Modelo de asignación espectral multiusuario para redes de radio cognitiva descentralizadas
Sinopsis
El crecimiento de las aplicaciones inalámbricas plantea nuevos desafíos a los futuros sistemas de comunicación, como el uso ineficiente del espectro radioeléctrico. Las redes de radio cognitiva surgen como una solución a los problemas de escasez de espectro y uso ineficiente del recurso espectral, mediante el acceso dinámico al espectro. Estas redes están caracterizadas por percibir, aprender, planificar (toma de decisiones) y actuar de acuerdo con las condiciones actuales de la red. El objetivo general de una red de radio cognitiva consiste en que el usuario secundario acceda de manera oportuna a un canal de frecuencia disponible en una banda licenciada, sin generar interferencia al usuario primario, lo cual se puede lograr con una adecuada toma de decisión espectral.
La probabilidad de que dos o más usuarios secundarios elijan el mismo canal es alta, especialmente cuando el número de usuarios secundarios es mayor que el número de canales disponibles, y cuantos más usuarios secundarios seleccionen el mismo canal, menor será la utilidad que cada uno pueda obtener y el número de interferencias por acceso simultáneo será mayor.
El desafío consiste entonces en dotar los nodos de una red descentralizada con la capacidad de aprender del entorno, proponiendo estrategias que les permita a los usuarios secundarios tomar decisiones e intercambiar información de forma cooperativa o competitiva, en un ambiente de acceso multiusuario al espectro. Asimismo, este libro busca resolver la pregunta: ¿cómo y en qué medida se puede reducir la tasa de handoff espectral en redes de radio cognitiva descentralizadas con un enfoque multiusuario y colaborativo?
Capítulos
-
Introducción
-
Fundamentos teóricos
-
Metodología
-
Software de simulación desarrollado
-
Resultados de la investigación
-
Discusión
-
Conclusiones
Descargas
Referencias
GPP. (2011). Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands IEEE Computer Society (vol. 2015, Issue July).
Abass, A. A. A., Mandayam, N. B. y Gajic, Z. (2017). An evolutionary game model for threat revocation in ephemeral networks. 2017 51st Annual Conference on Information Sciences and Systems (CISS), 1-5. https://doi.org/10.1109/CISS.2017.7926128
Abbas, N., Nasser, Y. y Ahmad, K. E. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 1(2015), 174. https://doi.org/10.1186/s13638-015-0381-7
Ahmed, A., Boulahia, L. M. y Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys and Tutorials, 16(2), 776- 811. https://doi.org/10.1109/SURV.2013.082713.00141
Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J. y Khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823. https://doi.org/10.1109/COMST.2014.2363082
Akter, L., Natarajan, B. y Scoglio, C. (2008). Modeling and forecasting secondary user activity in cognitive radio networks. 17th International Conference on Computer Communications and Networks. https://doi.org/10.1109/ICCCN.2008.ECP.50
Akyildiz, I. F. y Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. En Broadband and Wireless Networking Laboratory Technical Report.
Akyildiz, I. F., Lee, W.-Y. y Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836. https://doi.org/10.1016/j.adhoc.2009.01.001
Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127-2159. https://doi.org/10.1016/j.comnet.2006.05.001
Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. Communications Magazine, IEEE, 46(4), 40-48. https://doi.org/10.1109/MCOM.2008.4481339
Akyildiz, I. F., Lo, B. F. y Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40-62. https://doi.org/https://doi.org/10.1016/j.phycom.2010.12.003
Al-Amidie, M., Al-Asadi, A., Micheas, A. C. y Islam, N. E. (2019). Spectrum sensing based on Bayesian generalized likelihood ratio for cognitive radio systems with multiple antennas. IET Communications, 13(3), 305- 311. https://doi.org/10.1049/iet-com.2018.5276
Ali, A. y Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys and Tutorials, 19(2), 1277-1304. https://doi.org/10.1109/COMST.2016.2631080
Alias, D. M. y Ragesh, G. K. (2016). Cognitive radio networks: A survey. Proceedings of the 2016 IEEE International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2016, 1981-1986. https://doi.org/10.1109/WiSPNET.2016.7566489
Almasaeid, H. M. y Kamal, A. E. (2010). Receiver-based channel allocation for wireless cognitive radio mesh networks. IEEE Symposium on New Frontiers in Dynamic Spectrum, 1-10. https://doi.org/10.1109/DYSPAN.2010.5457862
Alnwaimi, G., Arshad, K. y Moessner, K. (2011). Dynamic spectrum allocation algorithm with interference management in co-existing networks. IEEE Communications Letters, 15(9), 932-934. https://doi.org/10.1109/LCOMM.2011.062911.110248
Alsarhan, A. y Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. Internatonal Conference on Computer Communications and Networks, 1-6.
