Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva
Sinopsis
El handoff espectral, en las redes de radio cognitiva, ocurre cuando el usuario secundario debe dejar el canal de frecuencia que está utilizando y continuar su comunicación en otra oportunidad espectral.
Este proceso es un aspecto clave para garantizar una adecuada calidad de servicio y mejorar el desempeño en las comunicaciones del usuario secundario. Este libro de investigación tiene por objetivo presentar una propuesta de modelo adaptativo multivariable de handoff espectral para redes móviles de radio cognitiva. Para lo anterior, se desarrollaron tres algoritmos para la toma de decisiones durante un handoff espectral, con diferentes enfoques: difuso, realimentado y predictivo; estos conforman el modelo adaptativo multivariable de handoff espectral propuesto. Para evaluar el nivel de desempeño de los algoritmos desarrollados se realizó un análisis comparativo entre estos y los algoritmos de handoff espectral más relevantes en la literatura actual.
A diferencia de los trabajos relacionados, la evaluación comparativa se validó a través de una traza de datos reales de ocupación espectral capturados en la banda de frecuencia GSM y Wi-Fi, que modelan el comportamiento real de los usuarios primarios. En la fase de validación, se propusieron ocho escenarios de evaluación, al considerar, dos tipos de redes: GSM y Wi-Fi, dos clases de aplicaciones: tiempo-real y mejor-esfuerzo, dos niveles de tráfico: alto y bajo, y diez métricas de evaluación.
Capítulos
-
I. Proyecto de investigación
-
II. Fundamentos teóricos
-
III. Metodología
-
IV. Resultados
-
Discusión
-
Conclusiones
Descargas
Referencias
Abbas, N., Nasser, Y., & Ahmad, K. El. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. EUR-ASIP Journal on Wireless Communications and Networking, (1), 1-20.
Aguilar, J., & Navarro, A. (2011). Radio cognitiva - estado del arte. Sistemas y Telemática, 9(16), 31-53.
Ahmed, A., Boulahia, L. M., & Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys and Tutorials, 16(2), 776-811.
Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J., & Khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823.
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. En International Symposium on Information Theory (pp. 267-281). Academinai Kiado, Budapest.
Akin, S., & Fidler, M. (2016). On the transmission rate strategies in cognitive radios. IEEE Transactions on Wireless Communications, 15(3), 2335-2350.
Akter, L., Natarajan, B., & Scoglio, C. (2008). Modeling and forecasting secondary user activity in cognitive radio networks. En 17th International Conference on Computer Communications and Networks. August 3-7, 2008. (pp. 1-6). St. Thomas, US Virgin Islands.
Akyildiz, I. F., & Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. Broadband and Wireless Networking Laboratory Technical Report.
Akyildiz, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836.
Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40-48.
Akyildiz, I. F., Won-Yeol, L., Vuran, M. C., & Mohanty, S. (2006). NeXtgeneration/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127-2159.
Almasaeid, H. M., & Kamal, A. E. (2010). Receiver-based channel allocation for wireless cognitive radio mesh networks. In IEEE Symposium on New Frontiers in Dynamic Spectrum (pp. 1-10). 6 Apr - 09 Apr 2010. Singapur, Singapur.
Alnwaimi, G., Arshad, K., & Moessner, K. (2011). Dynamic spectrum allocation algorithm with interference management in co-existing networks. IEEE Communications Letters, 15(9), 932-934.
Alsarhan, A., & Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. En Internatonal Conference on Computer Communications and Networks (pp. 1-6). August 3–6, 2009. San Francisco, C.A., Estados Unidos.
Al-Surmi, I., Othman, M., & Mohd Ali, B. (2012). Mobility management for IP-based next generation mobile networks: Review, challenge and perspective. Journal of Network and Computer Applications, 35(1), 295-315.
Anderson, T. W. (1980). Maximum likelihood estimation for vector autoregressive moving-average models, directions in time series. Institute of Mathematical Statistics. Stanford University, Stanford, California, Estados Unidos.
Bâlan, I. M., Moerman, I., Sas, B., & Demeester, P. (2012). Signalling minimizing handover parameter optimization algorithm for LTE networks. Wireless Networks, 18(3), 295-306.
Bari, F., & Leung, V. (2007). Application of ELECTRE to network selection in a hetereogeneous wireless network environment. En IEEE Wireless Communications and Networking Conference (pp. 3810-3815). 11-15 march 2007. Hong Kong, China.
Bennai, M., Sydor, J., & Rahman, M. (2010). Automatic channel selection for cognitive radio systems. En IEEE International Symposium on Personal Indoor and Mobile Radio Communications (pp. 1831-1835). IEEE. 26 Sep - 30 Sep 2010. Estambul, Turquia.
