamientos
-
II. Un análisis cognitivo de problemas de comprensión en el aprendizaje de las matemáticas
-
III. El funcionamiento cognitivo y la comprensión de los procesos matemáticos de la prueba
-
IV. Metáfora y diagramas numéricos en la actividad aritmética de un grupo de estudiantes de cuarto grado
-
V. Juegos de interpretación en el aula: construcción evolutiva de significados matemáticos
-
VI. Una cadena colectiva de significación en la conceptualización de fracciones
-
VII. Comentarios a los artículos de Raymond Duval
-
VIII. Comentarios a los artículos de Adalira Sáenz-Ludlow
-
IX. Los autores
Descargas
Referencias
Écriture et compréhension: pourquoi faire écrire des textes de démonstration par les élèves? En E. Barbin, R. Duval, I. Giogutti et al. (eds.), Produire et lire des textes de démonstration. París: Ellipses.
Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie:développement de la visualisation, différenciation des raisonnements et coordination de leurs fonctionnements. Annales de Didactique et de Sciences Cognitives, 10, 5-53.
Duval, R. (2015). Figures et visualisation géométrique: «voir» en géométrie. Dans J. Baillé (dir.), Du mot au concept. Figur, p.147-182. Grenoble: Presses universitaires de Grenoble.
Duval, R. y Egret, M.A. (1989). L’organisation déductive du discours: interactions entre structure profonde et structure de surface dans l’accès à la démonstration. Annales de Didactique et de Sciences Cognitives, 2, 41- 65.
Egret, M.A. y Duval, R. (1989). Comment une classe de quatrième a pris conscience de ce qu’est une démarche de démonstration. A nnales de Didactique
et de Sciences Cognitives, 2, 65-89.
Johnson-Laird, P.N. (1983). Mental models. Nueva York: Cambridge University Press.
Lakatos, I. (1976) Proof and refutations: The logic of mathematical discovery.Nueva York: Cambridge University Press.
Leibniz, G.W. (1969). Essais de théodicée. París: Garnier-Flammarion. (Obra original publicada en francés en 1710).
Luengo, V. (1997). Cabri-Euclide: un micro-monde de preuve intégrant la réfutation. Principes didactiques et informatiques. Réalisation. Grenoble: Laboratoire Leibniz, Université Joseph Fourier.
Piaget, J. (1967a). Biologie et connaissance. París: Gallimard.
Piaget, J. (1967b). Le jugement et le raisonnement chez l’enfant. Neuchâtel: Delachaux et Niestlé.
Piaget, J. e Inhelder, B. (1955). De la logique de l’enfant à la logique de l’adolescent. París: P.U.F.
Rips, L.J. (1988). Deduction. En R.J. Sternberg y E.E. Smith (eds.), The psychologyof human thought (pp. 116-152). Nueva York: Cambridge University Press.
Schoenfeld, A.H. (1986). On having and using geometric knowledge. En J. Hiebert (ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 225-264). Hillsdale, NJ: Lawrence Erlbaum Associates.
Toulmin, S.E. (1958). The use of arguments. Nueva York: Cambridge University Press.
Bauersfeld, H. (1995). “Language games” in mathematics classrooms: Theirfunction and their effect. En P. Cobb y H. Bauersfeld (eds.), The emergence of mathematical meanings (pp. 271-291). Hillsdale, Nueva Jersey: Lawrence Erlbaum Associates.
Cobb, P. (2000a) Conducting teaching experiments in collaboration with teachers. En A.E. Kelly y R.A. Lesh (eds.), Handbook of research design in mathematics and science education (pp. 307-333). Mahwah, NJ: Lawrence Erlbaum.
Cobb, P. (2000b). From representations to symbolizing: Introductory commentson semiotics and mathematics learning. En P. Cobb, E. Yackel y K. McClain (eds.),
Symbolizing and communicating in mathematics classrooms (pp. 17-36). Mahway,NJ: Lawrence Erlbaum Associates.
Cobb, P. y Steffe, L.P. (1983). The constructivist researcher as teacher and modelbuilder. Journal for Research in Mathematics Education, 14(2), 83-94.
Cobb, P. y Yackel, E. (1995). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. En D.T. Owens, M.K. Reed y G.M. Millsaps (eds.), Proceedings of the Seventeenth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 3-29). Columbus, OH: ERIC/CSMEE.
Confrey, J. (1988). Multiplication and splitting: Their role in understanding exponential functions. En M. Behr, C. LaCampagne y M. Wheeler (eds.), Proceedings of the Tenth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 250-259). DeKalb, IL: Northern Illinois University.