Amir, M., El-Keyi, A. y Nafie, M. (2011). Constrained interference alignment and the spatial degrees of freedom of mimo cognitive networks. IEEE Transactions on Information Theory, 57(5), 2994-3004. https://doi.org/10.1109/TIT.2011.2119770
Amjad, M. F., Chatterjee, M. y Zou, C. C. (2016). Coexistence in heterogeneous spectrum through distributed correlated equilibrium in cognitive radio networks. Computer Networks, (98), 109-122. https://doi.org/10.1016/j.comnet.2016.01.016
Azarfar, A., Frigon, J.-F. y Sanso, B. (2012). Improving the reliability of wireless networks using cognitive radios. IEEE Communications Surveys & Tutorials, 14(2, Second Quarter), 338-354. https://doi.org/10.1109/SURV.2011.021111.00064
Baran, P. (1964). On distributed communications networks. IEEE Transactions on Communications, 12(1), 1-9. https://doi.org/10.1109/TCOM.1964.1088883
Bhowmik, M. y Malathi, P. (2019). spectrum sensing in cognitive radio using actor-critic neural network with Krill Herd-Whale optimization algorithm. Wireless Personal Communications, 105(1), 335-354. https://doi.org/10.1007/s11277-018-6115-5
Bkassiny, M., Li, Y. y Jayaweera, S. K. (2013). A survey on machine-learning techniques in cognitive radios. IEEE Communications Surveys and Tutorials. https://doi.org/10.1109/SURV.2012.100412.00017
Bolstad, W. M. (2007). Introduction to Bayesian statistics. En Book. https://doi.org/10.1080/10543406.2011.589638
Boorstin, J. (2016). An internet of things that will number ten billions. CNBS.
Brik, V., Rozner, E., Banerjee, S. y Bahl, P. (2005). DSAP: A protocol for coordinated spectrum access. 2005 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, 611-614. https://doi.org/10.1109/DYSPAN.2005.1542680
Bujari, A., Calafate, C. T., Cano, J.-C., Manzoni, P., Palazzi, C. E. y Ronzani, D. (2018). Flying adhoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks, 13(10), 1550147717738192. https://doi.org/10.1177/1550147717738192
Büyüközkan, G., Kahraman, C. y Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2-3), 259-280. https://doi.org/10.1080/03081070310001633581
Büyüközkan, G. y Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354.
Byun, S. S., Balasingham, I. y Liang, X. (2008). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency. IEEE Vehicular Technology Conference. https://doi.org/10.1109/VETECF.2008.299
Cao, L. y Zheng, H. (2005). Distributed spectrum allocation via local bargaining. 2005 Second Annual IEEE Communications Society Conference on Sensor and AdHoc Communications and Networks, SECON 2005, 2005, 475-486. https://doi.org/10.1109/SAHCN.2005.1557100
Cárdenas, M., Díaz, M., Pineda, U., Arce, A. y Stevens, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band for cognitive radio applications. International Conference on Electronics, Communications and Computers, 25-31. https://doi.org/10.1109/CONIELECOMP.2016.7438547
Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. https://doi.org/10.1016/0377-2217(95)00300-2
Chen, Y. y Hee-Seok, O. (2016). A Survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1), 848-859. https://doi.org/10.1109/COMST.2014.2364316
Chen, D., Zhang, Q. y Jia, W. (2008). Aggregation aware spectrum assignment in cognitive adhoc networks. International Conference on Cognitive Radio Oriented Wireless Networks and Communications. https://doi.org/10.1109/CROWNCOM.2008.4562548
Chen, T., Zhang, H., Maggio, G. M. y Chlamtac, I. (2007). CogMesh: A cluster-based cognitive radio network. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 168-178. https://doi.org/10.1109/DYSPAN.2007.29
Cheng, X. y Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. IEEE International Conference on Communication Technology, 161-164. https://doi.org/10.1109/ICCT.2011.6157854
Cheng, Y. C., Wu, E. H. y Chen, G. H. (2016). A decentralized MAC protocol for unfairness problems in coexistent heterogeneous cognitive radio networks scenarios with collision-based primary users. IEEE Systems Journal, 10(1), 346-357. https://doi.org/10.1109/JSYST.2015.2431715
Cho, J. y Lee, J. (2013). Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330.
Chou, C. T., Shankar, S., Kim, H. y Shin, K. G. (2007). What and how much to gain by spectrum agility? IEEE Journal on Selected Areas in Communications, 25(3), 576-587. https://doi.org/10.1109/JSAC.2007.070408
Choudhary, D. y Shankar, R. (2012). A STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521.
Christian, I., Moh, S., Chung, I. y Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114-121. https://doi.org/10.1109/MCOM.2012.6211495
CISCO. (2021). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update. In CISCO. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
Cortés, J. (2011). Metodología para la implementación de tecnologías de la información y las comunicaciones TIC’s para soportar una estrategia de cadena de suministro esbelta [Master’s Dissertation, Universidad Nacional de Colombia].
Cruz-Pol, S., Van Zee, L., Kassim, N., Blackwell, W., Le Vine, D. y Scott, A. (2018). Spectrum management and the impact of RFI on science sensors. Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), 1-5. https://doi.org/10.1109/MICRORAD.2018.8430720
Csurgai-Horvath, L. y Bito, J. (2011). Primary and secondary user activity models for cognitive wireless network. International Conference on Telecommunications, 301-306.
Dadallage, S., Yi, C. y Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359. https://doi.org/10.1109/TVT.2015.2440412
Dadios, E. P. (2012). Fuzzy logic: Algorithms, techniques and implementations. TechOpen.
