Modelo de asignación espectral multiusuario para redes de radio cognitiva descentralizadas

Autores/as

César Augusto Hernández Suárez
Universidad Distrital Francisco José de Caldas
https://orcid.org/0000-0001-9409-8341
Diego Armando Giral Ramírez
Universidad Distrital Francisco José de Caldas
https://orcid.org/0000-0001-9983-4555
Lizet Camila Salgado Franco
Universidad Distrital Francisco José de Caldas
https://orcid.org/0000-0001-7846-0224

Sinopsis

El crecimiento de las aplicaciones inalámbricas plantea nuevos desafíos a los futuros sistemas de comunicación, como el uso ineficiente del espectro radioeléctrico. Las redes de radio cognitiva surgen como una solución a los problemas de escasez de espectro y uso ineficiente del recurso espectral, mediante el acceso dinámico al espectro. Estas redes están caracterizadas por percibir, aprender, planificar (toma de decisiones) y actuar de acuerdo con las condiciones actuales de la red. El objetivo general de una red de radio cognitiva consiste en que el usuario secundario acceda de manera oportuna a un canal de frecuencia disponible en una banda licenciada, sin generar interferencia al usuario primario, lo cual se puede lograr con una adecuada toma de decisión espectral.

La probabilidad de que dos o más usuarios secundarios elijan el mismo canal es alta, especialmente cuando el número de usuarios secundarios es mayor que el número de canales disponibles, y cuantos más usuarios secundarios seleccionen el mismo canal, menor será la utilidad que cada uno pueda obtener y el número de interferencias por acceso simultáneo será mayor.

El desafío consiste entonces en dotar los nodos de una red descentralizada con la capacidad de aprender del entorno, proponiendo estrategias que les permita a los usuarios secundarios tomar decisiones e intercambiar información de forma cooperativa o competitiva, en un ambiente de acceso multiusuario al espectro. Asimismo, este libro busca resolver la pregunta: ¿cómo y en qué medida se puede reducir la tasa de handoff espectral en redes de radio cognitiva descentralizadas con un enfoque multiusuario y colaborativo?

Capítulos

  • Introducción
  • Fundamentos teóricos
  • Metodología
  • Software de simulación desarrollado
  • Resultados de la investigación
  • Discusión
  • Conclusiones

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

César Augusto Hernández Suárez, Universidad Distrital Francisco José de Caldas

Ingeniero electrónico con especialización en Interconexión de Redes; magíster en Ciencias de la Información y las Comunicaciones de la Universidad Distrital Francisco José de Caldas, doctor en Ingeniería de la Universidad Nacional de Colombia. Profesor titular de la Universidad Distrital Francisco José de Caldas adscrito a los programas de Tecnología en Electricidad de Media y Baja Tensión e Ingeniería Eléctrica de la Facultad Tecnológica. Investigador Sénior de Colciencias, director del grupo de investigación SIREC con categoría A1 de Colciencias, e integrante de los grupos de investigación Gidenutas (A1 de Colciencias) e Internet Inteligente (A de Colciencias), en los que lidera investigaciones sobre sistemas y redes cognitivas y aplicaciones tecnológicas que contribuyen a mejorar la calidad de vida de comunidades vulnerables. Ha realizado publicaciones de patentes, libros de investigación y artículos en el área de las telecomunicaciones en revistas indexadas de categoría nacional e internacional.

Diego Armando Giral Ramírez, Universidad Distrital Francisco José de Caldas

Ingeniero eléctrico de la Universidad Distrital Francisco José de Caldas, magíster en Ingeniería Eléctrica de la Universidad de los Andes y candidato a doctor en Ingeniería de la Universidad Distrital Francisco José de Caldas. Profesor asistente de la Universidad Distrital Francisco José de Caldas adscrito a los programas de Tecnología en Electricidad de Media y Baja Tensión e Ingeniería Eléctrica de la Facultad Tecnológica. Investigador junior de Colciencias, integrante del grupo de investigación SIREC con categoría A1 de Colciencias. Ha realizado publicaciones de libros de investigación y artículos en el área de las telecomunicaciones y sistemas de potencia en revistas indexadas de categoría nacional e internacional.

Lizet Camila Salgado Franco, Universidad Distrital Francisco José de Caldas

Ingeniera electrónica y de telecomunicaciones de la Universidad Cooperativa de Colombia, magíster en Ciencias de la Información y las Comunicaciones de la Universidad Distrital Francisco José de Caldas. Investigadora junior de Colciencias, integrante del grupo de investigación SIREC con categoría A1 de Colciencias. Ha realizado publicaciones de libros de investigación y artículos en el área de las telecomunicaciones en revistas indexadas de categoría nacional e internacional.

Referencias

GPP. (2011). Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands IEEE Computer Society (vol. 2015, Issue July).

Abass, A. A. A., Mandayam, N. B. y Gajic, Z. (2017). An evolutionary game model for threat revocation in ephemeral networks. 2017 51st Annual Conference on Information Sciences and Systems (CISS), 1-5. https://doi.org/10.1109/CISS.2017.7926128

Abbas, N., Nasser, Y. y Ahmad, K. E. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 1(2015), 174. https://doi.org/10.1186/s13638-015-0381-7

Ahmed, A., Boulahia, L. M. y Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys and Tutorials, 16(2), 776- 811. https://doi.org/10.1109/SURV.2013.082713.00141

Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J. y Khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823. https://doi.org/10.1109/COMST.2014.2363082

Akter, L., Natarajan, B. y Scoglio, C. (2008). Modeling and forecasting secondary user activity in cognitive radio networks. 17th International Conference on Computer Communications and Networks. https://doi.org/10.1109/ICCCN.2008.ECP.50

Akyildiz, I. F. y Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. En Broadband and Wireless Networking Laboratory Technical Report.