Confrey, J. (1994). Splitting, similarity, and rate of change: A new approach tomultiplication and exponential functions. En G. Harel y J. Confrey (eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 291-330). Albany, NY: State University of New York Press.
Corrington, R.S. (1993). An introduction to C.S. Peirce. Boston: Rowman & Littlefield Publishers.
Ernest, P. (2002, julio). A semiotic perspective of mathematical activity. Ponencia presentada en el Grupo de Discusión “Semiotics in Mathematics Education Research” en 26th Conference of the International Group for the Psychology of Mathematics Education, Norwich, UK.
Forman, E.A. y Cazden, C. (1985). Exploring Vygotskian perspectives in education: The cognitive value of peer interaction. En J.V. Wertsch (ed.), Culture communication and cognition: Vygotskian perspectives (pp. 323-347). Nueva York: Cambridge University Press.
Godino, J. y Batanero, C. (2003). Semiotic functions in teaching and learning mathematics. En M. Anderson, A. Sáenz-Ludlow, S. Zellweger y V. Cifarelli (eds.),
Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 149-168). Ottawa, Ont.: Legas.
Heath, T.L. (1956). The thirteen books of Euclid’s Elements (traducción del texto de Heiberg, con introducción y comentario; 2a ed. revisada). Nueva York: Dover Publications.
McLellan, J.A. y Dewey, J. (1908). The psychology of number and its applicationsto methods of teaching arithmetic. Nueva York: D. Appleton and Company.
Moreno-Armella, L.E. y Waldegg, G.C. (2000). An epistemological history of number and variation. En V. Katz (ed.), Using history to teach mathematics: An international perspective (pp. 183-190). MAA Notes 51. Washington, DC: The Mathematical Association of America.
Morris, C.V. (1938). Writings on the general theory of signs. Chicago: Chicago University Press.
O’Halloran, K.L. (2003). Implications of mathematics as a multisemiotic discourse. En M. Anderson, A. Sáenz-Ludlow, S. Zellweger y V. Cifarelli (eds.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing(pp. 185-214). Ottawa, Ont.: Legas.
Otte, M. (2001, julio). Mathematical epistemology from a semiotic point of view. Ponencia presentada en el Grupo de Discusión “Semiotics in Mathematics Education Research” en 25th International Conference for the Psychology of Mathematics Education, Utrecht, The Netherlands.
Otte, M. (2006). Mathematical epistemology from a Peircean semiotic point of view. Educational Studies in Mathematics, 61(1-2), 11-38.
Parmentier, R.J. (1985). Signs’ place in medias res: Peirce’s concept of semiotic mediation. En E. Mertz y R.J. Parmentier (eds.), Semiotic mediation: Sociocultural and psychological perspectives (pp. 23-48). Orlando, FL: Academic Press.
Peirce, C.S. (1867). Questions concerning certain faculties claimed by man. En J. Hoopes (ed.), Peirce on signs (1991, pp. 34-53). Chapel Hill: The University of North Carolina Press.
Peirce, C. S. (1893-1913). The essential Peirce: Selected philosophical writings (vol. 2; editado por Peirce Edition Project). Bloomington, IN: Indiana University Press.
Peirce, C.S. (1903). The three normative sciences. The essential Peirce (vol. 2, 1893-1913; editado por Peirce Edition Project, pp. 196-207). Bloomington, IN: Indiana University Press.
Peirce, C.S. (1906a). Prolegomena to an apology for pragmaticism. En J. Hoopes (ed.), Peirce on signs (pp. 249-252). Chapel Hill, North Carolina: The University of North Carolina Press.
Peirce, C.S. (1906b). Pragmatism in retrospect: A last formulation. En J. Buchler (ed.), Philosophical writings of Peirce (1955) (pp. 269-289). Nueva York: Dover Publications.
Peirce, C.S. (1908). Excerpts from letters to Lady Welby. En Peirce Edition Project (ed.), The Essential Peirce (vol. 2, pp. 478-491). Bloomington, IN: Indiana University Press.
Peirce, C.S. (1931). Collected Papers, vol. II, Elements of Logic. (editado por C.Hartshorne y P. Weiss). Cambridge, Massachusetts: Belknap Press/Harvard University Press.
Peirce, C.S. (1931-1966). Collected Papers (CP) (editado por C. Hartshorne y P. Weiss, vols. 1-6, y A.W. Burks, vols. 7-8). Cambridge, Massachusetts: Belknap Press/Harvard University Press.
Peirce, C.S. (1956). The essence of mathematics. En J.R. Newman (ed.), The World of Mathematics, (vol. 3, pp. 1773-1783). Nueva York: Simon and Schuster.