Bkassiny, M., Li, Y., & Jayaweera, S. K. (2013). A survey on machine-learning techniques in cognitive radios. IEEE Communications Surveys and Tutorials, 15(3), 1136-1159.
Bolstad, W. M. (2007). Introduction to bayesian statistics. John Wiley and Sons. New Jersey, Estados Unidos.
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, 26(2), 211-252.
Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control (Revised Ed). Oakland, California: Holden-Day.
Brillinger, D. R. (2001). Time series: data analysis and theory. Oakland, California: Holden-Day.
Brockwell, P. J. (2001). On continuous-time ARMA processes. En Handbook of statistics (pp. 249-276). Ámsterdam: Elsevier.
Brockwell, P. J., & Davis, R. A. (1991). Time series: theory and methods. Nueva York: Springer Verlag.
Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting (2.a ed.). Nueva York: Springer.
Büyüközkan, G., & Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOP-SIS based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354.
Büyüközkan, G., Kahraman, C., & Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2-3), 259-280.
Byun, S. S., Balasingham, I., & Liang, X. (2008). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency. En IEEE Vehicular Technology Conference. 21-24 Sept. 2008, Calgary, Canada.
Cárdenas-Juárez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A., & Stevens-Navarro, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band for cognitive radio applications. En International Conference on Electronics, Communications and Computers (pp. 25-31). 24 Feb – 26 Feb 2016, Cholula, México.
Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. http://doi.org/10.1016/0377-2217(95)00300-2
Chen, D., Zhang, Q., & Jia, W. (2008). Aggregation aware spectrum assignment in cognitive ad-hoc networks. En International Conference on Cognitive Radio Oriented Wireless Networks and Communications. 15 May - 17 May 2008, Singapur, Singapur.
Chen, T., Zhang, H., Maggio, G. M., & Chlamtac, I. (2007). CogMesh: A cluster-based cognitive radio network. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 168-178). 18 Apr - 20 Apr 2007, Dublin, Irlanda.
Chen, Y., & Hee-Seok, O. (2016). A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1), 848-859.
Cheng, X., & Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. En IEEE International Conference on Communication Technology (pp. 161-164).
Cho, J., & Lee, J. (2013). Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330.
Chou, C. T., Shankar, S., Kim, H., & Shin, K. G. (2007). What and how much to gain by spectrum agility? IEEE Journal on Selected Areas in Communications, 25(3), 576-587.
Choudhary, D., & Shankar, R. (2012). An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521.
Christian, I., Moh, S., Chung, I., & Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114-121.
Correa, E. (2004). Series de tiempo: conceptos básicos. Medellín: Universidad Nacional de Colombia.
Cortés, J. (2011). Metodología para la implementación de tecnologías de la información y las comunicaciones TIC’s para soportar una estrategia de cadena de suministro esbelta (tesis de maestría). Universidad Nacional de Colombia, Bogotá.
Csurgai-Horvath, L., & Bito, J. (2011). Primary and secondary user activity models for cognitive wireless network. En International Conference on Telecommunications (pp. 301-306). 08 May - 11 May 2011, Ayia Napa, Cyprus.
Dadallage, S., Yi, C., & Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359.
Dadios, E. P. (2012). Fuzzy logic: Algorithms, techniques and implementations. InTech. Rijeka, Croatia.
Delgado, M., & Rodríguez, B. (2016). Opportunities for a more efficient use of the spectrum based in cognitive radio. IEEE Latin America Transactions, 14(2), 610-616.
Del-Ser, J., Matinmikko, M., Gil-López, S., & Mustonen, M. (2010). A novel Harmony search based spectrum allocation technique for cognitive radio networks. En International Symposium on Wireless Communication Systems (pp. 233-237). 19 Sep - 22 Sep 2010, York, United Kingdom.
Devore, J. L. (2001). Probabilidad y estadística para ingeniería y ciencias (5.a ed.). México: Thomson.
Ding, L., Melodia, T., Batalama, S. N., Matyjas, J. D., & Medley, M. J. (2010). Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology, 59(4), 1969-1979.
Duan, J., & Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio mobile ad hoc networks. Advances in Electrical and Computer Engineering, 11(3), 11-16.
ETSI. (2012). 3GPP TS 23.107 version 11.0.0 Release 11. Federal Communications Commission. (2003). Notice of proposed rulemaking and order. Washington, D.C.: autor.
Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence. Addison-Wesley. Boston, MA, Estados Unidos.
Ferro, R. A., Pedraza, L. F., & Hernández, C. (2011). Maximización del throughput en una red de radio cognitiva basado en la probabilidad de falsa alarma. Tecnura, 15(30), 64-70.
Fonte, J. P., & Mora, F. E. (2008, June). Implementación de protocolos de capar de enlace de datos en los simuladores Omnet++ Y Ns-2. Quito: EPN..