Darak, S. J., Zhang, H., Palicot, J. y Moy, C. (2014). Efficient decentralized dynamic spectrum learning and access policy for multi-standard multi-user cognitive radio networks. 2014 11th International Symposium on Wireless Communications Systems, ISWCS 2014–Proceedings, 271-275. https://doi.org/10.1109/ISWCS.2014.6933360
Darak, Sumit J., Dhabu, S., Moy, C., Zhang, H., Palicot, J. y Vinod, A. P. (2015). Low complexity and efficient dynamic spectrum learning and tunable bandwidth access for heterogeneous decentralized Cognitive Radio Networks. Digital Signal Processing: A Review Journal, 37(1), 13-23. https://doi.org/10.1016/j.dsp.2014.12.001
Darak, Sumit J., Zhang, H., Palicot, J. y Moy, C. (2017). Decision making policy for RF energy harvesting enabled cognitive radios in decentralized wireless networks. Digital Signal Processing, 60, 33-45. https://doi.org/10.1016/j.dsp.2016.08.014
Del-Ser, J., Matinmikko, M., Gil-López, S. y Mustonen, M. (2010). A novel harmony search based spectrum allocation technique for cognitive radio networks. International Symposium on Wireless Communication Systems, 233-237. https://doi.org/10.1109/ISWCS.2010.5624341
Delgado, M. y Rodríguez, B. (2016). Opportunities for a more Efficient Use of the Spectrum based in Cognitive Radio. IEEE Latin America Transactions, 14(2), 610-616. https://doi.org/10.1109/TLA.2016.7437200
Deng, H., Huang, L., Yang, C. y Xu, H. (2018). Centralized spectrum leasing via cooperative SU assignment in cognitive radio networks. International Journal of Communication Systems, 31(13). https://doi.org/10.1002/dac.3726
Dhamodharavadhani, S. (2015). A survey on clustering based routing protocols in Mobile ad hoc networks. 2015 International Conference on Soft-Computing and Networks Security (ICSNS), 1-6. https://doi.org/10.1109/ICSNS.2015.7292426
Digham, F. F., Alouini, M. y Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21-24. https://doi.org/10.1109/TCOMM.2006.887483
Ding, L., Melodia, T., Batalama, S. N., Matyjas, J. D. y Medley, M. J. (2010). Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology, 59(4), 1969-1979. https://doi.org/10.1109/TVT.2010.2045403
Duan, J. y Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio mobile Ad Hoc networks. Advances in Electrical and Computer Engineering, 11(3), 11-16. https://doi.org/10.4316/aece.2011.03002
Federal Communications Commission. (2003). Notice of proposed rulemaking and order. Mexico DF: Report ET Docket No. 03, 332.
Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence. Addison-Wesley.
Fraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM.
Fudenberg, D. y Tirole, J. (1991). Game theory. MIT Press.
Gallardo, J. R., Pineda, U. y Stevens, E. (2009). VIKOR method for vertical handoff decision in beyond 3G wireless networks. International Conference on Electrical Engineering, Computing Science and Automatic Control. https://doi.org/10.1109/ICEEE.2009.5393320
Gavrilovska, L., Atanasovski, V., Macaluso, I. y Dasilva, L. A. (2013). Learning and reasoning in cognitive radio networks. IEEE Communications Surveys and Tutorials, 15(4), 1761-1777. https://doi.org/10.1109/SURV.2013.030713.00113
Ghanem, M., Sabaei, M. y Dehghan, M. (2017). A novel model for implicit cooperation between primary users and secondary users in cognitive radio-cooperative communication systems. International Journal of Communication Systems, e3524, 1-22. https://doi.org/10.1002/dac.3524
Giupponi, L. y Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. International Conference on Cognitive Radio Oriented Wireless Networks and Communications. https://doi.org/10.1109/CROWNCOM.2008.4562535
Goldberg, D. E. y Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95-99. https://doi.org/10.1023/A:1022602019183
Goswami, M. M. (2017). AODV based adaptive distributed hybrid multipath routing for mobile AdHoc network. 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), 410-414. https://doi.org/10.1109/ICICCT.2017.7975230
Green, K. C., Armstrong, J. S. y Graefe, A. (2007). Methods to elicit forecasts from groups: Delphi and prediction markets compared. Social Science Research Network, (8), 17-20.
Han, J., Kamber, M. y Pei, J. (2012). Data mining: Concepts and techniques. Elsevier.
Hasegawa, M., Hirai, H., Nagano, K., Harada, H. y Aihara, K. (2014). Optimization for centralized and decentralized cognitive radio networks. Proceedings of the IEEE, 102(4), 574-584. https://doi.org/10.1109/JPROC.2014.2306255
Haykin, S. (1998). Neural networks: A comprehensive foundation (2.ª ed.). Prentice Hall PTR.
Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201-220.
He, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., Morales-Tirado, L., Neel, J., Zhao, Y., Reed, J. H. y Tranter, W. H. (2010). A survey of artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technology, 59(4), 1578-1592. https://doi.org/10.1109/TVT.2010.2043968
Hernández-Guillén, J., Rodríguez-Colina, E., Marcelín-Jiménez, R. y Pascoe-Chalke, M. (2012). CRUAM-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. IEEE Latin-America Conference on Communications, 1-6. https://doi.org/10.1109/LATINCOM.2012.6505997
Hernández-Sampieri, R., Fernández-Collado, C. y Baptista, P. (2006). Metodología de la investigación. McGraw-Hill.