Peirce, C.S. (1976). The new elements of mathematics (NEM), (vol. 4, Mathematical Philosophy, editado por Carolyn Eisele). The Hague: Mouton and Co. B. V. Publishers.
Peirce, C.S. (1978). Écrits sur le signe (elección de textos, traducción de G. Deledalle). París: Seuil.
Piaget, J. (1970). Genetic epistemology. Nueva York: Columbia University Press.
Sáenz-Ludlow, A. (1997). Iconic means in children’s understanding of the division algorithm. En C.W. Spinks y J. Deely (eds.), Semiotics (pp. 118-130). Toronto, Canada: Peter Lang.
Sáenz-Ludlow, A. (2002). Sign as a process of representation: A Peircean perspective. En F. Hitt (ed.), Representations and mathematics visualization (pp. 277-296). México, D.F.: Departamento de Matemática Educativa, Cinvestav-IPN.
Sáenz-Ludlow, A. y Walgamuth, C. (2001). Question-and diagram-mediated mathematical activity: A case in a fourth-grade classroom. Focus on Learning Problems in Mathematics, 23(4), 27-40.
Sebeok, T. (1995). Indexicality. En K.L. Ketner (ed.), Peirce and contemporary thought (pp. 222-242). Nueva York: Fordham University Press.
Skemp, R. (1987). The psychology of learning mathematics. Hillsdale, NJ: Lawrence Erlbaum Associates.
Steffe, L.P. (1983). The teaching-experiment methodology in a constructivist research program. En M. Zweng, T. Green, J. Kilpatrick, H. Pollak y
M. Suydam (eds.), Proceedings of the Fourth International Congress on Mathematical Education (pp. 469-471). Boston, Massachusetts: Birkhäuser.
Steffe, L.P. y Cobb, P. (1988). Construction of arithmetic meanings and strategies. Nueva York, New York: Springer-Verlag.
Steffe, L.P. y Thompson, P. (2000). Teaching experiment methodology: Underlying principles and essential elements. En A. Kelly y R. Lesh (eds.), Handbook of research design in mathematics and science education (pp. 267-306). Mahwah, NJ: Lawrence Erlbaum.
Steffe, L.P., von Glasersfeld, E., Richards, J. y Cobb, P. (1983). Children’s counting types: Philosophy, theory and applications. Nueva York: Praeger.
Thom, R. (1973). Modern mathematics: Does it exist? En G. Howson (ed.), Proceedings of the Second International Congress on Mathematical Education (pp. 194- 212). Cambridge: Cambridge University Press.
Van Oers, B. (2001). Educational forms of initiation in mathematical culture. Educational Studies in Mathematics, 46(1), 59-85.
Vygotsky, L.S. (1986). Thought and language (edición revisada y editada nuevamente por A. Kozulin). Cambridge, Massachusetts: The MIT Press. (Obra original publicada póstumamente en ruso en 1934 y en inglés en 1962).
Wertsch, J.V. (1981). The concept of activity in Soviet psychology. Armonk, NY:Sharpe.
Wertsch, J.V. (1985). Vygotsky and the social formation of the mind. Cambridge,Massachusetts: Harvard University Press.
Wilder, R. (1968). Evolution of mathematical concepts. Milton Keynes, England:The Open University Press.
Wiley, N. (1994). The semiotic self. Chicago, Illinois: The University of Chicago Press.
Yackel, E. y Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458-477.
Bakhtin, M. (1986). The problem of speech genres. En C. Emerson y M. Holquist (eds.), Speech genres and other late essays (pp. 60-102). Austin, TX: University of Texas Press.
Barnes, D. (1992). From communication to curriculum (2a ed.). Portsmouth, NH:Boynton/Cook Publishers. Bauersfeld, H. (1995). “Language games” in mathematics classrooms: Their function and their effect. En P. Cobb y H. Bauersfeld (eds.),
The emergence of mathematical meanings (pp. 271-291). Hillsdale, Nueva Jersey:Lawrence Erlbaum Associates.
Blumer, H. (1995). Symbolic interactionism. Berkeley, California: University of California Press.
Bourdieu, P. (1999). Language and symbolic power (trad. G. Raymond y M.Adamson). Cambridge, MA: Harvard University Press.
Buchler, J. (1955). Philosophical writings of Peirce. Nueva York: Dover Publications.
Cajori, F. (1974). A history of mathematical notations: Notations in elementary mathematics (vol. 1). La Salle, IL: Open Court.
Cobb, P. (2000a) Conducting teaching experiments in collaboration with teachers. En A.E. Kelly y R.A. Lesh (eds.), Handbook of research design in mathematics and science education (pp. 307-333). Mahwah, NJ: Lawrence Erlbaum.