Forero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso DCMA. Colombia. Bogotá, Colombia: Universidad Distrital Francisco José de Caldas.
Fraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM. (Society for Industrial and Applied Mathematics). Filadelfia, Estados Unidos.
Fu, J., Wu, J., Zhang, J., Ping, L., & Li, Z. (2010, October). A novel AHP and GRA based handover decision mechanism in heterogeneous wireless networks. En International Conference on Information Computing and Applications (pp. 213-220). Tangshan, China, October 15-18, 2010.
Fudenberg, D., & Tirole, J. (1991). Game Theory. MIT Press. Recuperado de https://books.google.com.co/books?id=pFPHKwXro3QC
Gallardo-Medina, J. R., Pineda-Rico, U., & Stevens-Navarro, E. (2009). VIKOR method for vertical handoff decision in beyond 3G wireless networks. En International Conference on Electrical Engineering, Computing Science and Automatic Control. 10 Nov - 13 Nov 2009, Toluca, México.
Garrett, M. W., & Willinger, W. (1994). Analysis, modeling and generation of self-similar VBR video traffic. En ACM Sigcomm (pp. 269-280). En ACM SIGCOMM computer communication review, 24(4), (pp. 269-280). ACM.
Gavrilovska, L., Atanasovski, V., Macaluso, I., & Dasilva, L. A. (2013). Learning and reasoning in cognitive radio networks. IEEE Communications Surveys and Tutorials, 15(4), 1761-1777.
Giupponi, L., & Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. En International Conference on Cognitive Radio Oriented Wireless Networks and Communications. 15 May - 17 May 2008, Singapur, Singapur.
Gódor, G., & Détári, G. (2007). Novel network selection algorithm for various wireless network interfaces. En IST Mobile and Wireless Communications Summit (pp. 1-5). Budapest, Hungria 01 Jul - 05 Jul 2007.
Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95-99.
Green, K. C., Armstrong, J. S., & Graefe, A. (2007). Methods to elicit forecasts from groups: Delphi and prediction markets compared. Social Science Research Network, 8, 17-20.
Guerrero, V. M. (2003). Análisis estadístico de series de tiempo económicas (2.a ed.). México: Thomson.
Hamilton, J. D. (1994). Time series analysis. New Jersey: Princeton University Press.
Han, J., Kamber, M., & Pei, J. (2012). Data mining: concepts and techniques. Elsevier. San Francisco, CA, Estados Unidos.
Han, Z., & Liu, K. J. R. (2008). Resource allocation for wireless networks: basics, techniques, and applications. Reino Unido: Cambridge University Press. Cambridge, Reino Unido.
Harvey, A. C. (1993). Time series models. Pearson. New York, Estados Unidos.
Hasswa, A., Nasser, N., & Hassanein, H. (2006). Tramcar: A context-aware cross-layer architecture for next generation heterogeneous wireless networks. En IEEE International Conference on Communications (vol. 1, pp. 240-245). 11 Jun - 15 Jun 2006. Estambul, Turquia.
Haykin, S. (1998). Neural networks: A Comprehensive foundation (2.a ed.). Upper Saddle River, NJ, Estados Unidos: Prentice Hall PTR. Nueva Jersey, Estados Unidos.
He, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., et al (2010). A survey of artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technology, 59(4), 1578-1592.
Hernández, C., & Giral, D. (2015). Spectrum mobility analytical tool for cognitive wireless networks. International Journal of Applied Engineering Research, 10(21), 42265-42274.
Hernández, C., Giral, D., & Páez, I. (2015a). Benchmarking of the performance of spectrum mobility models in cognitive radio networks. International Journal of Applied Engineering Research (IJAER), 10(21).
Hernández, C., Giral, D., & Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Engineering and Technology, 9(12), 1212-1215.
Hernández, C., Giral, D., & Santa, F. (2015). MCDM spectrum handover models for cognitive wireless networks. World Academy of Science, Engineering and Technology, 9(10), 679-682.
Hernández, C., Páez, I., & Giral, D. (2015). Modelo AHP-VIKOR para handoff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39.
Hernández, C., Pedraza L. F., & Martínez F. (2016). Algoritmos para asignación de espectro en redes de radio cognitiva. Tecnura, 20(48), 69-88.
Hernández, C., Pedraza, L. F., & Rodriguez-Colina, E. (2016). Fuzzy feedback algorithm for the spectral handoff in cognitive radio networks. Revista Facultad de Ingeniería Universidad de Antioquia, (80), 47-62.
Hernández, C., Salcedo, O., & Pedraza, L. F. (2009). An ARIMA model for forecasting Wi-Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69.