Akyildiz, I. F., Lee, W.-Y. y Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836. https://doi.org/10.1016/j.adhoc.2009.01.001

Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127-2159. https://doi.org/10.1016/j.comnet.2006.05.001

Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. Communications Magazine, IEEE, 46(4), 40-48. https://doi.org/10.1109/MCOM.2008.4481339

Akyildiz, I. F., Lo, B. F. y Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40-62. https://doi.org/https://doi.org/10.1016/j.phycom.2010.12.003

Al-Amidie, M., Al-Asadi, A., Micheas, A. C. y Islam, N. E. (2019). Spectrum sensing based on Bayesian generalized likelihood ratio for cognitive radio systems with multiple antennas. IET Communications, 13(3), 305- 311. https://doi.org/10.1049/iet-com.2018.5276

Ali, A. y Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys and Tutorials, 19(2), 1277-1304. https://doi.org/10.1109/COMST.2016.2631080

Alias, D. M. y Ragesh, G. K. (2016). Cognitive radio networks: A survey. Proceedings of the 2016 IEEE International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2016, 1981-1986. https://doi.org/10.1109/WiSPNET.2016.7566489

Almasaeid, H. M. y Kamal, A. E. (2010). Receiver-based channel allocation for wireless cognitive radio mesh networks. IEEE Symposium on New Frontiers in Dynamic Spectrum, 1-10. https://doi.org/10.1109/DYSPAN.2010.5457862

Alnwaimi, G., Arshad, K. y Moessner, K. (2011). Dynamic spectrum allocation algorithm with interference management in co-existing networks. IEEE Communications Letters, 15(9), 932-934. https://doi.org/10.1109/LCOMM.2011.062911.110248

Alsarhan, A. y Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. Internatonal Conference on Computer Communications and Networks, 1-6.

Amir, M., El-Keyi, A. y Nafie, M. (2011). Constrained interference alignment and the spatial degrees of freedom of mimo cognitive networks. IEEE Transactions on Information Theory, 57(5), 2994-3004. https://doi.org/10.1109/TIT.2011.2119770

Amjad, M. F., Chatterjee, M. y Zou, C. C. (2016). Coexistence in heterogeneous spectrum through distributed correlated equilibrium in cognitive radio networks. Computer Networks, (98), 109-122. https://doi.org/10.1016/j.comnet.2016.01.016

Azarfar, A., Frigon, J.-F. y Sanso, B. (2012). Improving the reliability of wireless networks using cognitive radios. IEEE Communications Surveys & Tutorials, 14(2, Second Quarter), 338-354. https://doi.org/10.1109/SURV.2011.021111.00064

Baran, P. (1964). On distributed communications networks. IEEE Transactions on Communications, 12(1), 1-9. https://doi.org/10.1109/TCOM.1964.1088883

Bhowmik, M. y Malathi, P. (2019). spectrum sensing in cognitive radio using actor-critic neural network with Krill Herd-Whale optimization algorithm. Wireless Personal Communications, 105(1), 335-354. https://doi.org/10.1007/s11277-018-6115-5

Bkassiny, M., Li, Y. y Jayaweera, S. K. (2013). A survey on machine-learning techniques in cognitive radios. IEEE Communications Surveys and Tutorials. https://doi.org/10.1109/SURV.2012.100412.00017

Bolstad, W. M. (2007). Introduction to Bayesian statistics. En Book. https://doi.org/10.1080/10543406.2011.589638

Boorstin, J. (2016). An internet of things that will number ten billions. CNBS.

Brik, V., Rozner, E., Banerjee, S. y Bahl, P. (2005). DSAP: A protocol for coordinated spectrum access. 2005 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, 611-614. https://doi.org/10.1109/DYSPAN.2005.1542680

Bujari, A., Calafate, C. T., Cano, J.-C., Manzoni, P., Palazzi, C. E. y Ronzani, D. (2018). Flying adhoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks, 13(10), 1550147717738192. https://doi.org/10.1177/1550147717738192

Büyüközkan, G., Kahraman, C. y Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2-3), 259-280. https://doi.org/10.1080/03081070310001633581

Büyüközkan, G. y Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354.

Byun, S. S., Balasingham, I. y Liang, X. (2008). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency. IEEE Vehicular Technology Conference. https://doi.org/10.1109/VETECF.2008.299

Cao, L. y Zheng, H. (2005). Distributed spectrum allocation via local bargaining. 2005 Second Annual IEEE Communications Society Conference on Sensor and AdHoc Communications and Networks, SECON 2005, 2005, 475-486. https://doi.org/10.1109/SAHCN.2005.1557100

Cárdenas, M., Díaz, M., Pineda, U., Arce, A. y Stevens, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band for cognitive radio applications. International Conference on Electronics, Communications and Computers, 25-31. https://doi.org/10.1109/CONIELECOMP.2016.7438547

Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. https://doi.org/10.1016/0377-2217(95)00300-2

Chen, Y. y Hee-Seok, O. (2016). A Survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1), 848-859. https://doi.org/10.1109/COMST.2014.2364316

Chen, D., Zhang, Q. y Jia, W. (2008). Aggregation aware spectrum assignment in cognitive adhoc networks. International Conference on Cognitive Radio Oriented Wireless Networks and Communications. https://doi.org/10.1109/CROWNCOM.2008.4562548

Chen, T., Zhang, H., Maggio, G. M. y Chlamtac, I. (2007). CogMesh: A cluster-based cognitive radio network. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 168-178. https://doi.org/10.1109/DYSPAN.2007.29

Cheng, X. y Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. IEEE International Conference on Communication Technology, 161-164. https://doi.org/10.1109/ICCT.2011.6157854

Cheng, Y. C., Wu, E. H. y Chen, G. H. (2016). A decentralized MAC protocol for unfairness problems in coexistent heterogeneous cognitive radio networks scenarios with collision-based primary users. IEEE Systems Journal, 10(1), 346-357. https://doi.org/10.1109/JSYST.2015.2431715

Cho, J. y Lee, J. (2013). Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330.