Cobb, P. (2000b). From representations to symbolizing: Introductory comments on semiotics and mathematics learning. En P. Cobb, E. Yackel y K. McClain (eds.), Symbolizing and communicating in mathematics classrooms (pp. 17-36). Mahway, NJ: Lawrence Erlbaum Associates.
Cobb, P. y Yackel, E. (1995). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. En D.T. Owens, M.K. Reed y G.M. Millsaps (eds.), Proceedings of the Seventeenth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 3-29). Columbus, OH: ERIC/CSMEE.
Dewey, J. (1997/1916). Democracy and education: An introduction to the philosophy of education. New York: The Free Press.
Dewey, J. (1963/1938). Experience and education. Nueva York: Collier.
Dörfler, W. (2000). Means for meaning. En P. Cobb, E. Yackel y K. McClain (eds.), Symbolizing and communicating in mathematics classrooms (pp. 99-131). Hillsdale, NJ: Lawrence Erlbaum.
Duval, R. (1999a). Semiosis y pensamiento humano: Registros semióticos y aprendizajes intelectuales (trad. M. Vega Restrepo). Cali: Artes Gráficas Univalle.
Duval, R. (Ed.) (1999b). Conversion et articulation des représentations analogiques. Séminaire I.U.F.M., D.R.E.D., Villeneuve d’Ascq.
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103-131.
Edwards, D. y Mercer, N. (1987). Common knowledge: The development of understanding in the classroom. Nueva York: Routledge.
Ellerton, N. y Clements, M. (1991). Mathematics in language: A review of language factors in mathematics learning. Geelong, Victoria: Deakin University Press.
Ernest, P. (2003). The epistemic subject in mathematical activity. En M. Anderson, A. Sáenz-Ludlow, S. Zellweger y V. Cifarelli (eds.), Educational perspectives
on mathematics as semiosis: From thinking to interpreting to knowing (pp. 81-106).Ottawa, Ontario: Legas.
Ernest, P. (2006). A semiotic perspective of mathematical activity: The case on number. Educational Studies in Mathematics, 61(1-2), 67-101.
Freire, P. (2001/1970). Pedagogy of the oppressed. Nueva York: Continuum.
Foucault, M. (1972). The archeology of knowledge. Londres: Tavistock.
Habermas, J. (1984). The theory of communicative action. Boston: Beacon Press.
Hoffmann, M. (2004). How to get it. Diagrammatic reasoning as a tool of knowledge development and its pragmatic dimension. Foundation of Science, 9(3), 285-305.
Hoffmann, M. (2005). Signs as means for discoveries. Peirce and his concepts of “Diagrammatic Reasoning,” “Theorematic Deduction,” “Hypostatic Abstraction,” and “Theoric Transformation”. En M.H.G. Hoffmann, J. Lenhard y F. Seeger (eds.), Activity and sign: Grounding mathematics education (pp. 45-56). Nueva York:Springer.
Hoffmann, M. (2006). What is a “semiotic perspective”, and what could it be? Some comments on the contributions of this Special Issue. Educational Studies in Mathematics, 61(1-2), 279-291.
Kanes, C. (1998). Examining the linguistic mediation of pedagogical interaction in mathematics. En H. Steinbring, M.G. Bartolini-Bussi y A. Sierpinska (eds.), Language and communication in the mathematics classroom (pp. 120-139). Reston, VA: National Council of Teachers of Mathematics.
Liszka, J.J. (1996). A general introduction to the semiotic of Charles Sanders Peirce. Bloomington, Indiana: Indiana University Press.
Menninger, K. (1969). Number words and number symbols: A cultural history of numbers. Cambridge, MA: The MIT Press.
Nagel, E. (1956). Symbolic notation, haddocks’ eyes and the dog-walking ordinance. En J.R. Newman (ed.), The World of Mathematics (vol. 3, pp. 1576-1590). Nueva York: Simon and Schuster.
National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
Otte, M. (1998). Limits of constructivism: Kant, Piaget, and Peirce. Science and Education, 7, 425-450.
Otte, M. (2006). Mathematical epistemology from a Peircean semiotic point of view. Educational Studies in Mathematics, 61(1-2), 11-38.
Peirce, C.S. (1867). Questions concerning certain faculties claimed by man. En J. Hoopes (ed.), Peirce on signs (1991, pp. 34-53). Chapel Hill: The University of North Carolina Press.
Peirce, C. S. (1893-1913). The essential Peirce: Selected philosophical writings (vol. 2; editado por Peirce Edition Project). Bloomington, IN: Indiana University Press.
Peirce, C.S. (1903). The three normative sciences. The essential Peirce (vol. 2, 1893-1913; editado por Peirce Edition Project, pp. 196-207). Bloomington, IN: Indiana University Press.