Hernández, C., Salgado, C., & Salcedo, O. (2013). Performance of multivariable traffic model that allows estimating throughput mean values. Revista Facultad de Ingeniería Universidad de Antioquia, (67), 52-62. Hernández, C., Vasquez, H., & Páez, I. (2015). Proactive spectrum handoff model with time series prediction. International Journal of Applied Engineering Research (IJAER), 10(21), 42259-42264.
Hernández, C., Salgado, C., López, H., & Rodríguez-Colina, E. (2015). Multivariable algorithm for dynamic channel selection in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1-17.
Hernández-Guillen, J., Rodríguez-Colina, E., Marcelín-Jiménez, R., & Pascoe-Chalke, M. (2012). CRUAM-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. En IEEE Latin-America Conference on Communications (pp. 1-6). Ecuador: IEEE. Cuenca, Ecuador.
Hernández-Sampieri, R., Fernández-Collado, C., & Baptista, P. (2006). Metodología de la investigación. McGraw-Hill. Ciudad de México.
Hong, M., Kim, J., Kim, H., & Shin, Y. (2008). An adaptive transmission scheme for cognitive radio systems based on interference temperature model. En IEEE Consumer Communications and Networking Conference (pp. 69-73). 10 Jan - 12 Jan 2008, Las Vegas, NV, Estados Unidos.
Hoven, N., Tandra, R., & Sahai, A. (2005). Some fundamental limits on cognitive radio. Wireless Foundations EECS, University of California, Berkeley.
Höyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz, M., Mämmelä, A., et al. (2008). Cognitive radio: An intelligent wireless communication system. Research Report VTT-R-02219-08.
Hübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Springer Science & Business Media. Berlin, Alemania.
IEEE COMSOC. (2008). IEEE Standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functionality, and spectrum management. IEEE Std 1900.1-2008.
IEEE Standards Coordinating Committee 41 on Dynamic Spectrum. (2008). 1900.1-2008 - IEEE standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functionality, and spectrum management. IEEE Standard 1900.1-2008. Recuperado de papers https://publication/uuid/6010BFFD-CE4E-4C69-A2B0-0539E75F5422
Inwhee, J., Won-Tae, K., & Seokjoon, H. (2007). A network selection algorithm considering power consumption in hybrid wireless networks. En International Conference on Computer Communications and Networks (pp. 1240-1243). 13 Aug - 16 Aug 2007, Honolulu, HI, Estados Unidos.
Issariyakul, T., Pillutla, L. S., & Krishnamurthy, V. (2009). Tuning radio resource in an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communications Magazine, 47(7), 57-63.
Jayaweera, S., & Christodoulou, C. (2011). Radiobots: architecture, algorithms and realtime reconfigurable antenna designs for autonomous, self-learning future cognitive radios. Albuquerque, Nuevo Mexico: Universidad de Nuevo Mexico.
Ji, Z., & Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access - dynamic spectrum sharing: a game theoretical overview. IEEE Communications Magazine, 45(5), 88-94.
Jiang, C., Chen, Y., & Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Communications, 13(4), 2176-2188.
Jiménez, G. (2015). Ventajas y desventajas de las simulaciones. Recuperado el 12 de agosto del 2015, de http://www.virtual.unal.edu.co/cursos/sedes/manizales/4060015/Lecciones/CapituloVI/ventajas.html
Kaleem, F. (2012). VHITS: vertical handoff initiation and target selection in a heterogeneous wireless network. (Tesis de doctorado). Universidad Internacional de Florida.
Kanodia, V., Sabharwal, A., & Knightly, E. (2004). MOAR: A multi-channel opportunistic auto-rate media access protocol for ad hoc networks. En IEEE International Conference on Broadband Networks (pp. 600-610). 25-29 Oct. 2004, San Jose, California, Estados Unidos.
Kassar, M., Kervella, B., & Pujolle, G. (2008). An overview of vertical handover decision strategies in heterogeneous wireless networks. Computer Communications, 31(10), 2607-2620.
Kaya, T., & Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527.
Khan, A. R., Bilal, S. M., & Othman, M. (2012). A performance comparison of open source network simulators for wireless networks. En International Conference on Control System, Computing and Engineering (pp. 34-38). 23 Nov. - 25 Nov. 201, 2Penang, Malasia.
Kibria, M. R., Jamalipour, A., & Mirchandani, V. (2005). A location aware three-step vertical handoff scheme for 4G/B3G networks. En Global Telecommunications Conference (vol. 5, pp. 2752-2756). 28 Nov.- 2 Dec. 2005, St. Louis, Estados Unidos.
Kim, H., & Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533-545.
Kim, W., Kassler, A. J., Di Felice, M., & Gerla, M. (2010). Urban-X: Towards distributed channel assignment in cognitive multi-radio mesh networks. En IFIP Wireless Days. 20-22 Oct. 2010, Venice, Italia.
Köksal, M. (2008). A survey of network simulators supporting wireless networks. Middle East Technical University. Ankara, Turquia.