Chou, C. T., Shankar, S., Kim, H. y Shin, K. G. (2007). What and how much to gain by spectrum agility? IEEE Journal on Selected Areas in Communications, 25(3), 576-587. https://doi.org/10.1109/JSAC.2007.070408

Choudhary, D. y Shankar, R. (2012). A STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521.

Christian, I., Moh, S., Chung, I. y Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114-121. https://doi.org/10.1109/MCOM.2012.6211495

CISCO. (2021). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update. In CISCO. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

Cortés, J. (2011). Metodología para la implementación de tecnologías de la información y las comunicaciones TIC’s para soportar una estrategia de cadena de suministro esbelta [Master’s Dissertation, Universidad Nacional de Colombia].

Cruz-Pol, S., Van Zee, L., Kassim, N., Blackwell, W., Le Vine, D. y Scott, A. (2018). Spectrum management and the impact of RFI on science sensors. Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), 1-5. https://doi.org/10.1109/MICRORAD.2018.8430720

Csurgai-Horvath, L. y Bito, J. (2011). Primary and secondary user activity models for cognitive wireless network. International Conference on Telecommunications, 301-306.

Dadallage, S., Yi, C. y Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359. https://doi.org/10.1109/TVT.2015.2440412

Dadios, E. P. (2012). Fuzzy logic: Algorithms, techniques and implementations. TechOpen.

Darak, S. J., Zhang, H., Palicot, J. y Moy, C. (2014). Efficient decentralized dynamic spectrum learning and access policy for multi-standard multi-user cognitive radio networks. 2014 11th International Symposium on Wireless Communications Systems, ISWCS 2014–Proceedings, 271-275. https://doi.org/10.1109/ISWCS.2014.6933360

Darak, Sumit J., Dhabu, S., Moy, C., Zhang, H., Palicot, J. y Vinod, A. P. (2015). Low complexity and efficient dynamic spectrum learning and tunable bandwidth access for heterogeneous decentralized Cognitive Radio Networks. Digital Signal Processing: A Review Journal, 37(1), 13-23. https://doi.org/10.1016/j.dsp.2014.12.001

Darak, Sumit J., Zhang, H., Palicot, J. y Moy, C. (2017). Decision making policy for RF energy harvesting enabled cognitive radios in decentralized wireless networks. Digital Signal Processing, 60, 33-45. https://doi.org/10.1016/j.dsp.2016.08.014

Del-Ser, J., Matinmikko, M., Gil-López, S. y Mustonen, M. (2010). A novel harmony search based spectrum allocation technique for cognitive radio networks. International Symposium on Wireless Communication Systems, 233-237. https://doi.org/10.1109/ISWCS.2010.5624341

Delgado, M. y Rodríguez, B. (2016). Opportunities for a more Efficient Use of the Spectrum based in Cognitive Radio. IEEE Latin America Transactions, 14(2), 610-616. https://doi.org/10.1109/TLA.2016.7437200

Deng, H., Huang, L., Yang, C. y Xu, H. (2018). Centralized spectrum leasing via cooperative SU assignment in cognitive radio networks. International Journal of Communication Systems, 31(13). https://doi.org/10.1002/dac.3726

Dhamodharavadhani, S. (2015). A survey on clustering based routing protocols in Mobile ad hoc networks. 2015 International Conference on Soft-Computing and Networks Security (ICSNS), 1-6. https://doi.org/10.1109/ICSNS.2015.7292426

Digham, F. F., Alouini, M. y Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21-24. https://doi.org/10.1109/TCOMM.2006.887483

Ding, L., Melodia, T., Batalama, S. N., Matyjas, J. D. y Medley, M. J. (2010). Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology, 59(4), 1969-1979. https://doi.org/10.1109/TVT.2010.2045403

Duan, J. y Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio mobile Ad Hoc networks. Advances in Electrical and Computer Engineering, 11(3), 11-16. https://doi.org/10.4316/aece.2011.03002

Federal Communications Commission. (2003). Notice of proposed rulemaking and order. Mexico DF: Report ET Docket No. 03, 332.

Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence. Addison-Wesley.

Fraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM.

Fudenberg, D. y Tirole, J. (1991). Game theory. MIT Press.

Gallardo, J. R., Pineda, U. y Stevens, E. (2009). VIKOR method for vertical handoff decision in beyond 3G wireless networks. International Conference on Electrical Engineering, Computing Science and Automatic Control. https://doi.org/10.1109/ICEEE.2009.5393320

Gavrilovska, L., Atanasovski, V., Macaluso, I. y Dasilva, L. A. (2013). Learning and reasoning in cognitive radio networks. IEEE Communications Surveys and Tutorials, 15(4), 1761-1777. https://doi.org/10.1109/SURV.2013.030713.00113

Ghanem, M., Sabaei, M. y Dehghan, M. (2017). A novel model for implicit cooperation between primary users and secondary users in cognitive radio-cooperative communication systems. International Journal of Communication Systems, e3524, 1-22. https://doi.org/10.1002/dac.3524

Giupponi, L. y Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. International Conference on Cognitive Radio Oriented Wireless Networks and Communications. https://doi.org/10.1109/CROWNCOM.2008.4562535

Goldberg, D. E. y Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95-99. https://doi.org/10.1023/A:1022602019183

Goswami, M. M. (2017). AODV based adaptive distributed hybrid multipath routing for mobile AdHoc network. 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), 410-414. https://doi.org/10.1109/ICICCT.2017.7975230

Green, K. C., Armstrong, J. S. y Graefe, A. (2007). Methods to elicit forecasts from groups: Delphi and prediction markets compared. Social Science Research Network, (8), 17-20.