Hernández, C., Giral, D. y Márquez, H. (2017). Evolutive algorithm for spectral handoff prediction in cognitive wireless networks. HIKARI Ltd, 10(14), 673-689. https://doi.org/10.12988/ces.2017.7766
Hernández, C., Giral, D. y Páez, I. (2015a). Benchmarking of the performance of spectrum mobility models in cognitive radio networks. IJAER, 10(21), 42189-42197.
Hernández, C., Giral, D. y Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Engineering and Technology, 9(12), 1212-1215.
Hernández, C., Giral, D. y Salgado, C. (2020). Failed handoffs in collaborative Wi-Fi networks. Telkomnika, 18(2), 669-675.
Hernández, C., Giral, D. y Santa, F. (2015c). MCDM Spectrum Handover Models for Cognitive Wireless Networks. World Academy of Science, Engineering and Technology, 9(10), 679-682.
Hernández, C., Márquez, H. y Giral, D. (2017). Comparative evaluation of prediction models for forecasting spectral opportunities. IJET, 9(5), 3775-3782. https://doi.org/10.21817/ijet/2017/v9i5/170905055
Hernández, C., Pedraza, L. F. y Martínez, F. H. (2016a). Algoritmos para asignación de espectro en redes de radio cognitiva. Tecnura, 20(48), 69-88. https://doi.org/10.14483/udistrital.jour.tecnura.2016.2.a05
Hernández, C., Pedraza, L. F., Páez, I. y Rodríguez, E. (2015d). Análisis de la movilidad espectral en redes de radio cognitiva. Información Tecnológica, 26(6), 169-186.
Hernández, C., Pedraza, L. F. y Rodríguez, E. (2016b). Fuzzy feedback algorithm for the spectral handoff in cognitive radio networks. Revista Facultad de Ingeniería de la Universidad de Antioquia.
Hernández, C., Salcedo, O. y Pedraza, L. F. (2009). An ARIMA model for forecasting Wi-Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69.
Hernández, C., Salgado, C., López, H. y Rodríguez, E. (2015e). Multivariable algorithm for dynamic channel selection in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 216. https://doi.org/10.1186/s13638-015-0445-8
Hernández, C., Salgado, C. y Salcedo, O. (2013). Performance of multivariable traffic model that allows estimating throughput mean values. Revista Facultad de Ingeniería Universidad de Antioquia, 67, 52-62. https://doi.org/http://doi.org/10.1186/s13638-015-0445-8
Hernández, C., Vásquez, H. y Páez, I. (2015f). Proactive spectrum handoff model with time series prediction. International Journal of Applied Engineering Research (IJAER), 10(21), 42259-42264.
Hoven, N., Tandra, R. y Sahai, A. (2005). Some fundamental limits on cognitive radio. Wireless Foundations EECS, Univ. of California, Berkeley.
Höyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz, M., Mämmelä, A., Kiviranta, M. y Kautio, A. (2008). Cognitive radio: An intelligent wireless communication system. In Research Report VTT-R-02219-08.
Hu, F., Chen, B., Zhai, X. y Zhu, C. (2016). Channel selection policy in Multi-SU and Multi-PU cognitive radio networks with energy harvesting for internet of everything. Mobile Information Systems, 2016, 6024928. https://doi.org/10.1155/2016/6024928
Huang, X., Han, T. y Ansari, N. (2014). On green energy powered cognitive radio networks. CoRR, abs/1405.5. http://arxiv.org/abs/1405.5747
Hübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Springer Science & Business Media.
IEEE. (2008). IEEE standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functionality, and spectrum management. En IEEE Std 1900.1-2008 (pp. 1-62). https://doi.org/10.1109/IEEESTD.2008.4633734
IEEE. (2008) Standards Coordinating Committee 41 on Dynamic Spectrum.
IEEE standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functionality, and spectrum management. En IEEE Standard 1900.1-2008. https://doi.org/10.1109/IEEESTD.2008.4633734
Iftikhar, A., Rauf, Z., Ahmed Khan, F., Shoaib Ali, M. y Kakar, M. (2019). Bayesian game-based user behavior analysis for spectrum mobility in cognitive radios. Physical Communication, 32, 200-208. https://doi.org/10.1016/j.phycom.2018.12.002
Issariyakul, T., Pillutla, L. S. y Krishnamurthy, V. (2009). Tuning radio resource in an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communications Magazine, 47(7), 57-63. https://doi.org/10.1109/MCOM.2009.5183473
Jayaweera, S. y Christodoulou, C. (2011). Radiobots: Architecture, algorithms and realtime reconfigurable antenna designs for autonomous, self-learning future cognitive radios.
Ji, Z. y Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access–dynamic spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88-94. https://doi.org/10.1109/MCOM.2007.358854
Jiang, C, Chen, Y. y Liu, K. J. R. (2014a). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Communications, 13(4), 2176-2188. https://doi.org/10.1109/TWC.2014.022014.131209
Jiang, C, Chen, Y. y Liu, K. J. R. (2014b). Sequential multi-channel access game in distributed cognitive radio networks. 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 1247-1251. https://doi.org/10.1109/GlobalSIP.2014.7032322
Jiang, C., Chen, Y. y Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Communications, 13(4), 2176-2188. https://doi.org/10.1109/TWC.2014.022014.131209
Joda, R. y Zorzi, M. (2015). Decentralized heuristic access policy design for two cognitive secondary users under a primary type-I HARQ process. IEEE Transactions on Communications, 63(11), 4037-4049. https://doi.org/10.1109/TCOMM.2015.2480846
Kanodia, V., Sabharwal, A. y Knightly, E. (2004). MOAR: A multi-channel opportunistic auto-rate media access protocol for ad hoc networks. International Conference on Broadband Networks, 600-610.