Peirce, C.S. (1906a). Prolegomena to an apology for pragmaticism. En J. Hoopes (ed.), Peirce on signs (pp. 249-252). Chapel Hill, North Carolina: The University of North Carolina Press.
Peirce, C.S. (1906b). Pragmatism in retrospect: A last formulation. En J. Buchler (ed.), Philosophical writings of Peirce (1955) (pp. 269-289). Nueva York: Dover Publications.
Peirce, C.S. (1908). Excerpts from letters to Lady Welby. En Peirce Edition Project (ed.), The Essential Peirce (vol. 2, pp. 478-491). Bloomington, IN: Indiana University Press.
Peirce, C.S. (1931). Collected Papers, vol. II, Elements of Logic. (editado por C.Hartshorne y P. Weiss). Cambridge, Massachusetts: Belknap Press/Harvard University Press.
Peirce, C.S. (1931-1966). Collected Papers (CP) (editado por C. Hartshorne y P. Weiss, vols. 1-6, y A.W. Burks, vols. 7-8). Cambridge, Massachusetts: Belknap Press/Harvard University Press.
Peirce, C.S. (1956). The essence of mathematics. En J.R. Newman (ed.), The World of Mathematics, (vol. 3, pp. 1773-1783). Nueva York: Simon and Schuster.
Peirce, C.S. (1976). The new elements of mathematics (NEM), (vol. 4, Mathematical Philosophy, editado por Carolyn Eisele). The Hague: Mouton and Co. B. V. Publishers.
Peirce, C.S. (1978). Écrits sur le signe (elección de textos, traducción de G. Deledalle). París: Seuil.
Piaget, J. (1970). Genetic epistemology. Nueva York: Columbia University Press.
Pimm, D. (1987). Speaking mathematically: Communication in the classrooms.Londres: Routledge.
Radford, L. (2003). Gestures, speech, and the sprouting of signs. Mathematical Thinking and Learning, 5(1), 37-70.
Radford, L. (2006). The anthropology of meaning. Educational Studies in Mathematics, 61(1-2), 39-65.
Rotman, B. (1988). Towards a semiotics of mathematics. Semiotica, 72(1-2), 1-36.
Sáenz-Ludlow, A. (1997). Iconic means in children’s understanding of the division algorithm. En C.W. Spinks y J. Deely (eds.), Semiotics (pp. 118-130). Toronto, Canada: Peter Lang.
Sáenz-Ludlow, A. (2003a). Classroom mathematics discourse as an evolving interpreting game. En M. Anderson, A. Sáenz-Ludlow, S. Zellweger y V. Cifarelli (eds.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 253-284). Ottawa, Canada: Legas Press.
Sáenz-Ludlow, A. (2003b). A collective chain of signification in conceptualizing fractions: A case of a fourth-grade class. Journal of Mathematical Behavior, 22, 181-211.
Saussure, F. de (1959). Course of general linguistics (trad. W. Baskin). Nueva York:McGraw-Hill Book Company. (Obra original publicada póstumamente por C. Bally y A. Sechehaye en 1916, sobre los cursos de 1906 a 1911).
Sfard, A. (2000). Symbolizing mathematical reality into being – Or how mathematical discourse and mathematical objects create each other. En P. Cobb, E. Yackel y K. McClain (eds.), Symbolizing and communicating in mathematics classrooms (pp. 37-98). Mahwah, NJ: Lawrence Erlbaum Associates.
Sfard, A. (2001). There is more to discourse than meets the ears: Looking at thinking as communicating to learn more about mathematical learning. Educational Studies in Mathematics, 46(1), 13-57.
Sierpinska, A. (1994). Understanding in mathematics. Londres: The Falmer Press.
Skemp, R. (1987). The psychology of learning mathematics. Hillsdale, NJ: Lawrence Erlbaum Associates.
Steinbring, H. (2006). What makes a sign a mathematical sign? – An epistemological perspective on mathematical interaction. Educational Studies in Mathematics, 61(1-2), 133-162.
Steinbring, H., Bartolini Bussi, M.G. y Sierpinska, A. (Eds.) (1998). Language and communication in the mathematics classroom. Reston, VA: National Council of Teachers of Mathematics.
Van Oers, B. (2001). Educational forms of initiation in mathematical culture. Educational Studies in Mathematics, 46(1), 59-85.
Vile, A. (1997). From Peirce towards a semiotic of mathematical meaning. En J.F. Quesada (ed.), Logic, semiotic, social and computational perspectives on mathematical languages (pp. 64-76). Sevilla, España: SAEM Thales.