Han, J., Kamber, M. y Pei, J. (2012). Data mining: Concepts and techniques. Elsevier.

Hasegawa, M., Hirai, H., Nagano, K., Harada, H. y Aihara, K. (2014). Optimization for centralized and decentralized cognitive radio networks. Proceedings of the IEEE, 102(4), 574-584. https://doi.org/10.1109/JPROC.2014.2306255

Haykin, S. (1998). Neural networks: A comprehensive foundation (2.ª ed.). Prentice Hall PTR.

Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201-220.

He, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., Morales-Tirado, L., Neel, J., Zhao, Y., Reed, J. H. y Tranter, W. H. (2010). A survey of artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technology, 59(4), 1578-1592. https://doi.org/10.1109/TVT.2010.2043968

Hernández-Guillén, J., Rodríguez-Colina, E., Marcelín-Jiménez, R. y Pascoe-Chalke, M. (2012). CRUAM-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. IEEE Latin-America Conference on Communications, 1-6. https://doi.org/10.1109/LATINCOM.2012.6505997

Hernández-Sampieri, R., Fernández-Collado, C. y Baptista, P. (2006). Metodología de la investigación. McGraw-Hill.

Hernández, C., Giral, D. y Márquez, H. (2017). Evolutive algorithm for spectral handoff prediction in cognitive wireless networks. HIKARI Ltd, 10(14), 673-689. https://doi.org/10.12988/ces.2017.7766

Hernández, C., Giral, D. y Páez, I. (2015a). Benchmarking of the performance of spectrum mobility models in cognitive radio networks. IJAER, 10(21), 42189-42197.

Hernández, C., Giral, D. y Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Engineering and Technology, 9(12), 1212-1215.

Hernández, C., Giral, D. y Salgado, C. (2020). Failed handoffs in collaborative Wi-Fi networks. Telkomnika, 18(2), 669-675.

Hernández, C., Giral, D. y Santa, F. (2015c). MCDM Spectrum Handover Models for Cognitive Wireless Networks. World Academy of Science, Engineering and Technology, 9(10), 679-682.

Hernández, C., Márquez, H. y Giral, D. (2017). Comparative evaluation of prediction models for forecasting spectral opportunities. IJET, 9(5), 3775-3782. https://doi.org/10.21817/ijet/2017/v9i5/170905055

Hernández, C., Pedraza, L. F. y Martínez, F. H. (2016a). Algoritmos para asignación de espectro en redes de radio cognitiva. Tecnura, 20(48), 69-88. https://doi.org/10.14483/udistrital.jour.tecnura.2016.2.a05

Hernández, C., Pedraza, L. F., Páez, I. y Rodríguez, E. (2015d). Análisis de la movilidad espectral en redes de radio cognitiva. Información Tecnológica, 26(6), 169-186.

Hernández, C., Pedraza, L. F. y Rodríguez, E. (2016b). Fuzzy feedback algorithm for the spectral handoff in cognitive radio networks. Revista Facultad de Ingeniería de la Universidad de Antioquia.

Hernández, C., Salcedo, O. y Pedraza, L. F. (2009). An ARIMA model for forecasting Wi-Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69.

Hernández, C., Salgado, C., López, H. y Rodríguez, E. (2015e). Multivariable algorithm for dynamic channel selection in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 216. https://doi.org/10.1186/s13638-015-0445-8

Hernández, C., Salgado, C. y Salcedo, O. (2013). Performance of multivariable traffic model that allows estimating throughput mean values. Revista Facultad de Ingeniería Universidad de Antioquia, 67, 52-62. https://doi.org/http://doi.org/10.1186/s13638-015-0445-8

Hernández, C., Vásquez, H. y Páez, I. (2015f). Proactive spectrum handoff model with time series prediction. International Journal of Applied Engineering Research (IJAER), 10(21), 42259-42264.

Hoven, N., Tandra, R. y Sahai, A. (2005). Some fundamental limits on cognitive radio. Wireless Foundations EECS, Univ. of California, Berkeley.

Höyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz, M., Mämmelä, A., Kiviranta, M. y Kautio, A. (2008). Cognitive radio: An intelligent wireless communication system. In Research Report VTT-R-02219-08.

Hu, F., Chen, B., Zhai, X. y Zhu, C. (2016). Channel selection policy in Multi-SU and Multi-PU cognitive radio networks with energy harvesting for internet of everything. Mobile Information Systems, 2016, 6024928. https://doi.org/10.1155/2016/6024928

Huang, X., Han, T. y Ansari, N. (2014). On green energy powered cognitive radio networks. CoRR, abs/1405.5. http://arxiv.org/abs/1405.5747

Hübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Springer Science & Business Media.

IEEE. (2008). IEEE standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functionality, and spectrum management. En IEEE Std 1900.1-2008 (pp. 1-62). https://doi.org/10.1109/IEEESTD.2008.4633734

IEEE. (2008) Standards Coordinating Committee 41 on Dynamic Spectrum.

IEEE standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functionality, and spectrum management. En IEEE Standard 1900.1-2008. https://doi.org/10.1109/IEEESTD.2008.4633734

Iftikhar, A., Rauf, Z., Ahmed Khan, F., Shoaib Ali, M. y Kakar, M. (2019). Bayesian game-based user behavior analysis for spectrum mobility in cognitive radios. Physical Communication, 32, 200-208. https://doi.org/10.1016/j.phycom.2018.12.002

Issariyakul, T., Pillutla, L. S. y Krishnamurthy, V. (2009). Tuning radio resource in an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communications Magazine, 47(7), 57-63. https://doi.org/10.1109/MCOM.2009.5183473

Jayaweera, S. y Christodoulou, C. (2011). Radiobots: Architecture, algorithms and realtime reconfigurable antenna designs for autonomous, self-learning future cognitive radios.