Kaur, A., Kaur, A. y Sharma, S. (2018a). Cognitive decision engine design for CR based IoTs using differential evolution and bat algorithm. 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), 130-135. https://doi.org/10.1109/SPIN.2018.8474273
Kaur, A., Kaur, A. y Sharma, S. (2018b). PSO based multiobjective optimization for parameter adaptation in CR based IoTs. 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT), 1-7. https://doi.org/10.1109/CIACT.2018.8480298
Kaya, T. y Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527.
Kibria, M. R., Jamalipour, A. y Mirchandani, V. (2005). A location aware three-step vertical handoff scheme for 4G/B3G networks. Global Telecommunications Conference, 5, 2752-2756. https://doi.org/10.1109/GLOCOM.2005.1578260
Kim, H. y Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533-545. https://doi.org/10.1109/TMC.2007.70751
Kim, W., Kassler, A. J., Di Felice, M. y Gerla, M. (2010). Urban-X: Towards distributed channel assignment in cognitive multi-radio mesh networks. IFIP Wireless Days. https://doi.org/10.1109/WD.2010.5657733
Kondareddy, Y. R., Agrawal, P. y Sivalingam, K. (2008). Cognitive radio network setup without a common control channel. IEEE Military Communications Conference. https://doi.org/10.1109/MILCOM.2008.4753398
Kongsiriwattana, W. y Gardner-Stephen, P. (2017). Eliminating the high standby energy consumption of adhoc Wi-Fi. 2017-Janua, 1-7. https://doi.org/10.1109/GHTC.2017.8239229
Krishnamurthy, S., Thoppian, M., Venkatesan, S. y Prakash, R. (2005). Control channel based MAC-layer configuration, routing and situation awareness for cognitive radio networks. Proceedings–IEEE Military Communications Conference MILCOM, 2005. https://doi.org/10.1109/MILCOM.2005.1605725
Krizhevsky, A., Sutskever, I. y Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 1097-1105.
Kumar, K., Prakash, A. y Tripathi, R. (2016). Spectrum handoff in cognitive radio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61(Supplement C), 161-188. https://doi.org/https://doi.org/10.1016/j.jnca.2015.10.008
Lahby, M., Leghris, C. y Adib, A. (2011). A hybrid approach for network selection in heterogeneous multi-access environments. International Conference on New Technologies, Mobility and Security, 1-5. https://doi.org/10.1109/NTMS.2011.5720658
Lee, W., y Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845-3857. https://doi.org/10.1109/T-WC.2008.070391
Lee, W. y Akyildiz, I. F. (2011). A spectrum decision framework for cognitive radio networks. IEEE Transactions on Mobile Computing, 10(2). 161-174 https://doi.org/10.1109/TMC.2010.147
Lehtomaki, J. J., Juntti, M., Saarnisaari, H. y Koivu, S. (2005). Threshold setting strategies for a quantized total power radiometer. IEEE Signal Processing Letters, 12(11), 796-799. https://doi.org/10.1109/LSP.2005.855521
Lertsinsrubtavee, A. y Malouch, N. (2016). Hybrid spectrum sharing through adaptive spectrum handoff and selection. IEEE Transactions on Mobile Computing, 15(11), 2781-2793.
Li, X. y Zekavat, S. A. (2008). Traffic pattern prediction and performance investigation for cognitive radio systems. IEEE Wireless Communications and Networking Conference, 894-899. https://doi.org/10.1109/WCNC.2008.163
Li, Y., Shen, H. y Wang, M. (2016). Optimization spectrum decision parameters in CR using autonomously search algorithm. International Conference on Signal Processing (ICSP), 1146-1151. https://doi.org/10.1109/ICSP.2016.7878007
López, D. A., Trujillo, E. R. y Gualdrón, O. E. (2015). Elementos fundamentales que componen la radio cognitiva y asignación de bandas espectrales. Información Tecnológica, 26(1), 23-40. https://doi.org/10.4067/S0718-07642015000100004
López, D. L. (2017). Implementación de un modelo predictor para la toma de decisiones en redes inalámbricas de radio cognitiva [Universidad Distrital Francisco José de Caldas]. http://doctoradoingenieria.udistrital.edu.co/index.php/es/investigacion/publicaciones
Ma, L., Shen, C. C. y Ryu, B. (2007). Single-radio adaptive channel algorithm for spectrum agile wireless ad hoc networks. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 547- 558. https://doi.org/10.1109/DYSPAN.2007.78
Marinho, J. y Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147-164. https://doi.org/10.1007/s11276-011-0392-1
Márquez, H., Hernández, C. y Giral, D. (2017). Channel availability prediction in cognitive radio networks using naive bayes. HIKARI Ltd, 10(12), 593-605. https://doi.org/10.12988/ces.2017.7758
Martins, L. R. y Andrade, L. H. (2018). Analysis of machine learning algorithms for spectrum decision in cognitive radios. 2018 15th International Symposium on Wireless Communication Systems (ISWCS), 1-6. https://doi.org/10.1109/ISWCS.2018.8491060
Masonta, M. T., Mzyece, M. y Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: a survey. IEEE Communications Surveys & Tutorials, 15(3), 1088-1107. https://doi.org/10.1109/SURV.2012.111412.00160
Matinmikko, M., Del-Ser, J., Rauma, T. y Mustonen, M. (2013). Fuzzy-logic based framework for spectrum availability assessment in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184. https://doi.org/10.1109/JSAC.2013.131117
Matlab. (2015). Matlab getting started guide. Matlab.