Vile, A. y Lerman, S. (1996). Semiotics as a descriptive framework in mathematical domains. En L. Puig y A. Gutiérrez (eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (vol. 4, pp.389-402). Valencia, España: Universidad de Valencia.
Vygotsky, L.S. (1978). Mind in society (edit. y trad. por M. Cole, V. John-Steiner, S.Scribner y E. Souberman a partir de distintas obras originales publicadas en ruso de 1930 a 1960). Cambridge, Massachusetts: Harvard University Press.
Vygotsky, L.S. (1986/1934). Thought and language (edición revisada y editada nuevamente por A. Kozulin). Cambridge, Massachusetts: The MIT Press.
Walkerdine, V. (1988). The mastery of reason. Londres: Routledge.
Whitehead, A.N. (1985). Symbolism: Its meaning and effect. Nueva York: Fordham University Press.
Whitson, J.A. (1997). Cognition as a semiosic process: From situated mediation to critical reflective transcendence. En D. Kirshner y J.A. Whitson (eds.), Situated cognition: Social, semiotic, and psychological perspectives (pp. 97-149). Mahwah,NJ: Lawrence Erlbaum.
Wilder, R. (1968). Evolution of mathematical concepts. Milton Keynes, Inglaterra:The Open University Press.
Wittgenstein, L. (1991/1944). Philosophical investigations. Oxford: Basil Blackwell.
Bauersfeld, H. (1995). “Language games” in mathematics classrooms: Their function and their effect. En P. Cobb y H. Bauersfeld (eds.), The emergence of mathematical meanings (pp. 271-291). Hillsdale, Nueva Jersey: Lawrence Erlbaum Associates.
Behr, M., Khoury, H., Harel, G., Post, T. y Lesh, R. (1997). Conceptual units analysis of pre-service elementary school teachers’ strategies on rational-numberas-operator task. Journal for Research in Mathematics Education, 28(1), 48-69.
Bergeron, J. y Herscovics, N. (1987). Unit fractions of a continuous whole. En J. Bergeron, N. Herscovics y C. Kieran (eds.), Proceedings of the Eleventh International Conference on the Psychology of Mathematics Education (vol. 1, pp. 357-365). Montreal.
Cobb, P. (2000a). Conducting teaching experiments in collaboration with teachers. En A.E. Kelly y R.A. Lesh (eds.), Handbook of research design in mathematics and science education (pp. 307-333). Mahwah, NJ: Lawrence Erlbaum.
Cobb, P. (2000b). From representations to symbolizing: Introductory comments on semiotics and mathematics learning. En P. Cobb, E. Yackel y K. McClain (eds.), Symbolizing and communicating in mathematics classrooms (pp. 17-36). Mahway, NJ: Lawrence Erlbaum Associates.
Cobb, P. y Steffe, L.P. (1983). The constructivist researcher as teacher and model builder. Journal for Research in Mathematics Education, 14(2), 83-94.
Cobb, P. y Yackel, E. (1995). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. En D.T. Owens, M.K. Reed y G.M. Millsaps (eds.), Proceedings of the Seventeenth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (vol. 1, pp. 3-29). Columbus, OH: ERIC/CSMEE.
Colapietro, V.M. (1993). Glossary of semiotics. Nueva York: Paragon House.
Confrey, J. (1988). Multiplication and splitting: Their role in understanding exponential functions. En M. Behr, C. LaCampagne y M. Wheeler (eds.), Proceedings of the Tenth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 250-259). DeKalb, IL: Northern Illinois University.
Davydov, V.V. (1990/1972). Types of generalization in instruction: Logical and psychological problems in the structuring of the school curricula. Reston, VA: The National Council of Teachers of Mathematics.
Deely, J. (1990). Basics of semiotics. Bloomington: University of Indiana Press.
Deely, J. (1994). New beginnings: Early modern philosophy and postmodern thought. Toronto: University of Toronto Press.
Ernest, P. (2002, julio). A semiotic perspective of mathematical activity. Ponencia presentada en el Grupo de Discusión “Semiotics in Mathematics Education Research” en 26th Conference of the International Group for the Psychology of Mathematics Education, Norwich, UK.
Freudenthal, H. (1991). Revisiting mathematics education. Boston: Kluwer Academic Publishers.
Godino, J. y Batanero, C. (2003). Semiotic functions in teaching and learning mathematics. En M. Anderson, A. Sáenz-Ludlow, S. Zellweger y V. Cifarelli (eds.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 149-168). Ottawa, Ont.: Legas.
Gravemeijer, K. (1994). Educational development and developmental research in mathematics education. Journal for Research in Mathematics Education, 25(5), 443-471.