Ji, Z. y Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access–dynamic spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88-94. https://doi.org/10.1109/MCOM.2007.358854

Jiang, C, Chen, Y. y Liu, K. J. R. (2014a). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Communications, 13(4), 2176-2188. https://doi.org/10.1109/TWC.2014.022014.131209

Jiang, C, Chen, Y. y Liu, K. J. R. (2014b). Sequential multi-channel access game in distributed cognitive radio networks. 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 1247-1251. https://doi.org/10.1109/GlobalSIP.2014.7032322

Jiang, C., Chen, Y. y Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Communications, 13(4), 2176-2188. https://doi.org/10.1109/TWC.2014.022014.131209

Joda, R. y Zorzi, M. (2015). Decentralized heuristic access policy design for two cognitive secondary users under a primary type-I HARQ process. IEEE Transactions on Communications, 63(11), 4037-4049. https://doi.org/10.1109/TCOMM.2015.2480846

Kanodia, V., Sabharwal, A. y Knightly, E. (2004). MOAR: A multi-channel opportunistic auto-rate media access protocol for ad hoc networks. International Conference on Broadband Networks, 600-610.

Kaur, A., Kaur, A. y Sharma, S. (2018a). Cognitive decision engine design for CR based IoTs using differential evolution and bat algorithm. 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), 130-135. https://doi.org/10.1109/SPIN.2018.8474273

Kaur, A., Kaur, A. y Sharma, S. (2018b). PSO based multiobjective optimization for parameter adaptation in CR based IoTs. 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT), 1-7. https://doi.org/10.1109/CIACT.2018.8480298

Kaya, T. y Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527.

Kibria, M. R., Jamalipour, A. y Mirchandani, V. (2005). A location aware three-step vertical handoff scheme for 4G/B3G networks. Global Telecommunications Conference, 5, 2752-2756. https://doi.org/10.1109/GLOCOM.2005.1578260

Kim, H. y Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533-545. https://doi.org/10.1109/TMC.2007.70751

Kim, W., Kassler, A. J., Di Felice, M. y Gerla, M. (2010). Urban-X: Towards distributed channel assignment in cognitive multi-radio mesh networks. IFIP Wireless Days. https://doi.org/10.1109/WD.2010.5657733

Kondareddy, Y. R., Agrawal, P. y Sivalingam, K. (2008). Cognitive radio network setup without a common control channel. IEEE Military Communications Conference. https://doi.org/10.1109/MILCOM.2008.4753398

Kongsiriwattana, W. y Gardner-Stephen, P. (2017). Eliminating the high standby energy consumption of adhoc Wi-Fi. 2017-Janua, 1-7. https://doi.org/10.1109/GHTC.2017.8239229

Krishnamurthy, S., Thoppian, M., Venkatesan, S. y Prakash, R. (2005). Control channel based MAC-layer configuration, routing and situation awareness for cognitive radio networks. Proceedings–IEEE Military Communications Conference MILCOM, 2005. https://doi.org/10.1109/MILCOM.2005.1605725

Krizhevsky, A., Sutskever, I. y Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 1097-1105.

Kumar, K., Prakash, A. y Tripathi, R. (2016). Spectrum handoff in cognitive radio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61(Supplement C), 161-188. https://doi.org/https://doi.org/10.1016/j.jnca.2015.10.008

Lahby, M., Leghris, C. y Adib, A. (2011). A hybrid approach for network selection in heterogeneous multi-access environments. International Conference on New Technologies, Mobility and Security, 1-5. https://doi.org/10.1109/NTMS.2011.5720658

Lee, W., y Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845-3857. https://doi.org/10.1109/T-WC.2008.070391

Lee, W. y Akyildiz, I. F. (2011). A spectrum decision framework for cognitive radio networks. IEEE Transactions on Mobile Computing, 10(2). 161-174 https://doi.org/10.1109/TMC.2010.147

Lehtomaki, J. J., Juntti, M., Saarnisaari, H. y Koivu, S. (2005). Threshold setting strategies for a quantized total power radiometer. IEEE Signal Processing Letters, 12(11), 796-799. https://doi.org/10.1109/LSP.2005.855521

Lertsinsrubtavee, A. y Malouch, N. (2016). Hybrid spectrum sharing through adaptive spectrum handoff and selection. IEEE Transactions on Mobile Computing, 15(11), 2781-2793.

Li, X. y Zekavat, S. A. (2008). Traffic pattern prediction and performance investigation for cognitive radio systems. IEEE Wireless Communications and Networking Conference, 894-899. https://doi.org/10.1109/WCNC.2008.163

Li, Y., Shen, H. y Wang, M. (2016). Optimization spectrum decision parameters in CR using autonomously search algorithm. International Conference on Signal Processing (ICSP), 1146-1151. https://doi.org/10.1109/ICSP.2016.7878007

López, D. A., Trujillo, E. R. y Gualdrón, O. E. (2015). Elementos fundamentales que componen la radio cognitiva y asignación de bandas espectrales. Información Tecnológica, 26(1), 23-40. https://doi.org/10.4067/S0718-07642015000100004

López, D. L. (2017). Implementación de un modelo predictor para la toma de decisiones en redes inalámbricas de radio cognitiva [Universidad Distrital Francisco José de Caldas]. http://doctoradoingenieria.udistrital.edu.co/index.php/es/investigacion/publicaciones