Mehbodniya, A., Kaleem, F., Yen, K. K. y Adachi, F. (2012). A fuzzy MADM ranking approach for vertical mobility in next generation hybrid networks. International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops, 262-267. https://doi.org/10.1109/ICUMT.2012.6459676
Mir, U., Merghem-Boulahia, L., Esseghir, M. y Gaïti, D. (2011). Dynamic spectrum sharing for cognitive radio networks using multiagent system. IEEE Conference on Consumer Communications and Networking, 658-663.
Miranda, E. (2001). Improving subjective estimates using paired comparisons. IEEE Software, 18(1), 87-91. https://doi.org/10.1109/52.903173
Mitola, J. y Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13-18. https://doi.org/10.1109/98.788210
Nisan, N., Roughgarden, T., Tardos, E. y Vazirani, V. V. (2007). Algorithmic game theory (vol. 1). Cambridge University Press Cambridge.
Ormond, O., Murphy, J. y Muntean, G. (2006). Utility-based intelligent network selection in beyond 3G systems. IEEE International Conference on Communications, 4, 1831-1836. https://doi.org/10.1109/ICC.2006.254986
Oyewobi, S. S. y Hancke, G. P. (2017). A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN). Journal of Network and Computer Applications, 97, 140-156. https://doi.org/https://doi.org/10.1016/j.jnca.2017.08.016
Ozger, M. y Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20(1), 157-160. https://doi.org/10.1109/LCOMM.2015.2504103
Páez, I., Giral, D. y Hernández, C. (2015). Modelo AHP-VIKOR para handoff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39.
Páez, I., Hernández, C. y Giral, D. (2017). Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva (1.ª ed.). Editorial UD.
Pankratev, D. A., Samsonov, A. A. y Stotckaia, A. D. (2019). Wireless data transfer technologies in a decentralized system. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 620-623. https://doi.org/10.1109/EIConRus.2019.8656671
Patil, S. K. y Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Systems with Applications, 41(2), 679-693. https://doi.org/10.1016/j.eswa.2013.07.093
Pedraza, L. F., Forero, F. y Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingenieria y Ciencia, 10(19), 127-143.
Pedraza, L. F., Hernández, C., Galeano, K., Rodríguez, E. y Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá (1.ª ed.). Universidad Distrital Francisco José de Caldas.
Petrova, M., Mahonen, P. y Osuna, A. (2010). Multi-class classification of analog and digital signals in cognitive radios using Support Vector Machines. International Symposium on Wireless Communication Systems, 986-990. https://doi.org/10.1109/ISWCS.2010.5624500
Pham, C., Tran, N. H., Do, C. T., Moon, S. Il y Hong, C. S. (2014). Spectrum handoff model based on hidden Markov model in cognitive radio networks. International Conference on Information Networking, 406-411.
Pla, V., Vidal, J. R., Martínez-Bauset, J. y Guijarro, L. (2010). Modeling and characterization of spectrum white spaces for underlay cognitive radio networks. IEEE International Conference on Communications. https://doi.org/10.1109/ICC.2010.5501788
Rahimian, N., Georghiades, C. N., Shakir, M. Z. y Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and system throughput perspectives. IEEE Transactions on Wireless Communications, 13(1), 356-369. https://doi.org/10.1109/TWC.2013.120213.130658
Ramírez, C. y Ramos, V. M. (2013). On the Effectiveness of Multi-criteria Decision Mechanisms for Vertical Handoff. International Conference on Advanced Information Networking and Applications, 1157-1164. https://doi.org/10.1109/AINA.2013.114
Ramírez, C. y Ramos, V. M. (2010). Handover vertical: un problema de toma de decisión múltiple. Congreso Internacional sobre Innovación y Desarrollo Tecnológico.
Ramzan, M. R., Nawaz, N., Ahmed, A., Naeem, M., Iqbal, M. y Anpalagan, A. (2017). Multi-objective optimization for spectrum sharing in cognitive radio networks: A review. Pervasive and Mobile Computing, 41(Supplement C), 106-131. https://doi.org/10.1016/j.pmcj.2017.07.010
Rizk, Y., Awad, M. y Tunstel, E. W. (2018). Decision making in multiagent systems: A survey. IEEE Transactions on Cognitive and Developmental Systems, 10(3), 514-529. https://doi.org/10.1109/TCDS.2018.2840971
Rodríguez, E., Ramírez, P., Carrillo, A. y Ernesto, C. (2011). Multiple attribute dynamic spectrum decision making for cognitive radio networks. International Conference on Wireless and Optical Communications Networks, 1-5. https://doi.org/10.1109/WOCN.2011.5872960
Rodríguez, A. B., Ramírez, L. J. y Chahuan, J. (2015). Nueva generación de heurísticas para redes de fibra óptica WDM (Wavelength División Multiplexing) bajo tráfico dinámico. Información Tecnológica, 26(5), 135-142.