Heath, T.L. (1956). The thirteen books of Euclid’s Elements (traducción del texto 233 de Heiberg, con introducción y comentario; 2a ed. revisada). Nueva York: Dover Publications.
Hunting, R. (1980). The role of the discrete quantity partition knowledge in the child’s construction of fractional number. Disertación doctoral, The University of Georgia. Dissertation Abstracts International, University Microfilms No. 8107919, 430-A.
Hunting, R., Davis, G. y Pearn, C. (1996). Engaging whole number knowledge for rational number learning using a computer-based tool. Journal for Research in Mathematics Education, 27(3), 354-379.
Kieren, T. (1988). Personal knowledge of rational numbers: Its intuitive and formal development. En J. Hiebert y M. Behr (Eds.), Number concepts and operations in the middle grades (pp. 162-181). Reston, VA: National Council of Teachers of Mathematics & Lawrence Erlbaum Associates.
Kieren, T. y Nelson, L.D. (1981). Partitioning and unit recognition in performances of rational numbers tasks. En Proceedings of the Third International Conference on the Psychology of Mathematics Education (pp. 91-102). Grenoble, France.
Lamon, S. (1996). The development of unitizing: Its role in children partitioning strategies. Journal for Research in Mathematics Education, 27(2), 170-193.
McLellan, J.A. y Dewey, J. (1908). The psychology of number and its applications to methods of teaching arithmetic. Nueva York: D. Appleton and Company.
Merrell, F. (1995). Peirce’s semiotics now: A primer. Toronto, Canada: Canadian Scholars’ Press.
Mertz, E. (1985). Beyond symbolic anthropology: Introducing semiotic mediation. En E. Mertz y R.J. Parmentier (eds.), Semiotic mediation: Sociocultural and psychological perspectives (pp. 1-19). Orlando, FL: Academic Press.
Moreno-Armella, L.E. y Waldegg, G.C. (2000). An epistemological history of number and variation. En V. Katz (Ed.), Using history to teach mathematics: An international perspective (pp. 183-190). MAA Notes 51. Washington, DC: The Mathematical Association of America.
Nöth, W. (1990). Handbook of semiotics. Bloomington, IN: Indiana University Press.
O’Halloran, K.L. (2003). Implications of mathematics as a multisemiotic discourse. En M. Anderson, A. Sáenz-Ludlow, S. Zellweger y V. Cifarelli (Eds.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 185-214). Ottawa, Ont.: Legas.
Parmentier, R.J. (1985). Signs’ Place in Medias Res: Peirce’s concept of semiotic mediation. En E. Mertz y R.J. Parmentier (eds.), Semiotic mediation: Sociocultural and psychological perspectives (pp. 23-48). Orlando, FL: Academic Press.
Peirce, C.S. (1867). Questions concerning certain faculties claimed by man. En J. Hoopes (ed.), Peirce on signs (1991, pp. 34-53). Chapel Hill: The University of North Carolina Press.
Peirce, C. S. (1893-1913). The essential Peirce: Selected philosophical writings (vol. 2; editado por Peirce Edition Project). Bloomington, IN: Indiana University Press.
Peirce, C.S. (1903). The three normative sciences. The essential Peirce (vol. 2, 1893-1913; editado por Peirce Edition Project, pp. 196-207). Bloomington, IN: Indiana University Press.
Peirce, C.S. (1906a). Prolegomena to an apology for pragmaticism. En J. Hoopes(ed.), Peirce on signs (pp. 249-252). Chapel Hill, North Carolina: The University of North Carolina Press.
Peirce, C.S. (1906b). Pragmatism in retrospect: A last formulation. En J. Buchler (ed.), Philosophical writings of Peirce (1955) (pp. 269-289). Nueva York: Dover Publications.
Peirce, C.S. (1908). Excerpts from letters to Lady Welby. En Peirce Edition Project (ed.), The Essential Peirce (vol. 2, pp. 478-491). Bloomington, IN: Indiana University Press.
Peirce, C.S. (1931). Collected Papers, vol. II, Elements of Logic. (editado por C.Hartshorne y P. Weiss). Cambridge, Massachusetts: Belknap Press/Harvard University Press.
Peirce, C.S. (1931-1966). Collected Papers (CP) (editado por C. Hartshorne y P. Weiss, vols. 1-6, y A.W. Burks, vols. 7-8). Cambridge, Massachusetts: Belknap Press/Harvard University Press.
Peirce, C.S. (1956). The essence of mathematics. En J.R. Newman (ed.), The World of Mathematics, (vol. 3, pp. 1773-1783). Nueva York: Simon and Schuster.
Peirce, C.S. (1976). The new elements of mathematics (NEM), (vol. 4, Mathematical Philosophy, editado por Carolyn Eisele). The Hague: Mouton and Co. B. V. Publishers.