Kondareddy, Y. R., Agrawal, P., & Sivalingam, K. (2008). Cognitive radio network setup without a common control channel. En IEEE Military Communications Conference. 16 Nov - 19 Nov 2008, San Diego, CA, Estados Unidos.
Kumar, K., Prakash, A., & Tripathi, R. (2016). Spectrum handoff in cognitive radio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61, 161-188.
Lahby, M., Cherkaoui, L., & Adib, A. (2013). Hybrid network selection strategy by using M-AHP/E-TOPSIS for heterogeneous networks. En International Conference on Intelligent Systems: Theories and Applications (pp. 1-6). May 8, 2013 - May 9, 2013, Rabat, Marruecos.
Lahby, M., Leghris, C., & Adib, A. (2011). A hybrid approach for network selection in heterogeneous multi-access environments. En International Conference on New Technologies, Mobility and Security (pp. 1-5). 7 Feb – 10 Feb 2011, Paris, Francia.
Lee, W. Y., & Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845-3857.
Lertsinsrubtavee, A., & Malouch, N. (2016). Hybrid spectrum sharing through adaptive spectrum handoff and selection. IEEE Transactions on Mobile Computing, 15(11), 2781-2793.
Li, X., & Zekavat, S. A. (2008). Traffic pattern prediction and performance investigation for cognitive radio systems. En IEEE Wireless Communications and Networking Conference (pp. 894-899). March 31 2008-April 3 2008., Las Vegas, NV, Estados Unidos.
Liu, F., Xu, Y., Guo, X., Zhang, W., Zhang, D., & Li, C. (2013). A spectrum handoff strategy based on channel reservation for cognitive radio network. En International Conference on Intelligent System Design and Engineering Applications (pp. 179-182). 6-7 November 2013, Zhangjiajie, Hunan, China.
Liu, S. M., Pan, S., Mi, Z. K., Meng, Q. M., & Xu, M. H. (2010). A simple additive weighting vertical handoff algorithm based on SINR and AHP for heterogeneous wireless networks. En International Conference on Intelligent Computation Technology and Automation (vol. 1, pp. 347-350). 11 May - 12 May 2010, Changsha, China.
Liu, Y., & Tewfik, A. (2014). Primary traffic characterization and secondary transmissions. IEEE Transactions on Wireless Communications, 13(6), 3003-3016.
López, D. A., García, N. Y., & Herrera, J. F. (2015). Desarrollo de un modelo predictivo para la estimación del comportamiento de variables en una infraestructura de red. Información Tecnológica, 26(5), 143-154.
López, D. A., Trujillo, E. R., & Gualdrón, O. E. (2015). Elementos fundamentales que Componen la radio cognitiva y asignación de bandas espectrales. Información Tecnológica, 26(1), 23-40.
Ma, L., Shen, C. C., & Ryu, B. (2007). Single-radio adaptive channel algorithm for spectrum agile wireless ad hoc networks. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 547-558). 18 Apr - 20 Apr 2007, Dublin, Irlanda.
Marinho, J., & Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147-164.
Masonta, M. T., Mzyece, M., & Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: a survey. IEEE Communications Surveys & Tutorials, 15(3), 1088-1107.
Matinmikko, M., Del-Ser, J., Rauma, T., & Mustonen, M. (2013). Fuzzy-logic based framework for spectrum availability assessment in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184.
Matlab. (2015). Matlab getting starte guide. Recuperado el 19 de agosto del 2015, de http://www.mathworks.com/academia/student_version/learnmatlab.pdf
Mehbodniya, A., Kaleem, F., Yen, K. K., & Adachi, F. (2012). A fuzzy MADM ranking approach for vertical mobility in next generation hybrid networks. En International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (pp. 262-267). 03 Oct - 05 Oct 2012, St. Petersburg, Rusia.
Méndez, L., Rodríguez-Colina, E., & Medina, C. (2013). Toma de decisiones basadas en el algoritmo de Dijkstra’s. Una solución para radio cognitiva. Redes de Ingeniería, 4(2), 35-42.
Mir, U., Merghem-Boulahia, L., Esseghir, M., & Gaïti, D. (2011). Dynamic spectrum sharing for cognitive radio networks using multiagent system. En IEEE Conference on Consumer Communications and Networking (pp. 658-663). 9 Jan - 12 Jan 2011, Las Vegas, NV, Estados Unidos.
Miranda, E. (2001). Improving subjective estimates using paired comparisons. IEEE Software, 18(1), 87-91.
Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13-18.
Na, D.-H., Nan, H., & Yoo, S.-J. (2007). Policy-based dynamic channel selection architecture for cognitive radio networks. En International Conference on Communications and Networking in China (pp. 1190-1194). IEEE. 22nd–24th Aug 2007, Shanghai, China.
Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory (vol. 1). Cambridge, Reino Unido: Cambridge University Press.
OMNet++. (2015). User manual OMNeT++. Recuperado el 19 de agosto del 2015, de https://omnetpp.org/doc/omnetpp/manual/usman.html
Ormond, O., Murphy, J., & Muntean, G. (2006). Utility-based intelligent network selection in beyond 3G systems. En IEEE International Conference on Communications (vol. 4, pp. 1831-1836).
Ozger, M., & Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20(1), 157-160.
Páez, F. J., & Ortiz, J. E. (2010). Simulación de enlaces Wi-Fi y UMTS con J-SIM para estimar el BER y PER. Vínculos, 7(1), 17-24.
Patil, S. K., & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of knowledge management adoption in supply chain to overcome its barriers. Expert Systems with Applications, 41(2), 679-693.
Pedraza, L. F., Forero, F., & Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingenieria y Ciencia, 10(19), 127-143.
Pedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E., & Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá. Bogotá: Universidad Distrital Francisco José de Caldas.
Pedraza, L. F., López, D., & Salcedo, O. (2011). Enrutamiento basado en el algoritmo de Dijkstra para una red de radio cognitiva. Tecnura, 15(30), 93-100.
Petrova, M., Mahonen, P., & Osuna, A. (2010). Multi-class classification of analog and digital signals in cognitive radios using support vector machines. En International Symposium on Wireless Communication Systems (pp. 986-990). 19 Sep - 22 Sep 2010M, York, Reino Unido.
Pham, C., Tran, N. H., Do, C. T., Moon, S. Il, & Hong, C. S. (2014). Spectrum handoff model based on hidden Markov model in cognitive radio networks. En International Conference on Information Networking (pp. 406-411). IEEE. 10 Feb. - 12 Feb. 2014, Phuket, Tailandia.
Pla, V., Vidal, J. R., Martínez-Bauset, J., & Guijarro, L. (2010). Modeling and characterization of spectrum white spaces for underlay cognitive radio networks. En IEEE International Conference on Communications. Mayo 23-17 de 2010, Cape Town, South Africa.
Rahimian, N., Georghiades, C. N., Shakir, M. Z., & Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and system throughput perspectives. IEEE Transactions on Wireless Communications, 13(1), 356-369.
Ramírez Pérez, C., & Ramos Ramos, V. M. (2010). Handover vertical: un problema de toma de decisión múltiple. En Congreso Internacional sobre Innovación y Desarrollo Tecnológico. 24 al 26 de noviembre 2010, Cuernavaca, Morelos, México.
Ramírez-Pérez, C., & Ramos-R, V. (2013). On the effectiveness of multicriteria decision mechanisms for vertical handoff. En International Conference on Advanced Information Networking and Applications (pp. 1157-1164). March 25-28, 2013, Barcelona, Spain.
Rodríguez, A. B., Ramírez, L. J., & Chahuan, J. (2015). Nueva Generación de heurísticas para redes de fibra óptica WDM (Wavelength División Multiplexing) bajo tráfico dinamico. Información Tecnológica, 26(5), 135-142.
Rodríguez-Colina, E., Ramírez, P., Carrillo, A., & Ernesto, C. (2011). Multiple attribute dynamic spectrum decision making for cognitive radio networks. En International Conference on Wireless and Optical Communications Networks (pp. 1-5).
Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26.
Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man and Cybernetics, 21(3), 660-674.
Sgora, A., Vergados, D. D., & Chatzimisios, P. (2010). An access network selection algorithm for heterogeneous wireless environments. En The IEEE symposium on Computers and Communications (pp. 890-892). Junio 22 al 25 de 2010, Riccione, Italia.
Shun-Fang, Y., Jung-Shyr, W., & Hsu-Hung, H. (2008). A vertical media-independent handover decision algorithm across Wi-Fi networks. En International Conference on Wireless and Optical Communications Networks. 5-7 May 2008, Surabaya, Indonesia.
Song, Q., & Jamalipour, A. (2005). A network selection mechanism for next generation networks. En IEEE International Conference on Communications (vol. 2, pp. 1418-1422).
Song, Y., & Xie, J. (2010). Proactive spectrum handoff in cognitive radio ad hoc networks based on common hopping coordination. En IEEE Conference on Computer Communications (pp. 1-2). Marzo 15 al 19. San Diego, CA, Estados Unidos.
Sriram, K., & Whitt, W. (1986). Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 4(6), 833-846.
Steenkiste, P., Sicker, D., Minden, G., & Raychaudhuri, D. (2009). Future directions in cognitive radio network research. NSF workshop report. Recuperado de https://www.cs.cmu.edu/~prs/NSF_CRN_Report_Final.pdf
Stevens-Navarro, E., & Wong, V. (2007). A vertical handoff decision algorithm for heterogeneous wireless networks. En IEEE Wireless Communications and Networking Conference (pp. 3199-3204). Marzo 11 al 15 de 2007, Hong Kong, China.