Ma, L., Shen, C. C. y Ryu, B. (2007). Single-radio adaptive channel algorithm for spectrum agile wireless ad hoc networks. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 547- 558. https://doi.org/10.1109/DYSPAN.2007.78

Marinho, J. y Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147-164. https://doi.org/10.1007/s11276-011-0392-1

Márquez, H., Hernández, C. y Giral, D. (2017). Channel availability prediction in cognitive radio networks using naive bayes. HIKARI Ltd, 10(12), 593-605. https://doi.org/10.12988/ces.2017.7758

Martins, L. R. y Andrade, L. H. (2018). Analysis of machine learning algorithms for spectrum decision in cognitive radios. 2018 15th International Symposium on Wireless Communication Systems (ISWCS), 1-6. https://doi.org/10.1109/ISWCS.2018.8491060

Masonta, M. T., Mzyece, M. y Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: a survey. IEEE Communications Surveys & Tutorials, 15(3), 1088-1107. https://doi.org/10.1109/SURV.2012.111412.00160

Matinmikko, M., Del-Ser, J., Rauma, T. y Mustonen, M. (2013). Fuzzy-logic based framework for spectrum availability assessment in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184. https://doi.org/10.1109/JSAC.2013.131117

Matlab. (2015). Matlab getting started guide. Matlab.

Mehbodniya, A., Kaleem, F., Yen, K. K. y Adachi, F. (2012). A fuzzy MADM ranking approach for vertical mobility in next generation hybrid networks. International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops, 262-267. https://doi.org/10.1109/ICUMT.2012.6459676

Mir, U., Merghem-Boulahia, L., Esseghir, M. y Gaïti, D. (2011). Dynamic spectrum sharing for cognitive radio networks using multiagent system. IEEE Conference on Consumer Communications and Networking, 658-663.

Miranda, E. (2001). Improving subjective estimates using paired comparisons. IEEE Software, 18(1), 87-91. https://doi.org/10.1109/52.903173

Mitola, J. y Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13-18. https://doi.org/10.1109/98.788210

Nisan, N., Roughgarden, T., Tardos, E. y Vazirani, V. V. (2007). Algorithmic game theory (vol. 1). Cambridge University Press Cambridge.

Ormond, O., Murphy, J. y Muntean, G. (2006). Utility-based intelligent network selection in beyond 3G systems. IEEE International Conference on Communications, 4, 1831-1836. https://doi.org/10.1109/ICC.2006.254986

Oyewobi, S. S. y Hancke, G. P. (2017). A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN). Journal of Network and Computer Applications, 97, 140-156. https://doi.org/https://doi.org/10.1016/j.jnca.2017.08.016

Ozger, M. y Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20(1), 157-160. https://doi.org/10.1109/LCOMM.2015.2504103

Páez, I., Giral, D. y Hernández, C. (2015). Modelo AHP-VIKOR para handoff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39.

Páez, I., Hernández, C. y Giral, D. (2017). Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva (1.ª ed.). Editorial UD.

Pankratev, D. A., Samsonov, A. A. y Stotckaia, A. D. (2019). Wireless data transfer technologies in a decentralized system. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 620-623. https://doi.org/10.1109/EIConRus.2019.8656671

Patil, S. K. y Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Systems with Applications, 41(2), 679-693. https://doi.org/10.1016/j.eswa.2013.07.093

Pedraza, L. F., Forero, F. y Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingenieria y Ciencia, 10(19), 127-143.

Pedraza, L. F., Hernández, C., Galeano, K., Rodríguez, E. y Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá (1.ª ed.). Universidad Distrital Francisco José de Caldas.

Petrova, M., Mahonen, P. y Osuna, A. (2010). Multi-class classification of analog and digital signals in cognitive radios using Support Vector Machines. International Symposium on Wireless Communication Systems, 986-990. https://doi.org/10.1109/ISWCS.2010.5624500

Pham, C., Tran, N. H., Do, C. T., Moon, S. Il y Hong, C. S. (2014). Spectrum handoff model based on hidden Markov model in cognitive radio networks. International Conference on Information Networking, 406-411.

Pla, V., Vidal, J. R., Martínez-Bauset, J. y Guijarro, L. (2010). Modeling and characterization of spectrum white spaces for underlay cognitive radio networks. IEEE International Conference on Communications. https://doi.org/10.1109/ICC.2010.5501788

Rahimian, N., Georghiades, C. N., Shakir, M. Z. y Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and system throughput perspectives. IEEE Transactions on Wireless Communications, 13(1), 356-369. https://doi.org/10.1109/TWC.2013.120213.130658

Ramírez, C. y Ramos, V. M. (2013). On the Effectiveness of Multi-criteria Decision Mechanisms for Vertical Handoff. International Conference on Advanced Information Networking and Applications, 1157-1164. https://doi.org/10.1109/AINA.2013.114

Ramírez, C. y Ramos, V. M. (2010). Handover vertical: un problema de toma de decisión múltiple. Congreso Internacional sobre Innovación y Desarrollo Tecnológico.

Ramzan, M. R., Nawaz, N., Ahmed, A., Naeem, M., Iqbal, M. y Anpalagan, A. (2017). Multi-objective optimization for spectrum sharing in cognitive radio networks: A review. Pervasive and Mobile Computing, 41(Supplement C), 106-131. https://doi.org/10.1016/j.pmcj.2017.07.010

Rizk, Y., Awad, M. y Tunstel, E. W. (2018). Decision making in multiagent systems: A survey. IEEE Transactions on Cognitive and Developmental Systems, 10(3), 514-529. https://doi.org/10.1109/TCDS.2018.2840971

Rodríguez, E., Ramírez, P., Carrillo, A. y Ernesto, C. (2011). Multiple attribute dynamic spectrum decision making for cognitive radio networks. International Conference on Wireless and Optical Communications Networks, 1-5. https://doi.org/10.1109/WOCN.2011.5872960

Rodríguez, A. B., Ramírez, L. J. y Chahuan, J. (2015). Nueva generación de heurísticas para redes de fibra óptica WDM (Wavelength División Multiplexing) bajo tráfico dinámico. Información Tecnológica, 26(5), 135-142.