Roy, A., Midya, S., Majumder, K., Phadikar, S. y Dasgupta, A. (2017). Optimized secondary user selection for quality of service enhancement of Two-Tier multi-user Cognitive Radio Network: A game theoretic approach. Computer Networks, 123, 1-18. https://doi.org/10.1016/j.comnet.2017.05.002
Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26. https://doi.org/10.1016/0377-2217(90)90057-I
Safavian, S. R. y Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man and Cybernetics, 21(3), 660-674. https://doi.org/10.1109/21.97458
Salgado, C., Márquez, H. y Gómez, V. (2016a). Técnicas inteligentes en la asignación de espectro dinámica para redes inalámbricas cognitivas. Revista Tecnura, 20(49), 133-151. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a09
Salgado, C., Mora, S. y Giral, D. (2016b). Collaborative algorithm for the spectrum allocation in distributed cognitive networks. IJET, 8(5), 2288-2299. https://doi.org/10.21817/ijet/2016/v8i5/160805091
Song, Q. y Jamalipour, A. (2005). A network selection mechanism for next generation networks. IEEE International Conference on Communications, 2, 1418-1422. https://doi.org/10.1109/ICC.2005.1494578
Sriram, K. y Whitt, W. (1986). Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 4(6), 833-846. https://doi.org/10.1109/JSAC.1986.1146402
Stevens, E., Martínez, J. D. y Pineda, U. (2012). Evaluation of vertical handoff decision algorithms based on MADM methods for heterogeneous wireless networks. Journal of Applied Research and Technology, 10(4), 534-548.
Stevens, E., Gallardo, R., Pineda, U. y Acosta, J. (2012). Application of MADM method VIKOR for vertical handoff in heterogeneous wireless networks. IEICE Transactions on Communications, 95(2), 599-602. https://doi.org/10.1587/transcom.E95.B.599
Stevens, E., Lin, Y. y Wong, V. W. S. (2008). An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 57(2), 1243-1254. https://doi.org/10.1109/TVT.2007.907072
Stevens, E. y Wong, V. W. S. (2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. IEEE Vehicular Technology Conference, 2, 947-951. https://doi.org/10.1109/VETECS.2004.1388970
Sutton, R. S. y Barto, A. G. (1998). Reinforcement learning: An introduction. IEEE Transactions on Neural Networks, 9(5), 1054. https://doi.org/10.1109/TNN.1998.712192
Tabassam, A. A. y Suleman, M. U. (2012). Game theory in wireless and cognitive radio networks–Coexistence perspective. 2012 IEEE Symposium on Wireless Technology and Applications (ISWTA), 177-181. https://doi.org/10.1109/ISWTA.2012.6373837
Tahir, M., Hadi Habaebi, M. e Islam, M. R. (2017). Novel distributed algorithm for coalition formation for enhanced spectrum sensing in cognitive radio networks. AEU–International Journal of Electronics and Communications, 77(Supplement C), 139-148. https://doi.org/10.1016/j.aeue.2017.04.033
Taj, M. I. y Akil, M. (2011). Cognitive radio spectrum evolution prediction using artificial neural networks based multivariate time series modelling. Wireless Conference Sustainable Wireless Technologies, 1-6.
Tanino, T., Tanaka, T. e Inuiguchi, M. (2003). Multi-objective programming and goal programming: Theory and applications (vol. 21). Springer Science & Business Media.
Thakur, P., Kumar, A., Pandit, S., Singh, G. y Satashia, S. N. (2017). Spectrum mobility in cognitive radio network using spectrum prediction and monitoring techniques. Physical Communication, (24), 1-8. https://doi.org/10.1016/j.phycom.2017.04.005
Tragos, E., Zeadally, S., Fragkiadakis, A. y Siris, V. (2013). Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 15(3), 1108-1135. https://doi.org/10.1109/SURV.2012.121112.00047
Trigui, E., Esseghir, M. y Merghem-Boulahia, L. (2012). Multi-agent systems negotiation approach for handoff in mobile cognitive radio networks. International Conference on New Technologies, Mobility and Security, 1-5. https://doi.org/10.1109/NTMS.2012.6208687
Tripathi, S., Upadhyay, A., Kotyan, S. y Yadav, S. (2019). Analysis and comparison of different fuzzy inference systems used in decision making for secondary users in cognitive radio network. Wireless Personal Communications, 104(3), 1175-1208. https://doi.org/10.1007/s11277-018-6075-9
Tsiropoulos, G., Dobre, O., Ahmed, M. y Baddour, K. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847. https://doi.org/10.1109/COMST.2014.2362796
Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suárez, M. y Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analyses and observations. International Conference on Cognitive Radio Oriented Wireless Networks, 230126, 2-6. https://doi.org/10.4108/ICST.CROWNCOM2010.9220
Vasudeva, A. y Sood, M. (2018). Survey on sybil attack defense mechanisms in wireless ad hoc networks. Journal of Network and Computer Applications, (120), 78-118. https://doi.org/https://doi.org/10.1016/j.jnca.2018.07.006
Wang, B. y Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5-23. https://doi.org/10.1109/JSTSP.2010.2093210
Wang, C., Chen, Y. y Liu, K. J. R. (2017). Hidden Chinese restaurant game: Grand information extraction for stochastic network learning. IEEE Transactions on Signal and Information Processing over Networks, 3(2), 330-345. https://doi.org/10.1109/TSIPN.2017.2682799
Wang, J., Ghosh, M. y Challapali, K. (2011). Emerging cognitive radio applications: A survey. IEEE Communications Magazine. https://doi.org/10.1109/MCOM.2011.5723803
Wang, P., Ansari, J., Petrova, M. y Mähönen, P. (2016). CogMAC+: A decentralized MAC protocol for opportunistic spectrum access in cognitive wireless networks. Computer Communications, 79 (Supplement C), 22-36. https://doi.org/https://doi.org/10.1016/j.comcom.2015.09.016
Wang, X., Wong, A. y Ho, P.-H. (2010). Dynamically optimized spatiotemporal prioritization for spectrum sensing in cooperative cognitive radio. Wireless Networks, 16(4), 889-901. https://doi.org/10.1007/s11276-009-0175-0
Wei, Q., Farkas, K., Prehofer, C., Mendes, P. y Plattner, B. (2006). Context-aware handover using active network technology. Computer Networks, 50(15), 2855-2872. https://doi.org/10.1016/j.comnet.2005.11.002
Wei, Y., Li, X., Song, M. y Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. International Conference on Natural Computation, 5, 197-201. https://doi.org/10.1109/ICNC.2008.504
Willkomm, D., Machiraju, S., Bolot, J. y Wolisz, A. (2008). Primary users in cellular networks: A large-scale measurement study. IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, 401-411. https://doi.org/10.1109/DYSPAN.2008.48
Woods, W. A. (1986). Important issues in knowledge representation. Proceedings of the IEEE, 74(10), 1322-1334.
Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.
Wu, Y., Yang, Q., Liu, X. y Kwak, K. (2016). Delay-Constrained optimal transmission with proactive spectrum handoff in cognitive radio networks. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2016.2561936
Xenakis, D., Passas, N. y Merakos, L. (2014). Multi-parameter performance analysis for decentralized cognitive radio networks. Wireless Networks, 20(4), 787-803. https://doi.org/10.1007/s11276-013-0635-4
Xu, G. y Lu, Y. (2006). Channel and modulation selection based on support vector machines for cognitive radio. International Conference on Wireless Communications, Networking and Mobile Computing, 4-7. https://doi.org/10.1109/WiCOM.2006.181
Yang, S. F. y Wu, J. S. (2008). A IEEE 802.21 handover design with QoS provision across WLAN and WMAN. International Conference on Communications, Circuits and Systems Proceedings, 548-552. https://doi.org/10.1109/ICCCAS.2008.4657833
Yang, S. J. y Tseng, W. C. (2013). Design novel weighted rating of multiple attributes scheme to enhance handoff efficiency in heterogeneous wireless networks. Computer Communications, 36(14), 1498-1514. https://doi.org/10.1016/j.comcom.2013.06.005
Yifei, W., Yinglei, T., Li, W., Mei, S. y Xiaojun, W. (2013). QoS provisioning energy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101. https://doi.org/10.1109/CC.2013.6723882
Yonghui, C. (2010). Study of the bayesian networks. International Conference on E-Health Networking, Digital Ecosystems and Technologies, 1, 172-174.
Yoon, K. P. y Hwang, C.-L. (1995). Multiple attribute decision making: An introduction (vol. 104). Sage publications.
Youssef, M. E., Nasim, S., Wasi, S., Khisal, U. y Khan, A. (2018). Efficient cooperative spectrum detection in cognitive radio systems using wavelet fusion. International Conference on Computing, Electronic and Electrical Engineering. https://doi.org/10.1109/ICECUBE.2018.8610981
Yu, X. y Xue, W. (2018). Joint Spectrum Allocation and Power Control for Cognitive Radio Networks Based on Potential Game BT–2018 International Symposium on Networks, Computers and Communications, ISNCC 2018, June 19, 2018–June 21, 2018. dbw Communication; iDirect; Nextant Applications a. https://doi.org/10.1109/ISNCC.2018.8530881
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zapata, J. A., Arango, M. D. y Adarme, W. (2012). Applying fuzzy extended analytical hierarchy (FEAHP) for selecting logistics software. Ingeniería e Investigación, 32(1), 94-99.
Zhang, B., Chen, Y., Wang, C. y Liu, K. J. R. (2012). Learning and decision making with negative externality for opportunistic spectrum access. 2012 IEEE Global Communications Conference (GLOBECOM), 1404-1409. https://doi.org/10.1109/GLOCOM.2012.6503310
Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M. y Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730-743. https://doi.org/10.1109/TWC.2016.2628821
Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous networks. IEEE Wireless Communications and Networking Conference, 2, 653-658. https://doi.org/10.1109/WCNC.2004.1311263
Zhang, Y., Tay, W. P., Li, K. H., Esseghir, M. y Gaïti, D. (2016). Opportunistic spectrum access with temporal-spatial reuse in cognitive radio networks. IEEE International Conference on Acoustics, Speech and Signal Processing, 3661-3665.
Zhao, Y., Mao, S., Neel, J. O. y Reed, J. H. (2009). Performance evaluation of cognitive radios: Metrics, utility functions, and methodology. Proceedings of the IEEE, 97(4), 642-658. https://doi.org/10.1109/JPROC.2009.2013017
Zheng, H. y Cao, L. (2005). Device-centric spectrum management. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 56-65. https://doi.org/10.1109/DYSPAN.2005.1542617
Descargas
Publicado
Colección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