Stevens-Navarro, E., & Wong, V. W. S. (2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. En IEEE Vehicular Technology Conference (vol. 2, pp. 947-951).
Stevens-Navarro, E., Gallardo-Medina, R., Pineda-Rico, U., & Acosta-Elías, J. (2012). Application of MADM method VIKOR for vertical handoff in heterogeneous wireless networks. IEICE Transactions on Communications, 95(2), 599-602.
Stevens-Navarro, E., Lin, Y., & Wong, V. W. S. (2008). An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 57(2), 1243-1254.
Stevens-Navarro, E., Martínez-Morales, J. D., & Pineda-Rico, U. (2012). Evaluation of vertical handoff decision algorightms based on MADM methods for heterogeneous wireless networks. Journal of Applied Research and Technology, 10(4), 534-548.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. IEEE Transactions on Neural Networks, 9(5), 1054.
Taj, M. I., & Akil, M. (2011). Cognitive radio spectrum evolution prediction using a rtificial neural networks based multivariate time series modelling. En Wireless Conference Sustainable Wireless Technologies (pp. 1-6). VDE. April 27-29, 2011, Vienna, Austria.
Tanino, T., Tanaka, T., & Inuiguchi, M. (2003). Multi-objective programming and goal programming: theory and applications. Berlin, Alemania: Springer Science & Business Media.
Tragos, E., Zeadally, S., Fragkiadakis, A., & Siris, V. (2013). Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 15(3), 1108-1135.
Trigui, E., Esseghir, M., & Merghem-Boulahia, L. (2012). Multi-agent systems negotiation approach for handoff in mobile cognitive radio networks. En International Conference on New Technologies, Mobility and Security (pp. 1-5). 7 May - 10 May, 2012, Estambul, Turquia.
Tsiropoulos, G., Dobre, O., Ahmed, M., & Baddour, K. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847.
Tuan, T. A., Tong, L. C., & Premkumar, A. B. (2010). An adaptive learning automata algorithm for channel selection in cognitive radio network. En IEEE International Conference on Communications and Mobile Computing (vol. 2, pp. 159-163). 12 al 14 de Abril de 2010, Shenzhen, China.
Universidad Politécnica de Cataluña. (2004). User manual OPNET. Recuperado el 19 de agosto del 2015, de http://ansat.es/soporte/docs/fragmentacion/OPNET_Modeler_Manual.pdf
Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suárez, M., & Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analyses and observations. En International Conference on Cognitive Radio Oriented Wireless Networks (pp. 2-6). Jun 16, 2010 - Jun 18, 2010, Cannes, France.
Van, B., Prasad, R. V., & Niemegeers, I. (2012). A survey on handoffs - Lessons for 60 GHz based wireless systems. IEEE Communications Surveys and Tutorials, 14(1), 64-86.
Villavicencio, J. (2014). Introducción a series de tiempo. Recuperado el 10 de diciembre de 2014, de http://www.estadisticas.gobierno.pr/iepr/Link-Click.aspx?fileticket=4_BxecUaZmg=
Wang, C. W., & Wang, L. C. (2009). Modeling and analysis for proactive-decision spectrum handoff in cognitive radio networks. En IEEE International Conference on Communications (pp. 1-6).
Wang, L.-C., & Wang, C.-W. (2008). Spectrum handoff for cognitive radio networks: reactive-sensing or proactive-sensins? En IEEE International Conference on High Performance, Computing and Communications (pp. 343-348). 25 Sep. - 27 Sep. 2008, Dalian, China.
Wang, L.-C., Wang, C.-W., & Chang, C.-J. (2012). Modeling and analysis for spectrum handoffs in cognitive radio networks. IEEE Transactions on Mobile Computing, 11(9), 1499-1513.
Wang, X., Wong, A., & Ho, P.-H. (2010). Dynamically optimized spatiotemporal prioritization for spectrum sensing in cooperative cognitive radio. Wireless Networks, 16(4), 889-901.
Wei, Q., Farkas, K., Prehofer, C., Mendes, P., & Plattner, B. (2006). Context-aware handover using active network technology. Computer Networks, 50(15), 2855-2872.
Wei, Y., Li, X., Song, M., & Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. En International Conference on Natural Computation (vol. 5, pp. 197-201).
Weingart, T., Sicker, D. C., & Grunwald, D. (2007). A statistical method for reconfiguration of cognitive radios. IEEE Wireless Communications, 14(4), 34-40.
Willkomm, D., Machiraju, S., Bolot, J., & Wolisz, A. (2008). Primary users in cellular networks: a large-scale measurement study. En IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 401-411). 14-17 Oct. 2008, Chicago, Illinois, Estados Unidos.