Peirce, C.S. (1978). Écrits sur le signe (elección de textos, traducción de G. Deledalle). París: Seuil.
Sáenz-Ludlow, A. (1994). Michael’s fraction schemes. Journal for Research in Mathematics Education, 25(1), 50-85.
Sáenz-Ludlow, A. (1995). Ann’s fraction schemes. Educational Studies in Mathematics, 28(1), 101-132.
Sáenz-Ludlow, A. (1997). Iconic means in children’s understanding of the division algorithm. En C.W. Spinks y J. Deely (eds.), Semiotics (pp. 118-130). Toronto, Canada: Peter Lang.
Sáenz-Ludlow, A. (1998). Symbolic activity in mathematics classrooms: A semiotic perspective. En C.W. Spinks y J. Deely (Eds.), Semiotics (pp. 156-170). Toronto, Canadá: Peter Lang.
Sáenz-Ludlow, A. (2004). Metaphor and numerical diagrams in the arithmetical activity of a fourth-grade class. Journal for Research in Mathematics Education, 35(1), 34-56.
Sáenz-Ludlow, A. y Walgamuth, C. (2001). Question-and diagram-mediated mathematical activity: A case in a fourth-grade classroom. Focus on Learning Problems in Mathematics, 23(4), 27-40.
Steffe, L.P. (1983). The teaching-experiment methodology in a constructivist research program. En M. Zweng, T. Green, J. Kilpatrick, H. Pollak y M. Suydam (eds.),
Proceedings of the Fourth International Congress on Mathematical Education (pp.469-471). Boston, Massachusetts: Birkhäuser.
Steffe, L.P. y Thompson, P. (2000). Teaching experiment methodology: Underlying principles and essential elements. En A. Kelly y R. Lesh (eds.), Handbook of research design in mathematics and science education (pp. 267-306). Mahwah, NJ: Lawrence Erlbaum.
Steffe, L.P., von Glasersfeld, E., Richards, J. et al. (1983). Children’s counting types: Philosophy, theory and applications. Nueva York: Praeger.
Streefland, L. (1991). Fractions in realistic mathematics education. Dordrecht, The Netherlands: Kluwer Academic publishers.
Van Oers, B. (2001). Educational forms of initiation in mathematical culture. Educational Studies in Mathematics, 46(1), 59-85.
Von Glasersfeld, E. (1981). An attentional model for the conceptual construction of units and number. Journal for Research in Mathematics Education, 12(2), 83-94.
Von Glasersfeld, E. y Richards, J. (1983). The creation of units as a prerequisite for number: A philosophical review. En L.P. Steffe, E. von Glasersfeld, J. Richards et al. (eds.), Children’s counting types: Philosophy, theory and applications (pp. 1-20).Nueva York: Praeger.
Vygotsky, L.S. (1986/1934). Thought and language (edición revisada y editada nuevamente por A. Kozulin). Cambridge, Massachusetts: The MIT Press.
Yackel, E. y Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458-477.
Artigue, M. (2011). Le sfide dell’insegnamento della matematica nell’educazione di base. La matematica nella società e nella cultura. rivista della Unione Matematica Italiana, 4(2) 211-259.
Brousseau, G., D’Amore, B. (2008). I tentativi di trasformare analisi di carattere meta in attività didattica. Dall’empirico al didattico. En D’Amore B., Sbaragli F. (eds.) (2008). Didattica della matematica e azioni d’aula. Atti del XXII Convegno Nazionale: Incontri con la matematica. Castel San Pietro Terme (Bo), 7-8-9 novembre 2008. Bolonia: Pitagora. 3-14. ISBN: 88-371-1746-9.
D’Amore, B. (2005). La argumentación matemática de jóvenes alumnos y la lógica hindú (nyaya). Uno,38, 83-99. D’Amore, B. (2005). Secondary school students’ mathematical argumentation and Indian logic (nyaya). For the learning of mathematics, 25(2), 26-32.
D’Amore B., Fandiño-Pinilla, M. I., Iori, M. (2013). La semiótica en la didáctica de la matemática. Prefacios de Raymond Duval, Luis Radford. Prólogo a la edición en español de Carlos Eduardo Vasco. Bogotá: Magisterio.
D’Amore, B., Fandiño-Pinilla, M. I., Iori, M. et al. (2015). Análisis de los antecedentes histórico-filosóficos de la “paradoja cognitiva de Duval”. Revista Latinoamericana de Investigación en Matemática Educativa. 18(2), 177-212. Recuperado de http://www.clame.org.mx/relime.htm Doi: 10.12802/relime.13.1822.
Descargas
Publicado
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