Roy, A., Midya, S., Majumder, K., Phadikar, S. y Dasgupta, A. (2017). Optimized secondary user selection for quality of service enhancement of Two-Tier multi-user Cognitive Radio Network: A game theoretic approach. Computer Networks, 123, 1-18. https://doi.org/10.1016/j.comnet.2017.05.002

Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26. https://doi.org/10.1016/0377-2217(90)90057-I

Safavian, S. R. y Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man and Cybernetics, 21(3), 660-674. https://doi.org/10.1109/21.97458

Salgado, C., Márquez, H. y Gómez, V. (2016a). Técnicas inteligentes en la asignación de espectro dinámica para redes inalámbricas cognitivas. Revista Tecnura, 20(49), 133-151. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a09

Salgado, C., Mora, S. y Giral, D. (2016b). Collaborative algorithm for the spectrum allocation in distributed cognitive networks. IJET, 8(5), 2288-2299. https://doi.org/10.21817/ijet/2016/v8i5/160805091

Song, Q. y Jamalipour, A. (2005). A network selection mechanism for next generation networks. IEEE International Conference on Communications, 2, 1418-1422. https://doi.org/10.1109/ICC.2005.1494578

Sriram, K. y Whitt, W. (1986). Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 4(6), 833-846. https://doi.org/10.1109/JSAC.1986.1146402

Stevens, E., Martínez, J. D. y Pineda, U. (2012). Evaluation of vertical handoff decision algorithms based on MADM methods for heterogeneous wireless networks. Journal of Applied Research and Technology, 10(4), 534-548.

Stevens, E., Gallardo, R., Pineda, U. y Acosta, J. (2012). Application of MADM method VIKOR for vertical handoff in heterogeneous wireless networks. IEICE Transactions on Communications, 95(2), 599-602. https://doi.org/10.1587/transcom.E95.B.599

Stevens, E., Lin, Y. y Wong, V. W. S. (2008). An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 57(2), 1243-1254. https://doi.org/10.1109/TVT.2007.907072

Stevens, E. y Wong, V. W. S. (2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. IEEE Vehicular Technology Conference, 2, 947-951. https://doi.org/10.1109/VETECS.2004.1388970

Sutton, R. S. y Barto, A. G. (1998). Reinforcement learning: An introduction. IEEE Transactions on Neural Networks, 9(5), 1054. https://doi.org/10.1109/TNN.1998.712192

Tabassam, A. A. y Suleman, M. U. (2012). Game theory in wireless and cognitive radio networks–Coexistence perspective. 2012 IEEE Symposium on Wireless Technology and Applications (ISWTA), 177-181. https://doi.org/10.1109/ISWTA.2012.6373837

Tahir, M., Hadi Habaebi, M. e Islam, M. R. (2017). Novel distributed algorithm for coalition formation for enhanced spectrum sensing in cognitive radio networks. AEU–International Journal of Electronics and Communications, 77(Supplement C), 139-148. https://doi.org/10.1016/j.aeue.2017.04.033

Taj, M. I. y Akil, M. (2011). Cognitive radio spectrum evolution prediction using artificial neural networks based multivariate time series modelling. Wireless Conference Sustainable Wireless Technologies, 1-6.

Tanino, T., Tanaka, T. e Inuiguchi, M. (2003). Multi-objective programming and goal programming: Theory and applications (vol. 21). Springer Science & Business Media.

Thakur, P., Kumar, A., Pandit, S., Singh, G. y Satashia, S. N. (2017). Spectrum mobility in cognitive radio network using spectrum prediction and monitoring techniques. Physical Communication, (24), 1-8. https://doi.org/10.1016/j.phycom.2017.04.005

Tragos, E., Zeadally, S., Fragkiadakis, A. y Siris, V. (2013). Spectrum assignment in cognitive radio networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 15(3), 1108-1135. https://doi.org/10.1109/SURV.2012.121112.00047

Trigui, E., Esseghir, M. y Merghem-Boulahia, L. (2012). Multi-agent systems negotiation approach for handoff in mobile cognitive radio networks. International Conference on New Technologies, Mobility and Security, 1-5. https://doi.org/10.1109/NTMS.2012.6208687

Tripathi, S., Upadhyay, A., Kotyan, S. y Yadav, S. (2019). Analysis and comparison of different fuzzy inference systems used in decision making for secondary users in cognitive radio network. Wireless Personal Communications, 104(3), 1175-1208. https://doi.org/10.1007/s11277-018-6075-9

Tsiropoulos, G., Dobre, O., Ahmed, M. y Baddour, K. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847. https://doi.org/10.1109/COMST.2014.2362796

Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suárez, M. y Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analyses and observations. International Conference on Cognitive Radio Oriented Wireless Networks, 230126, 2-6. https://doi.org/10.4108/ICST.CROWNCOM2010.9220

Vasudeva, A. y Sood, M. (2018). Survey on sybil attack defense mechanisms in wireless ad hoc networks. Journal of Network and Computer Applications, (120), 78-118. https://doi.org/https://doi.org/10.1016/j.jnca.2018.07.006

Wang, B. y Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5-23. https://doi.org/10.1109/JSTSP.2010.2093210

Wang, C., Chen, Y. y Liu, K. J. R. (2017). Hidden Chinese restaurant game: Grand information extraction for stochastic network learning. IEEE Transactions on Signal and Information Processing over Networks, 3(2), 330-345. https://doi.org/10.1109/TSIPN.2017.2682799