Woods, W. A. (1986). Important issues in knowledge representation. Proceedings of the IEEE, 74(10), 1322-1334.
Wooldridge, M. (2009). An introduction to multiagent systems. Glasgow, Gran Bretaña: John Wiley & Sons.
Wu, Y., Yang, K., Zhao, L., & Cheng, X. (2009). Congestion-aware proactive vertical handoff algorithm in heterogeneous wireless networks. IET Communications, 3(7), 1103.
Wu, Y., Yang, Q., Liu, X., & Kwak, K. (2016). Delay-Constrained optimal transmission with proactive spectrum handoff in cognitive radio networks. IEEE Transactions on Communications. 15(3), 627-640.
Xian, X., Shi, W., & Huang, H. (2008). Comparison of OMNET++ and other simulator for WSN simulation. En IEEE Conference on Industrial Electronics and Applications (pp. 1439-1443). 3-5 June 2008. Singapur, Singapur.
Xu, G., & Lu, Y. (2006). Channel and modulation selection based on support vector machines for cognitive radio. En International Conference on Wireless Communications, Networking and Mobile Computing (pp. 4-7). 22 Sep – 24 Sep 2006, Wuhan, China.
Xu, Y., Anpalagan, A., Wu, Q., Shen, L., Gao, Z., & Wang, J. (2013). Decision-Theoretic distributed channel selection for opportunistic spectrum access: strategies, challenges and solutions. IEEE Communications Surveys & Tutorials, 15(4), 1689-1713.
Yang, C., Lou, W., Fu, Y., Xie, S., & Yu, R. (2016). On throughput maximization in multichannel cognitive radio networks via generalized access strategy. IEEE Transactions on Communications, 64(4), 1384-1398.
Yang, P., Sun, Y., Liu, C., Li, W., & Wen, X. (2013). A novel fuzzy logic based vertical handoff decision algorithm for heterogeneous wireless networks. En International Symposium on Wireless Personal Multimedia Communications (pp. 1-5). 24 Jun. - 27 Jun. 2013, Atlantic City, NJ, Estados Unidos.
Yang, S. F., & Wu, J. S. (2008). A IEEE 802.21 handover design with QOS provision across WLAN and WMAN. En International Conference on Communications, Circuits and Systems (pp. 548-552). 25-27 May 2008, Fujian, China.
Yang, S. J., & Tseng, W. C. (2013). Design novel weighted rating of multiple attributes scheme to enhance handoff efficiency in heterogeneous wireless networks. Computer Communications, 36(14), 1498-1514.
Yi-Bing, L., & Ai-Chun, P. (2000). Comparing soft and hard handoffs. IEEE Transactions on Vehicular Technology, 49(3), 192-798.
Yifei, W., Yinglei, T., Li, W., Mei, S., & Xiaojun, W. (2013). QoS provisioning energy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101.
Ying, W., Jun, Y., Yun, Z., Gen, L., & Ping, Z. (2008). Vertical handover decision in an enhanced media independent handover framework. En Wireless Communications and Networking Conference (pp. 2693-2698). March 31 2008-April 3 2008, Las Vegas, NV, Estados Unidos.
Yonghui, C. (2010). Study of the bayesian networks. En IEEE International Conference on E-Health Networking, Digital Ecosystems and Technologies (vol. 1, pp. 172-174). 17 Apr - 18 Apr 2010, Shenzhen, China.
Yoon, K. P., & Hwang, C.-L. (1995). Multiple attribute decision making: an introduction (vol. 104). Thousand Oaks, Estados Unidos: Sage Publications.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
Zapata, J. A., Arango, M. D., & Adarme, W. (2012). Applying fuzzy extended analytical hierarchy (FEAHP) for selecting logistics software. Ingeniería e Investigación, 32(1), 94-99.
Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous networks. En IEEE Wireless Communications and Networking Conference (vol. 2, pp. 653-658). 21 al 25 de marzo de 2004, Atlanta, Estados Unidos.
Zhang, Y., Tay, W. P., Li, K. H., Esseghir, M., & Gaïti, D. (2016). Opportunistic Spectrum access with temporal-spatial reuse in cognitive radio networks. En IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 3661-3665). 20 al 25 de marzo de 2016, Shangai, China.
Zhao, Y., Mao, S., Neel, J. O., & Reed, J. H. (2009). Performance evaluation of cognitive radios: Metrics, utility functions, and methodology. Proceedings of the IEEE, 97(4), 642-658.
Zheng, H., & Cao, L. (2005). Device-centric spectrum management. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 56-65). 8 Nov. - 11 Nov. 2005. Baltimore, MD, Estados Unidos.
Descargas
Publicado
Colección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