Wang, J., Ghosh, M. y Challapali, K. (2011). Emerging cognitive radio applications: A survey. IEEE Communications Magazine. https://doi.org/10.1109/MCOM.2011.5723803

Wang, P., Ansari, J., Petrova, M. y Mähönen, P. (2016). CogMAC+: A decentralized MAC protocol for opportunistic spectrum access in cognitive wireless networks. Computer Communications, 79 (Supplement C), 22-36. https://doi.org/https://doi.org/10.1016/j.comcom.2015.09.016

Wang, X., Wong, A. y Ho, P.-H. (2010). Dynamically optimized spatiotemporal prioritization for spectrum sensing in cooperative cognitive radio. Wireless Networks, 16(4), 889-901. https://doi.org/10.1007/s11276-009-0175-0

Wei, Q., Farkas, K., Prehofer, C., Mendes, P. y Plattner, B. (2006). Context-aware handover using active network technology. Computer Networks, 50(15), 2855-2872. https://doi.org/10.1016/j.comnet.2005.11.002

Wei, Y., Li, X., Song, M. y Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. International Conference on Natural Computation, 5, 197-201. https://doi.org/10.1109/ICNC.2008.504

Willkomm, D., Machiraju, S., Bolot, J. y Wolisz, A. (2008). Primary users in cellular networks: A large-scale measurement study. IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, 401-411. https://doi.org/10.1109/DYSPAN.2008.48

Woods, W. A. (1986). Important issues in knowledge representation. Proceedings of the IEEE, 74(10), 1322-1334.

Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.

Wu, Y., Yang, Q., Liu, X. y Kwak, K. (2016). Delay-Constrained optimal transmission with proactive spectrum handoff in cognitive radio networks. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2016.2561936

Xenakis, D., Passas, N. y Merakos, L. (2014). Multi-parameter performance analysis for decentralized cognitive radio networks. Wireless Networks, 20(4), 787-803. https://doi.org/10.1007/s11276-013-0635-4

Xu, G. y Lu, Y. (2006). Channel and modulation selection based on support vector machines for cognitive radio. International Conference on Wireless Communications, Networking and Mobile Computing, 4-7. https://doi.org/10.1109/WiCOM.2006.181

Yang, S. F. y Wu, J. S. (2008). A IEEE 802.21 handover design with QoS provision across WLAN and WMAN. International Conference on Communications, Circuits and Systems Proceedings, 548-552. https://doi.org/10.1109/ICCCAS.2008.4657833

Yang, S. J. y Tseng, W. C. (2013). Design novel weighted rating of multiple attributes scheme to enhance handoff efficiency in heterogeneous wireless networks. Computer Communications, 36(14), 1498-1514. https://doi.org/10.1016/j.comcom.2013.06.005

Yifei, W., Yinglei, T., Li, W., Mei, S. y Xiaojun, W. (2013). QoS provisioning energy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101. https://doi.org/10.1109/CC.2013.6723882

Yonghui, C. (2010). Study of the bayesian networks. International Conference on E-Health Networking, Digital Ecosystems and Technologies, 1, 172-174.

Yoon, K. P. y Hwang, C.-L. (1995). Multiple attribute decision making: An introduction (vol. 104). Sage publications.

Youssef, M. E., Nasim, S., Wasi, S., Khisal, U. y Khan, A. (2018). Efficient cooperative spectrum detection in cognitive radio systems using wavelet fusion. International Conference on Computing, Electronic and Electrical Engineering. https://doi.org/10.1109/ICECUBE.2018.8610981

Yu, X. y Xue, W. (2018). Joint Spectrum Allocation and Power Control for Cognitive Radio Networks Based on Potential Game BT–2018 International Symposium on Networks, Computers and Communications, ISNCC 2018, June 19, 2018–June 21, 2018. dbw Communication; iDirect; Nextant Applications a. https://doi.org/10.1109/ISNCC.2018.8530881

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Zapata, J. A., Arango, M. D. y Adarme, W. (2012). Applying fuzzy extended analytical hierarchy (FEAHP) for selecting logistics software. Ingeniería e Investigación, 32(1), 94-99.

Zhang, B., Chen, Y., Wang, C. y Liu, K. J. R. (2012). Learning and decision making with negative externality for opportunistic spectrum access. 2012 IEEE Global Communications Conference (GLOBECOM), 1404-1409. https://doi.org/10.1109/GLOCOM.2012.6503310

Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M. y Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730-743. https://doi.org/10.1109/TWC.2016.2628821

Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous networks. IEEE Wireless Communications and Networking Conference, 2, 653-658. https://doi.org/10.1109/WCNC.2004.1311263

Zhang, Y., Tay, W. P., Li, K. H., Esseghir, M. y Gaïti, D. (2016). Opportunistic spectrum access with temporal-spatial reuse in cognitive radio networks. IEEE International Conference on Acoustics, Speech and Signal Processing, 3661-3665.

Zhao, Y., Mao, S., Neel, J. O. y Reed, J. H. (2009). Performance evaluation of cognitive radios: Metrics, utility functions, and methodology. Proceedings of the IEEE, 97(4), 642-658. https://doi.org/10.1109/JPROC.2009.2013017

Zheng, H. y Cao, L. (2005). Device-centric spectrum management. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 56-65. https://doi.org/10.1109/DYSPAN.2005.1542617

Descargas

Publicado

December 13, 2021

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Detalles sobre el formato de publicación disponible: PDF

PDF

ISBN-13 (15)

978-958-787-438-9

Detalles sobre el formato de publicación disponible: Formato físico

Formato físico

ISBN-13 (15)

978-958-787-310-8

Dimensiones físicas

Loading...